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ABSTRACT

Popielarz, Kamil Ph.D. The University of Memphis, May 2018. Problems in
Extremal Graph Theory. Major Professor: Béla Bollobás, Ph.D.

This dissertation consists of 6 chapters concerning a variety of topics in extremal

graph theory.

Chapter 1 is dedicated to the results in the papers with António Girão, Gábor

Mészáros, and Richard Snyder [47, 44]. We say that a graph is path-pairable if for any

pairing of its vertices there exist edge disjoint paths joining the vertices in each pair. We

study the extremal behavior of maximum degree and diameter in some classes of

path-pairable graphs. In particular we show that a path-pairable planar graph must have a

vertex of linear degree.

In Chapter 2 we present a joint work with António Girão and Teeradej

Kittipassorn [46]. Given graphs G and H, we say that a graph F is H-saturated in G if F is

H-free subgraph of G, but addition of any edge from E(G) to F creates a copy of H. Here

we deal with the case when G is a complete k-partite graph with n vertices in each class,

and H is a complete graph on r vertices. We prove bounds, which are tight for infinitely

many values of k and r, on the minimal number of edges in a H-saturated graph in G, for

this choice of G and H, answering questions of Ferrara, Jacobson, Pfender, and Wenger;

and generalizing a result of Roberts.

Chapter 3 is about a joint paper with António Girão and Teeradej Kittipassorn [43].

A coloring of the vertices of a digraph D is called majority coloring if no vertex of D

receives the same color as more than half of its outneighbours. This was introduced by

van der Zypen in 2016. Recently, Kreutzer, Oum, Seymour, van der Zypen, and Wood

posed a number of problems related to this notion: here we solve several of them.

In Chapter 4 we present a joint work with António Girão [45]. We show that given

any integer k there exist functions g1(k),g2(k) such that the following holds. For any

graph G with maximum degree ∆ one can remove fewer than g1(k)
√

∆ vertices from G so

that the remaining graph H has k vertices of the same degree at least ∆(H)−g2(k). It is an
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approximate version of conjecture of Caro and Yuster; and Caro, Lauri, and Zarb, who

conjectured that g2(k) = 0.

Chapter 5 concerns results obtained together with Kazuhiro Nomoto, Julian

Sahasrabudhe, and Richard Snyder. We study a graph parameter, the graph burning

number, which is supposed to measure the speed of the spread of contagion in a graph.

We prove tight bounds on the graph burning number of some classes of graphs and make a

progress towards a conjecture of Bonato, Janssen, and Roshanbin about the upper bound

of graph burning number of connected graphs.

In Chapter 6 we present a joint work with Teeradej Kittipassorn. We study the set of

possible numbers of triangles a graph on a given number of vertices can have. Among

other results, we determine the asymptotic behavior of the smallest positive integer m such

that there is no graph on n vertices with exactly m copies of a triangle. We also prove

similar results when we replace triangle by any fixed connected graph.
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CHAPTER 1

ON SOME PARAMETERS OF PATH-PAIRABLE GRAPHS

A graph is path-pairable if for any pairing of its vertices there exist edge-disjoint paths

joining the vertices in each pair. In this chapter we study the extremal behavior of two

graph parameters, maximum degree and diameter, in some classes of path-pairable graphs.

We show that any n-vertex path-pairable planar graph must contain a vertex of degree

linear in n. We also obtain sharp bounds on the maximum possible diameter of

path-pairable graphs which either have a given number of edges, or are c-degenerate. This

work is joint with António Girão, Gábor Mészáros, and Richard Snyder.

1.1 Introduction

Path-pairability is a graph theoretical notion that emerged from a practical networking

problem. This notion was introduced by Csaba, Faudree, Gyárfás, Lehel, and Schelp [26],

and further studied by Faudree, Gyárfás, and Lehel [34, 40, 36], and by Kubicka, Kubicki

and Lehel [60]. Given a fixed integer k and a simple undirected graph G on at least 2k

vertices, we say that G is k-path-pairable if, for any pair of disjoint sets of distinct vertices

{x1, . . . ,xk} and {y1, . . . ,yk} of G, there exist k edge-disjoint paths P1,P2, . . . ,Pk, such that

Pi is a path from xi to yi, 1≤ i≤ k. The problems of finding k edge(vertex)-disjoint paths

routing some prescribed pairs of vertices in a graph is a well-known problem in

algorithmic graph theory and combinatorial optimization (see the surveys[40, 41, 77]).

Recently, for a fixed integer k, Kawarabayashi, Kobayashi and Reed [55] constructed a

O(n2) time algorithm which for any graph G on n vertices either finds such k

vertex-disjoint paths or concludes that no such paths exist. As a corollary they obtained a

O(n2) time algorithm for the edge-disjoint paths problem. This improved upon the

seminal work of Robertson and Seymour [73], which initially gave a O(n3) time algorithm

for the vertex-disjoint path problem. Note that the problem of finding
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edge(vertex)-disjoint paths between an unbounded number of prescribed pairs of vertices

is known to be NP-complete, even when restricted to planar graphs [67].

The concept of k-path-pairability is closely related to the well-studied notions of

k-linkedness and k-weak-linkedness. A graph is said to be k-(weakly)linked if for any

choice {s1, . . . ,sk, t1, . . . , tk} of 2k vertices (not necessarily distinct) there are vertex(edge)

internally disjoint paths P1, . . . ,Pkwith Pi joining si to ti, 1≤ i≤ k. While any

k-(weakly)linked graph is (2k−1)-vertex connected (k-edge connected), the same need

not hold for k-path-pairable graphs. Observe that the stars S2k (k ≥ 1) are k-path-pairable

and yet have very low edge density and edge connectivity. On the other hand, a result of

Bollobás and Thomason [15] shows that if G is a 2k-connected graph with average degree

at least 22k then G is k-linked. This was later improved by Thomas and Wollan [76] who

showed that a 2k-connected graph with average degree at least 10k is necessarily k-linked.

In the context of weakly-linked graphs, a theorem of Hirata, Kubota and Saito [51] states

that a (2k+1)-edge connected graph is (k+2)-weakly-linked for k ≥ 2. A few years later,

Huck [52] showed that any (k+2)-edge-connected graph is k-weakly-linked.

A k-path-pairable graph on 2k or 2k+1 vertices is simply said to be path-pairable.

It is fairly easy to construct path-pairable graphs on n vertices (n even) with

maximum degree linear in n and/or small (constant) diameter. For example, complete

graphs K2n and complete bipartite graphs Km,n are path-pairable for all choices of m,n ∈ N

with m+n even, m 6= 2,n 6= 2.

It is slightly more challenging to construct an infinite family of path-pairable graphs

where the maximum degree grows sublinearly or the diameter grows with the number of

vertices. We shall now describe such a family. Let Kt be the complete graph on t vertices

and let Kq
t be constructed from Kt by attaching q−1 leaves to each of the original vertices

of Kt . This family was introduced by Csaba, Faudree, Gyárfás, Lehel, and Schelp [26],

who also proved that Kq
t is path-pairable as long as t ·q is even and q≤

⌊
t

3+2
√

2

⌋
. The

bound on q has been recently improved to ≈ 1
3t [49]. Observe that n = |V (Kq

t )|= t ·q and
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∆(Kq
t ) = t +q−2 = O(

√
n) when q = Ω(t). Additional path-pairable constructions with

maximum degree c
√

n can be found in [60] and [65]. A construction of path-pairable

graphs with unbounded diameter, which is based on a blow-up of a path, is presented in a

later section.

The following result due to Faudree [35] shows that the maximum degree of a

path-pairable graph has to grow with the order of the graph.

Theorem 1.1. If G is path-pairable on n vertices with maximum degree ∆, then n≤ 2∆∆.

Letting ∆min(n) := min{∆(G) : G is a path-pairable graph on n vertices}, this result

is equivalent to

∆min(n)≥ c1
logn

log logn
,

for some constant c1. To date, the best known upper bound on ∆min(n) is due to Győri,

Mezei, and Mészáros, exhibiting a path-pairable graph with maximum degree

∆≈ 5.5 · logn [48]. In summary, we have the following general asymptotic bounds on

∆min(n):

c1
logn

log logn
≤ ∆min(n)≤ c2 logn.

The maximum diameter of arbitrary path-pairable graphs was investigated by

Mészáros [65] who proved that d(n)≤ 6
√

2
√

n.

Recall that the star K1,n−1 is path-pairable. This is simply due to the presence of a

vertex of large degree. Are there properties we may impose on a general path-pairable

graph to force a vertex of large degree, say, linear in n? Along these lines, Faudree,

Gyárfás and Lehel [36] proved that an n-vertex path-pairable graph with maximum degree

at most n−2 must have at least 3n/2− logn− c edges, for some absolute constant c.

Instead of simply imposing a condition on the number of edges, we wished to determine

whether or not a structural property like planarity would be enough to force a vertex of

linear degree in a path-pairable graph. To formulate this precisely, let us define ∆
p
min(n) to
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be

min{∆(G) : G is a path-pairable planar graph on n vertices}.

Our problem, then, is to determine whether or not ∆
p
min(n) = Θ(n). We first note that a

simple application of the Planar Separator Theorem of Lipton and Tarjan [63] shows that

every path-pairable planar graph on n vertices must contain a vertex of degree at least

c
√

n. Indeed, if G is such a graph, then the Separator Theorem allows us to partition V (G)

into three sets S, A, B, where |S|= O(
√

n), |A| ≤ |B| ≤ 2n/3, and there are no edges

between A and B. Now, while path-pairable graphs G need not be highly connected or

edge connected, they must satisfy certain connectivity-like conditions. More precisely,

they must satisfy the cut-condition: for every subset X ⊂V (G) of size at most n/2, there

are at least |X | edges between X and V (G)\X . Note that the cut-condition is not sufficient

to guarantee path-pairability; see [66] for additional details. Accordingly, since

n/4 < |A|< n/2 and there are no edges between A and B, the cut-condition implies that

there are at least |A| edges between A and S. We therefore obtain a vertex in S of degree

Ω(
√

n).

Our main theorem, which we state below, shows that we can do much better than

this. Namely, every path-pairable planar graph must have a vertex of linear degree.

Theorem 1.2. There exists c≥ 10−1010
such that if G is a path-pairable planar graph on n

vertices then ∆(G)≥ cn.

We have not made an attempt to optimize the constant c obtained in the proof. The

value we give is surely far from the truth.

In the other direction, there are easy examples of path-pairable planar graphs with

very large maximum degree; for example, consider the star K1,n−1. Our second result finds

an infinite family of path-pairable planar graphs with smaller (but of course still linear)

degree.

Theorem 1.3. There exist path-pairable planar graphs G on n vertices with ∆(G) = 2
3n.
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Combining Theorems 1.2 and 1.3, we have that

10−1010
n≤ ∆

p
min(n)≤

2
3

n.

For the diameter problem, for a family of graphs G let us define d(n,G ) as follows:

d(n,G ) = max{d(G) : G ∈ G and G is path-pairable on n vertices}.

When G is the family of path-pairable graphs, we shall simply write d(n) instead of

d(n,G ).

The maximum diameter of arbitrary path-pairable graphs was investigated by

Mészáros [65] who proved that d(n)≤ 6
√

2
√

n. Our next aim in this chapter is to

investigate the maximum diameter of path-pairable graphs when we impose restrictions on

the number of edges and on how the edges are distributed. To state our results, let us

denote by Gm the family of graphs with at most m edges. The following result determines

d(n,Gm) for a certain range of m.

Theorem 1.4. If 2n≤ m≤ 1
4n3/2 then

3

√
1
2

m−n≤ d(n,Gm)≤ 3
√

300m.

We remark that we actually prove a slightly more general bound

d(n,Gm)≤max
{6m

n , 3
√

300m
}

which holds for m in any range but, when m≥
√

2n3/2, the

bound obtained by Mészáros [65] is sharper. Determining the behavior of the maximum

diameter among path-pairable graphs on n vertices with fewer than 2n edges remains an

open problem. In particular, we do not know if the maximum diameter in this range must

be bounded (see Section 1.3.4).

Following this line of research, it is very natural to consider the problem of

determining the maximum attainable diameter for other classes of graphs. For example,
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what is the behavior of the maximum diameter of path-pairable planar graphs? Although

we could not give a satisfactory answer to this particular question, we were able to do so

for graphs which are c-degenerate. As usual, we say that an n-vertex graph G is

c-degenerate if there exists an ordering v1, . . . ,vn of its vertices such that

|{v j : j > i,viv j ∈ E(G)}| ≤ c holds for all i = 1,2, . . . ,n. We let Gc-deg denote the family

of c-degenerate graphs. Clearly all c-degenerate graphs have a linear number of edges, so

Theorem 1.4 implies that d(n,Gc-deg) = O( 3
√

n). However, as the next result shows, this

bound is far from the truth.

Theorem 1.5. Let c≥ 5 be an integer. Then

(4+o(1))
log(n)

log( c
c−2)

≤ d(n,Gc-deg)≤ (12+o(1))
log(n)

log( c
c−2)

as n→ ∞.

We remark that we have not made an effort to optimize the constants appearing in

the upper and lower bounds of Theorems 1.4 and 1.5.

1.2 Maximum degree of path-pairable planar graphs

1.2.1 The Construction

Our aim in this section is to prove Theorem 1.3, which we restate here for convenience.

Theorem 1.3. There exist path-pairable planar graphs G on n vertices with ∆(G) = 2
3n.

Proof. Let G be a graph on n = 6k vertices with vertex set

V (G) = A∪B∪C∪{xAB,xBC,xCA} where |A|= |B|= |C|= 2k−1, and xAB,xBC,xCA

denote three additional vertices forming a triangle such that xAB,xBC,xCA are joined to

every vertex in A∪B, B∪C, and C∪A, respectively, and A,B,C are independent sets. This

graph is clearly planar. Let P be a pairing of the vertices and let {u,v} ∈P . We describe

how to join u and v by a path in all possible cases.
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1. If there is an edge between u and v, join them by this edge.

2. If u ∈ {xAB,xBC,xCA} and v ∈ A∪B∪C such that there is no edge between them,

join them by the path uwv where the edge uw is consistent with the cyclic ordering

xAB,xBC,xCA. For example, if u = xAB and v ∈C, we join u and v by the path uxBCv.

The remaining cases can be dealt using the same pattern.

3. If u,v ∈ A∪B∪C and they are in the same class, join them by the path uwv where w

is an arbitrary common neighbor (out of the two available).

4. If u,v ∈ A∪B∪C and they are in different classes, join them by the path uwv where

w is the unique common neighbor.

It is straightforward to check that the above instructions find edge-disjoint paths

joining terminals, regardless of the choice of P .

1.2.2 The Proof of Theorem 1.2

The aim of this section is to prove our main theorem, Theorem 1.2. Our proof is based on

three preparatory lemmas. First, we shall introduce some terminology. Let G be a

multigraph. We say that two multiedges e, f of G are at distance d if the shortest path in G

joining an endpoint of e and an endpoint of f has length d. If two multiedges are at

distance 0, we shall simply say they are incident. Further, we shall refer to a matching of

size k as a k-matching. We say that a k-matching is good if every pair of edges in the

matching is at distance exactly 1. Notice that contracting all the edges of a good

k-matching results in the complete graph Kk (with potential multiple edges and loops).

Our first lemma says that in any multigraph either some multiedges ‘cluster’

together or many pairs of multiedges are far apart, or one can find a good k-matching. We

shall need the following inequality.

Fact 1.6. If k ≥ 2 then 2−k
(

1+2−k−1

(1−2−k)2

)
≤ 2−k+1.
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The above inequality is easily seen to be equivalent to (2−k+2−1)(2−k−1−1)≥ 0.

Lemma 1.7. Let k be a natural number and ε1,ε2 be positive reals such that ε1 + ε2 ≤ 2−k.

Then, for sufficiently large M = M(k), if G is a multigraph on M multiedges, then at least

one of the following conditions is satisfied.

1. There is a multiedge in G which is incident with at least ε1M multiedges;

2. There are at least ε2
(M

2

)
pairs of multiedges which are at distance greater than 1;

3. G contains a good k-matching.

Proof. We shall use induction on k. The base case when k = 1 is trivial - Condition 3 is

always satisfied. Assume then that k ≥ 2 and the lemma is true for k−1.

Suppose every multiedge is incident with at most ε1M multiedges and at most ε2
(M

2

)
pairs of multiedges are at distance greater than 1. We shall show that G contains a good

k-matching. By an averaging argument there is a multiedge e which is at distance at most

1 from at least (1− ε2)M−1 multiedges. Let E ′ be the set of those multiedges which are

at distance exactly 1 from e. It follows from our assumptions that

M′ = |E ′| ≥ (1− ε1− ε2)M−1≥ (1−2−k)M−1. Let G′ be the multigraph spanned by

E ′. By assumption, at most ε2
(M

2

)
of the multiedges in G′ are at distance greater than 1.

Therefore, since M ≤ M′+1
1−2−k , for large enough M (and hence large enough M′) we have

that at most

ε2

(
M
2

)
≤ ε2

( M′+1
1−2−k

2

)
=

ε2

(1−2−k)2

(
1+

1
M′

)(
1+

1+2−k

M′−1

)(
M′

2

)
≤ ε2(1+2−k−1)

(1−2−k)2

(
M′

2

)
,

pairs of multiedges in G′ are at distance greater than 1. Also, for M′ large enough, each

multiedge in G′ is incident with at most

ε1M ≤ ε1
M′+1
1−2−k =

ε1
1−2−k (1+

1
M′ )M

′ ≤ ε1(1+2−k−1)
1−2−k M′ multiedges. Note that for k ≥ 2 one
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has

ε1
1+2−k−1

1−2−k + ε2
1+2−k−1

(1−2−k)2 ≤ ε1
1+2−k−1

(1−2−k)2 + ε2
1+2−k−1

(1−2−k)2

≤ 2−k 1+2−k−1

(1−2−k)2 ≤ 2−(k−1),

where the last inequality is precisely Fact 1.6. Therefore, by the induction hypothesis, G′

contains a good (k−1)-matching. But since e is at distance 1 from any multiedge in G′,

we also have a good k-matching in G.

Since we shall be operating with planar graphs, we single out the following corollary.

Corollary 1.8. Let M be a sufficiently large integer and let ε1,ε2 be positive reals such

that ε1 + ε2 ≤ 1
32 . If G is a planar multigraph with M multiedges then either G has a

multiedge which is incident with at least ε1M multiedges or there are at least ε2
(M

2

)
pairs

of multiedges at distance greater than 1.

Proof. If G contained a good 5-matching then it would contain a K5 minor.

One strategy in the proof of our main theorem is to consider a suitable bipartition of

our path-pairable planar graph, and to exploit the fact that any bipartite planar graph on n

vertices has at most 2n−4 edges. To exploit this last property we shall need ways of

finding pairings of the vertices such that their corresponding edge-disjoint paths contribute

‘many’ edges to the bipartition. This is formalized in the following lemma.

Lemma 1.9. Let D be a positive integer and 0 < ε ≤ 1/2. Then there exists c > 0 such

that the following is true. Suppose G is a path-pairable planar graph on n > 1/c vertices

with ∆ = ∆(G)≤ cn. Let A,U ⊂V (G) be given with U ⊂ A such that every vertex in A has

degree at most D, |A| ≥ (1− ε)n and |U | ≥ εn. Let B =V (G)\A. Then there is a pairing

of the vertices in U which contributes to at least 2|U |−16εn edges between A and B.

Proof. We say that a path in G is weak if it begins and ends in A, uses no edges inside B,

and uses at most 2 edges between A and B. Now, let C := d4ε−1e and note that since

9



ε ≤ 1/2 we have that 3
C−2 ≤ ε . For every x ∈U , let

Ux = {u ∈U : ∃ weak x−u path in G of length at most C}. We claim that Ux is small for

every x ∈U ; namely, it is easy to see that

|Ux| ≤ DC +DCD∆DC = DC
(

1+DC+1
∆

)
.

Choose c = c(D,ε) = ε

4D2C+1 so that ∆≤ cn. Then

|Ux| ≤ DC
(

1+DC+1
∆

)
≤
(

DC +D2C+1
)

∆≤ 2D2C+1
∆≤ 2D2C+1cn≤ ε

2
n.

Let us define an auxiliary graph GU with vertex set U where we join two vertices x,y

provided y /∈Ux (equivalently, x /∈Uy). It is easy to see that GU has a perfect matching (or

‘almost’ perfect, if |U | is odd; this makes no difference for us). Indeed, the degree of

every vertex in GU is at least |U |− ε

2n≥ |U |/2, and therefore GU has a Hamilton cycle.

Fix a perfect matching M in GU according to this Hamilton cycle and fix a pairing P of

the vertices of G where each edge of M forms a pair. Finally, since G is path-pairable,

choose a collection of edge-disjoint paths R that realize this pairing. Observe that any

path from R must use an even number of edges between A and B. We single out two types

of edges e = xy in M with respect to this realization: either the x− y path in R is weak

but is of length bigger than C, or this x− y path uses at least 4 edges between A and B. Let

M = E0∪E1∪E2, where E0 denotes the edges satisfying the former condition, E1 the

latter, and E2 denotes the remaining edges. We claim that most of the edges are in E1.

Indeed, observe that if e = xy ∈ E2, then the x− y path must use edges from B. By

planarity we have e(B)≤ 3|B|, and therefore |E2| ≤ 3εn. Using planarity again we have

that e(A)≤ 3|A|. On the other hand, for each edge in E0 its path in R uses more than C

edges, at most 2 of which are in the cut {A,B}, and none of which belong to B.

10



Accordingly, since these paths are edge-disjoint, we have that e(A)≥ (C−2)|E0| and so

|E0| ≤
3

C−2
|A| ≤ ε|A|.

Therefore, |E1| ≥ 1
2(|U |−1)−|E0|− |E2| ≥ 1

2(|U |−1)− εn−|E2|. It follows that

since every path in R pairing an edge in E1 contributes at least 4 edges between A and B,

and these paths must be edge-disjoint, we have

e(A,B)≥ 4|E1|+2|E2| ≥ 2|U |−2−4εn−2|E2| ≥ 2|U |−2−10εn≥ 2|U |−16εn,

where in the last inequality we used the fact that n > 1/c≥ 1/ε . This completes the proof

of Lemma 1.9.

Our final lemma allows us to quantify more precisely the degree distribution in any

bipartite planar graph.

Lemma 1.10. Let G be a bipartite planar graph on n vertices with parts A, B, and let

A′ ⊂ A be the set of vertices in A with degree at least 3. Then the following are true.

1. The number of vertices in A with degree 2 is at least e(A,B)−n−3|B|;

2. |A′|< 2|B|;

3. e(A′,B)< 6|B|.

Proof. For each i≥ 0 let Ai,A≤i, and A≥i denote the number of vertices in A that have

degree i in G, degree at most i, and degree at least i, respectively. Because of planarity we

have that e(A′,B)< 2(|A′|+ |B|). Alternatively, e(A′,B)≥ 3|A′| so it follows that

A≥3 = |A′|< 2|B|, and so e(A′,B)≤ 2(|A′|+ |B|)< 6|B|, establishing the second and third
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items. Further, we can bound the number of edges between A and B as

e(A,B)≤ A≤1 +2(|A|−A≤1−A≥3)+ e(A′,B)

≤ A≤1 +2(|A|−A≤1−|A′|)+2(|A′|+ |B|)

≤ 2|A|−A≤1 +2|B|.

It follows that A≤1 ≤ 2|A|+2|B|− e(A,B). Finally, we see that

A2 = |A|− |A′|−A≤1 > e(A,B)−|A|−4|B|= e(A,B)−n−3|B|, as required.

We are now in a position to prove our main theorem, Theorem 1.2. First, let us give

a rough sketch of the proof. Let G be a path-pairable planar graph. We first partition the

vertex set of G into the set A of vertices of small degree and the set B of vertices of large

degree. We can apply Lemma 1.9 to find that there are many edges in this cut. We shall

then show that most vertices in A have degree 2 in this bipartite graph. If Y ⊂ A denotes

the vertices of degree 2, then we define a planar multigraph with vertex set B where we

join x,y ∈ B whenever there is a v ∈ Y joined to precisely x and y. Now, using

Corollary 1.8, we are able to either find a vertex of linear degree in B, or we can find many

pairs of multiedges in our multigraph that are far apart. This, however, allows us to find a

pairing which contributes to more than 2n edges between A and B, a contradiction to

planarity.

We restate Theorem 1.2 for convenience.

Theorem 1.2. There exists c≥ 10−1010
such that if G is a path-pairable planar graph on n

vertices then ∆(G)≥ cn.

Proof. Suppose G is a path-pairable planar graph and fix some large constant D so that

D−1 ≤ 8.5 ·10−6. Partition the vertex set of G into sets A and B, where

B = {v ∈V (G) : d(v)≥ D} and A =V (G)\B. Since e(G)< 3n it easily follows that
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|B| ≤ 6D−1n := εn. Suppose that ∆(G)< cn, where c is sufficiently small (depending

only on D) given by Lemma 1.9. More precisely, we may take

c =
ε

4D2d4/εe+1 .

Our aim is to obtain a contradiction to the planarity of G, and so there must exist a

vertex of degree at least cn. Of course, this is trivial if cn≤ 1, so we shall assume

throughout that n > 1/c. By Lemma 1.9 (with U = A) we have that there are at least

2|A|−16εn≥ 2n−18εn edges between A and B.

Next, we shall show that there is a large subset of A which induces a graph with

maximum degree at most 2. To see this, let A0 = A,B0 = B. Suppose Ai,Bi have been

defined already. If there is a vertex v ∈ Ai such that dAi(v)> dBi(v), then let

Ai+1 = Ai \{v} and Bi+1 = Bi∪{v}. Notice that e(Ai+1,Bi+1)≥ e(Ai,Bi)+1, and so

e(Ai+1,Bi+1)≥ e(A,B)+ i≥ 2n−18εn+ i. Let t ≥ 0 be such that there is no v ∈ At with

more neighbors in At than in Bt . Observe that t ≤ 18εn (otherwise e(At ,Bt)≥ 2n), and

accordingly |Bt |= |B|+ t ≤ εn+18εn = 19εn.

Let X ⊂ At be the set of vertices in At with at least 3 neighbors in At . Since every

vertex in At has at least as many neighbors in Bt as in At , we have that every vertex in X

has at least 3 neighbors in Bt . Therefore, by Lemma 1.10, |X | ≤ 2|Bt |, e(X ,Bt)≤ 6|Bt |,

and there are at least e(At ,Bt)−n−3|Bt | ≥ e(A,B)−n−3|Bt | vertices in At with exactly

two neighbors in Bt . Let A∗ = At \X and B∗ = Bt ∪X . Now we have that every vertex in

A∗ has at most 2 neighbors in A∗ and |B∗| ≤ 3|Bt | ≤ 57εn, so |A∗| ≥ n−57εn. We have to

make sure we still have many vertices in A∗ with exactly two neighbors in B∗. Notice that

if a vertex v ∈ At had two neighbors in Bt and was not adjacent to any vertex in X then

v ∈ A∗ and v still has exactly two neighbors in B∗. Therefore we only have to worry about

the vertices in At which are adjacent to some vertices in X . Observe that

e(X ,A∗)≤ e(X ,Bt)≤ 6|Bt |, and so there are at least
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e(A,B)−n−9|Bt | ≥ (2n−18εn)−n−9 ·19εn = n−189εn vertices in A∗ with exactly 2

neighbors in B∗. Hence there are at most 189εn vertices in A∗ which do not have degree 2

in B∗.

We say that an edge uv ∈ G is bad if one of the followings holds:

1. (Type I) uv ∈ G[B∗].

2. (Type II) uv ∈ G[A∗] and u (or v) has degree not equal to 2 in B∗.

3. (Type III) uv ∈ G[A∗], dB∗(u) = dB∗(v) = 2, and NB∗(u) 6= NB∗(v).

4. (Type IV) uv ∈ G, such that u ∈ A∗,v ∈ B∗, and dB∗(u)≥ 3.

We have the following bound on the number of bad edges.

Claim 1.11. There are at most 1233εn bad edges.

Proof. We are going to bound the number of bad edges of each type.

Note that by planarity, there are at most 3|B∗| edges in B∗ so there are at most

3|B∗| ≤ 171εn edges of Type I.

Now, since every vertex in A∗ has at most two neighbors in A∗, each vertex in A∗

with degree not equal to 2 in B∗ contributes to at most two bad edges of Type II. As there

are at most 189εn vertices in A∗ which do not have degree 2 in B∗, it follows that there are

at most 378εn bad edges of Type II.

Let us consider bad edges of Type III. Since G[A∗] has maximum degree 2, we can

partition the edges of G[A∗] into at most 3 matchings, M1,M2,M3. It is well known (and

easy to see) that contracting an edge in a planar graph preserves planarity. It follows that,

for i ∈ {1,2,3}, we can contract the edges of Mi while still preserving planarity. Denote

this new graph by G̃i with vertex set Ãi∪B∗. Since G̃i is planar, from Lemma 1.10 we

have that there are at most 2|B∗| vertices in G̃i with at least 3 neighbors in B∗. Therefore,

at most 2|B∗| edges in Mi can be bad of Type III. Hence, there are at most 6|B∗| ≤ 342εn

bad edges of Type III.
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Finally, by Lemma 1.10 there can be at most 6|B∗| ≤ 342εn bad edges of Type IV.

So in total there are at most 1233εn bad edges of any type.

Let Y ⊆ A∗ be the set of vertices with degree exactly 2 in B∗. We now define an

auxiliary multigraph GB∗ in the following way. The vertex set of GB∗ is B∗ and for any two

vertices x,y ∈ B∗, join x to y by an edge for every v ∈ Y that is joined precisely to x and y.

Claim 1.12. GB∗ is planar.

Proof. This is clear since the bipartite graph G[Y,B∗] between Y and B∗ is planar, and

contracting edges preserves planarity.

Apply Corollary 1.8 to the multigraph GB∗ with ε1 = ε2 = 1/100. Notice that if an

edge in GB∗ is incident to more than 1
100 |Y | multiedges then one of its endpoints has

degree, in G, at least 1
200 |Y |. However, recall that we initially assumed ∆(G)< cn, and

certainly c≤ 1/400 by our choice of D. Accordingly, since |Y | ≥ n−189εn≥ n/2, we

obtain a vertex of degree at least

2c|Y | ≥ cn,

a contradiction.

So we may assume that there are at least 1
100

(|Y |
2

)
pairs of edges in GB∗ which are at

distance greater than 1. Note that if H is any graph on n vertices with edge density at least

δ , then it is easy to greedily find a matching of size at least δ

10n. It follows that we may

select a collection of pairwise disjoint pairs P in Y , such that |P| ≥ 1
1000 |Y | ≥

1
2000n, and

such that for every {u,v} ∈P , their corresponding edges in GB∗ are at distance greater

than 1.

We need the following two claims.

Claim 1.13. Let P be a path contained in A∗ which has at least two vertices and does not

contain any bad edges. Then every vertex v ∈ P has the same neighborhood (of size 2) in

B∗.

15



Proof. This is immediate from the definition of a bad edge.

Claim 1.14. Let u,v ∈ Y be two vertices whose corresponding edges in GB∗ are at

distance greater than 1. Then any path in G joining u and v either contains some bad

edges, or uses at least 6 edges between A∗ and B∗.

Proof. Suppose P is a path joining u and v which does not use any bad edges and does not

use at least 6 edges between A∗ and B∗. By definition and using claim 1.13, all vertices of

V (P)∩A∗ are in Y , it can not have an edge inside B∗ and it must use 2 or 4 edges between

A∗ and B∗. We may assume P uses 4 edges as the other case follows from the same

argument. Let P = P1e1e2P2e3e4P3, where {e1,e2,e3,e4} are edges between A∗ and B∗ and

P1,P2,P3 are paths inside Y . From claim 1.13 applied to P1, P2 and P3 we deduce that the

edge of u in GB∗ is at distance at most 1 to the edge of v in GB∗ .

The proof of Theorem 1.2 is nearly complete. Indeed, since G is path-pairable, there

are edge-disjoint paths joining every pair of P , and hence the pairs in P contribute to at

least 6(|P|−1233εn) edges between A∗ and B∗.

Let P be the union of the vertices in P and let U = A∗ \P. Suppose first that

|U |< 57εn. It follows that

2|P|> (n−57εn)−57εn,

so |P|> n/2−57εn. Then the above pairing contributes at least

6(n/2−1290εn) = 3n−7740εn edges between A∗ and B∗. But this is at least 2n

whenever ε ≤ 7740−1 which is guaranteed by our choice of D, a contradiction. Therefore,

we may assume that |U | ≥ 57εn. By Lemma 1.9 (since c is small enough) there is a

pairing of the vertices in U which contributes to at least 2|U |−16 ·57εn = 2|U |−912εn

16



edges between A∗ and B∗. Hence in total the number of edges between A∗ and B∗ is

≥ 6(|P|−1233εn)+2|A∗|−4|P|−912εn

≥ 2|P|+2(n−57εn)−6 ·1233εn−912εn

≥ 2n+n/1000−8424εn.

So by our choice of D we get that 8424ε ≤ 1
1000 , and so there are at least 2n edges

between A∗ and B∗, a contradiction to the planarity of G. It follows that there must exist a

vertex of degree at least cn.

1.2.3 Final Remarks and Open Problems

It is worth observing that our proof relies only on the following three properties of a

planar graph G: contracting edges of G preserves planarity, G does not contain a

K5-minor, and any bipartite subgraph H of G has at most 2|H| edges. We remark that it is

possible to generalize our result in the following sense. Given integers t,c, we say that a

graph G is (t,c)-good if G is Kt-minor-free and any bipartite subgraph H of G has at most

2|H|+ c edges. Moreover, define Gt,c to be the family of (t,c)-good graphs G such that

contracting edges of G preserves (t,c)-goodness.

Theorem 1.15. For any integers t,c there is a positive constant C =C(t,c) such that the

following holds. If G is a path-pairable graph on n vertices with G ∈ Gt,c, then ∆(G)≥Cn.

We have the following immediate corollary.

Corollary 1.16. For every non-negative integer g there is a positive constant C =C(g)

such that the following holds. If G is a path-pairable graph on n vertices which has a 2-cell

embedding on a surface with genus g, then ∆(G)≥Cn.

Proof. We claim that G ∈ G3g+5,2g. Indeed, it follows from Euler’s formula (see, e.g.,

[13]) that if G is 2-cell embedded on a surface of genus g then n+m− f = 2−g, where m
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is the number of edges G and f is the number of faces of the embedding. Since 2m≥ 3 f

(2m≥ 4 f if G is triangle-free) it follows that e(G)≤ 3n+3g−6 (e(G)≤ 2n+2g−4 if G

is triangle-free). In particular, if G is bipartite then e(G)≤ 2n+2g−4≤ 2n+2g.

Suppose for contradiction that G contains a K3g+5-minor. Then K3g+5 could be 2-cell

embedded on a surface of genus g, hence
(3g+5

2

)
= e(K3g+5)≤ 12g+9, which is easily

seen to be a contradiction.

Sketch of a proof of Theorem 1.15. The proof is essentially the same as the proof of

Theorem 1.2. Certain changes have to be made in the preparatory lemmas first.

Corollary 1.8 generalizes trivially to multigraphs with no Kt-minors.

In Lemma 1.9 we only use the fact that any subgraph H of a planar graph has at most

3|H| edges. Observe that if G ∈ Gt,c then any subgraph of H of G has at most 4|H|+2c

edges. One can therefore modify the proof, at the expense of a worse constant in front of

εn in the conclusion of the Lemma.

In the proof of Lemma 1.10 we only use the fact that a bipartite subgraph H of a

planar graph does not use more than 2|H| edges. The lemma can be therefore modified to

work for graphs in Gt,c by introducing some additive constants, depending only on c, to

the inequalities in every part of the Lemma.

In the proof of Theorem 1.2 all the estimates remain correct by taking ε small

enough.

Note that we also need that Gt,c is closed under edge contractions in order to

estimate the number of “bad edges”, as in Claim 1.11 (there we used that contracting

edges preserves planarity).

We believe that the condition on the number of edges in bipartite subgraphs can be

omitted while still ensuring the existence vertex of linear degree. We therefore make the

following conjecture.

Conjecture 1.17. For any t there exists a constant c = c(t) such that every path-pairable
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graph on n vertices without a Kt minor must contain a vertex of degree at least cn.

Finally, recall that we defined ∆
p
min(n) to be the minimum of ∆(G) over all n-vertex

path-pairable planar graphs G. We have shown that ∆
p
min(n) grows linearly in n; however,

as mentioned in the Introduction, the constants in the upper and lower bounds are quite far

apart. We close with the following problem.

Problem 1.18. Determine ∆
p
min(n) for sufficiently large n.

We do not know if our construction yielding the upper bound of 2n/3 is optimal, and

a significant improvement on our lower bound would be very interesting.

1.3 Diameter of path-pairable graphs

1.3.1 Path-pairable graphs from blowing up paths

In this section, we shall show how to construct a class of graphs which have large

diameter and are path-pairable. Let G be a graph with vertex set V (G) = {v1, . . . ,vk}, and

let G1, . . . ,Gk be graphs. We define the blown-up graph G(G1, . . . ,Gk) as follows: replace

every vertex vi in G by the corresponding graph Gi, and for every edge viv j ∈ E(G) insert

a complete bipartite graph between the vertex sets of Gi and G j.

Let Pk denote the path on k vertices. The following lemma asserts that if we blow up

a path with graphs G1, . . . ,Gk, such that Gi is path-pairable for i≤ k−1, and certain

properties inherited from the cut-condition hold, then the resulting blow-up is

path-pairable.

Lemma 1.19. Let G1, . . . ,Gk be graphs on n1, . . . ,nk vertices, respectively, where Gi is

path-pairable for i≤ k−1. Let n = ∑
k
i=1 ni and let ui = ∑

i
j=1 n j for i = 1, . . . ,k−1. Then

Pk(G1, . . . ,Gk) is path-pairable if and only if

ni ·ni+1 ≥min(ui,n−ui) (1.1)
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holds for i = 1, . . . ,k−1.

Proof. For each i = 1, . . . ,k, let Ui =
⋃i

j=1V (G j) so that ui = |Ui|. Now, if Pk(G1, . . . ,Gk)

is path-pairable, then we may apply the cut-condition to the cut {Ui,V (G)\Ui}. This

implies ni ·ni+1 ≥min(ui,n−ui) must hold for i = 1, . . . ,k−1. In the remainder, we show

that this simple condition is enough to yield the path-pairability of G := Pk(G1, . . . ,Gk).

Assume that a pairing P of the vertices of G is given. If {u,v} ∈P we shall say that u is

a sibling of v (and vice-versa). We shall define an algorithm that sweeps through the

classes G1,G2, . . . ,Gk and joins each pair of siblings via edge-disjoint paths.

First we give an overview of the algorithm. We proceed by first joining pairs

{u,v} ∈P via edge-disjoint paths such that u and v belong to different Gi’s, and then

afterwards joining pairs that remain inside some G j (using the path-pairability of G j).

Before round 1, we use the path-pairability property of G1 to join those siblings which

belong to G1. During round 1, we assign to every vertex u of G1 a vertex v of G2. If

{u,v} ∈P are siblings, then we simply choose the edge uv. Then we join the siblings

which are in G2 again using the path-pairability property of G2. For those paths uv that

have not ended (because {u,v} /∈P) we shall continue by choosing a new vertex w in G3

and continue the path with edge vw, and so on. We shall call paths which have not finished

joining a pair of siblings unfinished; otherwise, we say the path is finished. The last edge

which completes a finished path we shall call a path-ending edge. During round i, we

shall first choose those vertices in Gi+1 which, together with some vertex of Gi, form

path-ending edges. At the end of round i, in Gi+1 we will have endpoints of unfinished

paths and perhaps also some endpoints of finished paths. Note that the vertices of Gi+1

might be endpoints of several unfinished paths. For x ∈ Gi+1 let w(x) denote the number

of unfinished paths P∪{x} with P⊂Ui at the end of round i which are to be extended by

a vertex of Gi+2 (including the single-vertex path x in the case when x was not joined to its

sibling in the latest round). Note that every such path corresponds to a yet not joined

vertex in Ui+1 as well as to another vertex yet to be joined lying in V (G)\Ui+1. It follows
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that

∑
x∈Gi+1

w(x)≤min(ui+1,n−ui+1). (1.2)

Let us now be more explicit in how we make choices in each round. We shall

maintain the following two simple conditions throughout our procedure (the first of which

has been mentioned above):

(a) During round i (1≤ i≤ k−1), if w ∈ Gi is the current endpoint of the path which

began at some vertex u ∈Ui (possibly u = w), and {u,v} ∈P for v ∈ Gi+1, then we

join w to v. Informally, we choose path-ending edges when we can.

(b) w(x)≤ ni+1 for all x ∈ Gi, for i = 1, . . . ,k−1.

The second condition above is clearly necessary in order to proceed during round i, as

|N(x)∩Gi+1|= ni+1 for every x ∈ Gi, and hence we cannot continue more than ni+1

unfinished paths through x.

We claim that as long as both of the above conditions are maintained, the proposed

algorithm finds a collection of edge-disjoint paths joining every pair in P . Both

conditions are clearly satisfied for i = 1 as w(x)≤ 1≤ n2 for all x ∈ G1. Let i≥ 2 and

suppose both conditions hold for rounds 1, . . . , i−1. Our aim is to show that an

appropriate selection of edges between Gi and Gi+1 exists in round i to maintain the

conditions. We start round i by choosing all path-ending edges with endpoints in Gi and

Gi+1; this can be done since, by induction, w(x)≤ ni+1 for every x ∈ Gi. Observe that if

i = k−1 then the only remaining siblings are in Gk. Then for every {u,v} ∈P such that

u,v ∈ Gk we can find a vertex q in Gk−1 and join u,v with the path uqv. When i < k−1

then the remaining paths can be continued by assigning arbitrary vertices from Gi+1

(without using any edge multiple times). We choose an assignment that balances the

‘weights’ in Gi+1. More precisely, let us choose an assignment of the vertices that

minimizes

∑
a∈Gi+1

(w(a))2.
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If for every x ∈ Gi+1 we have that w(x)≤ ni+2 we are basically done. It remains to find

edge-disjoint paths inside Gi+1 for those pairs {x,y} ∈P whose vertices belong to Gi+1.

But this is possible because of the assumption that Gi+1 is path-pairable.

Suppose then that in the above assignment there exists x ∈ Gi+1 with

w(x)≥ ni+2 +1. We first claim that, under this assignment, no other vertex of Gi+1 has

small weight.

Claim 1.20. Every vertex y ∈ Gi+1 satisfies w(y)≥ ni+2−1.

Proof. Suppose there is y ∈ Gi+1 such that w(y)≤ ni+2−2. Then, as w(x)> w(y)+2,

there exist vertices v1,v2 ∈ Gi such that a nonempty collection of paths ending at v1 and v2

have x as their next vertex after round i, but no paths using v1 or v2 are assigned y as their

next vertex. Note that at least one of the edges v1x,v2x is not path-ending; we may assume

v1x is not path-ending. Replacing our choice of v1x with v1y decreases the square sum

∑a∈Gi+1(w(a))
2—a contradiction.

Therefore, we may assume w(y)≥ ni+2−1 for all y ∈ Gi+1. In this case, partition

the vertices of Gi+1 into three classes:

X = {v ∈ Gi+1 : w(v)≥ ni+2 +1}

Y = {v ∈ Gi+1 : w(v) = ni+2−1}

Z = {v ∈ Gi+1 : w(v) = ni+2}.

Observe first that 1≤ |X | ≤ |Y |, since otherwise, using (1.2), we have

ni+1ni+2 +1≤ ∑
s∈Gi+1

w(s)≤min(ui+1,n−ui+1),

contradicting condition (1.1). Notice also that a similar argument as in Claim 1.20 shows
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that w(v)≤ ni+2 +1 for every v ∈ Gi+1. Hence, we actually have

X = {v ∈ Gi+1 : w(v) = ni+2 +1} .

We will need the following claim, which asserts that if there are siblings in Gi+1,

then they must belong to Z.

Claim 1.21. If {u,v} ∈P and u,v ∈ Gi+1, then u,v ∈ Z.

Proof. We first show that every y ∈ Y is incident to a path-ending edge. Suppose, to the

contrary, that there is y ∈ Y with no path-ending edge ending at y. It follows that at most

w(y) vertices in Gi are joined to y after round i. Hence, we can take any x ∈ X and find

z ∈ Gi such that z is not joined to y after round i, and such that zx is not path-ending.

Replacing zx by zy results in a smaller square sum ∑a∈Gi+1(w(a))
2, which gives a

contradiction.

Now, let {u,v} ∈P such that u,v ∈ Gi+1. Since every y ∈ Y is incident to a

path-ending edge, we have that u,v 6∈ Y . Suppose, for contradiction, that u ∈ X . Then u is

joined to w(u) = ni+2 +1 vertices in Gi after round i, and so for every y ∈ Y there is z ∈ Gi

which is joined to u but not to y. Replacing zu by zy results in a smaller square sum

∑a∈Gi+1(w(a))
2, which again is a contradiction.

Finally, we shall show how to reduce the weights of vertices in X (and pair the

siblings inside Gi+1) using the path-pairable property of Gi+1. For every x ∈ X pick a

different vertex yx ∈ Y (which we can do, since |Y | ≥ |X |) and let

P ′ = {{u,v} ∈P : u,v ∈ Gi+1}∪{{x,yx} : x ∈ X}. Since Gi+1 is path-pairable, we can

find edge-disjoint paths joining the siblings in P ′ (note that by Claim 1.21 none of the

pairs {x,yx} interfere with any siblings {u,v} ∈P with u,v ∈ Gi+1). Observe now that

for every x ∈ X one path has been channeled to a vertex y ∈ Y , and so the number of

unfinished path endpoints at x has dropped to ni+2, as required. This completes the proof

of Lemma 1.19.
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We close this section by pointing out that the path-pairability of certain Gi subgraphs

in a path-pairable graph Pk(G1, . . . ,Gk) cannot be avoided for k ≥ 5. We do this by giving

an example of a blown-up path that satisfies the cut-conditions of Lemma 1.19, but is not

path-pairable unless some of the Gi’s are path-pairable. For the sake of simplicity we set

k = 5 and prove that G3 has to be path-pairable. Let n = 2t2 + t for some even t ∈ N, and

let n1 = n5 = t2− t, n2 = n3 = n4 = t, where ni = |Gi| for each i ∈ [5]. Clearly,

P5(G1, . . . ,G5) satisfies the condition (1.1) of Lemma 1.19. Also, observe that any pairing

of the vertices in G1∪G2 with the vertices in G4∪G5 has to use all edges between G3 and

G2∪G4. Therefore, if we additionally pair the vertices inside G3, then the paths joining

those vertices can only use edges in G3. Accordingly, G3 must be path-pairable.

1.3.2 Proof of Theorem 1.4

Take x,y ∈V (G) such that d(x,y) = d(G) and let Vi be the set of vertices at distance

exactly i from x, for every i. Observe that V0 = {x} and y ∈Vd(G). For i ∈ {1, . . . ,d(G)}

define ni to be the size of Vi and let ui = ∑
i
j=0 n j.

We need the following claim.

Claim 1.22. u2k+1 ≥
(k+2

2

)
as long as u2k+1 ≤ n

2 .

Proof. We shall use induction on k. For k = 0 the assertion is clear. Assume that

u2k−1 ≥
(k+1

2

)
. By the cut-condition we have that the number of edges between V2k and

V2k+1 is at least u2k−1, hence n2k ·n2k+1 ≥ u2k−1 ≥
(k+1

2

)
. By the arithmetic-geometric

mean inequality, n2k +n2k+1 ≥ 2
√(k+1

2

)
≥ k+1. As u2k+1 = u2k−1 +n2k +n2k+1, we

have u2k+1 ≥
(k+2

2

)
.

Now, let A =
⋃bd/3c

i=0 Vi, B =
⋃b2d/3c

i=bd/3c+1Vi, C =
⋃d

i=b2d/3c+1Vi. Observe that

|A|, |C| ≥min
{

n
2 ,

d2

100

}
, so joining vertices in A with vertices in C requires at least
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min
{

n
2 ,

d2

100

}
· d

3 edges. Hence,

min
{

n
2
,

d2

100

}
· d

3
≤ m,

which implies

d ≤max
{

6m
n
,

3
√

300m
}
.

Notice that whenever m≤ n3/2 we have d ≤ 3
√

300m. Also, if m≥
√

2n3/2, then the upper

bound is trivially satisfied by the general upper bound obtained in [65].

For the lower bound, let n and 2n≤ m≤ 1
4n3/2 be given. For any natural number `

we shall denote by S` the star K1,`−1 on ` vertices. Consider the graph

G = Pk+3(G1, . . . ,Gk+3)

on n vertices, where k =
⌊

3
√m

2 −n
⌋

and G1 = G2 = · · ·= Gk = Sk, Gk+1 = Sk2 ,

Gk+2 = S2, and Gk+3 is an empty graph on n−2k2−2 vertices.

Straightforward calculation shows that

• ui = i · k, for i≤ k, uk+1 = 2k2, uk+2 = 2k2 +2.

• n1n2 = n2n3 = · · ·= nk−1nk = k2, nknk+1 = k3, nk+1nk+2 = 2k2,

nk+2nk+3 = 2n−4k2−4.

Therefore, for i ∈ {1, . . . ,k+1} we have

ni ·ni+1 ≥ ui ≥min(ui,n−ui),

and

nk+2 ·nk+3 ≥ nk+3 ≥min(uk+2,n−uk+2).

Hence, it follows from Lemma 1.19 that G is path-pairable.
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It is easy to check that the number of edges in G is at most 2n+2k3 ≤ m. On the

other hand, the diameter of G is k+2≥ 3
√m

2 −n. This completes the proof of

Theorem 1.4.

1.3.3 Proof of Theorem 1.5

In this section, we investigate the maximum diameter a path-pairable c-degenerate graph

on n vertices can have. We shall assume that c is an integer and c≥ 5.

Let G be a c-degenerate graph on n vertices with diameter d. We shall show first that

d ≤ 4log c+1
c
(n)+3. Let x ∈ G be such that there is y ∈ G with d(x,y) = d. For

i ∈ {0, . . . ,d}, write Vi for the set of vertices at distance i from x. Let ni = |Vi| and

ui = ∑
i
j=0 n j. Observe that |Vi| ≥ 1 for every i ∈ {0, . . . ,d}. Moreover, we can assume that

ub d
2 c
≤ n

2 (otherwise, repeat the argument below with V ′i =Vd−i).

The claimed upper bound on the diameter easily follows from the following claim.

Claim 1.23. u2k+1 ≥
(c+1

c

)k
as long as u2k+1 ≤ n

2 .

Let us assume the claim and prove the result. Letting k = b d
2 c−1

2 , we have that

(
c+1

c

)k

≤ u2k+1 ≤ n/2,

by the above claim. Hence,

d ≤ 4log c+1
c
(n)+3 =

4log(n)
log(c+1

c )
+3≤ 4log(n)

log(c+1
c−1)

log(c+1
c−1)

log(c+1
c )

+3

≤ 12log c+1
c−1

(n)+3,

where the last inequality follows from the easy to check fact that
log( c+1

c−1 )

log( c+1
c )
≤ 3, for all c≥ 5.

Thus it remains to prove the claim.

Proof of the Claim. We shall prove the claim by induction on k. The base case when k = 0

is trivial as u1 ≥ 2. Suppose the claim holds for every l ≤ k−1. Since G is c-degenerate,
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we have that e(V2k,V2k+1)≤ c(n2k +n2k+1). On the other hand, it follows from the

cut-condition that e(V2k,V2k+1)≥ u2k = u2k−1 +n2k. Therefore, by the induction

hypothesis, we have

n2k +n2k+1 ≥
1
c
(u2k−1 +n2k)≥

1
c

((
c+1

c

)k−1

+n2k

)

≥ 1
c

(
c+1

c

)k−1

.

It follows that,

u2k+1 = u2k−1 +n2k +n2k+1 ≥
(

c+1
c

)k−1

+
1
c

(
c+1

c

)k−1

.

But the right-hand side is equal to
(
1+ 1

c

)(c+1
c

)k−1
=
(c+1

c

)k
, which proves the

claim.

We shall prove the lower bound in Theorem 1.5 assuming that c is an odd integer;

when c is even we apply the same argument for c−1.

To do so, consider the graph G = P2m′−1(G1, . . . ,G2m′−1) for some m′ ∈N, which we

specify later. First, we shall define the sizes of Gi for i ∈ {1, . . . ,2m′−1}. To do so, define

a sequence {ni}i∈N where n1 = 1, n2i =
c−1

2 and n2i+1 is defined recursively in the

following way:

n2i+1 =

⌈
2

c−1
·

2i

∑
j=1

n j

⌉
≤

⌈
2

c−1

2i−2

∑
j=1

⌉
+

⌈
2

c−1
(n2i−1 +n2i)

⌉
(1.3)

≤ n2i−1 +

⌈
2

c−1
n2i−1 +1

⌉
≤ c+1

c−1
n2i−1 +2≤ c

(
c+1
c−1

)i

− (c−1), (1.4)

where the last inequality can be easily proved by induction.

Let m be the largest integer such that ∑
m
j=1 n j ≤ n/2. Let m′ = m when m is odd, and

m′ = m−1 when m is even. Moreover, let |Gm′ |= n−2∑
m′−1
j=1 n j and let |Gi|= ni for

27



1≤ i < m′ and |Gm′+ j|= |Gm′− j| for j ∈ {1, . . . ,m′−1}.

For all i ∈ {1, . . .2m′−1}, let Gi = Sni be a star on ni vertices. It is easy to check that

the graph P2m′−1(G1, . . . ,G2m′−1) is path-pairable by Lemma 1.19. It has diameter at least

2m−4 and m≥ 2log c+1
c−1

(n)−Θc(1), which follows from (1.3). Indeed, note that for i≥ 1,

2i+1

∑
j=1

n j≤
c−1

2

⌈
2

c−1

2i

∑
j=1

n j

⌉
+n2i+1 =

c−1
2

n2i+1+n2i+1 =
c+1

2
n2i+1≤

c(c+1)
2

(
c+1
c−1

)i

.

Lastly, it is not too hard to see that G is c-degenerate. Indeed, consider some ordering

v1, . . . ,vn of the vertices of G such that if vi ∈ Gl and vi′ ∈ Gl′ (where l is even and l′ is

odd), then i < i′; and if vi,vi′ ∈ Gl and vi is the center of the star Gl , then i < i′. In such an

ordering, any vertex vi is adjacent to at most 2 · c−1
2 +1 = c vertices v j with j < i. This

proves that G is c-degenerate, and completes the proof of Theorem 1.5.

1.3.4 Final remarks and open problems

We obtained tight bounds on the parameter d(n,Gm) when (2+ ε)n≤ m≤ 1
4n3/2, for any

fixed ε > 0. It is an interesting open problem to investigate what happens when the

number of edges in a path-pairable graph on n vertices is around 2n. We ask the following:

Question 1.24. Is there a function f such that for every ε > 0 and for every path-pairable

graph G on n vertices with at most (2− ε)n edges, the diameter of G is bounded by f (ε)?

Another line of research concerns determining the behavior of d(n,P), where P is

the family of planar graphs. Since planar graphs are 5-degenerate, it follows from

Theorem 1.5 that the diameter of a path-pairable planar graph on n vertices cannot be

larger than c logn. This fact makes us wonder whether there are path-pairable planar

graphs with unbounded diameter.

Question 1.25. Is there a family of path-pairable planar graphs with arbitrarily large

diameter?
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The graph constructed in the proof of the lower bound in Theorem 1.5 when c = 5 is

not planar since it contains a copy of K3,3. Therefore, it cannot be used to show that the

diameter of a path-pairable planar graph can be arbitrarily large (note, however, that this

graph does not contain a K7-minor nor a K6,6-minor). We end by remarking that we were

able to construct an infinite family of path-pairable planar graphs with diameter 6, but not

larger.
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CHAPTER 2

PARTITE SATURATION OF COMPLETE GRAPHS

In this chapter we study the problem of determining sat(n,k,r), the minimum number of

edges in a k-partite graph G with n vertices in each part such that G is Kr-free but the

addition of an edge joining any two non-adjacent vertices from different parts creates a Kr.

Improving recent results of Ferrara, Jacobson, Pfender and Wenger, and generalizing a

recent result of Roberts, we define a function α(k,r) such that

sat(n,k,r) = α(k,r)n+o(n) as n→ ∞. Moreover, we prove that

k(2r−4)≤ α(k,r)≤


(k−1)(4r− k−6) for r ≤ k ≤ 2r−3,

(k−1)(2r−3) for k ≥ 2r−3,

and show that the lower bound is tight for infinitely many values of r and every k≥ 2r−1.

This allows us to prove that, for these values, sat(n,k,r) = k(2r−4)n+O(1) as n→ ∞.

Along the way, we disprove a conjecture and answer a question of the first set of authors

mentioned above. This work is joint with António Girão and Teeradej Kittipassorn.

2.1 Introduction

Given a graph H, the classical Turán-type extremal problem asks for the maximum

number of edges in an H-free graph on n vertices. While the corresponding minimization

problem is trivial, it is interesting to determine the minimum number of edges in a

maximal H-free graph on n vertices. We say that a graph is H-saturated if it is H-free but

the addition of an edge joining any two non-adjacent vertices creates a copy of H. The

minimum number sat(n,H) of edges in an H-saturated graph on n vertices was first

studied in 1949 by Zykov [80] and independently in 1964 by Erdős, Hajnal, and

Moon [32] who proved that sat(n,Kr) = (r−2)(n−1)−
(r−2

2

)
. Soon after this,

Bollobás [10] determined exactly sat(n,K(s)
r ) where K(s)

r is the complete s-uniform
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hypergraph on r vertices. Later, in 1986, Kászonyi and Tuza [54] showed that the

saturation number sat(n,H) for a graph H on r vertices is maximized at H = Kr, and

consequently, sat(n,H) is linear in n for any H. For results on the saturation number, we

refer the reader to the survey [33].

This concept can be generalized to the notion of H-saturated subgraphs which are

maximal elements of a family of H-free subgraphs of a fixed host graph. A subgraph of a

graph G is said to be H-saturated in G if it is H-free but the addition of an edge in E(G)

joining any two non-adjacent vertices creates a copy of H. The problem of determining

the minimum number sat(G,H) of edges in an H-saturated subgraph of G was first

proposed in the above mentioned paper of Erdős, Hajnal, and Moon. They conjectured a

value for the saturation number sat(Km,n,Kr,r) which was verified independently by

Bollobás [11, 12] and Wessel [78, 79]. Very recently, Sullivan and Wenger [75] studied

the analogous saturation numbers for tripartite graphs within tripartite graphs and

determined sat(Kn1,n2,n3,Kl,l,l) for every fixed l ≥ 1 and every n1,n2 and n3 sufficiently

large. Several other host graphs have been considered, including hypercubes [25, 53, 69]

and random graphs [58].

In this chapter, we are interested in the saturation number sat(n,k,r) = sat(Kk×n,Kr)

for k ≥ r ≥ 3 where Kk×n is the complete k-partite graph containing n vertices in each of

its k parts. This function was first studied recently by Ferrara, Jacobson, Pfender and

Wenger [37] who determined sat(n,k,3) for n≥ 100. Later, Roberts [72] showed that

sat(n,4,4) = 18n−21 for sufficiently large n.

For convenience, we say that a k-partite graph with a fixed k-partition is

Kr-partite-saturated if it is Kr-free but the addition of an edge joining any two

non-adjacent vertices from different parts creates a Kr. Therefore, sat(n,k,r) is the

minimum number of edges in a k-partite graph G with n vertices in each part which is

Kr-partite-saturated.

Our first result states that sat(n,k,r) is linear in n where the constant α(k,r) in front
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of n is defined as follows. Given k ≥ r ≥ 3, consider a Kr-partite-saturated k-partite graph

G containing an independent set X of size k consisting of exactly one vertex from each

part of G. We define α(k,r) to be the minimum number of edges between X and Xc taken

over all such G and X .

Theorem 2.1. For k ≥ r ≥ 3,

sat(n,k,r) = α(k,r)n+o(n)

as n→ ∞.

Let us shift our focus to the function α(k,r). The next theorem states what we know

about it.

Theorem 2.2. For k ≥ r ≥ 3,

(i) k(2r−4)≤ α(k,r)≤


(k−1)(4r− k−6) for r ≤ k ≤ 2r−3,

(k−1)(2r−3) for k ≥ 2r−3.

(ii) α(k,r) = k(2r−4) if


k = 2r−3, or

k ≥ 2r−2 and r ≡ 0 mod 2, or

k ≥ 2r−1 and r ≡ 2 mod 3.

(iii) α(k,3) = 3(k−1), α(4,4) = 18 and 33≤ α(5,5)≤ 36.

(iv) α(r,r)≥ r(2r−4)+1 for r ≥ 4.

The bounds in (i), together with Theorem 2.1, imply that sat(n,k,r) = O(krn),

answering a question of Ferrara, Jacobson, Pfender and Wenger [37]. In (ii), we determine

exactly α(k,r) for some values of r and every k large enough, allowing us to disprove a

conjecture in [37] which states that sat(n,k,r) = (k−1)(2r−3)n− (2r−3)(r−1) for

k ≥ 2r−3 and sufficiently large n. In (iii), we deal with the cases r = 3,4,5 which have
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not been covered by (ii). Finally, (iv) shows that the lower bound in (i), which is attained

for certain values of r and k mentioned in (ii), is not tight when k = r.

Theorem 2.1 and Theorem 2.2 imply that sat(n,k,r) = k(2r−4)n+o(n) for the

values of k and r in (ii). We show that, in this case, the o(n) term can be replaced by a

constant.

Theorem 2.3. For k ≥ r ≥ 3,

sat(n,k,r) = k(2r−4)n+O(1) if


k = 2r−3, or

k ≥ 2r−2 and r ≡ 0 mod 2, or

k ≥ 2r−1 and r ≡ 2 mod 3,

as n→ ∞.

Now we give a summary of the values of sat(n,k,r) in the case r = 3,4,5 which are

immediate consequences of the first three results.

Corollary 2.4. (i) sat(n,k,3) = 3(k−1)n+o(n) for k ≥ 3 and as n→ ∞.

(ii) sat(n,k,4) =


18n+o(n) for k = 4, as n→ ∞,

4kn+O(1) for k ≥ 5, as n→ ∞.

(iii) sat(n,k,5)



∈ [33n+o(n),36n+o(n)] for k = 5, as n→ ∞,

∈ [36n+o(n),40n+o(n)] for k = 6, as n→ ∞,

∈ [48n+o(n),49n+o(n)] for k = 8, as n→ ∞,

= 6kn+O(1) for k = 7 or k ≥ 9, as n→ ∞.

We note that (i) and the first half of (ii) are not the best known results. In fact,

Ferrara, Jacobson, Pfender and Wenger [37] proved that sat(n,k,3) = 3(k−1)n−6 for

sufficiently large n and Roberts [72] proved that sat(n,4,4) = 18n−21 for sufficiently

large n.
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Let us give some more definitions which will be used throughout the chapter. For a

k-partite G =V1∪V2∪·· ·∪Vk, we refer to each Vi as a part of G. We say that an edge (or

a non-edge) uv of a k-partite graph is admissible if u,v lie in different parts. We say that a

non-edge uv of a Kr-free graph is Kr-saturated if adding uv to the graph completes a Kr.

In other words, a k-partite graph is Kr-partite-saturated if it is Kr-free and every admissible

non-edge is Kr-saturated.

The rest of this chapter is organized as follows. Section 2.2 is devoted to the proof of

Theorem 2.1. In Section 2.3, we study the function α(k,r) and prove Theorem 2.2(i). In

Section 2.4, we prove Theorem 2.2(ii) by describing constructions matching the lower

bound α(k,r)≥ k(2r−4) in Theorem 2.2(i). We prove Theorem 2.2(iii),

Theorem 2.2(iv) and Theorem 2.3 in Section 2.5, Section 2.6 and Section 2.7 respectively.

Finally, we conclude the chapter in Section 2.8 with some open problems.

2.2 Proof of Theorem 2.1

First we show that the upper bound follows easily from the definition of α(k,r).

Proposition 2.5. For every k ≥ r ≥ 3 and any integer n≥ α(k,r)+1, we have

sat(n,k,r)≤ α(k,r)n+α(k,r)2.

Proof. Let G be a Kr-partite-saturated k-partite graph containing an independent set X of

size k consisting of exactly one vertex from each part of G with e(X ,Xc) = α(k,r). We

may assume that |Xc| ≤ α(k,r). Indeed, since there are α(k,r) edges between X and Xc,

deleting all the vertices in Xc with no neighbors in X leaves at most α(k,r) vertices in Xc.

Note that any admissible non-edge with at least one endpoint in X is still Kr-saturated. We

finish by keeping adding admissible edges inside Xc until every admissible non-edge

inside Xc is Kr-saturated.

Let V1,V2, . . . ,Vk be the parts of G. It follows that

|Vi|= |Vi∩X |+ |Vi∩Xc| ≤ 1+α(k,r)≤ n, and so we can modify G to have exactly n
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vertices in each part by blowing up the vertex of X in Vi to a class of size n−|Vi∩Xc| for

each i. The resulting graph is Kr-partite-saturated and has exactly n vertices in each of its

k parts. Moreover, the number of edges is at most

α(k,r)n+ e(G[Xc])≤ α(k,r)n+α(k,r)2.

Now we prove the lower bound sat(n,k,r)≥ α(k,r)n+o(n).

Let ε > 0 and let G =V1∪V2∪·· ·∪Vk be a Kr-partite-saturated k-partite graph with

|Vi|= n for all i ∈ [k]. We shall show that e(G)≥ α(k,r)n− εn for all sufficiently large n.

Let d be a large natural number to be chosen later. For each i, we partition Vi into

V+
i = {v ∈Vi : d(x)≥ d} and V−i = {v ∈Vi : d(x)< d}. First we show that V+

i is small.

Since e(G)≥ d
2 |V

+
i |, we are done unless |V+

i | ≤
2α(k,r)

d n. Now we show that we can delete

a constant number of vertices from
⋃k

i=1V−i to make it independent.

Lemma 2.6. There exists a subset U ⊂
⋃k

i=1V−i of size Ck,d such that
(⋃k

i=1V−i
)
\U

forms an independent set in G for some constant Ck,d .

Let us first show how to finish the proof of Proposition 2.5 using the lemma. For

each 1≤ i≤ k, let vi be a vertex of smallest degree in V−i \U . Since G is a

Kr-partite-saturated k-partite graph and X = {v1,v2, . . . ,vk} is an independent set with

exactly one vertex in each part of G, we have ∑
k
i=1 d(vi)≥ α(k,r) by the definition of

α(k,r). Since
(⋃k

i=1V−i
)
\U forms an independent set,

e(G)≥
k

∑
i=1

∑
v∈V−i \U

d(v)≥
k

∑
i=1
|V−i \U |d(vi)≥

k

∑
i=1

(n−|V+
i |− |U |)d(vi)

≥
(

n− 2α(k,r)
d

n−Ck,d

) k

∑
i=1

d(vi)≥
(

n− 2α(k,r)
d

n−Ck,d

)
α(k,r)

= α(k,r)n−
(

2α(k,r)2

d
+

α(k,r)Ck,d

n

)
n≥ α(k,r)n− εn

by taking d and n sufficiently large. It remains to prove the lemma.

Proof of Lemma 2.6. It is sufficient to show that any matching between V−i and V−j has
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size less than 4d2
for all i 6= j. Indeed, we can take U to be the endpoints of maximal

matchings between V−i and V−j for all i 6= j and |U |< 4d2(k
2

)
.

Suppose for contradiction that {x1y1,x2y2, . . . ,x4d2 y4d2} is a matching of size 4d2

where X = {x1,x2, . . . ,x4d2} ⊂V−1 and Y = {y1,y2, . . . ,y4d2} ⊂V−2 . The strategy of the

proof is to iteratively find vertices xt1,xt2 , . . . ,xtd of X such that d(xti)≥ i for all 1≤ i≤ d,

which would contradict the fact that xtd ∈V−1 . In fact, we shall find vertices xt1,xt2 , . . . ,xtd

of X such that

(i) there exists a common neighbor of xti and yt j which is not a neighbor of

yt1 ,yt2, . . . ,yt j−1 for all i > j.

Clearly, this implies that d(xti)≥ i for all 1≤ i≤ d. To find such vertices, it is sufficient to

find vertices xt1,xt2 , . . . ,xtd of X satisfying

(ii) xti and yt j are not neighbors for all i > j, and

(iii) N(xti)∩N(ytl) = N(xt j)∩N(ytl) for all i > j > l.

First we show that (ii) and (iii) imply (i). Let i > j. By (ii), xtiyt j is a non-edge. Since G is

Kr-partite-saturated, there exists a clique W of size r−2 in the common neighborhood of

xti and yt j . Since r ≥ 3, we are done by picking a required vertex from W unless each

vertex in W is joined to some ytl with l < j. In this case, W ∪{xt j ,yt j} forms a clique of

size r, contradicting the fact that G is Kr-free. Indeed, each w ∈W belongs to some N(ytl)

with l < j, and since w ∈ N(xti), we must have w ∈ N(xt j), by (iii).

Now, we find vertices xt1,xt2, . . . ,xtd of X satisfying (ii) and (iii). To help us do so,

we shall iteratively construct a nested sequence of sets X ⊃ X1 ⊃ X2 ⊃ ·· · ⊃ Xd with

xti ∈ Xi for all 2≤ i≤ d, satisfying

(iv) x and yti−1 are not neighbors for all x ∈ Xi, and

(v) N(x)∩N(yti−1) = N(x′)∩N(yti−1) for all x,x′ ∈ Xi.
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Clearly, such vertices xt1 ,xt2, . . . ,xtd satisfy (ii) and (iii). Start with xt1 = x1 and X1 = X .

Let i≤ d and suppose that we have found vertices xt1,xt2 , . . . ,xti−1 and sets

X1 ⊃ X2 ⊃ ·· · ⊃ Xi−1 with xt j ∈ X j for all j < i, satisfying (iv) and (v). We delete the

neighbors of yti−1 from Xi−1 and partition the remaining vertices into 2d(yti−1) ≤ 2d subsets

according to their common neighborhood with yti−1 . In other words, Xi−1 \N(yti−1) is

partitioned into subsets {x : N(x)∩N(yti−1) = S} for S⊂ N(yti−1). We choose Xi to be such

subset of maximum size, i.e. |Xi| ≥ |Xi−1|−d
2d . Clearly, Xi satisfies (iv) and (v). We then

choose xti be any vertex in Xi. It remains to prove that |Xi|> 0. Recall that

|X1|= |X |= 4d2
, and we can see, by induction, that |Xi| ≥ 4d(d−i) for i≤ d. Indeed,

|Xi| ≥
|Xi−1|−d

2d ≥ |Xi−1|
4d ≥ 4d(d−i+1)

4d ≥ 4d(d−i)

as required.

2.3 Bounding α(k,r)

In this section, we establish a number of results that will help us prove Theorem 2.2. We

shall deduce Theorem 2.2(i) at the end of the section.

For k ≥ r ≥ 2 and 1≤ i≤ k− r+1, let βi(k,r) be the minimum number of vertices

in a Kr-free k-partite graph such that the subgraph induced by any k− i parts contains a

Kr−1, i.e. the deletion of any i parts does not destroy all the Kr−1.

We observe that β1 and β2 are useful for bounding α .

Proposition 2.7. For k ≥ r ≥ 3,

kβ1(k−1,r−1)≤ α(k,r)≤ (k−1)β2(k,r−1).

Proof. To prove the lower bound, let G be a Kr-partite-saturated k-partite graph containing

an independent set X of size k consisting of exactly one vertex from each part of G. We
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shall show that e(X ,Xc)≥ kβ1(k−1,r−1). It is sufficient to show that each vertex in X

has degree at least β1(k−1,r−1). Let x ∈ X and consider the (k−1)-partite graph

H = G[N(x)]. Clearly, it is Kr−1-free since G is Kr-free. It remains to show that, for each

part U of H, H \U contains a Kr−2. If x′ is a vertex of X in the corresponding part of U in

G then, since the non-edge xx′ is Kr-saturated in G, H \U must contain a Kr−2. Hence,

|N(x)|= |H| ≥ β1(k−1,r−1).

For the upper bound, let G1 be a Kr−1-free k-partite graph on β2(k,r−1) vertices

such that the subgraph induced by any k−2 parts contains a Kr−2. Let G2 be the graph

obtained from G1 by adding one vertex of X = {x1,x2, . . . ,xk} to each part of G1 and

joining each xi to every vertex of G1 outside its part. By construction, X forms an

independent set and e(X ,Xc) = (k−1)β2(k,r−1) edges. Note that G2 is Kr-free since a

clique in G2 contains at most one vertex from X and G1 is Kr−1-free. Now, let G be the

graph obtained from G2 by adding admissible edges inside Xc, until every admissible

non-edge inside Xc is Kr-saturated. To conclude that G is Kr-partite-saturated, we need to

show that every admissible non-edge inside X is Kr-saturated. Note that, for every pair of

distinct vertices x,x′ ∈ X , G1 contains a Kr−2 not using vertices from the parts containing

x and x′. Since x and x′ are joined to every vertex outside their parts, the addition of the

edge xx′ completes a Kr. Hence, α(k,r)≤ e(X ,Xc) = (k−1)β2(k,r−1).

In the next sections, the argument above used in the proof of the lower bound will be

used several times. Let us state it as a lemma.

Lemma 2.8. Let G be a k-partite Kr-free graph containing an independent set X of size k

consisting of exactly one vertex from each part of G such that the non-edges inside X are

Kr-saturated. Then, for each x ∈ X , G[N(x)] is a Kr−1-free (k−1)-partite graph such that

the subgraph induced by any k−2 parts contains a Kr−2. In particular,

d(x)≥ β1(k−1,r−1) for all x ∈ X .

In the next two subsections, we shall bound β1 from below and β2 from above.
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2.3.1 Upper bounds for βi

We start with an easy observation which helps us bound βi from above.

Lemma 2.9. For k ≥ r ≥ 3 and 1≤ i≤ k− r+1, βi(k,r)≤ βi(k−1,r−1)+ i+1.

Proof. Let H =U1∪U2∪·· ·∪Uk−1 be a Kr−1-free (k−1)-partite graph on βi(k−1,r−1)

vertices such that the subgraph induced by any k− i−1 parts contains a Kr−2. We shall

construct a Kr-free k-partite graph G =V1∪V2∪·· ·∪Vk from H with |G|= |H|+(i+1)

as follows. First, add new vertices v1 to U1, v2 to U2, . . . , vi to Ui and vi+1 to the new part

Vk. This is possible since k ≥ i+2. Now, join vi+1 to every vertex in H and, for every

1≤ j ≤ i, join v j to every vertex in H \U j. Clearly, G is Kr-free since H is Kr−1-free.

Let C be a collection of k− i parts of G. It remains to check that the subgraph of G

induced by C contains a Kr−1. First, suppose that Vk ∈ C . By the induction hypothesis,

the other (k−1)− i parts C \{Vk} induce a subgraph of H containing a Kr−2. Together

with vi+1 ∈Vk, they form a Kr−1 in the subgraph of G induced by C as required. Now, let

us suppose that Vk 6∈ C . Then C must contain at least one of V1,V2, . . . ,Vi. Without loss of

generality, we may assume that C contains V1. By the induction hypothesis, the other

(k−1)− i parts C \{V1} induce a subgraph of H containing a Kr−2. Together with

v1 ∈V1, they form a Kr−1 in the subgraph of G induced by C as required.

Lemma 2.9 immediately implies the following upper bound on βi.

Corollary 2.10. βi(k,r)≤ (i+1)(r−1) for k ≥ r ≥ 2 and 1≤ i≤ k− r+1.

Proof. It is clear that βi(k,2) = i+1 for k ≥ i+1 by considering the empty graph on i+1

vertices where each vertex is in a different part and the remaining k− i−1 parts are empty.

By induction on r and applying Lemma 2.9,

βi(k,r)≤ βi(k−1,r−1)+ i+1≤ (i+1)(r−2)+ i+1 = (i+1)(r−1) as required.

We remark that there is a straightforward construction proving Corollary 2.10 for the

case k ≥ (i+1)(r−1), namely, a disjoint union of i+1 cliques of size r−1 where each
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vertex is in a different part and the remaining k− (i+1)(r−1) parts are empty. Clearly,

the deletion of any i parts does not destroy all the Kr−1.

Now we prove a better upper bound for βi(k,r) in the case when i≥ 2 and

k ≥ i(r−1)+1 by considering the (r−2)th power of the cycle Ci(r−1)+1.

Proposition 2.11. βi(k,r)≤ i(r−1)+1 for k ≥ i(r−1)+1 and r, i≥ 2.

Proof. Since βi(k,r) is decreasing in k (by adding empty parts), it is enough to show that

βi(k,r)≤ i(r−1)+1 for k = i(r−1)+1. Let G be the (r−2)th power of the cycle

Ci(r−1)+1, i.e. G is a graph on Zi(r−1)+1 where u,v are neighbors if u− v = 1,2, . . . ,r−2.

We view G as a (i(r−1)+1)-partite graph with one vertex in each part. Clearly, G is

Kr-free if i≥ 2. Note that, after deleting any i vertices of G, there are at least r−1

consecutive vertices remaining in Zi(r−1)+1, which form a Kr−1 as required.

Proposition 2.11 together with Lemma 2.9 imply a better upper bound than that in

Corollary 2.10 for β2(k,r) in the remaining cases, i.e when k < 2r−1.

Proposition 2.12. β2(k,r)≤ 4r− k−2 for 2≤ r < k ≤ 2r−1.

Proof. We proceed by induction on 2r− k. The base case when 2r− k = 1 follows from

Proposition 2.11. Now, suppose that 2r− k ≥ 2. Applying Lemma 2.9,

β2(k,r)≤ β2(k−1,r−1)+3≤ (4(r−1)− (k−1)−2)+3 = 4r− k−2,

by the induction hypothesis, since 2r− k > 2(r−1)− (k−1)≥ 1,

Let us remark that a similar upper bound for general βi can be obtained by the same

method. We believe that the bound in Proposition 2.12 is, in fact, an equality.

Conjecture 2.13. β2(k,r) = 4r− k−2 for 2≤ r < k < 2r−1.

For the remaining values of k, we shall see in the next subsection that

β2(k,r) = 2r−1 for k ≥ 2r−1.
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2.3.2 Determining β1

We shall show that the upper bound for β1 given by Corollary 2.10 is an equality. Recall

that the clique number of a graph is the order of a maximum clique.

Proposition 2.14. β1(k,r) = 2(r−1) for k ≥ r ≥ 2.

The lower bound is a consequence of the following observation which we will prove

below.

Proposition 2.15. Let G be a graph on at most 2s−1 vertices with clique number s. Then

there is a vertex which lies in every Ks of G.

Proof of Proposition 2.14. The upper bound follows from Corollary 2.10. To prove the

lower bound, suppose for contradiction that G is a Kr-free k-partite graph on at most 2r−3

vertices such that the subgraph induced by any k−1 parts contains a Kr−1. Applying

Proposition 2.15 with s = r−1, there is a vertex v which lies in every Kr−1. In particular,

the deletion of the part containing v destroys all the Kr−1. Hence, β1(k,r)≥ 2r−2.

Let us remark that Proposition 2.15 is a consequence of the clique collection lemma

of Hajnal [50] which states that the sum of the number of vertices in the union and the

intersection of a collection of maximum cliques is at least twice the clique number. Our

argument below can also be used to give a new proof of Hajnal’s clique collection lemma.

Proof of Proposition 2.15. Let V1,V2, . . . ,Vm ⊂V (G) be the vertex sets of the copies of Ks

in G. For a vertex v ∈V (G), let Iv = {i ∈ [m] : v ∈Vi} be the set of Ks containing v. For a

collection C ⊂P([m]) of subsets of [m], let VC = {v ∈V (G) : Iv ∈ C }. Observe that if

C ⊂P([m]) is intersecting then VC induces a clique in G. Indeed, u,v ∈VC are neighbors

since Iu∩ Iv 6= /0, i.e. there is a clique containing both u and v. Therefore, |VC | ≤ s since G

is Ks+1-free. The following lemma implies the result.
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Lemma 2.16. For m≥ 3, there exist intersecting families C1,C2, . . .Cm−2 ⊂P([m]) such

that, for I ⊂ [m], the number of C j containing I is


0 if I = /0

|I|−1 if I 6= /0, [m]

m−2 if I = [m].

Proof. The proof is by induction on m. For m = 3, C1 = {{1,2},{2,3},{3,1},{1,2,3}}

satisfies the required property. For m≥ 4, suppose by induction that there exist

intersecting families C1,C2, . . . ,Cm−3 ⊂P([m−1]) satisfying the property. We define

D1,D2, . . . ,Dm−2 ⊂P([m]) as follows. For 1≤ j ≤ m−3, let

D j = C j∪{I∪{m} : I ∈ C j}

and

Dm−2 = {I ⊂ [m] : m ∈ I and |I| ≥ 2}∪{[m−1]}.

It is easy to check that D1,D2, . . . ,Dm−2 satisfy the required property.

Let us deduce the result. This is trivial when m = 1,2 so we may assume that m≥ 3.

Observe that
m

∑
i=1
|Vi|=

∣∣∣∣∣ m⋃
i=1

Vi

∣∣∣∣∣+m−2

∑
j=1
|VC j |+

∣∣∣∣∣ m⋂
i=1

Vi

∣∣∣∣∣ .
Indeed, a vertex v is counted on both sides |Iv| times by the lemma. Using |Vi|= s,

|
⋃m

i=1Vi| ≤ 2s−1 and |VC j | ≤ s, we have

ms≤ (2s−1)+(m−2)s+

∣∣∣∣∣ m⋂
i=1

Vi

∣∣∣∣∣
i.e. |

⋂m
i=1Vi| ≥ 1 as required.

We remark that the fact that β1(k,r) = 2(r−1) allows us to show that the upper

bound for β2(k,r) when k ≥ 2r−1 in Proposition 2.11 is an equality.
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Corollary 2.17. β2(k,r) = 2r−1 for k ≥ 2r−1 and r ≥ 2.

Proof. Observe that βi(k,r)≥ βi−1(k−1,r)+1. Indeed, if G is a Kr-free k-partite graph

on βi(k,r) vertices such that the subgraph induced by any k− i parts contains a Kr−1, then,

by deleting a non-empty part of G, we obtain a Kr-free (k−1)-partite graph such that the

subgraph induced by any (k−1)− (i−1) parts contains a Kr−1. This graph must contains

at least βi−1(k−1,r) vertices and therefore, |G|−1≥ βi−1(k−1,r).

Hence, β2(k,r)≥ β1(k−1,r)+1 = 2(r−1)+1 = 2r−1 by Proposition 2.14.

2.3.3 Proof of Theorem 2.2(i)

The lower bound follows from Proposition 2.7 and Proposition 2.14. The upper bound

follows from Proposition 2.7, Proposition 2.12 and Corollary 2.17.

2.4 Proof of Theorem 2.2(ii)

For k = 2r−3, we are done since the lower and upper bounds in Theorem 2.2(i) match,

i.e. α(k,r) = k(2r−4) = (k−1)(2r−3).

Now we shall describe constructions that match the lower bound α(k,r)≥ k(2r−4)

in Theorem 2.2(i) for the cases when (k ≥ 2r−2 and r is even) and (k ≥ 2r−1 and r = 2

mod 3), i.e. a Kr-partite-saturated k-partite graph G containing an independent set X of

size k consisting of exactly one vertex from each part of G with e(X ,Xc) = k(2r−4).

Lemma 2.8 tells us that such graph must satisfy d(x) = 2r−4, for all x ∈ X .

Note that we do not have to worry about making the admissible non-edges inside Xc,

Kr-saturated since we can keep adding admissible edges inside Xc until every admissible

non-edge inside Xc is Kr-saturated.

Let p ∈ {2,3} be a divisor of r−2. First we shall construct such k-partite graph G,

for k = 2r−4+ p. We define X = {x1,x2, . . . ,xk} and Xc = {y1,y2, . . . ,yk}, where the

parts of G are {xi,yi}, for i = 1,2, . . . ,k. There are no edges inside X . Let yiy j be an edge

iff i, j are not consecutive elements of the circle Zk, and so G[Xc] is the graph Kk minus a
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cycle Ck. Let xiy j is an edge iff i 6= j mod k
p , i.e. xi is joined to all but p equally spaced

y j. We claim that G satisfies the required properties.

Clearly, we have d(x) = k− p = 2r−4 for all x ∈ X and e(X ,Xc) = k(2r−4). Let

us verify that G is Kr-free. A clique inside Xc is a set of non-consecutive elements of Zk,

and so a largest clique inside Xc has size
⌊ k

2

⌋
= r−1 for p ∈ {2,3}. Since a clique which

is not inside Xc can contain at most one vertex of X , it remains to check that the

neighborhood of each xi does not contain a clique of size r−1. Viewing Xc as a circle,

N(xi) consists of p segments of the circle, each of size 2r−4
p , separated by gaps of size one.

Since 2r−4
p is even, a largest clique in N(xi) has size p(2r−4)

2p = r−2.

It remains to show that the admissible non-edges inside X , and those between X and

Xc are Kr-saturated. Let xiy j be an admissible non-edge, and so j = i± k
p in Zk. Clearly,

N(xi) contains r−2 vertices which form a non-consecutive set of the circle with y j.

Therefore, there exists a Kr−2 in the common neighborhood of xi and y j as required. Now

let xix j be an admissible non-edge. Then the common neighborhood of xi and x j consists

of 2p segments of the circle separated by gaps of size one such that they form p pairs

where the sum of the sizes of each pair is 2r−4
p −1, and so each pair consists of a segment

of even size and a segment of odd size. Therefore, a largest non-consecutive set in

N(xi)∩N(x j) has size p(2r−4)
2p = r−2. Hence, there exists a Kr−2 in N(xi)∩N(x j) as

required.

We have constructed such k-partite graph Gk for k = 2r−4+ p. Let us obtain Gk for

k > 2r−4+ p from G2r−4+p by blowing up x1 to a class {x1}∪{xi : 2r−3+ p≤ i≤ k}

of size k− (2r−4+ p)+1 where each copy of x1 (not including itself) forms a part of Gk

of size one. Clearly, we have d(x) = 2r−4 for all x ∈ X = {x1,x2, . . . ,xk} and

e(X ,Xc) = k(2r−4). Since G2r−4+p is Kr-free, so is Gk.

It remains to check that the admissible non-edges inside X , and those between X and

Xc are Kr-saturated. Any admissible non-edge inside X which is not inside the blow up

class of x1 is Kr-saturated by the same property of G2r−4+p. Any admissible non-edge
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inside the blow up class of x1 is Kr-saturated since N(x1) contains a Kr−2 by the

construction of G2r−4+p. Any admissible non-edge xiy j where j 6= 1 or ( j = 1 and

i≤ 2r−4+ p), is Kr-saturated by the same property of G2r−4+p. Any admissible

non-edge xiy j where j = 1 and 2r−3+ p≤ i≤ k, is Kr-saturated since N(x1)∩N(y1)

contains a Kr−2 by the construction of G2r−4+p.

2.5 Proof of Theorem 2.2(iii)

In this section, we study α(k,r) for r = 3,4,5. The values of α(k,3) and α(k,4) are

completely determined while the values of α(k,5) are unknown for k = 5,6,8.

2.5.1 The function α(k,3)

We shall prove that α(k,3) = 3(k−1) for k ≥ 3. The upper bound follows from

Theorem 2.2(i). Let us prove the lower bound.

Let G =V1∪V2∪·· ·∪Vk be a K3-partite-saturated k-partite graph G containing an

independent set X = {x1,x2, . . . ,xk} with xi ∈Vi for all i. By Lemma 2.8, for all i, the

deletion of any part of G does not destroy all vertices of N(xi), i.e. xi is joined to at least

two parts of G. Suppose for contradiction that e(X ,Xc)< 3(k−1), i.e. X contains at least

four vertices of degree 2, say x1,x2,x3,x4. Let yi ∈Vi and y j ∈Vj with 1 < i < j ≤ k be the

neighbors of x1, and so yi and y j are not neighbors otherwise x1yiy j forms a triangle. Since

{2,3,4}\{i, j} 6= /0, we may assume that i, j 6= 2, i.e. x1,x2,yi,y j are from different parts

of G. Since any pair in X forms a K3-saturated non-edge in G, they have a common

neighbor. So x1 and x2 have a common neighbor, say yi.

First we suppose that x2y j is a non-edge. Then x2 and y j have a common neighbor

yl ∈Vl . Since yi and y j are not neighbors, l 6= i. We observe that xiy j are neighbors since

x1 and xi have a common neighbor and N(x1) = {yi,y j}. Similarly, xiyl are neighbors

since x2 and xi have a common neighbor and N(x2) = {yi,yl}. We obtain a contradiction

by observing that xiy jyl forms a triangle.
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Now, suppose that x2y j is an edge, and so N(x1) = N(x2) = {yi,y j}. Then xiy j are

neighbors since x1 and xi have a common neighbor. Similarly, x jyi are neighbors. We

know that xi and x j have a common neighbor yl with l 6= i, j. Then either l 6= 1 or l 6= 2,

say l 6= 1. Since the non-edge x1yl is K3-saturated, yl is joined to either yi or y j. This

implies a contradiction that either x jyiyl or xiy jyl forms a triangle.

2.5.2 The function α(k,4)

As a consequence of Theorem 2.2(ii), we obtain that α(k,4) = 4k for k ≥ 5. For the

remaining case k = 4, we have the bounds 16≤ α(4,4)≤ 18 from Theorem 2.2(i). We

shall show that α(4,4) = 18.

Consider the family of graphs appearing in the definition of α(r,r). Let

G =V1∪V2∪·· ·∪Vr be an Kr-partite-saturated r-partite graph G containing an

independent set X = {x1,x2, . . . ,xr} with xi ∈Vi for all i. We shall establish some

properties of G which will be useful in this subsection, the next subsection and

Section 2.6.

We say that a vertex y ∈ Xc is i-special if y is the only neighbor of xi in the part of G

containing y. The special degree of a vertex y ∈ Xc is the number of i ∈ [r] such that y is

i-special. We say that a vertex y ∈ Xc is special if the special degree of y is at least one.

Let us make some easy observations regarding the special vertices.

Lemma 2.18. Let G =V1∪V2∪·· ·∪Vr be an Kr-partite-saturated r-partite graph G

containing an independent set X = {x1,x2, . . . ,xr} with xi ∈Vi for all i. The following hold

for r ≥ 4.

(i) A special vertex yi ∈Vi is joined to every vertex of X except xi.

(ii) Each Vi contains at most one special vertex.

(iii) If yi ∈Vi is i′-special and y j ∈Vj is j′-special with i′ 6= j and j′ 6= i then yiy j is an

edge.
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(iv) The number of vertices of special degree at least 2 is at most r−2.

(v) If yi ∈Vi is i′-special and y j ∈Vj with j 6= i, i′ then y j is joined to either yi or xi′ .

(vi) For a special vertex yi ∈Vi, there exist parts Vj and Vl where i, j, l are distinct such

that N(xi)∩Vj and N(xi)∩Vl both contain a non-neighbor of yi.

Proof. (i) Let yi ∈Vi be i′-special and let j 6= i, i′. Since the non-edge xi′x j is Kr-saturated,

the common neighborhood of xi′ and x j contains a Kr−2 consisting of one vertex from

each part of G\
(
Vi′ ∪Vj

)
. Then yi is in this Kr−2 since yi is the only neighbor of xi′ in Vi,

and so yi is joined to x j.

(ii) Suppose for contradiction that Vi contains two special vertices yi and zi where yi

is i′-special. Then, by (i), xi′ is joined to both yi and zi contradicting the fact that yi is the

only neighbor of xi′ in Vi.

(iii) First, suppose that i′ 6= j′. Since the non-edge xi′x j′ is Kr-saturated, the common

neighborhood of xi′ and x j′ contains a Kr−2 consisting of one vertex from each part

G\
(
Vi′ ∪Vj′

)
. Since yi is the only neighbor of xi′ in Vi and y j is the only neighbor of x j′ in

Vj, both yi and y j lie in this Kr−2. In particular, yiy j is an edge.

Now, suppose that i′ = j′. We can pick l 6= i, j, i′ because r ≥ 4. Since the non-edge

xi′xl is Kr-saturated, the common neighborhood of xi′ and xl contains a Kr−2 consisting of

one vertex from each part of G\ (Vi′ ∪Vl). Since yi is the only neighbor of xi′ in Vi and y j is

the only neighbor of xi′ in Vj, both yi and y j lie in this Kr−2. In particular, yiy j is an edge.

(iv) Suppose for contradiction that there exist vertices y1,y2, . . . ,yr−1 of special

degree at least 2. By (ii), they lie in different parts of G, say yi ∈Vi for 1≤ i≤ r−1. We

claim that they form a Kr−1 which would be a contradiction since, together with xr, they

form a Kr by (i). Now we show that any yiy j is an edge. Since yi and y j have special

degree at least 2, there exist i′ 6= j and j′ 6= i such that yi is i′-special and y j is j′-special.

Therefore, yiy j is an edge by (iii).

(v) Suppose that xi′y j is a non-edge. Then the common neighborhood of xi′ and y j
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contains a Kr−2 consisting of one vertex from each part of G\
(
Vi′ ∪Vj

)
. Then yi is in this

Kr−2 since yi is the only neighbor of xi′ in Vi, and so yi is joined to y j.

(vi) Suppose for contradiction that there exists j ∈ [r]\{i} such that yi ∈Vi is joined

to every vertex in N(xi)∩Vl for all l 6= i, j. Since the non-edge xix j is Kr-saturated, the

common neighborhood of xi and x j contains a Kr−2 consisting of one vertex from each

part of (G\X)\
(
Vi∪Vj

)
. We obtain a contradiction by observing that this Kr−2, together

with x j and yi, form a Kr. Indeed, by assumption, this Kr−2 is also in the neighborhood of

yi and x jyi is an edge by (i).

Now we are ready to show that α(4,4)≥ 18. Suppose for contradiction that

α(4,4)≤ 17, i.e. there exists a K4-partite-saturated 4-partite graph G =V1∪V2∪V3∪V4

containing an independent set X = {x1,x2,x3,x4} with xi ∈Vi for all i such that

∑
4
i=1 d(xi)≤ 17. By Lemma 2.8, d(xi)≥ β1(3,3) = 4 and each xi has some neighbor in Vj

for j 6= i. Therefore, there are at least three vertices of degree 4 and possibly one of degree

5. Since a vertex of degree 4 in X creates at least two special vertices and a vertex of

degree 5 in X creates at least one special vertex, the sum of the special degrees of the

vertices in Xc is at least 2+2+2+1 = 7. By Lemma 2.18(iv), there is a vertex of special

degree 3, say y1 ∈V1.

For i = 2,3,4, since y1 is i-special, xi has at least three neighbors in N(y1)∪{y1},

each in a different part of G, by Lemma 2.8. On the other hand, y1 has at least two

non-neighbors, say y2 ∈V2 and y3 ∈V3, by Lemma 2.18(vi). By Lemma 2.18(v), xiy2 is

an edge for i 6= 2 and xiy3 is an edge for i 6= 3. So x4 has five neighbors, i.e. y2, y3 and

three vertices in N(y1)∪{y1}, and d(x1) = d(x2) = d(x3) = 4. Since x2 has four neighbors

including y3 and it has some neighbor in (N(y1)∪{y1})∩Vj for each j = 1,3,4, it has

exactly one neighbor in V4, say y4. Similarly, x3 has exactly one neighbor in V4 which has

to be the same vertex y4 by Lemma 2.18(ii).

We obtain a contradiction by observing that x1y2y3y4 forms a K4. First, note that

x1y4 is an edge by Lemma 2.18(i). Now y4 is not 1-special otherwise y4 would have

48



special degree 3 and by repeating the argument above with y1 replaced by y4, we could

deduce that x1, x2, or x3 had degree 5. Therefore, the neighbors of x1 are y2, y3, y4 and a

vertex in V4. Since y2,y3 are both 1-special and y4 is 2,3-special, y2y3y4 forms a triangle

by Lemma 2.18(iii).

2.5.3 The function α(k,5)

As a consequence of Theorem 2.2(i) and (ii), we obtain that

α(k,5) = 6k for k = 7 or k ≥ 9,

30≤ α(5,5)≤ 36,

36≤ α(6,5)≤ 40,

48≤ α(8,5)≤ 49.

We shall improve the lower bound for α(5,5) to 33.

Suppose for contradiction that α(5,5)≤ 32, i.e. there exists a K5-partite-saturated

5-partite graph G =V1∪V2∪V3∪V4∪V5 containing an independent set

X = {x1,x2,x3,x4,x5} with xi ∈Vi for all i such that ∑
5
i=1 d(xi)≤ 32. Write Yi for Vi \{xi}.

By Lemma 2.8, d(xi)≥ β1(4,4) = 6 and each xi has some neighbor in Vj for j 6= i.

Therefore, there are either four vertices in X of degree 6 or there are three vertices of

degree 6 and two of degree 7. Since a vertex of degree 6 in X creates at least two special

vertices and a vertex of degree 7 in X creates at least one special vertex, the sum of the

special degrees of the vertices in Xc is at least 8, and hence, there exists a vertex of special

degree at least two. Let i be such that there is a special vertex y ∈ Yi with special degree

ds(y) at least two where (d(xi),ds(y)) is maximum in lexicographical order1. Without loss

of generality we can assume that i = 1. Let N = N(y)\X . By Lemma 2.18(vi), x1 has two

neighbors, say y2,y3, belonging to two distinct parts of G, different from V1, which are

1We say that (a,b)4 (c,d) if a< c or a= c and b≤ d, where 4 denotes the lexicographical order relation.
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non-neighbors of y. Without loss of generality, we can assume that y2 ∈ Y2 and y3 ∈ Y3.

For a pair of non-adjacent vertices u,v ∈ G and S⊂ G, we say that S is uv-saturating

if adding the edge of uv to G creates a copy K of K5 such that S⊆ K. If S = {z} then we

simply say that z is uv-saturating. Notice that if S is uv-saturating then S induces a clique.

In the rest of the proof, we shall repeatedly use the following lemma.

Lemma 2.19. Given i ∈ {2,3,4,5} the following hold.

(i) If j ∈ {2,3,4,5}\{i} then xi has a neighbor in Vj∩N. In particular, dN(xi)≥ 3.

(ii) If y is i-special then xi is adjacent to y j for every j ∈ {2,3}\{i}.

(iii) If y is xix j-saturating, for every j ∈ {2,3,4,5}\{i}, then dN(xi)≥ 4.

(iv) If y is i-special or ds(y)≥ 3 then dN(xi)≥ 4.

(v) If y is 2,3-special and i ∈ {4,5}, then d(xi)≥ 7.

(vi) If i ∈ {2,3} and there are p vertices in X \{x1} all of which have neighbors in Yi \N

then there is no vertex in Vi with special degree bigger than max{1,3− p}.

(vii) Y3∪Y4 ⊂ N.

Proof. (i) Observe that we can choose k ∈ {2,3,4,5}\{i, j} such that y is either i-special

or k-special. Since there must be a triangle in the common neighborhood of xi and x j

which uses y, we have that the remaining two vertices belong to N. Hence xi has a

neighbor in N∩ x j.

(ii) This follows directly from Lemma 2.18(v).

(iii) We shall show that dN(xi)≥ β1(3,3) = 4. Take any j ∈ {2,3,4,5}\{i}. Since y

is xix j-saturating then there is an edge in the common neighborhood of xi and x j in

N \
(
Vi∪Vj

)
. Observe that the common neighborhood of xi and y cannot contain a K3,

hence dN(xi)≥ β1(3,3) = 4.
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(iv) Take any j ∈ {2,3,4,5}\{i}. Since y is either i- or j-special, it follows that y is

xix j-saturating. Hence, by (ii), dN(xi)≥ 4.

(v) Without loss of generality we can assume that i = 4. If y is also 4-special then it

follows from (ii) and (iv) that dN(x4)≥ 4 and x4 is adjacent to y,y2,y3, therefore

d(x4)≥ 7. Hence we can assume that y is not 4-special. Suppose for contradiction that

d(x4) = 6. From (i), we have that dN(x4)≥ 3 and since y is not 4-special we have that

dY1(x4)≥ 2. Moreover, x4 has to have at least one neighbor not in Y1∪N as otherwise

there would be a copy of K5 in G, as seen by considering the non-edge x1x4. Therefore,

d(x4) = dY1(x4)+dN(x4)+ |N(x4)\ (Y1∪N) | ≥ 3+2+1 = 6 = d(x4). Hence,

dY1(x4) = 3, dN(x4) = 4 and |N(x4)\ (Y1∪N) |= 1. We shall obtain a contradiction by

finding a copy of K5 in the graph G.

Suppose {z1,z2,z3} is x4x5 saturating, with zi ∈Vi. We claim that y 6= z1 and

{z2,z3} 6⊆ N. Suppose for contradiction that it is not the case. If y is x4x5-saturating then

from (iii) we have that dN(x4)≥ 4 hence we obtain a contradiction. We can therefore

assume that y is not x4x5-saturating and hence z1 6= y. Whence z2,z3 ∈ N. Recall that

{z1,z2,z3} form a triangle and therefore there is an edge between z2,z3. By assumption z2

and z3 are neighbors of y, hence y,z2,z3 form a triangle, and therefore y is x4x5-saturating

since y,z2,z3 belong to the common neighborhood of x4 and x5, which contradicts the

assumption that y is not x4x5-saturating.

Without loss of generality we can assume that z2 6∈ N. Using (i), we can therefore

suppose that N(x4)∩Y1 = {y,z1}, N(x4)∩Y2 = {w,z2}, N(x4)∩Y3 = {z3} and

N(x4)∩Y5 = {z5}, for some w,z3,z5 ∈ N. We shall obtain a contradiction by observing

that z1,z2,z3,x4,z5 form a copy of K5. First we claim that {z2,z3,z5} is x1x4-saturating.

Indeed, there must be a triangle in the common neighborhood of x1 and x4, with one

vertex in each V3,V4,V5. There are only two candidates for the triangle: z2,z3,z5 or

w,z3,z5. It cannot be w,z3,z5 since they are all neighbors of y, hence y,w,z3,x4,z5 would

form a copy of K5. Hence we must have that the set {z2,z3,z5} is x1x4-saturating. Now,
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since x4 is not adjacent to y3, and y3 is not adjacent to y we must have an edge between z1

and z5. Indeed, there must be a triangle in the common neighborhood of x4 and y3 with a

vertex in each V1,V2,V3. Since x4 has only one neighbor in V5, i.e. z5, and x4 and y3 have

only one common neighbor in V1, i.e. z1, we must have an edge between z1 and z5.

Therefore we have that z1,z2,z3 form a triangle, z2,z3,z5 form a triangle, and z1,z5

are adjacent. It easy to see now that z1,z2,z3,x4,z5 form a copy of K5.

(vi) Let v be a special vertex in V2∪V3, say in V2. First observe that if v is 1-special

then x3,x4,x5 are all adjacent to y2 ∈ Y2 \N. On the other hand, it follows from (i) that

x3,x4,x5 all have neighbors in N∩Y2 hence they all have degree at least 2 in Y2. It follows

that v has special degree 1. If we assume that v is not 1-special then v has special degree at

most 3− p, since p of the vertices x3,x4,x5 have degree 2 in Y2.

(vii) Assume for contradiction that there is v, say in Y4 \N. Observe that if y is

i-special then it follows from (ii) and (iv) that d(xi)≥ 7, hence if ds(y)≥ 3 we obtain

contradiction by finding three vertices in X of degree at least 7. Therefore we can assume

that ds(y) = 2.

If y is 5, i-special, then from (ii) and (iv) we have that d(x5)≥ 8 and d(xi)≥ 7 hence

again we obtain a contradiction. Therefore we can assume that y is not 5-special. If y is

2,3-special then d(x2),d(x3)≥ 7 and from (iv) we have that d(x4),d(x5)≥ 7. Hence we

can assume that y is 2,4-special or 3,4-special. Suppose that the former is the case. Then

d(x2),d(x4)≥ 7. It follows that d(x1) = 6. Therefore by maximality (x1,y) and from (v)

we have that every vertex in Y2∪Y3∪Y4 has special degree at most 1 and no vertex in Y5

has special degree bigger than 2. Which gives a contradiction since the sum of special

degree is then at most 7.

We are now ready to finish showing that α(5,5)≥ 33. We consider several cases

depending on the special degree of y.

Case 1. ds(y) = 4
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Consider the 4-partite graph H = G[N(y)] with an independent set

X ′ = {x2,x3,x4,x5}. Clearly, H is K4-free since G is K5-free. We modify H by keeping

adding admissible edges inside H \X ′ until every admissible non-edge inside H \X ′ is

K4-saturated. We claim that H is K4-partite-saturated, which would imply that

e(X ′,H \X ′)≥ α(4,4) = 18 by the previous subsection. It remains to show that the

admissible non-edges with at least one endpoint in X ′ are K4-saturated.

Consider the non-edge xiy j with y j ∈Vj∩H (possibly y j = x j) and distinct

2≤ i, j ≤ 5. Since the non-edge xiy j is K5-saturated in G, the common neighborhood in G

of xi and y j contains a K3 consisting of one vertex from each part of G\
(
Vi∪Vj

)
. Since y

is i-special, this K3 must contain y, and so the common neighborhood in H of xi and y j

contains a K2, i.e. xiy j is K4-saturated in H as required.

Recall that y has two non-neighbors, y2 ∈V2 and y3 ∈V3. By Lemma 2.18(v), xiy2 is

an edge for i 6= 2 and xiy3 is an edge for i 6= 3. We shall partition the edges between X and

Xc as follows:

e(X ,Xc)≥ e(X ′,H \X ′)+d(x1)+ e(X ,y)+ e(X ′,y2)+ e(X ′,y3)

≥ 18+6+4+3+3 = 34,

contradicting the assumption.

Case 2. ds(y) = 3

If y is 4,5-special then from Lemma 2.19(ii) and 2.19(iii) we have that

d(x4),d(x5)≥ 7. Otherwise y is 2,3-special and hence it follows from Lemma 2.19(v)

that d(x4),d(x5)≥ 7. We shall obtain a contradiction by showing that d(x1)≥ 7, hence

showing that there are three vertices in X with degrees at least 7, which is against an

assumption made in the beginning of the subsection. It follows from Lemma 2.19(vi) with

p≥ 2, that the sum of special degrees in Y2∪Y3 is at most 2. Since the sum of special

degrees is at least 8, it follows that there is a special vertex in Y4∪Y5 with special degree at
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least 2. Therefore from the maximality of d(x1) we have that d(x1)≥ 7.

Case 3. ds(y) = 2

We split this case into three subcases.

Case 3.1. y is 2,3-special

It follows from Lemma 2.19(v) that d(x4),d(x5)≥ 7. We shall obtain a contradiction

by showing that d(x1)≥ 7, hence showing that there are three vertices in X with degrees at

least 7, which is against an assumption made in the beginning of the subsection. It follows

from Lemma 2.19(vi) that the sum of special degrees in Y2∪Y3 is at most 2. Since the sum

of special degrees is at least 8, it follows that there is a special vertex in Y4∪Y5 with

special degree at least 2. Therefore from the maximality of d(x1) we have that d(x1)≥ 7.

Case 3.2. y is 4,5-special

It follows from Lemma 2.19(ii) and 2.19(iv) that d(x4),d(x5)≥ 7. We shall obtain a

contradiction by showing that d(x1)≥ 7, hence showing that there are three vertices in X

with degrees at least 7, which is against an assumption made in the beginning of the

subsection. It follows from Lemma 2.19(vi) that the sum of special degrees in Y2∪Y3 is at

most 3. Since the sum of special degrees is at least 8, it follows that there is a special

vertex in Y4∪Y5 with special degree at least 2. Therefore from the maximality of d(x1) we

have that d(x1)≥ 7.

Case 3.3. y is neither 2,3-special nor 4,5-special

Without loss of generality we can assume that y is 2,4-special. It follows from

Lemma 2.19(ii) and 2.19(iv) that d(x4)≥ 7 and from Lemma 2.19(vi) with p≥ 2 that

there is no special vertex in Y2∪Y3 with special degree bigger than 1. Hence there is either

a vertex in Y4 with special degree at least 2 or a vertex in Y5 with special degree at least 3.

Therefore we can assume that d(x1) = 7 as otherwise we obtain a contradiction to the

maximality of (d(x1),ds(y)).
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We shall obtain a contradiction by showing that at least one of x2, x3 or x5 has degree

at least 7, thus finding three vertices with degree at least 7. Suppose

d(x2) = d(x3) = d(x5) = 6. Observe that if there is a vertex in X4 of special degree bigger

than 2 then we obtain a contradiction to the maximality of (d(x1),ds(y)). Therefore there

are two vertices in X with at least two neighbors in X4. Suppose that i ∈ {3,5} and xi has

at least two neighbors in X4. Then it follows from Lemma 2.19(i) that dN(xi)≥ 4, and

hence xi has degree at least 7 as xi has at least three neighbors outside N. We can therefore

assume that x3 and x5 have only one neighbor in X4. For the same reason we can assume

that x3 has only one neighbor in Y5. If x2 has two neighbors in Y5 then dN(x2)≥ 5 and

therefore d(x2)≥ 7. Hence we can assume that there is z5 ∈ Y5 which is 2,3-special.

Suppose {z1,z2,z4} is x3x5-saturating, with zi ∈Vi. We claim that y 6= z1 and z2 6∈ N.

Suppose for contradiction that it is not the case. If y is x3x5-saturating then from (iii) we

have that dN(x3)≥ 4 hence we obtain a contradiction. We can therefore assume that y is

not x3x5-saturating and hence z1 6= y. Whence z2 ∈ N. Observe that by Lemma 2.19(vii)

we have z4 ∈ N. Recall that {z1,z2,z4} form a triangle and therefore there is an edge

between z2,z4. By assumption z2 and z4 are neighbors of y, hence y,z2,z4 form a triangle,

and therefore y is x3x5-saturating since y,z2,z4 belong to the common neighborhood of x3

and x5, which contradicts the assumption that y is not x3x5-saturating.

We shall obtain a contradiction by showing that z1,z2,x3,z4,z5 form a copy of K5.

Indeed, by assumption {z1,z2,z4} is x3x5-saturating and similar analysis to the one made

in the proof of Lemma 2.19(v) shows that {z2,z4,z5} is x1x3-saturating. Since y is

2-special it follows that x2 is not adjacent to z1, and moreover z5, as the only neighbor of

x2 in Y5, is x2z1-saturating, and therefore there is an edge between x2 and z5. Hence we

have that z2,z4,z5 form a triangle, z1,z2,z4 form a triangle, and z1,z5 are adjacent. It easy

to see now that z1,z2,x3,z4,z5 form a copy of K5.
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2.6 The diagonal case α(r,r)

2.6.1 Proof of Theorem 2.2(iv)

We have seen that the lower bound α(k,r)≥ k(2r−4) in Theorem 2.2(i) is attained for

some k. In this subsection, we show that this is not the truth for the diagonal case

k = r ≥ 4, i.e. α(r,r)≥ r(2r−4)+1. We shall again use the concept of special vertices

introduced in Section 2.5.

Suppose for contradiction that for some r ≥ 4, α(r,r) = r(2r−4), i.e. there exists a

Kr-partite-saturated r-partite graph G =V1∪V2∪·· ·∪Vr containing an independent set

X = {x1,x2, . . . ,xr} with xi ∈Vi for all i such that ∑
r
i=1 d(xi) = r(2r−4). Lemma 2.8 tells

us that we must have d(xi) = 2r−4 for all i and each xi has some neighbor in Vj for j 6= i.

Therefore, each xi creates at least two special vertices, and so the sum of the special

degrees of the vertices in Xc is at least 2r. By Lemma 2.18(iv), there is a vertex of special

degree at least 3, say y1 ∈V1.

We observe that y1 has at least two non-neighbors, say y2 ∈V2 and y3 ∈V3 by

Lemma 2.18(vi). Since y1 has special degree at least 3, we can pick i≥ 4 such that y1 is

i-special. By Lemma 2.18(v), y2 and y3 are neighbors of xi. Therefore,

|N(xi)∩N(y1)|= d(xi)−|N(xi)\N(y1)| ≤ (2r−4)−3 = 2r−7.

On the other hand, we shall obtain a contradiction by showing that the graph

H = G[N(xi)∩N(y1)] contains at least β1(r−2,r−2) = 2(r−3) vertices. It is sufficient

to prove that H is an (r−2)-partite Kr−2-free graph such that the subgraph induced by any

k−3 parts contains a Kr−3. Clearly, H is Kr−2-free since G is Kr-free. The parts of H are

N(xi)∩N(y1)∩Vj for j 6∈ [r]\{1, i}. It remains to verify that the deletion of the part

N(xi)∩N(y1)∩Vj does not destroy all the Kr−3. Since the non-edge xix j is Kr-saturated in

G, the common neighborhood in G of xi and x j contains a Kr−2 consisting of one vertex
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from each part of G\
(
Vi∪Vj

)
. Since y1 is i-special, this Kr−2 must contain y1, and so the

common neighborhood N(xi)∩N(y1)∩N(x j)⊂ H contains a Kr−3 not using the vertices

of Vj as required.

2.6.2 Remark on β2(r,r−1)

Recall from Proposition 2.7 that α(r,r)≤ (r−1)β2(r,r−1). Thus, a better estimate on β2

would translate to a better understanding of the saturation numbers. While we could not

find the exact value of β2(r,r−1), we suspect that β2(r,r−1) = 3r−6 as mentioned in

Conjecture 2.13. In this subsection, we make an observation about β2(r,r−1) which can

be viewed as a first step towards determining its exact value. For simplicity of notation, let

us write β2(r) = β2(r,r−1).

Proposition 2.20. Either

• β2(r) = 3r−6 for all r ≥ 3, or

• β2(r)≤ (c+o(1))r for some constant c < 3, as r→ ∞.

Proof. The result is an immediate consequence of the following lemma.

Lemma 2.21. β2(r1 + r2)≤ β2(r1)+β2(r2)+6 for r1,r2 ≥ 3.

Proof. For i ∈ {1,2}, let Gi =Vi,1∪Vi,2∪·· ·∪Vi,ri be a Kri−1-free ri-partite graph on

β2(ri) vertices such that the subgraph induced by any ri−2 parts contains a Kri−2. We

shall construct a Kr1+r2−1-free (r1 + r2)-partite graph G from G1 and G2 with

|G|= |G1|+ |G2|+6 by starting with the disjoint union of G1 and G2 and then adding six

new vertices U = {x1,x2,y1,y2,z1,z2} as follows: add xi,yi to Vi,1 and add zi to Vi,2 for

i ∈ {1,2}. Now, join all admissible pairs between U and V (G)\U , and add the edges

x1z1,x2z2,y1y2,z1z2,y1z2,z1y2 inside U .

First, we show that G is Kr1+r2−1-free. Suppose otherwise. Since Gi is Kri−1-free for

i ∈ {1,2}, this Kr1+r2−1 must contain at least three vertices forming a triangle in U ,
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contradicting the fact that G[U ] is triangle-free. It remains to show that the deletion of any

two parts does not destroy all the Kr1+r2−2. Suppose first that both deleted parts are from

G1. Since G1 contains a Kr1−2 not using these two parts and G2 contains a Kr2−2 not using

V2,1 and V2,2, we obtain a Kr1+r2−2 not using the deleted parts, formed by these two

cliques and x2,z2. Now suppose that one of the deleted parts is from G1 and the other is

from G2. For i ∈ {1,2}, let Vi be a part in {Vi,1,Vi,2} which was not deleted. By

construction, G[U ] contains an edge between V1, j and V1,l for all j, l ∈ {1,2} and so there

exists an edge in G[U ] between V1 and V2, say e. Since G1 contains a Kr1−2 not using the

deleted part in G1 and V1, and G2 contains a Kr2−2 not using the deleted part in G2 and V2,

we obtain a Kr1+r2−2 not using the deleted parts, formed by these two cliques and the

endpoints of e.

Suppose that β2(s)< 3s−6 for some s≥ 3. We shall show that β2(r)≤ (c+o(1))r

with c = β2(s)+6
s < 3. Applying the lemma and induction on m, we deduce that

β2(ms)≤ cms−6 for all positive integer m. Hence, writing r = ms+ t with 3≤ t ≤ s+2

and applying the lemma again,

β2(r)≤ β2(ms)+β2(t)+6≤ cms+d ≤
(

c+
d
r

)
r = (c+o(1))r

where d = max{β2(t) : 3≤ t ≤ s+2}.

2.7 Proof of Theorem 2.3

Theorems 2.1 and Theorem 2.2(ii) imply that

sat(n,k,r) = k(2r−4)n+o(n) if


k = 2r−3, or

k ≥ 2r−2 and r ≡ 0 mod 2, or

k ≥ 2r−1 and r ≡ 2 mod 3.
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In this section, we shall show that the o(n) term can be replaced with O(1). The upper

bound follows from Proposition 2.5 and Theorem 2.2(ii). We prove that the lower bound

holds for any k ≥ r ≥ 3 using the fact that β1(k−1,r−1) = 2r−4.

Proposition 2.22. For k ≥ r ≥ 3, there is an integer Ck,r such that

sat(n,k,r)≥ k(2r−4)n+Ck,r, for every integer n≥ 0.

Proof. Suppose, as we may, that n is sufficiently large. Let G =V1∪V2∪·· ·∪Vk be a

Kr-partite-saturated k-partite graph with |Vi|= n for all i. We shall find a subset U of V (G)

of constant size such that every vertex in Uc has at least 2r−4 neighbors in U . Then we

would be done since e(G)≥ e(U,Uc)≥ (2r−4)(kn−|U |). Let v1 be a vertex of smallest

degree in V1. Having defined v1,v2, . . . ,vi−1, let vi ∈Vi be a vertex of smallest degree in

Vi \ (N(v1)∪N(v2)∪·· ·∪N(vi−1)). We shall take U to be N(v1)∪N(v2)∪·· ·∪N(vk).

Now we may assume that d(vi)< 2k(2r−4) for all 1≤ i≤ k. Indeed, if vi is the first

vertex in the sequence such that d(vi)≥ 2k(2r−4) then we are done since

e(G)≥ e(Vi,V c
i )≥ d(vi)

(
n−∑

j<i
d(v j)

)
≥ 2k(2r−4)

(
n−2k(2r−4)(i−1)

)
≥ k(2r−4)n

for sufficiently large n. Therefore, U has size bounded by a function of k and r. It remains

to show that every vertex v ∈Uc has at least 2r−4 neighbors in U . We shall prove that

H = G[N(v)∩U ] contains at least β1(k−1,r−1) = 2r−4 vertices by showing that H is a

Kr−1-free (k−1)-partite graph such that the subgraph induced by any k−2 parts contains

a Kr−2. Clearly, H is Kr−1-free since G is Kr-free. Without loss of generality, v ∈V1. The

parts of H are N(v)∩U ∩Vi for 2≤ i≤ k. The deletion of the part N(v)∩U ∩Vi does not

destroy all the Kr−2 since the non-edge vvi is Kr−1-saturated in G, i.e. N(v)∩N(vi)⊂ H

contains a Kr−2 not using the vertices of Vi.
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2.8 Concluding remarks

We have reduced the problem of determining sat(n,k,r) for large n to that of α(k,r).

Although, we have determined α(k,r) for some values of k and r, a large number of cases

remain unknown. In particular, the seemingly easiest case when r is fixed and k is large, is

still open.

Problem 2.23. Determine α(k,r) for k ≥ 2r−2 and r ≡ 1,3 mod 6.

For k ≥ 2r−2 and r ≡ 0,2,4,5 mod 6, we have determined α(k,r) except one

missing case when 3 is the smallest divisor of r−2 and k = 2r−2. Theorem 2.2(i) implies

that α(2r−2,r) ∈ {(2r−3)2,(2r−3)2−1} and we suspect that α(2r−2,r) = (2r−3)2.

Not only we believe that β2(k,r) = 4r− k−2 for r < k ≤ 2r−1 (see

Conjecture 2.13) but we also think that the upper bound

α(k,r)≤ (k−1)β2(k,r−1)≤ (k−1)(4r− k−6) in Theorem 2.2(i) is the correct value

for α(k,r) in this case.

Conjecture 2.24. α(k,r) = (k−1)(4r− k−6) for 5≤ r ≤ k ≤ 2r−4.

We have shown that 33≤ α(5,5)≤ 36. This is the smallest case for which the value

of α is not yet known.

Problem 2.25. Find α(5,5).

To prove the lower and upper bounds on α(k,r), we extensively used the bounds on

β1(k,r) and β2(k,r). We believe that determining the values of βi(k,r) is an interesting

problem on its own.

Problem 2.26. Determine βi(k,r) for k ≥ r ≥ 2 and 2≤ i≤ k− r+1.

We end the chapter with a remark on a related problem. Recall that sat(n,Kr) is the

minimum number of edges in a Kr-free graph on n vertices but the addition of an edge

joining any two non-adjacent vertices creates a Kr. In the pioneer paper of Erdős, Hajnal,
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and Moon [32], they determined sat(n,Kr) by considering a more general problem where

the graphs were not required to be Kr-free. Interestingly, the two problems have the same

answer since the extremal graph is Kr-free. We remark that this phenomenon does not

happen for partite saturation. Roberts [72] studied the corresponding more general

problem for sat(Kr×n,Kr) and showed that the minimum number of edges in a

Kr-saturated subgraph of Kr×n where the subgraph is allowed to contain Kr is
(r

2

)
(2n−1)

for r ≥ 4 and sufficiently large n. On the other hand, Theorem 2.1 and Theorem 2.2 imply

that sat(Kr×n,Kr)≥ r(2r−4)n+o(n)>
(r

2

)
(2n−1) for sufficiently large n.
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CHAPTER 3

MAJORITY COLOURINGS OF DIGRAPHS

In this chapter, we solve problems related to a concept called majority coloring recently

studied by Kreutzer, Oum, Seymour, van der Zypen and Wood. They raised a problem of

determining, for a natural number k, the smallest number m = m(k) such that every

digraph can be colored with m colors where each vertex has the same color as at most 1/k

proportion of its out-neighbors. We show that m(k) ∈ {2k−1,2k}. We also prove a result

supporting the conjecture that m(2) = 3. Moreover, we prove similar results for a more

general concept called majority choosability. This work is joint with António Girão and

Teeradej Kittipassorn.

3.1 Results

For a natural number k ≥ 2, a 1
k -majority coloring of a digraph is a coloring of the vertices

such that each vertex receives the same color as at most a 1/k proportion of its

out-neighbors. We say that a digraph D is 1
k -majority m-colourable if there exists a

1
k -majority coloring of D using m colors. The following natural question was recently

raised by Kreutzer, Oum, Seymour, van der Zypen and Wood [59].

Question 3.1. Given k ≥ 2, determine the smallest number m = m(k) such that every

digraph is 1
k -majority m-colourable.

In particular, they asked whether m(k) = O(k). Let us first observe that

m(k)≥ 2k−1. Consider a tournament on 2k−1 vertices where every vertex has

out-degree k−1. Any 1
k -majority coloring of this tournament must be a proper

vertex-coloring, and hence it needs at least 2k−1 colors. Conversely, we prove that

m(k)≤ 2k.

Theorem 3.2. Every digraph is 1
k -majority 2k-colourable for all k ≥ 2.
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This is an immediate consequence of a result of Keith Ball (see [18]) about partitions

of matrices. We shall use a slightly more general version proved by Alon [3].

Lemma 3.3. Let A = (ai j) be an n×n real matrix where aii = 0 for all i, ai j ≥ 0 for all

i 6= j, and ∑ j ai j ≤ 1 for all i. Then, for every t and all positive reals c1, . . . ,ct whose sum

is 1, there is a partition of {1,2, . . . ,n} into pairwise disjoint sets S1,S2, . . . ,St , such that

for every r and every i ∈ Sr, we have ∑ j∈Sr ai j ≤ 2cr.

Proof of Theorem 3.2. Let D be a digraph on n vertices with vertex set {v1,v2, . . . ,vn} and

write d+(vi) for the out-degree of vi. Let A = (ai j) be an n×n matrix where ai j =
1

d+(vi)
if

there is a directed edge from vi to v j and ai j = 0 otherwise. We apply Lemma 3.3 with

t = 2k and ci =
1
2k for 1≤ i≤ 2k obtaining a partition of {1,2, . . . ,n} into sets

S1,S2, . . . ,S2k, such that for every r and every i ∈ Sr, ∑ j∈Sr ai j ≤ 1
k . Equivalently, the

number of out-neighbors of vi that have the same color as vi is at most d+(vi)
k where the

coloring of D is defined by the partition S1∪S2∪·· ·∪S2k.

Question 3.1 has now been reduced to whether m(k) is 2k−1 or 2k.

Question 3.4. Is every digraph 1
k -majority (2k−1)-colourable?

Surprisingly, this is open even for k = 2. Kreutzer, Oum, Seymour, van der Zypen

and Wood [59] gave an elegant argument showing that every digraph is 1
2 -majority

4-colourable and they conjectured that m(2) = 3.

Conjecture 3.5. Every digraph is 1
2 -majority 3-colourable.

We provide evidence for this conjecture by proving that tournaments are almost

1
2 -majority 3-colourable.

Theorem 3.6. Every tournament can be 3-colored in such a way that all but at most 205

vertices receive the same color as at most half of their out-neighbors.
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Proof. The proof relies on an observation that in a tournament T , the set

Si = {x ∈V (T ) : 2i−1 ≤ d+(x)< 2i} has size at most 2i+1. Indeed, the sum of the

out-degrees of the vertices of Si is at least
(|Si|

2

)
, the number of edges inside Si. On the

other hand, this sum is at most (2i−1)|Si| by the definition of Si. Therefore,(|Si|
2

)
≤ (2i−1)|Si| and hence, |Si| ≤ 2i+1−1.

We proceed by randomly assigning one of three colors to each vertex independently

with probability 1/3. Given a vertex x, let Bx be the number of out-neighbors of x which

receive the same color as x. We say that x is bad if Bx > d+(x)/2. Trivially

E(Bx) = d+(x)/3, and hence by a Chernoff-type bound, it follows that, for x ∈ Si,

P(x is bad) = P(Bx > d+(x)/2) = P(Bx > (1+1/2)E(B(x)))

≤ exp
(
−(1/2)2

3
E(Bx)

)
= exp(−d+(x)/36)≤ exp(−2i−1/36).

Notice that if i≥ 11 then P(x is bad)≤ 2−(2i−7). Let X denote the total number of bad

vertices. Since the vertices of out-degree 0 cannot be bad,

E(X) = ∑
i≥1

∑
x∈Si

P(x is bad)≤
10

∑
i=1

2i+1 exp(−2i−1/36)+ ∑
i≥11

2i+12−(2i−7)

≤ 205+ ∑
i≥11

2−i+8 = 205+
1
4
< 206.

Hence, there is a 3-coloring such that all but at most 205 vertices receive the same color as

at most half of their out-neighbors.

Observe also that the same argument proves a special case of Conjecture 3.5.

Theorem 3.7. Every tournament with minimum out-degree at least 210 is 1
2 -majority

3-colorable.

We remark that Theorem 3.6 can be strengthened (205 can be replaced by 7) by

solving a linear programming problem. Recall that the expected number of bad vertices of
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out-degree at least 1024 is at most 1/4. We shall use linear programming to show that the

expected number of bad vertices of out-degree less than 1024 is less than 7.75. Let Vi be

the set of vertices of out-degree i for i ∈ {1,2, . . . ,1023} and note that the expected

number of bad vertices of out-degree at most 1023 is f (v1,v2, . . . ,v1023) = ∑
1023
i=1 vi pi

where vi = |Vi| and pi = ∑
i
j=d i+1

2 e
( i

j

)
(1/3) j(2/3)i− j. As before, observe that the number

of vertices of degree at most i is at most 2i+1, and therefore, ∑
i
j=1 vi ≤ 2i+1, leading to

the following linear program.

Maximize: f (v1,v2, . . . ,v1023)

Subject to:
i

∑
j=1

v j ≤ 2i+1, for i ∈ {1,2, . . . ,1023}

Subject to: vi ≥ 0, for i ∈ {1,2, . . . ,1023}.

See Appendix 3.2 for the source code. Similarly, we can replace 210 in Theorem 3.7

by 55, by using the same linear program to show that the expected number of bad vertices

of out-degree in [55,1023] is less than 3/4.

Let us now change direction to a more general concept of majority choosability. A

digraph is 1
k -majority m-choosable if for any assignment of lists of m colors to the

vertices, there exists a 1
k -majority coloring where each vertex gets a color from its list. In

particular, a 1
k -majority m-choosable digraph is 1

k -majority m-colourable. Kreutzer, Oum,

Seymour, van der Zypen and Wood [59] asked whether there exists a finite number m such

that every digraph is 1
2 -majority m-choosable. Anholcer, Bosek and Grytczuk [6] showed

that the statement holds with m = 4. We generalize their result as follows.

Theorem 3.8. Every digraph is 1
k -majority 2k-choosable for all k ≥ 2.

Theorem 3.8 was independently proved by Fiachra Knox and Robert Šámal [57]. We

prove Theorem 3.8 using a slight modification of Lemma 3.3.

Lemma 3.9. Let A = (ai j) be an n×n real matrix where aii = 0 for all i, ai j ≥ 0 for all
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i 6= j, and ∑ j ai j ≤ 1 for all i. Then, for every m and subsets L1,L2, . . . ,Ln ⊂ N of size m,

there is a function f : {1,2, . . . ,n}→ N such that, for every i, f (i) ∈ Li and

∑ j∈ f−1(r) ai j ≤ 2
m where r = f (i).

Proof. By increasing some of the numbers ai j, if needed, we may assume that ∑ j ai j = 1

for all i. We may also assume, by an obvious continuity argument, that ai j > 0 for all

i 6= j. Thus, by the Perron–Frobenius Theorem, 1 is the largest eigenvalue of A with right

eigenvector (1,1, . . . ,1) and left eigenvector (u1,u2, . . . ,un) in which all entries are

positive. It follows that ∑i uiai j = u j. Define bi j = uiai j, then ∑i bi j = u j and

∑ j bi j = ui
(
∑ j ai j

)
= ui.

Let f : {1,2, . . . ,n}→ N be a function such that f (i) ∈ Li and f minimizes the sum

∑r∈N∑i, j∈ f−1(r) bi j. By minimality, the value of the sum will not decrease if we change

f (i) from r to l where l ∈ Li. Therefore, for any i ∈ f−1(r) and l ∈ Li, we have

∑
j∈ f−1(r)

(bi j +b ji)≤ ∑
j∈ f−1(l)

(bi j +b ji).

Summing over all l ∈ Li, we conclude that

m ∑
j∈ f−1(r)

(bi j +b ji)≤ ∑
j∈ f−1(Li)

(bi j +b ji)≤
n

∑
j=1

(bi j +b ji) = 2ui.

Hence, ∑ j∈ f−1(r) uiai j = ∑ j∈ f−1(r) bi j ≤ ∑ j∈ f−1(r)(bi j +b ji)≤ 2ui
m . Dividing by ui, the

desired result follows.

Proof of Theorem 3.8. The proof is the same as that of Theorem 3.2, using Lemma 3.9

instead of Lemma 3.3.

In fact, the same statement also holds when the size of the lists is odd.

Corollary 3.10. Every digraph is 2
m -majority m-choosable for all m≥ 2.
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This statement generalizes a result of Anholcer, Bosek and Grytczuk [6] where they

prove the case m = 3 which says that, given a digraph with color lists of size three

assigned to the vertices, there is a coloring from these lists such that each vertex has the

same color as at most two thirds of its out-neighbors.

We have established that the 1
k -majority choosability number is either 2k−1 or 2k.

Let us end this chapter with an analogue of Question 3.4.

Question 3.11. Is every digraph 1
k -majority (2k−1)-choosable?

3.2 Linear program

We use the toolkit [1] to solve the linear program with the following source code:

param N := 1024 ;

param comb ’ n choose k ’ {n in 0 . . N, k in 0 . . n} :=

i f k = 0 or k = n then 1 e l s e comb [ n−1,k−1] + comb [ n−1,k ] ;

param prob ’ p r o b a b i l i t y ’ {n in 0 . . N} :=

sum{k in ( f l o o r ( n / 2 ) + 1 ) . . n} comb [ n , k ] ∗ ( ( 1 / 3 ) ^ k ) ∗ ( ( 2 / 3 ) ^ ( n−k ) ) ;

var x { 1 . .N} , i n t e g e r , >= 0 ;

s u b j e c t to c o n s t r a i n t { i in 1 . . N} : sum{ j in 1 . . i } x [ j ] <= 2∗ i +1 ;

maximize e x p e c t a t i o n : sum{ i in 1 . . N} x [ i ]∗ prob [ i ] ;

s o l v e ;

end ;
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CHAPTER 4

LARGE INDUCED SUBGRAPHS WITH K VERTICES OF ALMOST MAXIMUM

DEGREE

In this chapter, we prove that for every integer k, there exist constants g1(k) and g2(k)

such that the following holds. If G is a graph on n vertices with maximum degree ∆ then it

contains an induced subgraph H on at least n−g1(k)
√

∆ vertices, such that H contains k

vertices of the same degree of order at least ∆(H)−g2(k). This solves an approximate

version of a conjecture of Caro and Yuster which states that g2(k) can be taken to be 0 for

every k. This work is joint with António Girão.

4.1 Introduction

Given a graph G, let the repetition number, denoted by rep(G), be the maximum

multiplicity of a vertex degree. Trivially, any graph G of order at least two contains at

least two vertices of the same degree, i.e. rep(G)≥ 2. This parameter has been widely

studied by several researchers (e.g., [7, 14, 21, 24, 23]), in particular, by Bollobás and

Scott, who showed that for every k ≥ 2 there exist triangle-free graphs on n vertices with

rep(G)≤ k for which α(G) = (1+o(1))n/k ([14]). As there are infinitely many graphs

having repetition number two, it is natural to ask what is the smallest number of vertices

one needs to delete from a graph in order to increase the repetition number of the

remaining induced subgraph. This question was partially answered by Caro, Shapira and

Yuster in [20], indeed, they proved that for every k there exists a constant C(k) such that

given any graph on n vertices one needs to remove at most C(k) vertices and thus obtain

an induced subgraph with at least min{k,n−C(k)} vertices of the same degree. Related to

this question, Caro and Yuster ([22]) considered the problem of finding the largest induced

subgraph H of a graph G which contains at least k vertices of degree ∆(H). To do so they

defined fk(G) to be the smallest number of vertices one needs to remove from a graph G
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such that the remaining induced subgraph has its maximum degree attained by at least k

vertices. They found examples of graphs on n vertices for which f2(G)≥ (1−o(1))
√

n

and conjectured fk(G)≤ O(
√

n) for every graph G on n vertices. In the same paper they

established the conjecture for k ≤ 3.

The following more general conjecture was posed recently by Caro, Lauri and Zarb

in [19].

Conjecture 4.1. For every k ≥ 2 there is a constant g(k) such that given a graph G with

maximum degree ∆, one can remove at most g(k)
√

∆ vertices such that the remaining

subgraph H ⊆ G has at least k vertices of degree ∆(H).

Let us define g(k,∆) = max{ fk(G) : ∆(G)≤ ∆}. In the same paper, they proved that

g(2,∆) = d3+
√

8∆+1
2 e and stated that g(3,∆)≤ 42

√
∆. We should point out that, if true, the

conjecture is best possible, as there are graphs on n vertices found in [19] for which any

induced subgraph on more than n− k
2

√
∆ does not contain k vertices of the same

maximum degree. We shall present such constructions in Section 4.3.

In this chapter we prove the following approximate version of Conjecture 4.1

Theorem 4.2. For every positive integer k, there exist constants g1(k) and g2(k) such that

the following holds. If G is a graph on n vertices with maximum degree ∆ then it contains

an induced subgraph H on at least n−g1(k)
√

∆ vertices, such that H has k vertices of the

same degree at least ∆(H)−g2(k).

4.2 Proofs

First, we shall introduce the following definitions. Let n be an integer and

A1∪A2∪ . . .∪At be a partition of the set {1,2, . . . ,n} into t sets. Moreover, let

r1 > r2 > r3 > .. . > rt be a strictly decreasing sequence of non-negative integers. We shall

say that a multiset A consisting of subsets of [n] is an (r1,r2, . . . ,rt)-uniform cover of
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{1,2 . . . ,n} if for every i ∈ {1, . . . , t} and j ∈ Ai, we have |{A ∈A : j ∈ A}|= ri. Note

that in a multiset we allow repetitions.

We call an (r1,r2, . . . ,rt)-uniform cover A of {1,2, . . . ,n}= A1∪A2∪ . . .∪At

irreducible if there is no proper (r′1, . . . ,r
′
t)-uniform cover B ⊂A , for some strictly

decreasing sequence of non-negative integers r′1 > r′2 > .. . > r′t .

Given a uniform cover A of {1,2, . . . ,n} and a subset B⊆ {1,2, . . . ,n} we define

wA (B) to be the number of times B appears in A .

Lemma 4.3. For all n ∈ N, there exists f (n) such that for any 1≤ t ≤ n and any partition

of {1,2, . . . ,n} into t sets A1,A2, . . . ,At , every (r1,r2, . . . ,rt)-uniform cover A of

{1,2, . . . ,n} contains a (r′1,r
′
2, . . . ,r

′
t)-uniform sub-cover B ⊂A with r′1 ≤ f (n).

Proof. We shall prove there are only finitely many irreducible covers. For otherwise, let

us assume there exists an infinite sequence {Bi}i∈N of irreducible uniform covers. Since

there are only finitely many partitions of {1,2, . . . ,n}, we may pass to an infinite

subsequence {Bli}i∈N of uniform covers of the same partition of {1,2, . . . ,n}. Now,

choose A⊆ {1,2, . . . ,n} and consider the sequence of non-negative integers {wBli
(A)}i∈N,

clearly it must contain an infinite non-decreasing subsequence wBli1
(A)≤ wBli2

(A)≤ . . ..

We restrict our attention to this subsequence of the uniform covers Bli1
,Bli2

, . . . and

iteratively apply the same argument for the remaining subsets of {1,2, . . . ,n}, always

passing to a subsequence of the previous sequence of uniform covers. After we have done

it for every subset of {1,2, . . . ,n}, we must end up with two distinct irreducible uniform

covers (actually an infinite sequence) A ,B for which wA (F)≤ wB(F) for every

F ⊆ {1,2, . . . ,n}. This implies A ⊆B, which is a contradiction. Take f (n) to be the

maximum r1 over all irreducible uniform covers of {1,2, . . . ,n}.

Lemma 4.4. For every n ∈ N, there exists f (n) such that the following holds. Let

G = (A,B) be a bipartite graph with A = {x1,x2, . . . ,xn}. Then there exists a subset

W ⊆V (B) of size at most n · f (n) = f ′(n), such that the induced bipartite graph
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G′ = G[A,(B\W )] has the property that

if dG(xi)> dG(x j) then dG(xi)−dG′(xi)> dG(x j)−dG′(x j).

Proof. Partition A into A1, . . . ,At , so that two vertices belong to the same part if they have

the same degree. Let ri be the degree of the vertices in Ai. We may assume that

r1 > r2 > · · ·> rt . The lemma follows as a corollary of Lemma 4.3. Indeed, for every

vertex w ∈ B, let Aw ⊆ {1,2, . . . ,n} such that i ∈ Aw if xi is a neighbor of w in G. Note that

A = {Aw : w ∈ B} is an (r1,r2, . . . ,rt)-uniform cover of {1,2, . . . ,n}. Applying now

Lemma 4.3, we can find a (r′1,r
′
2, . . . ,r

′
t)-uniform sub-cover B ⊆A with r′1 ≤ f (n). Let

W = {w ∈ B : Aw ∈B} and G′ = G[A,(B\W )]. It is easy to see that |W | ≤ n · f (n) and

that the property is satisfied by the definition of uniform cover.

Given a positive integer k and a graph G with the vertex set {x1, . . . ,xn} such that

d(x1)≥ ·· · ≥ d(xn), let rk(G) := ∆(G)−dG(xk) be the difference between the maximum

degree and the degree of vertex xk.

Theorem 4.5. For every positive integer k there exists h(k) such that the following holds.

If G is a graph on n vertices with maximum degree ∆ then it contains an induced subgraph

H on at least n− (h(k)+ k)
√

∆ vertices, such that rk(H)≤ h(k) · k.

Proof. The proof consists of two parts. Firstly, we shall show that we can remove at most

k
√

∆ vertices from G so that in the remaining graph H ′ we have rk(H ′)≤
√

∆. Then we

iteratively apply Lemma 4.4 (at most
√

∆ times) in order to obtain an induced subgraph H

of H ′ on at least n− (h(k)+ k)
√

∆ vertices such that rk(H)≤ h(k) ·k. We may take h(k) to

be f ′(k) from Lemma 4.4. We start with the first part of the proof.

Claim 4.6. There is an induced subgraph H ′ of G on at least n− k
√

∆ vertices such that

rk(H ′)≤
√

∆.

Proof of Claim 4.6. The idea of the proof is to keep removing some k vertices of highest
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possible degrees and observe that the maximum degree on the induced remaining graph

must have decreased considerably. Indeed, consider the following procedure. Let G0 = G

and suppose that G0 ⊃ ·· · ⊃ Gi have been defined. If Gi does not have the required

property then, let Gi+1 be obtained from Gi by removing some k vertices with largest

degrees in Gi. Notice that ∆(Gi+1)≤ ∆(Gi)−
√

∆ since, by assumption, there were at

most k vertices in Gi having degrees in the range [∆(Gi),∆(Gi)−
√

∆]. Also

|Gi+1|= |Gi|− k. Observe that the procedure will stop after at most
√

∆ steps, as

otherwise the obtained graph would have maximum degree 0. Since |Gi| ≥ n− i · k we

have that |H ′| ≥ n− k
√

∆.

We now proceed to the second part of the proof and iteratively apply Lemma 4.4. In

each step we remove at most h(k) vertices from H ′ while decreasing the value of rk and

we stop when rk is at most k ·h(k).

Let H0 = H ′ and suppose that H0, . . . ,Hi have already been defined. If

rk(Hi)≤ k ·h(k) then we are done, so we may assume that rk(Hi)> k ·h(k). Let

A = {x1, . . . ,xk} be a set of k vertices with the largest degrees in Hi and write B for Hi \A.

Without loss of generality we may assume that dHi(x1)≥ ·· · ≥ dHi(xk). Since

rk(Hi)> k ·h(k) there must exist l ∈ {2, . . . ,k} such that dHi(xl)> dHi(xl−1)+h(k). Now

consider the bipartite subgraph K = Hi[A,B]. By Lemma 4.4, with G = K and n = k, we

can remove a set W ⊂ B of at most f ′(k) = h(k) vertices from B, and obtain

K′ = Hi[A,(B\W )] such that

for any x,y ∈ A, if dK(x)< dK(y) then dK(x)−dK′(x)< dK(y)−dK′(y). (4.1)

Let Hi+1 = Hi \W (hence |Hi+1| ≥ |Hi|− |W | ≥ |Hi|−h(k)). The following claim asserts

that the above procedure will stop after at most
√

∆ steps.

Claim 4.7. rk(Hi+1)< rk(Hi).

Proof of Claim 4.7. Let z be a vertex with the maximum degree and w a vertex with the
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k’th largest degree in Hi+1. Observe that z = xt for some t ≥ l and dHi+1(w)≥ dHi+1(xs) for

some s < l. First, notice that dHi(xt)−dHi(xs)≤ dHi(x1)−dHi(xk) = rk(Hi). Hence,

rk(Hi+1) = dHi+1(z)−dHi+1(w)≤ dHi+1(xt)−dHi+1(xs)< dHi(xt)−dHi(xs)≤ rk(Hi), where

the strict inequality follows from (4.1) since dK(xt)> dK(xs).

As in each iteration the value of rk decreases, we must stop after at most

rk(H ′) =
√

∆ steps thus getting an induced subgraph H ⊂ H ′ with rk(H)≤ k ·h(k) and

|H| ≥ |H ′|−h(k)
√

∆≥ n− (h(k)+ k)
√

∆.

In order to prove Theorem 4.2 we need the following theorem of Caro, Shapira and

Yuster, appearing in [20], whose proof is inspired by the one used by Alon and Berman in

[4].

Theorem 4.8. For positive integers r,d,q, the following holds. Any sequence of

n≥ (dq/re+2)(2rd +1)d elements of [−r,r]d whose sum, denoted by z, is in [−q,q]d

contains a subsequence of length at most (dq/re+2)(2rd +1)d whose sum is z.

As usual, we write R(k) (see e.g. [13]) for the two colored Ramsey number, the least

integer n such that in any two coloring of the edges of the complete graph on n vertices,

there is a monochromatic Kk.

Proof of Theorem 4.2. Firstly, we apply Theorem 4.5 with k = R(k) to find a large

induced subgraph G′ ⊂ G of order at least n′ ≥ n− (h(R(k))+R(k))
√

∆ and with vertex

set {x1, . . . ,xn′} where d(x1)≥ d(x2)≥ ·· · ≥ d(xn′) and

d(x1)−d(xR(k))≤ h(R(k)) ·R(k) = M. Now we follow the proof of Theorem 1.1 in [20].

By the definition of R(k) we can find a set S of k vertices in
{

x1, . . . ,xR(k)
}

that

induces either a complete graph or an independent set.

Without loss of generality, assume that S = {vn′−k+1, . . . ,vn′} and

V (G)\S = {v1, . . . ,vn′−k}. Let e(vi,v j) be equal to 1 if there is an edge between vi and v j,

and 0 otherwise. We construct a sequence X of n′− k vectors w1, . . . ,wn′−k in [−1,1]k−1
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as follows. The coordinate j of wi is e(vn′−k+ j,vi)− e(vn′,vi) for i = 1, . . . ,n′− k and

j = 1, . . . ,k−1. It is clear that e(vn′−k+ j,vi)− e(vn′,vi) ∈ [−1,1] as required. Consider the

sum of all the j’th coordinates,

n′−k

∑
i=1

(
e(vn′−k+ j,vi)− e(vn′,vi)

)
=

n′−k

∑
i=1

e(vn′−k+ j,vi)−
n′−k

∑
i=1

e(vn′,vi)

= (d(vn′−k+ j)−a)− (d(vn′)−a)

= d(vn′−k+ j)−d(vn′)≤M,

where a = k−1 if G′[S] is complete, and a = 0 otherwise. Hence,

z =
n′−k

∑
i=1

wi ∈ [−M,M]k−1 .

By Theorem 4.8, with d = k−1 and q = M, there is a subsequence of X of size at

most (M+2)(2k−1)k−1 whose sum is z. Deleting the vertices of G′ corresponding to the

elements of this subsequence results in an induced subgraph H ⊂ G′ in which all the k

vertices of S have the same degree of order at least ∆(H)−
(
M+(M+2)(2k−1)k−1).

Choosing g1(k) = g2(k) = h(R(k))(4k)k we conclude the theorem.

4.3 Remarks

In the previous section, we proved that every graph contains a large induced subgraph

with at least k vertices having the same degree of order almost the maximum degree. Note

that Theorem 4.2 is sharp up to the size of the functions g1(k) and g2(k). Indeed, there are

graphs for which one needs to remove ”roughly” k
2

√
∆ vertices to force the remaining

subgraph to have k vertices with the same degree "near" the maximum degree. For any k

and ∆, let G∆ be the disjoint union of the stars K1,n1, . . . ,K1,nt , where ni = i ·
√

∆, for

i ∈
{

1, . . . , t =
√

∆

}
and let G∆

k to be the disjoint union of k/2 copies of G∆. It is easy to
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see that, for any constant D, one needs to remove at least k
2

√
∆− k

2D vertices from G∆
k in

order to obtain an induced graph H with k vertices of the same degree of order at least

∆(H)−D.

Whether removing C(k)
√

∆ vertices is enough to force the remaining induced

subgraph to have at least k vertices of exactly maximum degree remains an interesting

open question.
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CHAPTER 5

BOUNDS ON THE GRAPH BURNING NUMBER

In this chapter we prove a few results concerning the burning number, b(G), of a graph G

which is a graph parameter defined by Bonato, Janssen, and Roshanbin [16] which,

supposedly, measures the speed of the spread of contagion in a graph. We show that for

any connected graph G on n vertices, its burning number is bounded above by
⌈√

4
3n
⌉

.

This makes a progress towards a conjecture of Bonato, Janssen, and Roshanbin who

conjectured that any connected graph burns in at most
√

n rounds. Moreover, we prove

that if G is a disjoint union of k paths then b(G)≤
⌈√
|G|+(k−1)2

⌉
, which we later use

to show that b(S)≤ d
√

ne, for any spider graph S on n vertices. This work is joint with

Kazuhiro Nomoto, Julian Sahasrabudhe, and Richard Snyder.

5.1 Introduction

Graph burning is a deterministic process defined on a graph, which was introduced by

Bonato, Janssen, and Roshanbin [16], and which is supposed to model the expansion of a

fire in a graph. In each step, first the fire spreads from burning vertices to their neighbors

that are not already burning, then a new fire starts at some, not yet burning, vertex. The

burning number of a graph G, denoted by b(G), is the smallest possible number of steps

needed to burn the whole graph G. The process was inspired by other graph processes like

firefighting, graph cleaning, bootstrap percolation (see for example [38, 5, 8]).

For a vertex v ∈ G and a non-negative integer r, define, BG(v,r) to be the set of

vertices in G which are at distance at most r from v. For brevity we shall drop the

subscript and simply write B(v,r), when there is no risk of confusion.

It is easy to see that the problem of determining the burning number of a graph G is

equivalent to finding the smallest integer k such that one can cover the vertices of G with

some graphs H0, . . . ,Hk−1 such that Hi has radius i. Alternatively, we can define b(G) to be
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the smallest integer k such that there is a sequence of vertices x0, · · · ,xk−1 in G such that

V (G) = B(x0,0)∪B(x1,1)∪·· ·∪B(xk−1,k−1),

or, equivalently, for every y ∈ G there is i ∈ {0, · · · ,k−1} such that d(xi,y)≤ i.

In their original paper, Bonato, Janssen, and Roshanbin asked the following

conjecture, which attracted considerable attention.

Conjecture 5.1 (Bonato, Janssen, Roshanbin [16]). Let G be a connected graph on n

vertices. Then

b(G)≤
⌈√

n
⌉
.

If the conjecture is true then the result is best possible, as seen by considering a path

on n vertices. The conjecture remains open but, nevertheless, certain progress towards it

has been made. In the original paper [16] the authors proved that for any connected graph

G on n vertices we have b(G)≤ 2
√

n−1. This was later improved by Bessy, Bonato,

Janssen, Rautenbach, and Roshanbin [9] who showed that b(G)≤
√

32
19

n
1−ε

+
√

27
19ε

and

b(G)≤
√

12n
7 +3∼ 1.309

√
n, for every ε ∈ (0,1). Finally, Land and Lu [61] showed the

bound b(G)≤
⌈
−3+

√
24n+33
4

⌉
∼ 1.22

√
n. We make a further improvement and show the

following.

Theorem 5.2. Let G be a connected graph on n vertices. Then

b(G)≤

⌈√
4
3

n

⌉
∼ 1.15

√
n.

The burning number has been also studied for other classes of graphs. Mitsche,

Prałat, and Roshanbin [68] considered random binomial graphs, random geometric

graphs, and the Cartesian products of paths. Fitzpatrick and Wilm [39] studied the graph

burning numbers of circulant graphs. Sim, Tan, Wong [74] gave asymptotically tight

bounds for the class of generalized Petersen graphs. Bonato, and Lidbetter [17] proved the
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following two bounds on the burning number of (disjoint) union of paths.

Theorem 5.3 (Bonato, Lindbetter [17]). Let G be a union of k paths on n vertices in total.

Then b(G)≤
⌊ n

2k

⌋
+ k. Moreover, when k ≤ d

√
ne then b(G)≤

⌈√
n+ k−1

2

⌉
.

They also showed that spider graphs (trees with exactly one vertex of degree at least

3) burn in d
√

ne rounds. Here we obtain better than in Theorem 5.3 bounds on the burning

numbers of unions of paths.

Theorem 5.4. Let G be a union of k paths on n vertices in total. Then

b(G)≤
⌈√

n+(k−1)2
⌉
.

Observe that when k ≥ n+1
2 , then Theorem 5.4 implies that b(G)≤ k, which together

with the trivial lower bound b(G)≥ k, gives b(G) = k. Note also that the above theorem is

tight for every n and k ≤ n
2 as well, since it takes

⌈√
n+(k−1)2

⌉
steps to burn a union of

k−1 paths of order 2 and one path of order n−2k+2. Consequently, we give an

alternative proof of the fact that b(G)≤ d
√

ne when G is a spider graph.

Theorem 5.5. Let G be a spider on n vertices. Then

b(G)≤
⌈√

n
⌉
.

5.2 Tight bounds on burning numbers of spiders

A spider graph is a tree in which exactly one vertex has degree at least three and all the

other vertices have degrees at most two. We shall call the unique vertex of degree at least

3 the head of the spider. The paths obtained by removing the head from the spider graph

shall called the legs of the spider graph. The aim of this section is to prove Theorem 5.5

and Theorem 5.4. Theorem 5.4 is a corollary of the following lemma.
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Lemma 5.6. Suppose n = n1 + · · ·+nk where ni is a positive integer, for every i ∈ [k].

Then for any positive integer t such that t2 ≥ n+(k−1)2 there is a partition of integers

{0, · · · , t−1} into A1, · · · ,Ak such that, for every i ∈ [k]

∑
a∈Ai

(2a+1)≥ ni.

Let us first deduce Theorem 5.4 from Lemma 5.6.

Proof of Theorem 5.4. Let G be a union of k paths P1,P2, . . . ,Pk. Write ni for |Pi| and

|G|=: n = n1 +n2 + . . .nk. By Lemma 5.6, for t =
⌈√

n+(k−1)2
⌉

, there is a partition of

the integers {0, . . . , t−1} into sets A1, . . . ,Ak such that for every i ∈ {1, . . . ,k}, we have

∑a∈Ai(2a+1)≥ ni. It is easy to see that it is possible to cover the vertices of Pi using balls

of radii in Ai.

Proof of Lemma 5.6. Given a set S let f (S) = ∑s∈S(2s+1). Let A = {A1, · · · ,Ak} be a

partition of {0, · · · , t−1} minimizing the function

F(A ) =
k

∑
i=1

( f (Ai)−ni)
2 , (5.1)

subject to every element of the partition being non-empty, i.e., Ai 6= /0, for every i. We

shall show that this partition satisfies the conclusion of the lemma. Assume for the sake of

contradiction that the partition A does not satisfy the conclusion of the lemma, which

means that for some i we have f (Ai)−ni < 0.

For p ∈ {0, · · · , t−1} let A(p) = Ai and n(p) = ni, for i such that p ∈ Ai. Now, define

g(p) = f (A(p))−n(p). We claim that g(p) does not grow too fast as a function of p.

Claim 5.7. For any p ∈ {0, · · · , t−2}, g(p+1)≤ g(p)+2.

Proof. Suppose for contradiction that there is p ∈ {0, · · · , t−2} with g(p+1)≥ g(p)+3.

We shall construct another partition with a smaller square sum 5.1, contradicting the
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minimality of A . For brevity, let us write B = A(p) and C = A(p+1). Let

A ′ =
{

A′1, · · · ,A′k
}

where

A′i =


(Ai \{p})∪{p+1} , if Ai = B

(Ai \{p+1})∪{p} , if Ai =C

Ai, otherwise.

It is easy to check that F(A )−F(A ′) = 4(g(p+1)−g(p)−2)≥ 4(3−2) = 4 > 0.

Our second claim says that 0 belongs to a set Ai such that f (Ai)−ni ≤ 0, otherwise

we could remove 0 from Ai and put in a set A j, for some j such that f (A j)−n j < 0,

decreasing the square sum and obtaining a contradiction.

Claim 5.8. g(0)≤ 0.

Proof. Assume for contradiction that g(0)> 0. Suppose 0 ∈ Ai and let j be any integer

such that A j−n j < 0. Observe that since ni is a positive integer and f (Ai)> ni, and

0 ∈ Ai, it follows that |Ai| ≥ 2. We can therefore move 0 from Ai to A j which will result in

a smaller square sum 5.1. This contradicts the minimality of A .

Without loss of generality we can assume that f (Ai)−ni ≤ f (A j)−n j for i < j.

Note that f (A1)−n1 < 0. It follows from the above two claims that f (Ai)−ni ≤ 2i−3.

Therefore

t2 =
k

∑
i=1

f (Ai) = n+
k

∑
i=1

( f (Ai)−ni)≤ n+
k

∑
i=1

(2i−3) = n+(k−1)2−1,

contradicting the assumption that t2 ≥ n+(k−1)2.

Now we are ready to deduce Theorem 5.5 from Theorem 5.4.

Proof of Theorem 5.5. Let G be a spider with the head v, on n = k2 + ` vertices, where

1≤ `≤ 2k+1. We shall show, using induction on n, that G can be burned in at most k+1
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steps. The base case, when n≤ 4, is trivial as the star K1,3 is the only spider on fewer than

5 vertices, in which case G burns in two steps. Suppose that the theorem holds for every

integer n′ such that 4≤ n′ < n.

Observe that when G has a leg of length (where length of a leg is the number of

vertices on the leg, not counting the head of the spider) at least `, then we can cover `

vertices of the leg with a ball of radius k, obtaining a spider or a path on k2 vertices, which

by induction burns in at most k steps. Hence, in total, G burns in at most k+1 steps. We

can therefore assume that every leg of G has length at most `−1≤ 2k.

Let t be the number of legs of length at least k+1 in G. It follows from an easy

calculation that t ≤ k. We shall consider two cases, first when t < k and second when

t = k. Suppose first that t < k.

Consider the ball B = B(v,k) and let H = G\B. Let w be the total number of vertices

on legs of length at most k in G. Observe that any leg in G of length at most k, is

completely covered by the ball B. Therefore H is a union of t paths, with total number of

vertices n− tk−1−w≤ k2+2k− tk−w. On the other hand, by the assumption that every

leg has fewer than l ≤ 2k+1 vertices, we have that H has at most t(l−1− k)≤ tk

vertices. Therefore, combining these two bounds we obtain that

|H| ≤min
{

tk,k2 +2k− tk−w
}
.

Applying Theorem 5.4, we see that

b(H)≤
⌈√

min{tk,k2 +2k− tk−w}+(t−1)2
⌉
.

Therefore as long as fk(t) = min
{

tk,k2 +2k− tk−w
}
+(t−1)2 does not exceed k2 we

are done. Easy calculation shows that fk(1)≤ k ≤ k2, for k ≥ 2, and fk(2)≤ 2k+1≤ k2,
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for k ≥ 3. For 3≤ t ≤ k−1 and k ≥ 4 we have

fk(t)≤ gk(t) = k2 +2k− tk+(t−1)2 ≤ gk(3) = gk(k−1)

= k2− k+4≤ k2.

Therefore we can assume that t = k. When w≥ 1 then

fk(k)≤ 2k−w+(k−1)2 = k2 +1−w≤ k2.

We can hence assume that no leg has length smaller than k+1. We shall consider two

cases depending on the distribution of the lengths of the legs of G.

Case 1 - there is a leg of length exactly k+1. Place a ball of radius k at a vertex on

a leg of length exactly k+1, at distance 1 from the head of G. The remaining, uncovered,

graph H consists of k−1 paths with total number vertices at most

n− (k+1+1+(k−1)(k−1)) = n− k2 + k−3≤ (k+1)2− k2 + k−3≤ 3k−2. By

Theorem 5.4 we have b(H)≤
⌈√

3k−2+(k−2)2
⌉
=
⌈√

k2− k+2
⌉
≤ k (note that here

we need the assumption that k ≥ 2), hence we are done.

Case 2 - all legs have length k+2. Place a ball of radius k at any vertex at distance

exactly 2 from the head of the spider G. It is easy to see that the remaining graph consists

of k−1 paths of length exactly 4. We can cover one of the paths using balls of radius 0

and 1, and the remaining k−2 paths by the balls of radii 2, . . . ,k−1.

It is easy to check that there are no other cases.

5.3 General Bound on the Burning Numbers of Connected Graphs

In this section we prove Theorem 5.2, i.e., that any connected graph on n vertices can be

burned in
⌈√

4
3n
⌉

rounds. It is clear that it is enough to verify the bound for trees.

Let T be a tree of diameter d and let P = {x1, · · · ,xd+1} be a longest path in T . For
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each xi ∈ P let Ti be the tree rooted at xi consisting of xi and all the vertices which can be

reached from xi not using any other vertex of P. It is easy to see that for any i the height of

Ti is strictly less than i, as otherwise there would be a path in T strictly longer than P,

contradicting the maximality of P. We say that a ball B⊂V (T ) covers A nicely if A⊆ B

and T\A remains connected.

The following, rather technical lemma, is the heart of the proof.

Lemma 5.9. Fix a non-negative integer a. Let X = {r0, · · · ,rs} with a≤ ri < ri+1 <
d−1

2

be a set of non-negative integers. Assume that for every ri ∈ X there is no set of at least

2ri +1−a vertices which can be covered nicely with a ball of radius ri. Let

Bi = B(xri+1,ri) be the (closed) ball of radius ri centered at x1+ri and let ji be the smallest

non-negative integer such that Tji 6⊆ Bi. Then the following is true for any t ∈ {0, . . . ,s}.

1. rt +1 < jt ≤ 2rt +2−2t−a (and hence rt ≥ 2t +a),

2. ∑
jt
i=1 |Ti∩Bt | ≥ 2t +a+ jt .

Proof. We will use induction on t. The first inequality in the first part holds for any t

trivially because Ti has height strictly less than i, for any i, hence Ti ⊆ Bt , for every

i≤ rt +1. Let us consider the base case when t = 0. It is easy to show that

j0 ≤ 2r0 +1−a, as otherwise we obtain a contradiction by observing that B0 covers

nicely at least 2r0 +1−a vertices. To prove the second part, suppose j0 = r0 +1+b, for

some non-negative integer b. We have that Tj0 has height bigger than r0−b as otherwise

Tj0 would be covered by B0. Hence

j0

∑
i=1
|Ti∩B0| ≥ r0 +1+b+ r0−b = 2r0 +1≥ j0 +a.

Now suppose the statement of the lemma is true for some non-negative integer t < s.

We shall show it is true for t +1. Assume first that the first part does not hold, hence

jt+1 > 2rt+1 +2−2(t +1)−a = 2rt+1−2t−a≥ 2rt +2−2t−a≥ jt ,
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where the last inequality follows by the induction hypothesis. It means that Bt+1 covers Ti

nicely, for every i≤ 2rt+1−2t−a, hence the number of nicely covered vertices is at least

2rt+1−2t−a

∑
i=1

|Ti| ≥
jt

∑
i=1
|Ti|+2rt+1−2t−a− jt

≥
jt

∑
i=1
|Ti∩Bt |+1+2rt+1−2t−a− jt

≥ 2t +a+ jt +1+2rt+1−2t−a− jt

= 2rt+1 +1≥ 2rt+1 +1−a,

where the third inequality holds by induction and in the second inequality we used the fact

that Bt+1 covers Tjt completely, whereas Bt did not, hence there is at least one vertex in Tjt

uncovered by Bt but covered by Bt+1. We therefore obtain a contradiction to the

assumption that no Bt covers nicely more than 2rt−a vertices. Hence

jt+1 ≤ 2rt+1 +2−2(t +1)−a and the first part holds.

To prove the second part we shall consider two cases depending on jt+1.

It is easy to check then when jt+1 = jt then Bt+1 covers at least 2(rt+1− rt) more

vertices of Tjt than Bt . Therefore

|Tjt+1 ∩Bt+1| ≥ |Tjt+1 ∩Bt |+2(rt+1− rt)≥ |Tjt ∩Bt |+2.

Hence, again by the induction hypothesis,

jt+1

∑
i=1
|Ti∩Bt+1| ≥

jt

∑
i=1
|Ti∩Bt |+2≥ 2t +a+ jt +2

= 2(t +1)+a+ jt+1.

On the other hand, when jt < jt+1 then Tjt ∩Bt+1 = Tjt and hence

|Tjt ∩Bt+1| ≥ |Tjt ∩Bt |+1. Observe that

|Tjt+1∩Bt+1| ≥ 2rt+1+2− jt+1 ≥ 2rt+1+2−(2rt+1+2−2(t+1)−a) = 2(t+1)+a≥ 2,
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by the first part (which we already proved for t +1), and hence

jt+1

∑
i=1
|Ti∩Bt+1|=

jt

∑
i=1
|Ti∩Bt+1|+

jt+1−1

∑
i= jt+1

|Ti∩Bt+1|+ |Tjt+1 ∩Bt+1|

≥

(
jt

∑
i=1
|Ti∩Bt |+1

)
+( jt+1− jt−1)+2

≥ 2t +a+ jt +2+ jt+1− jt = 2(t +1)+a+ jt+1.

Which completes the proof.

We have an immediate corollary to that lemma which, roughly speaking, says that

given a tree and a “big” set of distinct non-negative integers there is a ball of radius in that

set which covers nicely “many” vertices of the tree.

Corollary 5.10. Let T be a tree and X = {r0, · · · ,rs} be a set of non-negative integers

with ri < ri+1. Then either

1. T can be covered by a ball of radius rs, or

2. For a = max{rs +1−2s,0} there is a ball B of radius r ∈ X which covers nicely at

least 2r+1−a vertices.

Proof. Suppose for contradiction that T cannot be covered by a ball of radius rs and for

a = max{rs +1−2s,0} there is no set of 2r+1−a vertices which can be covered nicely

by a ball of radius r ∈ X . It follows that rs <
diam(T )−1

2 , hence we can apply Lemma 5.9

and conclude that rt ≥ 2t +a, for every t ∈ {0, · · · ,s}. In particular

rs ≥ 2s+a≥ 2s+ rs +1−2s = rs +1, which is a contradiction.

Lemma 5.11. Fix M. Let T be any tree and X be a set of distinct non-negative integers

with maxX ≤M. Suppose T cannot be covered by balls with radii from X . Then, using

balls of radii in X , we can cover at least

∑
r∈X

(2r+1)−M2

4
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vertices of T .

Proof. We shall first show that in the case when the cardinality of X is not too large, i.e.,

when |X | ≤ M+1
2 , we can cover nicely at least

∑
r∈X

(2r+1)+ |X |2−|X |M

vertices of T . The proof will use induction on the cardinality of |X |. The base case |X |= 0

is trivial. Suppose the result holds for any set of non-negative integers X ′ with

maxX ′ ≤M and |X ′|< |X |. It follows from the assumption that |X | ≤ M+1
2 and

Corollary 5.10, that there is a ball B of radius r ∈ X which, for a≤M+1−2|X |, covers

nicely at least 2r+1−a≥ 2r+2|X |−M vertices of T . Let A be a set of 2r+2|X |−M

vertices which are covered nicely by B and let T ′ = T \A and X ′ = X\{r}. By the

induction hypothesis we can cover nicely ∑r′∈X ′(2r′+1)+ |X ′|2−|X ′|M vertices in T ′

using balls of radii from X ′. Hence in total we can cover at least

∑
r′∈X ′

(2r′+1)+ |X ′|2−|X ′|M+2r+2|X |−M

= ∑
r′∈X ′

(2r′+1)+ |X |2 +2r+1−|X |M

= ∑
r∈X

(2r+1)+ |X |2−|X |M

vertices of T with balls of radii in X . This finishes the claim. An instant corollary of that

claim is that when |X | ≤ M+1
2 then the conclusion of the lemma holds, as

|X |2−|X |M = |X |(|X |−M)≥−M2

4
.

Suppose now that |X | ≥ M+1
2 . Observe that in this case it follows from

Corollary 5.10 that there is a ball of radius r ∈ X which covers nicely at least 2r+1

vertices of T . Applying this observation iteratively we can conclude that there is a subset
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Y of X such that |X \Y | ≤ M+1
2 and we can cover nicely L′ ≥ ∑r∈Y (2r+1) vertices of T .

Let T ′ be the uncovered subtree of T (hence |T ′| ≤ T −L′) and X ′ = X \Y . Since

|X ′| ≤ M+1
2 we can use the claim made in the paragraph above to conclude that we can

cover nicely L′′ ≥ ∑r∈X ′(2r+1)+ |X ′|2 + |X ′|M vertices of T ′. In total we have covered at

least

L′+L′′ ≥ ∑
r∈Y

(2r+1)+ ∑
r∈X\Y

(2r+1)+ |X ′|2−|X ′|M

= ∑
r∈X

(2r+1)+ |X ′|2−|X ′|M

≥ ∑
r∈X

(2r+1)−M2

4
.

We can now easily deduce Theorem 5.2 from Lemma 5.11.

Proof of Theorem 5.2. Let X = {0, . . . ,m−1}, where m =

⌈√
4
3n
⌉

. Suppose for

contradiction that T cannot be burned in m rounds. Then, by Lemma 5.11, we can cover

∑
m−1
r=0 (2r+1)− (m−1)2

4 ≥ m2− m2

4 = 3
4m2 ≥ n vertices using the balls of radii at most m.

This gives a contradiction.
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CHAPTER 6

ON POSSIBLE NUMBERS OF COPIES OF A FIXED GRAPH

In this chapter we investigate the set Tn of possible number of triangles in a graph on n

vertices. The first main result says that every natural number less than(n
3

)
−
(√

2+o(1)
)

n3/2 belongs to Tn. On the other hand, we show that there is a number

m =
(n

3

)
−
(√

2+o(1)
)

n3/2 which is not a member of Tn. In addition, we prove that there

are two interlacing sequences(n
3

)
−
(√

2+o(1)
)

n3/2 = c1 ≤ d1 ≤ c2 ≤ d2 ≤ ·· · ≤ cs ≤ ds =
(n

3

)
with

|ct−dt |= n−2−
(s−t+1

2

)
such that (ct ,dt)∩Tn = /0 for all t. Moreover, we obtain a

generalization of these results for the set of possible number of copies of a connected

graph H in a graph on n vertices. This work is joint with Teeradej Kittipassorn.

6.1 Introduction

We ask the following natural question: given a graph H and a natural number n, what are

the possible values of m such that there exists a graph on n vertices with exactly m copies

of H? Surprisingly, very little is known about this problem.

A question of this flavor was first considered by Kittipassorn and Mészáros [56] who

studied the set Fn of possible number of frustrated triangles, i.e. triples of vertices

inducing an odd number of edges. They proved that about two thirds of the numbers in[
0,n3/2

]
do not appear in Fn and every even number between (1+o(1))n3/2 and(n

3

)
− (1+o(1))n3/2 is a member of Fn for sufficiently large and even n.

Much more attention has been given to the problem of maximizing or minimizing

the number of subgraphs of certain type in graphs of given number of vertices and edges.

For example, Rademacher proved that every graph with bn2/4c+1 edges contains at least

bn/2c triangles. Erdős [29] posed a conjecture, which was later proved by Lovasz and

Simonovits [64], that a graph of size bn2/4c+ k contains at least kbn/2c triangles if
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k < n/2. On the other hand, Alon [2] investigated the maximum number of subgraphs

isomorphic to some given graph where the maximum is taken over all graphs of certain

size. We refer interested readers to [42, 27, 62, 31, 28, 30, 70, 71] for similar results.

We consider a fixed connected graph H. For a graph G, we define kH(G) to be the

number of copies of H in G. The main object of interest of this chapter is

S(n)H = {kH(G) : |G|= n} ,

the set of possible number of copies of H in a graph on n vertices. Our first result says that

almost every number (in the appropriate range) is realizable as a number of copies of H in

some graph of order n.

Theorem 6.1. As n→ ∞, the following holds

[0,(1−o(1))kH(Kn)]⊂ S(n)H .

It is not unreasonable to expect that o(1) above could be replaced by 0. As it

happens, this is not the case. Before we state the second result, let us introduce some

notations which play a major role in the rest of the chapter. For a graph G = (V,E) of

order n, let fH(G) be the number of subgraphs H of K(V ) isomorphic to F such that

E(H)∩E 6= /0, where K(V ) denotes the complete graph on the vertex set V . For instance,

fK3(G) is the number of triples of vertices in G inducing at least one edge. Observe that

kH(G) = kH(Kn)− fH(G), and therefore we shall work instead with the complement of G

which is easier to draw when G is dense. We shall write a(n)H (t) = fH(S
(n)
t ) and

b(n)H (t) = fH(M
(n)
t ) where S(n)t is a graph on n vertices with t edges forming a star with

t ≤ n−1 and M(n)
t is a graph on n vertices with t edges forming a matching with

t ≤ bn/2c. We prove the existence of some forbidden intervals in S(n)H .
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Theorem 6.2. For all sufficiently large n and all t ≥ 0, we have

∣∣∣(kH(Kn)−a(n)H (t +1),kH(Kn)−b(n)H (t)
)
∩S(n)H

∣∣∣= o(nh−2).

We shall see in Section 6.4 that when t < c
√

n, where c is some nonnegative

constant depending only on H, then a(n)H (t +1)−b(n)H (t) is of order nh−2.

In the case when H is a triangle, we prove a sharp analog of Theorems 6.1 and 6.2.

Theorem 6.3. The following hold.

(i)
[
0,
(n

3

)
− (
√

2+o(1))n3/2
]
⊂ S(n)K3

as n→ ∞.

(ii)
((n

3

)
−a(n)K3

(t +1),
(n

3

)
−b(n)K3

(t)
)
∩S(n)K3

= /0 for all n, t ≥ 0.

We shall remark that a(n)K3
(t) = t(n−2)−

(t
2

)
and b(n)K3

(t) = t(n−2), and so it is easy

to check that the interval in the second part of the theorem is not empty as long as

t .
√

2n, whence there exists a number m =
(n

3

)
−
(√

2+o(1)
)

n3/2 which is not a

member of Tn. Therefore the first part of Theorem 6.3 is sharp.

The rest of this chapter is organized as follows. In Section 6.2, we prove some

preliminary lemmas. In Section 6.3, we prove the sharp results, Theorem 6.3 for triangles.

The proofs of Theorems 6.1 and 6.2 are presented in Section 6.4. We conclude the chapter

in Section 6.5 with some open problems.

6.2 Complete graphs

In this section we shall consider the case when H = Kr is a complete graph and prove

some basic lemmas which we shall later use to prove some of our main theorems.

Let Pn,r be the set of possible number of copies of Kr in an r-partite graph on n

vertices. Clearly Pn,r ⊆ S(n)Kr
.

We shall start by showing that the first
(⌊

n−r2

r

⌋)r
natural numbers are realizable, i.e.

for every k ≤
(⌊

n−r2

r

⌋)r
there exists an r-partite graph on n vertices with exactly k copies
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of Kr.

Lemma 6.4. For natural numbers n≥ r ≥ 2 and any non-negative integer k ≤
(⌊

n−r2

r

⌋)r

there is an r-partite graph with k copies of Kr.

Proof. We shall use induction on r. The base case r = 2 is trivial. Suppose the assertion

holds for some r ≥ 2. Let G = (V1tV2tV3,E) where |V1|= d r
r+1(n− r)e,

|V2|= b 1
r+1(n− r)c, every vertex in V1 is joint to every vertex in V2, and V3 induces Kr. By

the induction hypothesis we can replace V1 by an r-partite graph having k copies of Kr,

therefore obtaining an (r+1)-partite graph having
⌊ 1

r+1(n− r)
⌋

k copies of Kr+1, for any

k≤
(

r(n−r)
r+1 −r2

r

)r

=
(n−r

r+1 − r
)r. Therefore, we get an increasing sequence in Pn,r+1 starting

with 0 and ending with⌊n−r
r+1

⌋(⌊n−r
r+1 − r

⌋)r ≥
(⌊n−r

r+1 − r
⌋)r+1

=
(⌊

n−r(r+2)
r+1

⌋)r+1
≥
(⌊

n−(r+1)2

r+1

⌋)r+1
such that

the difference between consecutive terms is equal to |V2|. To obtain the missing numbers

between consecutive terms, notice that it is enough to join needed number of vertices in V2

to every vertex in V3. Clearly all graphs in the sequence are (r+1)-partite.

We shall fix n,r ≥ 2 and for brevity write f (G) = fKr(G), at = a(n)Kr
(t), bt = b(n)Kr

.

Recall that the number of copies of Kr in G is equal to
(n

r

)
− f (G) where f (G) is the

number of r-sets of vertices in G which induce at least one edge. Therefore, we shall later

work instead with the complement of G which is easier to deal with when G is dense.

Observe that at = ∑
t
i=1
(n−1−i

r−2

)
and hence at+1−at =

(n−1−(t+1)
r−2

)
.

Lemma 6.5. For a graph G on n vertices and e≤ n−1
2 edges, f (G) ∈ [ae,be].

Proof. We shall show this by induction on the number of edges e. In the base case when

e≤ 1, there is nothing to show. For e > 1, assume that f (G′) ∈ [ae−1,be−1] for any graph

G′ on n vertices and e−1 edges.

First we shall show that f (G)≤ be. Take an edge xy ∈ G such that d(y)> 1 and an

isolated vertex w ∈ G. Let G′ be a graph obtained by removing xy from G and replacing it
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by xw. Notice that f (G′)≥ f (G), hence repeating this process for any nonindependent

edge, we eventually obtain a matching, without decreasing the value of f .

To show that f (G)≥ ae, pick an edge xy ∈ G and let G′ be a graph obtained by

removing xy from G. We shall show that f (G)− f (G′)≥
(n−1−e

r−2

)
= ae−ae−1 which will

complete the proof, as then f (G)≥ f (G′)+ae−ae−1 ≥ ae, by the induction hypothesis

applied to G′. Let A =V (G)\(NG(x)∪NG(y)) (observe that x,y 6= A). Write M for a

largest independent set contained in A and eA for the number of edges induced by A. It is

easy to show that |M| ≥ |A|− eA. Therefore

f (G)− f (G′)≥
( |M|

r−2

)
≥
(n−|N(x)∪N(y)|−eA

r−2

)
≥
(n−e−1

r−2

)
.

We remark that Lemma 6.5 does not imply that f (G) /∈ (bt ,at+1). However, the

result follow immediately from the monotonicity of f .

Lemma 6.6. For any graph G on n vertices and any t ≥ 0, f (G) /∈ (bt ,at+1).

Proof. We shall write tmax = max{t : bt−1 +1 < at} for the last t where there is a gap

between the intervals [at−1,bt−1] and [at ,bt ]. It is enough to show that f (G) ∈ [at ,bt ] for

some t ≤ tmax or f (G)≥ atmax . By Lemma 6.5, we are done if e(G)≤ tmax. So we can

assume that e(G)> tmax. Let G′ be a graph obtained from G by deleting some edges until

there are exactly tmax edges left. By monotonicity of f , we have f (G)> f (G′)≥ atmax by

Lemma 6.5.

We remark that tmax = Θ(
√

n).

6.3 Triangle

We shall now consider the case when H = K3, i.e. when H is a triangle. For brevity, let us

write Tn = S(n)K3
, f (G) = fK3(G), at = a(n)K3

(t) and bt = b(n)K3
(t).

In order to improve Lemma 6.4 to Theorem 6.3(i), let us change the direction to

Theorem 6.3(ii) and look for nonmembers of Tn. Recall that the number of triangles in G

is equal to
(n

3

)
− f (G) where f (G) is the number of triples of vertices in G which induce
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at least one edge. Therefore, we shall work instead with the complement of G which is

easier to deal with when G is dense. Notice that we have a simple formula

f (G) = e(G)(n−2)−nc +nt where nc is the number of cherries (i.e. paths with two

edges, P2) and nt is the number of triangles in G. This comes from the fact that each edge

is contained in exactly n−2 triples, but we double count the triples which contain more

than one edge. Using this formula it is easy to see that at = t(n−2)−
(t

2

)
and

bt = t(n−2).

We have shown in Lemma 6.6 that f (G) 6∈ (bt ,at+1) for all t ≥ 0. On the other hand,

we shall prove that any number bigger than
(√

2+o(1)
)

n3/2 is realizable.

Lemma 6.7. For any sufficiently large n, if m ∈
[(√

2+o(1)
)

n3/2,(1−o(1))
(n

3

)]
then

there is a graph G on n vertices such that f (G) = m.

Proof. Given natural number n and an integer m ∈
[(√

2+o(1)
)

n3/2,(1−o(1))
(n

3

)]
we

shall construct graph G on n vertices such that f (G) = m. Let us partition G into four

parts, so V (G) =V1tV2tV3tV4 where

• G[V1] is empty of order n′ = n−2
√

2n−4(8n)1/4 ,

• G[V2],G[V3],G[V4] are matchings of sizes
√

2n, (8n)1/4, (8n)1/4 respectively,

• there are no edges between the classes, i.e. E(Vi,Vj) = /0, for i 6= j.

We shall consider a sequence of graphs obtained by adding edges one by one to

G[V1], i.e. G0 = G and Gi[V1] = Gi−1[V1]∪ e for some edge e /∈ Gi−1[V1], for any

0 < i≤
(n′

2

)
. Observe that for sufficiently large n we have

f (G0) = (n−2)
(√

2n−2(8n)1/4
)
=
(√

2+o(1)
)

n3/2 and f (G
(n′

2)
) = (1+o(1))

(n
3

)
.

Therefore, in order to prove the lemma, it suffices to show that any number in the interval

( f (Gi−1), f (Gi)) is realizable. We shall achieve that by moving edges within each of

Gi[V2],Gi[V3],Gi[V4], but not across them. As an edge is contained in n−2 triples, it

follows easily that f (Gi)− f (Gi−1)≤ n−2.
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Let us fix i≥ 1. By construction, V (Gi) =V1tV2tV3tV4. Let{
x1y1, · · ·x√2ny√2n

}
be the matching inside V2. We shall construct another sequence

Gi,1,Gi,2, · · · ,Gi,
√

2n where Gi,k+1 is obtained from Gi,k by deleting edge xk+1yk+1 and

adding edge x1yk+1 (see Figure 1). Notice that

x1

y1

x2

y2

x3

y3

xt

yt

x1

y1

x2

y2

x3

y3
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yt
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y2

x3

y3

xt
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Figure 1: Star accumulation of V2 and V3.

f (Gi,
√

2n) = f (Gi)−
(√2n

2

)
= f (Gi)−

√
2n(
√

2n−1)
2 = f (Gi)−n+

√
2n/2 and

f (Gi,k)− f (Gi,k+1) = k. Hence we obtain a refinement of the sequence with the gaps

between consecutive terms bounded by
√

2n.

Let us fix i≥ 1 and j ≥ 2. Let
{

x1y1, · · ·x(8n)1/4y(8n)1/4

}
be the matching inside V3.

We shall construct another sequence Gi, j,1,Gi, j,2, · · · ,Gi, j,(8n)1/4 where Gi, j,k+1 is obtained

from Gi, j,k by deleting edge xk+1yk+1 and adding edge x1yk+1. Notice that

f (Gi, j,(8n)1/4) = f (Gi, j)−
((8n)1/4

2

)
= f (Gi)−

(8n)1/4((8n)1/4−1)
2 =

√
2n− (8n)1/4/2 and

f (Gi, j,k)− f (Gi, j,k+1) = k. Hence we obtain a refinement of the sequence with the gaps

between consecutive terms bounded by (8n)1/4.

Finally, let us fix i, j,k. Let
{

x1y1, · · ·x(8n)1/4y(8n)1/4

}
be the matching inside V4. We

shall construct another sequence Gi, j,k,1,Gi, j,k,2, · · · ,Gi, j,k,(8n)1/4 where Gi, j,k,l+1 is

obtained from Gi, j,k,l by deleting edge xk+1yk+1 and adding edge ykyk+1 (see Figure 2).
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Figure 2: Path accumulation of V4.
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Notice that f (Gi, j,k,(8n)1/4) = f (Gi, j,k)− (8n)1/4 and f (Gi, j,k,l)− f (Gi, j,k,l+1) = 1.

Hence we obtain a refinement of the sequence with no gaps.

We are now ready to deduce Theorem 6.3 from Lemmas 6.4, 6.6 and 6.7.

Proof of Theorem 6.3. (i) Recall that the number of triangles in G is equal to
(n

3

)
− f (G).

Therefore, Lemma 6.7 implies that
[
o(
(n

3

)
),
(n

3

)
− (
√

2+o(1))n3/2
]
⊂ Tn. Together with

Lemma 6.4 which, for r = 3, says that
[
0,
(n−9

3

)3
]
⊂ Tn, we conclude that[

0,
(n

3

)
−
(√

2−o(1)
)

n3/2
]
⊆ Tn for sufficiently large n.

(ii) Since the number of triangles in G is equal to
(n

3

)
− f (G), we obtain, using

Lemma 6.6, that
((n

3

)
−at+1,

(n
3

)
−bt

)
∩Tn = /0 for all n, t ≥ 0.

6.4 General H

Now, let us consider the case when H is an arbitrary connected graph on h≥ 3 vertices.

We shall start by showing that when n goes to infinity then the first (1−o(1))kH(Kn)

numbers are realizable.

Our strategy will be to recursively partition the vertex set into two subsets and

modify the edges between vertices in each of the classes, but without adding diagonal

edges. Let gH = g(n)H be the maximum number of new copies of H obtained by adding an

edge to a graph, over all graphs on n vertices. We claim that there is a constant cH > 0

such that gH ≤ cHnh−2. Indeed, a new copy must contain both the endvertices of the

newly added edge, and there are
(n−2

h−2

)
h-sets of vertices in G containing two fixed

vertices, and each h-set may contain at most c′H copies of H, for some c′H independent of

n, therefore gH ≤ c′H
(n−2

h−2

)
≤ cHnh−2.

The next two lemmas are needed in our construction.

Lemma 6.8. If [0,cnα ]⊂ S(n)H for all sufficiently large n, where α ≤ h−2, then for all
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sufficiently large n and some new constant c1 > 0,

[
0,c1nαh/(h−2)

]
⊂ S(n)H .

Proof. Consider an empty graph G with vertex set V =V1tV2, where

n1 = |V1|= c′nα/(h−2) and n2 = |V2|= n−|V1|, where c′ > 0 will be chosen later. Let

G0 = G and let Gi+1 be a graph obtained by adding an edge between vertices of V1 in Gi,

then

kH(Gi+1)− kH(Gi)≤ gH(n1)≤ cHnh−2
1 = cHc′h−2nα .

Therefore we obtain an increasing sequence in S(n)H starting with 0 and ending with

kH(G(n1
2 )
) such that the differences between consecutive terms are at most cHc′h−2nα . We

shall modify Gi[V2] to obtain the missing numbers between consecutive terms. By the

hypothesis, we can modify Gi[V2], to obtain G′i[V2] containing any number k of copies of

H, where k ∈
[
0,cnα

2
]
. Hence it suffices to find c′ > 0 such that cHc′h−2nα < cnα

2 . Let us

consider two cases depending on α .

1. if α = h−2 then cnα
2 = c(n− c′n)α = c(1− c′)αnα , therefore it suffices to choose

c′ > 0 such that cHc′h−2 < c(1− c′). Hence we have g(n1)
H < cnα

2 .

2. if α < h−2 then cnα
2 = c(n−o(n))α ∼ cnα , hence if we choose c′ > 0 such that

c′ < (c/cH)
1/(h−2), then for sufficiently large n we will have g(n1)

H < cnα
2 .

Therefore, any number less than kH(G(n1
2 )
) = kH(Kn1)> c′′nh

1 > c1nh is realizable.

From the next lemma we learn that for sufficiently large n we can construct a graph

on n vertices with k of copies of H for any k ≤ (1−o(1))kH(Kn)

Lemma 6.9. If [0,cnα ]⊂ S(n)H for sufficiently large n where α > h−2 then for sufficiently

large n,

[0,(1−o(1))kH(Kn)]⊂ S(n)H .
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Proof. We shall proceed similarly as in Lemma 6.8. Choose β ∈ ((h−2)/α,1)) and let

n2 = |V2|= nβ and n1 = |V1|= n−|V2|. Notice that g(n1)
H = O(nh−2) and by the hypothesis

we can modify G[V2] to obtain any number of copies of H up to nα
2 , where nα

2 = ω(nh−2).

Therefore any number in the interval [0,kH(n1)] is realizable. But n1 = (1−o(1))n,

whence kH(n1) = (1−o(1))kH .

We shall use Lemmas 6.8 and 6.9 to prove one of the two main theorems of this

section.

Proof of Theorem 6.1. We start by showing that trivially [0,bn/hc]⊂ S(n)H . To achieve that

notice that for any k ≤ bn/hc we can simply construct a graph on n vertices consisting of k

disjoint copies of H.

Let kmax be the largest integer k such that ( h
h−2)

k ≤ h (note that

( h
h−2)

kmax ∈ (h−2,h]). We claim that
[
0,ckn(h/(h−2))k

]
⊂ S(n)H for every positive integer

k ≤ kmax. We shall show the claim by induction on k. For k = 0, we already showed that

[0,c0n]⊂ S(n)H . Suppose, that
[
0,ckn(h/(h−2))k

]
∈ S(n)H and k < kmax. Observe first that

(h/(h−2))k ≤ h−2, as otherwise (h/(h−2))kmax would be greater than h, hence we can

apply Lemma 6.8 and conclude that [0,ck+1n(h/(h−2))k+1
] ∈ S(n)H for large enough n. Note

that we apply Lemma 6.8 only finitely many times hence n remains finite.

Therefore for n large enough we have [0,cnα ]⊂ S(n)H with α = ( h
h−2)

kmax ∈ (h,h−2],

hence we can apply Lemma 6.9 and conclude that for n sufficiently large

[0,(1−o(1))kH ]⊂ S(n)H .

Let us recall few major notations. For a graph G = (V,E) of order n, let fH(G) be

the number of subgraphs H of K(V ) isomorphic to F such that E(H)∩E 6= /0, where K(V )

denotes the complete graph on the vertex set V . Then the number of copies of H in G is

equal to kH(Kn)− fH(G).

In the next lemma we shall describe the formula for fH .
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Lemma 6.10. For any graph H on h vertices and G on n vertices, we have

fH(G) = cHe(G)

(
n−2
h−2

)
−

e(H)

∑
k=2

∑
e(F)=k
δ (F)>0

(−1)k+1cH(F)kF(G)

(
n−|V (F)|

h−|F |

)
.

Proof. Let E(G) = {e1, · · · ,em}, where m = e(G). We define Ai = {F : ei ∈ E(F),F ∼= H}

to be the set of subgraphs of the complete graph isomorphic to H containing the edge ei.

Notice that fH(G) = |
⋃m

i=1 Ai|, therefore by the inclusion-exclusion principle we can write

fH(G) =
e(G)

∑
k=1

∑
i1<...<ik

(−1)k+1 |Ai1 ∩ . . .∩Aik | .

For a graph F on at most h vertices, let cH(F) be the number of copies of H in the

complete graph Kh containing all the edges of a fixed subgraph of the complete graph Kh,

isomorphic to F . Let F = G[ei1 , . . . ,eik ] be the graph induced by the edges ei1, · · · ,eik .

Observe that |Ai1 ∩·· ·∩Aik |= cH(F)
(n−|F |

h−|F |
)
, therefore

fH(G) =
e(G)

∑
k=1

∑
i1<...<ik

(−1)k+1 |Ai1 ∩ . . .∩Aik |

=
e(G)

∑
k=1

∑
F⊆H

e(F)=k
δ (F)>0

(−1)k+1kF(G)cH(F)

(
n−|F |
h−|F |

)

=
e(H)

∑
k=1

∑
F⊆H

e(F)=k
δ (F)>0

(−1)k+1kF(G)cH(F)

(
n−|F |
h−|F |

)

= cHe(G)

(
n−2
h−2

)
−

e(H)

∑
k=2

∑
e(F)=k
δF>0

(−1)k+1cH(F)kF(G)

(
n−|F |
h−|F |

)
.

The following easy lemma gives us an upper bound for kF(G).
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Lemma 6.11. If H is a graph on h vertices with no isolated vertices then for every graph

G on e edges the number of copies of H in G is at most eh−1.

Proof. We shall proceed by induction. The base case h = 2 is trivial. Assume then that

h > 2 and let us consider two cases. If H is a matching on h = 2l vertices then the result

follows easily - the number of copies of H in G is at most
(e

l

)
≤ el ≤ e2l−1 = eh−1. In the

other case, when H is not a matching, there exists a vertex v ∈ H such that H ′ = H− v has

no isolated vertices. By the induction hypothesis there are at most eh′−1 copies of H ′ in G,

where h′ = |H ′|= h−1. Each copy of H ′ in G can be extended to at most e copies of H in

G, since by assumption v must be adjacent to some vertex of H ′. Therefore there are at

most eh′ = eh−1 copies of H in G.

Lemma 6.12. We have

fH(G) = cHe(G)

(
n−2
h−2

)
− cH(P2)kP2(G)

(
n−3
h−3

)
+ cH(K3)kK3(G)

(
n−3
h−3

)
+o(nh−2).

Proof. Let us consider the term cH(F)kF(G)
(n−|F |

h−|F |
)

where F is a graph on at least four

vertices. It follows from Lemma 6.11 that kF(G)≤ e|F |−1 and therefore

kF(G)
(n−|F |

h−|F |
)
≤ e|F |−1nh−|F |. Hence, under the assumption that e = O(n1/2), we have

kF(G)
(n−|F |

h−|F |
)
= O

(
n1/2|F |−1/2nh−|F |

)
= O

(
nh−1/2−1/2|F |

)
= O

(
nh−5/2

)
= o(nh−2). As

there are only three graphs on fewer than four vertices with no isolated vertices, namely

K2,K3 and P2, and the number of terms in the summation in f (G) depends only on H, we

can write

fH(G) = cHe(G)

(
n−2
h−2

)
− cH(P2)kP2(G)

(
n−3
h−3

)
+ cH(K3)kK3(G)

(
n−3
h−3

)
+o(nh−2).

The next lemma, which we shall later use to prove that there are gaps in S(n)H , tells us

that for sufficiently large n, stars and matchings are asymptotically extremal examples of
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graphs for fH(G), i.e. for a graph G on t edges we have

a(n)H (t)−o(nh−2)= fH(S
(n)
t )−o(nh−2)≤ fH(G)≤ fH(M

(n)
t )+o(nh−2)= b(n)H (t)+o(nh−2).

Lemma 6.13. Let G be a graph on n vertices with e = O(n1/2) edges. Then the following

hold.

1. fH(G)≥ a(n)H (e)−o(nh−2) = cHe
(n−2

h−2

)
− cH(P2)

(e
2

)(n−3
h−3

)
+o(nh−2); and

2. fH(G)≤ b(n)H (e)+o(nh−2) = cHe
(n−2

h−2

)
+o(nh−2),

as n goes to infinity.

Proof. This an immediate corollary of Lemma 6.12. Observe that that kK3(S
(n)
e ) = 0, as

stars contain no triangles, and kP2(S
(n)
e ) =

(e
2

)
. Therefore, by Lemma 6.12

a(n)H (e) = cHe ·
(

n−2
h−2

)
− cH(P2)

(
e
2

)(
n−3
h−3

)
+o(nh−2).

On the other hand, matchings contain no copies of K3 nor P2, hence, again, by

Lemma 6.12

b(n)H (e) = cHe ·
(

n−2
h−2

)
+o(nh−2).

Now, since for any graph G on e edges we have kP2(G)≤
(e

2

)
it follows from the

above estimate on a(n)H (e) and from Lemma 6.12 that

fH(G)≥ cHe ·
(

n−2
h−2

)
− cH(P2)

(
e
2

)(
n−3
h−3

)
+o(nh−2)≥ a(n)H (e)−o(nh−2).

On the other hand, it follows from easy to see fact that for any graph G we have

cH(P2)kP2(G)≥ cH(K3)kK3(G) and Lemma 6.12 that

fH(G)≤ cHe ·
(

n−2
h−2

)
+o(nh−2)≤ b(n)H (e)+o(nh−2).
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We can now prove the second main theorem of the section.

Proof of Theorem 6.2. Let tmax = max
{

t : b(n)H (t)< a(n)H (t +1)
}

. We shall first show that

tmax = Θ(
√

n). Indeed, we have

a(n)H (t +1)−b(n)H (t) = cH

(
n−2
h−2

)
− cH(P2)

(
t +1

2

)(
n−3
h−3

)
+o(nh−2)

= c1nh−2− c2t2nh−3 +o(nh−2),

for some constants c1,c2 > 0 depending depending only on H. It follows that there is a

constant C depending only on H, such that for all sufficiently large n we have

a(n)H (t +1)−b(n)H (t)≥ 0 if t ≥C
√

n and a(n)H (t +1)−b(n)H (t)≤ 0 otherwise. From

Lemma 6.13 we know that for all sufficiently large n we have

fH(G) ∈
[
a(n)H (t)−o(nh−2),b(n)H (t)+o(nh−2)

]
.

Therefore, for any t < tmax, the number of integers m in the interval
(

b(n)H (t),a(n)H (t +1)
)

such that there is a graph G on n vertices with fH(G) = m is at most o(nh−2). Whence∣∣∣(kH(Kn)−at+1,kH(Kn)−bt)∩S(n)H

∣∣∣= o(nh−2), for every t. Notice that when t < tmax
2 , the

gap between at+1 and bt is of the order nh−2, hence

∣∣∣(kH(Kn)−at+1,kH(Kn)−bt)∩S(n)H

∣∣∣
at+1−bt

= o(1),

as n goes to infinity.

6.5 Open problems

We conclude this chapter with some open problems that we feel would merit further study.

Let φ
(n)
H = min

{
m≥ 0 : m 6∈ S(n)H

}
be the smallest nonmember of S(n)H . In this chapter we
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have proved that φ
(n)
K3

=
(n

3

)
−
(√

2+o(1)
)

n3/2. We would like to remark that we were

also able to prove the following two results, whose proofs we omit, as they are very

similar to the proof of Theorem 6.3.

• φ
(n)
P2

= 3
(n

3

)
− (4+o(1))n3/2,

•
(n

4

)
− (c+o(1))n8/3 ≤ φ

(n)
K4
≤
(n

4

)
−
(1

2 +o(1)
)

n5/2.

The ultimate goal is to determine S(n)H , in particular we ask the following question.

Problem 6.14. What is the asymptotic behavior of
(n

r

)
−φ

(n)
Kr

?
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[66] , On path-pairability in the cartesian product of graphs, Discussiones

Mathematicae Graph Theory 36 (2016), pp. 743–758.

[67] M. MIDDENDORF AND F. PFEIFFER, On the complexity of the disjoint paths

problem, Combinatorica, 13 (1993), pp. 97–107.

[68] D. MITSCHE, P. PRAŁAT, AND E. ROSHANBIN, Burning graphs: A probabilistic

perspective, Graphs and Combinatorics, 33 (2017), pp. 449–471.

[69] N. MORRISON, J. A. NOEL, AND A. SCOTT, Saturation in the hypercube and

bootstrap percolation, Combin. Probab. Comput., 26 (2017), pp. 78–98.

[70] V. NIKIFOROV, The number of cliques in graphs of given order and size,

Transactions of the American Mathematical Society, 363 (2011), pp. 1599–1618.

[71] E. NORDHAUS AND B. STEWART, Triangles in ordinary graphs, Canadian Journal

of Mathematics, (1963), pp. 33–41.

[72] B. ROBERTS, Partite saturation problems, Journal of Graph Theory, 85 (2017),

pp. 429–445.

[73] N. ROBERTSON AND P. SEYMOUR, Graph minors. XIII. The disjoint paths problem,

Journal of Combinatorial Theory, Series B, 63 (1995), pp. 65 – 110.

[74] K. A. SIM, T. S. TAN, AND K. B. WONG, On the burning number of generalized

petersen graphs, Bulletin of the Malaysian Mathematical Sciences Society, (2017).

109



[75] E. SULLIVAN AND P. S. WENGER, Saturation numbers in tripartite graphs, Journal

of Graph Theory, 84 (2017), pp. 428–442.

[76] R. THOMAS AND P. WOLLAN, An improved linear edge bound for graph linkages,

European Journal of Combinatorics, 26 (2005), pp. 309 – 324. Topological Graph

Theory and Graph Minors, second issue.

[77] J. VYGEN, Disjoint paths, Report No. 94816-OR, Research Institute for Discrete

Mathematics, University of Bonn, (1994).

[78] W. WESSEL, über eine Klasse paarer Graphen. I. Beweis einer Vermutung von
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