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Abstract 
 

Almabadi, Huda M., Ph.D. The University of Memphis. May 2018. Mesoscopic light scattering 
approach for structural disorder analysis of biological cells: application in cancer diagnostics. 
Major Professor: Prabhakar Pradhan, Ph.D. 

Optical techniques are often used to study biological cells and tissues to gain valuable 

information about them. Recently, the mesoscopic physics based light scattering techniques have 

provided unprecedented insight into the physical properties of biological systems. In particular, 

the mesoscopic light transport and light localization approaches allow to measure and quantify 

nano – to micron scale structural alterations in the biological system. The applications of these 

techniques have been foreseen in efficient diseases diagnostics and therapeutic studies. Genesis 

and progression of diseases such as cancer is known to accompany with structural alterations in 

the building blocks of cells, such as DNA, proteins, lipids, etc. In that context, this dissertation 

presents a detailed study on quantification of structural changes in the cancer cells, by employing 

the mesoscopic physics based light transport and light localization analysis. Two different 

techniques, namely the partial wave spectroscopy (PWS) (light transport) and inverse 

participation ratio (IPR) (light localization), are implemented to image and quantify ‘structural 

disorder’ developed as a result of alteration in the cellular structure caused by cancer diseases. 

The PWS and IPR techniques were used to quantify structural disorder, represented as ‘disorder 

strength’, and thus differentiate normal from cancer cells in several human breast, brain and 

prostate cell lines. Additionally, the effect of drug resistance developed by the prostate cancer 

cells, on prolonged chemotherapy treatment, on the structural disorders of the cells was also 

analyzed.  Results show that the cancer cells have higher structural disorder compared to the 

normal cells and that the degree of structural disorder is correlated with the 

aggressiveness/metastatic potential of the cancer cells. The results with drug study suggest that 

the cancer cells which develop resistance to the chemotherapy become more aggressive. Further, 
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the results of this study strongly indicate that the parameter disorder strength can acts as an 

efficient biomarker/numerical index to assess hierarchy of cancer as well as evaluate efficiency 

of drug treatment processes 
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1 Introduction  

Cells in the human body can be divided into two major groups: differentiated cells and 

undifferentiated cells. Stem cells are included in the undifferentiated group. With few 

exceptions, specialized cells can no longer divide to produce copies of themselves. However, 

stem cells can do so in a process called mitosis (cell division) to replace damaged or short-lived 

specialized cells. In normal cell division, stem cells undergo DNA replication. If such replication 

is not completed or damage occurs to the DNA, cell division is stopped, and the problems are 

corrected. Cancer is a disease in which stem cells lose control of the normal cell division 

mechanism and start dividing and growing even with DNA damage and genetic alterations.  

DNA encoded genes play an important role in cancer initiation and development. Gene 

alteration occurs when there is a change in the DNA nucleotide sequence (i.e., genetic mutation). 

The accumulation of multiple mutations eventually leads to uncontrolled cell growth (cancer). 

Genetic alterations affect two groups of genes associated with cancer: proto-oncogenes 

(oncogenes) and tumor suppressor genes. Normally, proto-oncogenes produce proteins that 

enhance cell division and suppress cell death, while tumor suppresser genes produce proteins 

inhibit cell division and growth to prevent tumor formation. An example of an aberrant tumor 

suppressor gene occurs in Li-Fraumeni syndrome, which involves the p53 protein. In a normal 

cell cycle, p53 activates the transcription of the p21 protein. Later, the protein stops the cell cycle 

from moving into the G1 phase, where the duplication of DNA occurs. If there is damage present 

in the DNA, the block allows the cell to repair the DNA before replication. If the error cannot be 

repaired, p53 triggers the cell programmed death. Mutations of these two gene groups lead to the 

two genes losing their normal functions and ability to control cell division and cell death.  
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The genetic mutations in these two groups of genes can be of two types: germline 

mutation (inherited cancer) and somatic mutation (non-inherited cancer). A germline mutation 

occurs in a germline cell (egg or sperm) and thus will be incorporated into the DNA of every cell 

of an offspring. Somatic mutations can happen in any type of cell in the body except the 

reproductive cells; thus, somatic mutation is not passed onto offspring. Cancer caused by somatic 

mutations accounts for 90-95% of all cancer types. 

The first step in tumor growth is hyperplasia, the increase cells numbers resulting from 

losing control of growth (Fig.1.1). In hyperplasia, cells appear normal microscopically (or, 

cytologically). The second stage is dysplasia, in which cells continue to grow in an uncontrolled 

manner and appear abnormal under a microscope. Hyperplasia and dysplasia may or may not 

develop into form cancer. If the cell growth remains localized at the primary location, it is called 

benign and non-invasive. On the other hand, if the tumor cells spread away from the primary 

tumor location, they are called malignant, which is the most severe type of tumor. 

 

 

 

 

 

 

 

 

Tumors can arise from any specialized cells in the body. For example, tumors initiating 

from the epithelial tissues are called carcinomas. Carcinomas are the most common type of 

Figure 1.1: The histological changes occur in the epithelium cells with the development of 
cancer. (Taken from https://www.cancer.gov/publications/dictionaries/cancer-
terms/def/dysplasia Accessed: 4/5/2018) 
 
 

https://www.cancer.gov/publications/dictionaries/cancer-terms/def/dysplasia
https://www.cancer.gov/publications/dictionaries/cancer-terms/def/dysplasia
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tumors, responsible for around 80% of human cancer. One type of carcinoma is adenocarcinoma, 

which is formed from epithelial cells that contain specialized cells (secretory cells) that secrete a 

substance to the tissues they line. Some of the tumors that start in the breast, prostate, and colon 

are adenocarcinomas. Another example is sarcoma, which represents tumors that occur in soft, 

connective, and supportive tissues, such as tumors that start in muscles, blood vessels, bones, and 

fat. Osteosarcoma and liposarcoma are two types of sarcoma that begin in bones and fat, 

respectively. 

1.1 Clinical Cancer Diagnostics Techniques  

Cancer is a global problem and the number of cancer patients increases every year. Therefore, 

cancer patients have put tremendous pressure on the healthcare systems in terms of cost and 

time. Cancer screening and diagnosis can save lives; therefore, there are routine screenings for 

different types of cancer. We will discuss some specific cancer cases that are addressed in this 

thesis.  For example, if a patient shows symptoms of prostate, or brain, or breast cancer, a 

general test is ordered. Based on the results of the test, if a patient’s initial screening is positive, 

the doctor will advise a more detailed examination through some or all of the following tests, 

depending on tumor location: a histopathology test, a prostate-specific antigen (PSA) blood test, 

and imaging tests. Improved diagnostic methods hold promise for enabling and care for more 

patients. 

1.1.1 Histopathology 

Histopathology is the examination for signs of a disease in a tissue by using a microscope. In a 

common procedure in which a stained sections of tissues (biopsies) are examined under a 

microscope by an experienced pathologist for evidence of cancer cells. This procedure is 

considered as the “gold standard” in cancer diagnosis.1 After the targeted tissues are removed 
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from the body, preparation of the histopathological slide involves five steps: fixation, processing, 

embedding, sectioning, and staining. Fixation preserves the biological sample structurally and 

chemically in as natural state as possible and prevents cell/tissue autolysis. A chemical substance 

is needed to stabilize the cell content of proteins and nucleic acids by making them insoluble. 

Processing removes water from the sample (dehydration) and replaces the water with material 

that can be solidified, allowing a sufficiently thin section to be cut. The embedding of a 

biological sample involves placing it in molds with liquid embedding material that later hardens. 

Sectioning cuts thin biological tissue sections from the hardened block of the biological sample. 

A steel knife mounted in a microtome may be used to cut sections for light microscopy studies. 

The typical thickness of a thin tissue section for a light microscopy studies is 5 μm. Finally, 

staining is an important step in histopathology because it increases the contrast of the sample 

under microscopy light and hence the clarity of the examined sections. Another advantage of 

staining is that it allows one to selectively visualize different cellular components of a tissue. 

Hematoxylin-Eosin (H&E) staining has a long history in medical diagnosis. Eosin stains 

connective tissue and cytoplasm pink or red, while Hematoxylin stains cell nuclei blue or violet.  

1.1.2 Prostate-Specific Antigen (PSA) Blood Test 

The PSA is a protein produced by normal and cancer cells in the prostate gland. The PSA test 

measures the amount of PSA in nano-grams per milliliter (ng/ml) in a blood sample withdrawn 

from the patient’s arm veins. The cut-off level (normal) for PSA in blood is 4 ng/ml, and at 

higher values prostate cancer is suspected. A PSA level of more than 10 ng/ml increases the 

chance of prostate tumor to over 50%. However, a PSA level below 4 ng/ml does not reduce the 

chance of prostate cancer. Different factors affect the PSA and can lead to decreases or increases 

in the PSA level in the blood, such as advanced age, prostatitis (increase PSA), aspirin, and 

https://en.wikipedia.org/wiki/Medical_diagnosis
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obesity (decrease PSA). The sensitivity of the PSA test is 21% for detecting any prostate cancer 

and 51% for detecting high grade prostate cancer, and it has a specificity of 91%.2 Moreover, this 

test has a very low ability to discriminate prostatic hyperplasia.3 

1.1.3 Imaging Tests 

An imaging test captures an image of the tissues inside the human body by using different types 

of energy, such as x-rays and magnetic fields. Imaging tests can be helpful in cancer diagnosis as 

they allow the doctor to examine a mass for cancer. Imaging tests, however, are only part of the 

cancer diagnosis process in addition to lab tests because they carry certain limitations, as tumors 

must be large enough to show up on an imaging test. Different types of imaging tests include 

computer tomography (CT) scan, magnetic resonance imaging (MRI) scan, mammography, and 

ultrasound. Table 1 compares features of conventional imaging techniques for cancer diagnosis. 

Conventional clinical techniques have limitations, and none are without drawbacks. Some 

are extremely expensive or invasive, while others are prone to technical problems. Therefore, 

there is a continuing demand for an alternative that is inexpensive, safe, and fast as well as 

optical methods and techniques that overcome limitations in the clinical diagnostic techniques. 

1.2 Potential of Optical Techniques in Diagnostic Applications 

1.2.1 Conventional Optical Methods: Scattering Techniques 

Light scattering by optically heterogeneous media is a fundamental form of light-matter 

interaction. Biological cells and tissues are heterogeneous optical media, and light scattering is 

the most dominant form of light-tissue/cell interaction in comparison with absorption, which is 

very low in the optical regime of electromagnetic radiation. Light scattering techniques based on 

the optical properties analysis of the biological system have a significant impact on the 

characterization of biological and biomedical sciences. In cell biology, light scattering 
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phenomena are utilized as a tool to investigate the structure of cell organelles. The structural 

changes of organelles, such as nuclei and lysosomes, have been monitored using optical 

scattering methods and linked to cellular functions, such as apoptosis, metabolism activity, and 

differentiation.4,5 

Table 1.1. Imaging Techniques 

 

 

  
 

 

 

 

 

 

 

 

 

 

 

 

 

Applications such as bacteria identification and macromolecule size characterization have 

been studied using light scattering techniques.6,7  The field of biomedical optics shows an 

increase in the variety of optical scattering diagnostic techniques applied for detecting disease 

Clinical 
Imaging 
System  

Applications Limitations  

Mammography • Breast • Radiation 
exposure 

• False-positive 
results (young 
women) 

MRI Scan • Liver 
• Heart  
• Breast 
• Brain  
• Cartilage 
• Ligaments 

• Tissue 
calcifications not 
visible   

• Safety issues 
(metallic implants)  

Positron 
Emission 
Tomography 
(PET) 

• Breast 
• Brain  
• Whole body 
 

• Radioactive 
substance decays 
quickly (short life 
time) 

• Expense  
• Regulatory  

CT Scan • Angiography 
• Lungs 
• Head and 

Abdomen 
• Brain 

• Radiation  
• Requires IV 

contrast media  

Ultrasound  • Muscles 
• Joints  
• Abdomen 

Limited access (e.g., 
lungs, brain, bone) 

http://www.radiology-info.org/ultrasonography.html
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and abnormalities, which have been developed to study the relationship between optical 

scattering and the physical properties of tissues. In diagnostic optical methods, when a light 

beam is incident on a scattering source, light is scattered by different tissue structures, such as 

cells, membranes, and proteins, in all directions as light interacts with the sample. Depending on 

the nature of the study, measurements, such as magnitude/phase of the scattered light, intensity 

as a function of wavelength, and intensity as a function of angle of scattering, are conducted in 

the near or far fields from the scattering center. Since the amount of scattered light depends on 

the refractive index, orientation, and size of the scattering objects, information such as extinction 

coefficients, anisotropic coefficient, refractive index, and size of the scattering elements are often 

calculated through such measurements.
8,9  

1.2.1.1 Spectroscopic Techniques 

 Optical scattering techniques vary widely depending on the investigated parameter and the 

physical information intended to be extracted from a sample. Spectroscopy, an example of an 

emerging optical scattering technology, is defined as the measurement of a scattering quantity as 

a function of wavelength, frequency, or energy in a defined band width. Spectroscopic 

techniques are a rapidly growing area of research because they provide spectral dependent 

information about the biochemical and biophysical (structural) compositions of the sample 

depending on spectroscopy type. 

Different types of spectroscopic methods are based on the type of samples and light 

interactions involved in the measurement process. For example, in Raman spectroscopy, 

biochemical information can be obtained by measuring the intensity of light as a function in the 

frequency shift. 10 In addition, elastic light scattering spectroscopy in the visible range measures 

the intensity of light as a function of wavelength or frequency to determine the structural 
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characteristics of samples. Elastic light scattering in tissues/cells occurs when the light is 

redirected (by the cellular and subcellular components, such as nuclei and mitochondria) without 

change in the wavelength of the reflected light. Cellular and subcellular scattering elements 

(scatterers) have physical characteristics, such as size, concentration, and density. Any change in 

these characteristics is an indication of change in the scattering properties of the sample. In most 

disease cases, the structural properties of a cell/tissue changes at all types of length scales: 

ranging from µm to cm in tissue and nm to µm in cells. For example, in most cells, enlargement 

of nuclei is an indication of tissue transition from normal to dysplastic growth. Such changes in 

biological cells/tissues leads to a change in the characteristics of the scattering spectrum, which 

in turn can be utilized for diagnosis purposes in different biomedical applications to discriminate 

cellular/tissue abnormality in disease conditions.11 

1.2.1.2 Confocal Laser Scanning Microscopy 

 In addition to elastic scattering spectroscopy techniques, confocal laser scanning microscopy 

(CLSM) is another modality of optical scattering applied for biomedical purposes. Confocal 

scanning microscopy is an improved version of fluorescence microscopy introduced to overcome 

the size- resolution and contrast limitations of fluorescence microscopy. In fluorescence 

microscopy, a light source illuminates the entire sample and a detector captures all sample 

fluorescence, including the unfocused light. In contrast, confocal microscopy blocks the out-of-

focus light with a point illumination technique and a pinhole in front of the detector to reject the 

out-of-focus light. This configuration allows only the light emitted from the florescent emitters 

near the focal plane to reach the detector and hence improves image quality and resolution. 

Moreover, it offers a depth selectivity that allows optical sections of the samples without 

physical contact with the sample. These two features and, more recently, molecular labeling 
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make confocal microscopy a powerful tool in biomedical sciences to study living or fixed cells 

and tissues. 

1.3 Existing Literature 

In biomedical applications, especially for diagnostic applications, there is an increasing interest 

in investigating the optical properties of cells and tissues using optical technologies. This interest 

stems from the many advantages of optical techniques, such as no tissue excision needed and 

fast, inexpensive, real-time diagnosis. More importantly, optical techniques such as fluorescence 

and light-scattering techniques can be used to diagnose and monitor their progress and treatment. 

The techniques identify and characterize pathological changes at the cellular and subcellular 

scales by providing structural and biochemical information. With the development of new optical 

methods and techniques, the optical parameter refractive index has gained attention within the 

disease diagnosis and biomedical optics research community. The effective and average 

refractive index of a single cell has been studied extensively to give detailed information of cell 

pathology. 

Choi et al.12 used optical coherence microscopy to characterize cancerous and healthy 

cells by measuring the distribution of the optical parameter refractive index of a single cell. 

Cancer cells showed a higher average refractive index than healthy cells. In vivo, Backman et 

al.13 used the light scattering spectroscopy of four organs with three different types of 

epithelium: stratified squamous epithelia of the oral cavity, transitional epithelia of the urinary 

bladder, and columnar epithelia of the colon and Barrett’s esophagus, to measure the thickness 

and refractive index of the epithelial cells. The extracted information was used to diagnose 

dysplasia and carcinoma cases based on quantitative measurement of nuclear size, which 

revealed that nuclei from both the epithelium cells tissues displaying dysplasia and the 
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carcinoma had greater percentages of enlargement. In addition, the normal and abnormal 

refractive index were compared to find a correlation with a disease, such as cancer. 

Wang et al.14 used quantitative phase microscopy to measure the average refractive index 

of breast biopsy specimens. Three groups of cells were studied: normal, histologically normal, 

and malignant cells. The results showed an increase in the measured refractive index of the 

malignant and histologically normal cells compared to the normal cells, with malignant cells 

having the highest refractive index. Different clinical studies have shown that at metastatic stages 

of some cancer types, such as breast and prostate cancer, tumor cells circulated in the blood 

stream. Tumor cell mass density (refractive index) has been determined in ovarian cancer 

patients and compared to the white blood cell mass density in detecting the circulating ovarian 

cancer cells. 15 The results were used to provide a new detection system for ovarian cancer using 

mass density quantification through the refractive index measurement. In Wang et al., 16 the 

refractive index distribution of histopathology slides of prostate tumors was measured using a 

spatial light interference microscopy (SLIM). The phase shift images were compared using H&E 

stained histopathology slides (where normal and malignant areas were marked). The resulting 

measures on SLIM images showed strong correlations with the normal and cancerous areas 

indicated on the prostate slides. 

Moreover, various experimental studies using optical coherence tomography (OCT) have 

measured the refractive index in vitro and in vivo. These measurements highlighted the 

importance of the refractive index for monitoring physiological changes in living tissues. For 

example, Zhernovaya et al. 17 measured the refractive index of glucose-hemoglobin solutions at 

different glucose concentrations to evaluate the glycated hemoglobin amount in the plasma of 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Wang%20Z%5BAuthor%5D&cauthor=true&cauthor_uid=22112122
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blood. Meng et al.18 reported a study on the refractive index of human teeth and anticipated the 

potential of the method to predict the changes caused by dental decay. 

1.4 Limitations of Conventional Optical Techniques 

The analysis of light propagation through biological media has drawn significant attention 

because of potentially important applications it can offer in disease diagnostics. The main 

purpose of such techniques is to analyze the intracellular architectural alteration developed inside 

the cells and tissues with the progress of the disease, such as cancer. Light transport analysis 

includes the study of light-matter interaction and specifying the optical properties of the medium, 

such as absorption coefficients, scattering, anisotropic factor, and refractive index. Being able to 

accurately extract the optical properties of a biological medium is the key to diagnostic and 

therapeutic applications of light. One of the motivations of diagnosis of biological samples based 

on optical measurement is to reduce or eliminate the need for the normal biopsy and replace it 

with optical biopsies. The term optical biopsy refers to the use of light scattering properties to 

make an instant diagnosis without the need for tissue removal if it is accessible for light 

experiments.19 The technology associated with fiber optics and micro-sized optical components 

can be applied after sound measurement processes are shown using larger, standard optical 

components such as those used in this work. 

Light is a highly sensitive probe suitable for investigating the physical and geometric 

details of biological systems, as organelle sizes are the same scale as the probing light 

wavelength in visible range. Optical methods are among the most powerful non- or minimally 

invasive tools to determine morphological structural changes of a biological system. For a 

biological sample in the visible optical window (400-700nm), light scattering is more dominant 

than absorption.20 Hence, most optical methods rely on a light scattering approach to determine 
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the structural characteristics of cells and tissues.21 Biological samples, including tissues and cells, 

have a mass density distribution that varies during physiological changes at the cellular and 

subcellular levels during the progression of diseases. Such structural changes occur with the 

progress of carcinogenesis due to the alteration of the building blocks of cells, such as DNA, 

proteins, and lipids. These alterations bring changes in mass density within the cell. It has been 

shown that the local refractive index in a biological system is directly proportional to the local 

mass density in the medium.22 Therefore, any change in the spatial mass density distribution 

inside biological media also results in a change in their refractive index distribution. Thus, 

because a change in the refractive index can be sensed using light as a probe, the refractive index 

is a widely used physical parameter to characterize diseases such as cancer with optical 

methods.16  

A change in the spatial variation of the refractive index of biological media introduces a 

change in the distribution and amount of scattered light. However, light scattering by complex 

heterogeneous media, such as biological cells or tissues, is not well understood. There is no well-

defined analytical framework to perform such studies. In optics, Maxwell’s equations and 

transport theory are fundamental physical theories used to describe the light scattering problem 

in biological systems. Unfortunately, exact analytical solutions for Maxwell’s equations are not 

available for complex structures. Additionally, performing approximate numerical calculations is 

highly tedious and not clearly applicable. Instead, several simplified approximations are used to 

analyze light scattering from biological media; of these, Rayleigh theory (for particle size << 𝜆𝜆) 

analysis and Mie scattering (for particle size >>𝜆𝜆) analysis are the most common.23–25 

Although these approximations provide a reasonable estimation of several optical 

parameters of the samples, such as refractive index, sample size, and extinction coefficient, one 
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of the main limitations of such techniques is that they measure the changes in average (bulk) 

properties  of the refractive index of the samples.26 To illustrate this, let us consider that the 

refractive index inside a biological sample, at any point (r), is expressed as n(r) = n0 + dn(r), 

where the n0 and dn(r) represent the average (bulk) and fluctuation part of the refractive index, 

respectively. The conventional optical and analysis techniques, such as phase contrast 

microscopy (PCM), OCT, and Mie scattering, analyze the bulk (<n(r)>=n0) part of the refractive 

index. This is because these optical techniques are insensitive to the refractive index fluctuation. 

However, it has been now realized that the quantification of refractive index fluctuation 

(standard deviation) as opposed to the bulk refractive is highly useful, especially when the 

changes inside the system are not large enough to be detected by the abovementioned 

conventional techniques. For example, in early carcinogenesis, structural changes were found to 

occur at the nanoscale due to the intracellular structural alteration in cells at the nanoscale. 

In this regard, to study the fluctuating part of the mass density or refractive index in a 

cell, mesoscopic-physics-based studies were made of light wave propagation and light 

localization properties in spatially random media recently developed into the biological 

system.14,15 The advantage of the mesoscopic approach is that it allows the calculation of the 

properties of the fluctuation (dn) part of the refractive index in the sample more 

accurately/efficiently. The term random media refers to media with refractive index 

)()( 0 rdnnrn +=  varying in space, with the variation being random (represented by dn(r) part); 

hence, such a system is called a random or disordered system. Moreover, a medium can be 

described as weakly or strongly disordered, depending on the value of the refractive index 

fluctuation compared to its mean background index. In optical scattering experiments dealing 

with a biological sample, the medium is considered weakly disordered since its refractive index 
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fluctuation is much smaller (dn~.01) than the average refractive index background value 

(n0~1.38), that is 1/)( 0 <<nxdn . 

The next section introduces two techniques explored in this thesis to move closer to 

implementing optical biopsy in cancer diagnostic applications. The techniques were based on 

mesoscopic physics analysis approaches of a weakly disordered system. 

1.5 New Optical Techniques 

Two optical scattering techniques were recently introduced that take advantage of mesoscopic 

physics analysis, namely partial wave spectroscopy (PWS), based on spectroscopic microscopy 

techniques, and the inverse participation ratio (IPR) technique, based on confocal imaging. These 

techniques apply for the first-time concepts of condensed matter physics concepts to understand 

structural properties of biological systems ranging from nano- to submicron-scales. In both 

techniques, the degree of structural disorder (randomness) of the biological systems are analyzed, 

and the measurement are expressed in terms of a parameter called the degree of structural 

disorder strength , or disorder strengths (Lsd ), which quantify the spatial fluctuations of the 

refractive index of the biological samples. 

1.5.1 Partial Wave Microscopy Spectroscopy (PWS)  

PWS is a technique recently introduced to study the intracellular structural changes in disease 

processes, such as cancer. The PWS system is a backscattering technique in which the spectral 

imaging of the biological cells is produced by combining spectroscopy and microscopy. This 

type of analysis is based on mesoscopic light transport theory in a quasi-1D disordered system. 

The quasi-1D transport theory assumes that when a light wave is incident on dielectric media 

such as a biological system at a normal incident angle, the 1800  backscattered light is most 

sensitive to refractive index fluctuations inside the sample along the direction of the incident 
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wave.26,27 This fundamental light-matter interaction is exploited to determine the average 

refractive index (averaged along the depth or light path of the sample in 1D) at different spatial 

positions (in the sample plane perpendicular to the light path) of the sample; the fluctuation of 

the  quantify the refractive index is also quantified along the light-incident direction.   

Therefore, in PWS analysis, the sample in the image plan is virtually divided into several 

parallel 1D channels, with each channel represented by a pixel size. In addition, the 

backscattering spectrum of each channel (pixel) is collected. The advantage of the spectral image 

analysis of the backscattering intensity lies in identifying the spectroscopic signatures associated 

with intracellular changes, since it reflects the refractive index fluctuation along each channel. 

The technique evaluates properties of cell nano-architecture by measuring structural disorder 

strength at many pixels. The spectral reflection coefficients and its correlation function in wave 

length/wave vector are needed to calculate Lsd.  

1.5.2 The Inverse Participation Ratio (IPR) Technique 

In biological media, disorder represented by the refractive index fluctuation (dn) is the main 

cause of wave scattering and eventually halts light transport. The cessation of light transport 

is attributed to the localization of waves. The localization effect has been studied extensively 

in condensed matter physics.28,29 Light localization can be defined as phenomena that arise 

due to the interference between waves after multiple instances of scattering by the disorders in 

the system.  

Recently, the idea of light localization was introduced to the biological studies through 

the IPR technique. This technique was introduced to study and quantify the structural disorder 

properties of cancer cells using TEM images.30,31 Accurate structural characterization of a 

biological system requires correct information about the spatial mass density variations. 
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However, a biological system by nature is heterogeneous, which makes characterization of the 

system a difficult task. The spatial heterogeneity of the biological system has led to the use of 

different correlation functions and multiple parameters to describe the mass density inside the 

biological systems. In the pragmatic side, there is a significant interest in minimizing the 

complicity of cell characterization and so, an introduction of a single parameter that might 

provide appropriate descriptions of cell/tissue structure and structural changes. The IPR 

technique satisfies the criteria of characterizing the cell architecture in a single parameter (the 

IPR). This project further developed the IPR technique by introducing confocal microscopy 

imaging. An analysis of light scattering was performed in a lattice constructed from confocal 

imaging of cells to study the properties of light localization in biological cells. 

The IPR technique explores the linear relation between intensities of the confocal 

fluorescence microscopy images and the biological mass densities (ρ). As a first step, a refractive 

index matrix is constructed from a confocal micrograph. This is followed by statistical analysis 

of the optical eigenfunctions of the refractive index matrix using in a closed boundary condition, 

which leads to the calculation of average IPR (<IPR>) value of the eigenfunctions.The parameter 

of  <IPR> is a measures of the strength of light localization in the observed  biological system, 

which in turn is a measure of the degree of effective structural disorder in that system.  

1.6 Objectives 

It is now recognized that structural characterization of a biological cell particularly sensitive 

determination of subtle alterations of internal structural properties is of primary importance for 

many biomedical applications, especially for cancer diagnosis and screening. Many cancers are 

curable if diagnosed and treated at an early stage. Therefore, detecting early cancer by 

characterization of cells is a topic of immense research interest. As the size of cell features varies 
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from a fraction of a micron to a few microns, visible light (wavelength λ varies from .4µ to .7µ) 

is a potential probe for the characterization of these biological cells when its scattering properties 

are characterized. Furthermore, recent studies have shown that the internal disorder properties of 

a cell change with the progress of carcinogenesis in the cell. Therefore, characterization of the 

disorder properties of cancerous cells was the focus of this dissertation. The specific aims of this 

research were as follows: 

1. To develop a new version of PWS system and study the structural disorder at the 

nanoscale of three different standard human cancer cell line models (breast, brain, and 

prostate) by taking advantage of PWS reflection intensity spectra and analyzing them 

using mesoscopic-physics-based formalism. 

2. To study the chemotherapy efficiency in prostate cancer treatment using the PWS 

technique via nanoscale structural disorder analysis of non-drug-resistance cancer and 

drug-resistant prostate cancer cells. 

3. To study the same cancer cell line models’ structural disorder, as described in 2, at 

the submicron scale via the IPR technique using confocal microscopy imaging. 

1.7 Overview of the Dissertation 

The remainder of this dissertation is organized as follows. Chapter 2 describes the PWS system, 

including a detailed description of the experimental set up, system calibration, and error analysis. 

Chapter 3 is a report of studies of the structural disorder of the breast and brain cell lines using 

the PWS technique. In it, the disorder strength of the disorder strength is quantified for each cell 

line, and compared to corresponding normal cells. Chapter 4 examines the chemo-resistance of 

prostate cancer cell lines to understand the architectural changes associated with the drug-

resistant cells using optical disorder analysis. We compare the nanoscale structural alterations of 
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chemotherapy drug-resistant cancer cells and with the structural disorder of the drug-sensitive 

cancer cells.  

Chapter 5 presents a novel technique, the IPR, to study the light localization properties of a 

biological sample based on confocal imaging, which is used to quantify the effective structural 

disorder at the submicron level. The chapter presents confocal working principles and the 

theoretical description of the IPR technique followed by the analysis method employed to 

calculate the effective structural disorder of a biological cell and then calculation of average IPR, 

<IPR>, by ensemble averaging. Chapter 6 evaluates the performance of the IPR techniques to 

study the structural disorder in the breast, brain, and prostate cell lines. Chapter 7 provides a 

summary of the results from work presented in this dissertation and suggests ideas for further 

development and future research. 
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2 Partial Wave Spectroscopy (PWS): Nano Structural Disorder Measurement System 

2.1 Introduction 

Optical spectroscopy and microscopy have greatly advanced our knowledge of biological 

systems. A combination of both the techniques in one modality provides advantages of both the 

techniques by allowing simultaneous microscopic view and spectral analysis of regions of the 

sample. Ideally, multi-modal imaging approaches are needed to examine and address nano-meso- 

microscopic substrates with different contrasts using the same optical platform. In a combined 

optical spectroscopy and microscopy technique, i.e., hyperspectral imaging, the spatially-

resolved spectral response of a system (images at different wavelengths or full spectral in each 

pixel comprising a hyperspectral image) is captured; the resulting spatio-spectrally-resolved 

microscopic image cubes (Fig.2.1) contain a wealth of physical and chemical information about 

the system of interest. 

Traditionally, frequency/energy/wavelength tuning is achieved either by recording a 

collection of point spectra at different spatial positions in 2 or 3D, or using conventional imaging 

detectors, whereby stacks of images are recorded at single wavelengths at a time. Both approaches 

are restrictively tedious and time consuming. In this context, recent developments in computer 

controlled liquid crystal tunable filters (LCTF) for wavelength tuning has dramatically advanced 

the field of hyperspectral imaging. Presently, the whole sample under illumination can be imaged 

in one shot for each wavelength using LCTF. This development has accelerated this field in recent 

years, whereby novel experiments and applications of hyperspectral imaging are sought-after and 

are regularly reported as well. One such application is using hyperspectral imaging to determine 

the refractive index (RI) and refractive index fluctuations in dielectric media. For example, PWS 
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technique combining hyperspectral imaging with mesoscopic physics to analyze RI and RI 

fluctuations in biological cells. 

 

 

 

 

 

 

 

2.2 Mesoscopic Physics Approach and Biological System  

The mesoscopic theory of light suggests that when a light wave is incident onto a dielectric media 

at a normal incidence angle, the 1800 backscattered light is most sensitive to RI fluctuations inside 

the sample along the direction of the incident wave. 32, 33 This fundamental light-matter interaction 

can be exploited to determine the average RI (averaged along the depth or height of the sample in 

1D) at different spatial positions (in the image plane) of the sample as well as to quantify the RI 

fluctuation along the light-incidence direction. While theoretically there is no limit to the detection 

of RI fluctuations, experimental studies of PWS technique have shown nano-scale levels of 

accuracy (~20 nm) in determining changes in RI fluctuations in standard dielectric media.33   It 

should be noted that the naturally occurring dielectric media such as biological systems typically 

fall in mesoscopic length scale regime (few hundred nano meters to few microns); thus, the 

techniques of mesoscopic physics are readily applicable to such systems. However, now, very few 

Figure 2.1: Schematic of hyperspectral-imaging. Plot of the 
backscattered intensity as function of the wavelength of light. 
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laboratories have used the meso-scale index measurements for quantification of fluctuations in 

biological cells. The opportunity for us was to focus on cancer as a particularly appropriate 

diagnostic area and possibly as an area of analysis of therapeutic effects. Thus, one of our major 

interests is to extend this analysis, to broader set of target systems such as brain and breast cells 

and chemotherapy resistance cells in the following chapters. 

2.3 Description of the Partial Wave Spectroscopy (PWS)  

2.3.1 Instrumentation 

 

 

 

 

 

 

 

 

 

 

This section discusses about the spectroscopy system for performing the partial wave 

acquisition.The spectroscopy system is an optical  measurement  system that allows the partial 

Figure 2.2: Schematic of the Partial Wave Microscopy Spectroscopy (PWS) System 
(PWS). M: Mirror; L: lens; A: Aperture; BRP: Right Angel Prism; BS Plate: Beam 
splitter plate; OBJ: Objective Lens; LCTF: Liquid Crystal Tunable Filter; CCD: 
Detector CCD Camera.  
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spectral collections of the backscattered signal I(x,y;λ) and  then imaging of  the disorder  strength 

at a particularspatial point (x,y) using reflection wavelength (λ) spectra. The division of the back 

reflection intensity into many parallel  quasi-one-dimensionalreflectionspectra, hence the name 

Partial Wave Spectroscopy (PWS). PWS consists of a set of optical components that is connected 

and combined to make up the PWS system. The schematic of the PWS instrument developed by 

us at the BioNanoPhotonics Lab at UofM is shown in Fig.2.2.  A broadband of white light from a 

Xenon arc lamp is used to illuminate the sample through Kohler illumination. First, the light is 

directed through a mirror to pass through a set of 4-f relay system lenses and apertures in order to 

collimate the light efficiently. Then the light is directed by a right-angle prism (BRP) to let it pass 

through an objective (in NA=0.65) and  focused on the sample which is held on electronic 

motorized stage.The backscattered light was passed through the same objective lens and projected 

with a 40X magnification onto the slit of  a liquid crystal tunable filter (LCTF), where the signal 

is filtered according to its wavelength components for spectral collection. The spectral resolution 

of the LCTF is 1nm and the spectral range is approximately the visible range (450-700nm). The 

LCTF is coupled with a CCD camera detector, therefore, the filtered signal is acquired by the CCD 

camera. The combined LCTF-CCD camera system allows to capture the backscattered image of 

the sample at different wavelengths (λ ), over the full visible range. Each image collection point is 

represented by a 2D matrix with (x,y) as the spatial position of each pixel of the matrix (dx×dy). 

Eventually, we acquire a datacube I(x,y;λ) for the three variables (x,y,λ). In the further processing 

of the data, the backscattered  spectrum fluctuation R(x,y λ) is extracted by filtering out the noise 

in  I(x,y;λ) signal.  

Hence for each pixel on the captured image, we can calculate disorder strength (Lsd ) of a 

biologcal sample, using the intensity captured for each pixel, which is theoretically defined as 3 



 

23 
 

𝐿𝐿𝑠𝑠𝑠𝑠 =< 𝑑𝑑𝑑𝑑 >2× 𝐿𝐿𝐶𝐶                                                               (1) 

Where 𝜎𝜎2  is the  variance of the refractive index fluctuations inside the 1D depth of the sample 

at the spatial position corresponding to the pixel point in the image, and 𝐿𝐿𝐶𝐶 is the spatial 

correlation length of refractive index fluctuation along that depth. Therefore, the disorder 

strength value, Lsd, at any point in the sample, provides a measure of the refractive index 

fluctaution along the depth of the sample at the point, both in terms of its fluctuation strength and 

correlation length. Theoretically, the Lsd values can be determined if the two physical quantities, 

i.e., 𝜎𝜎2 and Lc, are known. However, in actual in practice these individual values are not known; 

in their stead the PWS measurement allows the calculation  of the Lsd values for many pixel 

points using the spatio-spectral detail acquired from the backscattered imaging data, I( x,y λ), and 

assume there is sufficient redundancy in the observations that estimated individual values could  

be separated. 

2.3.2 Optical Components of PWS System  

The following table is a list of all the optical components that were used to build the 

experimental set up of the Partial Wave Microscopy Spectroscopy System. The components 

specification and manufacturer are indicated in Table 2.1. 

2.4 Measurement System Analysis 

In brief, the experimental set up was calibrated with a standard specimen with known 

backscattered signal. Also, the system sources of noise were indicated as either background or due 

to the detector noise and lessening of the noise was achieved by performing the experiment in a 

dark room to avoid random stray light from reaching the detector sensors. 
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Moreover, the thermally generated noise was reduced by cooling system in the CCD 

camera detector that used in the experiments. Along with the experimental data acquisition, 

additional images were captured by the camera after the light let to passes through a glass slide 

Optical Components Spesfications  manufacturer 

Xenon Lamp White light  Newport Corp, CA, USA 

Mirror (M) Broadband dielectric round 
mirror 
Diameter, 50 mm,  
Reflectance, R >99% 

Thor labs, NJ, USA 
 

Lens (L1,L2,L3,L4) Lens shape, convex lens  
focal length, 50 mm 
λ range, 350-700 nm 
Diameter, 25.4 mm 

Thor labs, NJ, USA 
 

Apartures (A1,A2) Minimum Aperture, 1.5 mm 
Maximum Aperture,25 mm 

Newport Corp, CA, USA 

Right angle prism(BRP) Size, 25.4 mm 
Used as a 90° reflector 
λ range, 430-700 nm 

Newport, CA, USA 

Beam splitter(BS) plate  Reflected: Transmitted, 50:50 
Dimentions, 25×36 mm 

Thor labs, NJ, USA 
 

Objective (OBJ) 0.65 Numerical aperture  
40x Magnification  

Newport CA, USA 

Electronic scanning stage Resolutions, 100 nm in vertical 
direction (z-axis) 
and 40 nm in x-y plane  

Zaber Technology Inc. 
Canada 

Liquid crystal tunable filter 
(LCTF) 

Visible range, 400-700 nm Varispec, PerkinElmer Inc. 
MA, USA 

CCD camera detector Resolution,  1392 × 1040 
Pixel size,  6.45µm × 6.45µm 

CoolSNAPHQ
2, 

Photometrics, AZ, USA 

Table 2.1: List of the optical components of Partial Wave 
Micrscopy Spectrscopy(PWS) System 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0ahUKEwj0qqO-8rTYAhVB94MKHYJxAGQQFggvMAE&url=https%3A%2F%2Fwww.thorlabs.com%2Fthorproduct.cfm%3Fpartnumber%3DLB1471-A-ML&usg=AOvVaw0VvWtrkmhpdAB36jBFWeFs
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0ahUKEwj0qqO-8rTYAhVB94MKHYJxAGQQFggvMAE&url=https%3A%2F%2Fwww.thorlabs.com%2Fthorproduct.cfm%3Fpartnumber%3DLB1471-A-ML&usg=AOvVaw0VvWtrkmhpdAB36jBFWeFs
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0ahUKEwj0qqO-8rTYAhVB94MKHYJxAGQQFggvMAE&url=https%3A%2F%2Fwww.thorlabs.com%2Fthorproduct.cfm%3Fpartnumber%3DLB1471-A-ML&usg=AOvVaw0VvWtrkmhpdAB36jBFWeFs
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has no sample to collect the backscattered signal from the glass substrate only. The intensity 

reading of the sample-free slide is considered as background noise and thus it is subtracted from 

each pixel intensity of the actual sample reading through the data analysis process. 

The purpose of each experimental measurement is to find the best estimate for the true 

(unknown) value of a physical quantity being measured. The measured quantity is not exact, but 

varies due to the presence of errors in measurement processes. Therefore, the best estimate value 

is not enough when we want to state the true value of the measured quantity, but an estimate of 

the errors present with that best estimated measured value is also necessary to predict the 

accuracy of measurements. In this regards, uncertainty in measurement analyses (or error 

analysis) is a process in which estimation and quantification of the errors that are a part of the 

measured values can be calculated and separated. Errors in the measured value classified as 

mainly of two types; 1) Systematic errors and 2) Random errors.34 

2.4.1 Systematic Errors  

Systematic errors are errors that shift the measured value from the (unknown true) value by 

certain amount and it always shift the data value in the same direction, either above or below the 

true value. Since systematic errors do not change with repeating the experiment, the statistical 

analysis of the measured data cannot be used to evaluate systematic errors. However, systematic 

errors can be reduced and corrected by a calibration process and performing experiments on 

known samples; they cannot be eliminated. Systematic errors are hard to be detected, but 

knowing the limitations of the measurement system can help to locate some of the elements that 

might contribute to a systematic error in the readings/measurements. 
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2.4.2 Random Errors 

Random errors are errors that cause the scattering of the measured quantity to be lower or higher 

than the true value every time the measurement conducted. Any unpredictable changes in the 

measurement system and the environmental conditions have a high chance to introduce random 

errors to the measured quantity. Statistical analysis of the measured data is the best path to be 

followed to evaluate and minimize random errors in the measurement. The mean of a large 

number of readings N gives the best estimate of the quantity under the measurement (unknown 

true value). The standard deviation (SD) of the same set of readings tells about the spread of the 

measured values aside from the mean and how close the data points to the mean value and it is 

given by the by the square root of the sum of the squared of the differences from the mean. The 

accuracy of the best estimate can be described by calculating the standard error of the mean. 

 

 Standard error = SD
√N�  (2) 

 

2.5  Extracting of Backrefleaction Signal R(x,y,λ) of  Known Sample  

In order to extract a reliable signal from PWS measurement system, it should be calibrated first 

using a known/reference sample. Calibration helps to predict/minimize the errors introduced 

during the measurement, including both systematic and random errors, as well as errors that arise 

due to the limitations of the components that make up the measurement system. We expect that 

back-reflection signal measured by the PWS contains both systematic (bias) and random errors 

(noise) that introduce deviations of the pixel intensity values in our image. Sources of noise in 

our system arises due to detector, microscopic optical components (lens surface, dust, and 

uneven illumination) and ambient noise. Detector noise such as shot noise and dark current 
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(thermal noise) are main contributions to CCD noise. We followed different techniques to 

minimize the overall CCD noise. For example, to lower the dark current signal, the CCD 

detectors were cooled, and the experiment was performed in a dark room to reduce the random 

photons from reaching the detector, hence reducing the noise contributed by the detectors to the 

overall image. 

  The schematic of the PWS instrument as shown in Fig.2.3 highlights places of error 

elements where the major errors were expected to present, and the following sections explain 

how we corrected for them. 

 

 

 

 

 

 

 

2.5.1 Butterworth Filter and Removal of the High Frequency Signal 

2.5.1.1 Random Error in the Backscatter Intensity I(x,y;λ)  

Here we perform calibration and error estimation of PWS system using known size of 

polystyrene beads. Beads have known radius and refractive index; therefore, back reflection 

spectra are well known. In Fig.2.4a the raw signal acquired from PWS of single pixel on the 

Figure 2.3: Elements of errors on the PWS system. Expected systematic errors 
in the lamps and LCTF and random errors represented by the CCD camera. 

Xe Lamp: Systematic error 

 
 
LCTF:  systematic error 
 CCD: random error  
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image (center of a single polystyrene bead) is plotted as a function of the wavelength of light. By 

examining the signal, we see that there is very low frequency signal (or low oscillation), 

combined with a high frequency signal that appears imposed in top of it. Since the beads have no 

disorder (no fluctuation in the refractive index), the pattern of reflection excepted to be 

oscillatory, in particular along the diameter of the bead, therefore, the noise (high frequency 

signal) was clear in the signal. The high frequency signal we expected to have different unknown 

and known factors such as shot noise, and dark noise from the CCD camera. 

In order for us to correct the present high frequency noise, we applied a 3rd order low pass 

Butterworth filter with cut off frequency of 0.5 Fig.2.4b). The data from spectral range of (520-

640nm) only used due to the poor signal in the below or above this range. 

2.5.1.2 Polynomial Fitting and the Correction of Systematic Errors in R(x,y,λ) Signal 

 Spectral emission from the Xe lamp is non-uniform emission where light with higher 

wavelength has more emission (higher amplitude) from the lamp compared to light with lower 

wavelength. 35 Moreover, the LCTF has higher transmission for higher wavelength compared to 

lower wavelengths.36 The LCTF transmission signal gave raise to systematic errors that shift the 

recorded backscattered signal from the expected pattern (sinusoidal). If we plot the reflected 

signal that collected at the CCD camera verses the wavelength of light, we can see that the plot 

has an oscillatory and increasing in amplitude as a function of the wavelength, where the signal 

should be oscillatory only in pattern and constant amplitude if plotted as a function of the 

wavelength oflight. Figure 2.4a shows the backscattered signal of a 6-micron polystyrene 

microsphere imaged at different wavelengths. We corrected the systematic variation in the signal 

due to the lamp spectrum and the LCTF by subtracting a third order polynomial from the 
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backscattered intensity I(x, y λ). The corrected signal after removing the high frequency signal 

and the systematic errors introduced by the lamp and the LCTF is shown in Fig 2.4b). 

 

 

2.6 Calibration of the PWS System 

To ensure the accuracy and reliability of the PWS instrument, we compared the experimentally 

measured backscattered signal by the PWS system and the theoretically calculated backscattered 

signal by a single polystyrene bead with diameter of 6 µm, at the tip of the bead. The 

backscattered signal from the tip (center) of a bead can act as an approximate thin film (slab 

model) of thickness of its diameter (d). For a thin film of known thickness (d), the reflected 

intensity can be expressed by the following exact equation.37 

Where m is the refractive index of the material relative to the air, and 𝑥𝑥 is the size parameter 

(x=k*d/2= (2π/λ)*d/2)  

 
𝑅𝑅 =

(𝑚𝑚2 − 1)2sin (2𝑚𝑚𝑥𝑥)2

(𝑚𝑚2 − 1)2sin (2𝑚𝑚𝑥𝑥)2 + 4𝑚𝑚2 
(3) 

a) b) 

Figure 2.4: a) The backscattered signal of a 6-µm polystyrene bead from the PWS 
system. b) The corrected signal after: (1) subtracting the polynomial and (2) applying 
the Butterworth filter. 
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Figure 2.5 shows the backscattered reflection intensity spectrum signal from a slab model 

calculated using MATLAB with incorporation of the geometry of the 6µm bead and the 

backscattered signal spectrum from the center of the polystyrene bead with diameter of 6µm 

calculated experimentally. The theoretically calculated and experimentally measured reflection 

data are plotted as function of the size parameter. The spectrum measured by the PWS system 

shows overlapping periodic pattern as predicted by the theory. As shown in Figure 2.5, there is a 

good agreement between the PWS measured signal and the theory single, the PWS were able to 

predict the periodic natural of the signal which provides an experimental proof that PWS is well 

calibrated. 

 

 

 

 

 

Figure 2.5: The PWS backscattered signal of a 6µm polystyrene bead in 
agreement with the theoretically calculated backscattered signal of a thin 
film back reflection signal of the same thickness d=6µm.  This result 
confirmed that the PWS system is well calibrated. 
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2.7 Zero Error of PWS and Adjustment. 

In order to examine the zero error of the PWS system we have conducted a measurement on 

three types of polystyrene beads with size 3, 6, and 10 µm. We smeared aqueous suspension of 

polystyrene microspheres of each size on a glass slide as separately puddles and after few 

minutes of evaporation at the room temperature, the samples were ready for imaging. We 

collected the spectrum for each bead size separately, and after image processing we calculated 

the disorder strength 𝐿𝐿𝑠𝑠𝑠𝑠 using the extracted R (x, y, λ) where 

 

 

   

  

 

 

 

                                       

Where <R> is the rms average of the R(x, y, λ) over the visible range of the spectrum (520 -640) 

nm is acquired. The information about the refractive index embedded in the spectrum of the 

backscattered signal. We considered here the size of the beads as approximately the correlation 

length  𝑙𝑙𝑐𝑐 value. From the calibration graph fitted into the Figure 2.6 plotted between 𝑙𝑙𝑐𝑐and the 

 𝐿𝐿𝑠𝑠𝑠𝑠 = 𝑐𝑐𝑐𝑐𝑑𝑑𝑠𝑠𝑡𝑡𝑡𝑡𝑑𝑑𝑡𝑡 ∗< 𝑅𝑅 > (4) 
 

Figure 2.6: Zero error of PWS system calculated from the slope 
of the experimental calculation of the disorder strength for three 
beads with different sizes. 
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data points of the disorder strength 𝐿𝐿𝑠𝑠𝑠𝑠(𝑙𝑙𝑐𝑐)) in Fig.2.6, we estimate the zero shift of the PWS 

system of ~0.1039 µm of the input range of 3-10 µm. 

In Fig.2.7, we removed the zero shift, and plot the theory on the x-axis and the 

experimental disorder strength 𝐿𝐿𝑠𝑠𝑠𝑠  on the y-axis for comparison.  We noticed that now both of 

the experimental and the theory is pass through zero.  

 

 

 

 

 

 

 

  

2.8 Signal to Noise Ratio Estimation of the PWS System: 

 When an image of a microscopy system is used for quantification analysis rather than the only 

visualization, the signal to noise (S/N) ratio is an important parameter that judges the image 

quality. Signal to noise ratio (S/N) provides a qualitative description to the level with which an 

object on an image is distinguishable from the background noise associated with the image. In 

statistical term, signal to noise ratio can be used to determine the confidence interval to which a 

meaningful signal can be distinguished from the noise of the background. Since the signal to 

Figure 2.7: Adjustment of the zero error by comparing the experimental 
and theory calculation of the disorder strength 𝐿𝐿𝑠𝑠𝑠𝑠 for three beads with 
different sizes 
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noise ratio is calculated by the dividing the signal of an object on the image by the standard 

deviation of the background noise, it is possible to calculate the confidence interval to which 

image clarity is determined. Moreover, a parameter called relative error (the fraction of the signal 

is being noise) can be quantified by taking the inverse of the signal to noise ratio. 

The signal to noise ratio of the PWS system is calculated in five steps.38 First, the flat 

field corrected image is obtained using the following formula, Corrected image = M [(R-D) / (F-

D)]Where, M is the mean pixel values of the raw image, R is the raw data of an object on the 

image, D is the data of dark frame image acquired by closing the shutter of the CCD camera, F is 

(flat field frame) the data of the background without the object image (see Fig.2.8). 

 Next, a rectangular area (100X100 Pixels) is determined on the corrected image that 

covered an object (object+background) and the mean of the pixel values in that chosen area is 

calculated and multiplied by the gain of the CCD camera (1 e-/ADU) to convert the pixels value 

to electrons. Then, an area that covers the same size of the rectangle around the background of 

the image without including the object is selected and the mean and the stander deviation of that 

area are acquired and multiplied both by the gain of the CCD. 

 Later, the mean of the background is subtracted from the mean of the object to acquire 

the signal (S).  In addition, the signal (S) was divided by the standard deviation of the 

background to obtain the S/N ratio =19.4516~ 20.  By taking the inverse of S/N ratio, we obtain 

a 0.05 relative error which gives noise’s fraction of the determined signal. Moreover, 10% 

fluctuation in the signal can be detected at confident interval 95 %( two SD). The images in Fig. 

2.8 as shown above of a 3-µm polystyrene microspheres where:  (a) represents the raw data 

before the image processing, (b) the background taken without sample on the glass slide, and (c) 
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is the corrected image. It can be seen that background contain many defects and irregularities in 

the intensity, which is taken, care of in the corrected image.  

 

 

2.9 Calculation of Disorder Strength of Biological Samples Using PWS 

From a glass slide of a biological cell under the study, we pick 15-30 single cells. We acquired 

the spectral images for each cell separately. For each cell, we have the spectral information for 

each pixel in the image. We apply the data processing procedure that we mentioned in the above 

section to extract R(x, y, λ) for each pixel in the image and to calculate its correlation function . 

Moreover, we calculate the rms average of R (λ) for each pixel, as well. We calculate the 𝐿𝐿𝑠𝑠𝑠𝑠 for 

each pixel using the Eq. (4).  Finally, we take the average 𝐿𝐿𝑠𝑠𝑠𝑠  for the cell. We repeat the same 

steps for 15 -30 cells and we get different values of  𝐿𝐿𝑠𝑠𝑠𝑠. We averaged all the 𝐿𝐿𝑠𝑠𝑠𝑠values for all 

the cells and that was our best estimate value.  We estimated the error in the calculated 𝐿𝐿𝑠𝑠𝑠𝑠 by 

taking the standard error. 

(a) (b) (c) 

Figure 2.8: Shows (a) Raw frame (raw data image (background + object)) (b) Flat 
field frame (background) (c) Corrected image 
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2.10 Conclusions 

This chapter describes methods and steps that followed to calibrate and correct the experimental 

data acquired using the PWS system for any expected errors in such a way as to use the system 

accurately for studying the different biological samples.  Following the detailed steps described 

in the above sections, 2.4-2.7, to eliminate noise and correct for the LCTF and lamp response in 

our actual cell data.  Moreover, following the above steps provides an improvement in the 

quality of the measured /recorded signal, the corrected signal, with appropriate error estimations.  

 We have also obtained a signal to noise ratio of PWS of 20, which is considered as a 

measure of image quality. To better control the noise in the image and improve the quality of the 

image we suggest a better light source with more uniform spectral emission in such a way that 

we do not need such a long exposure time to collect the images at the short-wavelength where 

the emission of the lamp is low. In addition, we have showed the zero error of PWS by fitting a 

calibration curve between the measured 𝐿𝐿𝑠𝑠 and the input 𝑙𝑙𝐶𝐶  to find and fix a zero shift of + 

0.103. Moreover, we adjust for the zero shift by subtracting the zero error from the data points. 

We plotted the experimental disorder strength after subtracting the zero-shift vs theoretically 

calculated disorder strength and we found that the two measurements (theory and experiment) 

pass through the zero. 

Figure 2.9: Schematic flowchart of the signal processing and error 
estimation in PWS system for biological samples. 
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3 Partial Wave Spectroscopy (PWS) Studies of Human Breast and Brain Normal and 

Cancer Cell Lines 

 

3.1 Introduction 

Cancer disease is now considered as a global health concern due to the worldwide high 

morbidity and mortality rate. According to the 2018 United States cancer statistics, there are 

1,735,350 new cancer cases and 609,640 deaths related case.39  Breast and brain cancers are 

common in patients with 30% and 3% of the new cases being breast and brain cancer 

respectively.39  A working hypothesis that is shared by governmental funding agencies, 

oncologists, and patients is that effective management of cancer patients through an effective and 

efficient disease diagnosis and treatment should lead to reduced cancer patients and increased the 

survival rate. 

Tissue biopsy (histological assessment) is the current gold standard for clinical cancer 

diagnosis and grading including brain and breast cancers.40,41 In a histological analysis, a 

micropathologist visually examines a thin section of tissue under a microscopy for any 

irregularities in cells’ shapes and distributions.42 Such histological studies are extensively used to 

determine if the tissues are normal or cancerous and the malignancy potential for almost all types 

of cancer cases. However, there exist inevitable disadvantages of histological assessment due to 

severe clinical complications resulting from sampling (biopsy repetition) and cells and tissues 

structural heterogeneity that can be missed using tissue biopsies. The procedures also take time 

and expense and need to be examined by an expert pathologist. Therefore, there is a need for 

better alternative clinical diagnostics techniques that are fast, sensitive and inexpensive and that 

helps to overcome the disadvantages of the standard biological biopsies. In particular, the use of 
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the so-called “optical biopsies”, i.e., use of light as diagnostic tool and as means to monitor 

treatment response monitoring, would allow a sensitive, rapid and economical intervention in 

cancer diagnosis and treatment management. 

Optical biopsies represented by optical technology hold a great promise in many 

diagnostics applications in biomedical optics field because light is sensitive to the refractive 

index of the biological structures. A biological cell is made up of a heterogeneous media with 

spatial variation in the refractive index (RI) due to the presence of the different internal 

structures such as DNA wrapped on histones, proteins, and lipids. The cellular refractive index is 

a key parameter that researchers studied extensively to learn about the biophysical features of the 

cell because it can be correlated to the optical properties, such as scattering and absorption, of the 

biological cells. Moreover, earlier the researchers measured the refractive index of different cells 

and tissues, and later the refractive index of abnormal and normal cells was compared to search 

for a correlation with progression of diseases such as cancer.43, 44 Different structural 

abnormalities associated with cancer cells are employed to study cancer, such as irregular shape 

(heterogeneity) and uneven chromatin textures. These cellular abnormalities of cancer cells can 

be considered as changes in the biophysical characteristics, such as mass density (or refractive 

index), etc., of the biological cancer cells and tissues. 

Selected optical scattering techniques, such as quantitative phase microscopy and Mie 

scattering analysis, were used to probe these structural changes based on the measurement of   

changes in these biophysical characteristics. Despite the highly advanced level of these optical 

techniques, the study of the intracellular refractive index fluctuations remains a limitation.  In 

optics, two of the commonly used light scattering based techniques are Rayleigh scattering and 

Mie scattering. While the Rayleigh scattering (for particle size << λ, the incident wavelength) 
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and Mie scattering (for particle size >> λ) provides a reasonable estimation of the bulk refractive 

index(RI) of the sample, however, they fail to accurately analyze RI fluctuations within a cell. In 

many situations in cancer progression where early structural changes occur, the quantification of 

RI fluctuations becomes more informative than the bulk RI which shows noticeable changes 

while keeping bulk RI unchanged. 

 In the context of refractive index fluctuation quantification, a mesoscopic physics-based 

approach plays a vital role in quantifying such fluctuations in the refractive index. 33,45 Therefore, 

partial wave microscopy spectroscopy (PWS) was introduced recently to study the refractive 

index fluctuation of a single biological cell. PWS allows a spectroscopic analysis of the 

backscattered light by a biological cell based on the quasi-1D mesoscopic light transport theory. 

The technique divides the back reflection from the sample (in the images plans) into different 1D 

channels where each channel is represented by a pixel. In this study, we explore the ability of the 

PWS to isolate 1D backscattering photons spectra that are sensitive to sub-diffraction length 

scales of refractive index fluctuations and use that information to evaluate the cellular and 

subcellular structural alterations of the brain and breast normal and cancer cell lines. We 

acquired the bright field image spectra of the human breast and brain cells line models, and 

subsequently we used the spectral data to measure and quantify, and then compare the disorder 

strength, which is a statistical parameter of the refractive index of fluctuations of a single cells, 

both of the cancer cells and the control (normal) cells.   

3.2 Theory 

3.2.1 Structural Change Analysis (Mesoscopic Approach) 

The backscattered spectral imaging data can map spatial optical density variation in the cell 

sample by mapping the respective spatial refractive index fluctuation inside the cells of the 
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sample. Light, backscattered from a sample may be used to extract spatial RI profiles of a 

sample. It should be noted that measuring and quantifying very weak nanoscale optical spatial 

refractive index fluctuations that are embedded within a background of higher refractive index 

poses significant scientific challenges, both from the perspective of fundamental light scattering 

and transport theory and in the design of high-performance optical instrumentation. For example, 

in biological cells, the mean background spatial refractive index is large (n~1.38), whereas its 

fluctuation (dn~0.02) is much weaker, that is dn/n <<1. 28,46 However, by using spectroscopic 

microscopy based on the principles of mesoscopic physics one can extract such information with 

high accuracy.47 

To understand the mechanism of this approach, consider a light wave E(k) with wave 

number k incident onto a dielectric medium at a normal angle of incidence, as shown in Fig.3. 1.  

 

 

 

 

 

 

 

 Consider the RI of the sample along the direction of light propagation (x represents depth along 

the incidence direction) is given by n(x) = n0 + dn(x); where n0 is the average RI along the 1D 

Figure. 3.1: Schematic of 1D backscattered reflection from a dielectric media 
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channel and dn(x) is the RI fluctuation along same 1D channel. Scattering theory suggests that 

the back-scattered intensity, R(k), (where k=2π/λ) will depend on the nature of dn(x). For a  

system with constant RI background, i.e. dn (x) = 0, the backscattered intensity is given by, 

In which n and L are the RI and the thickness of the sample, respectively. A typical plot of 

reflected intensity, R (k), (k=2π/λ), as a function of wavelength λ is shown in Fig 3.2 (a).  

 

 

 

 

 

 

 The period of the R(k) oscillation, a function of f(n,k, L)which  appears in the argument of 

the sin term in Eq.1, can be used to measure the average RI or thickness of the sample. However, 

in general, biological systems do not have uniform RI, i.e., dn (x) ≠ 0. In this case, Eq. 1 is not 

applicable in this form. The effect of RI fluctuation modifies the R (k) pattern. Figure 3.2(b) 

shows a typical plot of reflected intensity as function of wavelength for the case dn (x) ≠ 0 

[Taken from Ref 48]. Although the oscillatory nature of R (k) gets significantly modified, the 

 

𝑅𝑅 =
(𝑚𝑚2 − 1)2sin (2𝑚𝑚𝑥𝑥)2

(𝑚𝑚2 − 1)2sin (2𝑚𝑚𝑥𝑥)2 + 4𝑚𝑚2 
(1) 

Figure 3.2: Reflected intensity vs wavelength for the cases: (a) dn(x) 
=0; (b) dn(x) ≠ 0 (Figure taken from Ref 48) 
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periodicity imparted by the average RI (i.e., average background) of the sample to the R (k) 

values can still be extracted through a Fourier analysis of R (k).  

3.2.2 Mesoscopic Physics Approach for Refractive Index Fluctuation Mapping in 

Biological System 

 As discussed earlier, the mesoscopic physics-based analysis which is widely applicable to 

systems of mesoscopic length ( ~ µm), provides an excellent way of extracting information from 

the fluctuations inside the systems. In context to biological media, which is considered as weakly 

disordered heterogeneous dielectric/refractive index media, with average RI, <n> = ncell = n0 = 

1.38 and strength of RI fluctuation dn ~ 0.02, therefore, a mesoscopic approach can be readily 

applicable. Technically, through correlation analysis of RI fluctuations, the strength of RI 

fluctuations is quantified in terms of a parameter called ‘disorder strength’, Lsd, which is defined 

as Ld = <dn2>lc, where dn and lc represents RI fluctuations and its spatial correlation length of 

the system, respectively. Thus, the parameter Lsd provides a measure of degree refractive index 

fluctuation or the ‘degree of disorder’ inside the system. The calculation of Lsd utilizes the fact 

that the 1D backscattered intensity (at each spatial point forming the 2D image plane of the 

sample) from a dielectric medium can be modeled as 32 

Where <R> represents an rms average of the backscattered intensity R(k), n0 is the average 

refractive index of the medium, L is the depth of the sample along the direction of the light 

propagation, k (=2π/λ) is often taken at the center of the wavelength band, and Lsd is defined 

 

< 𝑅𝑅 > ≅  
1
2 �𝑒𝑒

4𝑘𝑘2𝐿𝐿𝑠𝑠𝑠𝑠𝐿𝐿
𝑛𝑛02 −   1� (2) 
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above. For a weakly disordered dielectric media/optical system like biological cells, klc << 1. In 

such case, 

Thus, by measuring the rms average of the reflected intensity R(k), one can quantify refractive 

index fluctuation and measure the degree of disorder inside the system in terms of Lsd values.   

3.2.3 The Autocorrelation Function of the Reflection Coefficient 

The autocorrelation function allows the calculation of the disorder strength for the the 

elimination of the sample length. The autocorrelation function of the reflection coefficient is 

given by equation, 4, where A is a constant  

 

3.2.4 Structural Disorder Strength   

Finally, the structural disorder strength is the main parameter that we are investigating in the 

present study. Therefore, using Eqs. (3), and (4), we can write.  
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Experimentally, the structural disorder is calculated from the reflection coefficient and the 

autocorrelation function of the reflection coefficient, where Lsd can be calculated using Eq.5. 

3.3 Material and Method 

3.3.1 Samples Preparation 

3.3.1.1 Breast Normal and Cancer Cells  

Breast cell lines included MCF10 (normal) and MCF-7 (adenocarcinoma) were obtained from 

the American Type Culture Collection (ATTC). Cells were re-suspended and maintained in 2 mL 

Dulbecco's Modified Eagle Medium (DMEM) (Gibco) supplemented with 10% Fetal Bovine 

Serum (FBS), and 200µM  GlutaMAX™. Then, cells were dispensed onto glass slides in a sterile 

10 cm petri dish. The dishes with slides were then placed in a 37°C incubator overnight in order 

to allow for cell growth and adhesion to slide. After 24 hours, 10 mL of medium was added to 

the petri dish and swirled gently. The medium was changed every 2-3 days while the cultures 

were maintained in a 5% CO2 incubator at 37ºC.The third day after adding 10mL medium, slides 

were removed from the petri dishes and placed in a Coplin jar to be rinsed/washed in PBS at 

37ºC. Slides were then placed in another Coplin jar containing 20 % formaldehyde (Tousimis) 

for one hour at 37ºC to ensure adequate fixation of these cells. Next, slides were washed in PBS 

for 5 minutes.  

3.3.1.2 Brain Normal and Cancer Cells 

The brain cell lines include three types: normal astrocyte (Lonza Group Ltd, Basel, Switzerland), 

progenitor astrocyte (Applied Biological Material, Richmond, Canada), and U-78 astrocytoma 

(ATCC, Rockville, MD, USA). The brain cells were cultured using the same procedure as the 

breast cells lines. 

 

http://www.invitrogen.com/site/us/en/home/Products-and-Services/Applications/Cell-Culture/Mammalian-Cell-Culture/fbs.html
http://www.invitrogen.com/site/us/en/home/Products-and-Services/Applications/Cell-Culture/Mammalian-Cell-Culture/fbs.html
http://www.invitrogen.com/site/us/en/home/Products-and-Services/Applications/Cell-Culture/Mammalian-Cell-Culture/media-supplements/GlutaMAX-Media.html
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3.3.2 PWS Experiments and Data Acquisitions 

The partial wave microscopic spectroscopy instrument is described in detail in chapter 2. In 

brief, PWS combines microscopy and spectroscopy of the elastically backscattered light. The 

individual cell slide is mounted on the motorized stage and illuminated with collimated white 

light from a Xe-source; the backscattered light then filtered using the liquid crystal tunable filter   

to sample its wavelength components with a resolution of 1nm. Then, the CCD camera records 

the backscattered spectra between 450-700 nm for each pixel of the image. In conventional 

microscopy, an image is formed by integrating the intensity over the spectrum of the white light. 

However, PWS measure the fluctuations in the backscattering spectra in discrete ranges of the 

spectrum. The spectral fluctuations were then analyzed by means of the 1D mesoscopic light 

transport theory to calculate the statistical structural parameter the degree of disorder or disorder 

strength for each pixel for a 2D image. Therefore, a PWS image represents a distribution of the 

disorder strength ),( yxLsd  for exposure of a specific cell category (e.g. breast or brain) to the 

incident light. Using the distribution, we calculate the mean and the standard deviation of the 

disorder strength of the individual cell over many pixel (x and y) locations. We repeat the 

experiment three times, and the total cells used in each set of observation is around 15 to 30 cell 

of a particular cell line in each category. Finally, we calculate and plot the mean and standard 

deviation of the disorder strength Lsd. 

3.3.3 Statistical Analysis 

All statistical analyses were performed using MATLAB and Microsoft Excel. We compared the 

mean intracellular disorder strength and the standard deviation of the intracellular disorder 

strength between different groups of cell lines using the Student’s t-test with two-tailed 

distribution. The means (± standard error) over a range of different Lsd values across different 
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number of cells were determined. A two-sided t-test with p-values less than 0.05 was considered 

statistically significant.  

3.4 Results and Discussion 

A total of five different cell lines were investigated in this study for human breast (2 types) and 

brain (3 types) cell lines. We studied the commercially available normal and cancerous human 

astrocytic cell lines. In particular: normal astrocyte, astrocyte progenitor cells, and the U87 

astrocytoma cells samples were studied. We also studied breast cancer normal and cell lines: MCF-

10A (control) and MCF-7(cancer). The cells grown on glass slides and were fixed with 20% 

formaldehyde as described earlier. PWS imaging of these cells was performed with the PWS 

system at a pixel resolution of 1392 × 1040. The PWS microscopy imaging was performed to 

obtain R(x,y; λ) data cube and the data were analyzed to quantify the degree  of structural disorder 

Lsd in a single cell using the methodology described in Section 2, as well as the results were 

evaluated statistically.  

The degrees of structural disorder was calculated for every single pixel in the 

image plane to get a distribution for a single cell. Then the values of ),( yxLsd  were averaged for 

each single cell, and the ensemble averaged over 15 - 30 cells from every category were analyzed 

and the experiment was repeated three times. Figure 3.3 compares the bright field images and of 

(A) a normal astrocyte, an astrocyte progenitor, and a U87 astrocytoma cells, and (B) MCF-10A 

and MCF-7cells. The colored bar indicates the mean disorder strength Lsd values. As can be seen, 

),( yxLsd images (PWS images) constructed by plotting the Lsd values for all the pixels ),( yx  on 

the images. 

 

 

),( yxLsd
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Figure 3.3: A (a), (b), and (c): Representative of the bright field images of a normal astrocyte, an 
astrocyte progenitor, and a U87 astrocytoma cells, respectively. (a’), (b’) and (c’): Their 
corresponding ),( yxLd images. Similarly in B, (a), (b): Representative Bright field images of a 
MCF-10A and MCF-7, a normal and cancerous human breast cells, respectively. (a’) and (b’): 
 Their corresponding ),( yxLsd images. The scale bar in the PWS image corresponds to 10 μm. 
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The red colored areas in the PWS images indicate regions with higher disorder strength, that is, 

higher structural disorder or more spatial fluctuations in the refractive index. Clearly, there is no 

difference between the cancer and normal cells in the bright field images in each of the two groups 

that is for: (A) brain cancer and (B) breast cancer.   

 

 

 

 

 

 

 

                               

 

 

 

However, there is significant difference in each group of the cells between cancer and normal cells 

in the PWS images, for each cancer types. Hence, based on the Lsd distribution of each cell type, 

the cell with cancer can be distinguished from each other.  In the (A) brain cancer cell lines cases 

the astrocytoma cells have the greatest disorder strength while normal astrocyte cells have the least 

and progenitor has the disorder strength in between. In the case of (B) breast cancer cell lines, 

MCF-7(cancer) has the higher disorder strength compared to the MCF-10A (normal/control).    

Figure 3.4: The values of the average and standard deviation from the brain cell lines. 
The average disorder strength is significantly elevated for cells from astrocytoma 
compared to astrocyte cells (P-value <0.05). Similarly, standard deviation of the 
disorder strength is significantly elevated in the astrocytoma cells compared to the 
astrocyte cells with the average and stander deviation disorder strength of the 
progenitor astrocyte cells falls between the astrocyte and the astrocytoma cells. 
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The bar graph in figure 3.4a shows disorder strengths comparison for all the astrocytic cell 

lines.  The average Lsd values for all the three types of cell line, namely the astrocyte, progenitor 

astrocyte, and astrocytoma cell line, were measured to be [0.0055, 0.0057and, 0.0066] ×10
-5

, 

respectively. Additionally, the spread of the Lsd   values (Fig.3.4b) in each cell type, measured in 

terms of the standard deviation of the measurement, was noted to be [0.00150, 0.00162 

and,0.00258] ×10
-5

 for the astrocyte, progenitor astrocyte, and astrocytoma cell line, respectively. 

These results show that the disorder strength of the metastatic brain cancer cell line is higher 

compared to the normal brain astrocyte cells. 

 

 

 

 

 

 

 

 

The bar graphs in Figure 3.5 represents a comparison of (a) the average Lsd   and (b) the 

standard deviation of Lsd values between the normal MCF-10A and the cancerous MCF-7 cell 

line.  The average Lsd values for MCF-10A and MCF-7 cell lines were measured to be [0.00445, 

0.00665] ×10
-5

, respectively. Additionally, the spread of the Lsd   values in the two types of cells, 

measured in terms of the standard deviation of the measurement, was noted to be 

[0.00163,0.00307] ×10
-5

 for the for MCF-10A and MCF-7 cell line, respectively. The p-value 

Figure 3.5: The values of the average and standard deviation from the breast cell lines. 
The average disorder strength is significantly elevated in MCF-7 cells compared to MCF-
10A cells (P-value <0.05). Similarly, standard deviation of the disorder strength is 
significantly elevated in the MCF-7 cells compared to the MCF-10A cells (P-value <0.05). 
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obtained from the student’s t-test (sample size > 15) was less than 0.05 for all pairs 

demonstrating that the structural disorder is significantly higher in cancerous cells compared to 

that of the normal cells. 

3.5 Conclusion 

The development of cancer through genetic and epigenetic (non-genetic) alterations leads 

ultimately to the cellular and subcellular structural changes. Recently, the analysis of the structural 

disorder properties showed great importance in many biomedical applications; in particular, 

investigation of the physical properties of the samples such as mass density variations, or refractive 

index variations reveal a great potential in cancer diagnosis and screening. In this work, we applied 

the recently introduced partial wave spectroscopy (PWS) with a nanoscale sensitivity of the total 

structural/or mass density changes in cells to differentially identify the intracellular structural 

changes of breast and brain human cancer cell lines by characterizing the disorder strengths of 

cells internal structures. Results in terms of disorder strength demonstrate that the increase in 

aggressiveness or tumorigenicity levels inside the different brain and breast cancer cells are highly 

correlated. Where cancer cells in both the breast and brain cell lines turned out to have more 

structural disorder strength compared with the normal cells. 
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4 Optical Study of Chemotherapy Efficiency in Cancer Treatment via Intracellular 

Structural Disorder Analysis Using Partial Wave Spectroscopy 

 

The major part of this chapter taken from a paper submitted to the Biophotonic (2018) journal. 

 

With the progress of cancer, macromolecules, such as DNA, RNA, or lipids, inside cells undergo 

spatial structural rearrangements and alterations. Mesoscopic light transport based optical partial 

wave spectroscopy (PWS) was recently introduced to quantify changes in the nanoscale structural 

disorder in biological cells. This measurement is performed using a parameter introduced earlier 

‘disorder strength’ )( sdL which represents the degree of nanoscale structural disorder inside the 

cells. It was shown that cancerous cells have higher disorder strength than normal cells. In this 

work, we studied the effect of chemotherapy drugs on different prostate cancer cells taken from 

cell lines, by their spatial structural disorder analyses. For this, we first used the PWS to analyze 

the hierarchy of different types of prostate cancer cells from cell lines, namely C4-2, DU-145, and 

PC3, by quantifying their average disorder strengths. Results showed that Lsd values increased by 

the increasing aggressiveness/tumorigenicity levels of these cells. Using the Lsd parameter, we then 

analyzed the chemo-resistance properties of these prostate cancer cells from the same cell lines to 

docetaxel drug as compared to their chemo-sensitivity of other cells. Results showed that chemo-

resistant cancer cells had increased Lsd values, i.e., higher disorder strength, relative to chemo-

sensitive cancer cells, for each cell lines. Thus, use of the Lsd metric can be an effective and 

potential biomarker in determining the efficacy of particular chemotherapy.  
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4.1     Introduction 

4.1.1 Role of Nanoscale Mass Density Fluctuations in Cancer Detection  

 It is well known that the progress of cancer is associated with cellular morphological changes 

27,31  As mentioned in chapter 3, the biophotonics technique partial wave spectroscopic ( PWS) 

microscopy was introduced to quantify the nanoscale structural disorder in weakly disordered 

optical systems such as biological cells.  In this work, first, we used PWS technique to analyze 

structural disorder properties of three prostate cancer cells, namely C4-2, DU-145 and PC-3, and 

the effect of the treatment of chemotherapy drug, docetaxel, to these cancer cells.  

Partial Wave Spectroscopy analysis is based on statistical quantification of backscattered 

light intensities and their spectral correlation decay length owing to the nanoscale refractive 

index fluctuations within biological samples.  In the PWS technique, a thin sample is virtually 

divided into several parallel scattering subsamples such that the bulk backscattering problem is 

approximated as a quasi-one-dimensional (1D) scattering problem. The reflection in each 1D 

channel, i.e., subsample, provides two parameters: root mean square (RMS) and the correlation 

of the reflection spectra. From these two quantities, the effective structural disorder, or the 

“disorder strength Lsd,” inside the biological cell is characterized. The parameter Lsd is defined as, 

Lsd = <dn2>×lc, where dn is the local rms fluctuating part of the refractive index in the 1D 

channel, arising from the mass density fluctuations in that channel, and lc is its spatial correlation 

decay length. Consequently, Lsd represents a measure of refractive index fluctuation, and hence 

mass density fluctuation, in the sample, both in terms of magnitude and correlation length. This 

study used disorder strength, Lsd , as the primary metric to determine the efficacy of docetaxel, 

most commonly used chemotherapeutic drug, to see its effect on different types of  prostate 

cancer cells. In particular, we demonstrated that the intracellular structural properties of drug-
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resistant vs. drug-sensitive cells show different Lsd values, strongly suggesting that the sensitivity 

or resistance of cancer cells to a given drug can be evaluated by quantifying the disorder strength 

parameter Lsd. As such, the parameter Lsd acts as a potential biomarker of drug efficacy, as will 

be shown in our results. Briefly, drug-resistant cancer cells have higher disorder strengths, 

compared to that of normal (control) cancer cells, suggesting higher aggressiveness of the drug 

resistant cancer cells. For that, we first show, by analyzing three different prostate cancer cells 

(C4-2, DU-145, and PC-3), that higher aggressiveness/tumorigenicity levels of cancer cells result 

in higher disorder strengths in those cells, which is consistent with earlier reported results with 

other cancer cases.49–51 Subsequently, the drug treatment studies of these cells were performed. 

These results indicate that drug-sensitive and drug-resistant cancer cells display quantifiable 

differences in their intracellular structural disorder. These nanoscale alterations are, in turn, 

related to nanoscale mass-density fluctuations inside the cells. Therefore, the degree of disorder 

strength, Lsd, can be considered as a potential biomarker, whose values can be used to assign 

relative efficacy to a given chemotherapy drug treatment, i.e., a marker that can differentiate 

between drug-resistance and drug-sensitive of cancer cells. This will be demonstrated in the 

following sections.  

4.1.2 Prostate Cancer and Effect of Chemotherapy Drug 

Prostate cancer is most commonly diagnosed in men and often metastasizes at later stages. An 

alarming total of 164,690 new cases are estimated in the United States in 2017, including 19% of 

them are prostate cancer.52 Prostate cancer is prominent in older men, with 60% of men over the 

age of 65 are diagnosed with this.53 In addition, prostate cancer is the 2nd leading cause of cancer 

caused deaths in American men, behind only to the lung cancer.52 Therefore, effective detection 

and treatment of prostate cancer are important, especially for senior men. Chemotherapy is used 
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to treat advanced prostate cancer cases. However, chemotherapy is often ineffective because 

cells of an individual patient’s tumors develop chemo-resistance.54–56 Thus, it is important to 

know the efficacy of a particular chemotherapeutic drug in order to assess its potential resistance 

or, conversely, its potential sensitivity. 

4.2 Prostate Cancer Treatment and Role of Chemotherapy   

Prostate cancer treatment typically involves radiation, surgery, and then chemotherapy.57 These 

treatments are performed in an order that matches the stage and size of the malignant tumor. 

Usually, chemotherapy is administered after surgery that removed the tumor from the prostate. 

This therapy is expected to kill the metastasized cancer cells around the prostate gland, as well as 

surrounding tissue. Resistance to chemotherapy is one of the main causes of treatment failure in 

all types of cancer treatment, including that of prostate cancer. Development of drug resistance by 

cancer cells is a serious problem since it ends the remission stage and leads to disease relapse. 

Clinically, the chemotherapy drug docetaxel (Taxotere®) is frequently used to treat the advanced 

stages (metastasis) of prostate cancer. However, resistance to this drug is a major clinical 

problem.58 Docetaxel resistance is correlated with treatment time and drug dosage..59  Researchers 

are studying drug resistance with the aim of understanding the physiological effect of other 

chemotherapeutic drugs that can bypass resistance and restore near-normal growth and division 

processes for cells that remain after chemotherapy.60–62 In different chemo-resistance studies, the 

aggressiveness and invasion of resistant cancer cells have been observed.63,64 In addition, it has 

been reported that docetaxel resistance in cancer cells is highly associated with genetic 

alterations.65 These genetic mutations lead to the rearrangement and alteration of the most basic 

building blocks of cells, such as DNA, RNA and lipids, in turn producing intracellular structural 

changes in the treated cancer cells.65 In this work, the effect of this drug on intracellular structural 
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changes were measured and quantified using the parameter disorder strength, Lsd  (=<dn2>×lc), as 

defined earlier. The resulting value was compared to corresponding values for nondrug-treated, 

i.e., the drug sensitive cancer cells. The results support the hypothesis that prostate cancer cells 

that acquire chemo-resistance to docetaxel, ultimately showing no response toward further 

treatment with this drug, and become more aggressive. Consequently, we have demonstrated that 

Lsd can potentially be an efficient metric (/biomarker) that can characterize drug-sensitive vs. drug-

resistant cancer cells using PWS technique.  

4.3     Method 

4.3.1 Cell Culture and Development of Docetaxel Chemo-Resistant Prostate Cancer Cells 

of the Following Cell Lines: C4-2 (PSMA+), DU145 (PSMA−) and PC-3 (PSMA−) 

Prostate cancer cell lines [C4-2 (PSMA+), DU-145 (PSMA−) and PC-3 (PSMA−)] were 

developed in cell culture facilities at the University of Tennessee Health Science Center (UTHSC) 

and cultured in RPMI-1640 medium containing 10% (v/v) fetal bovine serum (FBS), 2 mM L-

glutamine (Invitrogen, Carlsbad, CA), and 1% (w/v) penicillin–streptomycin (Gibco, Thermo 

Fisher Scientific, Grand Island, NY) at 37 °C in a humidified 5% CO2–95% air atmosphere 

(Thermo Fisher Scientific, Waltham, USA). Prostate cancer-resistant lines were generated by 

initial treatments with docetaxel (MP Biomedicals, Santa Ana, CA) at 1 nM (from 5 µM stock) in 

75 cm2 flasks for 24-48 hours. After treatment, the surviving cells were re-seeded into new flasks 

and allowed to recover for 1-2 days. Cells were maintained at 1 nM up to 4 treatment cycles (4 

TC). Gradually, the concentration of docetaxel was increased to 2.5 nM (6 TC). The 5 and 10 nM 

of docetaxel was then continued to 8 and 12 TC, respectively. Then all cells underwent 12 TC and 

15 TC with docetaxel 15 and 20 nM, respectively. Finally, at 30 nM docetaxel, we performed 25 

TC to ensure the acquisition of chemo-resistance in all C4-2, D-145, and PC-3 cells. Following 
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each treatment, cells were allowed to fully recover before assessing their resistance to docetaxel 

and performing any experimental work. In total, the cells were treated for eight months. Since the 

passage number of the drug-treated cells increased over time, a subset of prostate cancer cells was 

aged alongside these cells as an appropriate control to ensure that the effects seen resulted from 

resistance and not the aging effect of the cultured prostate cancer cells. 

4.3.2 Cell Imaging and Analysis 

  Frozen cell batches with similar passages were thawed and used for all experiments. For image 

analysis studies, we seeded 2.5 × 104 cells in each well of 4-chambered slides (Sarstedt. Inc, 

Newton, NC) and allowed them to grow. After reaching 70-80% of confluence, cells were fixed 

using 4% paraformaldehyde for 20 min.66,67 After incubation, cells were washed with PBS, 

followed by PWS imaging and analysis. 

4.3.3 Structural Disorder from the Backscattering Intensity  

    The CCD camera detects and stores the backscattered image of the biological cell taken at 

different wavelengths (λ) in the visible range, 450nm -700nm. Eventually, a cubic data matrix of 

backscattered intensity I(x,y;λ), where (x,y) represents the spatial position on the sample, are 

acquired by the PWS system. For further data processing, we extract the backscattered spectral 

fluctuation R(x,y;λ) as described elsewhere in chapter 3. Subsequently, the disorder strength Lsd is 

derived from two quantities: the average rms of the reflection intensity <R>rms and spectral 

correlation decay of the reflection intensity C(Δk), as follows (as described in Chapter-4) 
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Where C(Δk) is the autocorrelation function of R(x,y,k) at a particular position (x,y) and  averaged 

over many ensembles. The average value of Lsd (averaged over ensemble) is calculated for each 

pixel point (x,y). As pointed out earlier, the Lsd value measured at any spatial point (x,y) represents 

a measure of refractive index fluctuation at that point along the depth of the sample (Lsd 

=<dn2>×lc), averaged over depth direction.  

4.4     Results and Discussion 

The disorder strength measurement was first performed on the three prostate cancer cell lines, 

namely C4-2, D-145, and PC-3, for which the hierarchy of tumorigenicity (aggressiveness or 

metastatic potential) have been well characterized.68–70 The measurements were conducted on 

~20 cells randomly selected from each cell type in one set of measurement (~60 cells in 3 sets). 

The results are shown in Fig. 4.1.   

 

 

 

 

 

 

 

 

 

 

 
Figure 4.1: Representative bright-field images (a,b,c)  and corresponding  2D 
Lsd maps (a’,b’,c’) (PWS images) for the three prostate cell lines, DU145, C4-
2, and PC3,1,2,3, respectively. 
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In Fig. 4.1: (a)-(c), three representatives one micrograph of bright-field images of each cell lines, 

namely DU-145, C4-2, and, PC-3 are presented, and their corresponding PWS Lsd images are 

shown in Fig. 4(a’), (b’), (c’), respectively. The Lsd map shows the distribution of Lsd values in 

the cells. In Lsd color map, the disorder strength increases from blue color to red. As pointed out 

earlier, a higher Lsd value at any pixel point (x,y) in the Lsd image indicates higher degree of 

structural disorder along the depth of the cell at that particular spatial point. It can be seen in the 

Figs.4.1 (a’), (b’) and (c’) that the Lsd distributions for the three cell lines are distinctly different. 

Subsequently, therefore, we calculated the average disorder strength, i.e., mean Lsd value, of each 

cell lines by taking the ensemble average of Lsd values of all the cells in three different sets (n ~ 

60).  

  

   

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: Bar plots of mean intracellular disorder strength Lsd calculated for three 
types of human prostate cancer cells (DU-145, C4-2, PC-3).  Lsd results show that 
the average Lsd value correlates with the tumorigenicity level of the cell.   
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The results are shown in Fig. 4.2. The bar graph in Fig.4.2 shows a comparison of the 

mean Lsd values of the DU-145, C4-2 and PC-3 cell lines. As it is clear from the Fig. 4.2, the 

disorder strengths in these cell lines are in the order of DU-145 < C4-2 < PC-3, which is in 

accordance with their metastatic potential level (aggressiveness/tumorigenicity) as well 68,69. 

Consequently, the present result suggests that the Lsd value (i.e., the disorder strength) is directly 

correlated with the aggressiveness level of the cell lines. 

In the next step of this study, we examined the changes in the intracellular disorder strength 

that may have been introduced to the three prostate cancer cell lines after prolonged exposure to 

docetaxel drug. We hypothesized that these cell lines might develop resistance to the docetaxel 

drug after eight months of exposure and that this behavior would be associated with additional 

intracellular structural changes. In particular, a distinct change in the disorder strength in drug-

resistant prostate cancer cells was expected.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 3: (a-f) Bright-field images of three human prostate cell lines: Original 
cancer cells (control) and its corresponding (drug-resistant R) cells from the same 
cell type. (a’-f’).  The colored images are PWS images; a 2D map of Lsd where 
images show the representative mean intracellular disorder strength between control 
and corresponding drug-resistant prostate cells. 
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To test our hypothesis, we measured the average structural disorder strength values for the 

docetaxel treated DU-145, C4-2, and PC-3 cells, and compared with their corresponding eight 

months age-matched non-drug treated cell (i.e., drug-sensitive), obtained as described above. The 

results are shown in Fig.4.3 and Fig 4.4.  

 

 

 

 

 

 

 

 

 

 

 

 

As can be seen in figure 4.4, the disorder strength of the drug-resistant cells is higher than 

their corresponding age - matched normal cancer (control) cells. A p-value < 0.05 was obtained 

in each case, which suggests significantly elevated structural disorder in the drug-resistant cells 

induced with eight-month docetaxel dose, as compared with the untreated cells. This result also 

shows that a larger variation in the Lsd values were noted for the drug-resisted cells compared to 

their untreated counterparts. As pointed out before, it was anticipated that drug-resistant cells 

would show measurable structural changes associated with the aggressive behavior that prostate 

Figure 4.4: Bar plots for mean intracellular disorder strength value Lsd calculated for the 
three human prostate cancer cell lines: (a) DU-145, (b) C4-2, and (c) PC-3 (control) and 
the Lsd values of these cancer cells treated with docetaxel for about 8 months. Surviving 
cells are called drug-resistant cells, denoted as R. It can be seen that each drug-resistant 
cell type has higher Lsd   than its corresponding control (aged cancer cells) type. The 
percentage increase of disorder strengths in the drug-resistance cells, relative to their 
corresponding non-drug treated DU-145, C4-2 and PC-3 cells are 34%, 45% and 30%, 
respectively.   
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cancer cells would have acquired after eight months of docetaxel chemotherapy in vitro, we 

indeed saw an increased disorder strength in the drug-resistant cells. Additionally, we were able 

to quantify such changes occurring in the cells in terms of the Lsd values, which provided a 

measure of the degree of aggressiveness in the cells. 

 These results not only show that the cancer cells underwent changes in their nano-

architecture by virtue of prolonged exposure to the chemotherapy drug, but also show the 

potential use and quantitative capability of the disorder strength metric Lsd, as a useful biomarker 

by which to assess aggressiveness level acquired by the prostate cancer cells in chemotherapeutic 

treatment process. 

4.5      Conclusion 

  In summary, we have applied partial wave spectroscopy (PWS) technique, to analyze structural 

disorder, in terms of ‘disorder strength (Lsd)’ of the cells, in the selected stages of prostate cancer 

cell lines, namely C4-2, DU-145, and PC-3. These cancer cells were selected because they 

represent known levels or stages of tumorigenicity/aggressiveness (metastatic potential) of the 

prostate cancer cells, suggesting the clinical utility of measuring disorder strength of these cells. 

Subsequently, we also analyzed the effect of prolonged exposure to chemotherapy drug, 

docetaxel, on these cancer cells. In particular, we measured the changes in the disorder strength 

level in the cells which developed resistance towards the docetaxel drug upon an eight-month 

treatment (dose amount varying from 1 - 30 nM) compared to their age - matched untreated 

cancer cells (control). The first result showed that Lsd values for C4-2, DU-145, and PC-3 cell 

lines increases with the increasing order of metastatic potential (aggressiveness/tumorigenicity) 

which is DU-145 < C4-2 < PC-3. This result suggested that Lsd is directly correlated with the 

metastatic potential of these prostate cancer cell lines, and it can be potentially an efficient metric 
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to measure the aggressiveness of the prostate cancer cells. Subsequently, in the treatment with 

docetaxel drug, it was found that Lsd values (i.e., disorder strength) are significantly higher for 

the drug-resistant cells in comparison to their untreated counterparts, indicating higher 

aggressiveness in the drug resistant cells.  

It should be noted that the disorder strength, Lsd, quantifies the intracellular structural changes, 

by measuring refractive index fluctuations inside the cells, which in turn arises as a result of 

mass density fluctuation inside the cells. In that context, the present results suggest that distinct 

structural changes have happened in the nano-architecture of control and drug-resistant cancer 

cells and that these changes presented as mass-density fluctuation increases in chemo-drug-

surviving cells when the drug was introduced and applied for a long time. It should be worth 

pointing out here that cells behave differently in the case of drug resistance, including, for 

example, drug inactivation, alteration of drug targets, DNA damage repair, cell death inhibition, 

epithelial-mesenchymal transition and metastasis, cancer cell heterogeneity, etc.63,71–75 By gene 

mutations, surviving cells increase their aggressive behavior and, correspondingly, their 

structural disorder owing to random growth, which, in turn, results in more drug resistance and 

higher Lsd values. The increase in the structural disorder in drug-resistant cancer cells can be 

measured by Lsd parameter, as demonstrated in the present chapter thus suggesting its utility as a 

potential biomarker with which to assess the efficacy of docetaxel.   

           These experimental results provided new insights into chemotherapy drug-resistant cells 

and the associated increase in their structural disorder, as explained in this work. The origin of 

these apparent pathologically related structural changes and their correlations with the specific 

molecular changes, as well as their relationship to drug resistance, are important matters to be 

explored in further studies. 
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5 Inverse Participation Ratio (IPR) Technique: Light Localization Properties of 

Biological Cells Via Confocal Imaging 

 

The major part of this chapter has been taken from our below publications: 

       Optics Express 15428, Vol. 25, No. 13, 26 Jun 2017, and  
             Journal of Biophotonics. https://doi.org/10.1002/jbio.201700257, Jan. 2018 

 
 
5.1  Introduction 

In the previous two chapters (3 and 4), it was shown that the nanoscale structural disorder 

strength of the three-biological cancerous cell line models could be measured using mesoscopic 

light transport theory analysis of the one-dimensional backscattering spectra by these cells lines 

captured by the PWS system. To further investigate the structural disorder properties of the same 

cell lines, and support our previous results with PWS system, we introduce in this chapter a 

novel photonic technique, namely inverse participation ratio (IPR) technique. It is based on the 

analysis of the structural changes of the same biological cells by quantifying the effective 

structural disorder strength at the sub-micron scales with the help of the confocal imaging.  

This dual approach, PWS, and IPR, would help us to understand the potential of the 

structural disorder analysis in the detection of cancer, and comprehensive understanding of 

structural changes in progressive carcinogenesis. This chapter discusses in detail about the 

formalism of the inverse participation ratio (IPR) technique. First, we will briefly introduce the 

working principles of the confocal microscopy, and subsequently, we describe the background, 

theoretical framework of IPR technique and the steps for determining the effective structural 

disorder using the averaged IPR values. In the following chapter, we apply the IPR technique for 

https://doi.org/10.1002/jbio.201700257
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cancer detection for breast, brain, and prostate cancer cell line models and compare the two 

techniques, IPR and PWS, in measuring the disorder strength.  

5.2 Confocal Laser Scanning Microscopy (CLSM) 

5.2.1 The Optical Principle of CLSM 

Wide-field (non-confocal) fluorescence microscopy is a powerful technique that helps in 

studying and monitoring biological processes in fixed and living cells. The idea behind the 

fluorescence processes is very basic where electrons in a fluorescent molecule in a ground 

energy state (S0) are excited by incident energy (incident photons) and make a transition to a 

higher electronic state (S1or S2 in diagram 5.1). This process is followed by the electrons 

dropping back to a lower energy state and emitting photons (fluorescence) with lower energy. 

Therefore, the working principle of the fluorescence microscopy is based on the optical 

excitation of the fluorescent specimen with a specific wavelength, which is absorbed by 

the fluorophores, causing them to emit light with longer wavelengths.  

 

 

 

 

 

 

 

Figure 5.1: Jablonksi diagram of florescence pathway. In which electrons in a 
molecule make a transition between the eigenstates and release photons upon the 
interaction with light.  

So 

S1 

Florescence Incident 
 

S2 

https://en.wikipedia.org/wiki/Fluorophores
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Further development of fluorescence microscopy led to the birth of the confocal scanning 

microscopy (CFM) by Marvin Minsky in the 1950s. Therefore, confocal scanning microscopy is 

an updated version of the wide-field fluorescence microscopy with superior imaging capability 

due to the contrast and resolution improvement. Figure 5.2 shows a schematic representation of 

the optical paths of confocal laser scanning microscopy. 

 

 

 

 

 

 

 

 

 

 

Two principal ideas are added to the confocal microscopy and made it possible to 

overcome conventional microscopy multiple scattering problems that cause low contrast images. 

First, the so-called point-by-point illumination of the specimen to control, while minimize the 

amount of fluorescence that out of focus and hence avoid light that scattered from different 

regions than the point of focus in the sample (focal plane). This mode of scanning can be 

achieved either by placing a pinhole in front of the excitation light or by introducing a narrow 

Figure 5.2: The optical paths of the excitation and fluorescent light. A pinhole 
is placed in a plane conjugate to the focal (objective) plane (in front of the 
detector). The pinhole rejects out of focus fluorescent light (red and purple light) 
and allows the light coming from the in-focus plane (green light) to reach the 
detector. 
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beam of laser with the help of fiber optic. Second, a pinhole in front of the detector stops out of 

focus light, that comes from a plane above and below the objective focal plane, from reaching 

the detector.   

5.2.2 Confocal Microscope Design  

 

 

 

 

 

 

 

 

 

 

 

In laser scanning confocal microscopy, the laser beam scans the sample with the help of 

two galvanometric mirrors (rotating mirrors) with the optical parts stationary. The pair of mirrors 

scans the laser light in a raster pattern in the x and y directions across the sample instead of 

moving the sample in front the beam. The advantage of the beam scanning mirrors is that the 

image reconstruction of the sample takes only a few milliseconds whereas the latter case it takes 

several minutes to reconstruct the sample image.  Figure 5.3 shows how the mirrors used to 

Figure 5.3: The one of the illumination methods in confocal microscopy based 
on the use of two rotating mirrors. The laser beam deflected by the mirrors toward 
the sample to scan the sample in a raster pattern. The light emitted from the 
fluorescence sample is deflected by the rotating mirrors in the revers path and 
collected by the detector.   
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direct the excitation beam and the fluorescence light from the sample. The excitation light (blue 

line) is directed by a dichroic mirror (beam splitter) towards the galvanometric mirrors which 

deflect the angle of the laser to illuminate (scanning) the sample point by point. The laser excites 

the dye in the specimen and the emitted light (orange light) from the excited spot gets deflected 

by the mirrors to take a reverse optical path (de-scanning) with respect to the incident laser 

beam. The fluorescent light then passes through the dichroic mirror and arrives at the pinhole in 

front the detector and finally to the detector (photomultiplier tube).  

5.2.3 Optical Sectioning  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Among the advantages that laser scanning confocal microscopy provides the optical sectioning. 

To build a 3D image of a specimen, sequential 2D slices (optical section) are captured through a 

sample at different heights (focal plans) across the sample. Then, series of the optical sections 

Figure 5.4: Shows a 3D reconstruction of an object from a series of 2D images. The 
sample steps with respect to the objective to acquire a series of 2D images at 
different focal plane from the top to the bottom of the object (different optical 
sections). The 2D image in the middle of the stacks cover the maximum area of the 
object. The stacks of images used by the computer to generate a 3D reconstruction 
of the object. 
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are stacked together into a 3D image called a z-stack that is processed with the computer to give 

a 3D structure that can be visualized from different angles. Therefore, the movement of the 

sample stage away from the objective or up toward the objective allows the capture of multiple 

optical sections each represented by a 2D plane image. As it shows in the Figure,5.4, recording 

the image information at different focal planes allows the 3D-reconstructing of the whole sample 

volume.  

5.3 Light Diffraction and Spatial Resolution 

The resolution of the optical microscopy is limited by the diffraction of light. In general, when 

light passes through obstacles (slits, gratings), it diffracts or bends from the edges of the 

obstacles and forms a diffraction pattern due to the interference of the light waves. The inherent 

resolution of confocal microscopy can be explained by the image formation process by a point 

source. On the microscopic scale, a specimen can be seen as a collection of slits with different 

widths, and when a point source (parallel beam) illuminates the specimen, the light diffracted 

and spread out and finally collected by an objective. The diffraction angles of light depend on the 

size of the slits (the size of the specimen details) and the narrower the slit (finer the size of a 

detail) the greater the angle of diffraction. Therefore, to collect the finer details of a specimen, 

we need an objective with a large angular numerical aperture to collect light from large 

diffracted angles. Moreover, the diffraction angle of light depends on the wavelength of light 

used, where shorter wavelengths diffracted with a small angle compared to long wavelengths.   

The resolution of an optical imaging system can be defined as the ability of the system to 

distinguish between two closely spaced points on the image plane. When a point source 

illuminates a specimen, the image created for an object is not a fine bright dot, but a diffraction 

pattern. This pattern consists of the central bright spot, known as Airy disk, surrounded by a 
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series of diffraction rings. The maximum resolution that can be acquired by a microscopic 

system is set by the size of the Airy disk. According to Rayleigh criterion, the minimum distance 

between two Airy discs must be their radius in order for them to be resolved. The diffraction 

limited resolution theory relates the average imaging wavelength (λ), the numerical aperture 

 ( θsinnNA = )) of the objective lens and Airy disk size (A) through Eq.1.76 

Researchers have developed different techniques to exceed the diffraction limit resolution 

of the optical microscopy; however, one of these techniques is confocal microscopy. The 

resolution of the commercially available confocal microscopy is 30% higher than the 

conventional optical microscopy 77 and it given by 78  

5.4 Inverse Participation Ratio (IPR) Technique 

Bloch’s theory describes the eigenfunctions and eigenvalues for an electron in a solid system 

with a periodic potential (energy sites) )(rv , where )'()( rrvrv += , 'r  is the period in the 

lattice. The solution of the Schrodinger equation of such system gives wave functions of the 

electron represented by plane waves with probability amplitudes extended over the entire system 

(lattice). However, in a system with a random potential, Bloch’s theory fails.  P.W. Anderson 

was the first to describe an electron moving in a random lattice and he predicted the localization 

of electrons eigenfunctions in a highly disorder system.79 

 

)/(61.0 NAA λ=  (1) 
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The Anderson model is used to study the available energies states (wavefunctions) for an 

electron instead of solving Schrodinger equation, because of the difficulty due to the randomness 

in the system’s potential energies. The model is based on the tight binding model, in which, the 

system is represented by a discrete lattice sites and the electron is subjected to the energy site 

(potential energy) associated with each lattice site. Moreover, for simplicity, the electron 

interaction (kinetic energy) is restricted to the nearest-neighbor sites. In other words, the electron 

has kinetic energy that allows it to hop from one site to another (nearest-neighbor sites only). It is 

worth noting that Anderson localization is a wave phenomenon in general that can occur for any 

type of classical and quantum wave, light, acoustic and electron wave, when propagating in 

disorder medium (disorder potential). One method to distinguish localized eigenfunctions of a 

system and hence characterize the system disorder properties is to calculate the inverse 

participation ratio (IPR), which averages the fourth power of the eigenfunctions of a system.  

Earlier, a technique was proposed that quantifies the effective degree of structural 

disorder in heterogeneous biological samples using a single parameter via inverse participation 

ratio (IPR) analysis of the light wave eigenfunctions of these systems.80 This approach utilizes 

the fact that in a weakly disordered system, the degree of structural disorder (Lsd), which relates 

to the mass density (or, refractive index) fluctuation inside the sample, is linearly proportional to 

the IPR value for a system.81,82  In this study,83 the transmission electron microscopy (TEM) 

imaging technique was used to generate the ‘optical lattices’ (analogy of potential energy or 

simply potential sites) from the cells; subsequently, light localization properties were analyzed 

for the control and cancerous cells. The study showed highly promising results in quantifying 

and differentiating nano-scale level structural disorders in biological samples.  
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Although this technique is highly promising, it requires the sample preparation and imaging 

efforts of electron microscopy. With that view in mind, we demonstrate here performing similar 

studies with optical microscopy as an alternative to the TEM imaging.  

In particular, we performed the light localization analysis of biological cells using 

confocal fluorescence microscopy, which is one of the most widely used optical imaging 

techniques in life science and biomedical research. The additional advantage of using confocal 

fluorescence microscopy is that the structural disorder analysis can be performed for 

fluorescently labeled selective molecules or organelles inside the cells. For example, in our 

investigation work in the next chapter, we selectively perform the structural disorder analysis of 

nuclear DNA using DAPI staining. 

5.4.1  Calculation Method of the Structural Disorder: IPR Technique 

The IPR technique involves the use of the fluorescence intensity fluctuation data from confocal 

micrographs to construct a disordered ‘optical lattice’ systems. Numerically determining of the 

eigenfunctions and eigenvalues of the optical lattice system using the Anderson tight-binding 

model (TBM) Hamiltonian in closed boundary conditions follow this. Subsequently, a statistical 

analysis of the eigenfunctions leads to the calculation of an average IPR value for the disordered 

lattice system. The average IPR value of a system, i.e. 〉〈IPR is proportional to physical 

parameters, RI fluctuations or rms value, dn  and its correlation length lc , of a system. 

5.4.2 Pixel Intensity in Confocal Microscopy Imaging in 2D 

In confocal imaging, the amount of fluorescence intensity emitted from a ‘point’ (excitation 

center on the focal plane) inside the sample is emitted out by the fluorescing molecules inside a 

finite volume, ‘voxel’, around that excitation center. The excitation volume depends on the laser 

beam intensity profile being used for the excitation. For a typical Gaussian-shaped laser beam, 
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the intensity profile around the excitation center rc (xc, yc, zc) is given as, I(r,rc) ∝  exp[-2{(x-xc)2 

+ (y-yc)2}/wxy - (z -zc)2/wz ], where wxy is the lateral width and wz is the axial width, which 

together determines the volume covered around the excitation center. Under normal imaging 

conditions, i.e., uniform incident intensity across the sample plane, no fluorescence saturation, 

and photo-bleaching, the amount of fluorescence intensity emitted out from the voxel volume 

can be considered as proportional to the mass density of the fluorescing molecules inside that 

volume, that is  I(r)out ∝ )(ρvoxeldV  where ρ is the mass density. 82,84,85 

Therefore, under normal imaging conditions, the intensity detected at the image plane, 

i.e., the pixel values, is a measure of the mass density of the dye molecules inside the small 

volume in the sample plane, which in turn is stoichiometrically proportional to the mass density 

of the target molecules inside that volume. Therefore, the detected confocal image intensity  

( CFMI  ) can be written as,  

 

5.5 Relation between Mass Density and Refractive Index of a Biological Sample: Optical 

Lattice Construction and Its Physical Significance 

The pixel intensity values in a confocal fluorescence image are used to construct a refractive 

index matrix termed an ‘optical lattice’. It is known that the variation in fluorescence intensity 

recorded in the confocal image plane depicts the variation in the mass density of targeted 

molecules inside the cell. Additionally, it is also well known that local refractive index inside a 
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biological sample is proportional to its local mass density. 86,87 Therefore, considering the mass 

density at any point r inside the cell of form 

Where cell〉〈ρ the average mass density of the cell, )(rd cellρ represents the fluctuation in the mass 

density at the position r, and β is a proportionality constant. The refractive index (RI) can also be 

written as, )()( 0 rdnnrn += ∝ ( )(rd cellcell ρβρ +〉〈 )). Where n0 is the average refractive index of 

the cell and )(rdn represents the spatial refractive index fluctuations. In general, the average 

refractive index of biological cells is ~1.38 and the position dependent fluctuation ranges up to ~ 

0.02. In the case of fluorescence imaging, since the fluorescent intensity is proportional to the mass 

density of the target molecules, the contrast of the pixel intensity values in the confocal micrograph 

can be attributed to the spatial variation in the mass density of the target molecules. Consequently, 

in turn, the contrast of the pixel intensity values can be correlated to the spatial refractive index 

fluctuations inside the sample. We defined the term  as onsite ‘optical potential’ 

corresponding to pixel position ),( yx on the 2D image plane.  

To express mathematically,  

Thus, the onsite ‘optical potential’ values, ),( yxε are obtained from the corresponding pixel 

intensity values in the confocal image. As illustrated in Fig.5.5, from a confocal image, created 

by point-to-point scanning on a horizontal plane inside the sample (Figs.5.5 (a) and 5.5(b)), the 
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pixel intensity values at each point , ),( yxICFM is noted down. Then, ),( yxdICFM ,

>< ),( yxICFM  is calculated for each of the pixels in the image. Subsequently, using Eq. 5, the 

),( yxε values are calculated for all the pixel points of the confocal image.  

 

 

 

 

 

 

 

 

This results in a matrix, of the size of the confocal image, with the ),( yxε values known 

for each of its points as represented in Fig.5.5(c). As described in the next chapter in detail, we 

used DAPI fluorescence staining to target DNA molecules inside the nucleus of the cells. 

Therefore, the fluorescence intensity contrast observed in the confocal images represents the 

refractive index fluctuation pattern of the DNA molecules inside the nucleus of the cells. 

Consequently, an optical lattice obtained in such a way depicts a disordered optical system 

representing intranuclear spatial DNA distribution. 

Since, in this process, we obtain a matrix, of the dimension of the confocal image, for 

which the ‘optical potential’ values, i.e., ),( yxε values, are known for each of its points, this 

),( yx

Figure 5.5: Construction of a disordered optical lattice from confocal imaging 
(schematic pictures): (a’) Imaging of a sample with a laser beam (a) Voxel-wise 
scanning on xy- plane (z=constant) to construct a confocal 2D plane image of a DAPI 
stained cell nucleus. (b) A typical confocal image- 2D micrograph. (c) A sample 
disordered optical lattice: each dot in the optical lattice is determined from the pixel 
confocal fluorescence image as shown in (b). 
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matrix is simply termed as ‘optical lattice’. It should be noted that the ),( yxε values represent 

the strength of refractive index fluctuations of the target molecules at those spatial positions 

),( yx on a 2D plane inside the cell. Thus, essentially, this optical lattice is a representative of 

spatial refractive index fluctuation pattern of the targeted molecules inside the sample. 

5.6 Tight-Binding Model and IPR Calculations 

In the next step, an Anderson tight-binding model (TBM) Hamiltonian is constructed for the 

optical lattice systems generated from the confocal micrographs. To quantify the structural 

disorder properties from the CFM images, we need to calculate the IPR of the system. The 

calculation of IPR of the system required the determination of the eigenfunctions and 

eigenvalues of the system. To do so, we carry out numerical calculations of the Anderson 

disorder tight-binding model (TBM) Hamiltonian88 which is constructed from the optical lattice 

system generated from the confocal micrographs, such a Hamiltonian can be written as follows: 

  Here, εi (= dni /n0) represents the optical potential of the ith site and that >i|  represents the state 

of a photon at any arbitrary lattice site i  and t is the inter-lattice site hopping energy. For any 

disorder system, the diagonal matrix elements of the Hamiltonian are the site energies εi   and the 

off-diagonal elements are values of the hopping parameter t, which is taken to be constant and 

limited to nearest neighbors (i and j) and otherwise are equal to zero. 
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5.7 Ensemble Averaged IPR Value and the Degree of Structural Disorder Calculation in 

Terms of IPR 

Strictly speaking, IPR measures the localization of an eigenfunction )(rΨ  of a system in D-

dimensions and defined as. 89 

  From the Hamiltonian in E.q 5, the Ei (eigenfunctions) were determined and we analyzed the 

localization properties of a system by measuring the average value of IPR , <IPR>, over the N 

eigenfunctions, calculated for 2D lattice L×L calculated by. 81 

Where Ei is the ith Eigen function of the lattice Hamiltonian determined for a small area L×L 

inside the sample, and N represents the total number of eigenfunctions in the sample area L×L. 

For a discrete lattice system, N is determined by the total number of lattice points in the sample 

area [i.e., N = Np
2, where Np = L/a and dx = dy = a (lattice constant)]. < > represents ensemble 

averaging, i.e., averaging over several different samples of size L×L. For 2D system, the IPR 

values are measured in the unit of inverse area. 

To calculate the IPR value of a sample at a length scale L, the process first involves 

dividing the whole sample (micrograph) into small square areas L×L. For example, a 100×100-

pixel micrograph can be divided into 25×25 (=625) square areas for L corresponding to 4 pixels. 

For every square area, with the known optical potential at each lattice site, i.e., pixel points, 

inside it, a Hamiltonian matrix is constructed using Eq. 5. Subsequently, eigenfunctions are 
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determined from this Hamiltonian matrix. After all the eigenfunctions for the small closed lattice 

system (of length scale L) are known, the IPR value for this small area within the sample is 

calculated using Eq. 8. This IPR value constitutes one-pixel value in the 2D IPR plot. Thus, a 

distribution of IPR values for the whole sample, corresponding to the particular length scale L is 

obtained. Finally, an ensemble averaged IPR value, <IPR(L)>, is obtained for the whole sample 

by taking mean of all the IPR values determined at the length scale L. 

 Further averaging of the IPR values is done for a number of cells of a particular cell 

type, and are compared with the average IPR values of other cell types. Similar analysis and 

comparison are done for different length scales as well. Two systems with different degree of 

structural disorders result in different <IPR(L)> values.80 The <IPR(L)> value corresponding to 

a sample area L×L is a measure of the strength of light localization inside the sample in that area. 

The strength of light localization, or the IPR value, in a closed area measures the effective 

structural disorder of the sample, which in turn is a function of the magnitude and spatial 

distribution of the refractive index fluctuations inside the area.  

5.8 Significance of IPR Value 

Typically, disorder inside a refractive index system is characterized by two parameters, namely 

the refractive index fluctuations dn and its spatial correlation length lc. These parameters come 

with different functional forms, or a combination of functional forms, depending on the 

complexity of the heterogeneous sample. For example, for a Gaussian color noise disorder, 

defined by <dn(x)dn(x’)> = <dn2
 >exp(-|x-x’|/lc), can be characterized by the <dn2> (the 

strength of fluctuation) and its spatial correlation decaay length lc. Similarly disorder of other 

functional form or a combination of them are characterized by effective dn and lc (if they are 

known). 
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 Being based on eigenfunctions of the system, the IPR approach further reduces the 

complexity by measuring the degree of disorder (i.e., disorder strength) in one parameter, namely 

the <IPR> value (note that the eigenfunctions of the system contains all the disorder information 

in them). For a simpler case of 2D Gaussian color noise disorder system, it has been shown that 

<IPR> ~ dn × lc.90 Thus, the two parameters, dn (= <dn2>1/2: standard deviation) and lc, are 

combined into a single one, i.e., <IPR> value, which is also termed as ‘disorder strength’, 

because it provides a measure of the RI fluctuations (magnitude as well as correlation length) 

inside the system. Consequently, for 2D systems, the ensemble average of all the IPR values can 

be expressed as shown in Eq. 8  

                                                                                            

5.9 Summary of the Technique 

 

 

 

 

We methodically describe the steps involved in calculating the IPR values using confocal 

fluorescence micrographs. Fig 5.6 shows a schematic flow chart of IPR calculations. The process 

.StrengthDisorderIPRIPR
Sample

≡=

Figure 5.6: Schematic flowchart for IPR calculation from confocal images. 
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mainly involves five major steps, starting from acquiring the confocal images to calculating the 

average IPR value, <IPR>, as follows: 

 Step-1: The desired confocal images/micrographs are acquired from the cells. 

 Step-2: Using the pixel intensity values of each micrograph, a pixel intensity matrix is 

obtained:  I(x,y) = <I> + dI(x,y).  

 Step-3:  From the pixel matrix, an optical refractive index lattice/matrix is obtained by 

considering one-to-one correspondence between micrographic pixel intensities and the 

refractive index defined as dni/n0 ∝  dIi/<I>, where dni is the refractive index fluctuation 

at ith lattice points, n0 is the average refractive index of the cell, and dIi is the ith pixel in 

the confocal micrograph (i.e., dI(x,y)). Then, for every point in the optical lattice, an 

“optical potential” is defined as εi = dni /n0. In essence, this procedure replaces the 

confocal pixel intensity matrix with a refractive index/optical potential matrix, or, more 

simply, an “optical lattice” system of refractive index distribution. 

 Step-4: In this 2-dimensional optical lattice, we choose a sample size L × L, i.e., Np × Np 

optical lattice points, where Np=L/a , with a as the lattice unit. On this lattice size, a tight 

binding Hamiltonian is constructed with εi (= dni/n) as the onsite potential using Eq. 5. 

 Step-5: We calculate the eigenfunctions, Eis, of the Hamiltonian, where Ei is the ith 

eigenfunction of the Hamiltonian. From the Eis, we calculate the average IPR, 

<IPR(L)>Pixel, using the Eq. 8, which constitutes the one-pixel value of the IPR image. 

Thus, in this way we obtain an IPR distribution inside sample corresponding to the length 

scale L, i.e. in the sample area L × L . 

 IPR image: The <IPR(L)>Pixel image is constructed from the confocal image by 

systematically   determining the average IPR value for the area covered by L× L pixels in 
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the confocal micrograph or the optical lattice size which is equal to Np × Np. That is, for a 

confocal micrograph of pixel dimension Lmax× Lmax, we get <IPR(L)>Pixel image of 

dimension Lmax//L × Lmax/L.  

 <IPR(L)> = < <IPR(L)>Pixel >ensemble: Once the distribution of <IPR(L)>Pixel values on a 

micrograph are known, they are averaged to get a mean IPR value of a cell, followed by 

averaging over several micrographs of a cell and, finally, for several cells of the same 

category. The <IPR(L)> values are obtained for different length scales L. 
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6 Quantification of Photonic Localization Properties of Targeted Molecular Specific 

Nuclear Mass Density Variations: Application in Cancer Detection 

The major part of this chapter has been taken from our below publications: 

     Optics Express 15428, Vol. 25, No. 13, 26 Jun 201, and 
            Journal of Biophotonics. https://doi.org/10.1002/jbio.201700257, Jan. 2018 

 

6.1   Introduction 

In the previous Chapter, we have described and developed the formalism for characterization of 

structural disorder by inverse participation technique via confocal microscopy. In this chapter, 

we will apply the inverse participation technique for differentiating normal and cancer cells, as 

well as characterization of the stage of the cancer.  Analyzing structural disorder of weakly 

disordered optical media has many applications, in particular determining the physical properties 

of the samples such as refractive index variation. Some typical examples of such media include 

polymers, thin dielectric films, biological media cells/tissues, etc. The characterization of these 

disordered media becomes more complicated if the system has spatial heterogeneity involving 

many kinds of spatial correlation decay length scales within the sample, for example as in 

biological cells. 28,91 Recently, there has been a significant interest in quantifying structural 

disorder of cells, by analyzing their light transport and localization properties 27,92   These 

investigations have shown that the analyses of light localization properties of cells can be a 

useful tool to examine the progress of cancer as well as to characterize the intracellular 

tumorigenicity levels.  From physics point of view, cells are dielectric/refractive index media 

with typical length scale ~2-10 µm, which corresponds to the mesoscopic length scale regime. 

Secondly, owing to the complex spatial arrangements of the basic building blocks of the cells, 

such as DNA, proteins, lipids, etc., inside the cells, the cells’ refractive index media have 

https://doi.org/10.1002/jbio.201700257
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inherent heterogeneity. Thus, with very weak light scattering properties, cells are a perfect 

example of weakly disordered heterogeneous optical media. Therefore, in principle, the light 

transport and localization analyses of the cells can be a useful method to extract out information 

about the physical properties of the cells. In fact, such approach has been shown to have practical 

applications, for example in the detection of early carcinogenesis. 80 Consequently, these 

developments have opened new avenues for applications of “mesoscopic physics” based optical 

transport analysis 81,93 in understanding disease processes in the biological cells.  

It should be noted that disorder analysis of optical disordered media via light localization 

has been widely studied in last few decades 94,95 For a closed boundary optical disordered media, 

the light is localized due to the multiple interference effects within the disordered samples. The 

phenomenon of light localization in the disordered media is quantified in terms of the IPR values 

89,96.  In general, the localization effect is more strongly observed in 1D and 2D systems 

compared to 3D systems.97 According to the scaling theory of localization, all optical eigenstates 

are localized in 1D-disordered systems, while 2D systems are marginally localized, and 3D 

systems have localized/delocalized states. 98 As a result, the disorder analysis is preferably 

performed for 1D or 2D systems. Additionally, the 2D images provide a better planar 

visualization of the light localization strength, in term of the structural disorder. Therefore, in the 

present work, we have conducted the structural disorder analysis with 2D confocal images. The 

choice of confocal fluorescence microscopy takes advantage of the mechanism of confocal 

imaging technique in constructing 2D images of the sample. The pixel intensity of a 2D confocal 

image obtained upon a systematic voxel-by-voxel scanning inside the sample on a horizontal thin 

layer of xy-plane, for a fixed z-axis. This scanning consequently represents the refractive index 

variation pattern of the target molecules inside the sample in the slice of the 2D plane.  The 
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‘optical lattice’ matrix (i.e., the refractive index matrix) were generated using the pixel intensity 

values from the confocal images, and these optical lattices were used to compute the degree of 

structural disorder in the sample.  For this, first an optical disorder potential array is generated, 

and then using the Anderson tight-binding model (TBM) Hamiltonian in the 2D potential matrix, 

the eigenfunctions were obtained by solving the Maxwell’s light wave equation in a closed 

boundary condition.  Finally, we quantify the structural disorder in the sample by calculating the 

average IPR values of all the eigenfunctions of the optical lattice system. Subsequently, an 

average IPR value, <IPR>, averaged over all the cells of particular type are calculated. Two 

types of biological cell samples with different mass density (or the refractive index) fluctuations 

distribution of the targeted molecules would result in optical lattice systems with different 

structural disorders. In the present work, we compare the average IPR values of cancerous cells 

and normal cells. Specifically, in this proof of the concept study, we analyzed normal and 

cancerous breast, brain, and prostate cell line models. 

 Since carcinogenesis is associated with spatial alteration/rearrangement in 

DNA/chromatin structure inside the nucleus, we focused on examining the degrees of structural 

disorder of the DNA molecules in the nuclei of these cells. In order to perform confocal imaging 

of the nuclei of these cells, they were dyed with DAPI, and from the confocal imaging of DAPI 

stained nuclei, we were able to differentiate the normal and cancer cell nuclei by quantifying 

sub-micron scale level ultra-structural alterations in the nuclei of these cells, using the IPR 

technique. 

6.2 Methodology and Theoretical Background 

In this section, we will briefly describe the quantification method of light localization properties 

of cellular media, evaluating the structural disorder Lsd, inside cells’ nuclei, using confocal 
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imaging. The description systematically elaborates the methodology, starting from the 

construction of the optical lattice (using pixel intensities in confocal micrograph) to the 

calculation of the IPR values. 

6.2.1 Construction of Optical Refractive Index Lattice for Targeted Molecular Mass 

Density Using Confocal Imaging  

In confocal fluorescence microscopy, any particular molecule can be selectively emphasized 

(targeted) for imaging using specific fluorescent dyes. For example, DNA molecules inside the 

nucleus are targeted by staining them with DAPI fluorescent dyes, which stoichiometrically 

binds with the accessible DNA molecules. It has been shown that the RI, n(r), inside a cell is 

linearly proportional to local mass density, ρcell(r), of macromolecules, e.g., DNA, RNA, 

proteins, etc., n(r) = n0 + dn(r) = <ρ>cell + kdρcell(r). Where n0 is the average RI, dn(r) and 

dρcell(r) represents RI and mass density fluctuations at position r, respectively; k is the 

proportionality constant. Importantly, in quantitative image analysis, the pixel intensity of 

confocal fluorescence micrograph is considered as directly proportional to the mass density of 

the targeted molecules at the voxel point. 76,85  Therefore, if fluctuation in the RI is represented 

by 0)( nrdn , then 0)( nrdn   CFMCFM IrdI 〉〈)( ,where  CFMI 〉〈  and CFMrdI )( represent the 

average confocal intensity and the intensity fluctuation at position r in the confocal image. 99 

In the present work, we used DAPI fluorescent dyes to stain the DNA molecules of 

different breast, brain, and prostate cells, then imaged them with confocal fluorescence 

microscopy. As described above, using the pixel intensity values in the confocal fluorescence 

micrograph, a 2D refractive index map, corresponding to the DNA distribution in the sample is 

constructed.  

∝
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6.2.2 Tight-Binding Model to Determine the Eigenfunctions of the Optical/Refractive Index 

Lattice/Matrix and IPR Calculations 

 We have described this step in the earlier chapter. However, for the completeness of this 

Chapter, we will briefly mention the formalism.  For the optical lattice, constructed using the 

confocal image, the disordered tight binding model (TBM) Hamiltonian is determined. The 

Maxwell light wave equation is solved for the disordered optical lattice system under closed 

boundary conditions. Considering that εi (= dni /n0) represents the onsite optical potential at the 

ith site and that |i> represents the state of a photon at any arbitrary lattice site, the Hamiltonian 

for the entire lattice system can be obtained using the TBM as shown in Eq.1  

Where t is the inter-lattice site hopping strength, which is restricted to only the nearest neighbors. 

Subsequently, the eigenvalues and eigenfunctions of the system are determined from the 

Hamiltonian.  From the above Hamiltonian, the average value of IPR,  <IPR>,  is calculated as 

shown in Eq.2 100 

Where Ei is the ith eigenfunction of the lattice determined for a small area L × L inside the 

sample, and N represents the total number of eigenfunctions in the sample area L × L. For a 

discrete lattice system, N is determined by the total number of lattice points in the sample area 

[i.e., N = Np
2, where Np = L/a and dx = dy = a (lattice constant)].  It should be noted that, the 

above described IPR analysis of the eigenfunctions of a lattice system has been widely studied 
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both for electronic and optical media, and is considered to be one of the most efficient method to 

analyze structural disorder of the corresponding lattice system. 

Since biological systems are heterogeneous media, therefore, the degree of structural 

disorder in two different biological systems is compared through their <IPR(L)>  (ensemble 

averaged) values by considering an effective Gaussian color noise refractive index fluctuating 

system with exponentially decaying spatial correlation statistics.  It has been shown that 

<IPR(L)> value is proportional to the strength of the structural disorder Lsd  of the sample in an 

effective Gaussian model. 27 Therefore, once the <IPR(L)> value for each closed sample area is 

known, the Lsd inside that closed area of L×L is characterized via a Gaussian color noise with 

exponentially decaying spatial correlation of the refractive index fluctuations. This type of 

Gaussian color noise is typically represented as <dn(r)dn(r’)>=<dn2>exp(-|r-r’|/lc), where dn is 

the fluctuation in refractive index distribution and lc  is the spatial correlation decay length of the 

fluctuation. The choice of the Gaussian color noise model is based on the fact that theoretical 

framework for localization analysis is well established for Gaussian disorder model, for both 

white and color noise models. 81,93  For a Gaussian color noise refractive index fluctuation with 

short correlations decay length, it has been shown with extensive numerical simulations in 2D 

disordered system, that 27 

Therefore, a change in <IPR(L)> values, and thus the Lsd values, indicates a change in 

either the fluctuation strength of the refractive index or a rearrangement in its spatial distribution 

or the product of both the quantities, for a fixed sample length L, i.e., sample size L×L. For the 

simplicity of expressing the structural disorder in terms of IPR values, we are considering the 
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proportionality constant as 1; thus, expressing Lsd and the IPR as the same numerical number, 

i.e., Lsd(<IPR(L)>) =<IPR(L)>. A typical schematic of the steps involved in this study of 

comparing structural disorder in two samples using confocal fluorescence microscopy has been 

shown in Fig.6.1. 

 

 

 

 

 

 

 

 

 

 

6.3 Results and Discussions 

 Based on the above mentioned IPR technique, we analyzed several normal and cancerous breast, 

brain, and prostate cells by quantifying the structural disorder in their DAPI stained nuclear 

DNA, in terms of <IPR> values (≡ disorder strength). 

6.3.1 Sample Preparation and Imaging 

Primary cells and cell lines were acquired and cultured under the conditions recommended by the 

vendor.   For fluorescence staining, the cells were plated onto sterile glass coverslips. Sub-

confluent cultured cells plated on sterile glass coverslips were briefly rinsed in PBS and fixed for 

5 minutes at room temperature with 2 – 4 % paraformaldehyde in PBS. Cells were then washed 3 

 

 

(1) 

(2) 

Figure 6.1:  Schematic flowchart for comparing the structural disorder using confocal 
micrographs. (i) The confocal images of the nucleus of two samples were obtained. (ii) 
Optical lattices are constructed, and eigenvalues are obtained by solving the Anderson 
tight binding model optical Hamiltonian, (iii) The structural disorder of the samples are 
then obtained by calculating the inverse participation ratio (IPR) of the systems from the 
eigenfunctions in a Gaussian color noise model and compared.   
 



 

87 
 

times five minutes in PBS and mounted on a glass slide using Prolong Diamond antifade 

mountant containing DAPI.  The DAPI present in the mountant is a DNA binding dye that 

enables to visualize nuclei by fluorescence microscopy.  For imaging, Nikon A1 confocal 

microscope was used with 405 nm laser, DAPI filter set, and 60x oil immersion objective. 

Images were collected at pixel dimension 1024×1024, with x-y resolution ~ 0.2 × 0.2 μm2, and 

the z-axis resolution of 0.13 μm.  

From every z-stack of a cell nucleus, 2-3 confocal micrographs above and below the 

middle plane of the nucleus of a cell were taken for the analysis, constituting around 5-6 

micrographs from the z-stack of each cell nucleus imaged. The choice of selecting images from 

around the middle of the stack is to cover maximum nuclear area and therefore capture 

maximum change. Subsequently, several cells from each cell type were imaged for the analysis. 

6.3.2 Disorder Strength Analysis of Control and Cancerous Breast Cells  

Structural disorder analyses of the DAPI stained nuclear DNA of breast cell lines, namely MCF-

10A cells (normal/control) and MCF-7 (cancer) cells (American Type Culture Collection, 

Rockville, MD, USA), were performed. The MCF-10A cells which are regarded as non-

tumorigenic 101,102 were used as control; while the tumorigenic MCF-7 cells which are associated 

with the metastatic adenocarcinoma stage were used as the cancer cells. The <IPR> values were 

calculated at different length scales L (i.e., in small areas L × L inside the sample) for all the cells 

and subsequently averaged for the 10-12 number of cells to obtain <IPR> at each length scale 

for both the cell lines. The experiments were repeated 3 times. The results are shown in Fig.6.2. 

 Figures 6.2(a) and 6.2(b) are the representative 2D confocal images of DAPI-stained 

nuclei from MCF-10A and MCF-7cells, respectively, exhibiting the staining intensity 

distribution, which essentially represents the DNA mass density distribution inside the nucleus. 
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The corresponding IPR images obtained at sample length (length scale) L = 0.4 µm, i.e., sample 

size A = 0.4 × 0.4 µm2, are shown in Figure 6.2(a’) and 6.2(b’), respectively. The areas colored 

in red in the IPR images indicate regions with higher disorder strength, i.e., higher structural 

disorder.  Figure 6.2(c) represents a bar graph comparison between the <IPR> values of MCF-

10A and MCF-7 cell lines measured at the length scale 1.6 µm, i.e., sample size 1.6 × 1.6 µm2. 

The <IPR> values for the MCF-10A and MCF-7 cells, at L = 1.6 µm, were measured to 

be 2.55 and 2.76, respectively. The spread of the <IPR> values, measured in terms of the 

standard deviation of the measurement, turned out to be 0.04 and 0.07 for the MCF-10A and 

MCF-7 cells, respectively. A two tailed Student’s t- test was performed by considering all the 

ensemble IPR values calculated for each cell types.   

A p-value < 0.05 was obtained, which suggest that the mean disorder strength of the 

cancerous MCF-7 cells is significantly higher than the control MCF-10A cells. Subsequently, we 

also calculated <IPR(L)> values at different length scales (sample size L × L µm2) for both the 

cell lines. The results, which are shown in Figure 6.2(d), indicate that the average disorder 

strength, <IPR(L)>, for the MCF-7 cells is higher than that of MCF-10A cells at all the 

measured length scales ranging from L = 0.4 to 1.6 µm.  This reveals that the disorder strength of 

nuclear DNA of tumorigenic MCF-7 cells is greater than that of the control MCF-10A cells. 

Furthermore, this study suggests that degree of tumorigenicity in breast cancer cells can 

potentially be quantified by measuring the disorder strength of their nuclear DNA. Here it would 

be interesting to point out that the higher disorder strength of nuclear DNA of cancerous MCF-7 

cells may be attributed to the spatial rearrangement of the DNA molecules inside the nucleus as 

result of compaction of the chromatin structure 103,104 
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Such rearrangements of the nuclear DNA distribution leads to an increased mass density 

fluctuation of the DNA molecules distribution resulting in higher disorder strength. 51 

P= 0.022 

Figure 6.2: Structural disorder analysis of breast cell lines MCF-10A (control) and MCF-
7 (cancerous). Sample size n=34. (a), (b):  Representative confocal images of DAPI-
stained nuclei from MCF-10A and MCF-7 cells representing intranuclear DNA 
distribution (scale bar in the image corresponds to 5 µm) and (a’), (b’) their corresponding 
IPR images at sample length L= 0.4 µm (where, <IPR> = disorder strength, measured in 
unit of area inverse); (c): Bar graph comparing the structural disorder level at the sample 
length  L=1.6 µm; (d): Structural disorder strength <IPR(L)> vs. sample length L. A p-
value < 0.05 was obtained in the two tailed Student’s t-test. 
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6.3.3 Disorder Strength Analysis of Normal and Cancerous Brain Cells  

We studied the commercially available normal and cancerous human astrocytic cell lines. In 

particular, the 1) normal astrocyte (Lonza Group Ltd, Basel, Switzerland), 2) astrocyte 

progenitor (Applied Biological Material, Richmond, Canada) cells, and 3) U87 astrocytoma cells 

(American Type Culture Collection, Rockville, MD, USA).  

The confocal micrographs of optical sections of nuclei were analyzed for structural 

disorder in the nuclear DNA using the methodology described in Section 2, and the results were 

evaluated statistically. The degree of structural disorder Lsd, in terms of IPR values, were 

calculated for different length scales ranging from L=0.4 to 1.6 µm.  Subsequently, all the IPR 

values were averaged for ~3-5 confocal micrographs for each single cell nucleus, and 12-15 cells 

from each of the cell line categories were analyzed. The experiment was repeated for 3 different 

sets of cells. 

Typical results comparing Lsd in all the three types of cells are shown in Fig.6.3.  The 

figures 6.3(a), 6.3(b), and 6.3(c) show representative confocal images of the 1) normal astrocyte, 

2) astrocyte progenitor, and 3) U87 astrocytoma cell’s nucleus, respectively. The images 

presented in Figs. 6.3(a’), 6.3(b’), and 6.3(c’) are their corresponding IPR images obtained at 

sample length L= 0.4 µm. These IPR images show the distribution of the IPR values (i.e., Lsd) 

calculated in the sample area of 0.4×0.4 µm2 inside the nucleus of the two cells. 

As it can be seen in the figures 6. 3(a), 6.3(b), and 6.3(c) that the confocal images for the 

nucleus of the three cells, i.e., 1) normal astrocyte, 2) astrocyte progenitor, and 3) U87 

astrocytoma, the IPR image shows more prominent hot spots (red spots) regions in the cancerous 

astrocyte progenitor and U87 astrocytoma cell nucleus in comparison to the normal astrocyte cell 

nucleus. It should also be noted that variation in the IPR values for the cancerous astrocyte 
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progenitor and U87 astrocytoma cells are much higher, that is 1.4 –2, than the normal astrocyte 

cells. This suggests a significantly higher DNA mass density variation, in terms of magnitude 

and spatial arrangement, in the cancerous astrocyte cells’ nuclei compared to the normal 

astrocyte cells, in turn indicating the higher degree of structural disorder in the nuclear DNA in 

the cancerous case. 

 A comparison of structural disorder, Lsd , in terms of average <IPR> values, between the 

normal and the cancerous astrocyte cells types, is shown in Fig.6. 3(d). The bar graph shows the 

(<IPR>) at length scale 1.6 µm, i.e., 1.6×1.6 µm2 areas inside the sample. The p-value obtained 

from the Student’s t-test (sample size > 45) turned out to be < 0.05 for all the pairs, 

demonstrating that the structural disorder in the nuclear DNA of the cancerous astrocyte 

progenitor and U87 astrocytoma cells is significantly higher than that of the normal astrocyte 

cells, and so is the difference between astrocyte progenitor and U87 astrocytoma cells. 

Furthermore, we also examined (<IPR(L)>) for all the cells types at different sample 

lengths L ranging from 0.4–1.6 µm. The results are shown in Fig.6. 3(e). The results show that 

average structural disorder Lsd is higher for cancer cells compared to their non-cancerous 

counterpart, for all the length scales studied. Further, it is interesting to note in Fig.6. 3(e) 

that(<IPR(L)>) for the normal astrocyte cells starts showing the saturating trend at higher sample 

lengths, which is in accordance with Eq. 2. It would be worth pointing out here that the 

(<IPR(L)>) graphs for the cancerous cases would also ultimately saturate at significantly higher 

sample length; a trend towards saturation can still be seen in the present plots. 
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The higher Lsd values for tumorigenic astrocyte progenitor and U87 astrocytoma cells 

suggest more structural alterations in its nuclear DNA and chromatin when compared to normal 

astrocyte cells. The higher structural disorder in nuclear DNA of the cancerous cells may be 

Figure 6.3: (a), (b), and (c): Representative confocal images of a normal astrocyte, an astrocyte 
progenitor, and a U87 astrocytoma cell nuclei, respectively and (a’) - (c’): their corresponding 
disorder strength (IPR) images at sample length L =0.4 µm;(d): Bar plots for mean IPR values 
(n=12-15 cells, 3-5 micrographs per cell, 3 sets) for the normal astrocyte, astrocyte progenitor, and 
U87 astrocytoma cells nuclei at sample length L= 1.6 µm.; Student’s t-test obtained p-value < 0.05 
for each pair; (e) Structural disorder at different sample length scales (L) (sample size L×L), for 
each type of normal astrocyte, astrocyte progenitor, and U87 astrocytoma cells The scale bar in the 
confocal image corresponds to 5 µm. 
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attributed to the unfolding of the heterochromatin inside the nuclei, which occurs during 

carcinogenesis.105  

6.3.4 Disorder Strength Analysis of Normal and Cancerous Prostate Cells  

After the breast and brain cancer cells experiments, we used the IPR technique to analyze 

disorder strengths of the DAPI stained nuclear DNA of normal and cancerous human prostate 

cells. The prostate cell nuclei were confocal imaged all together on a slide in a single shot to 

reduce extra effort of imaging one cell at a time.  

         In this study, we used the well-characterized following cell lines; i) normal prostate PWR 

cells, ii) tumorigenic and low metastatic LNCaP (AR-dependent), iii) tumorigenic and moderate 

metastatic DU145 (AR-independent), and  iv) tumorigenic and highly bone metastatic C4-2 (AR-

independent) cell lines. Based on their cellular and molecular characteristics, these cell lines are 

well-established in vitro models of early- and advance-stage prostate cancer, and their 

tumorigenicity levels and metastatic potentials well known 106–111 

             Figures 6.4 (a), (b), (c), and (d) show the confocal fluorescence micrographs of DAPI 

stained prostate cell nuclei on glass slides exhibiting nuclear DNA distribution of PWR (normal 

prostate cell) and the cancerous LNCaP, DU145, and C4-2 cell lines, respectively. The images 

shown in Figures 6.4(a’), (b’), (c’), and (d’) are their corresponding IPR images obtained at 

sample length L = 1.40 µm. As explained above, the red-region represent higher structural 

disorder in that region. Based on disorder strength distribution, as seen in the IPR images, the 

three metastatic cell lines appear clearly distinct from the normal PWR prostate cells, suggesting 

higher structural disorder level in these cancer cells.  
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In further analyses, 8-12 cell nuclei of each cell category were randomly picked from the 

confocal micrographs, and the IPR analysis was performed for each nucleus separately. The 

experiments were repeated three times. Typical nucleus size was around 7-10 µm. The bar graph 

in Fig.6.4(e) shows disorder strengths comparison for all the prostate cell lines examined at the 

Figure 6.4: Structural disorder analysis of prostate cells. Sample size n=31-35 (a) 
- (d): Confocal images of several DAPI-stained nuclei from PWR, LNCaP, 
DU145, and C4-2 prostate cell lines taken in a single shot (scale bar in the image 
corresponds to 20 µm) and (a’) - (d’) their corresponding disorder strength <IPR> 
images at sample length L= 1.40 µm; (e): Bar graph comparison at 3.5 µm sample 
length scale; p-value measured in 2-tailed Student’s t-test for each pair of the 
measurement < 0.05 (f): <IPR(L)> vs. sample length scale L (sample size L × L) 
observed for all cells studied.  

P= 0.005 

P= 0.003 

P= 0.012 
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length scale 3.5 µm. At this length scale, the <IPR> values for all the four types of prostate cell 

lines, namely the PWR, LNCaP, DU145 and C4-2, were measured to be 2.89, 2.95, 3.08 and 

3.18, respectively. Additionally, the spread of the <IPR> values in each cell type, measured in 

terms of the standard deviation of the measurement, was noted to be 0.015, 0.049, 0.043 and 

0.011, for the PWR, LNCaP, DU145, and C4-2 cell lines, respectively. 

These results show that the disorder strength for all the metastatic prostate cancer cell lines are 

higher compared to the normal prostate PWR cells. The disorder strength calculated for the AR-

independent C4-2 cell line (Fig.6.4 (d’))  was higher than that calculated for LNCaP cells 

(Fig.6.4(b’)).  Since C4-2 is derived from the LNCaP cell line, it is expected to have higher 

tumorigenicity and metastatic potential compared to LNCaP, which agrees well with our results. 

Further, in this work, the disorder strengths calculated for the PWR, LNCaP, DU145, and C4-2 

cell lines are in increasing order, which is in accordance with the hierarchy of their 

tumorigenicity levels and metastatic potential.  From the two tailed Student’s t-test, conducted on 

the ensemble IPR values, a p-value < 0.05 was obtained for each pair of the statistical data. The 

structural disorder strengths were also analyzed at different length scales (1.25 – 3.5 µm) for 

each cell category. The plots are shown in Figure 6.4(f).  Again, the <IPR> values for all the 

metastatic prostate cancer cell lines turned out to be higher than the normal PWR cells at all 

length scales examined.  

As pointed out earlier, the increase in <IPR> values, and hence the disorder strength with 

increase in tumorigenicity levels in the prostate cancer cells can be attributed to the changing 

configuration of DNA inside the nucleus.  The progression of carcinogenesis is followed by 

compaction of the chromatin structure inside the nucleus. The compaction of the chromatin 

structure results in higher mass density fluctuation which causes higher disorder strength.  To put 
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it simply, lower disorder strengths in cells (e.g., for normal or lesser metastatic cells), suggest 

that nuclear DNA mass density in them is relatively more uniformly distributed compared to the 

cells with higher disorder strengths, such as the higher metastatic cells. 

6.4 Correlation between Structural Disorder, Tumorigenicity, and Hierarchy  

The outcomes of the present study for prostate cancer cells are promising for the quantification 

of structural alterations inside the cells.  The IPR technique in conjunction with confocal 

fluorescence microscopy could be highly useful in diagnosing different levels of cancer. 

However, since this would require development of a robust calibration curve with different 

cancer types, we present herein a framework for a potential calibration curve for analyzing the 

tumorigenicity level in carcinogenesis. A calibration curve for real application purposes should 

be developed with data from extensive clinical studies, along the similar direction. 

 

 

 

 

 

 

 

Figure 6.5 shows a framework for a calibration curve for the prostate cancer case studied 

above. The structural disorder strength, as examined for sample size 3.5 × 3.5 µm2 and measured 

for all four types of prostate cells, has been drawn with respect to their increasing order of 

tumorigenicity, in a single-line <IPR> spectrum. Therefore, each colored block in Fig.6.5 

represents the spread of the <IPR> values measured for the normal and cancer prostate cell lines 

Figure 6.5: A proposed representative calibration curve for cell tumorigenicity: 
nuclear DNA structural disorder <IPR> determined at the sample length of 3.5 µm 
vs. tumorigenicity level inside the prostate cells.  
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in this study.  Each block is marked in the middle with the mean <IPR> values 2.8925, 2.9506, 

3.0876, and 3.1835, corresponding to the PWR, LNCaP, DU145, and C4-2 cell lines, 

respectively.  This representative calibration line plot attempts a quantitative evaluation of 

tumorigenicity and metastatic potential in any unknown prostate cancer cell type through a 

graded evaluation, as suggested above. Such a calibration chart demonstrates the potential 

capability to predict cancer stages. 

6.5 Comparison between the IPR and the PWS Approach in the Structural Disorder 

Measurements  

Both, the IPR and the PWS techniques measure the structural disorder based on mesoscopic 

physics principles. IPR measures the nanoscale structural alteration, whereas the IPR technique 

measure the submicron scale structural alterations.  The PWS takes its strength from the use of 

the raw spectrum data from backscattering imaging of the sample, without its further 

manipulation, such as Fourier transform, in conducting the structural disorder analysis.  The IPR 

technique takes its strength from the fluorescence imaging data in confocal microscopy imaging. 

Both the techniques use single parameter, namely ‘disorder strength ‘but of different form, 

instead of multiple parameters, to quantify structural alterations and characterize the 

heterogeneity of the cells.  However, there are some differences between the two techniques 

which make each of techniques unique as well as special in its own respect. For example, PWS 

measure the structural disorder along the depth of the sample. In other words, PWS detects the 

refractive index fluctuations in one dimension (1D).  Even though at this point, PWS is not depth 

sensitive technique, because we are using a very thin transparent sample (cells), it can be easily 

modified to measure the structural disorder at different depths inside a thick sample such as 

tissues. Whereas the IPR measures the structural disorder in a 2D plane of the sample where it 
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detects the refractive index fluctuations in that plane. The PWS measures structural disorder of 

whole sample (biological cells in our case), while the IPR technique measures the structural 

disorder of a selected organelle in the cells.  Also, PWS measurement is directly proportional to 

the variance of the refractive index fluctuation, however, IPR measurement is proportional to the 

standard deviation (sqrt(variance) )  of the refractive index fluctuations.  By keeping in mind, the 

similarities and differences between the two techniques, in this work we have tried to gain 

insight into the trends that each technique predicts for disorder strength in present cancer 

detection study, and have compared the results obtained from these two techniques.  

Therefore, in figure 6.6, we plot the average Lsd vs. the average IPR for the normal and 

cancerous cell types based on our studies of the disorder strength in the two groups (a) brain, (b) 

prostates cancer cell lines in this chapter an d chapters 3 and 4.  Clearly, both Lsd and IPR are 

higher for the cancerous cells compared to the normal cells in all the three groups.  Similarly, in 

the three groups of cell lines Lsd and IPR move in the same direction that we notice when the IPR 

increases, Lsd increases and vice versa. This suggests a strong positive linear correlation between 

the two parameters. Since we have a limited sample numbers in each cell lines (brain breast, 

prostate), calculating the exact correlation coefficient or mathematical relationship between the 

two methods may not be appropriate at this point. Exact correlation coefficient values can be 

obtained with large sample numbers, such as in clinical studies. 
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6.6 Conclusion 

In conclusion, we have developed a novel method to quantify refractive index fluctuations in 

weakly disordered heterogeneous optical system using confocal fluorescence microscopy 

imaging.  Cells were studied to evaluate the potential utility of the technique for bio-medical 

applications, in particular, cancer detection. Our results show that confocal fluorescence 

micrographs can be used to extract refractive index fluctuations, or conversely the mass density 

fluctuations information inside a weakly disordered heterogeneous optical medium represented 

by cells.  Further, we showed that such analysis can be performed at the submicron level using 

one single parameter– the degree of structural disorder Lsd in terms of the inverse participation 

ratio (IPR), values. We performed all the study with commercially available normal and 

cancerous breast, brain, and, prostate and demonstrated that the proposed method provides a 

numerical mean to distinguish these cell types based on its mass density variation of the nuclear 

DNA.  In particular, the nuclei of the cells were chosen to compare structural disorder in the 

Figure 6.6: Comparison between the IPR and PWS in the structural disorder 
measurements. The average Lsd vs. the average IPR for the normal and cancerous cell types 
in the two groups: (a) brain, (b) prostate. 
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DNA, as in the case carcinogenesis DNA inside the cell nuclei is known to undergo alterations. 

The promising result obtained in this work suggests that our method can also have potential 

applications in analyzing other cellular abnormalities or disease conditions, such as sickle cell 

anemia, metabolic or mechanical stress, and response of cells to therapeutic agents, just to name 

a few. The method has the capability to detect any structural changes in a nucleus, regardless of 

its origin. Therefore, the method should potentially work for dye-treated live cells as well.  The 

way the technique has been formulated, it should work for any type of dye-targeting any 

organelle, as long as the absorption of the dye at a point in the organelle has a functional 

relationship with the mass density of the dye present at that point. This method would be also 

useful without dye if the confocal imaging of the cell can detect sufficient mass density 

variations.  Finally, our method may also be useful for materials science of soft optical 

disordered media, such as polymers and thin films, in characterizing the structural disorder of the 

sample using the similar approach. 
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7 Conclusion and Future Directions 

This dissertation provides insight into the usefulness of the mesoscopic light transport and light 

localization analysis in quantifying structural disorder in biological cells in which the structural 

alterations, caused by cancer diseases, is measured in terms of refractive index (RI) fluctuation 

(dn), and its correlation length, lc. As the cancer progresses, a change in the spatial distribution of 

the intracellular mass density starts occurring due to the alterations in the cell’s architecture in 

the length scale ranging from nano- to sub-micrometer, consequently, leading to higher structural 

disorders in the cell. We hypothesized that the structural disorder is correlated with the cancer 

progression and its measurement can be used as a biomarker/numerical index to characterize 

cancer. We tested this hypothesis experimentally, by employing the two mesoscopic techniques, 

namely light transport analysis based partial wave spectroscopy (PWS) and light localization 

analysis based inverse participation ratio (IPR) technique to investigate the structural changes in 

human cancer cell line models. The main results reported in this dissertation are the following: 

 

1. PWS Study of the Structural Alterations in the Breast and Brain Cancer Cell Lines. 

Our first study (Chapter 3) on the breast (MCF-10A and MCF-7) and brain (Astrocyte, 

Astrocyte progenitor, and U-87 astrocytoma) cell lines models, we distinguished the 

cancerous and control cells by quantifying the structural disorder using the PWS method. 

Our statistical analysis of the disorder strength showed higher mean intracellular disorder 

strength in the cancerous cases. Moreover, the spread of disorder strength values for 

cancerous cells was also observed to be higher than the normal/control cells. Our results 

demonstrate that the increase in intracellular structural alterations is indeed associated 

with the progressive carcinogenesis, suggesting increasing heterogeneity in the cells. Even 
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though, we did not identify specific structures/building blocks that are responsible for the 

increase in structural disorder, however, an overall global increase in disorder strength is 

observed for the cancerous cells relative to control cells. 

 

2. Study of the Chemotherapy Resistance Based on the Structural Alterations in 

Three Types of Prostate Cancer Cells Lines.  Our second study (Chapter 4) quantifies 

the degree of disorder in three types of metastasized prostate cells, namely DU-145, C4-

2, and PC-3 after drug-induced resistance has been developed over a period of around 8 

months in the prostate cells. In this study, the structural disorder analysis was conducted 

using the PWS method. We compared the results of the degree of structural disorder 

measured for the age-matched non-drug treated, i.e., drug-sensitive, prostate cells with 

their counterpart drug-resistant cells. It turned out that the drug-resistive cells in each 

category had a higher structural disorder with percentage increase in disorder strengths 

in the drug-resistive cells, relative to their corresponding non-drug treated cells, was 

more than 30%, suggesting higher level of heterogeneity in the drug resistive cells.  

 

3. Study of Structural alterations in Selective Organelles in the Cells Using the IPR 

Technique Our third study (Chapters 5 and 6) introduced and explored the IPR technique 

based on the confocal imaging of cells. Using confocal imaging, molecular specific optical 

lattices were constructed for a particular layer of a cell. The degree of structural changes 

of theses optical lattices were evaluated by calculating their light localization strength 

through the statistical analysis of the eigenfunctions of these lattices. The measurement 

parameter is the average inverse participation ratio (IPR) value of the eigenfunctions of 
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these lattice systems, where the average IPR value of a disordered optical lattice is termed 

as ‘disorder strength’ of the lattice. In this work, we measured submicron scale disorder 

strength of DAPI stained nuclear DNA in the breast (MCF-10A and MCF-7), brain 

(Astrocyte, Astrocyte progenitor, and U-87 astrocytoma) and prostate (PWR, LNCaP, 

DU-145, and C4-2) cell lines of different tumorigenicity (metastatic potential) levels. The 

results showed that the disorder strength, measured for the nuclear DNA molecular spatial 

structural disorder of these cells, increases in accordance with increase in the 

tumorigenicity levels of these cells. The results showed that the light localization analysis 

using confocal fluorescence imaging has potential to efficiently distinguish different 

cancerous and normal breast, brain and prostate cells by analyzing the structural disorder 

strength of nuclear DNA spatial mass density inside these cells. 

In summary, the studies performed in this dissertation work lead us to the key finding that the 

quantification of spatial structural disorder of the biological cells based on mesoscopic light 

transport and light localization approaches are indeed promising methods where the disorder 

strength, measured as described in the respective PWS and IPR sections, can act as a potential 

biomarker or numerical index to characterize any progressive carcinogenesis. In the future work, 

the main aim would be to make improvements in these measurement techniques so that it can be 

used in clinical settings with large scale clinical trials.  First, fully automated, this new partial 

wave microscopic spectroscopy setup has to be developed, and in the next step where the 

experiment can be performed with better image quality and reduced noise performance and 

shorter analysis time. Moreover, automated IPR analysis would rather save a great deal of time. 

The study of the disorder strength discussed in this dissertation performed on thin cells and the 

results from thin tissues may be different which needs to be investigated for generalization of 
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this method for studying of tissue. Further, the quantitative IPR technique will be more useful to 

pathologist who uses stained thin cells/tissue sections for cancer screening and grade 

classification by distinguishing them visually. In addition, the preliminary results presented here 

are promising that helped us to lay down the applications of the mesoscopic physics based 

techniques, however, for real clinical implementation, further extensive studies with larger 

samples size and clinical trials are necessary to reach to the larger goal in cancer diagnostics in 

medical care.  
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