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ABSTRACT 

Hearing is an important sensory function of human communication and alerts people of 

dangerous conditions by detecting the emergency auditory alarm, sirens. We localized the source 

of EEG data (Hearing EEG data) into the cortical surface by solving the inverse problem and 

extracted the time series data from the 68 regions of Deskin-Killiany (DK) atlas. By using 

Granger Causality and Phase Transfer Entropy, we analyzed the brain connectivity of people 

experiencing normal hearing (NH) and hearing loss (HL). These results showed that NH and HL 

listeners’ connectivity levels are not the same. Moreover, we investigated which connectivities of 

the human brain are changed after hearing loss. We also performed a statistical analysis between 

eight regions of the brain; those are associated with the auditory and language processing tasks 

and significant changes were found in the primary Auditory and Broca’s areas. It is noticeable 

that HL listeners utilize the top-down modulation to perceive the sounds. Finally, we also found 

that neural and behavioral results are correlated. 
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1. INTRODUCTION 

Here we will discuss hearing loss difficulties, how the human brain is activated by a 

stimulus, auditory and language processing, goals and objectives of this work.   

1.1. PROBLEM DESCRIPTION 

      Hearing is an essential sensory function that allows humans to communicate properly 

and to be aware of dangers such as emergency alerts, e.g., sirens and alarms. Hearing loss is 

associated with cognitive decline, social isolation, and loneliness in older adults. When the 

auditory perception is difficult, greater cognitive resources are engaged in auditory perception 

processing [1]. Most listening has some background noise, and typically older adults have 

difficulty in detecting speech sounds [2].  According to the National Health and Nutrition 

Examination Survey (NHANES), hearing impairment increases dramatically with age [3]. 

Hearing loss is one of the key contributors to the growing problem of disability in the United 

States [4]. Regions of the human brain are interconnected and activated based on the stimulus. 

Human and other vertebrates’ temporal lobes process the auditory information. For instance, 

during the information processing Auditory, Broca’s and Motor areas are activated. They are 

connected and responsible for hearing loss. We will identify the significant changes of 

functionality in the Auditory, Broca’s and Motor areas. Different neuroimaging modalities 

(fMRI, EEG, MEG, etc.) are used for connectivity analysis [5]. For this study, we used 

Electroencephalography (EEG). It is more famous for clinical, investigating the brain 

functionality and mental processing due to high temporal resolution and non-invasive technology 

[6], [7]. 
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1.2. THE GOALS AND OBJECTIVES OF THIS WORK 

The primary goal of this interdisciplinary research is to apply robust connectivity analysis 

approaches that can provide better and significant results in identifying the neural effects of 

hearing loss. 

The goals are as follows: 

i) To localize the source of EEG on the cortical surface, 

ii) To extract the time series data from the cortical surface, 

iii) To find the whole brain connectivity by using different robust methods, 

iv) To find the significant ROIs those are associated with the auditory and speech 

processing task, and 

v) To investigate the relationship between the behavioral and neural results. 

The objectives of this thesis are as follows: 

a) We will consider a forward model that can compute the head model. Here we will use the 

Boundary Element Model (BEM) because it is popular and robust. 

b) We will consider a mathematical model that can solve the inverse problem. We will 

consider a widely used method standard low-resolution brain electromagnetic 

tomography (sLORETA). 

c) We will measure the whole brain connectivity through Phase Transfer Entropy (PTE) and 

Granger Causality (GC) based on the cortical surface time series data. 

d) We will also perform a statistical analysis of two cohorts and different conditions in the 

Auditory, Broca’s and Motor areas based on the PTE and GC measured strength. 

e) We will compare the PTE and GC results. 

f) Finally, we will investigate the neural and behavioral correlation. 
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The rest of the thesis is organized as follows: chapter 2 describes the recent related works serving 

as the background of this work; chapter 3 discusses the participant details, stimulus, EEG 

recording, preprocessing, source localization and behavioral results; chapter 4 discusses the 

results in a circular graph and statistical analysis; and finally, chapter 5 concludes the thesis. 
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2. RELATED WORKS 

Here we will discuss recent related works on human brain connectivity, EEG source 

localization, connectivity analysis techniques, top-down and bottom-up modulation. 

Our brain is highly complex. It has multiple regions those are engaged based on the different 

tasks. The brain coordinates multiple regions’ functionality based on the stimulus. Some of the 

brain regions are structurally connected, and some of them are functionally connected. There are 

three types of brain connectivity. Anatomical, functional and effective connectivity [8]. The 

anatomical connection represents the connection between the regions of the white matter tracts. 

On the other hand, the functional connectivity corresponds to the magnitude of the time series 

correlation in activity and may occur between the anatomical and unconnected regions [8]. The 

effective connectivity is the union of structural and functional connectivity that describes the 

flow of information [9].  

Source Localization. Based on the stimulus different brain regions are activated. The neurons 

are firing inside the brain, but EEG is measured on the scalp surface of the head. Source 

localization is important in clinical interpretations and a better understanding of functional 

abnormalities and behavioral research. Over the last couples of decades, there is a significant 

progress in source localization. 

There are a few essential components for successful source localization: (i) an electrical 

forward head model, (ii) an individual source space model, and (iii) an inverse source 

localization model [10] . The process of prediction the scalp surface potentials from the 

emerging electric current that generated by plenty of neurons firing inside the brain is called the 

EEG forward model. The forward model is a head model to estimate the potential of the scalp. 

There are different head models (e.g., spherical and non-spherical) used for source localization. 
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The spherical boundary element method (BEM) head model is widely used. This head model is 

based on the Montreal Neurological Institute (MNI) template head image. The BEM is composed 

of two-dimensional triangulated mesh layers (boundaries). There are four layers considered 

(scalp, skull, CSF, and cortex). The different compartments have different conductivity values, 

but within each compartment the conductivity assumes to be the isotropic and homogenous [11], 

[12]. The EEG source localization depends on a few factors such as  sufficient sampling, 

accurate head model and the approximation of the volume conduction and well-known inverse 

problem [13], [14]. 

On the other hand, the process of predicting the locations of sources of neurons from the 

scalp surface measured EEG potential is referred to as an inverse problem. The aim of the 

inverse problem is reconstructing the brain electrical activity on the cortex from the scalp surface 

EEG measurements. Most of the EEG source localization techniques consider the homogenous 

head model that represents the physical properties of the human head volume conductor. In 

distributed models, the location and orientation of a large number of dipoles are fixed over the 

cortical surface. In this case, the amplitude calculation of a number of dipoles sample is required 

at every time point in a fixed grid [15]. sLORETA is a distributed inverse method that used with 

a BEM forward model. The constraint modeling of sLORETA is based on the neighbor neuronal 

populations are more likely than the non-neighbored neuronal populations undergoes 

synchronous depolarization or evoked response. However, the sLORETA gives a smoothed 

solution because of neighborhood sources are conditioned to assume the similar strength [12]. 

The electric activity at the scalp surface can be represented by the following equation: 

𝑓 = 𝐿. 𝑞 
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Where f is the simulated measurement electric potential vector, L is the lead field matrix, and 

q is the dipole column vector that contains the location and strength information of the source. 

The accuracy of the source localization is measured by comparing the estimated source and 

simulated measured. The best fitting of the dipole can be calculated by minimizing the error 

between the simulated value and forward computed value. 

𝐸𝑟𝑟𝑜𝑟 = |𝑅 − 𝐿. 𝑞|2 

where R is the simulated computed value. 

Connectivity analysis methods. Different methods are using for functional connectivity 

analysis: correlation,  coherence, Granger Causality (GC), Phase Transfer Entropy (PTE),  Phase 

Locking Value (PLV), Phase Slope Index (PSI) [16], [17]. Functional connectivity describes the 

statistical differences between two or more variables, the dependencies can be undirected 

(correlation, coherence) or directed (GC, PTE) [18]. The GC and coherence are based on a 

rigorous statistical theory of stochastic processes. The linear measure such as coherence or PLV 

will capture this interaction. Cross-frequency coupling is nonlinear. GC and PTE describe the 

directed influences of two signals. 

Out of the above mentioned methods, three methods are using for competitive connectivity 

analysis. GC, dynamic causal modeling, and PTE. PTE quantifies the entropy between the phase 

time series. PTE is a robust and efficient method. It works on noise conditions [19]. GC is 

implemented in time or frequency domain based on the autoregressive modeling of the signals 

and their interactions. GC is ill-suited to whole brain network analysis [20].   On the spectra 

analysis, GC could not find phase information. Transfer entropy is model-free, there is no 

assumption on signal or interaction structure. PTE is a good candidate for the phase-based 

connectivity. The details of the mathematical elaboration of PTE and GC is given in [19], [18].  
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Top-down and bottom-up modulation. The human auditory system is composed of a set of 

complicated connections. The sound information from the cochlea to auditory system passes 

through the ascending pathways. Perception of the external sounds entails with the detection of 

bits and pieces of partially degraded external sound sources [21]. Moreover, speech perception 

also involves the top-down and bottom-up process. The top-down process relies on prior 

knowledge (e.g., language experience) and bottom-up process depends on the instant auditory 

input (e.g., incoming data, data-driven). The bottom-up process occurs for the first 200 ms for 

pitch perception, and the top-down process happens in a late time window around 300-500 ms 

[22]. LH has the advantage of top-down processing. It helps the listeners to understand the 

meaning and context of speech or sentence. Aging affects peripheral hearing and changes central 

auditory processing. Several studies found that the older adults with hearing loss exploit the top-

down process for perceiving the corrupted or ambiguous sounds. These studies showed a few 

effects. For instance, when processing the non-ambiguous sounds, aging is associated with the 

disrupting central auditory processing that cannot reduce the signal to noise ratio of the input 

signal. The top-down modulation is engaged to enhance the speech perception, and sensitivity to 

the change of input coming from the peripheral auditory apparatus may provide plastic effects 

after hearing loss [21], [19]. 
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3. METHODS  

We are reanalyzing the preexisting data that was originally collected by the Claude Alain’s 

group at Rotman Research Institute in Toronto, Canada [23]. We will analyze the brain 

connectivity of NH and HL based on this data. Details of the dataset and methodology will be 

described in this section. In this section, we will discuss participants’ details, stimuli and task, 

EEG recording, source localization process, behavioral results, and brain atlas that we will use 

for this study. 

 

3.1. PARTICIPANTS AND STIMULUS 

“Thirty-two older adults (13 normal hearing and 19 hearing impaired) were recruited from 

the greater Toronto Area in our ongoing research on aging and auditory system. The age of the 

participants between 52 to 72 years.  None of them reported a history of neurological or 

psychiatric diseases.  A puretone audiometry was conducted at octave frequencies 250 to 8000 

Hz, based on the listeners’ thresholds, the cohort was divided into normal hearing and hearing 

loss groups (Figure 3.2 A). Normal-hearing (NH) listeners were classified as those having the 

average hearing threshold (250-8000 Hz) better than the 25 dB HL across both ears. On the other 

hand, those having average hearing thresholds poorer than the 25 dB HL were classified as 

hearing loss (HL). This separation resulted in pure-tone averages (PTAs) (i.e., mean of 500, 

1000, 2000 Hz) that were ~10 dB better in NH compared to HL listeners (NH: 15.3±3.27 dB HL, 

HL: 26.4±7.1 dB HL; t2.71=-5.95, p<0.0001). Importantly, the groups were otherwise matched in 

age (NH: 66.2±6.1 years, HL: 70.4±4.9 years; t2.22 = -2.05, p = 0.052) and gender balance (NH: 

5/8 male/female; HL: 11/8; Fisher’s exact test, p = 0.47). Age and hearing loss were not 

correlated in our sample (Pearson’s r = 0.29, p = 0.10). Participants were compensated for their 
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time and gave written informed consent in compliance with a protocol approved by the Baycrest 

Centre research ethics committee [23]”. 

We prepared three consonant-vowel (CV) tokens (/ba/, /pa/, /ta/).The stimuli presentation 

scenario is depicted in Figure 3.1.  A total of 6210 CVs were presented in both clean and noise-

degraded conditions (each spread over three blocks). The stimulus set included a total of 3000 

/ba/, 3000/pa/, and 210 /ta/ tokens (spread evenly over three blocks).  

 

Figure 3.1 Auditory stimuli presentation  

 

“Each token was 100 ms in duration.  For each block, speech tokens were presented back-to-

back in random order with a rapid interstimulus interval (~250 ms) [24]. In a pseudo-random 

schedule frequent (/ba/, /pa/) and infrequent (/ta/) tokens were presented and also maintain that at 

least two frequency stimuli intervened between target /ta/ tokens.  Listeners were instructed to 

respond each time they detected the target token (/ta/) via a button press on the computer. 

Reaction time (RT) and detection accuracy (%) were logged. These same procedures were then 

repeated using an identical speech triplet but presented in four talker noise babble at 10 dB SNR 

[25].The babble was presented continuously so that it was not time-locked to the stimulus, 

providing a constant backdrop of interference in the noise condition [26], [27]. Comparisons 
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between behavioral performance between clean and degraded stimuli allowed us to assess the 

impact of acoustic noise and differences between normal and hearing-impaired listeners on 

speech perception. Importantly, this task ensured that ERPs were recorded online, during active 

speech perception [28]. 

Stimulus presentation was controlled by a MATLAB routed to a TDT RP2 interface (Tucker-

Davis Technologies) and delivered binaurally at an intensity of 82 dB SPL through insert 

earphones (ER-2; Etymotic Research) [23].” 

3.2. BEHAVIORAL RESULTS 

 

Figure 3.2 Behavioral Results [23] 

 

“Behavioral accuracy and reaction time for target speech detection is shown for each group 

and noise condition in Figure 3.2. An ANOVA revealed a main effect of SNR on perceptual 

accuracy, which was lower for noise-degraded compared to clean speech [F1, 30 = 5.66, p = 

0.024; Figure 3.2 B]. However, groups differed neither in their accuracy [F1, 30 = 0.01, p = 0.94] 

nor speed [F1, 30 = 0.47, p = 0.49; Figure 3.2 C] of speech detection. Behavioral QuickSIN 

scores are shown for NH and HL listeners in Figure 3.2D. On average, HL individuals achieved 
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performance within ~1 dB of NH listeners, and QuickSIN scores did not differ between groups 

[t2.35= -1.43, p = 0.16]. Nevertheless, HL listeners did show more variability in SIN 

performance compared to NH listeners [F-test for equal variances: F12, 18 = 0.11, p = 0.0004]. 

Collectively, these results suggest that hearing loss in the cohort was not yet egregious enough to 

yield measurable deficits in speech perception [23]”. 

3.3. ELECTROPHYSIOLOGICAL RECORDINGS AND ANALYSIS 

         “EEG acquisition and preprocessing. The neural activity was recorded from the scalp 

surface by 32 channels at standard 10-20 locations during the behavioral task detection [29]. 

Recording EEGs during the active listening task allowed us to control for attention and assess the 

relative influence of brainstem and cortex during online speech perception. EEGs were digitized 

at a sampling rate of 20 kHz using SynAmps RT amplifiers (Compumedics Neuroscan). 

Electrodes placed along the zygomatic arch (FT9/10) and the outer canthi and superior/inferior 

orbit of the eye (IO1/2, LO1/2) monitored ocular activity and blinked artifacts. During online 

acquisition, all electrodes were referenced to the Cz electrode. This channel was reinstated, and 

data were re-referenced off-line to a common average reference for subsequent analyses. 

Electrode impedances were maintained ≤ 5 kΩ through the duration of testing.  

       Subsequent pre-processing was performed in BESA® Research v6.1 (BESA, GmbH). 

Ocular artifacts (saccades and blinks) were first corrected in the continuous EEG using a 

principal component analysis (PCA) [30] EEGs were then epoched into single trials (-10-200 

ms) per condition and baseline-corrected to the pre-stimulus period [23].” 

      Source localization method. After the above preprocessing, we averaged all the trials by 

conditions (clean and noise), individual and cohorts (NH and HL) and filtered (1-40 Hz). First of 

all, we have considered a more realistic forward model, e.g., Boundary Element Model (BEM) 

that required for source localization. The BEM is composed of two dimensional triangulated 
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mesh layers (boundaries). There are four layers considered (scalp, skull, CSF, and cortex). The 

different compartments have different conductivity values but within each compartment the 

conductivity is assumed to be isotropic and homogenous. The noise covariance matrix was 

measured from the pre-stimulus recording data. sLORETA is a distributed inverse method that 

was used with a BEM forward model. The default setting parameters of sLORETA in brainstorm 

are: noise covariance regularization parameters (regularize noise covariance 0.1), regularization 

parameters 1/λ (SNR 3.00) [31]. In this work, we used a low-resolution cortical surface with 

1500 vertices and assigned a diploe in every vertex, and their orientation is perpendicular to the 

cortical surface. The constraint modeling of sLORETA is based on the assumption that neighbor 

neuronal populations are more likely than non-neighbored neuronal populations to undergo 

synchronous depolarization or evoked response. Moreover, sLORETA gives a smoothed solution 

because of neighborhood sources are conditioned to assume the similar strength [12]. Once we 

have solved the inverse problem, the cortical surface data can be visualized in different atlases. 

The source localization processing by Brainstorm tools is shown in Figure 3.3. 

       For this study, we have considered a widely used brain parcellation scheme called Desikan-

Killinay (DK) atlas. It has 34 cortical regions of interest (ROIs) in each hemisphere [32], [33]. 

The DK atlas is presented in Figure 3.4. The time series data were extracted from the 68 ROIs. 

The full and shortened names of DK brain ROIs are shown in in Table-3.1:   
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Figure 3.3 Preprocessing in Brainstorm Software 

 

 

 

 

Figure 3.4 Desikan-Killinay Atlas [32] 
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Table 3.1 Different ROIs Name of Desikan-Killinay Atlas 

 

Shortened Name 

of DK ROIs 
Full DK ROIs’ name Shortened Name 

of DK ROIs 
Full DK ROIs’ name 

lBKS        bankssts L lPHIP parahippocampal L 

rBKS        bankssts R rPHIP parahippocampal R 

lCAC caudalanteriorcingulate L lPOP parsopercularis L 

rCAC caudalanteriorcingulate R rPOP parsopercularis R 

ICMF caudalmiddlefrontal L lPOB   parsorbitalis L 

rCMF caudalmiddlefrontal R rPOB   parsorbitalis R 

lCUN          cuneus L lPT parstriangularis L 

rCUN          cuneus R rPT parstriangularis R 

lENT      entorhinal L lPERI   pericalcarine L 

rENT      entorhinal R rPERI   pericalcarine R 

lFP     frontalpole L lPOC     postcentral L 

rFP     frontalpole R rPOC     postcentral R 

lFUS        fusiform L lPCG posteriorcingulate L 

rFUS        fusiform R rPCG posteriorcingulate R 

lIP inferiorparietal L lPRC      precentral L 

rIP inferiorparietal R rPRC      precentral R 

lIT inferiortemporal L lPREC       precuneus L 

rIT inferiortemporal R rPREC       precuneus R 

lINS          insula L lRAC rostralanteriorcingulate L 

rINS          insula R rRAC rostralanteriorcingulate R 

lIST isthmuscingulate L lRMF rostralmiddlefrontal L 

rIST isthmuscingulate R rRMF rostralmiddlefrontal R 

lLO lateraloccipital L ISF superiorfrontal L 

rLO lateraloccipital R rSF superiorfrontal R 

lLOF lateralorbitofrontal L lSP superiorparietal L 

rLOF lateralorbitofrontal R rSP superiorparietal R 

lLIN         lingual L lST superiortemporal L 

rLIN         lingual R rST superiortemporal R 

lMOF medialorbitofrontal L lSUPRA   supramarginal L 

rMOF medialorbitofrontal R rSUPRA   supramarginal R 

lMT  middletemporal L lTP    temporalpole L 

rMT  middletemporal R rTP    temporalpole R 

lPARA     paracentral L lTRANS transversetemporal L 

rPARAC     paracentral R rTRANS transversetemporal R 
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4. RESULTS 

In this section, we will demonstrate connectivity results obtained through PTE and GC 

analysis. First of all, we will describe the whole-brain connectivity of different cohorts and 

conditions. Secondly, we will discuss the connectivity of a few ROIs that are associated with 

speech and language processing. Finally, we will discuss the significant results obtained from the 

statistical analysis. 

4.1. PHASE TRANSFER ENTROPY (PTE) 

Phase Transfer Entropy (PTE) is a more robust mathematical model for connectivity 

analysis. We applied PTE into the time series data at the default setting of the Brainstorm 

software [31] and measured the whole-brain connectivity by individual and group in both 

conditions. These results were expressed in normalized value from -0.5 to 0.5. If the connectivity 

direction is positive, information flow direction, A→B and for negative, B→A. Our results 

provided a 68 × 68  connectivity matrix in every subject per condition. Here we show only the 

group connectivity in circular maps. 

 

Figure 4.1 PTE connectivity analysis of NH in clean speech perception 

[2-4 Hz hereafter] 
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The connectivity links can be found among LH, RH, as well as the intra-hemisphere. 

Brainstorm has band frequency analysis features; we can visualize the PTE connectivity result in 

delta (2-4 Hz), theta (5-7 Hz), alpha (8-12 Hz), beta (15-29 Hz) and gamma (30-90 Hz) 

frequency bands. By default setting of this tool, it chooses delta band frequency, a connectivity 

distance length of 20 mm, and top 20 % of the connectivity strength.  This connectivity result at 

default setting is depicted in circular connectivity graphs. The connectivity of NH in clean 

speech detection is presented in Figure-4.1. In this figure, we saw that NH listeners, in clean 

speech detection, have strong connectivity links found in temporalpole L-> precuneus L, 

entorhinal L-> entorhinal R. It is remarkable that rostralanteriorcingulate L is weakly connected 

in both RH and LH of inferiortemporal R, and transversetemporal L. Moreover, the LH has more 

connection links than the RH. However, if the intensity threshold, frequency band, and 

connectivity length change the connectivity will also change. For the sake of simplicity, we have 

chosen the default value for all the analysis. 

 

 

Figure 4.2 PTE connectivity analysis of NL in clean speech perception  
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The circular connectivity graph of HL listeners in clean speech perception is delineated in 

Figure 4.2. The strongest connectivity links were found between parsopercularis L and 

caudalanteriorcingulate R. The precuneus L connected with bankssts L, and precentral R linked 

with pericalcarine R. Moreover, the temporalpole R is connected with the fusiform R and 

middletemporal L. Furthermore, transversetemporal L is connected with the fusiform R and 

superiorfrontal L.  From those connectivity results, we found that most of the connectivity was 

associated with the auditory and language processing regions and few of them are from non-

language processing regions.  

From circular connectivity maps, we found that the connectivity of NH and HL listeners for 

clean speech recognition differs from each other. 

 

 

Figure 4.3 PTE connectivity analysis of NH in noise speech perception 

 

For the noisy speech perception, the connectivity maps of NH and HL listeners are shown in 

Figure 4.3 and Figure 4.4, respectively.  The most active connection of NH was found in 
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precuneus L and entorhinal R, and middletemporal R and cuneus L. Figure 4.3 showed that too 

many brain regions are interconnected.  However, the HL listeners parsopercularis L-> 

caudalanteriorcingulate L, postcentral R-> fusiform L are strongly connected and parstriangularis 

L-> posteriorcingulate L are weakly connected and lingual R are interconnected with 

superiorparietal L, superiorparietal R and  entorhinal R.  

 

 

Figure 4.4 PTE connectivity analysis of HL in noise speech perception 

 

To sum up, the connectivity links of NH listeners are less in clean speech recognition, 

whereas HL listeners have higher connectivity links. On the other hand, in noisy speech 

perception, NH has more connectivity links than the HL. Within the group, for NH listeners have 

more connectivities in noisy speech detectiom than  clean speech detection. However, HL 

listeners’ connectivities patterns were opposite. From these circular graph connectivity maps, we 

could not conclude the result precisely.  
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4.2. GRANGER CAUSALITY (GC) 

In this study, we also applied Granger Causality (GC) mathematical approach on the same 

data and same way for analyzing whole-brain connectivity. The GC is also directional 

connectivity. Here we only presented the absolute connectivity graph. We considered default 

setting parameters of the brainstorm software, where the autoregressive order was set to 10. The 

GC connectivity of NH for clean speech perception is presented in Figure 4.5. Here only two 

links were found in fusiform R -> caudalanteriorcingulate L, supramarginal L -> supramarginal 

R. The circular map of connectivity HL in clean speech recognition is depicted in Figure 4.6. 

Only a link was found between transversetemporal L and middletemporal R. 

 

Figure 4.5 GC connectivity analysis of NH in clean speech perception 

 

In the default setting, the connectivity was shown with link a distance at 20 mm and no 

frequency band option. If we change the threshold strength of the connectivity panel, the 

connectivity graph also changes. We can find the different connectivity maps by tuning the 

threshold intensity, and connectivity link distance.  
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Figure 4.6 GC connectivity analysis of HL in clean speech perception 

 

The default setting connectivity analysis in noisy speech perception of NH and HL listeners 

is shown in Figure 4.7 and Figure 4.8. The connectivity of NH listeners was found only between 

inferiortemporal L and fusiform R. However, HL listeners have more connectivity links. The 

transversetemporal R is connected with the itra-hemisphere region of superiorparietal R. It is 

noticeable that the RH has more connectivity links than the LH. The middletemporal R was 

connected with intra-hemisphere parsorbitalis R and inter-hemisphere transversetemporal L and 

bankssts L.  
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Figure 4.7 GC connectivity analysis of NH in noise speech perception 

 

 

 

 

Figure 4.8 GC connectivity analysis of HL in noise speech perception 
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To sum up, we could not find any threshold selection method or algorithm for the best 

connectivity analysis in both connectivity (PTE, GC) approaches. So, it is hard to describe the 

connectivity precisely, or what brain regions are significantly associated with hearing loss and 

how they were changed. To investigate the significant connectivity change, we have chosen eight 

ROIs and performed a statistical test by cohort and conditions. The statistical results are 

described in the next section. 

4.3. STATISTICAL ANALYSIS  

We have selected 8 ROIs that are associated with auditory and language processing, and 

performed the statistical test. From this statistical analysis, we figure out differences in 

connectivity strength. The pairwise connectivity measure in Auditory-Broca’s, Auditory-Motor 

and Broca’s-Motor regions are given in Table 4.1.  

Table 4.1 ROIs connectivity pairs 

 

Auditory – Broca’s area Broca’s- Motor area Auditory- Motor area 

lTRANS-lPT lPOP - lPRC lTRANS -lPRC 

lTRANS-lPOP rPOP - rPRC rTRANS -rPRC 

rTRANS-lPT lPT-lPRC  

rTRANS-rPT rPT-rPRC  

 

First of all, we have extracted individual listeners’ ROIs’ PTE connectivity strength from the 

whole brain connectivity matrix (i.e., 1-40 Hz). Then from the cohort data, we computed the 

mean, standard error (SE), and p-values. The p-value was measured from the two samples t-test 

between NH and HL listeners’ in clean and noisy speech perception. The mean, SE, and 

significant p-value of those ROIs are represented in bar charts. The cohorts’ statistical results of 

Auditory-Broca’s areas are shown in Figures 4.9 and 4.10 for clean and noisy speech perception, 

respectively. In both scenarios, the connectivity patterns of NH and HL listeners are in opposite 

directions in lTRANS-lPT, lTRANS-lPOP, rTRANS-lPT but the same direction in rTRANS-

rPT. In clean speech perception, the mean strength of PTE connectivity at lTRANS-lPT of NH 
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and HL is 0.02 and -0.10, and SE is 0.05, 0.03 respectively. The lTRANS-lPOP mean strength is 

almost the same as lTRANS-lPT but a little less in HL. Moreover, in lTRANS-lPOP, the mean of 

PTE connectivity and SE is 0.02, 0.06 for NH and HL is -0.08 and 0.05. On the other hand, in 

rTRANS-rPT both NH and HL PTE is negative direction and mean and SE of NH are -0.05, 0.08 

and HL are -0.09, 0.04. We found significant p-value only in the LH at lTRANS-lPT and shown 

with *p in Figure 4.9.  

 

Figure 4.9 PTE statistical analysis in Auditory-Broca’s areas in clean speech perception  

[1-40 Hz hereafter] 

 

 

Figure 4.10 PTE statistical analysis in Auditory-Broca’s areas in noisy speech perception 
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In noisy sound perception, the connectivity is measured in Auditory-Broca’s regions are 

almost the same as the clean condition except a significant change was found in lTRANS-lPOP. 

In this region, the mean connectivity strength and SE are 0.13 and 0.05 for NH and -0.07 and 

0.05 for HL. The significant changes were found only in lTRANS-lPOP regions. The p-value is 

less than 0.01 as shown in figure 4.10 with a **p. 

 

 

Figure 4.11 PTE statistical analysis in Auditory-Motor areas in clean speech perception 

 

The statistical analysis of Auditory-Motor area for clean and noisy speech recognition is 

represented in Figure 4.11 and Figure 4.12, respectively. For clean speech detection, a large 

change was found between the mean PTE strength of NH and HL listeners in lTRANS–lPRC in 

Auditory-Motor area of LH. The mean PTE connectivity strength and SE of NH is -0.033 and 

0.070, and HL is -0.008 and 0.049. However, the mean PTE connectivity in rTRANS–rPRC of 

RH is in the opposite direction of NH and HL listeners. The mean PTE strength of NH and HL is 

-0.035 and 0.0482, and SE is 0.064 and 0.044. Though the difference in the LH of Auditory-

Motor is substantial, but none of these regions are significant. In noisy sound perception, 

rTRANS–rPRC region of RH, the mean, and SE of NH and HL listeners are almost same, but in 
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LH there is a big difference of the mean PTE connectivity strength of NH and HL. The mean 

strength of HL listeners is fivefold higher than the NH listeners, but this result failed to show 

significant level p-value. 

 

Figure 4.12 PTE statistical analysis in Auditory-Motor areas in noisy speech perception 

 

Now we demonstrate the statistical results of Broca’s-Motor areas those obtained from PTE 

connectivity matrix. The mean and SE of Broca’s-Motor area is presented in a bar chart with an 

error bar. There are four pairwise ROIs. The results of NH and HL listeners for clean speech and 

noisy speech perception are shown in Figure 4.13 and Figure 4.14, respectively. In clean speech 

perception, HL listeners mean PTE strength of all the Broca’s-Motor area are positive, but NH 

listeners are negative in the lPOP–lPRC, lPT-lPRC regions. There was a big difference found 

between NH and HL at lPT-lPRC and lPOP–lPRC, but they are not statistically significant. For 

noisy speech perception, the connectivity pattern of the NH and HL listeners’ connectivity 

changes more than clean speech detection except the rPOP–rPRC. It is remarkable that the LH 

and RH connectivity is in the opposite direction at lPOP–lPRC and rPT-rPRC. We have not seen 

any significant p-value during the t-test. 
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Figure 4.13 PTE statistical analysis in Broca’s-Motor areas in clean speech perception 

 

 

 

 

 

Figure 4.14 PTE statistical analysis in Broca’s-Motor areas in noisy speech perception 

 

Here we are going to investigate the GC statistical analysis in Auditory-Broca’s, Auditor-

Motor, and Broca’s-Motor areas. GC is a directed connectivity analysis approach. Because of 

some limitation of our tools we could only measure the absolute connectivity GC strength. 
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Figure 4.15 GC statistical analysis in Auditory-Broca’s areas in clean speech perception 

 

 

 

 

Figure 4.16 GC statistical analysis in Auditory-Broca’s areas in noisy speech perception 

 

We extracted the GC connectivity strength from our ROIs by the same procedure of PTE 

analysis. These results are demonstrated in bar plots with error bars (mean, SE) and p-value if 
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found within the significant level. The Auditory-Broca’s areas of NH and HL listeners for clean 

and noisy speech perception are depicted in Figure 4.15 and Figure 4.16, respectively. In both 

conditions, clean and noisy speech recognition, the LH has low GC strength in lTRANS-lPT, 

lTRANS-lPOP regions of both cohort listeners. It is also noticeable that HL listener GC 

connectivity strength is a little less than the NH. However, in RH, HL listeners GC mean 

strength is higher than the NH in lTRANS-lPOP and lTRANS-lPOP areas. None of those regions 

showed significant p-value. 

 

Figure 4.17 GC statistical analysis in Auditory-Motor areas in clean speech perception 

 

The statistical results of Auditory-Motor areas of NH and HL listeners for clean and noisy 

sound perception are represented in Figure 4.17 and Figure 4.18, respectively. In LH, NH and 

HL connectivity patterns are the same. On the other hand, in RH, the noisy speech detection the 

HL listeners’ connectivity is stronger than the NH. In clean speech detection, the mean and SE of 

GC strength at rTRANS-rPRC is 0.768 and 0.239 for NH and 0.544 and 0.133 for HL but in 

noisy speech detection, these are 0.447 and 0.119 for NH and 0.638 and 0.146 for HL. This 
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stronger connectivity in noisy condition indicates that RH is associated with noisy speech 

perception in HL listeners. 

 

Figure 4.18 GC statistical analysis in Auditory-Motor areas in noisy speech perception 

 

The GC statistical analysis of Broca’s-motor areas is presented in Figure 4.19 and Figure 

4.20 for clean and noisy speech recognition. In clean speech detection, there is a big difference 

between NH and HL listeners found in lPOP–lPRC and lPT-lPRC regions of LH.  The GC mean 

and SE at lPOP–lPRC are 0.569 and 0.137 for NH, 0.236 and 0.046 for HL, respectively. 

Moreover, in the lPT-lPRC region mean and SE of NH is 0.622 and 0.213, and HL is 0.254 and 

0.078. Though there is a big difference between NH and HL listener, in the LH of those regions, 

the only statistically significant p-value was found in lPOP–lPRC.  

In noisy sound detection, the HL has strong connectivity than NH in RH. The GC mean 

strength  and SE in rPOP–rPRC of NH are 0.354 and 0.086, for HL are 0.390 and 0.091, in rPT-

rPRC region NH mean and SE are 0.190 and 0.062 and HL are 0.311 and 0.0781. 
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Figure 4.19 GC statistical analysis in Broca’s-Motor areas in clean speech perception 

 

 

 

 

Figure 4.20 GC statistical analysis in Broca’s-Motor areas in noisy speech perception 

 

In summary, so far we discussed the connectivity maps and statistical analysis (mean, SE, 

and p-value). We found the only significant p-value in the LH of Auditory-Broca’s area in clean 

as well as the noisy speech perception in case of PTE connectivity analysis. On the other hand, 
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when we applied the GC connectivity analysis, we found significant p-value in the Broca’s-

Motor area in the LH. However, there is no statistically significant result in noisy speech 

perception. This was reflected in the literature reviewed that GC is not suitable for noisy signal 

analysis. 

4.4. OVERALL CONNECTIVITY COMPARISION 

In this section, we will discuss how the NH and HL listeners’ connectivity changes in the 

auditory-language processing regions, in the point of view of top-down and bottom-up 

mechanisms. 

 

Figure 4.21 PTE connectivity analysis with a significant p-value 

 

The overall auditory and language processing connectivity analysis was obtained from the 

PTE analysis and demonstrated in Figure 4.21. In clean speech perception, NH listeners 

communicate with a bottom-up technique, but HL listeners communicate in a top-down method. 

In Auditory-Broca’s region, NH listeners communicate in a bottom-up manner, but HL listeners 
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communicate in a top-down manner. The lTRANS-lPT of the Auditory-Broca’s area is 

statistically significant, and p <0.05.  Moreover, NH listeners also communicate in a bottom-up 

way in Motor to Broca’s area. However, the HL listeners communicate with a top-down 

approach. Interestingly, the Motor to Auditory communication pathway was the same in both 

NH and HL listeners. 

In the case of noisy speech detection, the NH listeners’ communication direction is Broca’s 

area to Motor area but HL listeners communication is the opposite (e.g., Motor to Broca’s area).  

Auditory to Broca communication is a bottom-up way (e.g., Auditory to Broca’s area) but HL 

listeners’ communication in the opposite way (Broca’s area to Auditory area). The Auditory-

Broca’s region (lTRANS-lPOP) of LH is statistically significant p <0.01. The Motor to Auditory 

communication direction remains the same in NH and HL and also in clean and noisy speech 

perception. In clean speech detection, we found the significant level change in the lTRANS-lPT 

of Auditory-Broca’s area and for noisy sound detection, significant change was in the (lTRANS-

lPOP), but both pairs are in the Auditory-Broca’s area of LH. Because of spatial error, our results 

showed nearest two regions, but both regions within the Auditory–Broca’s of LH and they are 

very close to each other.  
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Figure 4.22 GC connectivity analysis with a significant p-value 

 

The summary of GC connectivity analysis is shown in Figure 4.22. Here we have an only 

absolute GC connectivity strength. So we will discuss only the connectivity strength not the 

direction. For simplicity of representation, we showed that all the regions information flow in 

same way. In case of clean sound recognition, the Auditory-Broca’s area signal strength of NH is 

higher than the HL listeners. Broca’s-Motor area connectivity strength of NH is double of HL 

listeners. Furthermore, Auditory-Motor area connectivity of NH is higher than the HL listeners. 

We found the significant p <0.03 value only in the Broca’s-Motor area while compared NH and 

HL listeners. So, this is the only pair of regions that differs between groups. On the other hand, 

in noisy sound perception, the connectivity strength of NH in Auditory-Broca’s, Broca’s-Motor 

and Auditory-Motor area are higher than the HL listeners. None of those regions exhibit 

significant statistical results.   
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4.5. NEURAL AND BEHAVIORAL CORRELATION 

To investigate the neural and behavioral correlation, we used the Generalized Linear Mixed 

Effects (GLME) logistic regression model. This model is used for binary outcome variable 

modeling. The logistic regression model allows us to find the relationship between binary 

outcome variables and a group of predictor variables. Let’s say if 𝑧 is the binary outcome 

variable either success or failure (i.e., 1/0), 𝑝  is the success probability of  𝑧, and 𝑦1, 𝑦2,….  𝑦𝑛 

are a set of predictor variables. The logistic regression of z on 𝑦1 ,  𝑦2,….  𝑦𝑛  can estimate the 

parameter values 𝛼1, 𝛼2………𝛼𝑛 via the maximum likelihood threshold [34] . The logistic 

regression expression is:  

𝑙𝑜𝑔𝑖𝑡(𝑝) = 𝑙𝑜𝑔 (
𝑝

1 − 𝑝
) = 𝛼0 + 𝛼1𝑦1 +⋯…𝛼𝑛 ∗ 𝑦𝑛 

 

Here, we have predicted the speech perception accuracy (0-100%) from the above expression 

by taking the input parameters PTE, PTA, cohort, and stimulus. The GLME logistic regression 

model showed for NH listeners, a one-unit change of PTE, and the odds speech detection 

accuracy is ~9 at a p-value7.7 × 10−7. However, for HL listeners a one-unit change of PTE, 

odds speech detection accuracy is ~2 and significant p-value 0.003. It is observed that HL 

listeners’ performance was lower than the NH listeners (Figure 3.2B).  Moreover, the noisy 

speech degrades the behavioral accuracy in both groups. Both NH and HL listeners’ performance 

degraded in noisy speech detection. 
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5. CONCLUSION 

In this thesis, we localized the source of EEG data from scalp surface potentials. 

Furthermore, we extracted time series data from the cortical surface and investigated the whole 

brain connectivity through the Granger Causality and Phase Transfer Entropy. We also 

performed the statistical analysis in auditory-linguistic processing areas of the brain and found 

that connectivity between primary auditory cortex and Broca’s area differs among age-matched 

NH and HL listeners. Auditory-Broca’s area results are significant. For clean speech detection, 

p-value is <0.03.  For noisy speech detection, p-value is <0.01. The GLME results revealed that 

HL group speech detection performance was lower than that of the NH group and was related to 

changes in auditory-linguistic brain connectivity. These results imply that neural results were 

reflected in the behavioral results. 

 

Limitation of our work: We investigated the connectivity analysis for only 200 ms. For source 

localization, we used sLORETA with BEM that has maximum error ~ 20 mm [10]. Moreover, 

for GC analysis, we considered an autoregressive (AR) order of 10 and could not find the phase 

information. We got many null results in PTE/ GC connectivity analysis because of source 

localization error. We tried to find the adaptive threshold for circular maps connectivity 

representation by using interquartile range, local adaptive threshold, mean and median. 

Unfortunately, none of them provide better results for our data. We represented the circular maps 

only for top 20 % connectivity strength. 
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