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Abstract 

Zhuqing Xue. PhD. The University of Memphis. May 2018. Human Exposure to Air 
Toxics in Urban Environments: Health Risks, Sociodemographic Disparities, and Mixture 
Profiles. Major Professor: Chunrong Jia, PhD. 

Exposure to air toxics in urban environments may be of significant health concern 

because populations and emission sources are concentrated in the same geographic area. The 

overall objective of this study is to characterize the sources, variations, and mixture profiles of 

ambient air toxics in urban environments, and examine the sociodemographic disparities in 

exposures to air toxics in a typical U.S. metropolitan area. 

A model-to-monitor comparison was performed to evaluate the validity of modeling air 

toxics data using national datasets. Modeled concentrations in the 2011 National-scale Air 

Toxics Assessment (NATA) moderately agreed with monitoring measurements, and a sizable 

portion showed underestimation. Results warranted the need for actual monitoring data to 

conduct air toxics exposure assessment. 

Air toxics samples were collected in 106 census tracts in the Memphis area in 2014, and 

samples were analyzed for 71 volatile organic compounds (VOCs). Ambient VOC levels in 

Memphis were generally higher than the national averages in urban settings, but were mostly 

below the reference concentrations (RfCs). Factor analysis identified 5 major sources: 

manufacturing processes, vehicle exhaust, industrial solvents, refrigerants, and gasoline 

additives. The major non-cancer risks were from neurological, respiratory, and 

reproductive/developmental effects. The cumulative cancer risk was 5.9± 3.3 ×10-4, with 

naphthalene and benzyl chloride as risk drivers. 
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Sociodemographic disparities in cancer risks were examined by regressing cancer risks 

against socioeconomic, racial, and spatial parameters at the census tract level. We conducted 

separate disparity analyses using modeling data from 2011 NATA and our air toxics monitoring 

data. Analysis using modeling data showed strong sociodemographic disparities but that using 

monitoring data did not show. The discrepancy brought cautions for use of modeling air 

pollution data in environmental disparity research. 

We further assessed exposure to VOCs mixtures in five typical microenvironments 

(MEs): home, office, vehicle cabin, gas station, and community outdoors. The multivariate 

analysis of variance and pairwise analysis showed VOC profiles were distinguishingly different 

among MEs. The classification of profiles was achieved using the random forest. We anticipate 

wide applications of exposure profiles in epidemiologic research of exposure to air toxic 

mixtures.  
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Chapter 1 

Introduction 

1.1 Air toxics  

Air pollutants are various forms of agents in the air which contaminate the air and lead to 

adverse health effect when their level elevates above threshold (Godish, 2014; WHO, 2017a). 

Ambient air pollutions can be caused by natural processes such as volcano explosions, forest 

fires etc. (Kampa & Castanas, 2008). However, anthropogenic activities play the major role in 

the formation of air pollution. Emissions from combustion of fossil-fuel, industrial 

manufacturing, transportation, and households  increase concentrations of particulate matter, 

persistent organic pollutants, heavy metals and gaseous-phase pollutants in the ambient air 

(Godish, 2014; Kampa & Castanas, 2008). These primary pollutants  form secondary pollutants 

such as haze and tropospheric ozone through chemical and photochemical reactions among 

primary pollutants (Godish, 2014). The Clean Air Act (CAA) amended in 1990 requires 

regulation of 6 criteria air pollutants and 187 air toxics. Air toxics include volatile organic 

compounds (VOCs), semi-VOCs (SVOCs), and heavy metals in particular matter (PM) 

(McCarthy, O'Brien, Charrier, & Hather, 2009; U.S.EPA, 2009). Lead is regulated as both a 

criteria pollutant and an air toxic (Godish, 2014; Suh, Bahadori, Vallarino, & Spengler, 2000). 

Air toxics are released to the ambient air from numerous sources. U.S. EPA summarized 

eight air toxics emission source sectors (U.S.EPA, 2017b): (1) agriculture: e.g., fertilizer 

application; (2) dust: e.g., pave road dust; (3) fires: e.g., wildfires; (4) fuel combustion: e.g., 

biomass, coal, natural gas combustion for electric generation ; (5) industrial processes: e.g., 
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chemical manufacturing; (6) miscellaneous: e.g., commercial cooking; (7) mobile: e.g.; aircraft, 

commercial marine vessels, non-road equipment and on-road vehicles etc.; and (8) solvents: e.g. 

dry cleaning, degreasing. Currently, the U.S. EPA estimates air toxics emissions of air pollutions 

majorly on the basis of the National Emission Inventory (NEI), which is updated every three 

years and based on data collected from state, local, and tribal air agencies. The NEI covers five 

major emission sources (U.S.EPA, 2017f): (1) point sources: large groups of stationary facilities 

that are regulated for emission level, e.g., power plants and airports; (2) nonpoint sources: small 

magnitude individual stationary source, e.g., gas and service stations,  dry cleaners,  residential 

cooking and heating; (3) on-road sources: fuels combustions from automobiles during 

transportation or road-work on highways, streets and roads; (4) non-road sources: aircrafts, 

commercial marine vessels, rail transport vehicles, construction equipment,  lawn and garden 

equipment; (5) “event” sources: wildfires and prescribed burnings.  Additionally, another 

important emission inventory related to air emission and NEI is Toxic Release Inventory (TRI). 

TRI tracks pollutants emitted to air, water or in land disposal (U.S.EPA, 2017i). Therefore, TRI 

had overlap with NEI in air emissions. For emissions from some stationary facilities (about 

10%), TRI is the only data source for NEI (U.S.EPA, 2002b).  

Valid and representative data of hazardous air pollutants (HAPs) are required to evaluate 

emission compliance, air quality attainment, and population health risks. Chronic and acute 

exposure to HAPs may cause damages to multiple human organs (Kampa & Castanas, 2008), 

including respiratory (Chen, Salam, Eckel, Breton, & Gilliland, 2015), nervous (Novaes et al., 

2010; Sunyer et al., 2015), circulatory (Brook et al., 2004), reproductive (Lewtas, 2007), immune 

(Nadeau et al., 2010), digestive (Kelishadi & Poursafa, 2011), and urinary systems (Jarup, 2003). 

The U.S. Environmental Protection Agency (EPA) aimed to reduce HAP emissions by 75% of 
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the 1993 level to meet the requirement by the Government Performance and Results Act. EPA 

has been working with state, local, and tribal air pollution control agencies to measure ambient 

HAP concentrations. However, the current monitoring efforts are inadequate for increasingly 

refined health and climate studies, and modeling programs are then developed to estimate 

exposures at high temporal and spatial resolutions (Jerrett et al., 2005). 

EPA initiated the National-scale Air Toxics Assessments (NATA) in 1996 to serve as a 

geographical extension of the existing air monitoring network. NATA is designed to inform 

decision-making, e.g., prioritize pollutants and sources, identify locations for investigation, and 

design monitoring programs (USEPA, 2012). NATA models HAP concentrations at geographic 

resolutions down to the census tract level. The high spatial resolution data have a number of 

environmental applications. Environmental epidemiology studies have used NATA data to 

explore association between HAP exposure and health endpoints such as respiratory disease 

(deCastro, 2014; Stoner, Anderson, & Buckley, 2013), autism spectrum disorder in children (A. 

L. Roberts et al., 2013), and school performance (Clark-Reyna, Grineski, & Collins, 2016; 

Grineski, Clark-Reyna, & Collins, 2016). The cancer risk estimates in NATA often serve as 

bases for addressing environmental justice issues (Apelberg, Buckley, & White, 2005; 

Chakraborty, 2012; Grineski, Collins, & Chakraborty, 2013; James, Jia, & Kedia, 2012; Linder, 

Marko, & Sexton, 2008; Pastor, Morello-Frosch, & Sadd, 2005; Rice et al., 2014; Wilson et al., 

2015). The methodology and data are also used to model population exposure (Ozkaynak, Palma, 

Touma, & Thurman, 2008), predict future exposures (Cook et al., 2007), estimate excess risks 

(Woodruff, Wells, Holt, Burgin, & Axelrad, 2007), and establish an emission-to-intake 

relationship (Marshall, Teoh, & Nazaroff, 2005). 
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Evaluating NATA model performance is imperative for its numerous applications. 

NATA modeling uses conservative assumptions that potentially lead to overestimation 

(U.S.EPA, 2016g); however, some comparison studies gave the opposite results (Garcia et al., 

2014; Logue, Small, & Robinson, 2011; Lupo & Symanski, 2009). A few independent evaluation 

studies used local-scale monitoring in California (Garcia et al., 2014), Pittsburgh, Pennsylvania 

(Logue et al., 2011), Detroit, Michigan (George et al., 2011), Texas (Lupo & Symanski, 2009), 

and South Baltimore, Maryland (D. C. Payne-Sturges, Burke, Breysse, Diener-West, & Buckley, 

2004). These model-to-monitor comparisons are often limited in terms of number of chemicals 

and geographic areas. EPA has conducted limited evaluations and encourages more studies 

(George et al., 2011; Rosenbaum et al., 1999). 

The 2011 NATA yielded the latest available database that contains concentrations, 

exposures, and cancer and non-cancer risks for 180 HAPs, as well as their contributing sources. 

There has been no independent evaluation of 2011 NATA, although EPA has made limited 

model-to-monitor comparisons for selected compounds (U.S.EPA, 2016a).  Methodologically, 

EPA used multiple comparison measures, e.g., linear regressions, factor of 2, and absolute 

biases; however, they often give inconsistent results. Measurement uncertainty is not considered 

in previous comparisons, which may lead to huge bias as many modeled concentrations are far 

below the detection limits. These limitations call for a systematic approach for model-to-monitor 

comparisons.  

1.2 Health risks from exposure to air toxics  

According to the most recent estimates from World Health Organization (WHO) in 2012, 

three million deaths, 5.4% of total deaths in the world, were due to ambient air pollution (WHO, 

2017b). Chronic and acute exposure to air toxics may cause damages to multiple human organs 
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(Kampa & Castanas, 2008), including respiratory (Chen et al., 2015), nervous (Novaes et al., 

2010; Sunyer et al., 2015), circulatory (Brook et al., 2004), reproductive (Lewtas, 2007), immune 

(Nadeau et al., 2010), digestive (Kelishadi & Poursafa, 2011), and urinary systems (Jarup, 2003). 

Environmental epidemiology studies have extensively explored the association between criteria 

air pollutants and various adverse health outcomes. More and more studies have been focusing 

on air toxics. Both modeled and monitored concentrations of air toxics have been utilized to: 

assess the association between adverse health effect and exposure to air toxics; and characterize 

the health risks. 

Cancer risk is a great concern when addressing adverse effects from exposure to air 

toxics. Among the 187 air toxics, formaldehyde, benzene, acetaldehyde, 1, 3-butadiene, 

chloroform, naphthalene and most of PAHs are major contributor to cancer risks (Bostrom et al., 

2002; M. M. Loh, J. I. Levy, J. D. Spengler, E. A. Houseman, & D. H. Bennett, 2007). 

Particularly, formaldehyde, benzene, acetaldehyde are the three leading cancer risk drivers based 

on 2011 NATA modeling results (U.S.EPA, 2016a). Formaldehyde was reported to have effects 

on modification of miRNA expression which may lead to lung cancer, breast cancer, and 

leukemia (Lu et al., 2005; Rager, Smeester, Jaspers, Sexton, & Fry, 2011). Additionally, 

exposure to formaldehyde was linked with nose and throat cancer. Long-term high level 

exposure to benzene was linked to acute myelogenous leukemia (AML) (Galbraith, Gross, & 

Paustenbach, 2010). Acetaldehyde from ambient air is associated with nose cancer (Y. Zhou, Li, 

Huijbregts, & Mumtaz, 2015). Early childhood exposure high levels of 1,3-butadine was linked 

to acute lymphocytic leukemia (Symanski et al., 2016). Exposure to mixture of PAHs is 

associated with elevated cancer risks targeting skin, lung, bladder, and gastrointestinal tracts 

(Kim, Jahan, Kabir, & Brown, 2013).  
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Non-cancer risks including respiratory disease, neurotoxicity, negative birth outcomes, 

renal toxicity, and cardiovascular disease have been linked with exposure to air toxics. Air 

toxics, such as benzene, 1,3 –butadiene and PAHs, have short term respiratory adverse effect 

including mucosal irritation, cough, wheeze, and shortness of breath (Goldizen, Sly, & Knibbs, 

2016). VOCs, especially formaldehyde, and PAHs from traffic emissions are relevant to asthma 

exacerbation and development. However, epidemiologic evidence for causal relationship 

between air toxics and asthma is not sufficient (Delfino, 2002). Emerging evidence has been 

found targeting the association between air pollution and neurotoxicity (Block et al., 2012).  Air 

toxics (e.g. VOCs, PAHs, and heavy metals) are associated with adverse effects on central 

nervous system (CNS), which may lead to autism spectrum disorder (ASD) (Volk, Hertz-

Picciotto, Delwiche, Lurmann, & McConnell, 2011),  delayed intelligence and cognitive 

development in children (Calderon-Garciduenas et al., 2008; S. Q. Wang et al., 2009), 

Parkinson’s disease (Calderon-Garciduenas et al., 2002), and Alzheimer’s disease (Calderon-

Garciduenas et al., 2004). Exposure to air pollution is also associated with increased risk of 

negative birth outcomes including childhood mortality, intrauterine growth restriction (IUGR), 

premature birth, low birth weight (LBW), and birth defects (Lewtas, 2007; Sram, Binkova, 

Dejmek, & Bobak, 2005; Stieb, Chen, Eshoul, & Judek, 2012). PAH has been linked to IUGR 

(Dejmek, Solansky, Benes, Lenicek, & Sram, 2000; Sram et al., 2005). Exposure to heavy 

metals, such as cadmium and lead, is associated with renal dysfunction and failures (Damek-

Poprawa & Sawicka-Kapusta, 2003; Jarup, 2003; Kampa & Castanas, 2008). Additionally, lead 

is also associated with hypertension, coronary heart disease (CHD), stroke, and peripheral 

arterial disease (Uzoigwe, Prum, Bresnahan, & Garelnabi, 2013).  
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Air toxics adversely affect human health in various ways not only at the individual level 

as it targets different human organs, but also at the community level due to the spatial and 

temporal variations of its concentrations. Only a few previous studies were focused on the spatial 

and temporal patterns of air toxic concentrations in areas clustering various emission sources 

based on ambient monitoring program. A study conducted in Camden, NJ pointed out the 

concentrations of ambient air toxic, e.g., VOCs, vary differently around different stationary 

emission sources in different neighborhoods (Zhu et al., 2008). Another study in Oakland, CA 

suggested that spatial variation of air toxics in urban areas was due to different traffic density 

(Fujita, Campbell, Arnott, Lau, & Martien, 2013). Concentrations of air toxics are expected to be 

higher in cold seasons than warm seasons due to more emissions from heating and lower air 

exchange rate (Rehwagen, Schlink, & Herbarth, 2003). However, although previous studies 

found concentrations of air toxics vary differently between cold and warm seasons, no consistent 

patterns were found (Fujita et al., 2013; C. Jia, Batterman, & Godwin, 2008b). 

More studies are in need to characterize the health risks from air toxics. Spatial and 

temporal patterns of air toxic concentrations in areas where there are multiple emission sources 

need to be further studied to have a better understanding so that more efficient regulations could 

be applied addressing health risks from exposure to air toxic. 

1.3 Exposure to mixture of air toxics  

Exposure to air pollutants in real life is rarely to single pollutants but rather to mixtures. 

Mixtures of air pollutants reflect the integration of many sources, emission constituents, or 

ongoing photochemical processes in the atmosphere. Air pollutants exist in form of complex 

mixtures in indoor and ambient environments. Symptoms and diseases may arise from 

multipollutant exposure; however, the interactions between pollutants are still unclear.  Both the 
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scientific community and regulatory agencies have been shifting from the traditional single-

pollutant approach toward a multipollutant approach to quantify the health consequences of air 

pollution mixtures (Dominici, Peng, Barr, & Bell, 2010).  The Health Effects Institute (HEI) has 

made research of health effects of the air pollution mixture a top priority in its 2010-2015 

strategic plan (HEI, 2010).  The U.S. Environmental Protection Agency (EPA) has initiated the 

Clean Air Program to address multipollutant issues(U.S. EPA, 2009a). The U.S. National 

Institute for Occupational Safety and Health (NIOSH) published a “Mixed Exposure Research 

Agenda” that suggested surveillance, evaluation and research, and controls and interventions for 

air pollutant mixtures(NIOSH, 2005). The U.S. Agency for Toxic Substances & Disease Registry 

(ATSDR) was engaged in a “Chemical Mixtures Program” to identify mixtures, estimate the 

joint toxic effects and develop new methodologies for evaluating the health effects of mixtures 

(De Rosa, El-Masri, Pohl, Cibulas, & Mumtaz, 2004).  

Several terms are used for different aspects of mixture exposure.  Regarding the exposure 

agents, “mixture” probably is the earliest and most widely used term, e.g., chemical mixture and 

complex mixture were used in early literature (Samet & Speizer, 1993).  The ATSDR manual 

further categorized mixtures as (ATSDR, 2004): (1) intentional mixture, which are manufactured 

products, such as pesticide formulations, gasoline, or laundry detergent; (2) generated mixture, 

which are byproducts of such processes as smelting, drinking water disinfection, fuel 

combustion, and cigarette smoking; and (3) coincidental mixture which consist of unrelated 

chemicals from different sources, deposited separately at the site, but having the potential to 

reach the same “receptor population” by their presence in or migration into the same medium 

(commonly groundwater), or through a combination of media and pathways.  To describe 

exposure pathway and route, mixed exposure (NIOSH, 2005), co-exposure and multipollutant 
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exposure are interchangeably used.  Recently, “multipollutant” was used for describing 

methodology and science of chemical mixture exposure (Greenbaum & Shaikh, 2010). 

Human health risks are affected by multiple pollutants, and may be enhanced by pollutant 

interactions.  Although incompletely understood, exposures to mixtures can cause additive and 

synergistic effects (De Rosa et al., 2004).  For example, VOC mixtures at sufficiently high 

concentrations and over a range of exposure periods have been demonstrated to induce adverse 

health effects in both indoor (Mendell, 2007; Rumchev K, Brown H, & Spickett J, 2007) and 

occupational (Hansen, De Rosa, Pohl, Fay, & Mumtaz, 1998; Lippy & Turner, 1991) settings. 

Therefore, identifying common air pollutant mixtures, determining the mixture 

composition and categorizing the exposure to these mixtures into different exposure profiles 

based on exposure locations and emission sources of mixtures can help us gain better 

understanding and estimation of health risks from exposure to air toxic mixtures.  

1.4 Health disparities from exposure to air toxics 

Health disparity from exposure to air pollution has been reflected on individual-level 

vulnerability and community-level vulnerability (D. Payne-Sturges & Gee, 2006). At the 

individual level, empirical evidence on health disparities demonstrated that racial minorities and 

those with lower socioeconomic status tend to experience disproportionate adverse health effect 

from exposure to air pollution (Chakraborty, 2012; Chakraborty, Collins, & Grineski, 2017; 

Chakraborty, Collins, Grineski, & Maldonado, 2017; C. R. Jia, James, & Kedia, 2014; Linder et 

al., 2008; Morello-Frosch & Jesdale, 2006; Tyrrell, Melzer, Henley, Galloway, & Osborne, 

2013). For instance, minority residents, compared to non-Hispanic whites in the United States, 

have higher risk perception of environmental risks and, specifically, more concerns on air 
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pollutions (Macias, 2016). Individuals with low income are more likely to move into more 

polluted areas with worse housing condition due to lower living and housing cost. These 

individuals cannot easily relocate even when they realize more emission facilities are moved to 

where they live (Wilkinson & Pickett, 2006). At the community level, communities with social 

disadvantages are more likely to be exposed to air toxics. For example, emission facilities tend to 

locate in disadvantaged area because the communities there lack of political power (Perlin, 

Sexton, & Wong, 1999). In general, residents living in minority’s communities are more likely to 

1) lack knowledge of health, 2) experience more social stress like crime, drugs and poverty exist, 

3) have less insurance coverage, and 4) have less access to appropriate healthcare (Mayberry, 

Mili, & Ofili, 2000).  

The two critical elements to address the health disparity from exposure to air pollution 

are: (1) Geographical extent and spatial resolution of measurement of  both exposure to air 

pollution and sociodemographic indicators (e.g., race, ethnicity, and income);  and (2) Analytical 

methodology of assessing the association between exposure and sociodemographic indicators 

(Chakraborty, Collins, & Grineski, 2017; Chakraborty, Maantay, & Brender, 2011; Maantay, 

2007).  

The measurement of exposure to air pollution from multiple emission sources in health 

disparities studies falls into two categories including: (1) Proximity or distance to emission 

sources, e.g., Utilizing circular buffer rings , constructed via geographic information system 

(GIS), around emission sources as a geographic boundary for population who are considered to 

be exposed to air pollution (Perlin, Wong, & Sexton, 2001); (2) modeled air pollution level and 

risk based on emission data of air pollutions and meteorological conditions, e.g., NATA modeled 

air toxic concentrations and cancer risks etc. (Chakraborty, Collins, & Grineski, 2017). The 



11 
 

primary data source of exposure to air toxics is from parameters based on ambient monitoring 

concentrations of air toxics. However, due to geographical limitation, secondary data on 

emissions of air pollution and related risk from NATA and TRI become major data sources of 

exposure to air toxics for health disparities studies. Particularly, U. S. EPA has developed the 

Environmental Justice Screening and Mapping Tool (EJSCREEN) providing high-resolution 

environmental and demographic data around United States for health disparities studies and 

environmental justice (EJ) studies(U.S.EPA, 2017h). Eleven prioritized environmental indexes 

(U.S.EPA, 2017c) for EJ studies were also listed as following:  

• National Scale Air Toxics Assessment Air Toxics Cancer Risk 
• National Scale Air Toxics Assessment Respiratory Hazard Index 
• National Scale Air Toxics Assessment Diesel PM (DPM) 
• Particulate Matter (PM2.5) 
• Ozone 
• Lead Paint Indicator 
• Traffic Proximity and Volume 
• Proximity to Risk Management Plan Sites 
• Proximity to Treatment Storage and Disposal Facilities 
• Proximity to National Priorities List Sites 
• Proximity to Major Direct Water Dischargers 

The sociodemographic measurement can be categorized into individual level and 

composite level of socioeconomic attributes (SEA) and racial/ethnic attributes. Individual level 

measurement include: (1) census; (2) sociodemographic indicators designed for EJSCREEN 

(U.S.EPA, 2017g): percent Low-income, percent minority, less than high school education, 

linguistic isolation, individuals under age 5, and individuals over age 64; (3) delayed rent or 

mortgage in  past year and food stamp program enrollment (Shmool et al., 2014); (4) social 

processes (D. Payne-Sturges & Gee, 2006). Composite level measurement include: (1) 

segregation indices: dissimilarity index, isolation index, delta, relative cluster, and Townsend 
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index (Rice et al., 2014); (2) HOUSE index (Bang et al., 2014). (3) Principle component of 

multiple sociodemographic indicators (C. R. Jia et al., 2014). 

Three major analytical methods have been applied into environmental justice studies 

addressing health disparities from exposure to air pollutions. These methods include: (1) 

proximity analysis using pair-wised Kolmogorov-Smirnov test (Abel, 2008; Perlin et al., 2001) 

(2) chi-square tests (Linder et al., 2008); (3) regression analysis: linear regression (OLS), 

quantile regression (James et al., 2012), spatial regression (Simultaneous autoregressive models) 

accounting for spatial auto correlation (Anselin, 2014; Chakraborty, Collins, & Grineski, 2017; 

Raddatz & Mennis, 2013). Particularly, regression analysis is the most common approach for 

addressing health disparities (Gilbert & Chakraborty, 2011). These analytical approaches have 

advantages and disadvantages. Proximity analysis assumes that proximity to emission sources 

has same negative linear relationship to level of exposure when subjects were exposed to the 

emission sources from different direction but this relationship varies due to different 

environmental conditions, e.g., wind direction and speed, meteorological conditions 

(Chakraborty et al., 2011). Traditional linear regression, another commonly used approach, has 

the assumption of independence of errors. However, in most cases, spatial autocorrelation, 

reflecting neighboring effect geographically, violates this assumption. In contrast, spatial 

regression, e.g., geographically weighted regression is more appropriate in assessing 

sociodemographic disparities in exposure to air toxics if spatial autocorrelation was detected. 

Previous studies have reported that minorities and communities of lower socioeconomic 

status were more likely to live close to emission sources (Stuart, Mudhasakul, & 

Sriwatanapongse, 2009) exposing to elevated level of air toxics and thus having increased health 

risks (Abel, 2008; Chakraborty, Collins, & Grineski, 2017; Grineski, Collins, Chakraborty, & 
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McDonald, 2013; C. R. Jia et al., 2014). For example, a study in Texas reported that census tracts 

with higher proportion of Hispanics and socioeconomic disadvantage in Houston area showed 

higher cancer risks burden from exposure to air toxics (Linder et al., 2008). Another study in 

South Carolina strengthened the evidence that non-white population and communities with low-

income had higher cancer risks from exposure to air toxics (Wilson et al., 2015). However, these 

studies all utilized modeled air toxic concentrations to investigate the health disparities in health 

risks from exposure to air toxics. Their modeled air toxics concentrations and related health risks 

were from National Air Toxic Assessment (NATA) which was conducted by United States 

Environmental Protection Agency (U.S.EPA) to have an overview of national level of air toxics 

and to prioritize certain air toxics for regulation and reduction of air toxics emissions (U.S.EPA, 

2016g). Particularly, NATA was announced as not appropriate for characterizing and comparing 

risk at local level (U.S.EPA, 2015d). However, due to high expenses and tremendous efforts 

acquired for monitoring at census tract level, census tract level monitoring measurement were 

usually surrogated with modeled estimates in disparity studies at local level. Nevertheless, 

several model assessment studies have reported that NATA estimated air toxics concentrations 

generally underestimate the air toxic concentrations (Garcia et al., 2014; Logue, Small, Stern, 

Maranche, & Robinson, 2010; Lupo & Symanski, 2009). Thus the uncertainty of modeled 

estimates might affect the true association between sociodemographic factors and exposure to air 

toxics or related health risks. So far, no previous studies have utilized monitored air toxic 

measurement to address the sociodemographic disparities in exposure to air toxics or related 

health risks. Therefore, evaluating the sociodemographic disparities with the monitor 

measurement might give us an alternative prospect on this issue.  
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1.5 Emission Sources of Air Toxics in the Memphis area 

Shelby County, TN have heavy traffic burden including automobile traffic, railway 

transportation, barge traffic on Mississippi river and the busiest airport in the U.S.A. The county 

seat Memphis is the largest city in TN with 64% African-American population. Memphis 

clusters various industries, including transportation carriers, a petroleum refinery, petrochemical 

storage and transfer facilities, waste disposal facilities, a power plant, and etc. EPA’s Toxic 

Registry Inventory (TRI) is on watch for 311 emission facilities in Memphis. Most of these 

emission facilities are located in low-income African American concentrated areas. Clustering 

and uneven distribution of emission sources raises great concerns of health risk and health 

disparities related to air pollution in Memphis Area.  

1.6 Study Aims  

The overall objective of this study is to characterize the sources, variations, and mixture 

profiles of ambient air toxics in urban environments, and examine the sociodemographic 

disparities in exposures to air toxics in a typical U.S. metropolitan area. There are four specific 

aims: 

Specific aim 1: Evaluate the extent to which concentrations predicted by the 2011 

National-scale Air Toxics Assessment (NATA) program represent the actual monitored 

concentrations. The hypothesis is that the modeled and monitored annual average concentrations 

of ambient air toxics agree at the census tract level. 

Specific aim 2: Characterize the distribution and concentrations of ambient air toxics in 

Memphis, identify major sources, and estimate non-carcinogenic and carcinogenic risks.  
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Specific aim 3: Identify the social, economic, demographic, and special factors that 

determine ambient air toxic concentrations. We will explore these determinants using 2011 

NATA data in Memphis and the actual monitoring data collected for Specific aim 2. There are 

two hypotheses: a) Air toxic concentrations display differential distributions by 

sociodemographic status, and that, under most conditions, people in lower SES and of minority 

are at greater risk. b) both modeling and monitoring data give similar results regarding 

sociodemographic disparities in air toxics concentrations. 

Specific aim 4: Identify common air toxic mixtures and establish the exposure profiles in 

common microenvironments (MEs). We hypothesize that exposure profiles are distinguishable in 

various MEs.  

To increase the representativeness of results, the samplers will be deployed in a variety of 

neighborhoods and MEs. State-of-the-art methods will be used to collect time-integrated air 

toxics samples, time-location information, and other data that represent exposure levels. 

Urban/industrial/ suburban areas of metropolitan Memphis are selected as field study sites given 

the significance of existing exposures, the diversity of source conditions, the gaps of air toxics 

information available, the strong partnerships with local community and governmental 

organizations, and the proximity to the investigators.  
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Chapter 2 

A Model-to-Monitor Comparison of 2011 National-scale  

Air Toxics Assessment (NATA)  

2.1 Introduction 

Measuring air toxic levels are fundamental step precedes any other procedures in 

studying health risks from exposure to ambient air toxics.  Reliable measurement of air toxics 

levels can assure the quality of study findings. Ambient monitoring and statistic modeling are 

two major approaches of measuring air toxic levels (McCarthy et al., 2009). Although ambient 

monitoring following lab analysis usually assures the quality of the measurement, tremendous 

labor efforts and financial costs are barricade for expanding monitoring area to extended 

geographic scales. In contrast, statistical modeling exceeds monitoring by using existing 

emission data to predict ambient air toxic levels saving both time and efforts. However, 

uncertainty in existing emission data and limitation of statistical model may affect the prediction 

generated from model approach (U.S.EPA, 2016e, 2017a).  

The most commonly used model predictions in previous researches were estimates from 

NATA which estimates the air toxic level by modeling emission data from national emissions 

inventory (NEI) which was built upon the toxics release inventory (TRI)(U.S.EPA, 2016f). 

However, TRI mainly focus on large stationary emission sources, some local small scale 

emission sources such as dry-cleaning store, auto body and paint shop, and local restaurants are 

usually not included (U.S.EPA, 2016f). Additionally, for urban area, emissions from mobile 

sources are major contributor to elevated air toxic levels (Jakubiak-Lasocka, Lasocki, Siekmeier, 

& Chlopek, 2015). Traffic related emissions vary temporally and spatially which NATA has 

limitation in capturing(U.S.EPA, 2017a). Furthermore, local meteorological condition is hard to 
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model and its uncertainty is part of the limitation of model approach. Air toxic levels varies due 

to different wind direction and speed, temperatures are common difficulties for model approach 

(U.S.EPA, 2017a).  

Despite NATA model assessments completed on behalf of U.S.EPA, limited number of 

evaluations has been conducted to assess the model approach using monitored measurement as 

criteria for comparison. A common finding from previous assessment was that NATA usually 

underestimate the monitoring measurement (Garcia et al., 2014; Pratt et al., 2004; U.S.EPA, 

2016h). However, the model approach is being improved along time.  

This chapter aims to provide an independent model performance evaluation for 2011 

NATA. We propose a model-to-monitor assessment framework by incorporating measurement 

uncertainty. We compile the real measurements collected at 274 sites throughout the U.S. in 

2011, and merge modeling and monitoring datasets. We then assess the agreement using the 

proposed framework.  

2.2 Method 

2.2.1 Data sources and compilation 

The monitoring HAP data were extracted from U.S. EPA’s Air Quality System (AQS). 

AQS is a web-based air pollution database accessible to the public. It contains ambient air 

pollution data and sampling condition information collected from tribal, local and state agencies 

through consistent and strict quality assurance (QA) processes. The HAPs were monitored 

following EPA’s Air Toxics Monitoring Methods (U.S.EPA, 2016d). In brief, VOCs were 

measured by TO-15 method, aldehydes by TO-11A, polycyclic aromatic hydrocarbons (PAHs) 

by TO-13A, and heavy metals by IO 3.5 method. Most HAP samples were analyzed at central 
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laboratories and their typical limits of quantitation (LOQs) are available (Little, 2015; U.S.EPA, 

2015c). We downloaded daily (24-hour) HAP concentrations measured in 2011 (U.S.EPA, 

2015a). Conventional units, such as part per billion (ppb), part per million (ppm), ppb carbon 

(ppbC), or ppm carbon (ppmC), were converted to the standard unit µg/m3 to match that used in 

NATA. Locations of the monitoring sites in AQS were geocoded and assigned the census tract 

number in ArcGIS 10.3.1 (ESRI, Inc.). 

The modeling HAP concentrations at the census tract level were downloaded from 2011 

NATA database. The 2011 NATA contained 78,000 census tracts in the continental U.S. AQS 

and NATA data were then merged by census tract. The merged dataset contained up to 274 

monitoring stations from AQS but only 274 matched census tracts from NATA. This subset of 

NATA data was representative of the entire 2011 NATA dataset, as their key descriptive 

statistics were very similar (Table 2.1). Thus, NATA in the following text means the matched 

sub-dataset. In any census tract, NATA gives a single annual average concentration of a 

compound, and AQS gives 5-162 measurements of the same compound taken around Year 2011.  
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Table 2.1 NATAQS and NATAall comparison 
HAPs NATAQS   NATAall 
  N M SD Min Mdn Max   N  M SD Min Mdn Max 
    µg/m3     µg/m3 
Benzene 274 0.79 0.47 0.09 0.69 3.02   74034 0.70 0.43 0 0.63 7.50 
Toluene 257 2.62 3.01 0.09 2.08 30.37   74034 2.61 3.46 0 1.84 39.67 
Styrene 236 0.05 0.16 0.00 0.02 1.57   75023 0.02 0.06 0 0.02 6.72 
Ethylbenzene 252 0.28 0.21 0.02 0.25 1.66   75025 0.23 0.19 0 0.20 3.09 
Cumene 113 0.01 0.03 0.00 0.00 0.20   75013 0.00 0.01 0 0.00 1.98 
Naphthalene 52 0.05 0.04 0.00 0.04 0.22   74034 0.04 0.03 0 0.03 0.94 
1,4-Dichlorobenzene 153 0.01 0.04 0.00 0.00 0.27   74034 0.02 0.05 0 0.00 1.13 
Methyl chloride 203 1.10 0.07 1.09 1.09 2.06   74591 1.07 0.13 0 1.09 2.06 
Vinyl chloride 240 0.00 0.02 0.00 0.00 0.15   74034 0.00 0.00 0 0.00 0.73 
Bromomethane 200 0.04 0.09 0.03 0.03 1.34   74438 0.04 0.05 0 0.03 2.00 
Ethylene Dichloride 230 0.00 0.01 0.00 0.00 0.08   74034 0.00 0.00 0 0.00 0.31 
Chloroform 252 0.01 0.03 0.00 0.00 0.23   74034 0.00 0.01 0 0.00 1.57 
Trichloroethylene 247 0.02 0.04 0.00 0.01 0.44   74034 0.02 0.05 0 0.01 5.49 
1,1,2-Trichloroethane 185 0.00 0.00 0.00 0.00 0.00   74871 0.00 0.00 0 0.00 0.01 
Carbon tetrachloride 247 0.55 0.00 0.55 0.55 0.55   74917 0.54 0.08 0 0.55 0.64 
Tetrachloroethylene 252 0.09 0.17 0.00 0.03 1.12   74034 0.11 0.24 0 0.03 5.07 
Formaldehyde 128 1.66 0.52 0.55 1.61 2.94   74034 1.59 0.55 0 1.57 5.56 
Acetaldehyde 133 1.95 0.55 0.91 1.85 3.28   74034 1.94 0.66 0 1.88 4.15 
Methyl Isobutyl ketone 93 0.10 0.15 0.00 0.07 1.27   74968 0.07 0.08 0 0.05 2.12 
Chromium VI (TSP) 27 0.00 0.00 0.00 0.00 0.00   74034 0.00 0.00 0 0.00 0.00 
Acrylonitrile 81 0.00 0.01 0.00 0.00 0.09   74034 0.00 0.01 0 0.00 1.24 
1,3-butadiene 258 0.08 0.06 0.00 0.06 0.44   74034 0.06 0.05 0 0.05 0.79 
Carbon disulfide 93 0.05 0.34 0.01 0.01 3.27   74906 0.01 0.05 0 0.01 4.91 
n-Hexane 159 0.91 0.60 0.12 0.83 2.87   75020 0.76 0.66 0 0.60 16.05 
Methyl tert-butyl ether 127 0.00 0.01 0.00 0.00 0.12   73815 0.00 0.01 0 0.00 0.31 
2,2,4-trimethylpentane 105 0.36 0.19 0.10 0.34 0.92   75009 0.37 0.23 0 0.33 3.59 
Lead (TSP) 51 0.00 0.00 0.00 0.00 0.01   74034 0.00 0.00 0 0.00 0.10 

 

2.2.2 HAPs of interest 

We selected 27 HAPs to evaluate the model-to-monitor agreement. The selection was 

based on four criteria: (1) They had high ranking in both cancer and respiratory risks in NATA; 

(2) They were measured at ≥25 monitoring sites in AQS; (3) They were prioritized in previous 

NATA reports; and (4) They represented different chemical groups. We then divided the 27 

HAPs into four groups mainly based on their chemical structures: (1) Aromatic compounds: 

benzene, isopropyl benzene, ethyl benzene, styrene, toluene, 1,4-dichlorobenzene, and 

naphthalene; (2) Halogenated compounds: 1,1,2-trichloroethane, bromoethane, carbon 

tetrachloride, chloroform, methyl chloride, ethylene dichloride, trichloroethylene, 

tetrachloroethylene, and vinyl chloride; (3) Carbonyl compounds: methyl isobutyl ketone, 
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acetaldehyde, and formaldehyde; and (4) Other compounds: chromium, lead, carbon disulfide, 

2,2,4-trimethylpentane, n-hexane, 1,3-butadiene, methyl tert-butyl ether, and acrylonitrile. Not 

all the sites measured all the compounds, and thus the site numbers varied from 27 to 274 

depending on compound. 

2.2.3 Model-to-monitor comparison methods 

The 2011 NATA modeling results contained extremely low concentration for certain 

compounds, e.g., the annual average concentrations of 1,1,2-trichloroethane and chromium were 

0.00041 and 0.00003 µg/m3, respectively. In practice, the measurement method has a LOQ for a 

specific chemical, defined as the lowest concentration that can be accurately measured during 

regular laboratory analyzing conditions (Little, 2015). Following the concept of LOQ, the 

difference between the modeled and observed concentrations, i.e., ΔM = |𝑀𝑀 − 𝑂𝑂|, was 

unquantifiable if ΔM was less than LOQ. In this case, M and O were considered to be in 

agreement (U.S.EPA, 2017d). When ΔM was ≥LOQ, we conducted the following analyses. 

To determine the national-level agreement, we compared national medians considering 

the large spatial heterogeneity among monitoring sites. For each target HAP, we first determined 

whether the difference of modeled and observed medians was quantifiable or not, and then 

compared two medians using Wilcoxon signed-rank test if quantifiable. A p-value of ≥0.05 was 

considered agreement. 

At individual sites, we compared annual modeled and observed averages using statistical 

methods if ΔM was quantifiable. We calculated the 95% confidence interval (CI) of multiple 

AQS measurements of a chemical, and determine if the single NATA annual average value fell 

within the 95% CI. We log-transformed AQS data as they followed a skewed lognormal 
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distribution, and then calculated the 95% CI using Cox’s method (X. H. Zhou & Gao, 1997). 

This is a strict statistical comparison method and applies the widely accepted criterion of 95% CI 

or p-value of 0.05. 

At each site, if NATA agreed with AQS, the site was defined as an agreement site for that 

chemical; otherwise, it was defined as underestimation or overestimation site. These steps were 

repeated for the 27 HAPs and all the available sites. The percentages of underestimation, 

agreement, and overestimation sites were calculated for all the sites in the U.S. Percentages of 

agreement sites were further calculated by EPA region, based on just difference and screening 

analyses.  

EPA has long been using a factor of 2 as the criterion for model-to-monitor comparisons 

(Eastern Research Group, 2010; Garcia et al., 2014; U.S.EPA, 2002a). That is, an M/O ratio of 

0.5-2 could be considered agreement. To verify if this empirical method gave the same results as 

statistical methods, we then repeated the comparisons using M/O ratios. These were side 

analyses, and the results were presented as supplemental information. 

All the analyses were performed SAS (v9.4, SAS Institute Inc., Cary, NC), Microsoft 

Excel (2010) and Arc GIS 10.3.1 (ESRI, Inc.). 

2.3 Results 

2.3.1 Comparison of national statistics 

Ambient HAP concentrations were low in the U.S. in 2011 (Table 1). Eighteen 

compounds had median concentrations below 0.1 µg/m3 in both two datasets, and these low 

concentrations were slightly above or far below their LOQs. According to AQS, the median 

concentrations ranged from near 0 µg/m3 (1,1,2-trichloroethane) to 1.44 µg/m3 (acetaldehyde). 
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Ethylbenzene (12.6 µg/m3), trichloroethylene (16.9 µg/m3), and carbon sulfide (29.4 µg/m3) were 

the only three compounds with maxima that exceeded 10 µg/m3. 

NATA can moderately predict national median HAP levels. In total, sixteen HAPs had 

their ΔM less than LOQs indicating agreement between NATA and AQS. One out of the rest 11 

compounds did not show significant difference of medians between NATA and AQS in 

Wilcoxon Signed rank test (Table 1). In general, seventeen HAPs reached modeled-to-monitored 

agreement, while ten compounds showed poor agreement. Nine of these ten compounds were 

underestimated by modeling predictions and one was overestimated. Carbon disulfide was 

consistently and the most underestimated while acetaldehyde was the most overestimated. In 

combination we can consider that the medians of all compounds moderately agreed between two 

datasets.  

NATA is unable to capture extreme concentrations. The maximum concentrations in 

AQS were much higher than those in NATA (Table 2.2). Each air monitoring station is a point 

monitor in nature. Although representing a surrounding area, the monitoring station may be 

impacted by the local sources such as highways, industrial facilities, non-road vehicles, and 

episodic emissions, all of which could cause high concentrations. In contrast, NATA estimated 

the annual average concentration using the Gaussian dispersion models. The dispersion models 

often are unable to simulate extrema (Rosenbaum et al., 1999; Scheffe et al., 2016). 



23 
 

 

Table 2.2  National statistics of HAP concentrations 
HAPs    Sites AQS  NATAQS  Mdn Wilcoxon 

 N LOQ ∆M<LOQ? ΔM<LOQ M SD Min Mdn Max <LOQ  M SD Min Mdn Max <LOQ  M/O Signed 
rank test 

  µg/m3 Yes/No % µg/m3     %  µg/m3     %  Ratio p-value 
Benzene 274 0.06 Yes 12.04 0.95 0.78 0.00 0.73 5.57 0.7  0.79 0.47 0.09 0.69 3.02 0.0  0.9 0.01 
Toluene 257 0.10 No 8.17 1.75 1.27 0.06 1.41 6.98 0.4  2.62 3.01 0.09 2.08 30.37 0.4  0.7 <.001 
Styrene 236 0.04 No 45.34 0.14 0.19 0.00 0.07 1.45 35.6  0.05 0.16 0.00 0.02 1.57 81.4  0.3 <.001 
Ethylbenzene 252 0.05 Yes 18.25 0.32 0.80 0.00 0.21 12.57 9.1  0.28 0.21 0.02 0.25 1.66 10.7  0.9 0.60 
Cumene 113 0.50 Yes 94.69 0.11 0.40 0.00 0.03 3.79 93.8  0.01 0.03 0.00 0.00 0.20 100  0.1 <.001 
Naphthalene 52 0.00 No 3.85 0.07 0.11 0.01 0.04 0.56 0.0  0.05 0.04 0.00 0.04 0.22 0.0  0.6 0.89 
1,4-Dichlorobenzene 153 0.07 Yes 62.75 0.18 0.68 0.00 0.05 7.40 63.4  0.01 0.04 0.00 0.00 0.27 94.1  0.0 <.001 
Methyl chloride 203 0.04 No 12.32 1.23 0.25 0.00 1.23 2.5 0.5  1.10 0.07 1.09 1.09 2.06 0.0  0.9 <.001 
Vinyl chloride 240 0.01 Yes 91.67 0.01 0.04 0.00 0.00 0.51 89.6  0.00 0.02 0.00 0.00 0.15 95.0  0.1 0.01 
Bromomethane 200 0.02 Yes 59.50 0.02 0.04 0.00 0.01 0.46 69.5  0.04 0.09 0.03 0.03 1.34 0.0  1.7 <.001 
Ethylene Dichloride 230 0.02 Yes 54.78 0.07 0.34 0.00 0.02 4.73 53.0  0.00 0.01 0.00 0.00 0.08 95.7  0.0 <.001 
Chloroform 252 0.04 No 26.19 0.13 0.39 0.00 0.09 6.05 25.0  0.01 0.03 0.00 0.00 0.23 93.7  0.0 <.001 
Trichloroethylene 247 0.03 Yes 72.06 0.11 1.07 0.00 0.01 16.85 62.8  0.02 0.04 0.00 0.01 0.44 76.9  0.6 <.001 
1,1,2-Trichloroethane 185 0.05 Yes 93.51 0.01 0.02 0.00 0.00 0.15 93.5  0.00 0.00 0.00 0.00 0.00 100  0.1 0.03 
Carbon tetrachloride 247 0.04 No 25.10 0.54 0.19 0.00 0.59 1.68 3.6  0.55 0.00 0.55 0.55 0.55 0.0  0.9 <.001 
Tetrachloroethylene 252 0.06 No 39.68 0.13 0.14 0.00 0.09 1.10 29.0  0.09 0.17 0.00 0.03 1.12 67.1  0.3 <.001 
Formaldehyde 128 0.03 No 4.69 1.29 0.71 0.20 1.16 6.77 0.0  1.66 0.52 0.55 1.61 2.94 0.0  0.7 <.001 
Acetaldehyde 133 0.03 No 5.26 1.56 0.63 0.43 1.44 3.73 0.0  1.95 0.55 0.91 1.85 3.28 0.0  1.3 <.001 
Methyl Isobutyl ketone 93 0.08 Yes 65.59 0.12 0.10 0.00 0.10 0.60 38.7  0.10 0.15 0.00 0.07 1.27 53.8  0.7 0.00 
Chromium VI (TSP) 27 0.00 Yes 100.00 0.00 0.00 0.00 0.00 0.00 100.0  0.00 0.00 0.00 0.00 0.00 100  1.6 0.00 
Acrylonitrile 81 0.10 Yes 79.01 0.11 0.24 0.00 0.01 1.06 79.0  0.00 0.01 0.00 0.00 0.09 100  0.0 <.001 
1,3-butadiene 258 0.02 Yes 29.46 0.08 0.14 0.00 0.05 1.74 34.1  0.08 0.06 0.00 0.06 0.44 12.0  1.1 <.001 
Carbon disulfide 93 0.02 No 20.43 0.92 3.44 0.00 0.07 29.44 19.4  0.05 0.34 0.01 0.01 3.27 95.7  0.1 <.001 
n-Hexane 159 0.31 Yes 43.40 0.81 0.75 0.06 0.57 4.39 19.5  0.91 0.60 0.12 0.83 2.87 16.4  0.8 <.001 
Methyl tert-butyl ether 127 0.16 Yes 98.43 0.01 0.07 0.00 0.00 0.72 98.4  0.00 0.01 0.00 0.00 0.12 100  0.0 0.08 
2,2,4-trimethylpentane 105 0.28 Yes 79.05 0.50 0.53 0.01 0.34 3.1 39.0  0.36 0.19 0.10 0.34 0.92 38.1  1.0 0.16 
Lead (TSP) 51 0.00 No 7.84 0.01 0.01 0.00 0.00 0.07 7.8  0.00 0.00 0.00 0.00 0.01 5.9  0.2 <.001 

Note: HAPs –hazardous air pollutants; AQS – AQS data; NATAQS – NATA data in which sites were matched with AQS data; LOQ – 
limit of quantitation; M – mean; SD – standard deviation; Mdn – median; Min – minimum; Max – maximum 
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2.3.2 Comparisons at individual sites 

At individual monitoring sites, the ΔM between NATA and AQS annual average was 

first examined for each compound (Table 2.3). It was noticeable that ΔM (chromium) was below 

the LOQ at all the sites, indicating that NATA chromium estimates agreed with AQS 

measurements. Similarly, ΔM was below the LOQ at over 90% of sites for cumene, vinyl 

chloride, 1,1,2-Trichloroethane, and methyl tert-butyl ether, and at 50-90% of sites for another 

seven compounds. A total of 12 compounds showed agreement at ≥50% of sites by comparing 

ΔM to LOQ. 
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Table 2.3 Agreement of NATA sites with AQS sites in the U.S. 

HAPs N ΔM<LOQ 
<95% 
LCL 

Within 95% 
CL 

>95% 
UCL Total 

      
 

 %     
Benzene 274 12.0 43.8 9.9 34.3 21.9 
Toluene 257 8.2 18.7 20.6 52.5 28.8 
Styrene 236 45.3 45.3 5.9 3.4 51.3 
Ethylbenzene 252 18.3 36.5 9.5 35.7 27.8 
Cumene 113 94.7 5.3 0.0 0.0 94.7 
Naphthalene 52 3.8 30.8 26.9 38.5 30.8 
1,4-Dichlorobenzene 153 62.7 30.7 3.3 3.3 66.0 
Methyl chloride 203 12.3 63.1 10.3 14.3 22.7 
Vinyl chloride 240 91.7 5.0 2.9 0.4 94.6 
Bromomethane 200 59.5 2.5 3.5 34.5 63.0 
Ethylene Dichloride 230 54.8 41.3 3.5 0.4 58.3 
Chloroform 252 26.2 68.7 5.2 0.0 31.3 
Trichloroethylene 247 72.1 15.0 4.9 8.1 76.9 
1,1,2-Trichloroethane 185 93.5 4.9 1.6 0.0 95.1 
Carbon tetrachloride 247 25.1 49.8 2.8 22.3 27.9 
Tetrachloroethylene 252 39.7 29.8 13.9 16.7 53.6 
Formaldehyde 128 4.7 7.0 21.1 67.2 25.8 
Acetaldehyde 133 5.3 10.5 21.8 62.4 27.1 
Methyl Isobutyl ketone 93 65.6 23.7 3.2 7.5 68.8 
Chromium VI (TSP) 27 100.0 0.0 0.0 0.0 100.0 
Acrylonitrile 81 79.0 19.8 1.2 0.0 80.2 
1,3-butadiene 258 29.5 18.2 10.5 41.9 39.9 
Carbon disulfide 93 20.4 60.2 17.2 2.2 37.6 
n-Hexane 159 43.4 13.2 5.0 38.4 48.4 
Methyl tert-butyl ether 127 98.4 1.6 0.0 0.0 98.4 
2,2,4-trimethylpentane 105 79.0 17.1 0.0 3.8 79.0 
Lead (TSP) 51 7.8 74.5 5.9 11.8 13.7 

Note: LOQ – limit of quantitation; CI– confidence interval; LCL – lower confidence limit; UCL 
– upper confidence limit 

When ΔM was quantifiable, toluene, formaldehyde, acetaldehyde, naphthalene showed 

agreement at 20-27% of sites, methyl chloride, 1,3-butadiene, tetrachloroethylene, and carbon 

disulfide showed agreement at 10-20% of sites, and the remaining 20 chemicals all showed 
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agreement at <10% of sites. Therefore, NATA agreed with AQS at a small portion (<30%) of 

sites nationally at the quantifiable concentration ranges (Table 2.3). 

Taken together, 14 compounds had NATA-AQS agreement at >50% of sites. Methyl 

chloride, chloroform, carbon disulfide, and lead were nationally underestimated, and toluene, 

formaldehyde, and acetaldehyde were nationally overestimated. Benzene, ethylbenzene, 

naphthalene, carbon tetrachloride, 1,3-butadiene, and n-hexane did not show strong patterns, 

meaning agreement, underestimation and overestimation occurred at roughly similar numbers of 

sites. 

EPA’s factor of 2 criterion gave better agreement results (Table 2.4). A total of 21 

compounds showed agreement at ≥50% of sites. Significant increase of agreement sites occurred 

for benzene, methyl chloride, carbon tetrachloride, formaldehyde, and acetaldehyde. Styrene, 

tetrachloroethylene and 1,3-butadiene showed agreement at 44-48% of sites. Chloroform, carbon 

disulfide, and lead were underestimated at 72-75% of sites. NATA overestimated concentrations 

of all compounds at a small portion of sites. These indicated that the “factor of 2” criterion was 

looser than statistical analyses, and the resulting disagreement inclined to underestimation. 

  



27 
 

Table 2.4 Agreement of NATA sites with AQS sites in the U.S. (Fractional Bias) 

HAPs N   FB Total 
    ΔM<LOQ (-2,-0.67) (-0.67,0.67) (0.67,2)   
    % 
Benzene 274 12.0 20.1 55.8 12.0 67.9 
Toluene 257 8.2 11.7 48.2 31.9 56.4 
Styrene 236 45.3 49.2 2.5 3.0 47.9 
Ethylbenzene 252 18.3 19.4 40.1 22.2 58.3 
Cumene 113 94.7 5.3 0.0 0.0 94.7 
Naphthalene 52 3.8 21.2 55.8 19.2 59.6 
1,4-Dichlorobenzene 153 62.7 34.0 1.3 2.0 64.1 
Methyl chloride 203 12.3 0.5 85.7 1.5 98.0 
Vinyl chloride 240 91.7 6.3 2.1 0.0 93.8 
Bromomethane 200 59.5 4.0 2.0 34.5 61.5 
Ethylene Dichloride 230 54.8 44.8 0.4 0.0 55.2 
Chloroform 252 26.2 71.8 2.0 0.0 28.2 
Trichloroethylene 247 72.1 18.6 2.0 7.3 74.1 
1,1,2-Trichloroethane 185 93.5 6.5 0.0 0.0 93.5 
Carbon tetrachloride 247 25.1 0.4 63.6 10.9 88.7 
Tetrachloroethylene 252 39.7 42.5 4.8 13.1 44.4 
Formaldehyde 128 4.7 1.6 78.1 15.6 82.8 
Acetaldehyde 133 5.3 0.0 81.2 13.5 86.5 
Methyl Isobutyl 
ketone 93 65.6 23.7 4.3 6.5 69.9 
Chromium VI (TSP) 27 100.0 0.0 0.0 0.0 100.0 
Acrylonitrile 81 79.0 21.0 0.0 0.0 79.0 
1,3-butadiene 258 29.5 18.6 16.7 35.3 46.1 
Carbon disulfide 93 20.4 75.3 2.2 2.2 22.6 
n-Hexane 159 43.4 8.8 20.8 27.0 64.2 
Methyl tert-butyl 
ether 127 98.4 1.6 0.0 0.0 98.4 
2,2,4-
trimethylpentane 105 79.0 13.3 5.7 1.9 84.8 
Lead (TSP) 51 7.8 68.6 13.7 9.8 21.6 

Note: LOQ – limit of quantitation; FB– fractional bias 
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2.3.3 Agreement assessment by EPA region 

The agreement between NATA estimates and AQS measurements could be further 

examined by EPA regions, as shown in Figure 2.1. Checking by row, chloroform, 

tetrachloroethylene, 1,3-butadiene, carbon disulfide, n-hexane, and lead notably had poor 

agreement in most or all regions. In contrast, seven compounds showed good agreement across 

regions, including methyl chloride, vinyl chloride, trichloroethylene, 1,1,2-trichloroethane, 

acetaldehyde, chromium VI (TSP), and methyl tert-butyl ether. Checking by column in Figure 

2.1, the majority of regions showed good agreement. In addition to poor agreement compounds 

mentioned above, Regions 3, 8 and 10 showed poor agreement for aromatic compounds. For 

example, styrene and ethylbenzene did not show model-to-monitor agreement at any sites in 

Region 10. Combining all the regions, these agreement and disagreement reflect the results in 

Table 2.3. 
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Figure 2.1 EPA regional modeled-to-monitored comparison 
 

Note: R – EPA region; Under – underestimation; Agree – agreement; Over – overestimation 
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2.4 Discussion  

2.4.1 Similar findings from national and local studies 

Our results confirmed previous national and local comparisons. Previous NATA 

evaluations found good agreement for only a few compounds and underestimation for most 

compounds (Garcia et al., 2014; U.S.EPA, 2016g). The 2005 NATA model assessment reported 

only 8 out of 68 compounds showed agreement at the national level and other compounds were 

all underestimated (Eastern Research Group, 2010). At state and local levels, Lupo and 

Symanski (Lupo & Symanski, 2009) found 1996 NATA underestimated 8 out 15 HAPs and 

1999 NATA underestimated 18 out of 27 HAPs in Texas. Wang et al. found general agreement 

for benzene and toluene concentrations modeled by 1999 NATA in Camden, New Jersey (S. W. 

Wang et al., 2009). The 2002 NATA underestimated 32 out of 49 HAPs measured at 7 sites in 

and around Pittsburgh, Pennsylvania (Logue et al., 2011). The Detroit Exposure and Aerosol 

Research Study (DEARS) reported that benzene concentrations in 2002 NATA generally agreed 

with field measurements during 2004 to 2007 (George et al., 2011). Garcia et al. found that all 12 

HAPs were underestimated by 1996 NATA, 8 out of 9 were underestimated by 1999 NATA, 10 

out of 12 were underestimated by 2002 NATA, and 6 out of 10 were underestimated by 2005 

NATA (Garcia et al., 2014). These findings indicate that model-to-monitor agreement was 

inconsistent by region and chemical, and underestimation was more frequent (Garcia et al., 2014; 

George et al., 2011; S. W. Wang et al., 2009).  

2.4.2 Impacts of comparison methods and metrics 

Model-to-monitor comparison results were significantly impacted by the comparison 

methods. Previous studies have applied a number of model-to-monitor comparison metrics and 

methods, including biases and root mean square error (Scheffe et al., 2016; Stroud et al., 2016; 
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Vennam, Vizuete, & Arunachalam, 2015; S. W. Wang et al., 2009), Kendall rank correlation 

(Rosenbaum et al., 1999), ratios (Garcia et al., 2014; Logue et al., 2011; Lupo & Symanski, 

2009), regressions (S. W. Wang et al., 2009), and even complex metrics (S. C. Yu, Eder, Dennis, 

Chu, & Schwartz, 2006). One difficulty was in selecting a commonly accepted criterion for the 

metric, for example, EPA uses a relative bias of within ±30% and median ratio of 0.5-2 for 

agreement. The goodness-of-fit of a regression line, indicated by R2, is often arbitrary. Median 

ratio of modeled-to-monitored concentrations is the most commonly used metric; however, it 

may become extremely small or large when concentrations are too small to be practically 

quantifiable. 

We introduced LOQ to conquer the measurement uncertainty issue ignored in previous 

studies. It turned out model vs. monitor differences were unquantifiable at a large portion of sites 

for many compounds. An unquantifiable difference should mean an agreement; however, 

statistical analyses of these uncertain small numbers often lead to significant differences. For 

example, we found 100% agreement for chromium due to its extremely low concentrations 

(median=0.00001 µg/m3) estimated by NATA, while the 2005 NATA evaluation reported a 0% 

agreement when just using ratios (U.S.EPA, 2010). This and other examples suggest ignorance 

of measurement uncertainty, in particular the LOQs, would lead to distinctly different results. 

2.4.3 Causes of disagreement 

HAP modeling has been affected by a number of factors and uncertainties, including 

monitoring station siting, sampling frequency, emission inventory, measurement uncertainty, 

model uncertainty, and comparison method. The 1996 NATA evaluation attributed the general 

underestimation to four reasons (EPA, 2016): (1) missing emissions sources; (2) underestimated 

emission rates; (3) sites intended to find peak concentrations; and (4) measurement accuracy. As 
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seen in Table 2.2, NATA model was unable to capture extreme concentrations. Average 

concentrations measured from monitors within a census tract might be affected by extrema due 

to nearby short-term strong emissions, which could not be captured by the census-tract averages 

in NATA. Similarly, the NEI, which NATA estimates were based on, might miss local emission 

sources (Scheffe et al., 2016). Lack of stable estimates on meteorological conditions and 

photochemical reactions is another factor leading to disagreement. For example, unstable 

estimates on wind conditions and secondary formation of chemicals were major weakness of the 

NATA model (Rosenbaum et al., 1999). The uncertainty in monitored measurement due to 

insufficient and unbalanced geographic coverage of monitoring sites also contributed to the 

discrepancies between monitored and modeled estimates (Garcia et al., 2014; Scheffe et al., 

2016).  

2.4.4 Study limitations 

The strengths of this study were utilization of national data from EPA’s monitoring sites, 

consideration of measurement uncertainty, and statistical comparisons with commonly used p-

value of 0.05 criterion. We have also acknowledged limitations in data sources and the 

comparison methodology.  

We restricted our assessment to 27 HAPs rather than the 180 HAPs EPA promoted. We 

targeted on these 27 compounds because they were measured at more than 50 sites and were 

prioritized for their risk on cancer and respiratory disease. Chromium VI (TSP) was measured at 

only 27 sites, but it was assessed because it has high carcinogenicity with inhalation unit risk of 

1.2 ×10-2 per mg/m3 (U.S.EPA, 2017e). , Those compounds not assessed in our study still need 

to be evaluated carefully before utilized in any further studies. The annual average monitored 

measurement extracted from AQS was considered more accurate when it is calculated based on 
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complete data which has at least two seasons’ data in a year (EPA, 2016). Due to limited data for 

certain target compounds in our study, we extracted annual average reported in AQS without 

restriction to datasets which have at least two seasons’ data.  

In our comparison methodology, LOQs were adopted from ERG (U.S.EPA, 2015c) 

where the LOQ for each measurement is not specified.  However, the introduction of LOQ into 

comparison methods is innovative. Given limited data source, the LOQ from ERG served well 

for the goal of identifying the quantifiable difference of modeled and observed medians. We 

conducted point-to-range comparison at a very small geographic unit, i.e. census tract. 1996 

NATA evaluation concluded that NATA estimates was unreliable at census tract but at county 

level or above (EPA, 2016). A more reasonable comparison should use larger geographic scale 

and the technique MAXTOMON  which compares the average monitored measurement with the 

maximum modeled estimate within certain distance of the monitor (EPA, 2016).  

2.4.5 Implications for environmental health disparity research 

Environment plays a critical role in determining people’s health (ODPHP, 2018). 

Environmental health disparity is the difference of health risks that people have when they 

experience both uneven exposure to various environmental risk factors and social inequality 

(Gee & Payne-Sturges, 2005).Therefore, environmental justice requires that people with various 

sociodemographic characteristics have equally distributed health risks from the environment 

given appropriate environmental policy making and law enforcement (Schlosberg, 2004).  

Environmental health disparity is usually examined at census tract level because census 

tract is considered as a geographic area roughly representative for a neighborhood where the 

sociodemographic characteristics are homogeneous among a stable size (1500 housing units and 
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4000 people in average) of population within that census tract (Farley, 2004). A few local studies 

assessed model performance with census tract level NATA data in the past decade (Garcia et al., 

2014; George et al., 2011; Logue et al., 2011; Lupo & Symanski, 2009). Lupo and Symanski 

(Lupo & Symanski, 2009) found 1996 NATA underestimated 8 out 15 HAPs and 1999 NATA 

underestimated 18 out of 27 HAPs. Wang et al. compared benzene and toluene concentrations 

modeled by 1999 NATA with monitoring data collected during 2004 to 2006 in Camden, New 

Jersey, and found general agreement and underestimation for high-end percentiles (S. W. Wang 

et al., 2009). Logue et al. found 2002 NATA underestimated 32 out of 49 HAPs measured at 7 

sites in and around Pittsburgh, Pennsylvania (Logue et al., 2011). The Detroit Exposure and 

Aerosol Research Study (DEARS) reported that 2002 NATA obtained ambient benzene 

concentrations generally agreed with that measured during 2004 to 2007 (George et al., 2011).  

Garcia et al. assessed all previous NATA (1996, 1999, 2002, and 2005) for 12 HAPs in 

California. They found that in 1996, all 12 HAPs were underestimated in California; 8 out of 9 

HAPs were underestimated in 1999; 10 out 12 HAPs were underestimated in 2002 ; and 6 out of 

10 HAPs were underestimated in 2005 (Garcia et al., 2014). All these studies concluded that 

modeling data tended to underestimate ambient HAP concentrations and certain compounds 

(e.g., benzene) always had good agreement (Garcia et al., 2014; George et al., 2011; S. W. Wang 

et al., 2009).  

NATA data have values for prioritizing high risk areas; however, it may not be useful for 

EJ research because NATA data is only at census tract level and EJ analysis is often at the 

neighborhood level which has wider range of geographical level, e.g., census block group level, 

zip code level. Additionally, census tract sometimes exceed city boundaries and have rural area 
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included (Schlosberg, 2004).Therefore, it is recommended being cautious about using NATA for 

environmental health disparity analysis. 

2.5 Conclusion  

This study provides an independent model-to-monitor assessment for the latest NATA. 

Given the findings from our assessment, we concluded that modeling estimates of evaluated air 

toxics from NATA 2011 could moderately estimate the ambient measurements from monitors. 

Our results strengthened the idea that NATA modeling estimates tend to underestimate the 

monitored measurement and cautious need to be taken when using NATA to assess 

environmental health disparity. Overall, modeled-to-monitored assessment studies would be 

useful for future environmental epidemiology and justice studies given that model estimates 

serves as practical alternatives for monitoring measurement which might not be available due to 

resources and time it costs. Future assessment with expanded number of pollutants and various 

environments (e.g., urban vs. rural) utilizing robust evaluation method would provide researchers 

with more options and information when conducting environmental epidemiology and justice 

studies. 
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Chapter 3  

Characterization of health risks from air toxics in Memphis Area  

3.1 Introduction 

Memphis has many health issues that may be related to air toxics exposure. Memphis was 

among the nation's top three "Asthma Capitals" from 2010-2015 (AAFA 2016). Shelby County 

has infant mortality twice of the national level (Community Commons 2014). Shelby County has 

many health indicators ranked top in TN, such as infant mortality (#1), hypertension (#1), 

obesity (#2), and stroke mortality (#3) (Tennessee Department of Health 2011). Cardiovascular 

disease and cancer are the top two leading causes of death in Shelby (Tennessee Department of 

Health 2011). Many schools are located near freeways, which may cause childhood asthma (Gale 

et al. 2012). Diseases prevalence also displays strong spatial patterns: mortalities of 

cardiovascular disease, cancer, and chronic lower respiratory disease are all elevated in the 

western part of Memphis, an area consisting predominantly of low-income African American 

residents. As air pollution is linked to these diseases (Suh et al. 2000), communities have high 

concerns about air pollution and the health impacts. 

Volatile organic compounds (VOCs) represent the majority of air toxics and may pose 

serious health risks on human populations. Of the 187 air toxics listed under the 1990 Clean Air 

Act Amendments (CAAA 1990), 88% are organic chemicals or mixture of organic chemicals. 

VOCs are defined as organic compounds having a vapor pressure greater than 0.1 mm Hg at 25 

°C and 760 mm Hg (US EPA 1999). Human exposure to VOCs is linked to many adverse health 

effects, ranging from respiratory diseases, immune and neurological damage, reproductive and 

endocrine disorders, cardiovascular diseases to cancers (Kampa and Castanas 2008; Shin et al. 

2015; Suh et al. 2000). For example, benzene, toluene, ethylbenzene and xylenes (BTEX) are 
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common constituents of ambient air. A recent review show that even at very low concentrations, 

BTEX exposure is associated with effects on immune, metabolic, respiratory, and reproductive 

functioning, as well as development (Bolden et al. 2015). 

No previous monitoring program has measured VOCs at county level in Memphis area. 

REACT is the first census tract level community scale monitoring program targeting on VOCs. 

The work in this chapter aims to characterize the health risks from exposure to VOCs in 

Memphis area. 

3.2 Method 

The REACT air toxics monitoring program provided ambient monitoring concentrations 

of 71 VOCs at 112 sites in 106 census tracts throughout Shelby County, TN (Figure 3.1). The 

sites were selected to have the largest coverage of urbanization, emission sources, land-use type, 

and socioeconomic status (SES) for exploring spatial patterns for air toxic levels. From January 

2014 through December 2014, air samples were collected at individual once every season to 

examine possible seasonal effects. Each measurement session was a continuous 24-hour period, 

and a 24-hour integrated air sample was obtained at the end of the session. All the VOCs were 

originally reported in part per billion (ppb), and this unit was converted to µg/m3 following the 

U.S. EPA’s “Air Toxics Data Analysis Workbook” (U.S. EPA, 2009b).  Concentrations below 

the minimum detection limits (MDL) were replaced with half MDL. Duplicate samples were 

averaged if the percent difference was acceptable. 
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Figure 3.1 REACT study air toxics monitoring sites. 

3.2.1 Descriptive statistics 

Sample detection frequency (DF) for a certain VOC was defined as the percent of 

measurements above its MDL out of the total sample size. Site DF for a certain VOC was 

defined as the percent of sites that had detectable level of this compound out of 112 sites. Sample 

DFs were calculated for seasonal and annual data, and site DFs were calculated for the annual 

data. Other descriptive statistics included mean, standard deviation and percentiles were 

calculated for seasonal and annual data. Annual concentrations of all the detected compounds in 

this study were then compared with the national data. The U.S. EPA’s Urban Air Toxics 

Monitoring Program (UATMP) measures VOC concentrations at 59 monitoring stations 

nationally. We obtained the annual data for Year 2014 from EPA’s Air Quality System (AQS) 
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(U.S.EPA, 2014). We made two comparisons: the county average vs. the national average; and 

the county median vs. the national median. The former comparison used two-sample t-tests, and 

the latter used Mann-Whitney tests. 

3.2.2 Spatial and temporal variation 

In Shelby County, the city of Memphis is largely an urban setting, and the rest areas of 

the county are suburban. Thus, we classified a census tract as “urban” if it is within Memphis, 

and “suburban” if it is outside of Memphis. The mean and median of each compound were then 

compared using t-test and Wilcoxon rank sum test, respectively, to examine the difference 

between two settings. Differences were considered significant at α<0.05. Seasonal means and 

medians of air toxic concentrations were tabulated and ranked to obtain an overall picture of the 

seasonal variation. 

3.2.3 Source identification 

The concentrations of many air toxics were highly correlated, implying that they were 

possibly emitted from the common sources. We used principle component and factor analysis to 

identify the common sources. Specifically, we applied varimax rotation to optimize factor 

analysis, and extracted factors for eigenvalues >1 with at least one variable with a loading >0.5.  

The emission sources, the factors, grouped in the analysis were then identified based on the 

grouping types of consisting air toxics (C. Jia, Batterman, & Godwin, 2008a).  

3.2.4 Health risks estimation 

Cancer and non-cancer risk of air toxics were estimated using inhalation risk assessment 

methods recommended in Air Toxics Risk Assessment Reference Library (Chapter 3) (U.S.EPA, 

2015b),  For inhalation exposures, chronic cancer risks for individual air toxics are typically 
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estimated by multiplying the estimate of long-term (70 years) exposure concentration (EC) by 

the corresponding Inhalation Unit Risk (IUR) for each pollutant to estimate the potential 

incremental cancer risk for an individual: 

Cancer Risk = EC × IUR                                           (1)  

Where: 

 Cancer risk = the probability of getting cancer given a level and duration of exposure; 

unitless with value between 0 and 1; 

Exposure Concentration = Personal exposure to a specific air toxic (in µg/m3); 

IUR = the upper-bound of the excess cancer risk estimated to result from continuous 

exposure to a concentration of 1 μg/m3 of a compound over a 70-year lifetime. 

Cancer risk is a probability, e.g., a risk level of 1 in a million (10-6) implies a likelihood 

that up to one person, out of one million equally exposed people would contract cancer if 

exposed continuously (24 hours per day) to the specific concentration over 70 years (an assumed 

lifetime). This risk would be an excess cancer risk that is in addition to any cancer risk borne by 

a person not exposed to these air toxics. The use of upper-bound estimates for IURs 

overestimates the actual risks. Thus, this analysis is intended as a screening tool for risk 

managers and cannot make realistic predictions of biological effects. 

Risks from simultaneous exposure to more than one carcinogenic substance are typically 

estimated by assuming that the individual risks are additive.  The additive approach also treats all 

carcinogens as equal, despite potential differences in the underlying database (e.g., animal versus 

human data) or the weight of evidence for human carcinogenicity, i.e., 



41 
 

RiskT = Risk1 + Risk2 + ... + Riski                                    (2) 

Where: 

RiskT = total risk from exposure to all the chemicals of concern; 

Riski = individual risk estimate for the ith substance in the inhalation pathway. 

Estimates of non-cancer risk are based on the assumption that there is a level of exposure 

below which it is unlikely to experience adverse health effects. A common method of evaluating 

non-cancer risks is to generate a “hazard quotient” (HQ), which represents the ratio of the 

exposure to the toxicity. 

HQ = EC / RfC                           (3) 

Where: 

HQ = non-cancer hazard quotient; 

EC = estimate of chronic inhalation exposure to that air toxic (in µg/m3); 

RfC = the corresponding reference concentration for that air toxic (in µg/m3). 

Based on the definition of the RfC, an HQ less than or equal to one indicates that adverse 

non-cancer effects are not likely to occur, and thus can be considered to have negligible hazard. 

Unlike cancer risks, however, HQs should not be interpreted as a statistical probability of harm 

occurring. Instead, they are a simple statement of whether (and by how much) an exposure 

concentration exceeds the RfC. Moreover, the level of concern does not increase linearly or to 

the same extent as HQs increase above one for different chemicals because RfCs do not 

generally have equal accuracy or precision and are generally not based on the same severity of 
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effect. Thus, we can only say that with exposures increasingly greater than the RfC, (i.e., HQs 

increasingly greater than 1), the potential for adverse effects increases, but we do not know by 

how much. An HQ of 100 does not mean that the hazard is 10 times greater than an HQ of 10. 

Also an HQ of 10 for one substance may not have the same meaning (in terms of hazard) as 

another substance resulting in the same HQ. 

Similar to carcinogens, risks from simultaneous exposure to more than one non-

carcinogenic substance or from multiple exposure pathways are generally assumed to be additive 

by regulatory agencies. Specifically, these effects can be evaluated by summing the individual 

estimated HQs. The assumption of dose additivity is most appropriate to compounds that induce 

the same effect by similar modes of action. Thus, EPA guidance for chemical mixtures suggests 

subgrouping pollutant-specific HQs by toxicological similarity of the pollutants for subsequent 

calculations; that is, calculating a target-organ-specific-hazard index (TOSHI) for each 

subgrouping of pollutants. This calculation allows for a more appropriate estimate of overall 

hazard (USEPA, 2006). 

TOSHI = HQ1 + HQ2 +…+ HQi                                    (4) 

Where:  HQi = hazard quotient for the ith air toxic.  

3.3 Results and discussion 

3.3.1 Detection of air toxics in Memphis  

All of the 71 target VOCs were detected in Shelby County during the 1-year monitoring 

period (Table 3.1). The most frequently detected VOCs in Memphis were acetone, ethanol, 

Freon 112, and propene, with DFs of 93%, 78%, 68%, and 60%, respectively. Other than these 

four compounds, 30 compounds were detected in 10-60% of the samples. Most of these 
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compounds were aromatic compounds, ketones, and alkanes, e.g., benzene, methyl butyl ketone, 

and 2,2,4-trimethylpentane. Another 37 compounds were found in less than 10% of samples in 

the entire study (Figure 3.2). Seasonally, DFs were the highest in summer, followed by spring, 

fall, and winter.  

Table 3.1 Sample and site detection frequencies (DFs, %) of target VOCs 

VOCs Sample DFs Site DFs 

Winter Spring Summer Fall Annual  

1,1,1-Trichloroethane 0 0 0 0 0 2 
1,1,2,2-Tetrachloroethane 0 0 4.62 2.17 2.46 9 
1,1,2-Trichloroethane 0 0 0 0 0 2 
1,1-Dibromoethane 0 0 2.31 0 1.12 4 
1,1-Dichloroethane 0 0 0 0 0 2 
1,1-Dichloroethene 0 0 0.77 0 0.67 3 
1,2,4-Trichlorobenzene 0 100 15.4 0.72 36.2 97 
1,2,4-Trimethylbenzene 0 18.7 86.2 33.3 35.3 95 
1,2-Dichlorobenzene 0.75 1.49 8.46 2.90 4.24 16 
1,2-Dichloroethane 0.75 0 0 0 0.67 3 
1,2-Dichloropropane 0 0 0 0 0 2 
1,3,5-Trimethylbenzene 0 0.75 15.4 0 4.46 18 
1,3-Butadiene 0 0 0 35.5 10.5 42 
1,3-Dichlorobenzene 0 2.99 40.0 1.45 11.6 44 
1,4-Dichlorobenzene 0 0.75 7.69 2.90 3.57 13 
2,2,4-Trimethylpentane 0 1.49 90.8 10.1 26.3 92 
2-Chlorotoulene 0 0 2.31 0 1.12 4 
4-Ethyltoulene 0 6.72 76.9 4.35 22.5 78 
Acetone 88.8 88.8 100 83.3 93.5 100 
Allyl chloride 13.4 36.6 97.7 0 37.3 98 
Benzene 0.75 1.49 97.7 24.6 31.3 95 
Benzyl chloride 1.49 100 3.85 2.90 26.1 95 
Bromodichloromethane 0 0 0 0 0 2 
Bromoethene 0 0 0 0 0 2 
Bromoform 0 0 3.08 0 1.34 2 
Bromomethane 0 0 0 0 0 4 
Carbon disulfide 1.49 3.73 2.31 7.25 4.46 18 
Carbon tetrachloride 0 1.49 0.77 36.2 11.8 46 
Chlorobenzene 0 0 6.15 0 2.01 3 
Chlorodibromomethane 0 0 0.77 0 0.67 2 
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Figure 3.2 Numbers of VOCs detected at the sampling sites in Shelby County 

3.3.2 Concentrations of air toxics in Memphis  

The average total VOC (TVOC) concentration (± standard deviation) was 132 (±46.5) 

µg/m3, ranging from 86.2 µg/m3 to 482 µg/m3. Specifically, the top five compounds with the 

highest county-average concentrations were ethanol, acetone, isopropyl alcohol, allyl chloride, 

and naphthalene. Ethanol had the highest mean concentration of 14.4±16.8 µg/m3 and the second 

highest annul detection frequency (78%). Ethanol is commonly mixed with gasoline for car 

engine fuel. Acetone had the second highest mean concentration of 10.7± 5.45 µg/m3 with the 

highest annual detection frequency (94%). Acetone exists naturally in plants, trees, but it is also 

from anthropogenic sources such as manufacture releases and vehicle exhaust. Isopropyl alcohol 

had a mean concentration of 6.8 ± 5.89 µg/m3 annually and had highest average concentration in 

spring among all target compounds. Isopropyl alcohol is a major ingredient in fuel additives to 

reduce moisture in engine and is also used as intermediate and solvent in industry. Allyl chloride 

had a mean concentration of 4.42 ± 22.39 µg/m3.It is usually used in synthesis as an alkylating 

agent or catalyst and modifier. It is also useful in the manufacture of pharmaceuticals and 
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pesticides. Naphthalene had a mean concentration of 4.2 ± 1.99 µg/m3.  Naphthalene in ambient 

air is majorly due to combustion from production and process facilities, open burning, tailpipe 

emissions, and cigarettes. Naphthalene’s use as a deodorizer, repellent and fumigant is another 

source. Ten compounds had average concentrations between 2 µg/m3 and 4 µg/m3, including 

1,2,4-trichlorobenzene (3.91± 1.84 µg/m3), Freon 113 (3.05± 0.29µg/m3), 1,1,1-trichloroethane 

(2.94± 0.29µg/m3), 4-ethyltoulene (2.76 ± 0.42 µg/m3), Freon 112 (2.74 ± 0.42 µg/m3), 

hexachloro-1,3-butadiene (2.46 ± 1.93 µg/m3), benzyl chloride (2.27± 2.85 µg/m3), methyl butyl 

ketone (2.24 ± 2.48 µg/m3), chloroform (2.03 ± 2.68 µg/m3), methylene chloride (2.01 ± 4.69 

µg/m3). Out of the rest 56 compounds, 35 had concentrations of 1-2 µg/m3, and 21 below 1 

µg/m3. 

Memphis has higher air toxics levels than the national urban levels. We obtained VOC 

concentrations measured in 2014 from EPA’s Air Quality System (AQS). There are 123 

monitoring stations in the U.S. that measured VOCs in 2014. We determined whether each 

station was located in urban or rural setting based on 1999 National-scale Air Toxics Assessment 

(NATA) table (NATA, 1999), and identified 83 urban stations. The mean and median 

concentrations of 15 key VOCs were computed based on data from these 83 stations. Figure 3.3 

displays the comparisons of key VOC concentrations between AQS and REACT. 
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Figure 3.3 Comparison of air toxics levels between the REACT study and AQS. 

 

The first comparison was based on mean concentrations. The mean concentrations in REACT 

were all higher than the national levels, except for benzene and chloromethane (Figure 3.3 A). 

REACT levels were 2 times (methylene chloride) to 2,035 times (allyl chloride) than AQS 

levels. In particular, two groups of compounds showed much higher levels in the REACT study. 

The first group is chlorinated compounds, including allyl chloride (2,035 times), benzyl chloride 
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(707 times), 1,2,4-trichlorobenzene (147 times), trichloroethene (39 times), chloroform (17 

times) and methylene chloride (2 times).The second group is mainly associated with vehicle 

combustion, including naphthalene (76 times) and 1,3-butadiene (11 times).  

The second comparison was based on median concentrations. The median concentrations 

in REACT were all higher than the national levels, except that benzene and chloromethane were 

similar (Figure 3.3 B). The REACT study had allyl chloride (1.54 µg/m3) and benzyl chloride 

(1.57 µg/m3) with median concentrations at the detectable levels, while these compounds had 

median concentrations below the detection limits in AQS. Among the rest 11 compounds, 

REACT levels were 2 times (methylene chloride) to 4,156 times (hexachloro-1,3-butadiene) than 

AQS levels. 

Both comparisons indicate Memphis has higher air toxics levels than the national urban 

levels. The elevated concentrations of these compounds likely reflect the increasing intensity of 

industrial and mobile sources in the urban setting in Memphis. 

3.3.3 Spatial and temporal variation  

The comparison between urban (Memphis) and suburban (Shelby excluding Memphis) 

showed that 11 compounds had significantly higher concentrations in urban areas. (Table 3.2). 

Other target compounds did not display urban/suburban differences. The 11 compounds with 

significant differences could be classified into two groups: those from gasoline vapors, vehicle 

exhausts, and gasoline additive (e.g., n-heptane, 1,3-butadiene, and MTBE), and those from 

industrial solvents (e.g., 1,1-dichloroethane and methyl methacrylate).This difference might be 

the result of more intensive traffic and industrial sources in the inner city of Memphis. 
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Table 3.2 Comparison of air toxic concentrations between urban and suburban areas 

VOCs 
 

Urban Suburban t-test 

Mean SD Mean SD p-value 

Propene 1.47 0.75 1.17 0.32 <0.01 
Freon 112 2.70 0.66 2.89 0.70 0.20 
Chloromethane 1.07 0.42 1.54 1.79 0.15 
Freon 114 1.77 0.05 1.72 0.17 0.10 
Chloroethene 1.11 0.11 1.06 0.15 0.09 
1,3-Butadiene 0.98 0.23 0.83 0.17 <0.01 
Bromomethane 0.89 0.02 0.86 0.08 0.11 
Chloroethane 0.60 0.01 0.58 0.05 0.10 
Ethanol 16.6 20.80 10.4 7.11 0.02 
Bromoethene 0.98 0.02 0.95 0.09 0.10 
Acetone 11.0 5.81 10.7 5.77 0.84 
Freon 11 1.60 0.20 1.63 0.29 0.58 
Isopropyl alcohol 7.01 5.26 6.71 9.52 0.87 
1,1-Dichloroethene 0.86 0.01 0.84 0.08 0.18 
Methylene chloride 1.41 1.74 3.51 8.23 0.16 
Allyl chloride 1.86 1.45 13.3 54.90 0.25 
Freon 113 3.04 0.30 2.90 0.62 0.22 
Carbon disulfide 0.69 0.19 2.35 8.14 0.26 
cis-1,2-Dichloroethene 0.99 0.03 0.96 0.10 0.13 
1,1-Dichloroethane 0.86 0.02 0.83 0.08 0.10 
Methyl tert-butyl ether 0.83 0.25 0.67 0.06 <0.01 
Vinyl acetate 1.81 1.12 1.70 0.83 0.62 
Ethyl Methyl Ketone 2.09 1.22 1.82 0.59 0.13 
trans-1,2-Dichloroethene 0.93 0.04 0.90 0.11 0.13 
n-Hexane 1.10 0.48 0.99 0.48 0.29 
Ethyl acetate 1.48 2.07 1.06 0.64 0.11 
Chloroform 2.16 2.94 1.74 2.02 0.39 
Tetrahydrofuran 0.71 0.29 0.64 0.15 0.10 
Naphthalene 4.08 2.12 3.78 1.80 0.48 
Hexachloro-1,3-butadiene 2.29 2.06 2.12 1.92 0.69 
TVOCs 132 35.8 135 91.2 0.88 

Notes: p-values <0.05 were highlighted. 
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The effects of urbanization/industrialization have been observed as an influential factor 

of ambient VOC levels (C. Jia et al., 2008a, 2008b).  Traffic density is a major factor influencing 

concentrations of especially aromatic VOCs (Ilgen et al., 2001; Mohamed, Kang, & Aneja, 

2002). The RIOPA study found that concentrations of BTEX, MTBE and PERC were inversely 

associated with distances to major roadways, gas stations and dry cleaning facilities, 

respectively, and that levels were also inversely associated with atmospheric stability, wind 

speed, temperature and humidity (Kwon et al., 2006). Dramatically elevated VOC concentrations 

have been found near large industrial facilities such as oil refineries (Cetin, Odabasi, & 

Seyfioglu, 2003) and industrial complexes (Park & Jo, 2004). We inferred that proximity to 

general traffic and industrial emissions in Memphis elevated ambient VOC concentrations. 

Concentrations of ambient air toxics displayed significant seasonal variations (Tables 3.3 

& 3.4). In Table 3.3, 56 and 52 compounds had the highest or 2nd highest mean concentrations in 

winter and spring, respectively. In contrast, 48 and 60 compounds had the lowest or 2nd lowest 

mean concentrations in summer and fall, respectively. We can group winter and spring into the 

cold season, and summer and fall into the warm season. Thus, most compounds showed higher 

average concentrations in the cold season than in the warm season. If we examine the median 

concentrations, very similar results were obtained (Table 3.4). The bar charts in Figure 3.4 

clearly indicate higher concentrations of key air toxics in winter and spring. 
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Table 3.3 Mean and rank of air toxic concentrations by season 

VOCs  
  

Mean (µg/m3) Rank of Means 
Win Spr Sum Fall Win Spr Sum Fall 

Propene 1.8 0.6 0.8 2.3 2 4 3 1 
Freon 112 3.2 1.4 1.5 4.8 2 4 3 1 
Chloromethane 1.4 0.8 0.8 1.8 2 3 4 1 
Freon 114 2.8 2.6 0.8 0.9 1 2 4 3 
Chloroethene 1.5 2.2 0.4 0.3 2 1 3 4 
1,3-Butadiene 1.2 1.2 0.4 0.9 2 1 4 3 
Bromomethane 1.3 1.3 0.6 0.4 2 1 3 4 
Chloroethane 0.8 0.8 0.4 0.4 1 2 3 4 
Ethanol 9.8 3.2 31.1 13.6 3 4 1 2 
Bromoethene 1.4 1.4 0.8 0.2 2 1 3 4 
Acetone 7.7 6.7 18.6 9.9 3 4 1 2 
Freon 11 1.9 2.4 0.5 1.6 2 1 4 3 
Isopropyl alcohol 3.1 20.2 3.3 0.6 3 1 2 4 
1,1-Dichloroethene 1.3 1.1 0.5 0.4 1 2 3 4 
Methylene chloride 5.3 1.6 0.5 0.6 1 2 4 3 
Allyl chloride 1.7 10.1 5.8 0.2 3 1 2 4 
Freon 113 2.6 8.6 0.3 0.8 2 1 4 3 
Carbon disulfide 1.0 2.2 0.7 0.3 2 1 3 4 
cis-1,2-Dichloroethene 1.2 1.6 0.7 0.4 2 1 3 4 
1,1-Dichloroethane 1.3 1.3 0.4 0.4 1 2 4 3 
Methyl tert-butyl ether 1.2 0.7 0.9 0.3 1 3 2 4 
Vinyl acetate 1.1 1.0 2.1 2.8 3 4 2 1 
Ethyl Methyl Ketone 0.8 1.0 4.1 2.0 4 3 1 2 
trans-1,2-Dichloroethene 1.3 1.6 0.4 0.4 2 1 4 3 
n-Hexane 1.5 1.2 1.3 0.3 1 3 2 4 
Ethyl acetate 2.1 1.7 1.2 0.3 1 2 3 4 
Chloroform 4.5 2.3 0.5 0.8 1 2 4 3 
Tetrahydrofuran 0.9 0.8 0.8 0.2 1 2 3 4 
Hexachloro-1,3-
butadiene 

3.1 4.2 1.1 1.4 2 1 4 3 

TVOCs 141.4 171.7 136.4 79.7 2 1 3 4 
Sum of Rank #1     33 20 14 5 
Sum of Rank #2     23 32 10 7 
Sum of Rank #3     13 11 29 19 
Sum of Rank #4     3 9 19 41 
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Table 3.4 Median and rank of air toxic concentrations by season 

VOCs 
 

Median (µg/m3) Median Rank 
Win Spr Sum Fall Win Spr Sum Fall 

Propene 1.6 0.5 0.7 2.3 2 4 3 1 
Freon 112 3.3 1.4 1.6 4.7 2 4 3 1 
Chloromethane 1.0 0.5 0.7 2.1 2 4 3 1 
Freon 114 2.8 2.7 0.8 0.9 1 2 4 3 
Chloroethene 1.5 2.3 0.4 0.3 2 1 3 4 
1,3-Butadiene 1.2 1.3 0.4 0.3 2 1 3 4 
Bromomethane 1.3 1.3 0.6 0.4 2 1 3 4 
Chloroethane 0.8 0.8 0.4 0.4 1 2 3 4 
Ethanol 1.5 0.7 16.7 12.8 3 4 1 2 
Bromoethene 1.4 1.5 0.8 0.2 2 1 3 4 
Acetone 5.2 2.2 13.8 8.6 3 4 1 2 
Freon 11 1.9 2.4 0.5 1.9 2 1 4 3 
Isopropyl alcohol 0.4 12.0 2.2 0.3 3 1 2 4 
1,1-Dichloroethene 1.3 1.1 0.5 0.4 1 2 3 4 
Methylene chloride 1.1 1.2 0.5 0.4 2 1 3 4 
Allyl chloride 1.0 1.0 3.4 0.2 2 3 1 4 
Freon 113 2.6 8.8 0.3 0.8 2 1 4 3 
Carbon disulfide 1.0 1.0 0.4 0.3 1 2 3 4 
cis-1,2-Dichloroethene 1.2 1.6 0.7 0.4 2 1 3 4 
1,1-Dichloroethane 1.3 1.3 0.4 0.4 1 2 4 3 
Methyl tert-butyl ether 1.2 0.7 0.5 0.3 1 2 3 4 
Vinyl acetate 1.1 1.1 0.6 2.9 2 3 4 1 
Ethyl Methyl Ketone 0.8 0.8 3.5 2.1 3 4 1 2 
Naphthalene 6.8 2.4 2.5 1.5 1 3 2 4 
Hexachloro-1,3-
butadiene 3.1 2.7 0.9 1.4 1 2 4 3 

TVOCs 121.3 137.6 110.3 75.3 2 1 3 4 
Sum of Rank #1     34 19 15 5 
Sum of Rank #2     26 35 6 5 
Sum of Rank #3     11 11 31 19 
Sum of Rank #4     1 7 20 43 
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Figure 3.4 Comparison of seasonal concentrations of key air toxics 

Elevated VOC concentrations in cold weather have been reported in many studies 

(Cheng, Fu, Angle, & Sandhu, 1997; Das & Aneja, 2003; Ho, Lee, Guo, & Tsai, 2004; 

Mohamed et al., 2002). Many factors affect seasonal patterns, but generally cooler temperatures 

slow rates of photochemical reactions (Mohamed et al., 2002), increase emissions from heating 

sources and vehicles (Mohamed et al., 2002), and lower mixing heights (Cheng et al., 1997).  

Seasonal changes may be negligible for VOCs that result primarily from nearby industrial 
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sources (Cheng et al., 1997), especially for slowly reacting compounds, e.g., many halogens 

(Mohamed et al., 2002). Our results matched the seasonal patterns observed in other U.S. studies. 

3.3.4 Source identification 

The factor analysis of annual concentrations of 24 frequently detected (DF > 80%) air 

toxics revealed 5 factors (Table 3.5). These five factors explained 72% of the total variance of 

the data. The first factor included hexachloro-1,3-butadiene, 1,2,4-trimethylbenzene, n- 

butylbenzene, benzyl chloride, methyl butyl ketone, naphthalene, and methyl isobutyl ketone. 

This factor was likely to reflect emissions from organic synthesis processes. Factor 2 contained 

aromatic compounds including 2,2,4-trimethylpentane, 1,3,5-trimethylbenzene, toluene, benzene, 

o-xylene, m,p-xylene, ethylbenzene, and may reflect vehicle exhaust. The third factor included 

propene, acetone, ethyl methyl ketone, vinyl acetate and could be industrial solvent and 

precursors. Factor 4 contained chloromethane and Freon 112 which are refrigerants. Factor 5 

included isopropyl alcohol, ethanol, and n-hexane, which are gasoline additives. 
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Table 3.5 Factor patterns of major air toxics in Memphis 

VOCs/Factors F1 F2 F3 F4 F5 
Hexachloro-1,3-butadiene 0.96 -0.03 -0.04 0.11 -0.01 
1,2,4-Trimethylbenzene 0.95 -0.02 0.05 0.09 -0.02 
n- Butylbenzene 0.94 0.04 0.06 -0.03 0.07 
Benzyl chloride 0.94 -0.05 0.01 0.06 -0.06 
Methyl butyl ketone 0.92 -0.02 0.07 0.08 0.00 
Naphthalene 0.84 0.02 0.15 0.06 0.07 
Methyl isobutyl ketone 0.72 0.08 0.06 0.11 0.39 
2,2,4-Trimethylpentane 0.07 0.80 0.12 -0.15 0.01 
1,3,5-Trimethylbenzene 0.06 0.67 0.15 -0.19 0.07 
Toulene 0.05 0.77 0.20 -0.05 0.34 
Benzene 0.05 0.52 0.23 0.05 0.31 
o-Xylene 0.00 0.90 -0.05 0.03 -0.04 
m,p-Xylene -0.04 0.92 -0.02 0.00 -0.01 
Ethylbenzene -0.16 0.86 -0.11 0.11 -0.09 
Propene 0.10 0.32 0.55 0.41 0.04 
Acetone 0.09 -0.03 0.80 0.21 0.20 
Ethyl Methyl Ketone 0.07 0.02 0.83 -0.01 0.23 
Vinyl acetate 0.02 0.16 0.77 -0.17 -0.06 
Chloromethane 0.23 -0.14 0.08 0.87 -0.03 
Freon 112 0.00 -0.13 0.07 0.89 -0.04 
Isopropyl alcohol 0.21 -0.02 -0.01 -0.06 0.74 
Ethanol 0.07 0.03 0.50 0.01 0.61 
n-Hexane -0.15 0.18 0.24 0.06 0.58 
Allyl chloride 0.37 0.13 -0.16 0.44 0.27 
      
Variance explained (%)  26.5 20.6 11.8 7.9 5.1 
Cumulative (%) 26.5 47.1 58.9 66.8 71.9 

 

3.3.5 Health risks from exposure to air toxics 

According to EPA’s guidelines, an excess lifetime cancer risk below the range of 10-6 to 

10-4 can be considered acceptable. Twenty-two carcinogenic VOCs were detected during 2014 

(Table 3.6). At the county level, the cumulative cancer risk based on mean ambient concentration 

at each site was 5.9± 3.3 ×10-4, meaning that 590 persons out of 1 million are expected to 

contract cancers due to the exposure to all carcinogenic air toxics over their lifetime. Given the 
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population size of around 1 million in Memphis, this represents approximately the additional 

number of cancer cases resulting from air toxics pollution. The average ambient levels of eight 

compounds exceeded the 10-6 criterion, nine compounds exceeded the 10-5 criterion, and two 

compounds (naphthalene and benzyl chloride) exceeded the 10-4 criterion. The rest three 

carcinogenic compounds (tetrachloroethene, methylene chloride, and vinyl acetate) had both 

average and maximum concentrations that were associated with <10-6 risk levels.  

Table 3.6 Cancer risks from exposure to carcinogenic air toxics in Memphis 
Carcinogenic VOCs UR Mean SD Min P50 P95 Max Contrib. 

 (1/(µg/m3)*106)   (1/106)    (%) 

Naphthalene 34 143 68 103 114 310 440 24.35 
Benzyl chloride 49 111 139 59.3 77.1 215 974 18.99 
1,1,2,2-Tetrachloroethane 58 55.7 8.75 36.5 53.5 77.3 97.7 9.495 
Chloroform 23 46.6 61.6 15.2 22.4 171 389 7.935 
Hexachloro-1,3-butadiene 22 54.1 42.5 39.5 45.0 68.9 321 9.217 
Bromoethene 32 31.2 1.50 20.2 31.4 31.4 31.4 5.322 
Allyl chloride 6 26.5 134 4.04 9.22 28.5 1392 4.522 
1,3-Butadiene 30 28.0 6.75 14.3 23.6 41.9 50.9 4.778 
1,2-Dichloroethane 26 19.1 1.47 14.7 19.0 19.0 33.2 3.253 
1,1,2-Trichloroethane 16 17.6 0.92 10.8 17.7 17.7 17.7 2.998 
1,4-Dichlorobenzene 11 12.3 3.39 8.2 11.1 22.1 24.8 2.093 
Chloroethene 8.8 9.74 0.93 4.82 9.77 9.77 16.7 1.660 
Carbon tetrachloride 6 8.56 1.13 4.94 8.12 9.44 17.6 1.458 
Benzene 7.8 7.39 2.00 5.15 6.74 11.3 20.0 1.258 
Trichloroethene 4.1 4.50 0.27 2.79 4.48 4.94 5.13 0.766 
trans-1,3-Dichloropropene 4 4.04 0.19 2.61 4.07 4.07 4.07 0.689 
Ethylbenzene 2.5 3.39 0.44 2.34 3.48 3.88 4.31 0.578 
Bromoform 1.1 2.03 0.18 1.22 2.01 2.01 3.18 0.346 
1,1-Dichloroethane 1.6 1.36 0.07 0.88 1.37 1.37 1.37 0.232 
Tetrachloroethene 0.26 0.36 0.02 0.21 0.36 0.40 0.41 0.062 
Methylene chloride 0.01 0.02 0.05 0.01 0.01 0.08 0.43 0.003 
Vinyl acetate 0.01 0.02 0.01 0.01 0.02 0.03 0.10 0.003 
Cumulative  587 327 420 494 871 2888  

Notes: The unit for cancer risk is 1/106; UR – Unit risk; SD– Standard deviation; P– percentage; Contrib. 
– contribution.  
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Thirty-one out of the 71 target compounds has available reference concentrations for 

estimating target organ specific hazard index (TOSHI). The top TOSHIs were 6.71, 1.84, and 

1.03 for neurological, respiratory, and reproductive/developmental effects, respectively. These 

effects are the major non-cancer health concerns from exposure to mixtures of air toxics in 

Memphis. It should be noted that the neurological TOSHI was driven by allyl chloride (76%) and 

naphthalene (20%), respiratory TOSHI by naphthalene (72%), and reproductive/developmental 

TOSHI by trichloroethene (53%) and 1,3-butadiene (45%). Allyl chloride and trichoroethene are 

both widely used industrial solvents; the former is used in the manufacture of pharmaceuticals 

and pesticides, and the latter is used as a degreaser. However, the 2014 TRI data did not report 

any release of these two chemicals in Shelby County. Vehicle exhaust is a constant source of 

naphthalene and 1,3-butadiene. Thus, unreported industrial emissions and vehicle exhaust are the 

two major sources contributing to non-cancer effects in Memphis. On average, TOSHIs for 

effects in ocular system, immune system, cardiovascular system, hematologic system, liver and 

kidney were below 1. It was also encouraging that the maxima of these TOSHIs were all below 

1. These facts indicate that long exposure is unlikely to cause these adverse health effects among 

all the populations in Shelby County (Table 3.7). 

  



57 
 

Table 3.7 Target-organ-specific-hazard indices (TOSHIs) 
Target organs N Mean SD Min P5 P25 P50 P75 P95 P99 Max 

Neurological  112 6.71 29.7 1.85 2.25 2.66 2.95 3.60 6.57 60.4 313 

Respiratory  112 1.84 0.68 1.41 1.43 1.48 1.61 1.93 3.44 4.54 4.77 

Reproductive/Developmental  112 1.03 0.13 0.60 0.96 0.96 0.97 1.11 1.26 1.41 1.41 

Ocular 112 0.61 0.04 0.38 0.51 0.61 0.61 0.61 0.67 0.69 0.69 

Immune  112 0.58 0.04 0.36 0.55 0.57 0.58 0.58 0.63 0.66 0.66 

Cardiovascular 112 0.55 0.04 0.34 0.45 0.55 0.55 0.55 0.61 0.62 0.63 

Liver and Kidney 112 0.40 0.04 0.26 0.39 0.39 0.40 0.40 0.46 0.55 0.57 

Hematologic  112 0.03 0.01 0.02 0.02 0.03 0.03 0.03 0.05 0.06 0.10 

Total 112 11.8 29.9 6.44 6.97 7.44 7.74 8.84 14.5 65.6 320 

Notes: Respiratory system – toluene, 1,2,4-trichlorobenzenem,p-xylene, o-xylene, trans-1,3-dichloropropene, 
bromomethane, 1,2-dichloropropane, naphthalene; Hematologic system – benzene; Cardiovascular system – 
methylene chloride, trichloroethene; Reproductive/Developmental system –chloroethane, methyl isobutyl ketone, 
ethylbenzene, isopropylbenzene, 1,2,4-trichlorobenzene, trichloroethene, 1,3-butadiene; Liver and kidney – 1,1,1-
trichloroethane, methyl tert-butyl ether, 1,2-dichloroethane, chlorobenzene, 1,4-dichlorobenzene, methyl 
methacrylate, methylene chloride, 1,1,2-trichloroethane, 1,2,4-trichlorobenzene, 1,1-dichloroethene, carbon 
tetrachloride, chloroethene, chloroform, bromoethene; Ocular – methyl tert-butyl ether, m,p-xylene, o-xylene, 
tetrachloroethene, trichloroethene; Neurological system – 1,1,1-trichloroethane, toluene, styrene, n-hexane, 
methylene chloride, 1,1,2-trichloroethane, m,p-xylene, o-xylene, chloromethane, tetrachloroethene, bromomethane, 
naphthalene, allyl chloride; Immune system – benzene, trichloroethene 

3.3.6 Study limitations 

The risk assessment is a process that integrates analysis and information of toxicity and 

exposure into a risk characterization that provides risk estimates. Risk assessments are often not 

as definitive in all aspects as would be desirable. Uncertainty exists in all aspects of a risk 

assessment process: 

3.3.6.1 Uncertainty in sampling  

The sampling locations were still limited considering the large area of Shelby County 

(784 square miles). Samples were not collected at several large census tracts. Within each tract, 

we could not always use the centroid due to accessibility issue. The sampling period was only 

one day which might not represent long-term exposure, although we repeated sampling 

seasonally. The field samples underwent inclement weather in certain days, e.g., storm, fog, rain, 
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and extremely cold and hot days. All these might influence the canister samples. We also did not 

know the unexpected sources during the sampling period, such as mowing, car idling, spray of 

pesticides, or other unknown human interference. 

3.3.6.2 Uncertainty in laboratory analysis  

There are many factors that could influence the analytical performance in laboratory. 

These could be the concentration of the analyte and proximity to MDL, the performance of the 

instrumentation on a given day, the consistency and skill of the analyst, the most recent 

instrument maintenance, influence of moisture in samples, and chromatographic data analysis 

skills. The uncertainty of each measurement varied by day, sample and analyst, precluding 

definitive estimates of uncertainty for each parameter in each sample for each day. Perhaps the 

greatest uncertainty associated with laboratory results occurred when the concentration of the 

analyte was close to the detection limit. As the concentration of the analyte decreases, the level 

of uncertainty will increase as the MDL is approached (C. Jia, Batterman, & Chernyak, 2006). A 

simple replacement of non-detects with half MDL might bias the concentration estimation. 

3.3.6.3 Uncertainty in exposure assessment  

The chronic exposure parameter was the central tendency estimate, obtained as the 

arithmetic average of the seasonal monitoring data. The intention was to base the exposure and 

risk estimates on the estimated long-term average exposure levels. The exposure assumptions 

were extremely simplified, and did not consider other exposure scenarios, e.g., indoor exposure. 

There was no accounting for the variability of human activity, or for the reasonableness of actual 

human presence at the monitoring sites. This approach is characteristic of a “screening level” 

type of approach. 
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3.3.6.4 Uncertainty in toxicity assessment  

The health protective benchmarks used for chronic noncancer and cancer risk assessment 

were taken from the best available information from U.S.EPA (RfCs, RfDs, cancer UREs or 

slope factors). When those preferred U.S.EPA benchmark sources were not available, we used 

California EPA’s toxicological data, which is a common practice in the U.S. (Miranda M. Loh, 

Jonathan I. Levy, John D. Spengler, E. Andres Houseman, & Deborah H. Bennett, 2007). 

U.S.EPA acknowledges the conservatism of these methodologies and the assumption of no 

threshold, by noting that the risk is unlikely to be higher than estimated, but is likely to be lower, 

and may be as low as zero at the extrapolated low doses for the target risk. Not all toxic VOCs 

were considered. Not all toxic VOCs had the health benchmarks available, and thus only a 

fraction of air toxics were considered in the risk assessment. 

3.3.6.5 Uncertainty in risk characterization   

Comparisons to absolute risk levels of 10-4, 10-5 and 10-6, or to HI values of 1, should be 

viewed qualitatively since these values function as protective guidelines, not absolute standards. 

The analysis only assumed additivity when evaluating risk from mixtures. The nature of the 

ambient air monitoring approach, rather than emissions modeling, does not enable the 

characterization of the population size or populated area that are represented by the risk 

estimates. Monitoring results are valid for the point of measurement and some surrounding area, 

but the size and shape of areas represented by the data are not known and cannot be reliably 

estimated.  

3.4 Conclusion 

This comprehensive field study expands the ambient VOC data routinely collected by 

existing fixed monitoring sites, and updates the old VOC databases. Few community-scale air 
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toxics monitoring studies have characterized the distribution and variability of VOC levels in a 

comprehensive and validated manner. None have explored ambient air toxic concentrations 

across suburban, urban and industrial communities. The uniqueness of this study is to deploy 

samplers at the census tract level, which allows linking exposure to socioeconomic status to 

address environmental justice. Thus, this work fills the data gap by delineating the spatial 

patterns and temporal trends and by exploring factors that affect VOC concentrations. 

This study represents an evolutionary advance from previous studies designed to assess 

human exposures to ambient air toxics.  It is one of the few comprehensive studies examining 

VOC exposures in the US since 2010. The representativeness of the study is enhanced by having 

the target communities located along an urban/industrial gradient, using multiple sites (112) at 

the census tract level, and employing a multi-factor (indoor/outdoor, seasonal, etc) sampling 

plan.  The results of this study will help fill gaps in our understanding of VOC exposures, 

improve exposure assessments for urban air toxics, more realistically evaluate public health 

risks, potentially improve the management of hazard air pollutants and other pollutants, and help 

provide the basis for setting standards. 
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Chapter 4 

Sociodemographic disparities in cancer risks from exposure to air toxics in Memphis 

Area 

4.1 Introduction 

Ambient air quality has been prioritized for environment and human health. Healthy 

People 2020 set outdoor air quality as the first priority for creating health-promoting 

environment (ODPHP, 2017). Elevated level of air pollution from various emission sources has 

been affecting both environment and human health. Short- and long- term exposures to elevated 

level of ambient hazardous air pollutants (HAPs), or air toxics, can trigger various, acute or 

chronic, adverse health effects including cancer (Bostrom et al., 2002; M. M. Loh et al., 2007), 

respiratory disease (Goldizen et al., 2016), neurological toxicity (Block et al., 2012; Calderon-

Garciduenas et al., 2004; Volk et al., 2011), cardiovascular disease (Uzoigwe et al., 2013), 

negative reproductive effects or birth defects (Lewtas, 2007; Sram et al., 2005; Stieb et al., 2012) 

and renal toxicity (Damek-Poprawa & Sawicka-Kapusta, 2003; Jarup, 2003; Kampa & Castanas, 

2008).  

Previous studies have raised the concerns that minorities and communities of lower 

socioeconomic status were more likely to live close to emission sources (Stuart et al., 2009) 

exposing to elevated level of air toxics and thus having increased health risks (Abel, 2008; 

Chakraborty, Collins, & Grineski, 2017; Grineski, Collins, Chakraborty, et al., 2013; C. R. Jia et 

al., 2014). For example, a study in Texas reported that census tracts with higher proportion of 

Hispanics and socioeconomic disadvantage in Houston area showed higher cancer risks burden 

from exposure to air toxics (Linder et al., 2008). Another study in South Carolina strengthened 

the evidence that non-white population and communities with low-income had higher cancer 
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risks from exposure to air toxics (Wilson et al., 2015). However, these studies all utilized 

modeled air toxic concentrations to investigate the health disparities in health risks from 

exposure to air toxics. Their modeled air toxics concentrations and related health risks were from 

National Air Toxic Assessment (NATA) which was conducted by United States Environmental 

Protection Agency (U.S.EPA) to have an overview of national level of air toxics and to prioritize 

certain air toxics for regulation and reduction of air toxics emissions (U.S.EPA, 2016g). 

Particularly, NATA was announced as not appropriate for characterizing and comparing risk at 

local level (U.S.EPA, 2015d). However, due to high expenses and tremendous efforts acquired 

for monitoring at census tract level, census tract level monitoring measurement were usually 

surrogated with modeled estimates in disparity studies at local level. Nevertheless, several model 

assessment studies have reported that NATA estimated air toxics concentrations generally 

underestimate the air toxic concentrations (Garcia et al., 2014; Logue et al., 2010; Lupo & 

Symanski, 2009). Thus the uncertainty of modeled estimates might affect the true association 

between sociodemographic factors and exposure to air toxics or related health risks. So far, no 

previous studies have utilized monitored air toxic measurement to address the sociodemographic 

disparities in exposure to air toxics or related health risks. Therefore, evaluating the 

sociodemographic disparities with the monitor measurement might give us an alternative 

prospect on this issue.  

Our study geographically focused on Memphis area at Shelby County in the State of 

Tennessee (TN). Memphis, the county seat, is the largest city in TN and 64% of the residents are 

African-Americans. Memphis area manifested urban and sub-urban pattern and clusters various 

types of air toxic emission sources. Automobile traffic, railway transportation, barge traffic on 

Mississippi river and the busiest airport in the U.S.A. are major mobile sources of air toxics in 
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Memphis area. Different types of industries, including petroleum refinery, power plant, 

transportation carriers, petrochemical storage and transfer facilities, and waste disposal facilities 

are major stationary sources of air toxics in Memphis area. EPA’s Toxic Registry Inventory 

(TRI) is on watch for 311 emission facilities in Memphis. Furthermore, most of these emission 

facilities are located in low-income African American concentrated areas. Clustering and uneven 

distribution of emission sources in Memphis area has raised great concerns of health risk and 

health disparities related to air toxics. In responding to these concerns, the Reducing Exposure to 

Airborne Chemical Toxics (REACT) air toxics monitoring program was developed to measure 

ambient air toxic concentrations at census tract level in Memphis area through 2014. This 

monitoring program collected air samples of 71 target compounds for four different seasons 

throughout the year at 112 sites in 106 census tracts in Memphis area. With these monitored 

measurement from REACT and modeled estimates from EPA’s 2011 NATA, we investigated the 

sociodemographic disparities in cancer risks from exposure to air toxics in Memphis area. In our 

assessment, we expected to provide an alternative and comprehensive view in assessing 

sociodemographic disparities in risks from exposure to air toxics by introducing monitored 

measurement into analysis. 

4.2 Method 

4.2.1 Cancer risks from exposure to air toxics  

Cancer risks from exposure to carcinogenic air toxics at census tract level on the basis of 

modeled and monitored estimates were both involved in our assessments. Model predicted 

cumulative cancer risks from exposure to each carcinogenic air toxics at census tract level were 

extracted from 2011 National-Scale Air Toxics Assessment (NATA). Monitored concentration 

of 22 carcinogenic Volatile Organic Compounds (VOCs) from the 71 targeted VOCs was 
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extracted from REACT database. At census tract level, cancer risks from these 22 VOCs were 

then calculated on the basis of the inhalation risk assessment methods: Risk = Exposure 

(monitored concentration) × IUR (inhalation unit risk) (Cook et al., 2007). Cumulative cancer 

risks at each census tract was estimated by summing individual cancer risks from each VOC 

because cancer risks from air toxics were assumed to be additive (Morello-Frosch & Jesdale, 

2006). Additionally, based on cancer risk contribution rank from NATA 2011 and REACT, we 

also extracted the census tract level concentrations of 4 prioritized individual compounds which 

were both assessed in NATA and REACT.  These 4 compounds were 1,3-butadiene, benzene, 

benzyl chloride and naphthalene. Specifically, benzene were reported as one of the top 3 cancer 

risks contributor in both national and regional scale by NATA 2011 (U.S.EPA, 2016b, 2016c) 

1,3-butadiene and naphthalene were reported as two of the 8 major national cancer risks 

contributor (U.S.EPA, 2016c). Naphthalene and benzyl chloride were also identified as the first 

and second cancer risk contributor in Memphis area by REACT monitoring program. The 

sociodemographic disparities in exposure to these 4 individual compounds were assessed in this 

study. 

4.2.2 Sociodemographic predictors 

Sociodemographic variables at census tract level were extracted and derived from census 

2010 and EPA EJSCREEN database. To be noticed, the newly developed EJSCREEN is 

designed for addressing health disparities in environmental justice studies. The 

sociodemographic variables considered in our study were: population density (person per square 

mile), median inflation adjusted household income, percent of minority, percent less than high 

school education, traffic proximity and volume, proximity to National Priorities List (NPL) sites, 

proximity to Risk Management Plan (RMP) facilities, and proximity to Treatment Storage and 
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Disposal (TSDF) facilities. Specifically, population density was calculated via dividing total 

population by land area in each individual census tract. Both total population and land area at 

census tract level was extracted from census 2010. All the other sociodemographic variables 

were extracted from EJSCREEN. Median inflation adjusted household income was the level of 

household income at census tract level where half the households have income above this level 

and the other half of households have income less than this level. Percent of minority was 

percent of individuals in a census tract who are not non-Hispanic white. Percent less than high 

school education was the percent of people age 25 or older without high school diploma. Traffic 

proximity and volume indicated average annual daily count of vehicles at the nearest (within 500 

meters) major roads divided by distance between the major roads to the location (community or 

residents) of interest. National Priorities List (NPL) sites are a key subset of superfund sites. Risk 

Management Plan (RMP) facilities are facilities which have potential chemical accident risk 

according to Clear Air Act (CAA) and thus was managed as RMP facilities. Treatment Storage 

and Disposal (TSDF) facilities are hazardous waste management facilities that treat, store and 

dispose hazardous waste. The proximity to NPL, RMP and TSDF facilities are the counts of 

those facilities (within 5km) divided by the distance from location of interest to those facilities.  

4.2.3 Data compilation and predictor selection  

Cumulative cancer risks and sociodemographic variables were matched by census tract 

number in Memphis area using ArcGIS (ESRI Inc.).  Pearson correlation test were conducted to 

identify any strong correlation between sociodemographic predictors using correlation 

coefficient of 0.65 as a rule of thumb. Percent of population who have less than high school 

education, percent of minorities and median household income showed strong correlation. 
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Therefore, we selected median household income as a representative predictor for all these three 

predictors because it gave us the best regression model fit.  

Multicollinearity was then evaluated for all sociodemographic variables that were 

included in the statistical model before any further analysis. The variation inflation (VIF) values 

of all tested variables were less than 5 indicating no multicollinearity among those variables.  

4.2.4 Statistical analysis 

Moran’s I statistic were tested separately on both modeled and monitored census tract 

level cancer risks to see if there is spatial autocorrelation of cancer risks among neighboring 

census tract. Ordinary least square (OLS) regression was applied to address the 

sociodemographic disparity in cancer risks from air toxics when cancer risks have no spatial auto 

correlation. Otherwise, spatial regression analysis was utilized to assess this association by 

implementing geographic weight into the statistical model.  

In our preliminary analysis, Moran’s I test p-value was 0.24 for modeled cancer risks 

indicating no spatial auto-regression. For modeled cancer risks, the Moran’s I test p-value was 

0.001indicating existence of spatial autocorrelation. Therefore, we assessed the monitored data 

using OLS regression and we utilized spatial regression for modeled data. Particularly, spatial 

regression has two major types including spatial lag model and spatial error model. Spatial 

regression model introduces a “spatial lag” term into the regression to combine the effect of 

certain variable at nearby location into the effect of its current assessing location so that spatial 

interaction can be simultaneously assessed. When spatial lag is included in the dependent 

variable, the model is spatial lag model. In contrast, a spatial lag in error term is the spatial error 

model (Raddatz & Mennis, 2013). We assessed the disparity via spatial error model for our 



67 
 

analysis because it had greater R-squared and Log likelihood values and a smaller AIC than the 

spatial lag model. Our spatial error model is as followings: 

 Cancer Risk = β0 + β1 population density + β2 income + β3 traffic density+β4 proximity 

to NPL +β5 proximity to RMP +β6 proximity to TSDF + λWu + e                                       

In this model, λ represents the coefficient for spatially auto-correlated errors (spatial 

autoregressive coefficient), W is the spatial weights matrix based on tract centroids, e represents 

the random error term in the OLS model, and u is the spatially independent error term. The 

distance-based spatial weights were constructed using a threshold distance of 2 km. The critical 

distance of 2 km was selected because air pollution and its associated health risks are negligible 

beyond this distance. The OLS regression analysis was completed using SAS (SAS 9.4, SAS 

Institute Inc.) The spatial regression analyses were completed in OpenGeoDa (Version 1.4.6, 

GeoDa Center, Tempe, AZ, USA). 

4.3 Results 

4.3.1 Cancer risk and sociodemographic distribution in Memphis area 

Population in Memphis generally had high level of cancer risk from air toxics (Table 

4.1). The average census tract level lifetime cancer risk due to exposure to air toxics in Shelby 

County was 50 people in 10 million which was 50 times the benchmark of 1 in one million. 

Furthermore, REACT monitored cancer risks in Memphis area were 587 times the benchmark. 

The manifested discrepancy of sociodemographic status among the population in Memphis area 

was also presented in Table 4.1. On average, more than half (64.3%) of the population were 

minorities. Almost half (45.2%) of the population were categorized to low-income group. One in 

third of the people who age 25 or older did not complete high school with diploma. The sampling 
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sites selected in REACT monitoring program is representative of Shelby County. As showed in 

Table 4.1, the average level of sociodemographic variables summarized from 112 REACT 

monitoring sites in 106 census tracts was similar to the statistics summarized from 220 census 

tract of entire Shelby County.  

Table 4.1 Summary statistic of variables 

  N M SD Min Mdn Max 
Modeled        

 Cancer risk (person/million) 220 50 4 41 49 62 

 Population density (person/mile2) 220 3077 1794 0 2934 11561 

 Less than high school education (%) 220 28.9 10.8 0.0 30.5 59.2 

 Minority (%) 220 64.3 33.1 0.0 76.3 100.0 

 Median household income (10K) 220 4.5 2.7 0.0 3.8 14.9 

 Traffic proximity and volume 220 185 282 1 95 2165 

 Proximity to NPL 220 0.1 0.1 0.0 0.1 1.3 

 Proximity to RMP 220 0.5 0.7 0.0 0.2 4.0 

 Proximity to TSDF 220 0.0 0.0 0.0 0.0 0.0 
Monitored       

 Cancer risk (person/million) 112 587 327 420 494 2888 

 Population density (person/mile2) 112 2770 1744 0 2749 7028 

 Less than high school education (%) 112 27.2 11.5 0.0 28.5 51.8 

 Minority (%) 112 58.0 34.0 0.0 62.7 100.0 

 Median household income (10K) 112 5.0 3.1 0.0 4.3 14.9 

 Traffic proximity and volume 112 154 194 1 94 1005 

 Proximity to NPL 112 0.1 0.2 0.0 0.1 1.3 

 Proximity to RMP 112 0.5 0.6 0.0 0.2 3.7 

 Proximity to TSDF 112 0.0 0.0 0.0 0.0 0.0 
NPL- National Priorities List sites; RMP-Risk Management Plan facilities; TSDF-Treatment 
Storage and Disposal facilities 
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Figure 4.1 cancer risks and risk factors distributions 

4.3.2 Sociodemographic disparities in cancer risks  

For modeled data, significant association between sociodemographic factors and cancer 

risks were found in our analysis (Table 4.2). The spatial regression model was statistically 

significant with R2 of 0.83 indicating that sociodemographic predictors can explain the 

distribution of cancer risks from exposure to air toxics. Specifically, census tract with higher 

population density were more likely to have higher cancer risks from exposure to air toxics. The 

coefficient  0.31 indicated that every increase of 10K people per square miles in a census tract 

was positively and significantly associated 31% increasing in cumulative cancer risks (p<0.001).  

People with higher income tended to have less cancer risks from exposure to air toxics than those 
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with lower income. Every 10K increase of household income will lower than cancer risks from 

exposure to air toxics by 1% (p<0.01). Residents who live close to heavy traffic were also 

exposed to higher cancer risks. Within a year, every increase of 1000 cars on the near road 

within 500 meters of the residents’ house will elevate the cumulative cancer risks from exposure 

to air toxics by 26% (p<0.001). Residents who live closer to the NPL sites had higher cancer 

risks from exposure to air toxics than those who live far away from NPL sites Specifically, given 

an resident who live at the center of a circle area with a 5kilometers radius, one more NPL site 

set within this area is significantly associated with 15 percent increase in cancer risks to this 

resident (p=0.03).  Alternatively, if the number of NPL sites within the circle area is set, 1km 

closer the resident’s house is to the NPL site is significantly associated with 15% increase in 

cancer risks. Proximity to RMP and TSDF positively associated with cancer risks but the 

associations were not statistically significant.  

In contrast, for monitored data, we did not found significant association between 

sociodemographic factors and cancer risks. Furthermore, the direction of associations was not as 

expected for some of the sociodemographic factors and cancer risks. Median household income 

was positively associated with cancer risks indicating people with lower income would have 

lower cancer risks. Traffic density, proximity to NPL sites, and proximity to RMP facilities were 

negatively associated with cancer risks indicating protective effect.  
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Table 4.2 Sociodemographic disparities in cancer risks 

  Modeled   Monitored 
  Coefficient p-Value   Coefficient p-value 
Population density (10K person/ mile2) 0.31 <.001   0.21 0.32 
Median household income (10K) -0.01 <.01   0.01 0.36 
Traffic density (1000 cars/distance) 0.26 <.001   -0.03 0.87 
Proximity to NPL 0.15 0.03   -0.20 0.36 
Proximity to RMP 0.01 0.42   -0.001 0.98 
Proximity to TSDF 184.86 0.10   466.98 0.20 

4.3.3 Sociodemographic disparities in exposure to major carcinogenic VOCs  

For the 4 VOCs targeted as prioritized cancer risks contributors, the strength of the 

association between their ambient concentrations and sociodemographic factors varies largely 

between modeled and monitored data. The results from analyzing modeled data showed 

generally statistically significant associations while the results generated based on monitored 

data gave us non-significant associations (Table 4.3). Additionally, the direction of associations 

was consistent in results from modeled data while was not consistent in results from monitored 

data. For example, traffic density was positively statistically significantly associated with the 

ambient concentration of naphthalene when analyzing modeled data. However, when analyzing 

monitored data, traffic density was negatively associated with the ambient concentration of 

naphthalene.  
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Table 4.3 Sociodemographic disparities in VOCs’ level

 
** p<0.01; *p<0.05; V1- Population density (1000 people/mile2); V2- Median household income 
(10K); V3-Traffic density (1000 cars/distance); V4-Proximity to NPL; V5-Proximity to RMP; 
V6-Proximity to TSDF 

4.4 Discussion 

4.4.1 Previous sociodemographic and environmental factors involved in disparity 

studies 

To address the socioeconomic and demographic disparities in risks from exposure to air 

toxics, various sociodemographic factors have been assessed in previous studies. Race and 

ethnicity was considered one of the most important sociodemographic factors that were 

associated with people’s exposure of air toxics (Gilbert & Chakraborty, 2011; Morello-Frosch & 

Jesdale, 2006). In a local study conducted in Maryland, census tract where residents had high 

fraction of African-Americans yielded three times higher cancer risks than those census tract 

with less faction of African-Americans (Apelberg et al., 2005). In Florida, race and ethnicity 

were reported to be significantly associated with cancer risks. Specifically, proportions of black, 

Hispanic and Asian were all significantly associated with cancer risks (Gilbert & Chakraborty, 

2011). In summary, percentage of minorities is a common factor that has been involved in many 

disparities studies. Another important sociodemographic factor that has been commonly assessed 

in previous studies was socioeconomic status (James et al., 2012; D. Payne-Sturges & Gee, 

V1 V2 V3 V4 V5 V6

1,3-Butadiene 0.03 ** -2.19E-03 ** 0.03 ** 0.03 * 1.65E-03 56.64 **
Benzene 0.25 ** -3.62E-03 0.15 ** 0.09 * 3.48E-03 2.33
Benzyl chloride 0.00 -1.81E-07 ** -5.04E-07 -1.23E-06 -1.74E-07 -1.69E-04
Naphthalene 0.02 ** -1.32E-03 ** 0.02 ** 0.01 * 1.06E-03 19.82 **

1,3-Butadiene 0.18 -0.01 0.19 0.28 * 0.02 -261.12
Benzene -0.10 -0.02 * 0.04 0.09 0.07 * -344.04
Benzyl chloride 0.46 0.02 -0.12 -0.25 -0.03 1123.57 *
Naphthalene 0.13 -3.15E-03 -0.05 -0.14 0.02 194.02

VOCs
Modeled

Monitored
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2006). Several different variables were used previously to represent the socioeconomic status. 

The most common variables for socioeconomic status were median household income and 

percentage of poverty. A study in Louisiana reported that residents live in low-income census 

tracts had 12% more of cancer risks than those live in high-income census tracts (James et al., 

2012). In Houston, Texas, a study reported that residents live in census tracts where the 

proportion of poverty reach 25% experience 4 to 10 times cancer risks from exposure to air 

pollution than those who live in census tracts with lower proportion of poverty (Linder et al., 

2008). In addition to these sociodemographic factors, environmental factors were also assessed 

in previous disparity studies. Traffic impact such as proximity to traffic or traffic density was 

reported to be an important factor which was associated with variation of the exposure to air 

toxics in different communities (Fujita et al., 2013; Wu & Batterman, 2006). A study in 

California reported that air toxics concentrations showed consistent pattern with proximity to 

traffic. Closer to heavy traffic indicated higher exposure to air toxics (Fujita et al., 2013). There 

were also multiple studies in which the proximity to stationary emission sources was utilized as 

one of the factors to address disparity issues (Abel, 2008; Perlin et al., 2001). In the study 

conducted in St. Louis, the proximity to nearest TRI facilities was assessed, the results indicated 

that minorities who lives closer to TRI facilities tend to expose to higher level of air toxics (Abel, 

2008). In another disparity study conducted in West Virginia, Louisiana and Maryland, 

minorities were reported to be more likely to live in poor area which was close to multiple 

industrial emission sources of air pollution (Perlin et al., 2001). In general, three major factors of 

sociodemographic disparity in exposure to air toxics can be summarized from previous studies. 

The first one is socioeconomic status, the second one is traffic and the third one is the proximity 

to stationary emission source. In our study, we utilized the U.S.EPA’s EJSCREEN database and 
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census data as data source for these three major factors of sociodemographic disparities in 

exposure to air toxics. EJSCREEN had advantage on providing consistent geographically 

matched environmental and demographic indicators at census tract level. Particularly, these 

environmental and demographic indicators are prioritized for addressing health disparity issues. 

Previously, EJSCREEN database was rarely used in air toxic related health disparity issues. Our 

study is the first study to implement this new tool in exploring the air toxic related health 

disparity issues so that all the sociodemographic and environmental factors utilized in previous 

studies could be examined together in this study.  

4.4.2 Consistent findings from modeled data  

In previous studies, only model estimated air toxic levels from NATA were used to 

assess the sociodemographic and environmental disparities in risks from exposure to air toxics. 

Therefore, we firstly assessed the health disparity using NATA modeled estimates. Our results 

indicate that there was statistically significant association among sociodemographic factors, 

environmental factors and the cancer risks from exposure to air toxics. The 4 significant factors 

included population density, median household income, traffic density and proximity to NPL 

sites. Compared to previous studies, some of these factors indeed had been reported as 

significant factors that affect health disparities (Fujita et al., 2013; James et al., 2012). Proximity 

to NPL sites was significantly associated with cancer risks from exposure to air toxic while 

proximity to RMP and TSDF were not. This finding indicated that regulation on emissions from 

NPL sites has larger impact on reducing cancer risks from exposure to air toxics comparing with 

regulations to RMP and TSDF facilities. Alternatively, regulation to RMP and TSDF might be 

better implemented than regulation to NPL as the proximity to RMP and TSDF was not 
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significantly associated with cancer risks from exposure to air toxics. Therefore, regulation to 

NPL sites could be furtherly improved. 

4.4.3 Contradictory findings from monitored data 

Our results from analyzing monitored data indicated that the association between 

sociodemographic and environmental factors and cancer risks from exposure to air toxics was 

not statistically significant. Additionally, the direction of association was not consistent with that 

when analyzing modeled data. Although no previous studies have assessed the sociodemographic 

and environmental disparity on cancer risk from exposure to air toxics on the basis of monitored 

measurement, a few previous studies addressing disparity in exposure air toxics using 

sociodemographic segregation index pointed out that the association between air pollution levels 

and segregation index might be not be strong and could be uncertain (Downey, 2007; Downey, 

Dubois, Hawkins, & Walker, 2008; Rice et al., 2014) . The association might vary by air 

pollutants and the direction of association was inconsistent  (Morello-Frosch & Lopez, 2006).  

The differences between modeled and monitored estimations were the major contributor 

to the discrepancies in findings from modeled and monitored data. As aforementioned, although 

the conservative assumptions used in NATA modeling were assumed to lead to overestimation 

of ambient air toxic level (U.S.EPA, 2016g), underestimation and uncertainty in modeled data 

was generally concluded in the previous third-party studies which compared EPA’s NATA 

estimates with monitored measurement of air toxics (Garcia et al., 2014; Logue et al., 2011; 

Lupo & Symanski, 2009). Insufficient information from local small scale emissions sources is 

one of the factors that lead to underestimations of certain air toxics in NATA estimation (Scheffe 

et al., 2016). NATA has been collecting information of air toxic emissions mainly from National 

Emissions Inventory (NEI) and Toxics Release Inventory (TRI); however, various local sources 
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of air toxic emissions may not be regulated or reported to NEI or TRI. For example, personal 

smoking, household Barbecue cooking (Memphis area), dry-cleaning stores and some auto body 

shops were not listed in NEI. As showed in figure 5.1 and 5.2, cancer risks estimated from 

modeled data were higher majorly in southwest Memphis area where more large point emission 

sources clustered. In contrast, cancer risks level predicted from monitored measurement were 

similar around Memphis area, which reflected that air toxic level was almost similar around 

Memphis area. Another difference between modeled estimates and monitored measurement was 

that modeled data was estimated in a way that extreme concentrations could not be captured. In 

comparison, monitored measurement can provide average concentrations after dealing with 

extrema. Additionally, modeled estimates cannot accurately reflect the meteorological conditions 

and photochemical reactions in real environment (Rosenbaum et al., 1999). To be noticed, 

monitored measurement might also be different from modeled estimation due to insufficient 

number of monitors in study area and variation in the distance from monitors to emission sources 

in different census tracts (Garcia et al., 2014; Scheffe et al., 2016).  
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Figure 4.2 Point emission sources distribution in Memphis area 

 

Figure 4.3 Population density distributions in Memphis area 
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4.4.4 Limitations 

There are several limitations in our study. For our monitored measurement, we had air 

sample collected one time in each season in 2014 at each of the 112 sampling site within 106 

census tract. Although we collected duplicate sample to assure the quality of our sample 

collection, but if samples were more frequently collected at each site, we may capture the 

ambient air toxics level better. However, due to limited resources, we did our best to collect as 

much samples in as many sites as possible. Another limitation is that NATA modeled air toxic 

level and the monitored air toxic level are not in the same year. NATA modeled estimates was 

extracted in the year of 2011 while the monitored air toxics were in 2014. The gaps between 

years might lead to difference in distribution of air toxics in Memphis area. The health disparities 

in cancer risks from exposure to air toxics might be different when addressing different mixture 

of air toxics. (H. F. Yu & Stuart, 2016). In our analysis on NATA modeled estimates, all 

carcinogenic air toxics were included. While when we analyzed the monitored measurement, 

only 15 targeted carcinogenic VOCs were assessed.  

We assessed the modeled data using both ordinary least square linear regression (OLSR) 

and spatial regression. The adjusted R square in OLSR was 0.4814 and the residual sum of 

square was 4.5. In the spatial regression, the adjusted R square was 0.58 and the sigma square 

was 0.02. Although the model was improved by using spatial regression, spatial dependency still 

showed in the model as the Breusch-Pagan test and likelihood ratio test showed significance. We 

also analyzed monitored data using spatial regression and OLSR. As monitored data did not 

show spatial autocorrelation, the spatial regression and OLSR showed same results indicating 

non-significant association between sociodemographic factors and cancer risks from exposure to 

air toxics. The results from analyzing monitored data might indicate that the entire Memphis area 
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shared similar exposure pattern to air toxics. Therefore, our findings might not be generalized to 

other area other than similar metropolitan area due to geographical limitation. 

4.5 Conclusion 

Our study is the first one in the U.S.A. utilizing local monitored measurement to explore 

the sociodemographic disparity on cancer risk from exposure to air toxics. The discrepancy 

between results from modeled and monitored data indicated that conclusions made in previous 

studies purely based on modeled data might be misleading when addressing sociodemographic 

disparities issues. The uncertainty in modeled data was critical in this discrepancy. Analyzing 

monitored data is an alternative option to previous approach and is more appropriate for 

revealing the true association between sociodemographic factors and risks from exposure to air 

toxics. The air toxics might be clustered as a whole in the air of entire Memphis area so that there 

are not clear sociodemographic disparities in exposure to air toxics. This study provided 

alternative aspect in addressing disparity issues and provided evidence for future air pollution 

regulation urban planning and public administration. More analysis on monitored measurement 

from local monitoring programs is needed to provide more evidence regarding health disparity 

issues.  
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Chapter 5  

Exposure profiles of air toxics mixtures in microenvironments 

5.1 Introduction 

Air pollution has been one of the most important environmental health concerns because 

air pollutants are ubiquitous and exposure to air pollutants is associated with various health risks 

(Kampa & Castanas, 2008; ODPHP, 2017) .  It is well known that air pollutants exist as mixtures 

in the air and people are exposed to multipollutant mixtures in daily life (Dominici et al., 2010; 

Oakes, Baxter, & Long, 2014). National Academies of Science (NAS), National Institute of 

Environmental Science (NIEHS) and United States Environment Protection Agency (U.S.EPA) 

have prioritized researches in human’s adverse health effect from exposure to multipollutant 

mixtures (NRC, 2004; Rider, Carlin, DeVito, Thompson, & Walker, 2013; U.S.EPA, 2008). 

However, most of previous studies assessed the association between air pollutants and various 

health outcomes via a single pollutant approach omitting the fact that people are exposed to air 

pollutants mixtures. More studies via multipollutant approach are in need to further examine the 

exposure to multipollutant mixtures (Dominici et al., 2010; Hidy & Pennell, 2010; M. Oakes et 

al., 2014).  

The highly correlated and interactive individual air toxics within the mixtures can create 

joint effect which negatively affects human health in a different way from purely individual 

effect of single pollutants (Billionnet, Sherrill, Annesi-Maesano, & Study, 2012; Coker et al., 

2016). In a few recent studies, exposure to air toxics mixtures has been associated with adverse 

health effects such as low birth weight (Coker et al., 2016) and cognitive development of 

children (Stingone, Pandey, Claudio, & Pandey, 2017). However, current scientific evidence is 

still not adequate to explicitly demonstrate the joint effect from mixture of air toxics on human 
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health. Mixture of air toxics varies distinctly in different environment due to variation in terms of 

types of air toxics and the formation of the mixture. The uncertainties in toxicity of air toxic 

mixtures have been major concerns when addressing health risks from exposure to air toxic 

mixtures (Dominici et al., 2010). Additionally, multicollinearity among multiple pollutants and 

difficulties in interpretation of results are critical challenges to researchers in terms of analytical 

methodology (Davalos, Luben, Herring, & Sacks, 2017; Dominici et al., 2010). 

Traditional stepwise linear regression model with interaction terms has limitations in 

estimating the health risks from exposure to multipollutant mixtures when there are three or more 

pollutants that are highly correlated (Cantuaria, Brandt, Lofstrom, & Blanes-Vidal, 2017; 

Dominici et al., 2010).  Therefore, to estimate the join effect from the interaction among the 

highly correlated multipollutant mixtures, various statistical and analytical approaches have been 

adopted in previous studies. For example, Bayesian approach (Bobb et al., 2015), recursive 

partitioning (Stingone et al., 2017), dimension reduction and shrinkage methods (Qian, Zhang, 

Korn, Wei, & Chapman, 2004), classification and clustering metrics, source apportionment such 

as positive matrix factorization (PMF)(Sarnat et al., 2008) and chemical mass balance (CMB) 

techniques have all been applied to explore the joint effect of multipollutant mixtures (Billionnet 

et al., 2012; Davalos et al., 2017). 

To study the exposure to multipollutant mixtures in different area, establishing an 

exposure profile is valuable. The spatial specific exposure profile of mixtures enable researchers 

identify the sources of the mixture, target the communities exposed to mixtures and further 

assess adverse health effect from exposure to mixtures (Stingone et al., 2017). Furthermore, 

exposure profile can be established through multipollutant approach which is promising for 

assessing exposure from multipollutant mixtures (Cantuaria et al., 2017; Dominici et al., 2010) 
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Random forest, one of the recursive partitioning methods, has advantages in analyzing high 

dimension data with interaction among multiple variables (Billionnet et al., 2012; Strobl, Malley, 

& Tutz, 2009) and can classify the exposure profiles of different mixtures (Stingone et al., 2017). 

Previously, most studies using multipollutant approach to assess the exposure to criteria air 

pollutants or indoor volatile organic compounds (VOCs). Exposure to outdoor VOCs mixtures 

was rarely assessed (Billionnet et al., 2012; Coker et al., 2016; Davalos et al., 2017). Our study is 

the first study that adopted random forest approach to establish spatial specific exposure profiles 

of VOC mixtures based on both ambient and indoor monitoring measurement in Memphis area 

where clusters various emission sources. The goal of our study is to classify and eastablish the 

spatial specific exposure profiles for VOC mixtures and prioritize VOCs that distinguish the 

exposure profiles in Memphis area. 

5.2 Method 

5.2.1 Sampling procedure 

From July to November 2016, a total of 130 air samples were collected at Memphis area 

in five different microenvironments. Air samples were collected at 51 different gas stations, 20 

different locations within community, 14 offices at different locations, 30 different resident 

homes and 15 different vehicles. Both active and passive sampling techniques were utilized to 

collect those samples. Active sampling were conducted to collect air samples at 200 ml/min at 

gas stations and inside vehicles for short period time  by paring SKC air sampling pump with 

stainless-steel Tenax TA tube given the average short exposure time in these two micro-

environment in daily life. Air samples collected in communities, resident’s home and offices 

were achieved using passive sampling techniques by installing stainless-steel Tenax TA tube for 

24 hours sampling time.  
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5.2.2 Laboratory analysis  

Collected air samples were analyzed on an automated thermal desorption-gas 

chromatography/mass spectrometry (TD-GC/MS) system for 70 target compounds using the scan 

mode.  Among these 70 compounds, 16 VOCs were detected in all the 5 micro-environments and 

had concentrations that were significant different from non-detection level. These 16 VOCs, with  

known health risks, were benzene, carbontetrachloride, toluene, ethylbenzene, m,p-xylene, 

styrene, o-xylene, isopropylbenzene, propylbenzene, 1,3,5-trimethylbenzene, 1,2,4-

trimethylbenzene, 1,3-dichlorobenzene, 1,2,3-trimethylbenzene, p-isopropyltoluene, d-limonene, 

naphthalene.  

5.2.3 Statistical analysis 

Descriptive statistics were generated for all 16 VOCs for each micro-environment and the 

entire Memphis area. Multivariate analysis of variance (MANOVA) was conducted to detect 

whether the VOCs profile is different for all the micro-environments. Furthermore, pairwise 

analysis was utilized to compare each pair of micro-environments and determine if the 16 VOCs’ 

profile in these micro-environments were significantly different. Sample similarity within each 

micro-environment was tested using Euclidean distance via R package “ade4” (Dray & Dufour, 

2007; Thioulouse & Dray, 2007). Random forest  (RF) algorithm, one of the recursive partition 

methods (Strobl et al., 2009), was applied in the supervised classification machining learning 

mechanism to classify the sampling sites in order to establish spatial-specific exposure profiles 

of VOCs for different microenvironment.  At first, we utilized K-fold (K=5) cross-validation to 

examine the reliability of RF methods in our VOCs monitoring data. Specifically, among all 130 

samples, 100 samples were randomly selected as training data. A total of 2000 trees were 

generated in each supervised RF process.  The rest of 30 samples were used as validation data to 
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verify the classification. The cross validation was repeated for 100 times. The average error rate 

was calculated to be 0.2. Secondly, we applied random forest method to the entire 130 samples 

to identify VOCs which played leading roles in distinguishing exposure profiles of VOC 

mixtures in different micro-Environments including community, gas station, home, office, and 

vehicle. As we considered that the monitoring recorded classification of the sampling sites might 

be misclassified due to the variance of surrounding environment, RF classification results were 

used to establish spatial-specific exposure profiles. The range and average of concentrations of 

the 16 detected VOCs were calculated to demonstrate the spatial-specific exposure profiles of 

different micro-environments. All analysis was conducted using SAS (v9.4, SAS Institute Inc., 

Cary, NC), R (3.4.1& 3.2.2, The R Foundation), Microsoft Excel (2010) and Arc GIS 10.3.1 

(ESRI, Inc.). 

5.3 Results 

The average concentrations of the 16 VOCs in different micro-environments and 

Memphis area were showed in Table 5.1. Toluene and d-Limonene had higher average and 

concentrations than other VOCs. Toluene is one of the compounds in a typical air toxic mixture 

related to gasoline. This mixture consists of benzene, toluene, ethyl benzene, and xylenes 

(BTEX). The concentration of BTEX sampled from gas station ranged from 2.05 to 15 µg/m3, 

which was 20 times higher than those in communities. However, the level of BTEX measured at 

gas station was still far below the corresponding minimum risk levels (MRLs) for acute adverse 

health effects. 
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Table 5.1 Descriptive statistics of target VOCs 

VOCs Mean (µg/m3) 

 
Memphis 
(N=130) 

Community 
(N=20) 

Gas 
Station 
(N=51) 

Home 
(N=30) 

Office 
(N=14) 

Vehicle 
(N=15) 

1,2,3-Trimethylbenzene 0.63 0.09 0.82 0.70 0.38 0.80 
1,2,4-Trimethylbenzene 1.89 0.23 2.72 1.78 1.05 2.30 
1,3,5-Trimethylbenzene 0.45 0.07 0.61 0.46 0.23 0.60 
1,3-Dichlorobenzene 0.72 0.03 0.04 2.85 0.26 0.17 
Benzene 2.09 0.69 3.25 1.74 0.81 1.86 
Carbon tetrachloride 0.84 0.66 0.72 0.89 1.19 1.09 
d-Limonene 10.67 0.89 0.87 33.95 20.57 1.28 
Ethylbenzene 1.50 0.18 2.05 1.89 0.75 1.29 
Isopropyl benzene 0.10 0.02 0.13 0.11 0.05 0.09 
m, p-Xylene 3.99 0.31 4.10 7.47 2.81 2.63 
Naphthalene 0.93 0.09 0.33 3.00 0.35 0.45 
o-Xylene 2.21 0.26 3.02 2.65 1.08 2.21 
p-Isopropyl toluene 0.37 0.05 0.04 1.15 0.65 0.13 
Propyl benzene 0.29 0.04 0.44 0.29 0.12 0.28 
Styrene 0.31 0.10 0.13 0.79 0.19 0.38 
Toluene 10.50 1.20 15.00 11.37 6.67 9.41 

 

5.3.1 Variance of exposure in different sampled microenvironments  

There was significant difference in VOCs levels among different sampled 

microenvironment as the global null hypothesis test of MANOVA was significant (p<.001). 

Furthermore, significant difference in paired comparison indicated that concentrations of 

different VOCs in each microenvironment are significantly different from that in any other 

microenvironments (Table 5.2). 
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Table 5.2 Paired comparison of VOCs’ level in different Microenvironment 

Pair of Micro-Environment DF Pillai Approx F Num DF Den DF Pr(>F) 
Gas Station vs Community 1 0.57 4.50 16 54 <.001 
Gas Station vs Vehicle 1 0.48 2.79 16 49 0.001 
Gas Station vs Office 1 0.98 157.91 16 48 <.001 
Gas Station vs Home 1 0.97 119.83 16 64 <.001 
Community vs Vehicle 1 0.77 3.75 16 18 0.001 
Community vs Office 1 0.99 121.80 16 17 <.001 
Community vs Home 1 0.97 57.29 16 33 <.001 
Vehicle vs Office 1 0.99 91.60 16 12 <.001 
Vehicle vs Home 1 0.97 60.24 16 28 <.001 
Office vs Home 1 0.82 7.66 16 27 <.001 

 

The level of VOCs also varied within same sampled micro-environment indicating the 

potential interaction among multiple micro-environment and emission sources. Specifically, air 

samples collected in vehicles had the highest similarity (90%) indicating that there was a major 

exposure pattern to VOCs in vehicle due to the separated space inside a vehicle. Gas stations had 

the second highest similarities (89%) showing that the exposure pattern to VOCs were quite 

similar due to common emission sources such as gasoline. Air sample collected at office and 

residents’ homes were 77% and 64% similar indicating that more personal exposure pattern 

existed at homes than offices. Air sample collected in communities had the least similarities 

(59%) indicating that multiple emission sources within communities were contributors to the 

existing air toxics and surrounding environment played an important role affecting the air toxic 

level in different communities.  
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5.3.2 Supervised random forest classification 

We conducted K-fold (K=5) cross validation to verify the supervised random forest 

approach for our monitoring data in this study. Among one hundred RF, 80 RF have error rate 

less than 0.3. The average and median error rate is 0.2. Therefore, the RF was an appropriate 

classification method for our study. 

Exposure profiles in different micro-environments were partially reflected on the 

variance in concentrations of same VOCs in different micro-environments. Certain VOCs were 

prioritized as indicators for categorizing exposure patterns based on the supervised Random 

forest. The top 5 VOCs that determined the categories of exposure profiles are p-isopropyl 

toluene, carbon tetrachloride, benzene, d-limonene, and styrene.  

We also estimated the microenvironment misclassification error rate (Table 5.3).  Gas 

station, Office, Home are less likely to be misclassified. Community has a misclassification error 

rate of 0.45 and was likely to be misclassified as Gas Station. Vehicle has a misclassification 

error rate of 0.47 and was likely to be misclassified as Gas Station, home and community. An 

explanation for this is that vehicle’s emissions are very similar from identified emissions from 

gas station. In the community, residents usually have several vehicles at their house and some 

gas stations were close to communities. Therefore, misclassification is more likely to happen. 

Table 5.3 Classification of different microenvironment 

  Community Gas Station Home Office Vehicle Class Error 
Community 11 9 0 0 0 0.45 
Gas Station 7 44 0 0 0 0.14 
Home 2 0 27 1 0 0.10 
Office 0 0 2 12 0 0.14 
Vehicle 1 5 1 0 8 0.47 



88 
 

The spatial specific exposure profile for community, office, home, gas station, and 

vehicle were demonstrated via the concentration range of those 16 VOCs in each micro-

environments classified by random forest . In general, the concentrations of 16 detected VOCs 

were low in Memphis area. Home had more VOCs with high concentrations compared with 

other microenvironment, while community had the least number of VOCs with high 

concentrations. However, the toxicity of VOCs varies. Although some VOCs had low 

concentration, exposure to these VOCs might lead to more health risks than exposure to VOCs 

with higher concentration but lower toxicity. For example, D-limonene had highest maximum 

concentration (246.32 µg/m3) and highest median concentration (19.87 µg/m3) in home 

environment where toluene had second highest maximum concentration (76.25 µg/m3) and 

median concertation (5.23 µg/m3). Exposure to toluene might lead to more health risks than 

exposure to d-limonene at home because d-limonene has been studied and considered as with 

low toxicity based on animal experiments (J. Sun, 2007) while toluene is considered more toxic 

due to its target organ such as central nervous system (Greenberg, 1997; Sarigiannis, Karakitsios, 

Gotti, Liakos, & Katsoyiannis, 2011). Therefore, it is important to know the range of 

concentrations of VOCs to estimate possible health risks of exposure.  

Some VOCs stood out in particular microenvironment as they had wider range and higher 

maximum concertation in the mixtures featuring certain microenvironment.  The exposure 

profiles were presented in figure 4.1. The VOC 1,3-Dichlorobenzene (0.01~32.6 µg/m3, 

mean=1.54µg/m3), naphthalene (0.01~15.78 µg/m3, mean=0.84µg/m3) , toluene (0.18~2.69 

µg/m3, mean=0.91µg/m3) and d-limonene (0~2.55 µg/m3, mean=0.72µg/m3) were the four VOCs 

that showed higher concentrations in community environment. Toluene (0.57~147.29 µg/m3, 

mean=12.23µg/m3) showed highest average concentrations and extrema compared with other 
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VOCs in office. Three VOCs including m, p-xylene (0.21~102.43 µg/m3, mean=8.28 µg/m3), d-

Limonene (0.13~49.71 µg/m3, mean=5.77µg/m3) and o-xylene (0.13~35.05 µg/m3, 

mean=5.77µg/m3) had higher level of concentrations than the rest VOCs. D-limonene 

(3.44~246.32 µg/m3, mean=41.27µg/m3), toluene (0.63~76.25 µg/m3, mean=9.12 µg/m3), m, p-

xylene (0.38~33.04 µg/m3, mean=5.27 µg/m3), and naphthalene (0.04~24.53 µg/m3, 

mean=2.13µg/m3) were representative VOCs at home. Benzene (0.5~35.41 µg/m3, 

mean=3.28µg/m3), toluene (0.32~177.19 µg/m3, mean=14.81µg/m3), ethylbenzene (0.05~40.23 

µg/m3, mean=1.93 µg/m3), m,p-xylene (0.08~77.74 µg/m3, mean=3.84µg/m3), and o-xlyene 

(0.06~58.68 µg/m3, mean=2.82µg/m3) are typical mixture known as BTEX. BTEX presented 

higher concentration in the microenvironment of gas station. To be noticed, 1,2,4-

trimethylbenzene (0.07~66.87µg/m3, mean=2.53 µg/m3) also showed high concentrations at gas 

station. Toluene (0.69~37.49 µg/m3, mean=8.51 µg/m3), m, p-xylene (0.24~15.03 µg/m3, 

mean=3.47µg/m3), 1,2,4-trimethylbenzene (0.17~14.85 µg/m3, mean=3.47µg/m3) , and o-xlyene 

(0.17~13.58 µg/m3, mean=3.05µg/m3) were the four VOCs showed higher concentrations among 

the VOCs in vehicles.  

Although p-isopropyl toluene had relative low concentrations (mean=0.4 µg/m3, 

median=0.04 µg/m3) in these five microenvironments exposure profiles, its concentration and the 

correlated concentration of other VOCs varied distinctly. Thus p-isopropyl toluene was ranked as 

the top VOC to distinguish these five exposure profiles. The VOC p-isopropyl toluene or p-

cymene was known to have neurotoxicity for animals (Lam, Ladefoged, Ostergaard, Lund, & 

Simonsen, 1996). Carbon tetrachloride and benzene were the No.2 and 3 for distinguish the 

spatial-specific exposure profile of VOCs mixtures. Carbon tetrachloride was known to be toxic 

to liver, kidney, lung, testis, blood and central nervous system (Huang, Lei, Wei, & Zeng, 2014). 
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Benzene was known to be carcinogenic and exposure to benzene can cause leukemia (Bollati et 

al., 2007; Jex & Wyman, 1996). In comparison, toluene ranked as 7th VOC for distinguishing 

exposure profiles, but it had consistent relatively high median concentration in all 

microenvironments. Toluene was known to negatively affect the central nervous system of 

human beings (Greenberg, 1997; Sarigiannis et al., 2011). 
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Figure 5.1 Exposure profiles of different micro-environments in Memphis area 
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 5.4 Discussion 

5.4.1 Exposure profile is beneficial for assessing exposure to multipollutant mixtures 

It is important to quantify the exposure from multipollutant mixtures through 

multipollutant approach because single or co-pollutant approach has weakness in estimating high 

dimensional interactions among highly correlated pollutants in the mixtures (Dominici et al., 

2010). Studying exposure profile for geographical area such as city or County is beneficial for 

assess exposure to multipollutant mixtures in two major aspects. First, well-established spatial-

specified exposure profiles can help local administration to target major air pollution emission 

sources for affected communities. Second, exposure profile generated through multipollutant 

approach can serve well in a two-stage multipollutant approach involving exposure profile 

identification as the first stage and the second stage as assessing association between exposure 

profiles and health risks (Davalos et al., 2017; Dominici et al., 2010; Stingone et al., 2017).  

5.4.2 Previous multipollutant approaches for assessing exposure to mixtures 

Uncertainty in components of various multipollutant mixtures, multicollinearity, 

sophisticated interaction among pollutants and difficulties in interpreting results are major 

concerns and drawbacks of studies on exposure to multipollutant mixtures (Billionnet et al., 

2012; Davalos et al., 2017; Dominici et al., 2010; M. Oakes et al., 2014). Beyond traditional 

stepwise algorithm in model selection, multipollutant approach via different statistical 

approaches has been applied to study exposure to multipollutant mixtures.  In general, these 

statistical approaches can be categorized into four categories as deletion/substitution/addition 
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(DSA) algorithm, linear regression awith shrinkage feature, dimension reduction approach and 

nonparametric approach (Billionnet et al., 2012; Davalos et al., 2017).  

Deletion/substitution/addition (DSA) algorithm was built upon the traditional stepwise 

model selection procedure and was applied as one of the multipollutant approaches previously 

(Beckerman et al., 2013; Dominici, Wang, Crainiceanu, & Parmigiani, 2008; Mortimer et al., 

2008). For example, DSA was applied in a study assessing the association between exposure to 

criteria air pollutants and lung function among children who have asthma (Mortimer et al., 

2008). DSA is a more optimal model selection method than the suboptimal stepwise model 

selection method (Fernandes, Geeven, Soetens, & Klontza-Jaklova, 2011; Sinisi & van der Laan, 

2004) and has advantage in dealing with outlier via cross validation during model selection but is 

only appropriate for non-nested model search (Dominici et al., 2008).  

Linear regression with shrinkage feature can be categorized into two sub categories as 

non-effect modification and effect modification approach (Davalos et al., 2017). Given linear 

shrinkage approach with no effect modification, two typical methods used are multi-level model 

(Suh, Zanobetti, Schwartz, & Coull, 2011) and penalized regression methods such as least 

absolute selection operator (LASSO) and ridge regression (S. Roberts & Martin, 2005). 

Alternatively, linear shrinkage approach with effect modification can be implemented via 

Bayesian methods or LASSO etc. (Z. C. Sun et al., 2013). The linear shrinkage approach without 

interaction term in the model may miss the multipollutant interaction while the linear shrinkage 

approach with interaction term may be inappropriate due to model uncertainty and collinearity. 

Alternatively, linear shrinkage approach has advantage on ease of interpreting results (Davalos et 

al., 2017). 
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Dimension reduction approach also has two sub categories as non-supervised and 

supervised dimension reduction approach (Davalos et al., 2017). Principle component analysis 

(PCA)(Sacks, Ito, Wilson, & Neas, 2012), factor analysis, Positive Matrix Factorization 

(PMF)(M. M. Oakes et al., 2014), cluster analysis (Qian, Chapman, et al., 2004; Qian, Zhang, et 

al., 2004) and partial least square (PLS) (Seagrave et al., 2006) are major methods applied in 

both unsupervised and supervised dimension reduction approach when assessing exposure to 

multipollutant mixtures. Both unsupervised and supervised dimension reduction approach have 

advantages on reducing overfitting of models when number of predictors are more than sample 

size. However, the unsupervised dimension reduction may have difficulties in determining 

number of factors or clusters and interpreting the meaning of each factor or cluster when lack of 

scientific justification(M. Oakes et al., 2014). Supervised dimension reduction approach may 

lose data features due to assumption made for pollutant inclusion criteria (Billionnet et al., 2012). 

For example, source apportionment approach such as PMF requires prior knowledge of grouping 

chemicals. In our study, the VOCs’ grouping is not previously known. Furthermore, the VOCs 

mixture varies in different micro-environments. 

Nonparametric approach includes various statistical methods (Billionnet et al., 2012; 

Davalos et al., 2017). Classification and regression tree (CART)(Gass, Klein, Chang, Flanders, 

& Strickland, 2014; Stingone et al., 2017), random forest (Billionnet et al., 2012; Breiman, 

2001), Bayesian Kernel machine regression (KMR) (Bobb et al., 2015), and Bayesian profile 

regression (Coker et al., 2016) are major methods applied in as nonparametric approach when 

assessing exposure to multipollutant mixtures. Nonparametric approach has advantages over 

previous approaches in assessing sophisticated non-linear interaction and is also adaptive to high 

dimensional data analysis (Billionnet et al., 2012; Davalos et al., 2017).  
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Among these multipollutant approaches, K-means and hierarchical clustering (Austin, 

Coull, Thomas, & Koutrakis, 2012), Bayesian profile regression (Coker et al., 2016; Molitor et 

al., 2011) and CART (Gass et al., 2014; Stingone et al., 2017) were utilized to generate exposure 

profiles of criteria air pollutants mixtures. Although these methods demonstrated their strength in 

establishing exposure profiles, they have their limitations. Bayesian method has limitation in 

dealing with high dimensional data (Coker et al., 2016; M. Oakes et al., 2014). Selection of 

number of clusters and interpretabilities of clusters are major concerns when using clustering 

methods (Austin et al., 2012; Billionnet et al., 2012). The results from decision trees algorithm 

(e.g., CART) may vary quite differently if the training data (different subset of data as training 

data) changes (Prasad, Iverson, & Liaw, 2006). Random forest randomly select predictors at each 

node to reduce the correlation of subtrees and reduce the overfitting of model when generate 

large number of trees (Berk, 2006; Breiman, 2001).  

5.4.3 Strength and limitations of current study 

Most of previous studies using multipollutant approaches were focusing on criteria air 

pollutants (Zanobetti, Austin, Coull, Schwartz, & Koutrakis, 2014) and rarely utilized 

multipollutant approach to study ambient air toxics such as outdoor VOCs (Davalos et al., 2017). 

No previous studies established exposure profiles of VOCs mixtures using random forest 

(Billionnet et al., 2012; Davalos et al., 2017; M. Oakes et al., 2014). Furthermore, most previous 

studies via multipollutant approaches utilized modeled data such as that from National Air Toxic 

Assessment (NATA) which has limitation to capture extrema (Rosenbaum et al., 1999; Scheffe 

et al., 2016). The strength of our current study can be generalized into three major aspects. First, 

our study is the first study targeting on exposure profiles of both indoor and outdoor VOC 

mixtures via multipollutant approach. Second, our study is the first study adopted random forest, 
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one of the very best classifier (Berk, 2006; Breiman, 2001), to classify and establish exposure 

profiles of VOCs mixtures. Thirdly, our analysis was on the basis of monitoring measurement. 

Particularly, supervised random forest utilized on monitoring measurement in our study was 

cross validated and was innovative in establishing exposure profiles. Additionally, compared to 

CART which create one decision tree with many subtrees that are potentially correlated, random 

forest can create less correlated subtrees and reduce bias via the random selection of predictors. 

Furthermore, RF generated large number of trees (2000 trees in our case), it also reduced the 

risks of overfitting data (Berk, 2006; Prasad et al., 2006). Rather than directly calculated 

concentration range of VOCs of each microenvironment based on documented 

microenvironment types, our study utilized cross-validated RF to reduce the random error in 

order to reflect the true exposure profile as close as possible. In terms of interpretability, as our 

monitoring measurement was from sample we collected in documented micro-environment, the 

general categories of micro-environment were known. Thus, after we utilized RF to classify the 

samples, we could easily interpret the categories with the five type of microenvironment we 

documented. 

Our study also had limitations. Uncertainty in sampling was one of the limitations of the 

current study. The number of sampling sites was still limited considering the entire Memphis 

area. However, with limited funding and accessibility to certain locations, we chose the most 

representative locations for each microenvironment. We were not able to collect repeated 

samples for same locations due to limited funding and restricted time schedule. Our 

measurement might not reflect the long term exposure to VOCs mixtures. However, we were 

trying to estimate the range of concentrations of VOCs mixtures in different types of 

microenvironment and we collected multiple samples for same microenvironment from July to 
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November which captured the characteristics of warm and cold seasons. Significant weather 

changes during outdoor sampling and acute emission of VOCs from unexpected sources might 

also affect the measurement. Uncertainty in lab analysis was another limitation and was 

contributed by multiple factors. The major factor is the difference between the concertation of 

the analyte and the minimum detection limits (MDL) of the VOCs. Uncertainty increases when  

the concertation of the analyte approaches the MDL (C. Jia et al., 2006). Despite the 

uncertainties of samplings and lab analysis, our results might not be generalized to estimate 

exposure profiles of other counties because the exposure profile established based on our 

monitoring measurement was spatially specific. However, the cross-validated RF algorithm we 

applied can be used to classify VOCs samples with unknown category of microenvironment.  

5.4.4 Further applications of current study 

Assessing the exposure to multipollutant mixtures via multipollutant approach is the 

current and future trend in environmental health studies. Multipollutant approach shall be 

adopted to assess the exposure to air toxics mixtures as well. Exposure profiles is useful for 

studies which  further explore the association between health risks and exposure (Austin et al., 

2012; Molitor et al., 2016; M. M. Oakes et al., 2014; Pearce et al., 2016; Stingone et al., 2017). 

One of the goals of our study was to serve as an inspiration for future studies to further explore 

the exposure profile of air toxic mixtures with different statistical methods. The cross validated 

supervised RF can be further tested with data collected by future studies. Another goal of our 

study is to establish the exposure profile of VOCs mixtures for Memphis area. Our exposure 

profile can be utilized to prioritize VOCs subgroups for ad hoc regulation. Furthermore, the 

exposure profile established by current study can be further applied into studies examining the 

association between VOCs mixtures and various health risks in Memphis area. 
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5.5 Conclusion 

Our study classified VOCs mixtures by 5 microenvironments and established the 

exposure profile of VOCs mixtures for each microenvironment via cross-validated supervised 

random forest machine learning. The VOC p-Isopropyltoluene, carbon tetrachloride and benzene 

were the top 3 VOCs to distinguish the spatial-specific exposure profile of VOCs mixtures. 

Toluene had consistent relative high average concentrations and wide range of concentrations in 

all profiled microenvironments. Given the level of toxicity, carbon tetrachloride, benzene and 

toluene need to be prioritized in Memphis area considering potential associated health risks. In 

conclusion, exposure profile is important in exposure assessment as the exposure to air toxics is 

not to individual air toxics but to mixture of air toxics. An exposure profile can highlight the 

exposure patterns in different microenvironment which is useful in determine the level and 

characteristics of the exposure. Additionally, exposure profiles served well for future studies that 

focus on the exposure assessment and investigating health risks from exposure to air toxics 

mixtures. A well-established exposure profile is useful to prioritize specific mixtures for 

strengthening air pollution regulations, facilitating decision making and improvement of health 

policies.  



99 
 

Chapter 6  

Conclusion 

Our living environment is closely associated with our health in many aspects. Air quality 

is one of the most important indexes that reflect the quality of our living environment. Air 

pollution affects our health every time we breathe. Both acute and chronic exposure to air 

pollution are associated with various adverse health outcome (Kampa & Castanas, 2008). To 

assess the exposure to air pollutants and examine the health disparity from exposure to air 

pollutants, the essential work is to have reliable measurement or appropriate estimation of air 

pollutants level in our living environment. Monitoring measurement and model estimation are 

two major source of air pollutants level. Model estimation from EPA NATA was widely used to 

examine health disparities from exposure of air pollutants due to the extended geographic 

coverage and convenient access of the data. NATA model have conservative assumption which 

tend to lead to overestimation of actual air pollutant level (U.S.EPA, 2016g). However, previous 

studies compared the model estimation to monitoring measurement and concluded that model 

estimation generally underestimate the monitoring measurement. Given that the model 

estimation is improved along time, assessing the latest model estimation from NATA 2011 is 

imperative for its numerous applications. On the basis of accurate measurement of air pollutant 

level, exposure to air toxics mixtures can be assessed through multipollutant approach rather than 

single pollutant approach because people expose to air toxic mixtures in reality. Exploring the 

interaction among multipollutant and assess the exposure to mixture of air pollutants have been 

prioritized (Dominici et al., 2010). People in different microenvironment usually expose to 

various mixtures of air pollutants. The variance of air pollutants mixture can be reflected in 

exposure profiles of air pollutants (Stingone et al., 2017). No previous studies established 
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exposure profiles via multipollutant approach for air toxics such as VOCs. Therefore, study 

exploring the exposure profiles of VOCs via multipollutant approach is in need. Variance in 

exposure to air pollutants could also be reflected on health disparities among people. As most 

previous studies on health disparities have limitations on only utilizing NATA modeled 

estimations for assessment, conducting a health disparity study adopting both NATA modeled 

estimations and monitored measurement can bring in alternative thoughts on assessing health 

disparity. Given that Memphis area clusters various air pollution emission sources, assessing the 

exposure to air pollutants and examine the health disparities from exposure to air pollutants are 

important for improving environmental health. 

This thesis firstly evaluated the model estimation of air pollutants level from the latest 

NATA (NATA 2011) through comparison with monitored measurement from AQS at both 

national and EPA regional geographical scale. Secondly, the risk assessment was conducted 

based on the measurement from our local monitoring program REACT study in Memphis area. 

Thirdly, the health disparity from exposure to air toxics was examined using both NATA 2011 

modeled measurements and monitoring measurements from REACT study. Finally, exposure 

profiles of VOCs mixtures in 5 typical microenvironments of Memphis area were established via 

supervised random forest machine learning.  

The results from this thesis provided several implications for public health policies. In 

Memphis area, cancer risk from VOCs needs to be noticed for regulation because it is much 

higher than that at national level. Naphthalene need to be prioritized for regulation as it was the 

major cancer risk contributor. Toxicity on neurological system need to be flagged as it ranked as 

top non- cancer risks from exposure to VOCs for residents in Memphis area. p-Isopropyltoluene, 

carbon tetrachloride and benzene should also be prioritized for regulation as they were the top 
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three VOCs that distinguish the exposure profiles of different micro-environment in Memphis 

area. 

This thesis provided strong evidence that comparison between modeled estimation and 

monitored measurement via the new framework with LOQ provided a method introducing 

laboratory analysis into statistical analysis for future assessment. Cross validated supervised 

random forest machining learning can be applied in future studies to establish exposure profiles 

of multipollutant mixtures. NATA might be utilized cautiously to serve as a practical alternative 

of monitoring measurement in assessment of health disparity from exposure to air pollutants but 

underestimation of certain air pollutants is the major drawback of NATA modeled estimation. 

More analysis on monitored measurement via local monitoring program is in need to provide 

more evidence on health disparity issues. In conclusion, conducting monitoring program for 

measurement of local VOCs level is important for assessing health risks from exposure to VOCs 

and health disparities from exposure to VOCs. 
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