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Abstract 

Yellamsetty, Anusha. PhD. The University of Memphis. August 2018. Dissociable mechanisms 
of concurrent speech segregation in noise at cortical and subcortical levels. Primary Advisor: 
Gavin M Bidelman, PhD. 

When two vowels with different fundamental frequencies (F0s) are presented 

concurrently, listeners often hear two voices producing different vowels on different pitches. 

Parsing of this simultaneous speech can also be affected by the signal-to-noise ratio (SNR) in the 

auditory scene. The extraction and interaction of F0 and SNR cues may occur at multiple levels 

of the auditory system. The major aims of this dissertation are to elucidate the neural 

mechanisms and time course of concurrent speech perception in clean and in degraded listening 

conditions and its behavioral correlates. In two complementary experiments, electrical brain 

activity (EEG) was recorded at cortical (EEG Study #1) and subcortical (FFR Study #2) levels 

while participants heard double-vowel stimuli whose fundamental frequencies (F0s) differed by 

zero and four semitones (STs) presented in either clean or noise degraded (+5 dB SNR) 

conditions. Behaviorally, listeners were more accurate in identifying both vowels for larger F0 

separations (i.e., 4ST; with pitch cues), and this F0-benefit was more pronounced at more 

favorable SNRs. Time-frequency analysis of cortical EEG oscillations (i.e., “brain rhythms”) 

revealed a dynamic time course for concurrent speech processing that depended on both extrinsic 

(SNR) and intrinsic (pitch) acoustic factors. Early high frequency activity reflected pre-

perceptual encoding of acoustic features (~200 ms) and the quality (i.e., SNR) of the speech 

signal (~250-350ms), whereas later-evolving low-frequency rhythms (~400-500ms) reflected 

post-perceptual, cognitive operations that covaried with listening effort and task demands. 

Analysis of subcortical responses indicated that while FFRs provided a high-fidelity 

representation of double vowel stimuli and the spectro-temporal nonlinear properties of the 
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peripheral auditory system. FFR activity largely reflected the neural encoding of stimulus 

features (exogenous coding) rather than perceptual outcomes, but timbre (F1) could predict the 

speed in noise conditions. Taken together, results of this dissertation suggest that subcortical 

auditory processing reflects mostly exogenous (acoustic) feature encoding in stark contrast to 

cortical activity, which reflects perceptual and cognitive aspects of concurrent speech perception. 

By studying multiple brain indices underlying an identical task, these studies provide a more 

comprehensive window into the hierarchy of brain mechanisms and time-course of concurrent 

speech processing. 
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Chapter 1 

GENERAL INTRODUCTION 

For speech comprehension in noisy environments (e.g., cocktail parties), listeners must 

parse an acoustic mixture into groups sound elements coming from one source (i.e., one talker) 

and segregate these from other sources (i.e., other talker). The process of auditory streaming is 

thought to rely on several acoustic principles including the degree of (in)harmonicity (Alain, 

Arnott, & Picton, 2001; Bidelman & Alain, 2015a), temporal coherence/(a)synchrony (Van 

Noorden, 1975), spectral content, and spatial configurations between multiple auditory objects 

(for reviews, see Bidet-Caulet & Bertrand, 2009; Bregman, 1990a; Oxenham, 2008; Shamma, 

Elhilali, & Micheyl, 2011). In particular, differences in the fundamental frequency (F0) between 

two or more sounds (i.e., pitch cues) represents one of the most robust acoustic factors for 

perceptual segregation. Auditory stimuli containing the same F0 are perceived as a single 

perceptual object whereas multiple F0s tend to promote hearing multiple sources. For instance, 

using synthetic double-vowel stimuli in a concurrent speech identification task, studies have 

shown that accuracy of identifying both vowels improves by 18% with increasing pitch 

differences between the vowels for F0 separations from 0 to about 4 semitones (STs) (Assmann 

& Summerfield, 1989a, 1990a, 1994a; de Cheveigné, Kawahara, Tsuzaki, & Aikawa, 1997). 

Research so far suggests that along with the F0 cues (Arehart, King, & McLean-Mudgett, 1997; 

Chintanpalli, Ahlstrom, & Dubno, 2016; Chintanpalli & Heinz, 2013a) listeners use additional 

acoustic cues to segregate speech such as spectral differences associated with formants 

(Ananthakrishna Chintanpalli & Heinz, 2013b), temporal envelope cues like harmonic 

interactions (Culling & Darwin, 1993), and spectral edges.  
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 The segregation of speech and non-speech signals is thought to involve a multistage 

hierarchy of processing, whereby initial pre-attentive processes partition the sound waveform 

into distinct acoustic features (e.g. pitch, harmonicity) which is then acted upon by later, post-

perceptual Gestalt principles (Koffka, 1935) [e.g., grouping by physical similarity, temporal 

proximity, good continuity (Bregman, 1990b)] and phonetic template matching (Alain, Reinke, 

He, Wang, & Lobaugh, 2005; Meddis & Hewitt, 1992a). Thus, the distributed neural network 

involves both subcortical and cortical brain regions (Alain, Reinke, McDonald, et al., 2005; 

Bidelman & Alain, 2015b; Dyson & Alain, 2004; Sinex, Sabes, & Li, 2002a).  

 Studies that directly examined the neural underpinnings of segregation of double vowel 

speech stimuli showed that neural encoding is not the same at different levels of the auditory 

pathway. The temporal discharge patterns and the spatial distribution auditory nerve (AN) fibers 

and cochlear CN contained sufficient information to identify both F0s (Keilson, Richards, 

Wyman, & Young, 1997; Alan R Palmer & Winter, 1992; AR Palmer, 1990c). Whereas at 

inferior colliculus (IC), neurons are tuned to spectral peaks (formants)(Carney, Li, & 

McDonough, 2015) and poorly represented F0 (Sinex, 2008; Sinex, Henderson, Li, & Chen, 

2002; Sinex, Li, & Velenovsky, 2005; Sinex, Sabes, & Li, 2002b). Cortically, event-related brain 

potentials (ERPs) have mapped the time course of concurrent speech processing 

 modulations in neural activity have been observed as early as ~150-200 ms, indicative of pre-

attentive signal detection, with conscious identification of simultaneous speech occurring slightly 

later, ~350-400 ms post-stimulus onset (Alain, Arsenault, Garami, Bidelman, & Snyder, 2017; 

Alain, Reinke, He, et al., 2005; C. Alain, Snyder, He, & Reinke, 2007; Bidelman & Yellamsetty, 

2017a; Reinke, He, Wang, & Alain, 2003).  
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  One of the main factors affecting the parsing of simultaneous speech in the real world is 

signal-to-noise ratio (SNR). Additive noise tends to obscure less intense portions of the speech 

signal, preventing audible access to the salient speech cues normally exploited for 

comprehension (e.g., temporal envelope; Bidelman, 2016; Shannon et al., 1995; Swaminathan 

and Heinz, 2012). Successful perception of concurrently presented speech in noise is dependent 

on cognitive factors as well as sound processing at peripheral, subcortical and cortical levels, 

making it the most complex aspects of human communication (Kujala & Brattico, 2009; Shinn-

Cunningham & Best, 2008). Studies so far have shed light on evoked cortical activity underlying 

the neural encoding of concurrent speech and have focused on how listeners track dynamic F0 

information, and how the pitch cues aid the monitoring of auditory sources (Assmann, 1996) and 

improve speech perception in noise (Bidelman and Krishnan, 2010; Macdonald et al., 2010; 

Nabelek et al., 1989). ERPs cannot speak to the potential connection between cognitively driven 

non-phase locked induced brain rhythms and concurrent speech. These intrinsic brain rhythms 

are temporally jittered and are washed away by traditional time-locked ERP averaging. Studying 

brain rhythms would give us a platform to understand the mechanisms of perception and 

cognitive processing involved in concurrent speech identification task. 

 On the other hand, in studies at subcortical level, investigators typically manipulate the 

amount of acoustic information in the stimulus (e.g., SNR) and observe parallel changes in 

neural responses for isolated speech sounds (e.g., vowel, stop consonants). In such experimental 

designs, modulations in the evoked responses and human behavior both covary with the acoustic 

properties of the signal. This confounding of variables is further obscured if changes in the 

subcortical pre-attentive neural activity reflect a true correlate of the auditory percept or merely 

reflect properties of the stimulus itself. This distinction is important as recent Frequency 
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Following Responses (FFR) studies have shown the dissociation of acoustics from the actual 

percept suggesting that FFRs may not reflect a true neural correlate of the auditory percept but 

rather reflects more exogenous stimulus properties (Bidelman, 2017b; Bidelman, Moreno, & 

Alain, 2013b; Gockel, Carlyon, Mehta, & Plack, 2011). We are not aware of any studies 

examining the dissociation of acoustics from the actual percept, and how composite noise and 

pitch information affect the parsing of simultaneous speech across the auditory pathway.  

To this end, we recorded EEG at subcortical (pre-attentive) and cortical (post-attentive) 

levels for a concurrent speech stimulus with two major aims (1) To illustrate the hierarchy of the 

connectivity between neuro-electric brain streams elicited by concurrent speech identification; 

and (2) To elucidate the neural mechanisms and time course of concurrent speech identification 

in clean and degraded listening conditions. Subcortically, FFRs allow us to estimate how salient 

properties of speech spectra (e.g., F0s or formants of concurrent vowels) are transcribed by the 

human auditory nervous system at early, pre-attentive stages of the processing hierarchy. 

Cortically, new time-frequency analysis of the EEG provided novel insight into the 

correspondence between cortical brain rhythms and speech perception and how listeners exploit 

pitch and SNR cues for successful identification. We hypothesized, that the spectral components 

of FFRs reflect the encoding of non-linear interactions between the two concurrent vowels. 

Additionally, FFRs would show reduced amplitudes with noise and correlate with behavioral 

identification scores, offering an objective, subcortical correlates of concurrent speech 

perception. With cortical neural rhythms, we expected that early modulations in higher frequency 

bands of the EEG (i.e., γ-band) would be sensitive to the acoustic features of stimuli and the 

quality of speech representations. Alternatively, the lower frequency bands of oscillation (i.e., θ-
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band) would reflect more domain general, or internal operations related to the perceptual 

segregation process and task demands (such as attention, listening effort, or memory demands).  
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Chapter 2 

LOW- AND HIGH-FREQUENCY CORTICAL BRAIN OSCILLATIONS REFLECT 

DISSOCIABLE MECHANISMS OF CONCURRENT SPEECH SEGREGATION IN 

NOISE 

Abstract 

Parsing simultaneous speech requires listeners use pitch-guided segregation which can be 

affected by the signal-to-noise ratio (SNR) in the auditory scene. The interaction of these two 

cues may occur at multiple levels within the cortex. The aims of the current study were to assess 

the correspondence between oscillatory brain rhythms and determine how listeners exploit pitch 

and SNR cues to successfully segregate concurrent speech. We recorded electrical brain activity 

while participants heard double-vowel stimuli whose fundamental frequencies (F0s) differed by 

zero or four semitones (STs) presented in either clean or noise-degraded (+5dB SNR) conditions. 

We found that behavioral identification was more accurate for vowel mixtures with larger pitch 

separations but F0 benefit interacted with noise. Time-frequency analysis decomposed the EEG 

into different spectrotemporal frequency bands. Low-frequency (θ, β) responses were elevated 

when speech did not contain pitch cues (0ST>4ST) or was noisy, suggesting a correlate of 

increased listening effort and/or memory demands. Contrastively, γ power modulations were 

observed for changes in both pitch (0ST>4ST) and SNR (clean>noise), suggesting high-

frequency bands carry information related to acoustic features and the quality of speech 

representations. Brain-behavior associations corroborated these effects; modulations in low-

frequency rhythms predicted the speed of listeners’ perceptual decisions with higher bands 

predicting identification accuracy. Results demonstrate that neural oscillations reflect both 
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automatic (pre-perceptual) and controlled (post-perceptual) mechanisms of speech processing 

that are largely divisible into high- and low-frequency bands of human brain rhythms. 

Keywords: EEG; time-frequency analysis; double-vowel segregation; F0-benefit; speech-in-

noise perception 

INTRODUCTION 

In normal auditory scenes (e.g., cocktail parties), listeners must parse acoustic mixtures 

to extract the intended message of a target, a process known as source segregation. Previous 

studies have suggested that fundamental frequency (F0) (i.e., pitch) differences provide a robust 

cue for identifying the constituents of concurrent speech. For instance, using synthetic double-

vowel stimuli in a concurrent speech identification task, studies have shown that accuracy of 

identifying both vowels improves with increasing pitch differences between the vowels for F0 

separations from 0 to about 4 semitones (STs) (Assmann & Summerfield, 1989b, 1990b, 1994b; 

de Cheveigné et al., 1997). This improvement has been referred to as the “F0 benefit” (Arehart et 

al., 1997; Chintanpalli et al., 2016; Chintanpalli & Heinz, 2013a). Thus, psychophysical research 

from the past several decades confirms that human listeners exploit F0 (pitch) differences to 

segregate concurrent speech. 

 Neural responses to concurrent speech and non-speech sounds have been measured at 

various levels of the auditory system including single-unit recordings in animals (AR Palmer, 

1990c; Portfors & Sinex, 2005; Sinex, Guzik, Li, & Sabes, 2003; Snyder & Sinex, 2002) and in 

human, via evoked potentials (Alain, Reinke, He, et al., 2005; Bidelman, 2017a; Bidelman & 

Alain, 2015b; Dyson & Alain, 2004) and fMRI (Arnott, Grady, Hevenor, Graham, & Alain, 

2005). The segregation of complex signals is thought to involve a multistage hierarchy of 

processing, whereby initial pre-attentive processes partition the sound waveform into distinct 
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acoustic features (e.g., pitch, harmonicity) which is then acted upon by later, post-perceptual 

Gestalt principles (Koffka, 1935) [e.g., grouping by physical similarity, temporal proximity, 

good continuity (Bregman, 1990b)] and phonetic template matching (Alain, Reinke, He, et al., 

2005; R. Meddis & Hewitt, 1992b).  

 In humans, the neural correlates of concurrent speech segregation have been most readily 

studied using event-related brain potentials (ERPs). Modulations in ERP amplitude/latency 

provide an index of the timing and level of processing for emergent mechanisms of speech 

segregation. Mapping the time course of concurrent speech processing, modulations in neural 

activity have been observed as early as ~150-200 ms, indicative of pre-attentive signal detection, 

with conscious identification of simultaneous speech occurring slightly later, ~350-400 ms post-

stimulus onset (Alain et al., 2017; Alain, Reinke, He, et al., 2005; C. Alain et al., 2007; Bidelman 

& Yellamsetty, 2017b; Du et al., 2010; Reinke et al., 2003). Further perceptual learning studies 

have shown enhancements in the ERPs with successful learning in double vowel tasks in the 

form of an earlier and larger N1-P2 complex (enhanced sensory coding < 200 ms) coupled with 

larger slow wave activity (~ 400 ms), indicative of more effective cognitive processing/memory 

template matching (C. Alain et al., 2007; Reinke et al., 2003). Using brain-imaging methods 

(PET, fMRI), the spatial patterns of neural activation associated with speech processing have 

also been visualized in various regions of the auditory cortex (Giraud et al., 2004; Pulvermüller, 

1999). For example, fMRI implicates a left thalamocortical network including thalamus, bilateral 

superior temporal gyrus and left anterior temporal lobe in successful double-vowel segregation 

(Alain, Reinke, He, et al., 2005).  

 One of the main factors affecting the parsing of simultaneous speech is signal-to-noise 

ratio. In real-world listening environments, successful recognition of noise-degraded speech is 
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thought to reflect a frontotemporal speech network involving a close interplay between primary 

auditory sensory areas and inferior frontal brain regions (Bidelman & Alain, 2015b; Bidelman & 

Howell, 2016; Binder, Liebenthal, Possing, Medler, & Ward, 2004; Eisner, McGettigan, 

Faulkner, Rosen, & Scott, 2010). Consequently, dynamic F0 cues and noise (SNR) are likely to 

interact during the extraction of multiple auditory streams and occur relatively early (within few 

hundred milliseconds) in the neural hierarchy (Bidelman, 2017a; Bidelman & Yellamsetty, 

2017b).   

While prior studies have shed light on cortical activity underlying the neural encoding of 

concurrent speech, they cannot speak to how different frequency bands of the EEG (i.e., neural 

oscillations) relate to concurrent speech segregation. These frequency-specific “brain rhythms” 

become apparent only after averaging single-trial epochs in the spectral domain. The resulting 

neural spectrogram can be decomposed into various frequency bands which are thought to reflect 

local (high-frequency) and long-range (low -frequency) communication between different neural 

populations. Studies also suggest that various frequency ranges of the EEG may reflect different 

mechanisms of processing, including attention (Lakatos, Karmos, Mehta, Ulbert, & Schroeder, 

2008), navigation (Buzsáki, 2005), memory (Palva, Monto, Kulashekhar, & Palva, 2010; 

Sauseng, Klimesch, Gruber, & Birbaumer, 2008), motor planning (Donoghue, Sanes, 

Hatsopoulos, & Gaál, 1998), and speech-language comprehension (Doelling, Arnal, Ghitza, & 

Poeppel, 2014; Ghitza, 2011, 2013; Ghitza, Giraud, & Poeppel, 2013; Haarmann, Cameron, & 

Ruchkin, 2002; Shahin, Picton, & Miller, 2009). Although still debated, the general consensus is 

that lower frequency oscillations are associated with the perception, cognition, and action, 

whereas high-frequency bands are associated with stimulus transduction, encoding, and feature 

selection (von Stein & Sarnthein, 2000).  
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 With regard to speech listening, different oscillatory activity may contribute to the neural 

coding of acoustic features in the speech signal or different internal cognitive operations related 

to the perceptual segregation process. Speech can be decomposed into different bands of time-

varying modulations (i.e., slow-varying envelope vs. fast-varying fine structure) which are 

captured in the neural phase-locked activity of the scalp EEG (Bidelman, 2016b).  Theoretical 

accounts of brain organization suggest that different time-varying units of the speech signal (e.g., 

envelope vs. fine structure; phoneme vs. sentential segments) might be “tagged” by different 

frequency ranges of neural oscillations that coordinate brain activity at multiple spatial and 

temporal scales across distant cortical regions. Of relevance to speech coding, delta band (< 3Hz) 

oscillations have been shown to reflect processing related to sequencing syllables and words 

embedded within phrases (Ghitza, 2011, 2012). Theta (θ: 4-8 Hz) band has been linked with 

syllable coding at the word level (Bastiaansen, Van Der Linden, Ter Keurs, Dijkstra, & Hagoort, 

2005; Giraud & Poeppel, 2012; Goswami, 2011) and attention/arousal (Aftanas, Varlamov, 

Pavlov, Makhnev, & Reva, 2001; Paus et al., 1997). In contrast, beta (β: 15-30 Hz) band has 

been associated with the extraction of global phonetic features (Bidelman, 2015a, 2017a; 

Fujioka, Trainor, Large, & Ross, 2012; Ghitza, 2011), template matching (Bidelman, 2015a), 

lexical semantic memory access (Shahin et al., 2009), and perceptual binding in brain networks 

(Aissani, Martinerie, Yahia-Cherif, Paradis, & Lorenceau, 2014; Brovelli et al., 2004; von Stein 

& Sarnthein, 2000). Lastly, gamma (γ: > 50 Hz) band has been associated with detailed phonetic 

features (Goswami, 2011), short duration cues (Giraud & Poeppel, 2012; Zhou, Melloni, 

Poeppel, & Ding, 2016), local network synchronization (Giraud & Poeppel, 2012; Haenschel, 

Baldeweg, Croft, Whittington, & Gruzelier, 2000), perceptual object construction (Tallon-

Baudry & Bertrand, 1999a), and experience-dependent enhancements in speech processing 
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(Bidelman, 2017a). Yet, the role of rhythmic neural oscillations in concurrent speech perception 

and how various frequency bands of the EEG relate to successful auditory scene analysis remains 

unclear.  

 In the present study, we aimed to further elucidate the neural mechanisms of concurrent 

speech segregation from the perspective of oscillatory brain activity. To this end, we recorded 

neuroelectric responses as listeners performed a double-vowel identification task during stimulus 

manipulations designed to promote or deny successful segregation (i.e., changes in F0 separation 

of vowels; with/without noise masking). New time-frequency analysis of the EEG provided 

novel insight into the correspondence between brain rhythms and speech perception and how 

listeners exploit pitch and SNR cues for successful segregation. Based on previous investigations 

on evoked (ERP) correlates of concurrent speech segregation (C. Alain et al., 2007; Bidelman & 

Yellamsetty, 2017b; Reinke et al., 2003) we expected early modulations in higher frequency 

bands of the EEG (e.g., γ-band) would be sensitive to changes in F0-pitch and the SNR of 

speech. This would be consistent with the hypothesis that high frequency oscillations tag 

information related to the acoustic features of stimuli and the quality of speech representations. 

Additionally, we hypothesized that lower bands of oscillation (e.g., θ-band) would reflect more 

domain general, internal operations related to the perceptual segregation process and task 

demands (e.g., attention, listening effort, memory demands).  

METHODS 

Subjects 

 Thirteen young adults (mean ± SD age: 26.1 ± 3.8 years; 10 females, 3 males) 

participated in the experiment. All had obtained a similar level of formal education (19.6± 2.8 

years), were right handed (>43.2 laterality) (Oldfield, 1971), had normal hearing thresholds (i.e., 

≤ 25 dB HL) at octave frequencies between 250 and 8000 Hz, and reported no history of 
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neuropsychiatric disorders. Each gave written informed consent in compliance with a protocol 

approved by the University of Memphis Institutional Review Board. 

General speech-in-noise recognition task 

We measured listeners’ speech-in-noise (SIN) recognition using the standardized 

QuickSIN test (Killion, Niquette, Gudmundsen, Revit, & Banerjee, 2004). We have previously 

shown a strong correspondence between QuickSIN scores and speech ERPs (Bidelman & 

Howell, 2016), justifying the inclusion of this instrument. Participants heard two lists embedded 

in four-talker babble noise, each containing six sentences with five key words. Sentences were 

presented at 70 dB SPL using pre-recorded signal-to-noise ratios (SNRs) which decreased in 5 

dB steps from 25 dB (easy) to 0 dB (difficult). After each presentation, participants repeated the 

sentence and the number of correct key words were scored. “SNR loss” (computed in dB) was 

determined by subtracting the total number of correctly recalled words from 25.5. This metric 

represents the SNR required to correctly identify 50% of the key words across the sentences 

(Killion et al., 2004). SNR loss was measured for two lists separately for the left and right ear. 

The four responses were then averaged to obtain a stable SIN recognition score for each 

participant.  

Electrophysiological procedures 

 Double vowel stimuli 

 Speech stimuli were modeled after previous studies on concurrent double-vowel 

segregation (C. Alain et al., 2007; Assmann & Summerfield, 1989b, 1990b; Bidelman & 

Yellamsetty, 2017b). Synthetic, steady-state vowel tokens (/a/, /i/, and /u/) were created using a 

Klatt synthesizer (Klatt, 1980) implemented in MATLAB® 2015b (The MathWorks, Inc.). Each 
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token was 200 ms in duration including 10-ms cos2 onset/offset ramping.  Vowel F0 and formant 

frequencies were held constant over the duration. F0 was either 100 or 125 Hz. Double-vowel 

stimuli were then created by combining single-vowel pairs. Each vowel pair had either identical 

(0 ST) or different F0s (4ST). That is, one vowel’s F0 was set at 100 Hz while the other vowel 

had an F0 of 100 or 125 Hz so as to produce double-vowels with an F0 separation of either 0 or 4 

semitones (STs). Each vowel was paired with every other vowel (except itself), resulting in a 

total of 6 unique double-vowel pairings (3 pairs x 2 F0 combinations). Double-vowels were 

presented in a clean and noise condition (separate blocks), in which stimuli were delivered 

concurrently with a backdrop of multi-talker noise babble (+5 dB SNR) (Bidelman & Howell, 

2016; Nilsson, Soli, & Sullivan, 1994). SNR was manipulated by changing the level of the 

masker rather than the signal to ensure that SNR was not positively correlated with overall sound 

level (Bidelman & Howell, 2016; Binder et al., 2004). Babble was presented continuously to 

avoid time-locking it with the stimulus presentation. We chose continuous babble over other 

forms of acoustic inference (e.g., white noise) because it more closely mimics real-world 

listening situations and tends to have a larger effect on the auditory ERPs (Kozou et al., 2005).  

 Stimulus presentation was controlled by MATLAB routed to a TDT RP2 interface 

(Tucker-Davis Technologies). Speech stimuli were delivered binaurally at an intensity of 81 dB 

SPL through ER-2 insert earphones (Etymotic Research). During EEG recording, listeners heard 

50 exemplars of each double-vowel combination and were asked to identity both vowels as 

quickly and accurately as possible on the keyboard. Feedback was not provided. The inter-

stimulus interval was jittered randomly between 800 and 1000 ms (20-ms steps, rectangular 

distribution) to avoid rhythmic entrainment of the EEG (Luck, 2005, p. 168) and listeners 

anticipating subsequent trials. The next trial commenced following the listener’s behavioral 
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response. The order of vowel pairs was randomized within and across participants; clean and 

noise conditions were run in separate blocks alternatively. A total of six blocks (3 clean, 3 noise) 

were completed, yielding 150 trials for each of the individual double-vowel conditions. Listeners 

were given 2-3 min breaks after each block (10-15 min after 3 blocks) as needed to avoid fatigue.  

Prior to the experiment proper, we required that participants be able to identify single 

vowels in a practice run with >90% accuracy (e.g., C. Alain et al., 2007). This ensured their task 

performance would be mediated by concurrent sound segregation skills rather than isolated 

identification, per se.  

 EEG data recording and preprocessing 

 EEG recording procedures followed well-established protocols in our laboratory 

(Bidelman, 2015b; Bidelman & Howell, 2016; Bidelman & Yellamsetty, 2017b). Neuroelectric 

activity was recorded from 64 sintered Ag/AgCl electrodes at standard 10-10 locations around 

the scalp (Oostenveld & Praamstra, 2001). Contact impedances were maintained <5 kΩ 

throughout the duration of the experiment. EEGs were digitized using a sampling rate of 500 Hz 

(SynAmps RT amplifiers; Compumedics Neuroscan). Electrodes placed on the outer canthi of 

the eyes and the superior and inferior orbit were used to monitor ocular activity. The data were 

pre-processed by thresholding EEG amplitudes at ±100 μV. Ocular artifacts (saccades and blink 

artifacts) were then corrected in the continuous EEG using a principal component analysis (PCA) 

(Wallstrom, Kass, Miller, Cohn, & Fox, 2004). Data were visually inspected for bad channels 

and paroxysmal electrodes were interpolated from the adjacent four nearest neighbor channels 

(distance weighted). These procedures helped remove myogenic and other artifacts prior to time-

frequency analysis that can affect the interpretation of oscillatory responses (Pope, Fitzgibbon, 

Lewis, Whitham, & Willoughby, 2009).  During online acquisition, all electrodes were 
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referenced to an additional sensor placed ~1 cm posterior to Cz. Data were re-referenced off-line 

to a common average reference. EEGs were then epoched (-200-1000 ms), baseline-corrected to 

the pre-stimulus interval, and digitally filtered (1-100 Hz, zero-phase) for response visualization 

and time-frequency analysis. To obtain an adequate number of trials for analysis, we pooled 

responses to collapse across different vowel pairs. This yielded 450 trials per listener for the four 

conditions of interest [i.e., 2 SNRs (clean, noise) x 2 F0s (0 ST, 4 ST)]. The entire experimental 

protocol including behavioral and electrophysiological testing took ~2 hrs. to complete. 

EEG time-frequency analysis 

 Evoked potential (ERP) results related to this dataset are reported in our companion paper 

(Bidelman & Yellamsetty, 2017b). New time-frequency analyses (applied here) were used to 

evaluate the correspondence between rhythmic brain oscillations and speech perception and how 

listeners exploit pitch and SNR cues for successful segregation.  

 From epoched EEGs, we computed time-frequency decompositions of single-trial data to 

assess frequency-specific changes in oscillatory neural power (Bidelman, 2015a, 2017a). For 

each trial epoch, the time-frequency map (i.e., spectrogram) was extracted using Mortlet 

wavelets as implemented in the MATLAB package Brainstorm (Tadel, Baillet, Mosher, Pantazis, 

& Leahy, 2011b). This resulted in an estimate of the power for each time-frequency point over 

the bandwidth (1-100 Hz; 1 Hz steps) and time course (-200 – 1000 ms) of each epoch window. 

Using the Mortlet basis function, spectral resolution decreased linearly with increasing 

frequency; the full width half maximum (FWHM) was ~1 Hz near DC and approached ~20 Hz at 

60 Hz. Temporal resolution improved exponentially with increasing frequency; FWHM was ~ 3 

sec near DC and ~50 ms at 60 Hz. Single-trial spectrograms were then averaged across trials to 

obtain time-frequency maps for each subject and stimulus condition (see Fig. 2). When power is 
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expressed relative to the baseline pre-stimulus interval (-200 – 0 ms), these spectrographic maps 

are known as event-related spectral perturbations (ERSPs) (Delorme & Makeig, 2004). ERSPs 

represent the increase/decrease in EEG spectral power relative to the baseline pre-stimulus 

period (in dB). They contain neural activity that is both time- and phase-locked to the eliciting 

stimulus (i.e., evoked activity) as well as non-phase-locked responses (i.e., induced oscillatory 

activity) generated by the ongoing stimulus presentation (Bidelman, 2015a, 2017a; Shahin et al., 

2009; Trainor, Shahin, & Roberts, 2009). To reduce the dimensionality of the data, we restricted 

our analysis to the Fz electrode. This channel is ideal for measuring auditory evoked responses 

(Picton et al., 1999a) and time-frequency oscillations (Bidelman, 2015a, 2017a) to speech which 

are both maximal over frontocentral scalp locations. Moreover, scalp topographies of our data 

(pooled across subjects and conditions) confirmed that most band responses were strongest near 

frontocentral regions of the scalp (see Fig. 3). While we restrict subsequent analyses to Fz, it 

should be noted that in pilot testing, we also analyzed responses at different electrode clusters. 

However, results were qualitatively similar to those reported herein (data not shown).  

  To quantify frequency-specific changes in oscillatory power to concurrent speech, we 

extracted time courses from ERSP maps in five different bands. Band-specific waveforms were 

extracted by taking “slices” of the ERSP maps averaged across different frequency ranges: 5-7 

Hz (θ), 8-12Hz (ɑ), 15-29 Hz (β), 30-59 Hz (γlow), and 60-90 Hz (γhigh). This resulted in a 

running time waveform within each prominent frequency band of the EEG, similar to an ERP. 

We then contrasted band-specific waveforms (i.e., clean vs. noise; 0 ST vs. 4 ST) to compare the 

neural encoding of double-vowel stimuli across the main factors of interest (i.e., SNR and pitch). 

We used a running permutation test (EEGLAB’s statcond function; Delorme & Makeig, 2004) to 

determine the time points over which band activity differed between stimulus conditions 
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(p<0.05, N=1000 resamples). We required that segments persisted contiguously for ≥25 ms to be 

considered reliable and help control false positives (Chung & Bidelman, 2016; Guthrie & 

Buchwald, 1991).  

 This initial analysis revealed time segments where band-specific oscillations were 

modulated by our stimulus manipulations (i.e., SNR and pitch). To better quantify stimulus-

related changes, we extracted peak power from the mid-point of the time segments showing 

significant differences in band activity: θ: 450 ms; β: 350 ms; γlow/high: average of peak power at 

25 and 175 ms (see Fig. 3). Grand average ERSP scalp topographies (pooled across stimulus 

conditions) are shown for each band in Fig. 3. Scalp maps confirmed that synchronized 

responses to speech mixtures were maximal over the frontocentral plane (Claude Alain, Snyder, 

He, & Reinke, 2006; TW Picton et al., 1999b). 

Behavioral data analysis 

Identification accuracy and the “F0 benefit” 

 Behavioral identification was analyzed as the percent of trials where both vowel sounds 

were identified correctly. For statistical analyses, %-correct scores were arcsine transformed to 

improve homogeneity of variance assumptions necessary for parametric statistics (Studebaker, 

1985). Increasing the F0 between two vowels provides a pitch cue which leads to an 

improvement in accuracy identifying concurrent vowels (Assmann & Summerfield, 1990b; R. 

Meddis & Hewitt, 1992b)—an effect referred to as the “F0-benefit” (Arehart et al., 1997; 

Bidelman & Yellamsetty, 2017b; Chintanpalli & Heinz, 2013a). To provide a singular measure 

of double-vowel identification we calculated the F0-benefit for each listener, computed as the 

difference in performance (%-correct) between the 4ST and 0ST conditions. F0-benefit was 
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computed separately for clean and noise stimuli allowing us to compare the magnitude of F0 

benefit in concurrent speech segregation with and without noise interference.  

 Reaction time (RTs) 

 Behavioral speech labeling speeds [i.e., reaction times (RTs)], were computed separately 

for each participant as the median response latency across trials for a given double-vowel 

condition. RTs were taken as the time lapse between the onset of the stimulus presentation and 

listeners’ identification of both vowel sounds. Following our previous studies on the neural 

correlates of speech perception (e.g., Bidelman et al., 2013b; Bidelman & Walker, 2017), RTs 

shorter than 250 ms or exceeding 6000 ms were discarded as implausibly fast responses and 

lapses of attention, respectively.  

Statistical analysis 

 Unless otherwise noted, two-way, mixed-model ANOVAs were conducted on all 

dependent variables (GLIMMIX Procedure, SAS® 9.4, SAS Institute, Inc.). Stimulus SNR (2 

levels; clean, +5 dB noise) and semitones (2 levels; 0ST, 4ST) functioned as fixed effects; 

subjects served as a random factor. Tukey-Kramer multiple comparisons-controlled Type I error 

inflation. An a priori significance level was set at α=0.05.  

To examine the degree to which neural responses predicted behavioral speech 

segregation, we performed weighted least square regression between listeners’ band-specific 

amplitudes and (i) their accuracy, and RTs in the double-vowel task and (ii) QuickSIN scores. 

Robust bisquare fitting was achieved using “fitlm” in MATLAB. To arrive at a comparable and 

single measure to describe how neurophysiological responses distinguished speech using pitch 

cues, we derived a “neural F0 benefit,” computed as the difference between each listener’s 4ST 

and 0ST responses. As in behavioral F0 benefit, this neural analogue was computed separately 
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for the clean and noise conditions. We then regressed behavioral and neural F0 benefits to assess 

brain-behavior correspondences. We reasoned that listeners who experience larger changes in 

their neural encoding of speech with added pitch cues (i.e., stronger neural F0 benefit) would 

have larger behavioral gains in the double-vowel segregation from 0 to 4 ST (i.e., experience 

bigger perceptual F0 benefit). 

RESULTS 

Behavioral data 

Behavioral speech identification accuracy and RTs for double-vowel segregation are 

shown in Figure 1 A. Listeners obtained near-ceiling performance (96.9 ± 1.4%) when 

identifying single vowels. In contrast, double-vowel identification was considerably more 

challenging; listeners’ accuracy ranged from ~30 – 70% depending on the presence of noise and 

pitch cues. An ANOVA conducted on behavioral accuracy confirmed a significant SNR x F0 

interaction [F1, 12 = 5.78, p = 0.0332], indicating that successful double-vowel identification 

depended on both the noise level and presence of F0 pitch cues. Post hoc contrasts revealed 

listeners showed a similar level of performance with and without noise for 0 ST vowels, those 

which did not contain pitch cues. Performance increased ~30% across the board with greater F0 

separations (i.e., 4ST > 0ST). F0-benefit was larger for clean relative to +5 dB SNR speech [t 12 

= 2.15, p = 0.026 (one-tailed)], suggesting listeners made stronger use of pitch cues when 

segregating clean compared to acoustically impoverished speech.  
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Figure 1. Behavioral responses for segregating double-vowel stimuli. (A) Accuracy for 
identifying both tokens of a two-vowel mixture. Performance is poorer when concurrent speech 
sounds contain the same F0 (0ST) and improve ~30% when vowels contain differing F0s (4ST). 
(Insert) Behavioral F0-benefit, defined as the improvement in %-accuracy from 0ST to 4ST, 
indexes the added benefit of pitch cues to speech segregation. F0-benefit is stronger for clean vs. 
noisy (+5 dB SNR) speech indicating that listeners are poorer at exploiting pitch cues when 
segregating acoustically-degraded signals. (B) Speed (i.e., RTs) for double-vowel segregation. 
Listeners are marginally faster at identifying speech in noise. However, faster RTs at the expense 
of poorer accuracy (panel A) suggests a time-accuracy tradeoff in double-vowel identification. 
Data reproduced from Bidelman and Yellamsetty (2017b). error bars = ±1 s.e.m. 

 

Analysis of RTs revealed a marginal effect of SNR [F1, 12 = 4.11, p = 0.065]; listeners 

tended to be slower identifying clean compared to noisy speech (Fig. 1B). The slowing of RTs 

coupled with better %-identification for clean compared to noise-degraded speech is indicative of 

a time-accuracy tradeoff in concurrent sound segregation. Indeed, RTs and %-correct scores 

were highly correlated [r=0.46, p=0.006] such that more accurate identification corresponded 

with slower decisions.  



21 
 

Neural oscillatory responses during double-vowel coding 

Grand average ERSP time-frequency maps are shown for each of the noise and ST 

conditions in Figure 2. Figure 3 shows time waveforms for the 5-7 Hz (θ), 8-12Hz (ɑ), 15-29 Hz 

(β), 30-59 Hz (γlow), and 60-90 Hz (γhigh) bands extracted from the spectrographic maps of Figure 

2. Each reflects how different frequency oscillations in the EEG code double-vowel mixtures. 

Generally speaking, lower frequency bands including θ- and ɑ-band showed sustained activity 

over the duration of the trial which appeared stronger for more difficult stimulus conditions (i.e., 

noisy speech and 0ST conditions). Compared to clean speech, β-band activity also appeared 

larger (more positive) ~400-500 ms after speech onset. Lastly, higher γ-band showed broadband 

transient activations that seem to tag the onset (see 25 ms) and offset (see 200 ms) of the evoking 

speech stimulus (cf. Ross, Schneider, Snyder, & Alain, 2010). These high γ-band events also 

appeared stronger for clean relative to noise-degraded speech and for 0ST vs. 4ST vowel 

mixtures. In terms of the overall time course of spectral responses, the strong modulations of 

high γ-band in clean and at 0ST are followed by negative modulation of β-band and sustained 

positive modulation of the θ- band. The directions of these band amplitude effects are reversed in 

the noise and 4 ST conditions. 

 Figure 3C shows the SNR x ST interaction waveforms. Interactions were confined to α- 

and β- bands, at early (~150-200 ms) time windows after stimulus onset. These early interactions 

replicate (are consistent with) the noise x pitch interactions observed in the N1-P2 time window 

of our previous ERP study on double-vowel coding (Bidelman & Yellamsetty, 2017b) and thus, 

were not explored further.    
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Figure 2. Neural oscillatory responses to concurrent speech sounds are modulated by SNR and 
the presence/absence of pitch cues. ERSP time-frequency maps (Fz channel) quantify both 
“evoked” and “rhythmic” changes in EEG power relative to the baseline period. Each panel 
represents the response to double-vowel stimuli with (4ST) or without (0ST) a difference in 
voice fundamental frequency for stimuli presented either in clean or +5 dB SNR of noise. Light 
gray regions above the spectrograms show the schematized stimulus. Dotted lines, stimulus onset 
(t=0).  

 

 

 

 



23 
 

 

Figure 3. Band-specific time courses during double-vowel segregation. Shown here are response 
time courses for each frequency band of the EEG extracted from ERSP spectrograms and their 
interaction (see Fig. 2). Band waveforms contrast how noise SNR (A), F0 pitch (B), and their 
interaction (C; SNR x pitch) affect the neural encoding of double-vowel mixtures. A permutation 
test shows contiguous segments (≥25 ms duration) where spectral power differs between 
stimulus conditions (■ segments; p < 0.05, N = 1000 resamples). Modulations in β- and high γ-
band distinguish clean from noise-degraded speech (β: clean < noise; γhigh = clean > noise). 
Contrastively, pitch cues are distinguished by modulations in the θ band (0ST > 4ST) and γhigh 
band (0ST > 4ST). Head maps (pooled across stimulus conditions and subjects) show the 
topographic distribution of each band across the scalp at time points where the band-specific 
effects are largest. * Fz electrode for subsequent analysis. Gray regions, schematized stimulus. 
Shading = ±1 s.e.m. 

 

Next, we aimed to quantify changes in spectral band power due to each acoustic factor 

(SNR, STs). For each band time course for the two main effects (i.e., Fig. 3 and B), peak 

amplitudes were extracted from the temporal center of segments showing significant stimulus-

related modulations based on initial permutation tests (see ■, Fig. 3A-B). For θ-band (Fig. 4A), 

we found elevated spectral responses when speech did not contain pitch cues (i.e., 0ST> 4ST) 

[F1, 36 = 0.413, p = 0.0495], whereas the β-band and γlow -band (Fig. 4B, 4C), showed stronger 

oscillatory activity for clean speech (i.e., clean > noise) [β band: F1, 36 = 9.73, p = 0.0036; γlow 

band: F1, 36 = 5.15, p = 0.0294]. Modulations in γhigh power oscillations (Fig. 4D) were observed 
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for changes in both pitch (0ST > 4ST) [F1, 36 = 5.65, p = 0.0229] and SNR (clean > noise) [F1, 36 

= 16.87; p = 0.0002].  

 

 

Figure 4. Band-specific mean spectral peak amplitudes across conditions. Shown here are mean 
amplitudes for each frequency band extracted from the temporal center of segments showing 
significant stimulus-related modulations (see Fig. 3). (A) θ-band spectral responses were 
elevated when speech did not contain pitch cues (i.e., 0ST> 4ST). (B) β-band and (C) γlow -band 
showed stronger desynchronization for clean compared to noise-degraded speech (i.e., clean > 
noise). Note that negative is plotted up for this band. (D) γhigh power modulations were observed 
for changes in both pitch (0ST > 4ST) and SNR (clean > noise). error bars = ±1 s.e.m. 
Together, these findings demonstrate that difference in neural activity to speech between 
conditions is derived by acoustic features, signal quality, and the cognitive effort which causes 
changes in underlying low vs. high bands of oscillatory activity.  

 
Brain-behavior relationships 

Bivariate regressions between band-specific EEG amplitudes and behavioral accuracy 

and RTs are shown in Figure 5A and 5B, respectively. For each frequency band, we derived a 

singular measure of neural F0-benefit, computed as the change in response with and without 

pitch cues (e.g., Δ β4ST – β0ST). This neural measure was then regressed against each listener’s 
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behavioral F0-benefit for the accuracy and RT measures (i.e., Δ PC4ST – PC0ST for accuracy 

scores; Δ RT4ST – RT4ST for reaction times). Paralleling our previous work on speech perception 

(cf. Bidelman, 2017a; Bidelman & Walker, 2017), we reasoned that larger neural differentiation 

between the 0ST and 4ST would correspond to larger gains in behavioral performance (i.e., 

larger perceptual F0-benefit). Repeating this analysis for each band allowed us to evaluate 

potential mechanistic differences in how different neural rhythms map to behavior. Each matrix 

cell shows the regression’s t-statistic which indicates both the magnitude and sign (i.e., negative 

vs. positive) of the association between variables. 

These analyses revealed that γlow was associated (R2 = 0.17) with %-accuracy in the 

double vowel task when pooling clean and noise conditions. Analysis by SNR indicated that this 

correspondence was driven by how γlow differentiated clean speech (R2 = 0.42). Additional links 

were found between behavioral RT speeds and neural F0-benefit, particularly for low-frequency 

bands of the EEG. Notably, changes in θ- (R2 = 0.71) and β- (R2 = 0.19) oscillations predicted 

listeners’ RTs, particularly for noise-degraded speech1. Collectively, these findings imply that 

higher frequency oscillatory rhythms (γ-band) might reflect the quality of stimulus representation 

and thus accuracy in identifying double-vowel mixtures. In contrast, low-frequency oscillations 

are associated with the speed of individuals’ decisions and thus the listening effort associated 

with concurrent sound processing.  
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Figure 5. Brain-behavior correlations underlying double-vowel segregation. Individual cells of 
each matrix show the t-statistic for the regression indicating both the magnitude and sign of 
association between neural F0-benefit and listeners’ corresponding behavioral F0-benefit. In 
both cases, larger F0-benefit reflects more successful neural/behavioral speech segregation with 
the addition of pitch cues (i.e., 4ST > 0ST). (A) correspondences between neural responses and 
identification accuracy (%); (B) correspondence with RTs. Changes in γlow activity predict 
improved behavioral accuracy in double-vowel identification whereas the speed of listeners’ 
decision are predicted by changes in lower oscillations (θ and β band). PC = percent correct, RT= 
reaction times.  *p < 0.05, **p ≤ 0.01, ***p ≤ 0.001. 
 
 

Listeners QuickSIN scores were low (-0.73 ± 1.3 dB SNR loss), consistent with the 

average speech-in-noise perception abilities for normal-hearing listeners (i.e., 0 dB). QuickSIN 

scores were not correlated with any band-specific oscillations across SNR or pitch conditions.  

DISCUSSION 

The present study measured rhythmic neuroelectric brain activity as listeners rapidly 

identified double-vowel stimuli varying in their voice pitch (F0) and noise level (SNR). Results 

showed three primary findings: (i) behaviorally, listeners exploit F0 differences between vowels 

to segregate speech and this perceptual F0 benefit is larger for clean compared to noise degraded 

(+ 5dB SNR) stimuli; (ii) oscillatory power of lower θ and β frequency bands of the EEG reflects 

cognitive processing modulated by task demands (e.g., listening effort, memory), whereas high 

γlow  and  γhigh -band power tracks acoustic features (e.g., envelope) and quality (i.e., noisiness) of 
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the speech signal (i.e., stimulus encoding); (iii) perceptual performance in segregating speech 

sounds is predicted by different modulatory effects in band-specific activity: low-frequency 

oscillations correlate with behavioral reaction times in double vowel identification whereas high-

frequency oscillations are linked to accuracy. The differential changes in power across frequency 

bands of the EEG suggest the engagement of different brain mechanisms supporting speech 

segregation that vary with pitch and noise cues in auditory mixtures. 

Effects of SNR and F0 cues on behavioral concurrent vowel segregation 

Consistent with previous behavioral data (Arehart et al., 1997; Chintanpalli et al., 2016; 

Chintanpalli & Heinz, 2013a; Reinke et al., 2003), we found that listeners were better at 

perceptually identifying speech mixtures when vowels contained different F0s (4ST) compared 

to identical (0ST) F0s in both clean and noise conditions (clean > noise). This perceptual F0 

benefit was larger for clean compared to noise degraded (+ 5dB SNR) stimuli.   However, we 

extend prior studies by demonstrating that the acoustic stressor of noise limits the effectiveness 

of these pitch cues for segregation. Indeed, F0-benefit was weaker for double-vowel 

identification amidst noise compared to clean listening conditions. Similarly, smaller ΔRTs 

(accompanied by lower accuracy) for segregating in noise suggests that listeners experienced a 

time-accuracy tradeoff such that they achieved more accurate identification of speech at the 

expense of slower decision times (Fig. 1).  

Computationally, the identification of concurrent vowels is thought to involve a two-

stage process in which the auditory system first determines the number of elements present in a 

mixture (i.e., “1” vs. “2” sounds) and then seeks their identities (~150-200 ms). The former 

process (segregation) is thought to involve a comparison of the incoming periodicities of double-

vowel F0s, which could be realized via autocorrelation-like mechanisms in peripheral (Bidelman 
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& Alain, 2015a; A. Chintanpalli, Ahlstrom, & Dubno, 2014b; Du et al., 2010; R. Meddis & 

Hewitt, 1992b) and/or auditory cortical neurons (Alain, Reinke, He, et al., 2005; Bidelman & 

Alain, 2015a; Du et al., 2010).  

Indeed, neurons in primary and surrounding belt areas of auditory cortex are both 

sensitive to pitch and even display multi-peaked tuning with peaks occurring at harmonically-

related frequencies (Bendor, Osmanski, & Wang, 2012a; Kikuchi, Horwitz, Mishkin, & 

Rauschecker, 2014b). Following F0-based segregation, the process of determining vowel identity 

could be realized via template matching mechanisms (~ 300-400 ms) in which each 

representation is matched against internalized memory profiles for both vowel constituents. 

Using a computational model of this two-stage model (i.e., autocorrelation-based segregation 

followed by template matching), Meddis and colleagues (R. Meddis & Hewitt, 1992b) have 

shown that identification of two synthesized vowels with the same F0 improves from ~40% to 

70% when vowels differ in F0 from 0 to 4 ST—consistent with the F0-benefit in this study. 

While F0 cues are likely the primary cue for segregation in our double vowel task, conceivably, 

listeners might also use additional acoustic cues to parse speech such as spectral differences 

associated with formants (Chintanpalli & Heinz, 2013a), temporal envelope cues produced by 

harmonic interactions (Culling & Darwin, 1993), and spectral edges.  

Cortical oscillations reveal mechanistic differences in concurrent speech segregation 

divisible by frequency band 

It is useful to cast our behavioral data in the context of this computational framework. 

We found that listeners showed weaker F0-benefit when speech was presented in noise. Poor 

performance in the noise conditions could result either from poorer segregation at the initial front 

end (prior to classification) or weaker matching between the noisy vowel representations and 
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their speech templates. Our behavioral data do not allow us to unambiguously adjudicate these 

two explanations. In this regard, EEG time-frequency results help isolate different mechanistic 

accounts. In response to a stimulus, synchronous temporal activity is represented as multiple 

time courses in brain networks via EEG oscillations whose amplitude depends on the degree of 

neural synchrony. Different frequencies respond differently to sensory stimuli and task demands 

(Hanslmayr, Gross, Klimesch, & Shapiro, 2011). Stimulus rhythmic event-related activity can 

either increase (synchronization) or decrease (de-synchronization) as networks are either 

engaged or disengaged, respectively (Destexhe, Hughes, Rudolph, & Crunelli, 2007).  

Presumably, the acoustic features contributing to the segregation of the speech depend on 

the availability of those cues to the auditory system. That is, the encoding and weighting of 

acoustic cues along the auditory pathway may change depending on the quality of the incoming 

signal. Electro-physiologically, we observed multiple, frequency-specific time courses to 

concurrent speech segregation with activity unfolding within different channels of the EEG 

dependent on both the pitch and SNR of speech. Previous M/EEG work has shown similar 

sequences of events in the early object negativity response (~150 ms) (Alain, Reinke, He, et al., 

2005; Du et al., 2010) and early interactions of pitch and noise cues ( ~200 ms) (Bidelman & 

Yellamsetty, 2017b) followed by automatic registration of F0 differences at ~250 ms (Alain, 

Reinke, He, et al., 2005; Du et al., 2010).   

In cases where vowel mixtures were further distorted by noise, γhigh power showed 

reduced tracking of stimulus onset/offset (cf. Ross et al., 2010). γhigh power was also stronger for 

0ST compared to 4ST speech (i.e., mixtures which did not contain pitch cues). Higher γ activity 

for both clean and 0ST conditions may be due to the fact that these stimuli offer a more veridical 

and robust representation of the speech signal envelope; clean speech being unconcluded and 
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0ST vowels offering a singular harmonic structure (common F0). Under this interpretation, 

modulations in γ activity in our double vowel task are arguably ambiguous as they signal both 

cleaner signals (clean > noise) simultaneously with representations that cannot be cleanly 

segregated (0ST > 4ST) (cf. Fig. 3A and 3B). Relatedly, brain-behavior correlations showed that 

larger changes in γ activity with the addition of pitch cues were associated with poorer 

behavioral F0-benefit (Fig. 5A). Given that higher bands of oscillations are thought to reflect 

signal identity and the construction of perceptual objects (Bidelman, 2015a, 2017a; C. Tallon-

Baudry & Bertrand, 1999b), our data suggest that the auditory brain must rely on more than 

object-based information for successful segregation. 

In contrast to the higher γ-band modulations, we also observed distinct modulation in 

lower bands of the EEG that covaried with successful speech segregation. Interestingly, β band 

amplitudes were suppressed for easier stimulus conditions (e.g., clean 4ST; Fig. 4B), suggesting 

a desynchronization in this frequency range. Similarly, θ-band activity showed prominent 

increases (synchronization) for difficult 0ST and noise-degraded speech. β band (15-30 Hz) has 

been linked with the extraction of global phonetic features (Bidelman, 2015a, 2017a; Fujioka et 

al., 2012; Ghitza, 2011), template matching (Bidelman, 2015a), lexical semantic memory access 

(Shahin et al., 2009), and perceptual binding (Aissani et al., 2014; Brovelli et al., 2004; von Stein 

& Sarnthein, 2000). In contrast, θ-band may reflect and attention/arousal (Aftanas et al., 2001; 

Paus et al., 1997). Enhancements in θ-activity and suppression in β-modulations are known to 

correlate with the level of attention and memory load in a wide variety of tasks (Bashivan, 

Bidelman, & Yeasin, 2014; Bastiaansen et al., 2005; Fries, Reynolds, Rorie, & Desimone, 2001). 

Modulations of M/EEG amplitudes during the conscious identification of simultaneous speech 

occurs around ~350 to 400 ms post stimulus onset (Alain, 2007a; Alain et al., 2017; Alain, 
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Reinke, He, et al., 2005; Bidelman & Yellamsetty, 2017b; Du et al., 2010; Reinke et al., 2003) 

relating to the time course of β- and θ-band oscillatory activity observed in this study. 

Thus, we suggest perceptual success in parsing multiple speech streams is driven by the 

degree of cognitive processing (e.g., attentional deployment, listening effort) that is determined 

by the availability of acoustic features and signal quality. Cleaner, less distorted speech 

presumably allows more successful matches between speech acoustics and internalized speech 

templates which would aid identification. This notion is supported by the fact that larger changes 

in θ responses were associated with smaller ΔRTs whereas larger changes in β responses were 

associated with larger ΔRTs (Fig. 5B). Given that listeners required a longer time to accurately 

judge double-vowels (i.e., ΔRTclean>ΔRTnoise time-accuracy tradeoff; Fig. 1B), the most 

parsimonious interpretation of our neural results are that θ-band elevates due to increased 

listening effort or cognitive demands of the task (e.g., conditions without F0 cues) whereas β-

band decreases, reflecting easier and/or more successful memory template matching (e.g., clean 

speech conditions).  

On the additivity vs. interactions of cues for concurrent sound segregation 

Notably, while EEG measures showed a correspondence with behavior for double vowel 

identification, we did not observe correlations between neural measures and QuickSIN scores. 

However, this might be expected given differences in task complexity and the fact that the 

former was recorded during electrophysiological testing while the latter was not. Nevertheless, 

these findings corroborate our previous studies and suggest that mechanisms that exploit 

sequential and concurrent auditory streaming are likely independent (or at least different) from 

the mechanisms recruited for complex speech in noise recognition (Alain et al., 2017; Hutka, 

Alain, Binns, & Bidelman, 2013). For example, the QuickSIN may rely more on cognitive 



32 
 

(rather than perceptual) processes, such as attention, working memory, and linguistic processing, 

while double-vowel identification used in the present study are more perceptual-based. Future 

work is needed to explore the relationship (or lack thereof) between concurrent speech 

segregation and more generalized speech-in-noise recognition tests. 

The differential changes in oscillatory θ-, β-, and γ power and F0 x SNR interaction in α- 

and β- bands illustrates potential differences in the brain mechanisms supporting speech 

segregation that are largely divisible into high- and low-frequency brain rhythms. The neural 

interaction of pitch and noise that are circumscribed to α- and β- bands and in the earliest time 

windows (~150 to 200 ms) is consistent with our  previous ERP studies which revealed 

significant F0 x SNR interactions in concurrent vowel encoding and perception in the timeframe 

of the N1-P2 complex (Bidelman & Yellamsetty, 2017b). Overall, we found that different 

acoustic factors (SNR vs. noise) influenced the neural encoding of speech dynamically with 

interaction effects early but additive effects occurring later in time. Our results are partially in 

agreement with the additive effects on concurrent vowel perception shown by Du et al. (2011), 

who suggested that listeners rely on a linear summation of cues to accumulate evidence during 

auditory scene analysis. Indeed, our data show that high- (γ) and low- (θ) frequency responses 

carry independent information on speech processing later in time (>300-400 ms). However, our 

results further reveal that acoustic cues (here SNR and F0) can interact earlier (~100-200 ms; 

Fig. 3C) to impact double vowel processing. Notably, Du et al. (2011) study investigated the 

effects of F0 and spatial location on concurrent vowel perception. Given that spatial and non-

spatial (cf. F0) cues are largely processed via independent information channels of the brain (i.e., 

dorsal and ventral pathways) (S. R. Arnott, Binns, Grady, & Alain, 2004), acoustic differences 

among sources might be expected to combine linearly as reported in that study (Y. Du, He, et al., 
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2011). In contrast, our behavioral and electrophysical results suggest acoustic cues that affect the 

inherent acoustic representation of speech signals (i.e., pitch and noise) can actually interact 

fairly early in the time course of speech segregation and are not processed in a strictly additive 

manner (Bidelman & Yellamsetty, 2017b).  

Directions for future work 

Previous ERP studies have shown success in identifying concurrent vowels improves 

with training accompanied by decreased N1 and P2 latencies and enhanced P2 peak amplitude 

(Alain, 2007a; C. Alain et al., 2007). In future extensions of this work, it would be interesting to 

examine how the weighting of neural activity changes across frequency bands with perceptual 

learning. For example, a testable hypothesis is that neural changes in lower frequency bands 

might accompany top-down automatization during successful learning. We would also predict 

that higher frequency bands would begin showing improved signal coding with task repetition 

and increased familiarity with the incoming signal. Another interesting study would be to 

investigate multiple competing streams and how attention might modulate concurrent speech 

segregation (Ding & Simon, 2012; Krumbholz, Eickhoff, & Fink, 2007). Future studies are 

needed to test the role of band-specific mechanisms of the EEG in relation to short-term speech 

sound training, learning, and attentional effects on concurrent speech segregation.  

CONCLUSIONS 

By measuring time-frequency changes in the EEG during double vowel identification, we 

found band-specific differences in oscillatory spectral responses which seem to represent unique 

mechanisms of speech perception. Over the 200 ms stimulus duration, early envelope tracking of 

the stimulus duration (onset/offset) was observed in higher frequency oscillations of the γ band. 

This was followed by stronger desynchronization (suppression) in the mid-frequency β 
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oscillations around (~250 to 350 ms). Finally, differences in lower frequency θ oscillations were 

more pervasive and persisted across a larger extent of each trial (~400 -500 ms after stimulus 

onset). We infer that early portions of time-frequency activity (higher-bands) likely reflect pre-

perceptual encoding of acoustic features and follow the quality of the speech signal. This capture 

of stimulus properties is then followed by post-perceptual cognitive operations (reflected in low 

EEG bands) that involve the degree of listening effort and task demands. Tentatively, we posit 

that successful speech segregation is governed by more accurate perceptual object construction, 

auditory template matching, and deceased listening effort/attentional allocation, indexed by the 

γ-, β-, and θ-band modulations, respectively.  
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Chapter 3 

SUBCORTICAL PROCESSING OF CONCURRENT SPEECH MIXTURES AS 

REVEALED BY FREQUENCY-FOLLOWING RESPONSES 

Abstract 

When two voices compete, listeners can segregate and identify concurrent speech sounds using 

pitch (fundamental frequency, F0) and timbre (harmonic) cues. Speech perception is also 

hindered by the signal-to-noise ratio (SNR). How clear and acoustically-degraded concurrent 

speech representations in early, pre-attentive stages of the auditory system is not well 

understood. We recorded frequency-following responses (FFR) while listeners heard two steady-

state single and double vowels- whose F0 differed by zero or four semitones (ST) presented in 

either clean (no noise) or noise-degraded (+5dB SNR) conditions. Listeners also performed a 

speeded double vowel identification task in which they were required to identify both vowels 

correctly. Behavioral results showed that speech identification accuracy increased with F0 

differences between vowels, and this perceptual F0 benefit was larger for clean compared to 

noise degraded (+ 5dB SNR) stimuli. Neurophysiological data demonstrated more robust FFR F0 

amplitudes for single compared to double vowels and considerably weaker responses in noise. F0 

amplitudes showed speech-on-speech masking effects along with a non-linear constructive 

interference at 0ST, and suppression effects at 4ST. Correlations showed that FFR F0 amplitudes 

failed to predict listeners identification accuracy. In contrast, FFR F1 amplitudes were associated 

with faster reaction times, although this correlation was limited to the noise condition. The 

limited number of brain-behavior associations suggests subcortical activity mainly reflects 

exogenous processing rather than perceptual correlates of concurrent speech perception. 
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Collectively, our results demonstrate that FFRs reflect the pre-attentive mechanisms of 

concurrent stimulus interactions that weakly predict the success of identifying simultaneous 

speech. 

Keywords: FFR; double-vowel identification; speech-in-noise perception 

INTRODUCTION 

A fundamental phenomenon in human hearing is the ability to parse co-occurring 

auditory objects (e.g., different voices) to extract the intended message of a target signal. 

Psychophysical and neurophysiological studies have shown that listeners can use multiple cues 

to distinguish simultaneous sounds. The segregation of a complex auditory mixture is thought to 

involve a multistage hierarchy of processing, whereby initial pre-attentive processes that 

partition the sound waveform into distinct acoustic features (e.g., pitch, harmonicity) are 

followed by later, post-perceptual Gestalt principles (Koffka, 1935) (e.g., grouping by physical 

similarity, temporal proximity, good continuity (Bregman, 1990b) and phonetic template 

matching (Alain, Reinke, He, et al., 2005; R. Meddis & Hewitt, 1992b). Psychophysical research 

from the past several decades confirms that human listeners exploit fundamental frequency (F0) 

(i.e., pitch) differences to segregate concurrent speech (Arehart et al., 1997; Assmann & 

Summerfield, 1989b, 1990b, 1994b; Chintanpalli et al., 2016; de Cheveigné et al., 1997). For 

example, when two steady state synthetic vowels are presented simultaneously to the same ear, 

listeners’ identification accuracy increases significantly when a difference of four semitone (ST) 

is introduced between their F0s (Assmann & Summerfield, 1989a, 1990a, 1994a; Culling, 1990; 

McKeown, 1992; Scheffers, 1983; Zwicker, 1984). This improvement is referred to as the “F0-

benefit” (Arehart et al., 1997; Bidelman & Yellamsetty, 2017b; Chintanpalli, Ahlstrom, & 
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Dubno, 2014a; Chintanpalli et al., 2016; Chintanpalli & Heinz, 2013a; Yellamsetty & Bidelman, 

2018a). 

 To understand the time course of neural processing underlying concurrent speech 

segregation most investigations have quantified how various acoustic cues including harmonics, 

spatial location, and onset asynchrony affect perceptual segregation (Claude Alain, 2007b; 

Carlyon, 2004). However, the overwhelming majority of neuroimaging studies have been 

concerned with the cortical representations/correlates of concurrent speech perception (Alain, 

Reinke, McDonald, et al., 2005; Bidelman, 2015a; Bidelman & Yellamsetty, 2017b; Dyson & 

Alain, 2004; Yellamsetty & Bidelman, 2018a). In contrast, the subcortical neural underpinnings 

of segregation have been studied only in animals. Studies that directly examined the 

representation of F0’s of concurrent complex tones in auditory nerve (AN) and cochlear nucleus 

(CN) showed the temporal discharge pattern and the spatial distribution of AN and CN fibers 

contain sufficient information to identify both F0s (Jane & Young, 2000; Keilson et al., 1997; 

Palmer, 1990b; Alan R Palmer & Winter, 1992; Sinex, 2008; Tan & Carney, 2005). The same is 

observed for double vowel speech stimuli (Keilson et al., 1997; Palmer, 1990b; Alan R Palmer & 

Winter, 1992). In addition, AN single-unit population studies have shown neural phase-locking 

is a primary basis for encoding the tonal features (e.g., F0) of vowels (Reale & Geisler, 1980; 

Tan & Carney, 2005) and that different sets of neurons are involved in encoding the first and 

second formants of speech (Miller, Schilling, Franck, & Young, 1997). Whereas at the level of 

the inferior colliculus (IC), responses are tuned to low-frequency amplitude fluctuations 

(Bidelman & Alain, 2015a; Sinex, 2008; Sinex, Henderson, et al., 2002; Sinex et al., 2005; 

Sinex, Sabes, et al., 2002b), providing a robust neural code for both F0 periodicity and the 

spectral peaks (i.e., formants) that listeners use to separate and identify vowels (Carney et al., 
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2015; Henry et al., 2017). These temporal discharge patterns are closely related to the 

autocorrelation model of pitch extraction (Ray Meddis & Hewitt, 1992c) that accounts for the 

encoding of single and multiple F0s at the level of AN (Cariani & Delgutte, 1996; Cedolin & 

Delgutte, 2005; Ray Meddis & Hewitt, 1992c). It appears that stimulus periodicity (F0) are 

coded very early in the auditory system and remain largely untransformed in the phase-locked 

activity of the rostral brainstem (Bidelman, 2015a). Thus, evoked potentials, which measure 

phase-locked brainstem activity, could offer a window into how subcortical regions of the human 

brain encode concurrent sounds, including those based on F0-segregation (i.e., double-vowel 

mixtures). 

 In the present study, we used the scalp-recorded human frequency-following response 

(FFR), which reflects sustained phase-locked activity dominantly from the rostral brainstem 

(Bidelman, 2018; Glaser, Suter, Dasheiff, & Goldberg, 1976; Marsh, Brown, & Smith, 1974; 

Smith, Marsh, & Brown, 1975; Worden & Marsh, 1968). FFRs can reproduce frequencies of 

periodic acoustic stimuli below approximately 1500 Hz (Bidelman & Powers, in press-a; Gardi, 

Merzenich, & McKean, 1979; Stillman, Crow, & Moushegian, 1978). FFRs code important 

properties of speech stimuli such as voice F0 (Bidelman, Gandour, & Krishnan, 2011; Krishnan, 

Bidelman, & Gandour, 2010) and several lower speech harmonics (formants) (Bidelman, 2015b; 

B Chandrasekaran & Kraus, 2010; Krishnan, 1999, 2002b; Krishnan & Agrawal, 2010). This 

allows us to estimate how salient properties of speech spectra (e.g., F0s or formants of 

concurrent vowels) are transcribed by the human auditory nervous system at early, pre-attentive 

stages of the processing hierarchy.  

 In addition, FFRs have provided critical insight toward understanding the neurobiological 

encoding of degraded speech from a subcortical perspective (Anderson, Skoe, Chandrasekaran, 
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Zecker, & Kraus, 2010a; Bidelman, 2017b; Bidelman & Krishnan, 2010a; A Parbery-Clark, 

Skoe, & Kraus, 2009; Song, Skoe, Banai, & Kraus, 2011). Speech perception in noise is related 

to the subcortical encoding of F0 and timbre (Bidelman, 2016a; Bidelman & Krishnan, 2010a; 

Song et al., 2011) as well as the effectiveness of the nervous system to extract regularities in 

speech sounds related to vocal pitch (Chandrasekaran, Hornickel, Skoe, Nicol, & Kraus, 2009; 

Xie, Reetzke, & Chandrasekaran, 2017). Resilience of the FFR at F0 (but not its higher 

harmonics or onset) in the presence of noise has been noted by a number of investigators 

(Bidelman & Krishnan, 2010a; Li & Jeng, 2011; Prévost, Laroche, Marcoux, & Dajani, 2013; 

Russo, Nicol, Musacchia, & Kraus, 2004) and suggests that neural synchronization at the 

fundamental F0 periodicity is relatively robust to acoustic interference (for review, see 

(Bidelman, 2017b))—at least for single speech tokens presented in isolation.  

 Given its remarkable spectro-temporal fidelity, we reasoned that neural correlates 

relevant to double vowel identification may be substantiated in nascent signal processing along 

the acoustic pathway, even earlier than documented in cerebral cortex (Alain et al., 2017; Alain, 

Reinke, He, et al., 2005; Bidelman & Yellamsetty, 2017b; Yellamsetty & Bidelman, 2018a). We 

aimed to test this hypothesis by analyzing the spectral response patterns of the single and double 

vowel FFRs when speech sounds did and did not contain distinct F0 cues (0ST vs. 4ST). 

Additionally, we examined concurrent vowel processing in different levels of noise interference 

(quiet vs. +5 dB SNR) to evaluate how the neural encoding of spectro-temporal cues might 

interact with noise at a subcortical level. Despite ample FFR studies using isolated speech sounds 

(e.g., vowels, stop consonants) (Anderson & Kraus, 2010; Bidelman & Krishnan, 2010a; 

Hornickel, Skoe, Nicol, Zecker, & Kraus, 2009; Krishnan, 2002a; A Parbery-Clark, Skoe, & 
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Kraus, 2009), to our knowledge, this is the first to examine brainstem encoding of speech 

mixtures in the human auditory system.  

Here, we sought to (1) determine how concurrent vowels are encoded at pre-attentive, 

subcortical levels of the auditory nervous system; (2) characterize the effects of noise on the 

neural encoding of voice pitch and timbre (i.e., formant) cues in concurrent speech; and (3) 

establish the relation between (pre-attentive) brainstem neural activity and behavioral concurrent 

vowel identification in quiet and degraded listening conditions. To this end, we recorded 

neuroelectric responses as listeners passively heard double-vowel pairs and single vowel stimuli. 

Stimulus manipulations were designed to promote or deny successful identification (i.e., changes 

in F0 separation of vowels; with/without noise masking). We expected the spectral components 

of FFRs to reflect the encoding of non-linear interactions between the two concurrent vowels, 

such that responses would differ with and without pitch cues in a constructive and suppressive 

manner. Additionally, we hypothesized FFRs would show reduced amplitudes with noise and 

correlate with behavioral identification scores, offering an objective, subcortical correlates of 

concurrent speech perception. 

EXPERIMENTAL PROCEDURES 

Participants 

 Sixteen young adults (age M ± SD: 24 ± 2.25 years; 10 females, 6 males) participated in 

the experiment. All the participants had obtained a similar level of formal education (18.18± 2.16 

years), were right handed (>43.2% laterality) (Oldfield, 1971), had normal hearing thresholds 

(i.e., ≤ 25 dB HL) at octave frequencies between 250 and 8000 Hz, and reported no history of 

neuropsychiatric disorders. Each gave written informed consent in compliance with a protocol 

approved by the University of Memphis Institutional Review Board. 
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Stimulus and Behavioral task  

 Double vowel stimuli 

Speech stimuli for FFR recordings were modeled after previous studies on concurrent 

double-vowel segregation (Alain, 2007a; Assmann & Summerfield, 1989a, 1990a; Bidelman & 

Yellamsetty, 2017b; Yellamsetty & Bidelman, 2018a). Synthetic, steady-state vowel tokens (/a/ 

and /ε/) are created using a Klatt synthesizer (Klatt, 1980) implemented in MATLAB® 2014 

(The MathWorks, Inc.). Each token was 200 ms in duration including 10-ms cos2 onset/offset 

ramping.  F0 was either 150 or 190 Hz and formant frequencies (F1, F2) were 766 Hz, 1299 Hz 

and 542 Hz, 1780 Hz for /a/ and /ε/, respectively. These F0s were selected since they are above 

the frequencies of observable FFRs in cortex (Bidelman, 2018; Brugge et al., 2009), and thus 

ensured responses would be of brainstem origin (Bidelman, 2018). Double-vowel stimuli were 

then created by combining single-vowels in pairs. Each vowel pair had either identical (0ST) or 

different F0s (4ST). That is, one vowel’s F0 was set at 150 Hz while the other vowel had an F0 

of 150 or 190 Hz so as to produce double-vowels with an F0 separation of either 0 or 4 

semitones (STs), resulting in two double-vowel pairs (1 pair x 2 F0 combinations).  

Both single and double-vowels were presented in clean and noise conditions (separate 

blocks), in which stimuli were delivered concurrent with a backdrop of multi-talker noise babble  

(+5 dB SNR) (Bidelman & Howell, 2016; Nilsson et al., 1994). SNR was manipulated by 

changing the level of the masker rather than the signal to ensure that SNR was not positively 

correlated with overall sound level (Bidelman & Howell, 2016; Binder et al., 2004). Babble was 

presented continuously to avoid it time-locking with stimulus presentation. We chose continuous 

babble over other forms of acoustic inference (e.g., white noise) because it more closely mimics 
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real-world listening situations and tends to have a larger effect on the auditory ERPs (Kozou et 

al., 2005).  

Behavioral double-vowel identification task.  

Participants were presented with double-vowel combination of synthetic steady-state 

vowel tokens (/a/, /ε/, and /u/) as in our previous studies (Bidelman & Yellamsetty, 2017b; A. 

Yellamsetty & Bidelman, 2018b). Double-vowels were presented in separate blocks of clean and 

noise (+5 dB SNR) conditions. Listeners were asked to identify both vowels as quickly and 

accurately as possible on the keyboard. Feedback was not provided.   

Prior to the experiment proper, we required that participants be able to identify single 

vowels in a practice run with >90% accuracy (e.g., C. Alain et al., 2007). This ensured their task 

performance would be mediated by concurrent sound segregation skills rather than isolated 

identification, per se.  

FFR data recording and preprocessing 

For the FFR recordings, participants reclined comfortably in an IAC electro-acoustically 

shield booth. Participants were instructed to relax and refrain from extraneous body movements 

while they watched a muted subtitled movie (i.e., passive listening task). EEGs were recorded 

differentially between Ag/AgCl disk electrodes placed on the scalp at the high forehead (~Fpz) 

referenced to link mastoids A1/A2) and forehead electrode as ground. Interelectrode impedances 

were maintained <2 kΩ. Stimulus presentation was controlled by MATLAB routed to a TDT 

RP2 interface (Tucker-Davis Technologies). Speech stimuli were delivered binaurally using 

fixed (rarefaction) polarity at an intensity of 81 dB SPL through shielded ER-2 insert earphones 

(Etymotic Research). Control runs confirmed no artifacts in the FFR response waveforms. The 

order of single and double vowel stimuli was randomized within and across participants; clean 
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and noise conditions were run in separate blocks. The inter-stimulus interval was 50 ms. In total, 

there were 2000 trials for each of the individual stimulus conditions. 

 Neural activity was digitized using a sampling rate of 10 kHz (SynAmps RT amplifiers; 

Compumedics Neuroscan). EEGs were then epoched (0-250 ms) and averaged in the time 

domain to derive FFRs for each condition. Sweeps exceeding ±50 μV were rejected as artifacts 

prior to averaging. FFRs were then bandpass filtered (100 to 3000 Hz) for response visualization 

and quantification. The entire experimental protocol including behavioral and 

electrophysiological testing took 2.5 hrs to complete. 

FFR analysis 

 Fast Fourier transforms (FFTs) were computed from the response time-waveforms (0 to 

250 ms) using Brainstorm (V.3.4) (Tadel, Baillet, Mosher, Pantazis, & Leahy, 2011a). 

Brainstorm expresses FFT amplitudes as power with a scaling factor of units2 /Hz * 10-13; 

subsequent measures reflect this scaling. From each FFR spectrum, we measured the F0, 

harmonics, and F1-formant frequency amplitudes to quantify “pitch” and “timbre” coding for 

each condition. We estimated the magnitude of the response at F0 and harmonics of the single 

and double vowels by manually picking the maximum spectral energy within 10 Hz wide bins 

surrounding the F0 and five harmonics. F1 magnitude was taken as the average spectral energy 

(on a linear scale) in the frequency ranges between 392- 692 Hz for /ε/150Hz (0ST), 352- 732 Hz 

for /ε/190Hz (4ST) and 616-916 Hz for /a/150Hz vowels. These ranges were determined based on the 

expected F0/F1 frequencies from the input stimulus. Stimulus-related changes in F0 and F1-

formant magnitudes provide an index of how concurrent stimuli and noise interference degrade 

the brainstem representation of pitch and timbre cues in speech.  
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Behavioral data analysis 

Identification accuracy and the “F0 benefit” 

Behavioral identification was analyzed as the percent of trials where both vowel sounds 

were correctly identified. Percent correct scores were arcsine transformed to improve 

homogeneity of variance assumptions necessary for parametric statistics (Studebaker, 1985). 

Increasing the F0 between two vowels provides a pitch cue which leads to an improvement in 

accuracy identifying concurrent vowels (Assmann & Summerfield, 1990b; Chintanpalli & Heinz, 

2013a; R. Meddis & Hewitt, 1992b). 

Reaction time (RTs) 

 For a given double-vowel condition, behavioral speech labeling speeds [i.e., reaction 

times (RTs)] were computed separately for each participant as the median response latency 

across trials. RTs were taken as the time lapse between the onset of the stimulus presentation and 

listeners’ identification of both vowel sounds. RTs shorter than 250 ms or exceeding 6000 ms 

were discarded as implausibly fast responses and lapses of attention, respectively (e.g., Bidelman 

& Yellamsetty, 2017b; A. Yellamsetty & Bidelman, 2018b).  

Statistical analysis 

 Unless otherwise noted, two-way, mixed-model ANOVAs were conducted on all 

dependent variables (GLIMMIX Procedure, SAS® 9.4, SAS Institute, Inc.). Stimulus SNR (2 

levels; clean, +5 dB noise) and semitones (2 levels; 0ST, 4ST) functioned as fixed effects; 

subjects served as a random factor. Tukey-Kramer multiple comparisons-controlled Type I error 

inflation. An a priori significance level was set at α=0.05. To examine the degree to which 

neural responses predicted behavioral speech perception, we performed weighted least square 
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regression between listeners’ FFRs amplitudes and perceptual identification accuracy and in the 

double-vowel task. Robust bisquare fitting was achieved using “fitlm” in MATLAB.  

RESULTS 

Behavioral data 

Behavioral speech identification accuracy and RTs for double-vowel identification are 

shown in Figure 6. Listeners obtained near-ceiling performance (97.9 ± 1.4%) when identifying 

single vowels. In contrast, double-vowel identification was considerably more challenging; 

listeners’ accuracy ranged from ~45 – 70% depending on the presence of noise and pitch cues 

(Fig. 6A). An ANOVA conducted on behavioral accuracy confirmed a significant SNR x F0 

interaction [F1, 45 = 5.65, p = 0.0218], indicating that successful double-vowel identification 

depended on both noise and F0 pitch cues. Performance increased ~30% across the board with 

greater F0 separations (i.e., 4ST > 0ST). F0-benefit was larger for clean relative to +5 dB SNR 

speech [t15 = -6.49, p <0.0001 (one-tailed)], suggesting listeners were more successful using 

pitch cues when segregating clean compared to speech in noise.  
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Figure 6. Behavioral responses for double-vowel stimuli. (A) Accuracy for identifying both 
tokens of a two-vowel mixture. Performance is poorer when concurrent speech sounds contain 
the same F0 (0ST) and improve ~30% when vowels contain differing F0s (4ST). (Inset) 
Behavioral F0-benefit, defined as the improvement in %-accuracy from 0ST to 4ST, indexes the 
benefit of pitch cues to speech identification. F0-benefit is stronger for clean vs. noisy (+5 dB 
SNR) speech indicating that listeners are poorer at exploiting pitch cues when segregating 
acoustically-degraded signals. (B) Speed (i.e., RTs) for double-vowel identification. Listeners 
are marginally faster at identifying speech in noise. Faster RTs at the expense of poorer accuracy 
(panel A) suggests a time-accuracy tradeoff in double-vowel identification. error bars = ±1 s.e.m. 
*p<0.05, **p ≤0.01, ***p≤0.0001. 

 

Analysis of RTs revealed a significant effect of SNR [F1, 45 = 16.23, p =0.0002] and ST 

[F1, 45 = 7.48, p = 0.0089]; listeners tended to be slower identifying clean compared to noisy 

speech (Fig. 6B). The slowing of RTs coupled with better %-identification for clean compared to 

noise-degraded speech indicates a time-accuracy tradeoff in perception (Bidelman & 

Yellamsetty, 2017b; A. Yellamsetty & Bidelman, 2018b).  

FFR responses to single and double vowels 

Grand average FFR waveforms and spectra are shown for each vowel type (single, 

double vowels), SNRs (clean, noise), and semitones (0 ST, 4 ST) conditions in Figs. 7A and B. 
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FFRs showed phase-locked energy corresponding to the periodicities of the acoustic speech 

signals. Comparisons across conditions suggested more robust encoding of single and double 

vowels in the 0ST condition. Responses were weaker for conditions with 4ST and noise. 

Response spectra contained energy at the F0 and the integer-related multiples up to the upper 

limit of the brainstem phase locking (~1100 Hz) (Bidelman & Powers, in press-b; Liang-Fa Liu, 

Palmer, & Wallace, 2006). Also apparent is an apparent boost in response energy near the F1, 

demonstrating greater neural synchrony to formant-related harmonics. This effect is reminiscent 

of the formant capture phenomenon observed in peripheral auditory nerve responses (Miller et 

al., 1997), which acts to enhance temporal representations of spectral shape (Eric D Young & 

Sachs, 1979b). 

Quantification of FFR F0 (pitch) and F1 (timbre) coding of single and double vowels at 0 

ST(/a+ε/150) and 4 ST(/a/150, /ε/190) are shown in Fig. 7C. We first evaluated the effects of having 

multiple vs. single vowels and the effects of noise on FFR responses. A two-way mixed model 

ANOVA with stimulus type (2 levels: single and double vowel) and SNR (2 levels: clean and +5 

dB SNR) as fixed factors (subjects= random effect) revealed that F0 amplitudes of the single-

vowels were more robust than in double-vowels (single>double) [F1,141=16.02, p<0.0001]. With 

noise, double-vowels showed greater reduction in F1 amplitudes than the single-vowels [F1,141 

=89.11, p<0.0001]. Responses were also stronger for double-vowels without pitch cues (i.e., 0 

ST > 4 ST) revealing a super-additive effect at F0 (i.e., common F0 between vowels sum 

constructively in the FFR).  

Next, we evaluated the impact of noise and pitch cues on double-vowel FFRs. Both 

additive and masking effects were observed at 4 ST. An ANOVA conducted on F0 amplitudes 
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showed significant effects of SNR [F1,77 =31.66; p<0.0001] and ST [F1,77 =5.67; p=0.0198] with 

an interaction of SNR × ST [F1,77 =10.39; p=0.0019]. 

 

Figure 7. Brainstem FFR to double vowel mixtures. (A) FFR waveforms (B) spectra. Neural 
responses reveal energy at the voice fundamental (F0) and integer-related harmonics (H1-H5). 
F1, first formant range. (C) Brainstem encoding of the pitch (F0) and timbre (F1) as a function of 
the vowel count (i.e., single vs. double) and SNR. FFRs are more robust for (i) single than 
double vowels (single > double)—indicative of suppression (speech-on-speech masking), and (ii) 
at 0ST vs. 4ST (0ST > 4ST). Responses also deteriorate with noise (i.e., lower SNR). error bars 
= ± 1 s.e.m. 
 

In contrast, for the neural encoding of F1, we found significant effects of ST [F1,77 

=138.15; p<0.0001] and SNR [F1,77 =15.09; p=0.0002] but no interaction [F1,77 =1.42; p=0.236]. 

Noise-related changes at F0 were greater when there were no pitch cues (0ST > 4 ST), whereas 

changes in F1 were greater when pitch cues were present (4ST > 0ST). 

To quantify speech-on-speech masking effects in the FFR from having two vs. one vowel 

we assessed differences between responses to actual double vowel mixtures (i.e., 0ST(/a+ε/150) and 

4 ST(/a/150+/ε/190)) and those evoked by the summed responses to the individual vowel constituents 

[e.g., FFR/a-ε/ ≥ FFR/a/+/ε /] (Fig. 8). The rationale of this analysis is that when multiple speech 

components fall within the same auditory filter band (e.g., 0ST condition), this can result in 
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speech-on-speech masking. The amplitude difference reflects the degree of speech-on-speech 

masking or mutual suppression from having two vowels in double vowel pairs. Speech-on-

speech masking effects were observed in both clean (t15= 2.81; p= 0.0132) and noise (t15= 3.46, 

p= 0.0035) conditions. Suppression-like effects were observed in 4ST (in addition to speech-on-

speech masking) resulting in further reduction in amplitude in both clean (t15= -3.97; p= 0.001) 

and noise (t15= -2.36; p= 0.0325). These effects were not observed at F1 (ps >>0.05). The effect 

of speech-to-noise (i.e., FFR amplitudes of clean vs. noise) was greater than the speech-on-

speech masking (single vs. double) at F0 and F1 [F1,140 =30.85; p<0.0001; F1,140 =275.31; 

p<0.0001]. These differences indicate that FFRs to concurrent speech stimuli were 

systematically different than their single vowel counterparts, which also varied as a function of 

frequency component (i.e., F0, F1) and noise SNR. 

 

Figure 8. Additive noise vs. speech-on-speech masking effects at 0ST (A) and 4ST (B). Neural 
encoding of F0 for single vs. double vowels for the (A) 0 ST and (B) 4 ST mixtures. At 0 ST, 
(within channel) responses reflect constructive interference (additive effect) due to the same F0s 
and speech-on-speech masking between vowels. At 4 ST (across channel), additional 
suppression is observed along with the speech-on-speech masking resulting in further reduction 
in amplitude in both clean and noise conditions. The masking of babble noise on speech (clean 
vs. noise) was greater than the speech-on-speech masking (i.e., double vs. single vowel) at both 
0ST and 4ST. error bars = ±1 s.e.m. *p<0.05, **p ≤0.01. 
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Brain-behavior relationships 

Regression analyses. Pooling across ST conditions, linear regressions between FFR F0 

amplitudes and behavioral accuracy (%) are shown in Figure 9A. Correlations between FFR F1 

and behavioral RTs are shown in Figure 9B. We chose these analyses based on previous 

literature showing robust correlations between (i) FFR F0 and accuracy (Anderson, Parbery-

Clark, White-Schwoch, & Kraus, 2012; Anderson et al., 2010a; Bidelman & Krishnan, 2010a; 

Coffey, Chepesiuk, Herholz, Baillet, & Zatorre, 2017; Du, Kong, Wang, Wu, & Li, 2011) and 

(ii) FFR F1 and RTs (Bidelman, Villafuerte, Moreno, & Alain, 2014; Bidelman, Weiss, Moreno, 

& Alain, 2014)  in various speech perception tasks. These analyses revealed that F1 amplitude 

was associated with RTs in the noise condition (R2 = 0.10, p=0.0277). No other correlations 

reached significance.  

 

Figure 9. Brain-behavior correlations underlying double-vowel perception. Scatter plots and 
linear regression functions showing the relationship between (A) FFR F0 amplitudes and 
behavioral accuracy and (B) FFR F1 amplitudes and behavioral RTs for clean and noise-
degraded speech. Data points are labeled according to each condition (‘0’=0ST; ‘4^’ = 4ST @ 
150 Hz; ‘4’ = 4ST @ 190Hz). *p<0.05, n.s. – non-significant. 
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Vowel dominance analysis. As an alternate approach to investigate possible relations 

between subcortical coding and behavioral identification of concurrent vowel mixtures we 

assessed whether listeners’ tendency to report one or another vowel in a speech mixture 

depended on their FFR. We reasoned that the relative neural dominance of each (single) vowel in 

their double-vowel response might drive which vowel was more perceptually dominant. To 

quantify the relative weighting of each vowel in the FFR we carried out response-to-response 

Pearson’s correlations between each listener’s (individual) single-vowel FFR spectra (FFRa, FFR 

ε) and their double-vowel response spectrum (FFRa+ ε). The analysis is carried out at 4 ST clean 

condition for each participant. This analysis thus assessed the degree to which listeners’ FFR to a 

double-vowel mixture more closely resembled a response to either /a/ or /ε/.  

 

Figure 10. FFRs are modulated by stimulus salience rather than perceptual dominancy. 
Response-to-response Pearson’s correlations between each listeners’ (individual) single-vowel 
FFR spectra (FFRa, FFRε) and their double-vowel response spectrum (FFRa+ ε). Shown here are 
the clean, 4 ST responses. The group split is based on the median highest and lowest 50% of 
listeners reporting /a/ (or /ε /) in the behavioral identification. Regardless of listeners’ perceptual 
bias, FFRs showed better correspondence to the /ε/ vowel stimulus than /a/. error bars = ±1 s.e.m.  
***p≤0.0001. 
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Listeners were then median split based on the counts of the highest and lowest 50% 

reporting /a/ in the behavioral identification task. Similarly, we determined the highest and 

lowest /ε/ reporters. We then conducted two ANOVA on response-to-response correlations with 

factors group vs. vowel. Figure 10 shows the response-to-response correlations with the sample 

split by their behavioral bias. Comparing the relative strength of response-to-response 

correlations, double-vowel FFRs showed better correspondence to /ε/ than /a/ overall. We found 

a vowel x group interaction (F1,14 =4.81; p=0.0457). Even though there was a significant 

difference in reporting /a/ vs. /ε/ vowels (F1,14 =42.89; p<0.0001) in /a+ε/ mixture, FFRs more 

closely resembled the /ε/ response, counter to our hypothesis.  

DISCUSSION 

 The present study measured subcortical FFRs to double vowel stimuli that varied in their 

voice pitch (F0 separation) and noise level (SNR). Our results showed three primary findings: (1) 

behaviorally, listeners exploit F0-differences between vowels to identify speech, and the 

perceptual F0 benefits degrade with noise; (2) FFRs amplitudes for dual speech stimuli are 

altered in a systematic manner from their single vowel counterparts as a function of frequency 

components (i.e., F0, F1) and noise (SNR); (3) FFRs predict perceptual speed but not the 

accuracy of double vowel identification, but only in noisy listening conditions.  

Effects of SNR and F0 cues on behavioral concurrent vowel identification 

 The effects of F0 on concurrent vowel identification were comparable and consistent with 

previous data (Arehart et al., 1997; Bidelman & Yellamsetty, 2017b; Chintanpalli et al., 2016; 

Chintanpalli & Heinz, 2013a; Reinke et al., 2003; Yellamsetty & Bidelman, 2018a); listeners 

were better at perceptually identifying speech mixtures when vowels contained pitch cues. 

However, we also showed that this perceptual F0-benefit was larger for the clean than the noise 
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degraded (+ 5 dB SNR) conditions. Additive noise tends to obscure the salient audible cues that 

are normally exploited by listeners for comprehension of speech (Bidelman, 2016b; Shannon, 

Zeng, Kamath, Wygonski, & Ekelid, 1995; Swaminathan & Heinz, 2012). Our results indeed 

showed F0-benefit was weaker for double vowel identification in noise compared to clean 

listening condition (clean>noise). The identification of both the vowels improved from ~40% to 

70% from 0 to 4 ST (Fig.6A), consistent with previous studies (Meddis & Hewitt, 1992a). We 

also found that RTs for identifying both vowels were faster in noise but these speeds were 

accompanied by lower accuracy. The longer duration RTs and more accurate identification in 

clean listening conditions suggests listeners experienced a time-accuracy-tradeoff (i.e., more 

accurate identification at the expense of slower decision times) during double vowel perception 

(Bidelman & Yellamsetty, 2017b; Yellamsetty & Bidelman, 2018a).  

Subcortical encoding of single vs. double vowels  

 FFRs to single vowels showed more robust encoding than double vowels. For concurrent 

stimuli that do not have pitch cues (i.e., 0ST conditions with common F0’s) the information for 

identifying the vowels is carried in the FFR only by the F1s. The improvement in the 

identification with pitch cues is presumably due to the more distinct timbral representations 

between vowels with the additional F0 separation. The pattern of nonlinear harmonic interactions 

in double vowels with the same two F0’s (0 ST) would differ from 4 ST. At 0 ST, harmonics of 

both vowels fall within the same auditory filter channel and thus can add in a constructive 

manner. However, these within channel interactions also produce simultaneous speech-on-

speech masking that results in reduced F0 amplitude for double compared to single vowels (Fig. 

8A). At 4 ST, vowel harmonics fall in different auditory filters resulting in energy being spread 

between channels leading to a further reduction in amplitudes (Fig. 8B). Mechanistically, this 
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additional amplitude reduction could reflect the nonlinear phenomena of suppression (Ruggero, 

Robles, & Rich, 1992; Sachs & Kiang, 1968). Indeed, the ratio of our F0’s at 4 ST is 1.26 (190 

Hz/150 Hz), a frequency separation known to produce optimal suppression effects (Houtgast, 

1974; Shannon, 1976). The spread of synchrony within/across channels most likely reflects 

nonlinear signal processing that helps in the identification of both vowels. In addition to the non-

linearity at F0, the acoustic structure of vowels and formant-based synchrony (Delgutte & Kiang, 

1984; Palmer, 1990a; Sinex & Geisler, 1983; Young & Sachs, 1979a) to harmonics near the 

formant (Carney et al., 2015; Miller et al., 1997; Tan & Carney, 2005; Young & Sachs, 1979a) 

can further sharpen the temporal representation of spectral shape in neural responses (Young & 

Sachs, 1979a). This may be one reason why F1-based cues are somewhat more resilient to noise 

than their F0 counterparts (see also [60]).  

Noise effects Noise tends to obscure amplitude modulations in speech that are essential 

for its comprehension (Bidelman, 2016b; Shannon et al., 1995; Swaminathan & Heinz, 2012). In 

contrast, in cases of speech-on-speech masking, listeners can better utilize spectral dips for 

perception, resulting in less effective masking than continuous noise (Peters, Moore, & Baer, 

1998; Shetty, 2016). Noise-related changes in FFRs were evident in both the time and frequency 

domain (Fig. 7A-B). Both F0 and higher spectral components (e.g., formant-related harmonics) 

are systematically degraded with noise, paralleling their deterioration behaviorally (Liu & 

Kewley-Port, 2004).   

Subcortical correlates of double vowel perception  

Our study showed only weak links between subcortical neural activity and behavioral 

percepts in the double vowel paradigm. FFRs failed to predict listeners’ identification accuracy. 

In contrast, FFR F1 amplitudes were associated with faster RT speeds, although this correlation 
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was limited to the noise condition (Fig. 9B). These results replicate previous FFR studies which 

have shown correlations between F1 coding and behavioral RTs for speech perception 

(Bidelman, Villafuerte, et al., 2014; Bidelman, Weiss, et al., 2014). Yet, the F0 results contrast a 

large literature that has shown robust correlations between FFR F0 and degraded speech 

perception (Anderson et al., 2012; Samira Anderson, Skoe, Chandrasekaran, Zecker, & Kraus, 

2010b; Coffey et al., 2017; Du, Kong, et al., 2011; A Parbery-Clark, Skoe, & Kraus, 2009). 

However, one important difference between this and previous work is that all speech-FFR 

studies to date have used single, isolated speech tokens (e.g., vowels, CVs) rather than the more 

complex double-vowel mixtures used here. Additionally, our stimuli were designed to have 

relatively high F0s (150 Hz), compared to other FFR studies where tokens predominantly had 

voice pitches of ~100 Hz. This is an important distinction as recent studies have shown that 

FFRs can sometimes have cortical contributions (Coffey, Herholz, Chepesiuk, Baillet, & Zatorre, 

2016) when the F0 of the stimulus is low (≤ 100 Hz). Above ~150 Hz, only subcortical 

(brainstem) sources contribute to the FFR (Bidelman, 2018). It is possible that at least some of 

the correlations between spectral properties of the FFR (e.g., F0) and various aspects of speech 

perception reported in earlier studies (Anderson et al., 2012; Samira Anderson et al., 2010b; 

Bidelman & Krishnan, 2010b; Coffey et al., 2017; Du, Kong, et al., 2011; A Parbery-Clark, 

Skoe, & Kraus, 2009) may be cortical, rather than subcortical, in origin. The lack of robust links 

between the FFR and concurrent speech perception in the present study may be due to the fact 

that our FFRs reflect more pre-attentive, exogenous neural encoding of the brainstem, which 

does not always covary with perceptual measures (Bidelman, Moreno, & Alain, 2013a; Gockel et 

al., 2011). While our data do not provide strong evidence that perceptual correlates of concurrent 

vowel processing exist in FFRs, brainstem signal processing is no doubt still critical in feeding 
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later decision-based mechanisms at a cortical level. That is, neural encoding in brainstem might 

ultimately enhance segregation and perception by higher-order cognitive processes (Bidelman & 

Alain, 2015a; Bidelman, Davis, & Pridgen, 2018). Concurrent recordings of FFR (brainstem) 

and ERP (cortical) responses could test this possibility.  

Relationships between perceptual and brainstem auditory coding, where they do exist, 

can be viewed within the framework of corticofugal (top-down) tuning of sensory function. 

Corticofugal neural pathways, that project back to peripheral structures (Suga, Gao, Zhang, Ma, 

& Olsen, 2000; Zhang & Suga, 2005) may control and enhance subcortical encoding of the F0 

(voice pitch)-and formant (vowel identity) related information of the stimulus that are necessary 

for speech-in-noise perception. Of the brain-behavior correlates we did observe, F1 was 

associated with behavioral RTs, particularly in noise. The higher variability in F1 responses may 

be due to greater individual differences in the encoding of these higher spectral cues in this more 

challenging listening condition and/or due to difficulty of the task—larger spreads which would 

allow for correlations. Alternatively, this variability may also be related to corticofugal tuning of 

sensory (FFR) encoding that enhances acoustic features of target speech subcortically (Anderson 

& Kraus, 2013; Reetzke, Xie, Llanos, & Chandrasekaran, 2018). In background noise, 

corticofugal functions might search for sensory features that allow the listener to extract and 

enhance pertinent speech information. This notion is consistent with previous neural data 

(Cunningham, Nicol, Zecker, Bradlow, & Kraus, 2001; Parbery-Clark, Marmel, Bair, & Kraus, 

2011; Parbery-Clark, Skoe, Lam, & Kraus, 2009) and perceptual models showing changes in the 

weighting of perceptual dimensions because of feedback (Amitay, 2009; Nosofsky, 1987). 

Online corticofugal activity may adapt rapidly especially in challenging environments (e.g., 
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noise) (Atiani, Elhilali, David, Fritz, & Shamma, 2009; Elhilali, Ma, Micheyl, Oxenham, & 

Shamma, 2009).  

Still, why corticofugal effects would be present at F1 but not F0 is unclear. The 

corticofugal activity may be related to the change in the power of ongoing theta-band rhythms in 

noise, our previous work showed correspondence of theta-band activity with RTs in noise 

(Yellamsetty & Bidelman, 2018a). Thus, we anticipate the involvement of the lower oscillatory 

theta-rhythms in modulating the spectral feature at the subcortical level in noise. Moreover, our 

results are probably not due corticofugal mechanisms as we used a passive listening task whereas 

cortico-collicular efferents are thought to be recruited in tasks requiring goal-directed attention 

(Slee & David, 2015; Vollmer, Beitel, Schreiner, & Leake, 2017). Nevertheless, it would be 

interesting to see how the variable weighting of F0/F1 coding and simultaneous changes in 

oscillatory rhythms (specially theta-band) across individuals, in an active listening task. 

Attention might act to bias and enhance incoming acoustic speech relevant information and 

suppress noise (Suga, 2012).  

 A handful of studies have shown certain vowels dominate perception among different 

vowel pair combinations (Assmann & Summerfield, 1990a, 2004; Chintanpalli et al., 2014a, 

2016; Chintanpalli & Heinz, 2013a; Meddis & Hewitt, 1992a), reminiscent of our vowel 

dominancy data (Fig. 5). At 0ST, listeners can take advantage of the relative differences in the 

levels of spectral peaks between two vowels and one vowel is identified dominantly over the 

other; whereas identification of both the vowels is better at 4 ST. Our stimulus did have a level 

difference between the spectral peaks (F1s) of the two vowels; /ε/ was slightly stronger (2 dB) 

than /a/ in acoustic power. This level difference is captured in FFR amplitudes (Fig. 7C). Indeed, 

when FFRs were split by listeners’ behavior, double-vowel responses showed closer 
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correspondence to the single /ε/ vowel (Fig. 10). Thus, FFRs were largely independent of 

behavior bias and therefore showed a stimulus (rather than perceptual) dominancy.  

In sum, we find that FFRs reflect the neuro-acoustic representations of peripheral 

nonlinearities that are carried forward to brainstem processing. The spectro-temporal changes 

observed in FFRs with pitch and noise cues and weak behavioral correlations suggest that FFRs 

reflect mainly exogenous stimulus properties of concurrent speech mixtures. Nevertheless, 

correlations between F1 and behavioral RTs in noisy listening conditions suggest possible 

corticofugal involvement in enhancing speech relevant representations in the brainstem during 

more difficult tasks and/or in challenging listening conditions. Our results show that FFRs reflect 

pre-attentive mechanisms and concurrent stimulus interactions that can, under certain conditions, 

predict the successful identification of speech mixtures.  
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Chapter 4 

GENERAL DISCUSSION 

 Recording EEG at subcortical (pre-attentive) and cortical (post-attentive) levels for a 

concurrent speech stimulus illustrated the hierarchy of the processing underlying concurrent 

speech identification and elucidated the neural mechanics and time course of concurrent speech 

identification in clean and degraded listening conditions. Our results showed four primary 

findings (1) Behavioral results showed that listeners exploit F0-differences between vowels to 

identify speech, and the perceptual F0 benefits was larger for clean compared to noise degraded 

(+5 dB SNR) stimuli. (2) early in the auditory pathway, the pre-attentive mechanisms of 

concurrent stimulus interactions weakly predict the success of identifying simultaneous speech, 

indicating exogenous nature of the subcortical activity. (3) dynamic F0 cues and noise (SNR) are 

likely to interact during the extraction of multiple auditory streams and occur relatively early 

(~200 ms) in the neural hierarchy. (4) Higher band cortical rhythms carry information on pre-

perceptual encoding of acoustic features and follow the quality of the speech signal, whereas low 

rhythms reflect post-perceptual cognitive operations that involve the degree of listening effort 

and task demands. In addition to this, we anticipate the involvement of lower oscillatory rhythms 

(especially theta-band) in modulating the spectral feature (F1) at the subcortical level in noise. 

 Human speech perception is based on multiple, hierarchical processing pathways, and 

different kinds of representations in speech could be preferentially treated in different streams 

(such as acoustic–phonetic features and articulatory gestures)(Scott & Johnsrude, 2003). When 

the signal reaches the ear, the acoustic wave is first decomposed into perceptual groups (i.e., 

source/objects) according to Gestalt principles (Koffka, 1935). In the current studies, double 

vowels with same ST (0ST) could be grouped together into one entity or stream because the 
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harmonics fall into the same auditory filter band channel. Whereas for different F0s (4ST), the 

harmonics fall across-channel filter bands forming two entities or streams. When the two signals 

represent simultaneous processes in the same processing stream (within channel), we would 

expect enhancements (Coffey et al., 2016), that is reflected in FFR-F0 at subcortical level and to 

be paralleled by enhancements in the strength of the N1-P2 component and γhigh activity at the 

cortical level. These enhancements are mere exogenous acoustic feature representations and 

larger amplitudes do not necessary show perceptual benefit as shown in the behavioral data. 

Whereas, when two signals are processed in two different streams (4ST), the energy gets 

distributed across the channels and carried as two separate sources to the higher cortical levels, 

this leads to better perceptual identification of the two speech sounds.  

It has been known that noise tends to obscure amplitude modulations in speech that are 

essential for its comprehension (Bidelman, 2016b; Shannon et al., 1995; Swaminathan & Heinz, 

2012). Subcortically, FFR amplitudes were larger for single vowel and showed reduction in 

amplitudes of both the pitch and timbre cues with competing speech signal (double vowels) and 

in noise. At cortical level, in clean conditions, neural rhythms showed larger amplitudes of the 

γband (200ms) followed by the desynchrony in the β- (around ~250 to 350 ms) and θ- oscillations 

(~400 -500 ms) post-stimulus onset. Whereas in noise, there was reduced amplitude of γband 

followed by increased activity in the β- and θ- oscillations compared to clean conditions. Thus, 

the tuning of non-linear acoustic properties of the speech signals encoded at the subcortical level 

may be general to all sounds and speech-specific operations probably do not begin until the 

signal reaches the cerebral cortex (Scott & Johnsrude, 2003).  

A meta-analysis of the perceptual correlates across our studies supports this notion. 

Figure 11 shows the magnitude of correlation observed in study one and two. The perceptual 
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correlations of accuracy were stronger with the cortical activity and were weaker with the 

subcortical activity (Fig 11A). For the reaction time (fig. 11B), cortical activity has greater 

contribution and minimal contributions from the subcortical activity. The correlation shown at 

the cortical level might be covertly driven by the band specific changes in the oscillatory spectral 

responses, reflecting the unique mechanisms of speech perception. 

 

 

Figure 11. Meta-analysis across studies showing the distribution of the Brain-behavior correlates 
at cortical and subcortical levels for double-vowel perception. Bar plots showing the contribution 
of the subcortical and cortical levels (A) for the identification accuracy of concurrent double 
vowels and (B) for the behavioral reaction time. 

 

 Brainstem encoding of speech is a fundamental precursor to the divergence of the parallel 

processing streams identified in the cortex (Kraus & Nicol, 2005). Different qualities of the 

stimulus like periodicity (source) and spectra (filter) are processed separately, yet simultaneously 

(parallel sensory streams), by different neural mechanisms before the stimulus is consciously 

perceived as a whole (Kraus & Nicol, 2005). These separate source and filter characteristics are 

viewed independently in the response patterns of brainstem neurons and carried further in two 

streams of dorsal and ventral paths for localizing the source and identifying the object, 
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respectively (Kaas & Hackett, 1999; Rauschecker & Tian, 2000). The neurons in the primary and 

surrounding belt areas of auditory cortex are both sensitive to pitch and harmonically related 

frequencies (Bendor, Osmanski, & Wang, 2012b; Kikuchi, Horwitz, Mishkin, & Rauschecker, 

2014a), whereas spectra in speech and mapping sound to meaning activates secondary auditory 

pathway regions (Kraus & Nicol, 2005; Saur et al., 2008). The two streams further integrate and 

contribute to functionally distinct regions of the frontal lobe (Romanski et al., 1999). In addition 

to this, A1 has both feedforward cortico-collicular and feedback cortico-cortical pathways, and 

this functional connectivity was a strong predictor of degraded speech perception (Bidelman et 

al., 2018). The cortical processes project backward to structures in the auditory periphery (Suga 

et al., 2000; Zhang & Suga, 2005) in case of speech in noise, these processes may enhance 

features of the target speech sounds subcortically (Anderson & Kraus, 2013; Reetzke et al., 

2018). This explains the sequence of neural events and time course underlying the perception of 

concurrent speech identification in noise. The reduced γ-band activity and increase in the β-band 

and θ-band activity in noise would reflect the increase in the effort to extract phonetic features by 

enhancing the target speech features subcortically and perceptually binding them to match 

against the internalized memory profiles for both vowel constituents. Thus, we anticipate the 

involvement of the lower oscillatory rhythms (especially theta-band) in modulating the spectral 

features at the subcortical level in noise. Theoretically the cortical activity that modulates the 

brainstem encoding has reflected in the RT in noise, as seen in the fig. 11B.  Hence, the pattern 

of distribution of reaction time correlations seen with F1 activity subcortically, and low 

frequency β- and θ- oscillatory activity cortically (Fig. 11B).        

 To summarize the brain-behavioral correlates of concurrent speech identification (fig 

12), early pre-attentive subcortical activity transcribes the acoustic information and the actual 
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auditory percept occur at the cortical level. The cortical activity is an index of the reaction time 

that modulates the encoding of the spectral features at brainstem in noise.  

 

 

Figure 12. The hierarchical neural to behavioral correlates that are driving the identification of 
the concurrent double vowel stimulus. 

 

 To conclude, the dynamic time course for concurrent speech sound processing depends 

on both extrinsic (noise) and intrinsic (pitch) acoustic factors. Early in the auditory system, FFRs 

predicted perceptual speed but not the accuracy of double vowel identification, indicating the 

exogenous orientation of pre-attentive subcortical activity. Cortically, early high frequency 

activity reflected pre-perceptual encoding of acoustic features (~200 ms) and the quality (i.e., 

SNR) of the speech signal (~250-350ms), whereas later-evolving low-frequency rhythms (~400-

500ms) reflected post-perceptual, cognitive operations that covaried with listening effort and task 

demands. Tentatively, we posit that successful speech identification is governed by peripheral 

Gestalt mechanics and cortical- accurate perceptual object construction, auditory template 

matching, and deceased listening effort/attentional allocation. 
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Future directions:  

To test our anticipation of the lower oscillatory rhythms (specially theta-band) involvement in 

modulating the spectral feature (F1) at the subcortical level in noise. It would be interesting to 

localize the time course neural sources across the auditory pathway for double vowel 

identification process. 

To test the above phenomenon on different target population like children with processing and 

learning difficulties, geriatric population, cochlear implant and hearing-impaired individuals. 

Extensions of this work, to examine how the weighting of neural activity changes across the 

pathway and on frequency bands with perceptual learning, attentional effects on concurrent 

speech segregation. 
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