
University of Memphis University of Memphis 

University of Memphis Digital Commons University of Memphis Digital Commons 

Electronic Theses and Dissertations 

12-4-2017 

SECURE BOOTSTRAPPING AND ACCESS CONTROL IN NDN-SECURE BOOTSTRAPPING AND ACCESS CONTROL IN NDN-

BASED SMART HOME SYSTEMS BASED SMART HOME SYSTEMS 

Lei Pi 

Follow this and additional works at: https://digitalcommons.memphis.edu/etd 

Recommended Citation Recommended Citation 
Pi, Lei, "SECURE BOOTSTRAPPING AND ACCESS CONTROL IN NDN-BASED SMART HOME SYSTEMS" 
(2017). Electronic Theses and Dissertations. 1769. 
https://digitalcommons.memphis.edu/etd/1769 

This Thesis is brought to you for free and open access by University of Memphis Digital Commons. It has been 
accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of University of 
Memphis Digital Commons. For more information, please contact khggerty@memphis.edu. 

https://digitalcommons.memphis.edu/
https://digitalcommons.memphis.edu/etd
https://digitalcommons.memphis.edu/etd?utm_source=digitalcommons.memphis.edu%2Fetd%2F1769&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.memphis.edu/etd/1769?utm_source=digitalcommons.memphis.edu%2Fetd%2F1769&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:khggerty@memphis.edu


SECURE BOOTSTRAPPING AND ACCESS CONTROL IN NDN-BASED SMART
HOME SYSTEMS

by

Lei Pi

A Thesis

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

Major: Computer Science

The University of Memphis

December 2017



Copyright c© 2017 Lei Pi

All rights reserved

ii



Abstract

Smart home systems utilize network-enabled sensors to collect environmental data and

provide various services to home residents. Such a system must be designed with security

mechanisms to protect the safety and privacy of the residents. More specifically, we need

to secure the production, dissemination, and consumption of smart home data, as well as

prevent any unauthorized access to the services provided by the system. In this work, we

study how to build a secure smart home system in the context of Named Data Networking,

a future Internet architecture that has unique advantages in securing Internet of Things.

We focus on solving two security problems: (a) mutual authentication between a new

device and an existing smart home system to bootstrap the device, and (b) controlling

access to smart home data. We designed a naming hierarchy for a smart home system and

the corresponding trust model. Based on the naming and trust model, we designed

bootstrapping protocols which enforce mutual cryptographic challenges, and a

programming template which facilitates Name-based Access Control. We have designed

and implemented an application that incorporates these solutions. Evaluation result

shows: (a) the bootstrapping protocols can defend against replay attacks with a small

computation overhead, and (b) Name-Based Access Control can provide accurate time

schedules to restrict access to fine-grained data types with a small computation overhead.
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Chapter 1

Introduction

Morden smart home applications utilize sensor collected data to provide various

services. Smart climate control uses thermostat and electric meter readings to optimize

home temperature level and energy usage. Intelligent intrusion detection system

distinguishes normal activities and intrusion behaviors based camera recording and Radio

Frequency (RF) readings. Smart home data like the camera recorded images and

thermostat readings are private to the owner of the house. Its production and consumption

must be well secured to ensure smart service operations and protect owner’s privacy. The

current Internet lacks adequate architectural support to build secure smart home systems

composed of thousands of interconnected sensors and Internet of Things devices. In this

work, we study how to create secure smart home systems over Named Data Networking

(NDN), a futuristic Internet architecture which adopts the data-centric approaches. We

focus on securely establishing trust relationships between new devices and the smart home

system (Bootstrapping), and enforce access schedules and policies to authorize the

production and consumption of data (Access Control). Our contributions include 1)

identifying the typical device lifecycles in NDN, 2) designing an organized and expressive

name hierarchy to reflect application meaning and a trust model to facilitate automatic

trust management, 3) designing and implementing a bootstrap protocol to defend against

man-in-the-middle (MitM) attacks, 4) designing and implementing a smart home

application adopting Name-based Access Control to protect home data production and

consumption, and 5) developing a programming library with code templates to enforce

our designs in application on macOS, Linux and Android platforms.

When a new device is brought to the home, there is no trust relationship between

the device and the smart home system (Figure 2.). The device has little knowledge about

the owner and approved devices, as a result it cannot trust the message received from other

devices. And other devices do not know if the new device is approved by the owner and if
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its data can be trusted. This trust relationship must be bootstrapped when the new device

joins the home and be managed automatically. After the trust bootstrapping, the new

device can publish data that is verifiable by other devices. Bootstrapping trust alone is not

enough to secure the smart home system. And access to smart home data must also be

restricted in a manageable way. This is because only the homeowner owns the devices and

the data they collected or generated. On one hand, it means only the devices approved by

the owner can produce trusted private data. A climate control system should only trust the

temperature readings produced by a trusted thermostat to ensure the correct instructions

are sent to the AC or heater. It is hard to prohibit a device from producing and

broadcasting data, but by designing an Owner-oriented trust model, we can make sure the

unapproved data cannot be trusted in the network. On the other hand, only a device

approved by the owner can consume a type of private data. For example, a smart baby

care system uses camera in the baby’s room to monitor its activities. Only the family

member should be able to watch the baby’s recordings. A visitor should not unless

allowed by the owner. Figure 1. shows the scenario of the examples.

Smart home system relies on a network infrastructure to distribute application data

among devices. It is hard to gain adequate architectural support using the current Internet.

Existing solutions for smart home systems largely adopts IP-based or host-centric

approaches, and are either inefficient or insufficient to support energy friendly smart home

applications [1]. When the Internet was originally designed, computing resources were so

scarce that the primary use of a network was to connect people to time-shared servers. As

such, a core abstraction in the current Internet architecture is a host (a client or a server),

and communication is supposed to happen between end hosts. However, todays Internet

applications are increasingly data-centric. People on social networking sites create

massive amount of content such as video, audio, news, blogs, tweets, and images.

Meanwhile, smart homes also generate a huge amount of data that need to be accessed

on-demand for various purposes such as monitoring and decision making. A data-centric
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Figure 1. Protecting the production and consumption of private data

Figure 2. A new device has no trust relationship with the smart home system

or information-centric architecture like the Named Data Networking (NDN) will support

more efficient and effective smart-home and other IoT applications. NDN makes ”data”
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the primary abstraction of the architecture and it is the most prominient realization of the

Information-Centric Networking paradigm.

The organization of this thesis is as follows. In Chapter 2, we briefly introduce the

security threats towards smart home data, the limitations to build secure smart home

applications over the traditional network, and Named Data Networking. Chapter 3

introduces related works to protect data security. Our solutions include Chapter 4 to 6.

Chapter 4 describes the high-level analysis, requirements and design. In Chapter 5, we

design a protocol over NDN to mutually authenticate a new device and the homeowner

and establishing a trust relationship between the two to prepare the device for normal

operations. In Chapter 6, we use Name-based Access Control (NAC) to restrict data

consumption to designated recipients and evaluate the practicality and effectiveness of

NAC. And Chapter 7 summarizes and ends the thesis.
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Chapter 2

Background

2.1 Existing Smart Home Systems

In recent years, many companies developed programming frameworks to build

secure, energy-efficient and user-friendly smart home applications that connects and

automates home products. For example, Nest Weave[2],ZigBee Home Automation[3],

Samsung SmartThings[4] and Google Thread[5]. They support different underlying

networking protocols and topologies and implements security mechanisms accordingly to

protect the homeowner and the integrity of the smart home. Table 1. compares these

frameworks on the style of networking, trust bootstrapping and access control.

ZigBee Home Automation is an industry standard for smart homes which utilizes

ZigBee meshed network stack[3]. Its built-in security features support bootstrapping a

new device with the device installation code and establishing trust by distributing a

networking key to the device for onboarding. The device can then negotiate

application-layer keys to further enforce integrity and develop access control policies. The

networking is based on an address-based communication model, and security policies are

channel-oriented which focuses on securing the communication channels and the

identities of endpoints. The whole home network shares a single network key to enforce

the perimeter-style security. Once the network key is disclosed [6], all plaintext

communications over the network is exposed. Before the device joins the network, ZigBee

Platform Networking Style Trust Bootstrap Access Control

ZigBee Home Mesh
Install Code

Network Key Left for Application

SmartThings Cloud OCF Security role-based/topic-based
Goolge Thread Mesh, 6LoWPAN Password + DLTS Left for Application

Nest Weave Cloud Pairing Code OAuth2.0

Table 1. Smart Home Applcation Frameworks
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uses plaintext to exchange the device’s information for device discovery, which also has

security and privacy implications.

Samsung SmartThings is an application framework that eases the development of

smart home applications to connect and automate home appliances. It is built upon

IP-based network (CoAP over UDP) and enforces Open Connectivity Foundation (OCF)

Security Framework to manage trust and provide application-layer privilege separation via

subject-based or role-based access control. The current implementation relies on a cloud

service. Recent research [7] shows it has the over-privilege risk where an application can

easily gain privilege it does not need according to its function description.

Google Thread[5] is a networking protocol which adopts 6LoWPAN [8] to

securely establish decentralized networking between IoT devices and to connect the home

network to the Internet. It uses EC-JPAKE [9], a password-based key

negotiation/agreement protocol to securely establish communication with a new device,

and uses DTLS to onboard the device by establishing a secure communication session. As

a networking layer protocol, it does not provide access control solutions.

Nest Weave is an open communication protocol to develop smart home devices

that can be managed and controlled using Nest services. It powers the Nest devices and

applications. It requires the device to provide a built-in pairing key to bootstrap trust and

establish ownership with the user’s Nest account. The user can grant a device permissions

to access its sensitive data on Nest cloud through OAuth2.0 protocol.

All these protocols and solutions either depend on cloud services which will not

work when there is a disruption in Internet connectivity or does not provide fine-grained

access control to protect data production and consumption.

2.2 Named Data Networking

Smart home applications depend on the underlying networking architecture to

support information flow among devices. Plenty networking standards can be used to

build smart homes. For example, Zigbee, ZWave, Bluetooth, and IPv6 derived protocols
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(such as 6LoWPAN). Despite the differences in connectivity establishment, the

mainstream security mechanism is channel-based security, where data is transmitted over

an encrypted channel from the sender to its recipient. For example, ZigBee uses a shared

network secret-key to secure the network layer broadcasts and application keys for

application sub-layer point-to-point channels. Such security models usually result in

complex security implementations such as the key management and delivery systems in

ZigBee and increase the risk of exposing vulnerabilities to attackers and introduces

computation and storage overheads. The complexity and the vulnerabilities along with it

are amplified when a middlebox such as a proxy or a cache node is envolved in the loop.

An alternative approach to build low-cost, secure and energy efficient applications in

smart homes is needed for the IoT devices. To avoid the limitations in channel-based

security, Named-data Networking (NDN) implements the data-centric security which

coincides with the object-oriented security model [10] and secures the application data

directly instead of the channel in which they are transmitted. The data-centric approach

adopted by NDN also brings other benefits such as the decoupling of producer and

consumer and in-network caching, which is good to develop energy efficient applications

on IoT devices. In this section, we will introduce how NDN works and how trust models

in NDN can help to secure the data.

2.2.1 Interest/Data Exchange and NDN Node Model

NDN enables users and applications to fetch data identified by a given name

directly. Communication in NDN is driven by receivers, i.e., data consumers, through the

exchange of two types of packets: Interest and Data (Figure 3.). A consumer puts the

name of a desired piece of data into an Interest packet and sends it to the network. Routers

use this name to forward the Interest toward the data producer(s). Once the Interest

reaches a node that has the requested data, the node will return a Data packet which

contains a cryptographic signature. This Data packet follows in reverse the path taken by

the Interest to get back to the requesting consumer. When receiving an Interest packet, an
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NDN node (Figure 4.) remembers the interface from which the Interest comes in, forward

the Interest according to the Forwarding Information Base (FIB) maintained according to

a name-based routing protocol, and puts the Interest in the Pending Interest Table (PIT). If

the Interest reaches a node that can serve the data, the nodes send back the Data packet

along the reverse route of the interest, removes the Interest from PIT and cache it in the

Content Store (CS). The name and signature of a Data packet enable packet-level security.

First, the cryptographic signature binds the name and data and removes the need for

channel security or container security. Second, every data is named explicitly, and the

information contained in the hierarchical name provides context for trust management.

Figure 3. NDN Interest and Data Packets

Figure 4. NDN Node Model

For example (Figure 5.), a consumer wants to read the temperature in the bedroom,

it sends out an interest with name “/bedroom/temperature” using a local Face, the local

Face talks with a connected network forwarder (NFD) to forward the interest over NDN

according to a name-based routing protocol. Once the producer receives the Interest

packet, it generates the data and puts back the Data packet to NDN. NDN sends the data
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back along the path of the Interest and caches the data automatically. Finally, the

consumer gets the data and consumes it.

Figure 5. NDN Example

2.2.2 Naming

Distributing and manipulating named information or data is a major application in

the modern Internet [11]. NDN recommends hierarchically structured names to represent

application data relations and enables scalable routing. For example, the name of a video

produced by the camera in the baby’s room may be

“/local-home/Recording/Tom/sleeping-101.mp4”. The naming conventions, the

application semantics of the names, and the namespace management are opaque to NDN

and left to the application’s responsibility.

Name is the first-class identifier on an NDN network. But it does not always need

to be globally unique. If the application only requires data from a local scope, the name

could be just locally unique. The application must be able to generate the name of the

prefix of the name for a specific piece of data. For example, one can use

“/local-home/Recording/Tom/sleeping-101.mp4” and receive the first piece of the

video with name “/local-home/Recording/Tom/sleeping-101.mp4/1”.

2.2.3 Trust Model

NDN requires every data packet digitally signed. The digital signature coupled

with data publisher information allows a consumer to verify if the data is authentic
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without caring from where the data is fetched. When the data content is a public key, the

Data packet with its name is effectively a certificate for the key. Then both key

distribution and trust between producers and consumers are simplified. The hierarchical

namespace and data provenance through the binding of name and signature leave flexible

design options for choosing/designing trust models.

An NDN trust model defines which identities act as the trust anchors, and the rules

to determine which identity can be used to prove the authenticity of another one. An

identity is the binding of a namespace and a public key for a specific period. It is

implemented in the form of NDN Certificate and can be used to authenticate data

produced by the real world entity. To prove the identity is authentic and authorized, its

certificate must be signed by a trusted and authorized identity. Trust anchors are

self-signed identities that are trusted by the network by default.
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Chapter 3

Related Works

The need for stronger security assurance in IoT implementations, including Smart

Homes, has been trending. There has been plenty research and design work on this topic

over NDN from various levels and focusing on different scopes.

Trust schemas [12] are sets of rules that automate trust management by matching

content names and key names. By designing and specifying trust schemas, we can

initialize and enforce the trust model throughout the application, which includes

identifying a trust anchor and the trust relationship between identities and keys.

From a high level, the work of [13] discussed how to use NDN to realize the IoT

vision. It identifies the challenges as being designing naming models, bootstrapping trust

and discovering services, managing/schematizing trust, access control and other

application specific requirements. It introduced fundamental ideas of sharing a separate

secret to bootstrap trust, and using name-based access control to authorize data access.

These ideas served as a starting point for our security design for a smart home.

In [14], a gateway-based architecture was introduced to build a secure integrated

home network over NDN. The gateway serves as both a configuration server and the

management center for the network, where trust between new devices and homeowner are

bootstrapped by inputting a pairing code on the gateway node. It requires a synchronized

clock between devices before bootstrapping. It does not provide access control. As it is

published in NDN Technical Reports, we will use the phrase “ndnTR0035” to refer to this

work.

Building management systems share common challenges with smart home

systems, such as sharing sensors data and access controls. The work of [15] describs a

design and implementation to solve these problems by using gateway nodes as proxies

between sensors over IP-based networks and the NDN, and provide access control using

encryptions and access privileges lists (APL).
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NDN-ACE [16] is another access control design tailored for actuator applications

over NDN in constrained environments. It assumes trust bootstrapping is already done and

introduces authorization servers between commanders and actuators to trade speed for

space by delegating key management to authorization servers from actuators.

NDN-Flow [17] is an automated home entertainment application. It focuses on

leveraging NDN to solve two problems in smart IoT systems, namely trust management

and service rendezvous. The former is implemented by specifying trust schemas and the

latter by publishing application metadata under a dedicated sub-namespace.

mHealth [18] focuses on demonstrating how Name-based Access Control (NAC)

can be applied to securely share health data only to designated recipients. In NAC, the

owner generates and distributes separate production and consumption credentials to

producers and consumers over time. A producer generates a content key to encrypt the

data using a symmetric algorithm, encrypts the content key using the production

credentials and publish the encrypted content key. Only designated recipients who hold

the consumption credentials can decrypt the content key to decrypt and consume the

content.

12



Chapter 4

Design Overview

Our goal is to design and implement a smart home system which is capable of

bootstrapping new devices and restricting access to data (temperature readings in our

demo) produced by each device for each consumer. This chapter gives an overall

introduction to the assumptions, architectural overview, and intuitions of the design. We

take a top-down approach when analyzing the problem and designing the solution. First,

the assumptions and scopes of the problem must be defined. We list the pre-conditions,

analyze the lifecycle of an IoT device in the smart home, and identify the problems we

need to solve in each phase. Specifically, during the bootstrapping phase, trust must be

securely established between the smart home system and the new device. During the

configuration phase, the owner must be able to restrict data access to each device. The

overall architecture must support multiple devices. Second, the requirements and solutions

for each problem are summarized to serve as an outline of the design. The following

chapters elaborate on detailed designs.

4.1 Assumptions

When an NDN Network Forwarder Daemon (NFD) receives an Interest, it must

know how to forward it according to the Interest packet’s name. The forwarding strategies

and entries of each NFD can be configured manually or automatically. In our design, we

assume there exists a well-known namespace “/local-home”. Each NFD in the local

home knows how to forward packets with this name prefix.

When the manufacturer produces a device, it assigns a universally unique identifier

(UUID) to the device. Each device can share a secret code with the owner out-of-band.

For example, the device body may have a printed barcode, and the owner can learn the

secret code by scanning it. Or the more capable devices can generate and display a code

on demand.

In the smart home system (Figure 6.), multiple IoT devices are providing various
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services. The owner of the home uses a dedicated controller to manage, configure, and

monitor the devices. For example, the controller can an Android phone app. In NDN,

identities are represented in the form of certificates. We assume the owner’s certificate can

be managed and used directly by the controller.

Figure 6. Overview

4.2 Threat Model

We assume an attacker has powerful capabilities to sniff, modify and send NDN

packets, but it cannot break cryptographic primitives (Figure 7. and 8.). For example, it

can launch the man-in-the-middle (MitM) attacks by recording, modifying and resending

a packet, but the attacker cannot break the encryption method in use or fake a keyed-hash

message authentication code without knowing the key. We will not discuss side-channel,

OS or hardware specific attacks and consider them out of scope. For bootstrapping, we

consider two kinds of attacks to evaluate the effectiveness of the protocol to defend

against fraudulent bootstrapping attacks. First, an attacker Trudy tries to pretend to be an

authentic device and onboard the home system. She uses recorded bootstrapping

messages to do so. Second, an attacker Trudy tries to pretend to be a controller to trick the
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device into believing it joined an authentic home system. For access control, we consider

an attacker Trudy managed to compromise one device and see if she can gain access to

data not granted.

4.3 Life cycle of a Smart Home Device

A typical lifecycle of an IoT device in a smart home over NDN has 7 phases

(Figure 9.).

Upon power-on, the device performs necessary hardware checks, load the OS and

start running; then it starts network configurations. Upon successfully configuring the

network, the device gains physical connectivity and reachability with other devices on the

same network. It initiates bootstrapping trust with the homeowner to learn the trust anchor

of the home and establish an identity of itself by retrieving a certificate signed by the

owner. It may need a follow-up phase for application specific configurations, then starts

operating normally for daily life. Optionally, the device provides observability for the user

or a supervisor application to monitor its service quality and tweak configurations

accordingly. At last, it should be able to get unloaded from the smart home system for a

reset or decommission.

4.4 Naming Design

We design a hierarchical namespace for a local smart home scope compatible to

schematized trusting to build the trust models later. All names start with a “local-home”

component denoting the local-home scope. The “Key” branch represents the name of the

Figure 7. Attacker in Wireless Environment Figure 8. Attacker in wired Environment
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Figure 9. Lifecycle of a device’s service

owner’s keys. The “bootstrap” branch is for naming data packets used in the

bootstrapping process. The “samples” and “read” branches are required by NAC, where

the former is for naming produced data, and the latter is for naming

production/consumption credentials. Figure 10. shows an example for a smart home with

a remote temperature sensor. Figure 11. list the rules for the naming hierarchy following

semantics in schematized trusting[12].

4.5 Bootstrapping Protocol Requirements and Design

The purpose of bootstrapping protocol is to mutually authenticate the device and

the owner, enable the device to learn the owner’s identity and establish an identity for the

device. Only the authentic device and the real owner can pass the protocol. The bootstrap

process must satisfy the following security requirements:

1. Any critical packet that will trigger a protocol status change must be checked for

integrity and authenticity;

16



Figure 10. Overall namespace hierarchy example

Figure 11. Overall name space deisn

2. The protocol should be secure against replay and MitM attacks;

3. The memory, CPU and network overhead must be reasonable to resist resource

exhaustion attacks.

We design the bootstrapping protocol by using secret keys shared out-of-band and

performing mutual cryptographic challenges embedded in two synchronized Interest/Data

message rounds. In each round, the initiator poses a random number as the challenge, and
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the responder must answer by applying a required cryptographic function to the random

number with the shared secret between the device and the owner.

4.6 Access Control Requirements and Design

The purpose of implementing access control is to evaluate the effectiveness of

NAC and provide fine-grained access control in the smart home system. The

implementation must satisfy the following security requirements:

1. An authorized identity must be able to access the content as long as the content is

still valid.

2. An unauthorized identity must not be able to access the content

We apply NAC by designing and implementing helper libraries over NAC

codebase and develop a mini smart home system which enables a user to read remote

temperature data published on a Raspberry Pi on an Android phone and control access to

it via an owner’s app.
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Chapter 5

Bootstrapping Trust

5.1 Introduction

Given the trust model in the NDN context, a new device knows nothing about the

trust anchor and vice versa. The device also does not know under which namespace

should it publish its data, because this information should be configurable according to the

needs of the owner, the higher level application, the specific scenarios, etc. During

bootstrapping, the device needs to learn the trust anchor and its namespace for data

publishment. The trust anchor should learn the device’s public key and generate a

certificate for the device which contains both the device’s public key, namespace, and the

trust anchor’s signature. Upon a successful trust bootstrapping, the device should gain

confidence it joined a trustable smart home environment under the permission of the

homeowner, and its published data will be trusted over the network. Then it may start its

operating process to fetch runtime configurations or begins publishing data. The owner’s

app should gain confidence that the new device is joined by the approval of the user and it

is what it claims to be. Then the owner’s app can update status according, for example,

show the device on a list of all bootstrapped ones. It is vital that during this process each

party can authenticate the other party to make sure the other is present and its message is

authentic. Otherwise, the attacker can trick one side of the two to transfer it trust status

when the other party is not even present, and further trigger the device to perform actions

not wanted by the owner. Take a hypothetical smart voice recorder as an example. The

recorder automatically starts recording when it detects sound in a specific room (such as a

baby’s room). If the attacker tricks the recorder to believe it has bootstrapped successfully,

it may start recording without the owner’s knowledge and use up its storage space slowly.

The trust bootstrap protocol must be able to defend against such kind of attacks. By doing

so, it also decouples the trust establishment from the other lifecycle phases.
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5.2 Trust Bootstrapping in Smart Homes

A homeowner O owns a set of smart devices D in a home. O configures devices

using a controller C. Before working correctly on the network in the house, a new device

Di ∈ D must gain mutual trust with the controller C (which represents the owner O) and

fetch secure and application configurations approved by O for subsequent operations.

After bootstrapping, Di must have learned how to identify and authenticate data generated

by O, and vice versa. In NDN, this means:

• Di learns the certificate of O so that it knows who is the authentic owner of the

home

• Di retrieves a certificate signed O so that it can publish data under the same name

prefix with the newly issued certificate.

Figure 12. shows an example of the trust status before and after bootstrapping.

Before bootstrapping, there is no way for the AC to verify if the data produced by the

thermometer can be trusted or not. After the bootstrapping, the thermostat produces data

under the namespace “/local-home/bdr1/temperature”, and signs the data using its

private key. The AC can verify the authenticity of the data by checking the data signature

against the certificate and gain the confidence of trusting the data.

Figure 12. Before and After bootstrapping
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5.3 Bootstrap Protocol Design

In this section, we present a protocol design that focuses more on the security

goals than communication properties.

To gain trust between two parties without the help of a third one, the two sides

must share some secret knowledge between them and be able to use the secret to verify the

other’s message. In our design, Di shares its unique identifier “<device-id>” and a

secret pairing key K with C out-of-band before bootstrapping. Only Di and C have

access to K. K is securely protected from disclosure before bootstrapping.

5.3.1 Trust model

An NDN trust model defines which identity acts as the trust anchor, and which

identity can be used to prove the authenticity of another one. An identity is the binding of

a namespace and a public key for a specific period. It is implemented in form of

certificates in NDN. An NDN certificate is a data packet. Its name contains the identity’s

namespace, and its contents the public key and other parameters. To prove the claim is

authentic and authorized, the certificate must be signed by a trusted and authorized

identity. We establish a center point trust model in the local home by defining the owner

O’s self-signed certificate Certo as the trust anchor of the network. All other trusted

certificates must be signed by O. This design can be easily extended to schematized

trusting[12], to devise rules defining which identity is authorized to sign certificates for

which namespaces and to automate the distribution and verification of the certificates.

By specifying the trust model, the goal of Bootstrapping becomes 1) mutually

authenticate a device and the trust anchor, 2) let the device retrieve the NDN certificate of

the trust anchor and 3) trust anchor issues an NDN certificate for the device. The NDN

certificate of the trust anchor contains the namespace and public key information of the

trust anchor. The NDN certificate for the device is signed by the trust anchor and defines

the namespace for the device. After this process, the device can verify the authenticity of

other messages over the network, and any consumer of the device’s data can do the same.

21



Figure 13. Bootstrapping Protocol Using HMAC

5.3.2 Bootstrap namespace

Before starting the bootstrapping, Di and C must agree on a well known

namespace, for example, “/local-home/bootstrap”, where both of them are reachable.

C and Di publish data under this well-known namespaces for bootstrapping. For example,

C uses “/local-home/bootstrap/owner” , and Di uses

“/local-home/bootstrap/device/<device-id>”. The owner’s name can be learned

from O’s certificate Certo. And the namespace for Di to publish its sensor data can be

learned after the bootstrapping under another well known namespace such as

“/local-home/configuration/namespace/<device-id>”.

5.3.3 Initialize bootstrapping

The device Di initiates the process by sending out an interest

“/local-home/bootstrap/owner/<device-id>/<R0>/HMAC(<device-id> |

<R0>, <K>)”. “K” is the shared secret between the device Di and owner’s controller C.

“HMAC” is a keyed-hash message authentication code function. “<R0>” is a random

number. It serves two purposes. 1) It is part of a cryptographic challenge for the C to

solve later to prove the authenticity of the controller. 2) It differentiates different

bootstrapping interests from the same device with the same key. The network will forward

this interest to C. Upon receiving this interest, C recalculates HMAC to verify 1) if the
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interest name is altered and 2) if the producer of this interest owns the shared key K. C

only proceeds when the verifications pass.

5.3.4 Learning the trust anchor

Once C verifies Di’s bootstrapping interest, it sends back the trust anchor’s

self-signed certificate Certo, concatenated with HMAC(Certo — ¡R0¿, K. Di verifies the

message by comparing R0 and recalculating the HMAC. If the verification is passed, Di

stores Certo, but does not accept it as the trust anchor at this time.

5.3.5 Learning the device

C sends out an interest

“/local-home/bootstrap/device/<device-id>/<R0>/<R1>/HMAC(<device-id>

| <R0> | <R1>, K)”. R1 is a random number generated by C. It serves the same

purposes as R0 in Di’s interest. R0 in this interest identifies which bootstrapping interest

from Di was received and processed by C. Upon receiving and verifying this interest, Di

sends back its public key PubKeyDi
, concatenated with HMAC(PubKeyDi

— R1, K).

Now, Di considers the challenge of R0 is fulfilled by the C, and will accept the Certo as

the trust anchor.

5.3.6 Issuing certificate for the device

C submit PubKeyDi
to the owner, and the owner issues a certificate CertDi

by

signing PubKeyDi
using O’s private key. Di fetches its certificate by sending interest

“/local-home/bootstrap/cert/<device-id>”. The certificate is encapsulated as the

payload of the responding data packet. It is named in format

“/local-home/device/<device-id>/<key-id>/KEY/<version>”, binding the

namespace “/local-home/device/<device-id>” with the device’s public key. The

data packet is signed with the C’s key, which is signed by the O. And the device Di can

verify the authenticity of the packet by applying schematized trusting.

This step is required for the device to work. But as our designs simplifies the

process for naming the device, real work application should adapt to requirements to
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negotiate a name for the device before issueing the certificate. On one hand, the device and

the owner has mutually authenticated and learned each other’s public key to authenticate

further messages. On the other hand, though issuing certificate and binding namespaces

are necessary to perform meaningful operations in NDN, it is also customizable to each

application. The namespace to bind to the device could be different and how the owner’s

keys are securely managed is left an open question. One simple solution is letting the C to

store and update the O, making it the only controller in the home. In a sophisticated,

systematic design, the storage of the O should be decoupled with the implementation of C

and should only be accessible to the user who proves itself as an owner.

5.3.7 Design options and reasoning

In this part, we will discuss other design options and the reasons why we didn’t

choose them. First, to initiate the bootstrapping process, we had two options:

1. Di initiates a bootstrapping session by expressing an interest periodically until it

receives a verifiable data published by C.

2. C initiates a bootstrapping session by probing the presence of Di by expressing an

interest periodically.

The two options differ in which principle (C or Di) will do the polling while waiting for

the other principle to be ready. Hypothetically, C is more likely to be ready and present on

the network than Di. For example, the C is a smartphone app which is always running in

the background or can be launched very fast on demand, and a new device such as a newly

bought thermometer needs to power up and boot before onboarding. When the device

intiates the process, the owner’s app won’t need to know the device information ahead of

time. Because the device can securely embed the information in the first Interest to the

owner. Then owner only needs to input the device’s secret to continue the bootstrapping.

Thus in our design, the device Di sends out the first interest to start the process when it is
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ready, rather than the C polling a namespace until Di is ready. Second, to ensure packet

integrity and authenticity, we can either

1. use an authenticated encryption, such as AES-EAX, AES-OCB[19], etc, on each

packet.

2. use keyed-hash message authentication code (HMAC).

We consider two questions. 1) is it necessary to keep confidential the details of the

bootstrapping packets? We use random numbers to defend against replay attacks. Leaving

those numbers in plaintext may expose an attack surface making it vulnerable to table

attacks. We will discuss later in this article that, given benign devices all behaving well,

encryption is not necessary to resist table attacks. 2) what’s the performance and message

overhead? Hash functions are in general faster than encryption and decryption. In the

HMAC design, there are four messages required. In the encryption-based design, there are

6. We prefer using HMAC than encryption, especially for its performance benefits.

However, we also present an encryption-based bootstrapping protocol as a supplement.

Third, to differentiate each packet from the same principle for the same purpose and resist

replay attacks, we could use sequence numbers, timestamps, or random numbers.

Sequence numbers trade extra state management on each principle for the ordinal

property. It introduces more storage overhead if the sequence numbers need to be

remembered across power on and off, and it is easier to record and reply messages with

sequence numbers if they were reset for each bootstrapping. After all, knowing the order

of repeated messages is not necessary, though it helps in deciding which message is the

latest sent or expected one. Timestamps provide not only ordinal property but also a

precise timing of each event. It brings in another dependence on a synchronized clock

between the device and the C. The random numbers require a random number generator

in the system. The correctness and resistance to attacks of the random-number-based

design rely on the implementation quality of the pseudo-random number generator. Many
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platforms come with a built-in pseudo-random number generator, and we consider the

state-of-the-art implementations are good enough for domestic cryptographic use cases.

However, the lack of ordinal information may require extra state management to ensure

correctness in imperfect scenarios, trading performance for robustness.

5.3.8 Encryption-based Bootstrapping Protocol

As a supplement, we now present an encryption-based bootstrapping protocol. The

two protocols both achieve the same security goals. When benign devices’ behavior

cannot be predicted and may misbehave, the encryption-based method is more reliable

than the HMAC based method in defending against replay attacks, especially table attacks.

Figure 14. Bootstrapping Protocol Using encryption

A device shares an identifier D and a secret key K with the homeowner via side

channels. The bootstrapping process is illustrated in Figure 14. and is described as

follows:

1. Homeowner publishes M1 = encr(Po|D|r1, K), where Po is the owner’s public key,

r1 is a random number, and encr is a symmetric encryption function, under the

name /localhome/bootstrap/device/ownerkey/for/D;

2. Device fetches M1, decrypts it, verifies D, and obtains r1. It then obtains Po and

validates the signature in M1;

3. Device publishes M2 = encr(Pd|D|r1|r2, K), where Pd is the device’s public key
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and r2 is a different random number, under the name

/localhome/bootstrap/device/D/pubkey;

4. Homeowner fetches and decrypts M2, then verifies D and r1, obtains Pd and r2, and

validates the signature in M2;

5. Homeowner publishes M3 = encr(r2|nonce,K), where nonce is random number,

under the name /localhome/boostrap/device/auth/for/D;

6. Device fetches M3, decrypts it, and verifies r2.

5.4 Evaluation of Trust Bootstrap Protocol

In this section, we evaluate our trust bootstrap protocol regarding performance and

security. Based on the cryptographic tools and parameters used in one scheme, we

estimate the runtime computation overheads introduced by the two design proposal of this

protocol compared to the method proposed in ndnTR0035[14]. Then we give an informal

argument on how the protocol is secure from potential attacks.

5.4.1 Performance Impacts

The major difference between the trust bootstrapping schemes is the cryptographic

tools used to prove the authenticity of the other party. The two schemes introduced in this

chapter use HMAC [20] and AES [21], and are named as homesec-hmac and homesec-aes

respectively. The ndnTR0035 uses HMAC. To measure the computation overheads, we

use the parameters listed in table 2. and simulate for 10000 runs for each scheme. Then

we record the total time cost for each scheme and compute the average computation

overhead in milliseconds.

The results are listed in table 3. Unsurprisingly, the HMAC-based approaches are

more computationally efficient than the AES-based ones. The bootstrapping process

doesn’t frequently happen in daily use, and any less-than-50-milliseconds overhead per

bootstrapping will not cause a performance problem to the smart home system.
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Scheme Parameter Value
ndnTR0035-hmac cipher sha256
ndnTR0035-hmac keybits 128

homesec-hmac cipher sha256
homesec-hmac keybits 128

homesec-aes-128 cipher aes
homesec-aes-128 keybits 128
homesec-aes-128 cipher aes
homesec-aes-256 keybits 256

all cryptolib openssl
all CPU Speed 2.20 GHz
all Name & Data Size ≤ 500 bytes

Table 2. Trust Bootstrap Evaluation Parameters

Scheme Msg Rounds Runtime Overhead

ndnTR0035 1 9.38ms
homesec-aes-128 3 37.46ms
homesec-aes-256 3 39.32ms
homesec-hmac 2 16.36ms

Table 3. Trust Bootstrap Evaluation Results
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5.4.2 Security Arguments

We consider two kinds of attacks to evaluate the effectiveness of the protocol to

defend against fraudulent bootstrapping attacks.

First, an attacker Trudy tries to pretend to be an authentic device and onboard the

home system (Figure 15.). She uses recorded bootstrapping messages to do so. For the

homesec-hmac scheme, the second interest from the Owner’s controller includes a random

number as a challenge. Only the authentic device can encrypt the random number

correctly. The randomness ensures the attacker can hardly record a correct message for the

same number. Thus the attacker cannot achieve success in her attempt. A similarly

effective protection mechanism can be found in the homesec-aes scheme. The ndnTR0035

uses a timestamp embedded in the Interest name from the device as an implicit challenge

to the device. The implicit assumptions for it to work is 1) an authentic device has a

synchronized clock with the controller, and 2) the communication cost for the interest to

reach the controller is ignorable. In real life scenarios, these two assumptions cannot

always hold. On the one hand, for a low-cost smart home device, it’s hard to ensure the

clock is synchronized securely before it joins the home system. On the other hand, if the

device has a slow network interface card or suffering a slow connection, the timestamp it

sends out may always miss the permitted threshold of the controller and can hardly

bootstrap successfully. The result is high false positives. The ndnTR0035 scheme only

Figure 15. Fake Owner Attack Figure 16. Fake Device Attack
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works under optimistic scenarios. But the homesec schemes are more reliable under

different situations for such an attack.

Second, an attacker Trudy tries to pretend to be a controller to trick the device into

believing it joined an authentic home system (Figure 16.). In homesec schemes, Trudy

cannot answer correctly the random challenge posed by the device in the first round

interest exchange. Thus her attempt will not achieve success. For ndnTR0035’s scheme,

the timestamp in the Interest name can serve as a challenge and Trudy cannot encrypt or

sign the message including the same timestamp without the correct shared secret between

the device and the owner. In this sense, it is also effective in protecting the device from

trusting a fake home network. However, as we previously mentioned, the device must

have a globally synchronized clock that never resets across power on and offs to ensure an

attacker cannot record already used timestamps and its corresponding replies.

5.4.3 Evaluation Summary

As a summary, all the three schemes can defend against replay attacks effectively.

The homesec schemes are slower than the ndnTR0035 scheme when it comes to both

message overheads or computation overheads acceptably. And they are more reliable in

protecting the owner’s home network and device with fewer assumptions and restrictions.
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Chapter 6

An Application and Evaluation of the Name-based Access Control

6.1 Introduction

Fine-grained access control to smart home data helps to defend against privacy

leaks and user behavior surveillance which would furtherly lead to many severe damages

such as physical intrusion such as burgery [7]. Name-based Access Control is a

content-based access control model [22] which do the work by requiring encrypting the

data upon production and decrypting the data upon consumption. In this section, our goals

are 1) use Name-based Access Control (NAC) in a smart home application to provide

access control to data, and 2) evaluate the usability and effectiveness of the NAC. In the

rest of this section, we will explain the intuition of the NAC design, identify the

difficulties and potential problems needs to be solved to apply the NAC implementation in

a real smart home application, present our design and implementation of the home app,

and show the evaluation metrics and results for NAC.

6.1.1 Intuition of Name-based Access Control

The NAC design models the data production and consumption in three parts: the

producer, the owner, and the consumer. The producer produces data, and the consumer

consumes the data, all under the permission of the owner. The owner controls the

production and consumption permissions by distributing production and consumption

credentials. The production and consumption credentials are pairs of public and private

keys. To give the permit to a data production process, the owner must grant the producer

the production credential. A data producer must generate a content key (C-Key) before

producing a piece of data, and use the key to encrypt the content. It then encrypts the

content key using the production credential. To give access to a piece of data, the owner

distributes the consumption credential to the consumer. The consumer uses the credential

to decrypt the content key and uses the content key to decrypt the data before consuming

the content. Given the actual purpose of the credentials, we call the production credential
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the key encryption key (E-Key) and the consumption one the key decryption key (D-Key).

C-Key, D-Key, and E-Keys are generated over a configurable time interval, and the

problem of securely naming and distributing all the keys are solved by defining a regular

naming scheme and applying schematized trusting over NDN. Figure 17. shows a

high-level view of the relations between each party and keys.

Figure 17. Name-based Access Control

6.2 Applying NAC to smart home applications

The Name-based Access Control (NAC) design provides a fine-grained scheme to

control the access to data over time. On the one hand, it provides a powerful and

expressive API. One can define access schedules for datatypes, and enforce identities to

produce or consume data packets at a schedule. But on the other hand, the implementation

of fine-grained control exposes too many parameters and implementation details to an

application developer, whose major concern is developing functionality instead of digging

into details of how the NAC works under the hood. Additionally, the concept differences

between the NAC API and the NAC design, the lack of the implementation of a higher

level access control manager, the complexity of those API, the inconsistency between API

document and the actual function, the lack of proper exception handling, the

under-maintained status with respect to the NDN primitives implementation (ndn-cxx),
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the implicitly defined API behaviors and uncertain outcomes of the same API calls all

dramatically increases the difficulty to directly apply NAC in an application. To overcome

these difficulties, we analysed the code of NAC implementation (the

name-based-access-control project), suggested documentation and code changes

[23] [24] [25], implemented adapters [26] to properly catch and handle exceptions, and

designed and implemented a higher level access control manager to simplify APIs

exposed for applications and to achieve more explicit and deterministic outputs of

event-driven callbacks.

We identify the problem of applying NAC design as devising time-based schedules

for accesses to data under the same namespace which represents a particular data type and

solve this problem in four steps.

First, NAC defines a set of basic naming rules, and we must incorporate them

when designing the namespace for shared data. Figuire 18. lists NAC naming rules for the

three genres of data. In the figure, “<prefix>” refers to the scoped namespace for the

smart home application. In our application the prefix is “local-home”. “<data-type>”

refers to the sub-namespace of the data that needs to be protected using NAC. For

example, if the data is about the temperature of the owner’s bedroom, its value is

“bedroom/temperature”. “<content-key-identifier>” is a string that is used to

identify the key used to encrypt the content. “<start timestamp>” and “<end

timestamp>” are the start and end of intervals to locate the E-Key and D-Key for data

production and consumption. Figure 19. shows an example of a valid namespace

hierarchy for smart home data.

Second, apply schematized trusting [12] to enforce the same trust model

throughout the smart home system. In our smart home system, the homeowner is the trust

anchor. The owner publishes a self-signed NDN certificate for itself under namespace

“/local-home”. All other nodes in the smart home retrieve this certificate through the

bootstrapping process and accept it as the root of trust. As introduced in previous sections,
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Figure 18. NAC Naming Rules

Figure 19. Smart Home Data Namespace Example

it is necessary for all other data producers in the smart home system to have a data-signing

key signed by the owner’s private key. A data producer signs its data using its key.

Figure 20. shows an example snippet of the signing hierarchy that enforces the trust

model.

Third, design and implement a standard code base for similar application

development. For example, implement the adapters as mentioned earlier and integrated

access manager to smoothe the developing practice, and implementing base classes and
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Figure 20. Signing Hierarchy for the Trust Model

code templates to enforce the same trust model and serialization formats. Figure 21.

shows the design of the code base regarding class diagrams.

Forth, build applications upon the established code base. For demo NAC, our mini

smart home system has four parts: the owner’s app on an Android phone, a thermometer

mounted on a Raspberry Pi, a NAC manager gateway on a laptop, and a temperature

reporter on the owner’s phone. Figure 22. shows the overall relations between each parts.

Figure 21. Class Diagram For the Application Library
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Figure 22. Mini Smart Home System

6.3 Implementing Smart Home Data Access Control using NAC

In this section, we present how we implement the smart home system across x64

and ARMv8 platforms by developing cross-platform libraries and dedicated apps for

macOS, Linux, and Android systems. Our implementation consists of two parts: the

common smart home node API library (Node API)and applications. The Node API

implements functions described in Section 6.2 and encapsulate reusable code templates.

The applications include owner’s controller and data consumer apps on Android, NAC

manager daemon on macOS, and data producers on Raspberry Pi Ubuntu system. The

macOS and Linux implementations relies on ndn-cxx [27] and

lib-name-based-access-controll [28]. The former implements the NDN primitives using

C++, and the latter provides the NAC API. On Android, we use jndn [29], which is one

NDN Common Client Library [30] for Java. Figure 23. shows the hardware settings of

Raspberry Pi and a connected digital thermometer (MCP9808). Figure 24. to Figure 26.

shows the owner’s Android phone, required and implemented apps.
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Figure 23. Mini Smart Home Smart Sensor

6.4 Evaluating NAC

The evaluation of NAC has two parts. First, we estimate the computation and

message overheads in the NAC implementation. The NAC implementation’s code uses

AES128 for content encryption in a hardcoded way. But we also consider the case of

using AES256 as this currently recommended way to perform data encryption on the

Internet of things devices[31]. Second, we analyze the usage scenarios that the NAC

design can cover.

6.4.1 NAC Performance Overheads

By examining the NAC code and observing Interest and Data packet logs via

ndndump [32], we count the additional messages sent and received while performing one

data packet production and one consumption comparing to directly sending an Interest and

receiving a Data packet. We assume the Interest and Data packets are sent for the first time

so that a middle-way NFD couldn’t have cached it and there is no packet resending occurs

in the process. The measurements are done in three parts. First, the group manager doesn’t

actively send out packets. But it publishes 2 data packets as production and consumption

credentials and sends them upon Interests is received. The data producer should request
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Figure 24. Owner’s Phone Figure 25. Owner’s App Figure 26. Consumer

production credentials with an Interest. But in the implementation, if the data’s name has

N components, there will be N − 1 interests sent out for requesting the production

credential though only one Data packet is expected to return. This is because the producer

does not know the correct name for the credential and thus it must guess by iterating all

possible names. Then it publishes M encrypted content key packets for M schedules that

has access to the content. The consumer sends one Interest for the consumption credential

and one Interest for the encrypted content key. The total number of packets in transmitting

is 8. The total number of message rounds is 3. Table 4. lists all the count side by side.

For computation overheads, we measure the runtime overheads introduced by

crypto functions. A combination of parameters for each crypto method is a profile. And

for each profile, the estimation is run 1000 times and take the average time cost in

Role Packets Message Rounds

Manager 2 1
Producr 4 1

Consumer 2 1

Table 4. NAC Packet and Message Overheads
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milliseconds as a result. The profile parameters are list in Table 5.. The result is presented

in Figure 27.. As we can see, though the NAC implementation chooses AES 128 over

AES 256, the latter is not introducing more performance impacts than the former. Overall,

the performance impact excluding the communication costs is under 100ms per process

for all profiles.

Figure 27. NAC Computation Overheads - Chart

6.4.2 NAC Security Analysis

In this part, we evaluate how well NAC works for different hypothetical scenarios.

In our mini smart home system, the owner controls the permission for the

thermometer to produce temperature data. To gain permission to produce, the thermostat

must retrieve a certificate from the owner for temperature data’s namespace and fetch

production credentials. If the owner didn’t issue the certificate for the thermometer, then

thermometer’s data won’t be trusted by other nodes. If the owner didn’t publish the

production credential, then the thermostat won’t be able to encrypt the content key, and no

one will be able to read the temperature except for itself. To gain access to read

temperature, the app must retrieve the correct consumption credential from the owner.

Otherwise, the app cannot decrypt the content key, and cannot decrypt the encrypted
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Role Step crypto method parameter

Manager credentials key-gen rsa 1024
Manager credentials encryption rsa 1024
Producer C-Key key-gen urandom 128
Producer C-Key key-gen urandom 256
Producer Content Encryption AES 128
Producer Content Encryption AES 256
Producer C-Key Encryption RSA 1024
Producer E-Key Decryption RSA 1024

Consumer D-Key Decryption RSA 1024
Consumer C-Key Decryption AES 128
Consumer C-Key Decryption AES 256

Table 5. NAC Parameters

Profile Role Cmpt. Overhead

rsa-1024-aes-128 manager 54.512419
rsa-1024-aes-128 producer 21.088183
rsa-1024-aes-128 consumer 18.893829

total 94.494431
rsa-1024-aes-256 manager 54.512419
rsa-1024-aes-256 producer 20.869772
rsa-1024-aes-256 consumer 19.08343

total 94.465621

Table 6. NAC Computation Overheads - Data
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temperature reading data. Thus without getting permission, an app cannot finish the

production or consumption of a piece of data by enforcing NAC.

When the owner revokes the permission for a producer to publish data, it stops

offering the producer the production credentials. The producer won’t be able to continue

production when its current production credential expires. When the owner revokes the

permission for a consumer to read data, it stops offering the consumer the consumption

credentials. This works for future data when the current consumption credentials expire.

However, this won’t prevent the consumer from decrypting and reading the previous data

before the revocation because the consumer may still have access to keys before the

revocation. The NAC authors suggested one way to do the renovation work by requiring

the app to encapsulate the consumption process in a black box, and all the keys are

forgotten upon usage. However, this solution is not strong enough to protect the user’s

data. To entirely revoke the read access from the app, the app must not remember any

previous keys, the network must not have caches of earlier keys, and the owner stops

publishing then app’s consumption credentials.Even so, if a device is compromised, it

won’t behave as good as defined by the protocol and there is no way to restrict it. The

same issue exists for the producer. A producer app is compromised and is publishing

wrong data. The owner revoked its write permission by stopping publishing certificate and

the production credential. The compromised producer may use the previous keys to

produce and sign the data and cheat the consumer to use an erroneous or adversary history

data.

41



Chapter 7

Conclusion

In this work, we studied current smart home technologies and identified security

risks in producing and accessing smart home data. We designed and implemented

protocols in the context of NDN to protect the home owner’s data by securing the

bootstrapping of new devices and enforcing fine-grained access control. We include a

mutual authentication process in the bootstrapping protocol to eliminate the strong

assumptions made in previous work and enhance the defense against replay attacks. We

developed an access control manager with a friendly API to enforce name-based

fine-granularity access control to smart home data. Our evaluation shows that NAC does

not introduce significant computation overhead and performs well in granting and

preventing accesses. Last but not the least, we provide a Smart Home Common Node API

incorporating the trust bootstrapping and access control protocols for building future

smart home applications over NDN across macOS, Linux and Android platforms.
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