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ABSTRACT

Hossain, Syed Monowar. Ph.D. The University of Memphis. May, 2017.
Identifying Drug (Cocaine) Intake Events from Acute Physiological Response in
the Presence of Free-living Physical Activity. Major Professor: Dr. Santosh Kumar.

A variety of health and behavioral states can potentially be inferred from

physiological measurements that can now be collected in the free-living

environment. The major challenge, however, is to develop computational models

for automated detection of health events that can work reliably. In this work, we

develop a physiologically-informed model to automatically detect drug (cocaine)

use events in the free-living environment of participants from their

electrocardiogram (ECG) measurements. The key to reliably detect these events

is to incorporate the knowledge of autonomic nervous system (ANS) behavior in

the model development so as to decompose the activation effect of cocaine from

the natural recovery behavior of the parasympathetic nervous system (after an

episode of physical activity). We collected 89 days of data from 9 active drug

users in two residential lab environments and 922 days of data from 42 active

drug users in the field environment, for a total of 11,283 hours. We developed a

model that tracks the natural recovery by the parasympathetic nervous system

and then estimates the dampening caused to the recovery by the activation of the

sympathetic nervous system due to cocaine. We developed efficient methods to

screen and clean the ECG time series data and extract candidate windows to

assess for potential drug use. We then applied our model on the recovery

segments from these windows. Our model achieves 100% true positive rate while

keeping the false positive rate to 0.87/day over (9+ hours/day of) lab data and to

1.13/day over (11+ hours/day of)field data. In order to further improve the

sensitivity and specificity of our model, we proposed several new data screening

methods. Also we proposed a method to remove the effects of activities that acts

as a confounder. We observed the false positive rates of 0.78 and 0.98 per day

iv



when we apply the enhanced model to the lab and field data respectively.

Moreover, we observed that the proposed model has high specificity to cocaine.

The method also estimates the dosage amount of drug for an event. However, the

predicted dosage amount is not reliable for high dosage amounts in free living

conditions.
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Chapter 1

Introduction

1.1 Background and Motivation

Advances in mobile sensing are enabling a new vision of healthcare (called

mobile health or mHealth), where consumers can monitor, manage, and improve

health and well-being as they go about their daily lives [1]. Wearable, inexpensive

sensors allow capture of health relevant data, such as measurements of heart,

respiration, physical activity, location, etc. in the natural environment [2,3]. These

wearable sensors have become reliable instruments to collect sensor

measurements in the field environment, and hence research has shifted from

developing wireless sensor platforms to the processing of sensor data to infer

health related events such as stress [4], smoking [5], drug use [6], and identify

their antecedents and precipitants (i.e., high risk situations). Automated detection

of these precipitants on a mobile phone can be used to trigger just-in-time

intervention or treatment. For example, momentary exposure to greater physical

disorder, social disorder, and drug activity in a neighborhood (as indicated by the

NIfETy score [7]) and experiencing craving or stress could constitute a high-risk

situation worthy of real-time intervention for a drug user wanting to quit. The first

step in building such mHealth control systems for improving human health usually

is to collect sensor data in the natural environment and locate the adverse health

events in the time-series of sensor data so as to discover the causal role of

various contexts in precipitating the adverse health event. Therefore, the

development of reliable models for detecting adverse health events from mHealth

sensor data in the natural field environment is a critical step in the development of

just-in-time mHealth interventions.

Development of such models involve several challenges. First, appropriate

sensor(s) are needed that can be used conveniently in the field settings for long
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enough duration to capture the health events of interest. The sensor should be

robust for reliable data collection in the free-living natural environment. In

addition, the sensor should be sensitive and specific enough to exhibit a

detectable response to the health event of interest. Second, appropriate data

collection experiment needs to be designed and conducted to collect the sensor

data with appropriate labeling of the times when the health event of interest

occurs (to train the model). Third, a robust computational model needs to be

developed that is able to detect the event of interest from sensor data in the

free-living natural environment.

Drug intake events (e.g., cocaine use), known to acutely excite the

autonomic nervous system, can potentially be detected from its response on

wearable electrocardiogram (ECG) sensors. Heart Rate (HR) increase of more

than 30% (for 16 mg of cocaine) [8,9] have been observed in lab studies. After

(intravenous) cocaine administration, it usually takes 20-60 minutes for the heart

rate to recover. Hence, the effect of cocaine use on ECG is quite acute and

potentially distinct.

To the best of our knowledge, [6] is the first work to present a

computational model for automated detection of cocaine use from ECG. They

collect data from six participants in lab setting during cocaine administrations of 8

mg, 16 mg and 32 mg dosage levels. The authors develop a model to classify

ECG cycles into drug and baseline classes. Although this method achieves high

accuracy (average AUC > 0.9) on clean lab data, there are several challenges in

using such a model for detecting cocaine use events in the field setting. For

example, as we show in Section 3.3.1, it is not trained to distinguish ECG cycles

during drug use from that during physical activity. Second, it is not trained to be

invariant to dosage amount and to the modality of administration. Third, since the

model classifies each ECG cycle, it is not clear how to use this as a building block
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to develop a model for detecting the entire drug use event and to distinguish it

from physical activity events. Although accelerometry measurements can be used

to detect the occurrence of physical activity, drug use events in the field are

usually concurrent with physical activity (i.e., subjects are not stationary following

cocaine use), and hence acceleromtery alone can’t distinguish the two events.

1.2 Problem Statement

In this work, our goal is to design a physiologically-informed model to

automatically detect drug events from their acute physiological response, in the

presence of various confounders inherent in the free-living lifestyle. The key to

reliably detecting drug use event is to incorporate the knowledge of autonomic

nervous system (ANS) behavior in the model development. We decompose the

activation effect of cocaine from the natural recovery behavior of the

parasympathetic nervous system (PNS) that can be observed upon conclusion of

a physical activity episode. There is increasing interest in the problem of

automatically detecting drug use due to its high societal impact. Illicit drug use,

affecting over 150 million people, is a major cause of mortality from fatal overdose

and dependence, HIV, Hepatitis B, and Hepatitis C. Other adverse health effects

include mental disorder, traffic accidents, suicides, and violence [10]. In drug

intake research one of the important goals is to identify the antecedents and

precipitants of cocaine intake. Scientific user studies resort to observing and

recording user?s context while drug intake occurs. Thus it is imperative that these

studies employ some method for detecting drug intake. However, most of the

studies on cocaine intake behavior mainly employ self-reporting methods for this

purpose. These self-reporting methods range from basic pen-paper methods and

retrospective recalls, to electronic diary keeping and ecological momentary

assessments(EMA) [11]. These methods, in addition to putting extra burden on

users, depend on user compliance, introduce subjective biases etc. that limit their
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utility. Therefore, our focus is on the automated detection of drug events in the

natural environment that can enable the development of such effective

intervention methods.

1.3 Cocaine Event Detection Model

We first designed and conducted three user studies with active drug users

— two in the lab and one in the field. In each study, participants wore the

AutoSense sensor suite [2] that included an ECG sensor and accelerometers.

The lab studies were conducted in residential facilities with 9 drug users (across

89 days). It included free-living lifestyle together with sessions of repeated

cocaine administration of various doses under medical supervision. For the field

study, 42 drug users wore the sensors for 4 weeks in the field so as to maximize

the chances of capturing real-life cocaine use events.

We then develop efficient methods to screen and clean sensor data to

handle noise and drift. Next, we develop a data preprocessing stage to identify

and locate windows in ECG time series that exhibit physiological response of

sufficient magnitude that may result from cocaine use. Activity-free recovery

segments from these windows are assessed to determine whether this window is

a result of cocaine use. For this purpose, we develop a dynamical system model

of the parasympathetic nervous system (PNS) behavior from the heart rate

recovery observed upon conclusion of cocaine-free physical activity episodes. In

the case of cocaine use, the PNS recovery is dampened due to excitation of the

sympathetic nervous system (SNS) from cocaine. The strength of SNS excitation

weakens with metabolism of cocaine. Using lab data from cocaine

administrations, we develop dynamical system models of both SNS activation and

its weakening due to cocaine metabolism, in order to model the

cocaine-dampened PNS recovery. We refer to these models collectively as our

Autonomous Nervous System (ANS) model. Our ANS model classifies a window
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into cocaine class if the recovery portion of the window matches that of a

cocaine-dampened PNS recovery, and otherwise, if it better matches natural PNS

recovery.

We evaluate the performance of our ANS model on both lab and field data.

We present some operating points from the ROC curve (see Figure 3.9). For

100% true positive rate, the model keeps the false positive rate to 0.87/day in the

lab, even though 10+ candidate windows (due to significant physical activity) are

found during 9+ hours/day of sensor wearing in the lab. On 922 days of the field

data, we find 27 episodes of cocaine use with good quality sensor data from 13

participants. For these participants, there are 79 confirmed non-cocaine days as

established from urine assessment. On these days, there are 1,171 major activity

episodes. The model keeps the false alarm rate to 1.13/day, even though 11+

candidate windows are found during 11+ hours/day of sensor wearing in the field.

1.4 Enhancement of the Model

Based on the findings of our initial work, we enhance several modification

to the model. First, we improve the sensitivity and specificity of the model.

Secondly, we add detection of cocaine dosage as an added functionality to the

model.

In order to improve the sensitivity of the model to such noise and increase

the number of potentially detectable events, fist we investigate the performance of

the model when smaller recovery segment is used. We show that, when the

length of the recovery segment is small (30 second), the false positive rate

increases up to 10.4 per day. Second, we analyze the performance of the model

when we use full recovery portion of the RR signal in the model after removing the

effects of confounders, namely activity. To remove the effect of activity, we

remove the portion of the RR signal that is affected by intermittent activities of

short durations and impute the missing data. This allows us to use the full
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recovery part of the RR signal in the model. We show that the false positives/day

is reduced from 0.87 to 0.74 on the lab data and in case of field data we lower the

false positive rate to below 1 per day.

On the other hand, to investigate the specificity of the model, we run the

model on the data collected on days where there is self report of only non-cocaine

drugs and we find that none of the drugs (e.g., Heroin, Morphine, THC, etc.) are

misclassified as cocaine.

As an added functionality of the model, we estimate the dosage amount for

each detected drug intake events. First, we analyze the performance of the model

to estimate the dosage on lab data. We find that the model estimates the dosage

with 27.9% error. Then, we apply the model to estimate the dosage in field data.

We see that the error rate is high (101.7%). Our conclusion is, due to the effect of

activity and higher intake of dosage than the lab, it is difficult to estimate the

dosage. More data with higher dosage in the controlled environment is important

to investigate further.

Contributions. This work makes several key contributions. First, it

establishes feasibility of collecting good quality physiological sensor data in the

field environment from illicit drug users during real-life drug use events. These

data provide a first look at physiological response to drug use episodes of up to

600 mg. Second, this work shows that it is indeed possible to develop a model for

detection of health events from physiological sensor data collected in the lab

settings that generalize to the free-living natural environment, providing a

feasibility result for the critical question of lab-to-field generalizability. This is

achieved by developing explainable models that model physiological mechanisms

and hence enable decomposing the effect of physical activity on the physiological

response. Third, automated detection of drug use events in real-time (in a

scientific study) can be used to solicit self-reports on the mobile phone to obtain
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more information surrounding the context of drug use. Fourth, accurate

localization of drug use events in the time series of sensor measurements can

enable discovery of antecedents and precipitants that can be detected from

sensors in the mobile phone alone (e.g., GPS, accelerometry). Such discoveries

can then be used to construct novel just-in-time interventions to predict drug use

events and break the urge. Even self-monitoring of these contexts can enhance a

patients’ awareness of vulnerable contexts and help them avoid such high risk

situations [12,13,14].

Finally, the model of parasympathetic nervous system (PNS) can be of

independent interest in assessing the fitness of individuals. Recovery from

physical activity (i.e., the health of PNS) is traditionally used for estimating

cardiovascular health in clinical settings [15,16]. The ANS model developed in

this work can be used to obtain stable estimates of PNS recovery in the natural

environment. This new measure has a potential to be of similar utility as heart rate

variability (HRV) in biofeedback applications for self-improvement of physiological

health.

Real-life Usage of the Model. The work presented here is not intended to

be used directly by drug users seeking help with cocaine abstinence. Rather, this

model is intended to be used in scientific studies of drug use. Using the model,

we are able to pinpoint where the cocaine event occurred in time, which cannot be

reliably inferred from self-report. Locating cocaine use events in the time series

can help identify predictors from other sensor modalities (e.g., location, activity,

stress, etc.). During real-life usage to help cocaine abstinence, the system does

not detect cocaine use; rather, it predicts potential for lapse and prompts a user to

break his/her urge when the predictors are detected. In this phase, the users are

not wearing the physiological sensors. They only carry their smartphones.

We further point out that collecting physiological sensor data during real-life
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cocaine use episodes is an inherently challenging task due to the context and

situation associated with illicit drug use. It took nearly 922 person days (10,449

hours) of sensor wearing in the field to find 27 cocaine use episodes with good

quality ECG data. Fortunately, development of a model is a one-time activity.

Once a model is published and predictors of cocaine use are discovered and

reported (subject of ongoing work), the community does not need to go through

this tedious and resource intensive process again. They can use our models and

use the predictors we find in our data set in developing cocaine abstinence

interventions.

1.5 Organization

Chapter 2 describes some related works and summarizes the key

challenges in developing a reliable model for detecting cocaine use in the field.

Data collection procedure and statistics of data collected is described in Chapter

3. Data processing steps and model development are also described in this

chapter. We describe how we can enhance of our model for better sensitivity and

specificity in Chapter 4. In Chapter 5, we describe the limitations of our model.

Finally in Chapter 6, we discuss potential generalization of our model in the

sensor based detection of other human behaviors.
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Chapter 2

Related Works

There exists a substantial body of literature on the measurement of

physiological responses to various drugs, such as cocaine, in the laboratory

environment, where different doses of cocaine were administered to volunteers

and physiological measurements (e.g., heart rate, blood pressure)

recorded [8,9,17,18,19,20]. These studies focussed on examining the influence

of different routes of administration (e.g. smoked, intervenous and intranasal) on

pharmacokinetic parameters and drug-induced behavioral and physiological

effects of cocaine. Table 2.1 summarizes results from these works on the effect

of cocaine on heart rate. We observe that the response time and duration of effect

depends highly on the route of administration [21]. In case of smoked or

intravenous administration, the onset of action is almost immediate and within 1-5

minutes the effect reaches its peak. In all cases, there is an increase in heart rate

(or decrease in RR interval - the interval from one R-peak to the next in the ECG

waveform) and blood pressure and both increase with dosage. An increase of

32% and 34% respectively for intervenous cocaine doses of 16 mg and 32 mg

was reported in [8,9,22].

Table 2.1: Response time and effect duration of cocaine intake on heart rate.

Route of Administration Onset of Action Peak Effect Duration of Action

Smoking 3-5 sec 1-3 mins 5-15 mins
Intravenous 10-60 sec 3-5 min 20-60 min

Intranasal or mucusal 1-5 min 15-20 min 60-90 min
Gastrointestinal ≤ 20 min ≤ 90 min ≤ 180 min

For characterizing physiological response to drug use, [23] used non-linear

regression to model the heart rate during cocaine and placebo administration

sessions. The placebo session consisted of a bolus intervenous injection and a

9



4-hour continuous infusion of a 0.2N saline solution. It used 40 mg, 60 mg and 80

mg cocaine intervenous doses followed by a 0.2N saline or cocaine infusion that

lasted for 4 hours. Heart rate was modeled as the sum of baseline heart rate, an

exponentially decaying model of conditioned response effect, and a non-linear

drug effect model. The conditioned response effect was used to model the

response that was observed a couple of minutes before the injections which also

continued a couple of minutes after the injection, even during the placebo

sessions. This model, however, cannot be readily used to detect drug use in the

field as it does not distinguish from similar effects that are observed during other

confounding events in daily life (e.g., physical activity).

In [13,14], the authors describe preliminary investigation of a proposed

project called “iHeal’’, that can potentially detect subject’s craving of drugs in their

natural environment from sensor data on electrodermal activity, body motion, skin

temperature, and, optionally, heart rate. Results of this project, however, are yet to

be reported.

To the best of our knowledge, [6] presents the first work on an ECG

morphological feature based classifier for detecting cocaine use. As discussed in

Section 1.3, the model presented in [6] for classifying each ECG cycle into

cocaine use or baseline does not lead to a model for detecting Cocaine use

events in the field setting that involves free-living activities.

Key Challenges. In conclusion, detection of cocaine use from

physiological measurements collected in the field setting is challenging. We now

summarize some of these technical and experimental challenges. First,

physiological measurements such as ECG are subject to several sources of

noises and quality issues, especially when worn in the mobile environment. They

include incorrect placement and poor attachment of electrodes. Second, reliably

collecting wearable ECG measurements from illicit drug users during active drug
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use in their natural environment is challenging due to the scenario and context of

its usage. From our multi-year effort to collect ECG data in this population, we

observe that in many situations the participant simply chooses not to wear the

sensors during drug intake, even though they wear the sensors daily for 11+

hours. This may be due to safety concerns associated with wearing devices in

crime-prone neighborhoods, where they may be suspected to be wired by the

police. Third, it is very difficult to recruit participants who are active drug users;

therefore, in most published scientific studies, the number of participants is

usually in single digits. Fourth, obtaining ground truth, i.e., self-reports from

participants as they take drug is also difficult, partly due to the same reasons as

above. Though urine assessment can indicate drug intake over the previous few

days, they do not provide the exact timing of the drug use event. Fifth, dosage

amount and the method of administration (in case of cocaine — smoking,

intravenous, intranasal or gastrointestinal) has significant effect on the HR

response. However, we cannot obtain training data in a lab setting by

administering drugs that represent very high dosage levels observed in the field

(up to 600 mg). Sixth, as data is collected in unconstrained environments, there

are usually confounding factors that can have similar physiological response. For

cocaine use detection, the common confounding factors are activity, caffeine

intake, and the intake of other drugs. Since we can’t ask participants to walk

during drug administration in lab, we can’t collect lab data that represents drug

use mixed with physical activity. Yet, the model developed must be able to

distinguish drug use events from physical activity even when they co-occur. The

model we present is the first work to handle all of the above issues and detect

drug use events that occur in the field setting.
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Chapter 3

Cocaine Event Detection Model

In this chapter, we present detection of cocaine intake, a novel system to

automatically detect cocaine intake from ECG measurements. We develop a

dynamical system model of the parasympathetic nervous system (PNS) behavior

from the heart rate recovery observed upon conclusion of cocaine-free physical

activity episodes. We also develop dynamical system models of both sympathetic

nervous system (SNS) and its weakening due to cocaine metabolism, in order to

model the cocaine-dampened PNS recovery. We then evaluate the performance

of our model on both lab and field data using generalized likelihood ratio test

approach.

3.1 Data Collection

We designed and conducted an in-residence user study with 3 cocaine

dependent volunteers at Johns Hopkins University Medical School (termed “JHU

Lab Study”). We conducted a second in-residence study with 6 cocaine using

volunteers at National Institute on Drug Abuse Intramural Research Program

(NIDA IRP) (termed “NIDA Lab Study”). We also conducted a field study with 42

active poly-drug users (for 4 weeks of sensor wearing per user) at NIDA IRP

(termed “NIDA Field Study”) to collect sensor data in the free-living environment.

All studies were conducted upon approval from the Institutional Review Board

(IRB) of the respective institutions.

Sensor Suite. We used a wearable wireless sensor suite called

AutoSense [2]. AutoSense uses a flexible band worn about the chest to capture

respiration data via inductive plethysmography (called RIP). The chest sensor unit

also contains two-lead electrocardiograph (ECG), 3-axis accelerometer,

temperature sensors (ambient and skin), and galvanic skin response (GSR). The

sampling rates for the chest band were 21.33 Hz for RIP, 64 Hz for ECG, 10.67 Hz
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for each of the three axes of accelerometers and GSR, and 1 Hz for the two

temperature sensors and the battery level. Fig. 3.1 shows how to wear the

AutoSense sensor suite. These samples were transmitted wirelessly using ANT

Fig. 3.1: Respiratory Inductive Plethysmograph band (in blue color) is worn
around the chest area and wearable AutoSense sensor unit clips to the belt. A
3-axis Accelerometer, ECG, and Galvanic Skin Response sensors are also
included in the same sensor unit. Mobile phones are capable of capturing data
wirelessly from this sensor.

radio [24] to a Sony Ericsson Xperia X8 smart phone at the rate of 28

packets/second, each of which was 8 bytes long, containing 5 samples. The

sensors last more that 10 days on a 750 mAh battery. We used the FieldStream

mobile phone software [2] for logging the data. On a full charge, the phone

battery lasts over 11 hours.

In the following, we describe the study protocols and the measurements

obtained from the three studies.

3.1.1 In-Residence Study Protocols

In the “JHU Lab Study,” three non-treatment seeking cocaine dependent

volunteers (37-41 years old, 2 males) enrolled in a behavioral pharmacology

residential study at Johns Hopkins University. They wore the AutoSense for at

least 8 hours daily on the weeks when cocaine self-administration sessions were
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scheduled. During a safety session, participants self-administered intravenous

cocaine doses of placebo (1 mg), 10 mg, 20 mg and 40 mg (every 30 minutes) via

a Patient-Controlled Analgesia (PCA) pump. Safety data were collected only for

two participants. During study weeks 1, 3 and 5, participants went through a

series of cocaine self-administration sessions. Dose Response session on

Monday consisted of three doses 45 minutes apart — placebo (1mg), 20 mg and

40 mg. On Tuesday, Wednesday and Thursday, a sample of cocaine dose was

self-administered in the morning (double-blind randomized, out of placebo, 20 mg

or 40 mg). After 2 hours, they were offered 7 choices for either the same morning

drug dose or decreasing amounts of money in a sample/choice session. In

summary, each participant went through 13 days of cocaine administration (1

safety session, and 3 study weeks of 4 days each). During rest of the awake

hours of the day when wearing AutoSense, the participants self reported smoking

and craving events as well as some events that may trigger craving (e.g.,

watching TV, watching movies, or playing video games).

In the “NIDA Lab Study,” healthy cocaine users are admitted to a secure

residential research unit at NIDA IRP. They undergo baseline assessments on

Day -1, receive training on Day 0, and receive single doses of intravenous cocaine

(25 mg) on Days 1, 5 and 10. On Days 1, 5, and 10, dried blood spot specimens

are collected up to 3 times daily over 1.5 hours. Single oral doses of

acetazolamide (15 mg) are given on Days 2-5 and quinine (80 mg) on Days 7-10.

Blood, oral fluid, and breath specimens are collected for up to 71 hours, 70 hours,

and 22 hours, respectively, after drug administration on Days 1, 4, 5, 9 and 10.

Participants wear AutoSense on Days 1, 3, 4, 5, 8, 9 and 10 for up to 12 hours

each day. Six participants have completed this lab study.

Data obtained from the in-residence studies are used to develop the model

for detecting cocaine use since it consists of clean and carefully labeled

14



activity-free cocaine use events, as well as various confounding events such as

physical activity, games, smoking, etc., that are free from cocaine use.

3.1.2 Field Study Procedure

Methadone-maintained poly-drug (Cocaine, Heroin, etc.) users (different

from those in the lab study) were recruited for NIDA field study. Participants wore

AutoSense for four one-week periods, in their natural free-living environment.

Participants were asked to self-report drug craving and use events in the field by

pressing a button on a study smart phone (different from the one that collected

ECG sensor data). Whenever they self-reported a drug-use event, they were

asked to provide additional information on the timing of the drug use by choosing

one of the options provided on the mobile device. The options were: (1) Less than

5 minutes ago, (2) 5-15 minutes ago, (3) 15-30 minutes ago, and (4) More than 30

minutes ago (in which case they were asked to input an estimate of the time of

drug use). Urine samples were collected three times weekly (Monday,

Wednesday, and Friday) during weeks when participants wore the sensors. Forty

two participants have participated in the field study. Data collected in this study

are used to understand the challenges in detecting drug use in the field

environment and to validate our model for detecting cocaine use in the field

setting.

3.1.3 Data Collected

In the “JHU Lab Study,” the first participant wore the sensors only during

weeks 3 and 5. Twelve days of data is collected from the first participant, 24 days

from the second participant, and 22 days from the third participant, making for a

total of 58 days. Of these 8, 13, and 13 days respectively are from cocaine

administration sessions. An average of 9.55 hours of data was collected per day,

for a total of 554 hours of good quality usable data.

In developing the model, we did not use the data corresponding to the 10
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mg dose as we do not observe significant physiological response for this dosage

level. From the remaining 36 sessions, sensor data is lost for 9 episodes (5

episodes from 20 mg and 4 episodes from 40 mg), due to ECG electrode

detachment and/or displacement, leaving 27 episodes (13 episodes from 20 mg

and 14 episodes from 40 mg) for use in model development and evaluation.

From the 3 participants who went through the choice session, only 1 chose

cocaine, providing 18 instances of active cocaine administration during the choice

sessions. We do not use the choice session instances in modeling since cocaine

injections were administered only 15 minutes apart, not allowing enough time for

the physiology (i.e., heart rate) to recover before re-administration. Further, the

effects of multiple doses accumulate, making it quite different from a single

cocaine dose response.

In the “NIDA Lab Study,” 31 days of data have thus far been collected, of

which 14 days had cocaine sessions. Each cocaine day had only one cocaine

session of 25 mg. A total of 280 hours (or, 9 hours/day) of good quality ECG data

have been collected from these 31 days.

In the “NIDA Field Study,” we have thus far collected 922 person days of

field data from 42 participants (4 participants did not complete). A total of 10,449

hours of ECG data has been collected (11.33 hours/day, on average). On those

days, participants self-reported 211 instances of illicit drug (142 for cocaine) use

events. Each self-report has the time of drug use, type of drug (e.g., Cocaine,

Heroin, Methamphetamine, opiates, THC, Benzodiazepine), quantity, and how the

drug was administered (e.g., smoking, sniffing/snorting, oral, or intravenous).

Sometimes, the participants reported the use of multiple types of drug at the

same time.

Among the 42 participants, 20 participants actually reported cocaine use.

Among the 142 reported cocaine uses, 3 were for 50 mg, 86 for 100 mg, 1 for 150
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mg, 34 for 200 mg, 8 for 300 mg, 9 for 400 mg and 1 for 600 mg. For modality of

use, smoking was most popular (52 out of 142), followed by intravenous (48),

sniffing (39), and oral (3).

We observe several issues with data collection in field. In several

instances, data is unavailable due to not wearing the sensor or of not usable

quality due to improper or loose contact of ECG electrodes, electrode

detachment, loosening of electrical connectors, drying out of gel, noise from

physical movement, etc. We adopt a method proposed in [25] for determining

acceptability of ECG signals. In addition, a human expert visualized the signals

and corrected any error in the labeling produced by the automated algorithm

though they are very few in number. Since the participants did not report the exact

time of the drug use, we measure the availability and quality of our sensor data for

each person day to verify the usability of the collected data. Also, the self-report

may not always be accurate. Hence, we visually inspect the ECG, and

accelerometer signals together with the drug use self-reports to ascertain whether

data in the vicinity of self-report indeed exhibits a drug use response.

Out of the 142 self-reports of cocaine use (from 103 person days), sensors

were not worn on 17 days (for 22 reports). Of the remaining, 25 episodes are

reported after the participant took off the sensor at night. Of the remaining 95,

sensor was taken off during drug use and then put back on in 3 cases.

Accelerometry sensor was not working in 6 cases, ECG sensor data was missing

around the report in 6 cases, and ECG data quality was unacceptable in 53

cases. Hence, we are left with 27 instances with good quality ECG data. Among

the 27 instances of cocaine uses, 14 were for 100 mg, 8 for 200 mg, and 2 for 300

mg and the remaining 3 instance were for 400 mg. These 27 instances come from

320 person days of good quality data, from 13 different participants (out of the 20

who reported cocaine use), where physiological response in the vicinity of self
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report of drug use can be observed. On these 320 days, we have a total of 3,631

hours of data.

Urine Reports. Urine samples were collected three times weekly during

weeks when participants wore AutoSense. We classify each day using the result

from the urine test via the following simple rule. If cocaine is detected from the

urine sample collected, one can infer that in the last 4 days from that day, there

must be at least one cocaine use. We label all these days as potential cocaine use

day. On the other hand, if the urine report is negative, one can assume that the

last 24 hours is a cocaine-free day. Also, if a participant has two or more negative

urine reports in a row, with no self-report of cocaine use, we can safely infer that

they didn’t use cocaine at all during those days. However, if the participant self

reports cocaine use on a particular day, we mark that day as a potential cocaine

day, even if the urine report doesn’t reflect it. Using these rules, we identified 385

potential cocaine use days out of the 922 days of data collection.

3.2 Data Processing and Modeling

In this section, we describe the data processing steps and model

development. Fig. 3.2 presents an overview of the data processing stages. First,

we describe the processing of ECG data in order to obtain an RR interval time

series. We also describe the activity detection method that we use to identify

segments in the time series that may correspond to physical activity. We then

describe the process we use to localize the drug and activity episodes in the RR

interval time series. Next, we provide simple rules to screen out some of these

segments or windows that obviously do not come from drug episodes. Each of the

windows contains two parts. First part corresponds to the excitation of the SNS

system up to the point when heart rate reaches it’s peak value. We call this the

activation response. The second part corresponds to the portion of the window

that represents the recovery of the physiology. We extract these two portions and
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Fig. 3.2: Sensor data are first processed to find the RR interval timeseries and
activity. Next, the start and end of cocaine and activity windows are identified and
the recovery portions of the cocaine and activity responses are extracted. Two
model parameters are learned during the training phase and the trained models
are applied on the recovery response portion of the candidate windows extracted
from the test data set.

construct models for the RR interval curve corresponding to recovery during

cocaine-free activity episodes and activity-free cocaine episodes. Detection of

cocaine use episodes makes use of these two models.

3.2.1 RR interval detection

We follow similar preprocessing and RR interval detection method as

presented in [6]. We first adopt a method proposed in [25] for determining

acceptability of ECG signals. We then apply the Tompkin’s algorithm [26] to detect

R-peaks. We remove outliers in the time series of RR intervals (time between two
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R-peaks) using the outlier removal algorithm presented in [27] and remove the DC

offset from each interval to remove the baseline drift.

3.2.2 Activity Detection

In order to determine the presence of physical activity from accelerometery,

we use a simple threshold based activity detector using the 3-axis on-body

accelerometer (placed on chest). Phone accelerometer data was not used

because the phone may not be on the person and thus may miss some physical

activity episodes. We make use of existing physical movement detection

approach [28,29,30] and adapt it to fit our data. As the placement of the

accelerometer and the participant population is different from that presented in

prior works, we collected training data to determine an appropriate threshold for

detecting activity.

We collected labeled data under walking and running (266 minutes), and

stationary (183 minutes) states from seven participants while they wore

AutoSense. After noise and drift removal, we extract the standard deviation of

magnitude, from 10 second windows, which is independent of the orientation of

the accelerometers. We scale this signal using the 99th and 1st percentile values

of the signal using m = (m− h)/(max− l), where m, h and l are the samples’ 99th

percentile and 1st percentile values. We find that a threshold of 0.35 is able to

distinguish stationary from non-stationary states with an accuracy of 93% in

10-fold cross-validation.

3.2.3 Model Development

To develop a model, we first develop a method to smooth the RR interval

time series, identify the windows that exhibit sufficient change so as to result from

a potential drug use event, locate the start and end points of such windows, and

then extract portions of this window from which the parameters of the

parasympathetic nervous system (PNS) and the parameters for dampening
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introduced by Cocaine metabolism induced sympathetic nervous system (SNS)

activation can be estimated. These steps are described in Section 3.2.3.1.

Section 3.2.3.2 presents the rationale and the actual model for detecting drug use

events in the selected candidate windows of RR intervals.

3.2.3.1 Candidate Window Selection & Preparation

Fig. 3.3 shows examples of cocaine responses observed during lab

administration of cocaine. We observe that the effect of cocaine can last a long

time (more than 30 minutes) and the entire response window (which can vary in

length as well as intensity of response) must be detected as one single event.

Hence, the problem of detecting drug use is a time series pattern recognition

problem. The challenge then is to locate candidate windows and identify its

boundaries so as to assess it for drug use response. This challenge is

compounded by dynamic variations in RR intervals and difficulty in locating the

start of cocaine or activity response and the end of recovery.

This problem has similarity with the dynamic fluctuations in stock prices.

Therefore, in order to identify the potential windows and to identify the start and

end of the window that may indicate a cocaine use event, we use the Moving

Average Convergence Divergence method (MACD) [31]. This method is widely

used to compute an indicator that investors in stock markets use to identify the

stock price rise and fall trends. The indicator is also used as an oscillator indicator

that is used to identify when the market moves sideways, i.e., when the price

oscillates within a narrow range. MACD thus is more stable than (price) trend

following indicators. We make use of this MACD procedure to identify the

windows that correspond to ’large’ rise and fall trends of the RR intervals. MACD

readily provides the start and end of the windows. The MACD procedure makes

use of Exponential Moving Averages (EMA), which gives more weight (a constant

in this case) to recent values compared to simple moving averages. MACD is
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computed as follows:

MACD Line = EMAslow − EMAfast (3.1)

Signal Line = EMA of MACD Line (3.2)

Each of the EMA’s takes one parameter — the window size on which the EMA is

to be computed. EMAslow is computed on a longer window than that of EMAfast.

The crossover points of the MACD line and the Signal line corresponds to the fall

and rise points. We learn the parameter (i.e., window size) from the data we

collect in the “JHU Lab Study.” We mark the start and end of the windows for

cocaine data by visual inspection. For activity, we select start and end of the

window with the help of accelerometry and visual inspection. In total, we mark 27

cocaine windows and 272 activity windows. The search space for the parameters

of the slow and fast moving averages are set to [1, 180] minutes and [2, 90]

minutes respectively. The search space for the parameter of EMAslow is same as

that of EMAfast. We obtain the parameters that achieve the minimum error in

finding the start and end points. The search algorithm chooses crossover points

that are nearest to the start and end points marked for each set of parameter

values. The error in this decision is computed as the sum of the distance from the

crossover points chosen by the algorithm and the start and end points marked via

visual inspection.

The input to the MACD process is smoothed RR interval time series that

removes high-frequency variations in RR intervals. We use a simple moving

average over preceding 10 minutes to smooth the signal. We also learn the

optimal window size of this moving average window in this process. Fig. 3.3

shows the MACD, signal line as well as the crossover points selected in this

process. The parameters learned for EMAslow, EMAfast, and EMA for Signal
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Line are 35 minutes, 4 minutes and 3.67 minutes respectively. These parameters

are used to find the windows on the field data too.

Screening. Next, we use the following two rules to screen out some of the

candidate windows before we apply our model. First, we compute average width

and height of the windows from the lab data. If the candidate window c is too

’small’ compared to the drug windows (i.e., if width or height

< (mean− 3 ∗ standard deviation) of that of width and height of windows

corresponding to drug response), it is discarded. In this case, the physiological

response is insufficient to be that from drug use. Second, out of all the 10 second

accelerometer measurement windows within the first 5 minutes from the start of a

candidate window c, if a majority of them are detected as activity we discard the

window c. In this case, the activation of heart rate is the result of physical activity.
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Fig. 3.3: Illustration of MACD based candidate window selection method. The
crossover points, where the MACD and signal lines cross (marked using dotted
horizontal lines), indicate the start and end points of the candidate windows.
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Extracting recovery episodes. We extract both the recovery and

activation part of the windows using the crossover points from the MACD process.

For a particular window, the start and end of activation (Astart and Aend

respectively) must occur after the start point of the window. They are defined as

the last crossover point above the zero line and first crossover point below the

zero line. On the other hand, the start and end of the recovery portion (Rstart and

Rend respectively) must occur after the activation part. They are defined as the

last crossover point below zero line and first crossover above zero line. Finally, to

model the recovery process, we extract the first subsequence of the recovery

curve (defined by Rstart and Rend) that is clean, i.e., not affected by activity.

3.2.3.2 Autonomous Nervous System (ANS) Model

To develop a model to detect drug use events, we consider an abstract

model describing the interaction of the ANS with the cardiovascular system during

physical activity and drug intake. ANS is a control system that regulates heart and

respiration rate, cardiac output and constriction of dilation of blood vessels to

meet the demands imposed on the body. The ANS is divided into two separate

systems — PNS and SNS acting in concert. Roughly speaking, PNS is

responsible in conservation of energy by reducing heart, respiration rate and

blood pressure providing a dampening effect. In contrast, SNS provides activation

by increasing heart rate, blood pressure and cardiac output to meet the demands

of physical activity, fear, stress, etc. Generally speaking, SNS works at a faster

time scale than PNS and can be excited by many inputs, not all directly

observable. In this work, we consider modeling heart rate recovery regulated by

PNS with and without drug usage events. We learn a simplified abstract model

with few parameters driven by physiology from the lab data to build a statistically

optimal detector. The concise model avoids over-fitting and provides parameters

readily interpretable as time constants and dosage.
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Fig. 3.4: ANS model of heart rate recovery.

We would also like to note that the activation data portion of the response

is not used in our modeling. There are several difficulties associated with using

this portion of the data. First, during activation there is the combined effect of

Vagal withdrawal and SNS activation as well as the metabolism of cocaine.

Therefore, in order to model the activation curve, we need to estimate the

parameters associated with Vagal withdrawal and SNS activation. However, the

activation portion is quite short, not offering sufficient data for robust modeling.

We focus, therefore, on modeling the RR interval time series r(t) (inverse

of the instantaneous heart rate) during recovery periods. We assume that the RR
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interval time series r(t) can be modeled as noisy samples of a signal y(t)

measured from the resting baseline RR interval B.

r(t) = B − y(t) + n(t) (3.3)

We assume that the PNS can be modeled by a first-order differential equation:

dy(t)

dt
= − 1

τR
y(t) + u(t), (3.4)

where u(t) models the excitatory input from the SNS. In the absence of any

excitatory input u(t) = 0. In such a case, the solution corresponds to an

exponential decay model, with a recovery time constant of τR. We model the

natural recovery process as

yR(t) = y(t0)e
− (t−t0)

τR . (3.5)

Such exponential decay models have been previously suggested as

models of heart rate recovery from physical exercise [32]. Here, we consider two

sources of excitatory input — physical activity and drug intake. Both can elevate

the heart rate. We focus on recovery portions where the excitatory input due to

activity is absent, so that we need to model only one source of activation. We note

that although the activity is missing during our chosen recovery periods, the initial

heart rate elevation could be due to both physical activity and drug intake,

complicating the detection of drug usage and estimation of dosage. We model the

excitation due to drug intake as an exponentially decaying process since its
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intensity decays due to cocaine metabolism1 with time-constant τD:

uD(t) = u(t0)e
− (t−t0)

τD .

Our ANS model of recovery in the absence of physical activity is given in

Figure 3.4. Inserting this input into the differential equation governing dynamics of

the PNS, results in the following model of recovery curve under drug intake:

yDR(t) = y(t0)e
− (t−t0)

τR − u(t0)

K
e
− (t−t0)

τR +
u(t0)

K
e
− (t−t0)

τD , (3.6)

where the constant K is given by K = (1/τR − 1/τD). This represents the rate of

recovery by the PNS system when cocaine is still in the bloodstream (i.e., not fully

metabolized).

We note that although we build upon established model for modeling the

recovery behavior of the parasympathetic nervous system (PNS) from activity

(i.e., in the absence of cocaine), but our proposed model introduces two new

components to account for the dampening of PNS recovery due to cocaine

stimulus and to tease it out from the effect of activity. Prior models of recovery

from cocaine (e.g., [23]) consider only the composite recovery of heart rate for

cocaine events and hence can’t separate out the effects of physical activity. Our

proposed ANS model is the first model that considers the dampening effect of

cocaine and the decay of dampening due to cocaine metabolism by the body in

PNS recovery, and accounts for the recovery from physical activity alone. The first

component on the right hand side of (3.6) represents the natural recovery of the

heart rate, while the 2nd and 3rd components represent the cocaine dampening

and the decay of dampening due to metabolism of cocaine, respectively.

The detection of drug intake events can now be posed as a binary

1Drug metabolism is usually modeled as an exponentially decaying function since the rate of
metabolism is proportional to its remaining concentration.
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hypothesis testing problem of identifying the underlying curve from the two

models in (3.5) and (3.6) from noise corrupted recovery segments of RR interval

time series. We assume the noise on the time samples of y(t) is identical and

independently distributed with Gaussian distribution. The nuisance parameters of

intercept y(t0) and initial drug intensity u(t0) are unknown. Therefore, we follow a

generalized likelihood ratio test approach where maximum likelihood estimate of

these parameters are used. The detector for drug intake events from RR interval

samples r(t) take the form of

‖B − r(t)− yRD(t; ŷ(t0), û(t0))‖2
‖B − r(t)− yR(t; ŷ(t0))‖2

< θ

where the nuisance parameters are found using least-square fit to the segment

under test. The threshold θ has to be chosen to set an appropriate balance

between probability of detection and probability of false alarm. For the detected

drug episodes the parameter estimate û(t0) is the intensity of remaining drug

excitation at the beginning of the recovery segment. If reliable estimates of the

drug intake time can be formed, this could be used to extrapolate u(t) to

drug-intake time to find an estimate of the drug dosage, which we leave for future

work.

The ANS model parameters consist of resting baseline B, recovery time

constant τR and drug metabolism time constant τD. In general, these parameters

have to be learned for each individual separately. But, obtaining ground truth data

on drug events for each individual is impractical. Therefore, we follow the

following unsupervised procedure to construct semi-individual models of ANS

activity. For each participant j, we extract segments for recovery from physical

activity occurring naturally in their daily life and fit model in (3.5) and learn the
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PNS model parameters of the resting baseline Bj and recovery time constant τ jR

for each subject.

For time-constant determination, the exponential moving averages (EMA)

from section 3.2.3.1 cannot be employed for the RR interval signal y(t), since the

long time averaging windows used in EMA’s will cause an upward bias in the

estimate of the recovery time constants. On the other hand, raw RR interval data

collected in the field contains significant amount of outliers. These outliers are not

well modeled with Gaussian statistics, since they have large amplitudes with a

proportion larger than indicated by the tails of the normal distribution. As a result,

least square estimates of τR and τD will be highly sensitive to outliers present in

the unsmoothed RR interval data. To have robust estimates of these time

constants we follow the robust regression framework introduce by Huber [33].

Specifically, we consider Huber’s modified cost-function ρ(e(t)),

ρ(e) =

 0.5e2 for |e| ≤ k

k|e| − 0.5k2 for |e| > k
, (3.7)

where e(t) is the error signal defined as the difference between the data y(t) and

the models in (3.5) and (3.6). The constant k = 1.345σ, with σ is the expected

variance of RR interval data. The modified cost function eliminates large bias

introduced by non-Gaussian outliers present in RR interval data. Then, for the

nine participants with lab data on drug usage we fit the drug recovery model in

conjunction with their PNS model of (Bj, τ jR) to get an average estimate of drug

metabolism constant τD minutes (for each dose level) that we use uniformly for

every participant in our testing.

3.3 Evaluation

We first present the performance of the ECG cycle based detector

presented in [6] on our in-residence lab data. Next, we present estimates of
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parameters for our ANS model. To provide a feel for our model, we provide an

illustration of our model by showing their fitting with data from a participant.

Finally, we show the performance of our ANS model on the data collected in the

in-residence studies and the field study.

3.3.1 Performance of Cycle Classifier

To assess the applicability of a model developed in [6] for detecting

cocaine usage in free-living conditions, we implemented the classifier in [6] and

applied it to the data collected from our in-residence study. As mentioned in

Chapter 1, this model classifies each ECG cycle into cocaine and and baseline

classes. The in-residence study, in our case, did not include a baseline session,

therefore the training data for non-cocaine class consists of data collected from 30

minutes to 2 minutes prior to the first cocaine administration of the day, since

subjects are resting for this period. Data only for durations when there was no

physical activity were labeled as non-cocaine. This is determined from the

accelerometer data. If activity is detected for a particular activity detection

window, we discard data up to 5 minutes after that window to make sure the data

does not contain any activity. As for the cocaine class, data from the interval

(valley −2 minutes) to (valley +8 minutes) from each cocaine response window

are included. The cocaine response windows are identified by the Moving

Average Convergence Divergence (MACD) method described in Section 3.2.3.1.

The valley of the window is defined to be the point when the RR interval reaches

its minimum value (i.e., where HR peaks). Again, we only admit data that is not

effected by activity. Total data cases for cocaine and non-cocaine class for

participant #1 amounts to 2,080 cycles each. A support vector machine (SVM)

classifier is trained and we obtain AUC = 0.91 for 10-fold cross-validation, which is

similar to that reported in [6]. We then apply this classifier on the whole data set

30



for that participant. To show the applicability of this model on non-baseline data

we show the output of the classifier in Fig. 3.5.
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Fig. 3.5: The red dots on the top indicate all the cycles marked by the ECG cycle
based classifier as cocaine class. The model produces too many false positive
outputs rendering it unsuitable for the use in field setting.

We observe that although the classifier performs well for the 20 mg case,

it’s performance for both 40 mg and placebo (1 mg) cases are not as good. Also,

we find that the classifier produces a large number of false positives when there is

physical activity since it is not trained for this class. This indicates that not only RR

intervals but also other features (hypothesized in [6] to be insensitive to physical

activity) are confounded by activity. It remains open whether the model proposed

in [6] can be improved by training it with free-living activity data. Another approach

to improving it may be to combine this data-driven approach of classifying each

ECG cycle with our model-based approach.
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3.3.2 Evaluation of the ANS Model

We first estimate parameters of our ANS model and then evaluate its

performance on the in-residence and field data.

Parameter Estimates Our ANS model needs two parameters to be

estimated — τR and τD. The 1/τR and 1/τD values represent the half-time (in

minutes) to recover from cocaine-free physical activity and for cocaine to

metabolize, respectively. τD is estimated from activity-free cocaine episodes,

while τR is estimated from cocaine-free activity episodes. Table 3.1 presents the

data obtained from the in-residence and the field studies. From both in-residence

studies, we obtain a total of 41 cocaine episodes from 40 days of data. A total of

497 non-cocaine significant physical activity episodes are found on 49

non-cocaine days.

Since there are several episodes of cocaine-free recovery from activity for

each participant, we obtain a person specific estimate of τR for each participant

(in both lab and field) and use it in testing. Table 3.2 shows estimates for τR,

which are also used in clinical settings for assessing cardiovascular

fitness [15,16]. We observe that it takes approximately 3 minutes on lab data (and

4 minutes on field data, due to higher intensity of activity episodes) for

half-recovery of heart rate in the absence of cocaine.

To estimate τD, we need cocaine recovery curves that are free from

activity. Since we have activity-free recovery from cocaine for only in-residence

participants (n = 9), we obtain person-specific estimates for τD only for these

participants. Table 3.1 shows estimates for τD for various dosage amounts. We

observe that the half-time to cocaine metabolism (i.e., 1/τD) increases with

increase in dosage. The median half-time for cocaine metabolism is 43 minutes.

When fitting the model to recovery curves of RR intervals, we use

person-specific estimates of τR, but a person-independent estimate (i.e., median
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Fig. 3.6: Curve fitting for activity recovery. The four solid green curves represent
four raw RR interval timeseries of activity recovery of one participant. Fitting the
recovery model (dotted blue curves) we find the estimate of τR. Based on this τR
value we observe that it takes approximately 2.78 minutes for the heart rate to
recover to half of the resting baseline for this participant.

over 9 lab participants) of τD. Figs. 3.6 and 3.7 show examples of fitting of the

models to recovery of RR intervals from an activity episode and from a cocaine

use episode. Fig. 3.8 shows an example of fitting an activity recovery model and

a cocaine recovery model onto an RR recovery curve from a cocaine use

episode. We observe that the recovery rates of the two curves are quite

distinguishable, with cocaine recovery model providing a better fit.

Performance on In-residence Data. Although we obtain person-specific

estimates for τR, we need a person-independent estimate of τD for use on the

field data. To determine the best estimate of τD, we obtain dose-specific

estimates of τD (for 20 mg, 25 mg, and 40 mg) and dose-independent estimate of
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Fig. 3.7: Curve fitting for cocaine recovery. Using the activity recovery model we
find the estimate of τR from the activity recovery data of this participant. τD is
estimated from this participant’s cocaine response data (solid green curves) by
fitting the cocaine recovery model that uses the estimated value of τR = 0.3576. In
this case the estimated value for τD is 0.0282 which gives the half life of cocaine
in the blood to be 35.46 minutes.

τD (by using all dosage). To determine their suitability, we test their performance

on lab data. We test their performance on the dose-specific in-residence dataset

(In-residence-Dose) (i.e., on all the cocaine of a particular dose and all

non-cocaine episodes of the in-residence studies). This provides an indication of

their expected performance if all ocaine episodes are of the same amount. We

also test their performance on all lab data (In-residence-All) to assess their

invariance to dosage level.

We compute the number of false positives (i.e., the number of non-cocaine

episodes identified as cocaine episodes) per day, without misidentifying any

cocaine episodes (i.e., true positive rate of 100%). Results appear in Table 3.3.
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Fig. 3.8: Fitting of an example cocaine recovery curve to the models. The dotted
blue and red curves represent the fitted activity recovery and cocaine recovery
models respectively. It is clearly observed that the cocaine recovery model
[represented by Equation-3.6] that takes into account both τR and τD performs
better.

We observe that the 25 mg model provides the lowest false positive rate on the

In-residence-Dose dataset. But, for the In-residence-All dataset, the lowest false

positive/day occurs for τD obtained from the 40 mg cocaine data. We, therefore,

use this time constant in all of our testing. The ROC for the 40 mg model with the

data of all participants combined is presented in Fig. 3.9 with a representative

operating point shown.

Performance on Field data. As mentioned in Section 3.1.2, there are 27

cocaine instances from 13 participants for which we have good quality data.

These 27 instances come from 25 different days on which the participant both self

reported cocaine use and are confirmed with positive urine reports. We also have
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Table 3.1: Data statistics for In-residence and Field studies.

Study
Non-cocaine Cocaine

# windows # days # windows # days
In-residence Studies 497 49 41 40

Field Study 740 64 27 25

Table 3.2: Model Parameters (1/τR and 1/τD) in minutes for different cocaine
dose amounts. (L) and (F) refers to the 1/τR values computed for the in-residence
and field studies respectively. 1/τD values for 20mg, 25mg, 40mg, and combined
models are presented in the columns labeled 1/τD(20), 1/τD(25), 1/τD(40) and
1/τD(C) respectively.

Measures Range Median
1/τR(L) 2.41-6.75 3.18
1/τR(F ) 2.00-9.82 4.06
1/τD(20) 27.55-75.75 30.30
1/τD(25) 35.09-81.97 45.23
1/τD(40) 40.16-61.35 51.02
1/τD(C) 35.09-81.97 43.29

740 episodes of non-cocaine windows of significant physical activity that come

from 64 confirmed non-cocaine days. We obtain person-specific estimates of τR.

Table 3.3 presents the results of applying the dose-specific and dose-independent

models on the field data. An ROC curve for the 40 mg model is presented in Fig.

3.9 with a representative operating point shown for the field.

Table 3.3: Performance of the detector on in-residence and field study data for
various estimates of τD. We report (Avg) number of False positive/day for a True
Positive rate of 100%. L-All is for the dose-independent estimate of τD.

Dataset L-20 L-25 L-40 L-All
In-residence-All 0.91 0.91 0.87 0.91

In-residence-Dose 0.91 0.22 0.65 -
Field 1.13 1.14 1.13 1.14

Fig. 3.10 shows the application of the model on a sample of field data with

cocaine use event reported. Our candidate window selection and screening

36



0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1

False Positive Rate

T
ru

e 
Po

si
tiv

e 
R

at
e

 

 

In−Residence Study
Field Study

TPR=92.59%
FPR=6.58%

TPR=95.12%
FPR=6.43%

Fig. 3.9: ROC for detection of drug on the in-residence and field studies using the
40 mg model. The two points on the ROC curves presents two suitable operating
points that have similar performances. If we allow for misclassification of drug
events (TPR 95%) we can achieve false alarms rate of < 7%.

method identifies several potential cocaine response windows. (These are

representatives of the 740 non-cocaine windows). In Fig. 3.10, these windows

are represented by dotted vertical lines marking the start and end times of each

window. The output of the model for each of these windows is presented using

blue or red markers over them. We find that the model detects two cocaine

windows. The first window from the left marked with a red dot is the actual

cocaine event (identified by the self report). The model identifies one more

window as a cocaine response window. It can very well be the case that there

was a second drug intake episode that the participant failed to report; there are

several instances of repeated drug use episodes in the field.
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More generally, from visual inspection of false positive cases, we observe

that sometimes the candidate window selection method fails to identify the start of

a recovery segment correctly, leading to a false positive. Hence, further reduction

in false positives can be achieved by improving the window marking method.
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Fig. 3.10: Output of the model on the field data. Here we find that there is one
self-report of cocaine use and the participant self reports that he/she had cocaine
80 minutes prior to the self-reporting time (marked by the vertical line). The
candidate windows are marked by the dotted lines. The output of the model is
presented using small red dots and blue crosses over each window representing
cocaine and activity respectively. We see the model makes one error - it wrongly
detects one non-cocaine window as a cocaine window.
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Chapter 4

Enhancement of the Model

In this chapter we present several enhancement of the model to detect

drug intake in free living conditions. First, we discuss several proposed steps to

improve the sensitivity and specificity of the model. Secondly, we examine the

performance of the model to determine cocaine dosage as an added functionality

to the model.

4.1 Improving the Sensitivity of the Model

In Fig. 4.1 provides a summary of the quality of data available from the

field study. We observe that out of the 142 self reported cocaine intake events, for

56 events there is no data available. The remaining events are classified into

three groups - there were 44 events for which we have acceptable amount and

quality of ECG data, 31 events for which data quality was bad or data were

missing at places (at least 33% of the segment was missing) and finally there

were 11 events for which the accelerometer was turned off for some reason (eg.,

battery depletion). Out of the 44 events for which data quality was acceptable as

well as accelerometer data was available, we in our preliminary work worked with

only 27 events. We excluded the remaining 17 events from our analysis because

the recovery segment for those events were not ’clean’. A clean recovery segment

is defined as a segment, starting from the start of the heart rate recovery, for

which there is at least 2 minutes worth of data which is not affected by activity. We

observe that in order to obtain such clean recovery segments a large number of

events were discarded in the preliminary analysis. In this chapter we relax this

criteria of selecting the clean recovery segment and measure the sensitivity of the

model.

In order to improve the sensitivity of the model in the presence of such

noise and increase the number of potentially detectable events, fist we propose to
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Fig. 4.1: Classification of self-reported cocaine intake events based on data
quality. On the left side of the tree we see that in 56 out of the 142 events the
sensor/device was turned off and so no data was collected. On the other hand,
There were 86 events when the device/sensor was turned on. We in our
preliminary work used data collected only for 27 of these events where we
obtained ’clean’ data for the recovery periods.

use segments that are smaller than the arbitrary 2 minutes threshold. Using

smaller windows has the added advantages of potentially having segment with

good quality of data as well as having segments that are not affected by activity.

Also we get near real time detection which can be important in different

intervention applications. We examine the performance of the model with different

segment sizes ranging from 30 seconds to 45 minutes. The result of running the

model with these window sizes on the data from non-cocaine days is shown in

Fig. 4.2. We observe that, the number of false positives per day falls significantly

when the window size is more than 15 minutes. However, increasing the window

size after that does not seem to change the sensitivity of the model. Therefore,

we conclude using very small segments is not very practical. This is likely due to
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the fact that the from the lab data we find that the minimum and maximum length

of the recovery segments are 17.06 minutes and 56.7 minutes respectively.

Fig. 4.2: Performance of the model with different window sizes ranging from
30seconds to 45 minutes. We observe a significant improvement of the model
when the recovery segment size is increased to 15 minutes. We note that in our
data, From the lab data we find that the minimum and maximum length of the
recovery segments are 17.06 minutes and 56.7 minutes respectively. This is
found by visual inspection which agrees with our findings here.

As we find from the above results that smaller window sizes degrades the

performance of the model, we will need to work with longer segments to make the

model more effective. However, as mentioned before, longer segments are likely

to be affected by activity. We examine the sensitivity of the model in the presence

of activities by attempting to remove the effects of activity from the heart rate or

RR signal. In [34] it is reported that mean time to recovery of heart rate from

activity is approximately 19.8 seconds. However, this varies from person to

person. We, therefore, propose to use τR computed for each person to set the

threshold for obtaining clean recovery segments. Instead of removing segments

that do not contain 2 minutes worth of data from the start of the recovery (valley
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point), we first find the duration of activity ta within the recovery segment. This is

done by putting a threshold on the standard deviation of accelerometer (26.4)

magnitude. Once we find the duration of activity, we add to it the τR value found

for that person. We assume that the heart-rate due to the activity will recover by

that time. We then remove data from the recovery segment for the duration of

ta + τR from the start of activity and consider that during this time the data is

missing from the recovery segment. We find that, this adds 7 more cocaine

events making a total of 34 events. The observe (see table 4.1) that the false

positives/day is reduced from 0.87 to 0.74 on the lab data and in case of field data

we lower the false positive rate to below 1 per day.

Table 4.1: number of false positive per day on in-residence and field study data.

Method In-residence Field
Paper’s Method 0.87 1.17

Removing activity from the recovery segment 0.74 0.98

4.2 Improving the Specificity of the Model

We propose to investigate the specificity of the model in detecting cocaine

intake. In the field, the participants took a variety of other drugs. There is a total of

38 non-cocaine drug intake events. Similar to cocaine intake instances,

participants reported the type of drug (such as Heroine, opiates, THC,

Benzodiazepine, Methamphetamine and instances when multiple drugs were

taken together) and the approximate time of intake. Some of these drugs have a

similar heart rate response as cocaine. Figs. 4.3 and 4.4 show the RR interval

signal surrounding the self reports of THC, Heroin, Methamphetamine, Morphine

intake respectively. We observe that heroin and THC don’t have much effect on

heart rate. The recovery rate of RR interval for other drugs are different than that

of cocaine.
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(a) Cocaine

(b) Morphine

(c) Heroin

Fig. 4.3: Segment with ± 2 hours surrounding the self report. Here we find that
there is one self-report of cocaine use(marked by the vertical line). The green dot
represents RR interval, the blue line represents moving average of RR interval.
Th red line indicates activity detected from activity threshold (black line). Figure
(a), (b), (c) show the segments for Cocaine, Morphine and Heroin, respectively.
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(a) Methamphetamine

(b) THC

(c) THC+Benzodiazepine

Fig. 4.4: Segment with ± 2 hours surrounding the self report. Here we find that
there is one self-report of cocaine use(marked by the vertical line). The green dot
represents RR interval, the blue line represents moving average of RR interval.
Th red line indicates activity detected from activity threshold (black line). Figure
(a), (b), (c) show the segments for Methamphetamine, THC and
THC+Benzodiazepine, respectively.
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In order to investigate the specificity of the model, we consider the days

where

• There is a self report of drugs other than cocaine

• There is no self report for cocaine

• Urine report for cocaine is negative

We identify 16 such events in total when we consider all the above. For

each self report, we consider the window with ± 2 hours surrounding the self

report. For all cases there’s no case that is misclassified as cocaine.

4.3 Adding Functionality to the Model - Estimating Dosage

One important functionality that can be added to the model is estimation of

dosage for cocaine intake events.

Table 4.2: Cocaine Dosage in In-residence and Field studies.

Location John Hopkins(Lab) NIDA IRP (Lab) NIDA IRP (Field)
# of Participants 3 6 42 (4 drop outs)

# of Episodes
(with Dosage)

18 (20 mg)
18 (40 mg)

14 (25mg)

3 (50 mg)
86 (100 mg)
1 (150 mg)
34 (200 mg)
8 (300 mg)
9 (400 mg)
1 (600 mg)

Table 4.2 shows the different dosage of cocaine intake in the different

studies. It can be observed that the dosage amount in the field is substantially

higher than what is administered in the lab. First, we will attempt to analyze the

performance of the model trained using only the lab data whether we can identify

the dosage amount. In Fig. 4.5 shows that identifying 20mg and 40mg cocaine

intake is likely to be possible due to the difference in recovery rates. Secondly, we

45



will attempt include field data that are identified using our model to develop a

better regression model for predicting the dosage from the recovery signal.

Fig. 4.5: The blue and red lines represent recovery portion of RR interval after 20
mg and 40 mg cocaine intake respectively. The recovery of RR Interval to the
base line for 20 mg cocaine intake is faster than 40 mg cocaine intake.

From Table 4.2 we find that the dosage amount reported in the field study

are much higher than what was administered in the lab.

When we run the model on lab data the average error rate 27.9%.

However, average error rate is as high as 101.3% when applied to field data. The

main difficulties to detect dosage in the field are as follows:

• There are intermittent and rigorous activities in the recovery part.

• There’s no lab data for higher dosage to understand the relationship

between low dosage and high dosage.
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Lab Field

Fig. 4.6: Error rate for various dosage both in the lab and in the field

Fig. 4.7: Intermittent activity in the recovery segment of cocaine segment
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Chapter 5

Discussion, Limitations and Future Work

In this chapter, we discuss several limitations of the work that can motivate

future research.

First, we present the limitations of the method proposed in chapter 4 that

removes affects of activity from the recovery segments. Although the proposed

method, enhances the performance of the model, this approach does not

consider the initial conditions of the segments that result in after the removal of

the segments associated with activity. More research is required that to estimate

the initial conditions of each segment. Second, in this work we have developed a

cocaine intake detection model that is fairly specific. Development of detection

models for other drugs that have similar (or different effects) on the heart rate is

another important future research direction. Third, the model requires the

computation of baseline heart-rate and recovery rates for each person, as well as

cocaine metabolism rate which are computationally expensive to be implemented

in a mobile phone. However, for real-time deployment of the model for Just in time

interventions, it is imperative to implement such models on mobile devices. In the

following, we discuss these issues in more detail and provide directions for future

research.

5.1 Removing the Effect of Intermittent Physical Activity

In our approach, we identify ’clean’ recovery segment of RR interval, which

are not affected by physical activity, and then apply the model on it. If there is any

intermittent activity detected during this recovery segment, we discard the data.

For this, we first find the duration of activity ta within the recovery segment. Once

we find the duration of activity, we add to it the τR value found for that person. We

then remove data from the recovery segment for the duration of ta + τR from the

start of activity and consider that during this time the data is missing from the
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recovery segment. We then, fit only one exponential function for the whole

segment. This method provides larger recovery segment and better false positive

rate. However, there is a short coming of this approach. As there are multiple

small recovery segments that are created due to discarding of the data, the initial

conditions ut0 for each segment changed. We observe that, as our approach

does not estimate the initial conditions, it does not provide good estimation of

cocaine dosage. Therefore, an alternative approach that fits multiple exponential

functions with proper initial condition may provide better detection accuracy. It

should be noted that, the cocaine metabolism rate is common for all of these

segments. Applying this approach will lead us to better false positive rate as well

as better estimation of dosage.

5.2 Development of Detection Models for other Drugs

The detection model is developed and tested for cocaine intake only. As

have observed Cocaine is a stimulant drug. It increases heart-rate and causes

hyperactivity. Among other stimulant drugs the most common one is

Methmphetamines. Our exponential decay function for cocaine models the ANS

to capture the metabolism and excitation of the drug. For similar types of drugs,

e.g., Methamphetamines one can use similar decaying model. To train that model

and learn its parameters, a similar type of lab study is required.

Other types of drugs include Opiods, Hellucinogens and depressants or

sedatives. Opiods are mainly used as painkillers and they are known to slow

down the central nervous system. Marijuana, psilocybin mushrooms, and LSD are

examples of drugs that cause hallucinations. They can alter the user’s perception.

The other type of common drug that people use are depressants or sedatives.

Though these are not necessarily illicit drugs. More studies are needed to collect

physiological data in order to detect these drugs. Further research is also needed

to find the confounding factors for these drugs. For example, sleeping causes the
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heart rate to go down, therefore sleeping events might be confused with drugs

such as intake of opioids or marijuana that also decreases the heart rate. Also

activity, caffaine intake can be a confounding factor for different drugs that work

as stimulants.

5.3 Real time deployment of the model

Finally in this section, we discuss the challenges in deployment of the

model.

• Base Line calculation: We see that, the base line of RR interval varies from

person to person. Again, for each person it varies from day to day. In our

model we calculate baseline by taking 95th percentile of RR interval of each

day for each person. This is used as the baseline of RR interval of that day

for that person. For the real time model, we cannot do that. Instead, we can

start with common base line of RR interval and as the time goes the base

line needs to be updated. We pose the dynamic baseline estimation for RR

interval as a future work.

• tauR calculation: To estimate tauR value for a person, we consider the

recovery portion of RR interval of activity for non-cocaine days. We have the

luxury of seeing all data. But for real-time algorithm, this tauR value need to

be updated as we process the data stream. Initially, we can start with a

default value and it needs to be updated in real time.

• Computation in real time: In the off-line model, we calculate the RR interval

at once and to smooth the signal we use one second sliding window with the

window size of 10 minutes. For the online version of the algorithm, it is

computationally expensive to run all of these at once. We propose to

calculate these values with a smaller batch size in real time. It requires

careful investigation to find the right batch size so that the model has
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sufficient amount of data to calculate RR intervals and do the smoothing

operation. Also one has to make sure, it is not computationally expensive.

Another option is to send all of the data to the cloud for processing and get

back the result. But it suffers from three problems. First, it may be possible

that, the user may be out of reach of network. The consequence is, the

just-in-time intervention for cocaine intake can’t be triggered at the right

time. Second, users may not allow to upload their physiological data due to

privacy and security concerns. Third, it adds extra cost of internet usage as

the system tries to upload as much as 100 megabyte of data per day if they

use the system for 14 hours.

Practical real-time deployment also requires research on developing (1)

methods that enable context based Just in Time Interventions and self-report

prompts and (2) sensors that are cause less burden for the users. Our model

detects the cocaine intake event after the body recovers from the cocaine intake

i.e. when the heart rate goes to base line. Which means, the cocaine intake event

is detected after 30 to 40 minutes from when the cocaine is taken. Early detection

may be required to trigger JITI or self reports near the vicinity of cocaine intake. In

chapter 4 we show that, if we use smaller windows false positive rate rises.

However, from the field study we find that people intake drug in high dosage

amounts. This indicates that it might be possible to detect such events using

smaller segments as the effect of very high dosage is more acute.

In this work, We use AutoSense Chest Band sensor to collect data both in

the controlled and field environments. To get a good quality of ECG data, two

ECG electrodes are required to be attached to the body. It requires an effort on

the part of the participant to attach it in such a way so that it provides good quality

of data. In the NIDA field study, user wore this sensor suite for 4 weeks. Wrist

watch based ECG sensor is in under research now. Many commercial devices
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such as Apple Watch, Microsoft Band etc. provides coarse grain heart rate

measurements too. The MD2K team is also working on developing a new wrist

sensor which will provide raw ECG signal. Wrist based sensor can detect the

activity pattern and the hand movement of the user which can be used to further

improve the cocaine detection model.
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Chapter 6

Conclusion

Mobile health can help people improve their health by continuous

monitoring of health and behavior on their mobile phone and by delivering timely

interventions to motivate healthy lifestyle and abstinence from risky behaviors.

Automated detection of various health states and behaviors from sensor data is

key to realizing the mobile health vision. Such capabilities can then be used in

scientific user studies to identify precipitating contexts that precede undesirable

health states and risky behaviors. Automated detection of these predictors can be

used to trigger the delivery of timely intervention on the mobile phone as

preventative measures. Our work contributes to realization of this mobile health

vision by showing that automated detection of drug use is feasible, opening the

doors for development of just-in-time interventions.

The ANS model for detecting drug use can itself be improved for both

accuracy and generality. First, we use a person-independent estimate of drug

metabolism rate. This can be made more person-specific by incorporating

demographic information such age, gender, weight, body mass index, etc. that are

known to affect the metabolic rate. Second, the model can be improved further by

using measurements from other physiological sensors such as respiration,

galvanic skin response, electrodermal activity, etc. Third, the model can be

expanded to include other illicit drugs. Psychostimulant drugs that may have

similar response as Cocaine include Amphetamine and Methamphetamine,

Methylphenidate (Ritalin), Methcathinone (an emerging drug under the name of

Bath Salt) and MDMA (Ecstasy).

In addition to stimulating further research on mobile health, this work

motivates three new sensor data processing issues for future research.

• Generalizable approaches are needed for detecting events of interest from
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physiological time series data in the presence of numerous confounders

encountered in the natural environment. Our work shows the feasibility of

doing so for cocaine use that has a pronounced impact on physiology. But,

new research is needed to develop explainable (i.e., non black box)

methods for other events (e.g., stress, conversation, smoking, eating, etc.)

that may not have as pronounced of an impact on physiology.

• Generalizable methods are needed to smooth noisy physiological time

series data to see broad trends and to mark the boundary of events of

interest in the time series. Our work illustrates an approach to identify the

windows of interest in ECG time series for drug use response identification.

But, further research is needed to investigate its applicability to other

sensing modalities such as respiration, EEG, etc.

• We provide a generative model that tracks the recovery portion of the heart

rate response, when physical activity concludes. Such models are succinct

(need estimation of only one parameter) and can be used to generate

synthetic data for simulation. Again, more generalized generative models

are needed that can model the activation portion of the response curve as

well so that the entire response curve can be synthetically generated. In

addition to generating synthetic data such models can help build more

robust detectors by modeling the entire response curves.
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