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ABSTRACT

Sarker, Hillol. Ph.D. The University of Memphis. December, 2016. From
Markers to Interventions – The Case of Just-in-Time Stress Intervention. Major
Professor: Dr. Santosh Kumar.

Wearable wireless sensors for health monitoring are enabling the design

and delivery of just-in-time interventions (JITI). Critical to the success of JITI is to

time its delivery so that the user is available to be engaged. This dissertation

takes a first step in modeling users’ availability by analyzing 2,064 hours of

physiological sensor data and 2,717 self-reports collected from 30 participants in

a week-long field study. Delay in responding to a prompt is used to objectively

measure availability. Presented work compute 99 features and identify 30 as most

discriminating to train a machine learning model for predicting availability.

Findings suggest that location, affect, activity type, stress, time, and day of the

week, play significant roles in predicting availability. Users are least available at

work and during driving, and most available when walking outside. Proposed

model finally achieves an accuracy of 74.7% in 10-fold cross-validation and

77.9% with leave-one-subject-out.

Management of daily stress can be greatly improved by delivering

sensor-triggered just-in-time interventions (JITIs) on mobile devices. In addition to

assessing the availability of a person, the success of such JITIs critically depends

on being able to mine the time series of noisy sensor data to find the most

opportune moments. This dissertation proposes a time series pattern mining

method to detect stress episodes in a time series of discontinuous and rapidly

varying stress data. This model is applied to two separate human subject studies

on physiological, GPS, and activity data collected from 91 (38+53) users in their

natural environment to discover patterns of stress in real life. Findings suggest

that the duration and the type of a prior stress episode predict the duration and

the type of the next stress episode. Stress in mornings and evenings is lower than

v



during the day. The work then analyzes the relationship between stress and

objectively rated disorder in the surrounding neighborhood and suggests a model

to identify the proactive or reactive timing for JITI.
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SUMMARY OF DOCTORAL WORK

I have joined University of Memphis as a Ph.D. student in Fall 2012. My

doctoral research on mobile health (mHealth) is an interdisciplinary work on Data

Mining, Machine Learning, Statistical Data Analysis, Wearable Computing,

Human Computer Interaction (HCI), and Health Informatics. As a part of the large

research initiative NIH Center of Excellence for Mobile Sensor Data-to-Knowledge

(MD2K) my aim is to improve the health and well-being of a person by

continuously monitoring his or her health status, recognize behavior, diagnose

medical condition, and provide just-in-time-intervention (JITI) in the person’s

natural environment.

When I joined our research lab there was a newly funded R01 project from

the National Institutes of Health (NIH). The aim was to identify the sensor-inferred

risk factors for smoking lapses. A user study was about to begin at the University

of Minnesota Medical school where we were about to launch a wrist watch

containing a 3-axis accelerometer and a 3-axis gyroscopes. I immediately began

working on the mobile phone software platform that our group had developed for

the collection of high-frequency mobile sensor data from wearable sensors using

ANT radio. I took the responsibility of integrating the wrist sensors on to our

mobile phone software platform so that we can store wrist sensor data in the

phone SD card and later analyze them. I conducted some preliminary analysis to

show that smoking gestures have distinct signature in inertial sensor data

collected from wrist-worn sensors (e.g., smartwatches). In contrast to some

recent work that used 9-axis (3-axis accelerometer, 3-axis gyroscopes, and 3-axis

magnetometer) to capture smoking gesture, I have shown that it is possible with

6-axis (3-axis accelerometer and 3-axis gyroscopes) which led to battery efficient

smoking gesture recognition. I have also shown that smoking hand-to-mouth

gesture has distinct signature in compare to other closely related gestures (e.g.,

xv



eating). The software was used in the 75-person smoking cessation field study

where participants wear a AutoSense containing a chest sensor collecting ECG,

respiration, and accelerometer data and wrist sensor collecting accelerometer and

gyroscope data. My work laid the foundation for the computational model for

detecting smoking puffs from wrist movements and respiration patterns. This work

was published and presented in ACM UbiComp’15 which later has been covered

in various media outlets due to its ability to pinpoint the precise timing of first

smoking lapses.

Next, I began analyzing the high-frequency mobile sensor data collected in

various user studies in free living condition. I took several statistics courses that

later helped me in analyzing high-frequency mobile sensor data. For example, I

have shown in my Master’s Thesis that there are sensor detectable contexts in our

daily life in which user’s self-report reliability may not be consistent and should be

excluded from analysis.

My Master’s work led me to a field of interruptibility where over a decade

work exists. But I was more interested about extending these works for assessing

availability of user’s in their free living condition for just-in-time intervention and

that too from sensor inference. Majority of the prior works on interruptibility use

self-report for assessing interruptibility which is subjective by nature. In contrary, I

have used the concept of an objective metric (response delay) for assessing

availability. The use of the term availability in compare to interruptibility captures

the notion that the user must be available physically, cognitively, and socially to be

engaged in a just-in-time intervention. I have shown that people are most likely

available when they are walking outside and least likely available while walking at

work. This work was published at ACM UbiComp’14 and has been cited well in

both computing and in behavioral science field.

This work gave me a direction towards my dissertation. I developed an

xvi



overall framework for sensor-triggered just-in-time intervention. My availability

work provides a model that assesses the opportune moment about when to

deliver an intervention so that the user is available for significant user

engagement. Another part is when to generate a trigger for an intervention via

investigating the time-series of markers.

Next I started working on determining the timing of sensor-triggered

intervention. As a specific case I started investigating sensor-triggered just-in-time

stress intervention. I developed a time-series pattern-mining method to analyze

the time series of minute-level stress markers obtained from physiological

sensors. There are several design challenges for an effective just-in-time stress

intervention. First, intervention should only be triggered when we have high

confidence in sensor-interred stress assessments. Because, triggering too many

stress interventions may interrupt a person in his or her daily life. So, we only

need to provide intervention at the most opportune moments. Doing so is

especially challenging because sensor-inferred stress measurements from

physiological parameters are by their very nature rapidly varying and include

intermittent missing data. Second, intervention should only be triggered to

maximize its efficacy. Third, stress inference and the triggering of intervention

occur in real time on resource-constrained and battery-operated wearable

sensors and computing devices (e.g., smart phone and smart watch). Hence, the

method should be computationally efficient.

My work addressed each of these challenges. First, I developed a method

to deal with confounder, such as, physical activity which occurs frequently in our

daily life. Second, I applied the cStress model, imputed the missing data, and

validated the output of cStress model against self-reported stress. I found that for

a small subset of participants for whom the agreement is poor between self-report

and the sensor-inferred stress assessments, those participant’s self-report

xvii



consistency is also questionable. Third, I trained a stock prediction model that is

Moving Average Convergence Divergence (MACD) to locate the increasing and

decreasing trend in the time series and identified the episodes in the time series.

Then, I classified those episodes as stressed, unsure, not-stressed, and

unknown. Fourth, I applied the model on a study data from 38 participants and

4-week long. I found that active day is more stressful in compare to morning or

evening. I then analyzed the relationship between stress and objectively rated

disorder in the surrounding neighborhood and develop a model to predict stressful

episodes. This work appeared as an ACM CHI’16 paper.

This work generated widespread interest in the behavioral science

community. Later, I collaborated with the behavioral scientists to adapt my stress

intervention method on smokers who are going through abstinence. Stress in

prevalent among this population. Management of stress is critical for the success

of the abstinence. I adapted my method for this population where each participant

wore the sensor suite during their abstinence period. I collaborated with Dr.

Bonnie Spring from the Northwestern Medical School who is widely known for her

behavioral interventions work and Dr. Susan Murphy, a National Academy

member, who is widely recognized for her micro-randomized trial design. My

methods are now being used to evaluate the first sensor-triggered stress

intervention study in smoking cessation population at Northwestern Medical

school.

Finally, I showed the feasibility of detecting brushing and flossing behavior

from wrist-worn inertial sensors. This work led to a successful R01 grant

application led by Dr. Vivek Shetty from the UCLA Medical School.
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Chapter 1

Introduction

1.1 Background and Motivation

Mobile technology has a potential to provide unprecedented visibility into

the health status of users in their natural environment [107]. Sensors embedded

in smart phones (e.g., GPS, microphone), and wireless sensors worn on the body

(e.g., electrocardiography (ECG), accelerometers) can continuously monitor an

individual’s health, behavior, and the surrounding environment. Machine learning

algorithms have been developed to obtain measures of behavior and exposure to

the environment such as activity from accelerometers, geo-exposure from GPS,

stress from physiology, and social context from microphone. These automated

measures of behavioral and environmental contexts enable the design of

just-in-time interventions (JITI) to support maintenance of healthy behaviors.

The effectiveness of an intervention depends on the timing, content, and

modality of the delivered intervention. Considerable amount of research have

focused on the design and use of scheduled and context-sensitive interventions

targeted to support maintaining healthy life-style [68,97]. Scheduled interventions

can trigger recurring motivational messages, instructions from caregivers, or

medication reminders to maintain healthy behavior. However, such scheduled

interventions lack the knowledge about receiver’s context and therefore can

become an additional source of distress [143]. In order to address this issue

context-sensitive interventions are proposed [97]. Context-sensitive interventions

extend this area of research by utilizing individual’s contextual information such as

location and activity. However, such context-sensitive interventions do not assess

or consider the cognitive, physiological, or physical ’availability’ of the individual to

adapt to the content or modality of the triggered intervention. Research on

1



scheduled and context-sensitive intervention thus can benefit from the knowledge

of an individual’s availability to engage in an intervention.

We use smoking cessation to illustrate the potential of JITI and the

importance of timing the delivery of JITI. Smoking is responsible for most deaths

in the US, accounting for one in five deaths [128]. Although a majority of daily

smokers want to quit, according to Center for Disease Control, less than 10%

actually succeed to quit. The highest lapse rate among newly abstinent smokers

is in the first week which is observed to be over 50% of the total lapses [13].

Smoking lapse is impulsive and the first lapse usually leads to full relapse [166].

Hence, it is critical to help abstinent smokers break their urge when and where it

occurs (within first few days of quitting). There has been some technological

breakthroughs to address this problem. First, advent of wearable sensors now

enables us to detect the precipitants who are vulnerable to lapse (e.g., due to

stress [89,145]). Sensors such as smart eyeglasses can also detect smoking

cues (e.g., cigarette filters scattered around, other people smoking close-by) that

can cause smoking urges. Second, the mobile phones connected with these

sensors then can be used trigger a JITI to break the urge. However, such

technology will succeed only if the user is available to be engaged with the

intervention when the JITI is delivered. Otherwise, we may lose the precious

opportunity to prevent the potent first lapse.

In addition to inferring the availability of users, successful JITI depends on

correctly assessing the most appropriate timing of intervention via investigating

the time series of the sensor inferred markers. We use just-in-time stress

intervention to illustrate this case. Chronic stress induce vulnerability towards

addiction [168] in both developing and lapse phase. Managing stress in daily life

can directly improve health and wellness. For example, it can help individuals deal

with migraine and panic attacks. It can also help manage heart disease, diabetes,
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and addictive behaviors, such as smoking, drinking, illicit drug use, overeating,

etc. [10,36,125,159,164,177]. Despite high prevalence of stress, 33% of

Americans never discuss about managing stress with their health provider [1].

Recent advances in wearable sensors and computational modeling have made it

feasible to obtain continuous assessment of stress in the natural

environment [86,89,145]. Given the widespread adverse health consequences of

stress (both in the short term and in the long term) [43,115,121,124,156], these

advances hold tremendous promise to improve public health and well-being. But

delivering a sensor-triggered stress intervention (e.g., breathing or relaxation

exercises) is feasible only if there exists a method to detect significant stress

episodes in real time that can be used to trigger the intervention at most

opportune moments. To trigger a stress intervention, we need to locate significant

stress episodes in the sensor data stream. One of the goal of this dissertation is

to establish the foundation on which a just-in-time stress intervention can be

developed.

1.2 Problem Statement

JITI is aimed at improving the user’s health and require appropriate

engagement of the user. Asking users to rate their availability in-the-moment can

become an additional source of disruption. With the help of contextual information

derived from sensor measurement, we need to develop a model to assess the

availability of individuals for just-in-time-intervention in their natural environment.

To trigger a stress intervention, we need to locate significant stress

episodes in the sensor data stream. This introduces several challenges.

• Stress measurements obtained from sensors usually have to be inferred

from physiological data, which by their very nature rapidly varying, similar to

real-time tracking of stock prices. Unlike stock-price data, the time series of
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stress is discontinuous due to factors such as sensor detachment and

wireless losses [136,151].

• Sensor measurements are frequently confounded by physical activity (23%

of the time [151]), that needs to be filtered out for an accurate assessment of

stress.

• The decision to trigger the intervention must be made quickly so that the

intervention can be effective. Hence, simple methods that can be efficiently

implemented on mobile devices are needed.

• Too-frequent prompts of an intervention can lead to alarm fatigue [96] and

render the system useless. Ideally, the intervention policy should be

personalized to the tolerance level of the individual and the frequency of

intervention (e.g., once per day) desired by the user. Given a piecewise

continuous time series of stress assessments we want to identify the precise

timing for just-in-time stress intervention personalized to the individual

preference of frequency.

• When an intervention is triggered, we should have high confidence in

sensor-derived stress assessments.

• Stress assessments and the triggering of interventions occurs in real time

on resource-constrained and battery-operated wearable sensors and smart

phones. Although there are major advancements in technology, battery life

is still a major issue for continuous stress assessment in the natural

environment. Therefore, the computational model for providing just-in-time

stress intervention needs to be efficient computationally and in power

consumption. Computational efficiency is also needed to ensure that the

entire computation method keeps pace with the rapidly flowing stream of
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sensor data and does not fall behind. Otherwise, the computational process

will introduce a lag between measurements and trigger generation that will

grow larger with time.

1.3 Summary Results

1.3.1 Availability for JITI

In this dissertation, we develop a model to predict availability in the natural

environment. The proposed model is derived from data collected from a

week-long mobile health study with 30 participants. The goal of this study was to

investigate the relationship among stress, smoking, alcohol consumption, and

their mediators (e.g., location, conversation) by measuring these via wearable

sensors, rather than via self-reports. During the study, participants wore a

wireless physiological sensor suite that collected ECG, respiration, and

accelerometry, and carried a smart phone that included GPS and accelerometers.

Participants were prompted by a smartphone to complete Ecological Momentary

Assessment (EMA) self-reports consisting of 42 items, multiple times daily.

Answering these 42-items required a level of engagement expected in JITI. Each

EMA was associated with micro-incentive to encourage compliance [132].

To address the biases in human estimates of availability [20], we use delay

in responding to EMA as an objective metric to measure the availability of a

participant. When an EMA is prompted, a participant can act in five ways, (s)he

can i) answer the EMA without delay, ii) answer the EMA within a grace period

(around 2 minutes), iii) answer after the grace period iv) request to delay the EMA,

and v) ignore and not answer the EMA at all. Acts iii), iv) and v) indicate

unavailability in answering the EMA, while Act i) indicates immediate availability.,

while the first act shed light on situations where the participant was available to

attend to the EMA. However, when users respond within 2 minutes, we are unsure

about their availability states. Utilizing delay as a metric of availability, we seek to
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identify affective states of participants when they will be cognitively, physically,

and physiologically available to engage in a JITI.

To predict availability, we use GPS traces to identify participants’ location

and driving state, infer their physical activity states from on-body accelerometers,

and stress from ECG and RIP sensor data. In addition, we use time of day, day of

the week, and self-reported affect, activity type, and conversation status. We

compute a total of 99 features. We identify 30 most discriminating features and

train a machine learning model to predict the availability of a user. We find that

several features derived from sensors such as location, activity type, time, and

day of the week, play significant roles in predicting availability. In particular,

features derived from stress (inferred from physiological sensors) play a

significant role in predicting availability. We find that the machine learning model

can predict availability with 74.7% accuracy (against a base accuracy of 50%).

This compares favorably against existing works on predicting interruptibility, where

the prediction accuracy was reported to be 79.5% against a base accuracy of

70.1% in the office environment [65], and an accuracy of 77.85% against a base

accuracy of 77.08% in the natural environment [147]. We find that users are

usually available when walking outside of their home or work, or even if just

outside of their home or work location. But, they are usually not available when

driving or at work. We also find that participants are more available when they are

happy or energetic versus when they are stressed.

1.3.2 Trigger for JITI

Although physiology is affected by several kinds of events in daily life, the

main confounder for stress assessment is physical activity. To isolate data

affected by activity, we first detect physical activity from chest-worn 3-axis

accelerometer data, using an existing model [151]. Second, we estimate the time

it takes for physiology to recover from the effect of a just concluded activity
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episode. Both data are then excluded. Physiological readings generally return to

baseline within 2 minutes after the conclusion of physical activity (unless the

activity is especially intense) [60]. However, the majority of activity episodes in our

daily life are of short durations. Although our participants were physically active

22.7% of their sensor-wearing time, 95% of their activities lasted less than 2.1

minutes. Discarding 2 minutes of data after each activity episode would result in

excluding 35.0% of additional data (for a total of 57.7% of all data). We, therefore,

proposed a more systematic person- and situation-specific method to estimate

recovery time. According to [69,87], heart-rate after an arousal (e.g., activity)

recovers exponentially. We have learned the exponential recovery rate (τ ) for

each participant to estimate the recovery duration once physical activity is over.

Using this parameter, in addition to the entire physical activity interval, the

estimated recovery interval that follows is excluded from analysis, i.e., considered

missing for the purpose of stress inferencing. With this approach, only 7.4% of

data (as opposed to 35%) are excluded due to recovery from physical activity, in

addition to 22.7% that are directly affected by physical activity (for a total of 30.1%

of all data). Computation of the recovery rate in the natural environment could

also serve as an indicator of cardiovascular fitness, similar to the 6-minute walk

tests [34,152] done in clinics.

Standard methods for finding trends in time-series data [17,35] require

continuous data streams. To apply these methods, we needed a method to impute

the missing data. Missing data in time series of stress assessments can be due to

unavailability of data or due to presence of confounder such as physical activity.

Before imputation, we need to rule out the possibility that the data are Missing Not

At Random (MNAR) [53]. We found that missing data in stress assessments are

not MNAR. Missing data could be considered Missing At Random (MAR) [39,53]

because stress can be explained by other known contextual variables [61,70,150]
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such as day of the week, time of day, previous stress levels, and the slope and

intercept of previous time-series samples. We use these variables to impute the

missing data using the K-Nearest Neighbor method proposed in [77,169,179].

Although cStress model was validated in both lab and field settings [89],

before using it on two separate dataset obtained from polydrug users and

smoking abstinent users, we validate it against their field self-reports using F1

score as metric. The participant F1 scores range from 0.130 to 0.917 with a

median of 0.717. Although the F1 scores are acceptable for majority of the

participants, there are 5 participants having low F1 score seem to suggest poor

agreement between self-reported stress and the model output. We, therefore,

analyze the consistency of their self-reports, because they may be subject to

consistent bias or careless responding. We use Cronbach’s alpha [27] to assess

the consistency of the self-reported responses. The overall consistency score

across all participant’s self-reports is 0.843. We compute Cronbach’s alpha for

the 5 participants from Figure 13 who show poor F1 score. They have

unacceptable self-report consistency scores with a median Cronbach’s alpha of

0.335. Furthermore, the participant with the smallest F1 score (0.13) answered

“3” on item “Nervous/Stressed?” in 173 out of 177 self-reports, suggesting a bias

toward neutral self-assessment. These observations also demonstrate the value

of an objective sensor-based model of stress.

We applied the cStress model [89], imputed the missing data, and

validated the output of cStress (together with its imputation) against self-reported

stress. Next, we trained a stock prediction method called Moving Average

Convergence Divergence (MACD) [17] to locate the time of an increase in stress

in rapidly varying continuous time-series data. We estimated the probability

distribution of the likelihood of stress assessments and the probability distribution

of stress durations (in the smoothed time series). We found that the likelihood of
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stress follow beta distribution with shape parameter α = 0.222 and β = 1.027 and

stress durations follow the LogNormal distribution with parameters µ = 2.064 and

σ = 0.871. To personalize the algorithm for each individual, the threshold on

stress likelihood can correspond to tolerance level, and the duration can be

selected to meet the daily intervention frequency preference. If, in a candidate

window, the likelihood of stress crosses the high likelihood threshold and remains

elevated for a threshold duration, then this window represents significant stress

episode (SSE).

When we apply the above model to our dataset, we find that the duration of

a stress episode predicts the duration of the next stress episode (r = 0.42). This

correlation can be explained by theory and evidence [84,85,133] suggesting a

spiral process where current exposure to stressors can lead to subsequent

reactivity to other stressors by attenuating the state coping capability of the

person. We find that stress in the morning and evening are lower than during the

day (0.105 and 0.133 vs. 0.186). Our participants are more likely to be stressed

after an activity episode (0.186 vs. 0.117). We assessed relationships between

stress and the neighborhood environment with independently obtained data from

the Neighborhood Inventory for Environmental Typology (NIfETy) [71]. We found

that noisy locations; the presence of graffiti, cigarette butts, trash in street, and

bars are associated with high stress likelihood. In contrast, locations where the

NIfETy raters had seen male adults involved in positive interaction and youth

playing are associated with lower stress than average.

We investigated the feasibility of predicting whether a rapid rise in stress

would lead to a significant stress episode (SSE) from spatio-temporal context and

the users’ prior history. Proposed model is able to predict SSEs with a duration of

13.5 minutes with accuracy of 94.8% and κ = 0.444.

In addition, we found that experiencing stressful episodes increased the
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likelihood of additional stress episodes in the near future. Similarly, participants in

a not-stressed state are likely remain in the same state. Furthermore,

transitioning from not-stressed to stressed is less likely than transitioning from

not-stressed to unsure, and then from unsure to stressed. Observations like these

suggest that providing a stress intervention when a user experiences a stressful

episode may help him/her better cope with future stress episodes.

1.4 Key Contributions

In summary, this dissertation makes the following key contributions for

just-in-time-intervention:

• Proposed a novel objective approach to determine user’s availability to

engage in a task which requires significant user involvement (as compared

to [65,90,147]). Proposed a model that performs with 74.7% accuracy (over

50% base accuracy) and 0.494 kappa to predict availability in the natural

environment using data collected from a real-life field study with wearable

sensors. To the best of our knowledge this is the first study related to

interruptibility which uses micro-incentives [132] to obtain a stronger

indicator of unavailability.

• Taken first steps towards the development of JITI and develop

time-series-pattern mining methods to detect significant stress episodes in

discontinuous ambulatory data. Presented model can suggest the timing for

just-in-time stress intervention in a real-time fashion on resource-constrained

and battery-operated wearable sensors and smart phones.

• Validation of sensor inferred stress is the field setting is challenging due to

lack of gold standard truth. Self-reported stress is commonly used for this

validation [89]. Presented work show that lack of agreement between
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self-reported stress and sensor inferred stress is subject to inconsistent

self-report which we observed for a small subset of the population.

• Sensor detachment or wireless signal loss causes missing data in the time

series. Physical activity is a confounder for stress assessments which

occurs frequently in our daily life. In addition to data missing due to variety

of factors, discarding physical activity related confounded stress

assessments; further increases missing data in the time series. This causes

discontinuity in the time-series. There are several time-series pattern mining

methods which require a continuous time series to analyze and predict

trends. In order to obtain a continuous time series of stress assessments we

need to impute the missing data. But we can’t do imputation if missing data

is Missing Not At Random (MNAR). We found that missing stress

assessments are not MNAR.

• Heart rate increases during physical activity. At the end of activity period

heart rate recovers exponentially. Proposed model-based approach in

Chapter 6 is able to compute the recovery rate of a person in their daily life

without active user engagement. Computation of the recovery rate in the

natural environment could serve as an indicator of cardiovascular fitness,

similar to the 6-minute walk tests [34,152] done in clinics. This represents

interesting future work opportunities.

• We analyzed the relationship between successive stress episodes. Stress

episodes more likely to be of similar kinds in successive episodes. We found

that occurrence of a stress episode increases the likelihood of future stress

episodes. If a person is not-stressed in the current episode it is highly likely

that next episode in the time series is also going to be a not-stressed.

Similarly, if the person experiences a stress episode it is likely that the next
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episode is also going to be a stress episode. This can be explained by

theory and evidence [84,85,133] suggesting a spiral process where current

exposure to stressors can lead to subsequent reactivity to other stressors by

attenuating the state coping capability of the person. For example, stressors

such as facing financial troubles may decrease the person’s stress coping

capacity. This may lead the person to respond with subsequent stress to an

event or an environment that would, in other circumstances, be easy to deal

with, such as being in a noisy environment. Observations like these suggest

that providing a stress intervention when the person experiences a stressed

episode can help that person to cope with future stress occurrences. As an

alternate application, we can also feed the previous minute’s stress estimate

into the computational model (such as cStress) for estimating stress in the

current minute. Such recursive relationships may increase the accuracy of

stress assessment.

1.5 Organization

Chapter 2, Sensor-Triggered mHealth Interventions, presents the vision

and overall architecture of sensor triggered JITI. There are three major stages.

First, sense the physiological signals via wearable sensors and mobile sensors in

the person’s free living condition. Second, analyze these physiological signals

and obtain markers (e.g., stress). Third, investigate the time series of markers

and act via providing just-in-time intervention.

Chapter 3, Trigger Generation for Sensor-Triggered Just-In-Time

Intervention, discuss the two major components of this trigger generation. First,

assess the availability of the user to be engaged. Second, investigate the time

series of markers for generating an intervention trigger.

Chapter 4, Related Works, presents the works related to the timing of

just-in-time-intervention. First set of works focuses on assessing the availability of
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individuals for JITI. Second set of works focuses on the timing to trigger

just-in-time stress intervention.

Chapter 5, Determining Availability for Intervention, informs the necessity

of successful user engagement for an effective JITI. This chapter proposes a

novel objective approach to determine user’s availability to engage in an

intervention which requires significant user involvement.

Chapter 6, Identifying Stress Episodes Based on Field Stress Data,

proposes a model to identify the stress episodes based on real-life

stress-likelihood time series. It contains methods to deal with confounding

physical activity and discontinuities in the time-series data, and identify significant

stress episodes (SSEs) in the stress-likelihood time series.

Chapter 7, Identifying Stress Episodes Based on Lab Stress Data,

proposes an alternate model to identify the stress episodes based on parameters

computed from a lab based stress-likelihood time series where ground truth stress

markers are available.

Chapter 8, Applications of Our Model, discusses about the applications of

identifying stress episodes. First, trigger a self-report prompt to understand the

causality of someone being stressed. Second, observe and identify the patterns

of stress that will help intervention designers to devise appropriate intervention.

Third, provide a proactive or a reactive intervention. Fourth, generalize the

proposed method to other interventions, such as, via investigating the time series

of craving for cigarette, food, or drug.

Chapter 9, Conclusion and Future Directions, concludes the dissertation

and discusses about future research directions that is set by this dissertation.
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Chapter 2

Sensor-Triggered mHealth Interventions

Mobile health (mHealth) aims to improve the health and well-being of a

person by continuously monitoring his or her health status, recognize behavior,

diagnose medical condition, and provide just-in-time-intervention (JITI) in the

person’s natural environment.

2.1 Vision of Sensor Triggered JITI

Mark Weiser, the scientist who introduced the concept of ubiquitous

computing, believed that technologies should be designed to disappear [180] into

the background and serve users by anticipating their needs. Ubiquitous

computing can work in the background to assess users’ physiological states,

predict when users need help managing stress, and deliver just-in-time

interventions (JITIs). Such prediction and prevention could improve health and

quality of life for the entire society, given the ubiquity of stress in human society

and its wide-ranging adverse impact on physical, psychological, behavioral, and

social health.

Since the time smartphone was introduced, people throughout the world

embraced this new technology. Smartphone sales surpassed feature phone

globally in the year 2013 [3]. Pew data from 2015 indicate that 92% US

households have a cell phone and 64% US adults now owns a smartphone [8].

In addition to mobile calling features available in a feature phone,

smartphone consist of wide range of sensors. Motion sensors such as

accelerometer and gyroscope can assess person’s activity context. GPS, WiFi,

barometer, and Bluetooth data can provide us person’s location and social

context [104]. Microphone capturing surrounding conversation can inform social

interaction. Light sensors and temperature sensors can assess whether a person

is indoor versus outdoor. Heart rate monitor or phone camera can provide us ECG
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data which eventually can be used to assess physiological stress [75]. These

contextual information provides us unprecedented visibility into person’s physical,

physiological, behavioral, and social context in user’s natural environment.

Wearable computing makes this mobile health technology pervasive by

intertwining into our natural life. Smart watch, smart glass, sensors embedded in

clothing, or other wearable on-body sensors sensors provide us rich information

about person’s context in daily life. App stores such as Android, iOS, and Amazon

Appstore provides us a platform to write and deploy software. Software can

collect phone sensor data, along with wirelessly collected physiological data from

wearable sensors while person is doing their daily activity. Researchers can apply

data mining and machine learning method on these collected data and infer

adverse health behavior aiming towards just-in-time-intervention. smartphone

application, such as, 6-min walk test (6MWT) can assess cardiovascular fitness of

an individual [57,152]. Internet connectivity of smartphone and wearables

enables us to send these information to caregivers in real time. Solution of such a

kind is leading towards detection of disease at a early developing stage in a

proactive manner.

2.2 Overview of the Approach

Sensor-triggered mobile intervention has three main stages (see Figure 1).

First, sense the physiological signals via wearable sensors and mobile sensors in

the person’s free living condition. Second, analyze these physiological signals

and obtain markers (e.g., stress). Third, investigate the time series of markers

and act via providing just-in-time intervention.

2.2.1 SENSE

First stage is the acquisition of data by sensing physiological parameters

from wearable sensors in the user’s free living condition.
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Figure 1: Three stages of sensor-triggered intervention delivery process. First,
sense using wearable sensor suite AutoSense [59] and a smart phone. Second,
develop a computational model to analyze physiological data acquired from the
first stage and assess stress [89]. Third, obtain stress time series, identify stress
episodes, and act via triggering intervention at appropriate moments. This third
stage is the main topic of this dissertation.

2.2.1.1 AutoSense Sensor Suite

Sensor suites, such as, AutoSense [59] can sense physiological signals.

During the study, participants wear this wireless suite of physiological sensors

under their clothes. The sensor suite consisted of an unobtrusive, flexible band

worn around the chest. It provided respiration data by measuring the expansion

and contraction of the chest via inductive plethysmography (RIP) and included a

two-lead electrocardiograph (ECG), and a 3-axis accelerometer. The

measurements were transmitted wirelessly using ANT radio [5] to an Android

smartphone. The sampling rates for the sensors were 128 Hz for ECG, 64 Hz for

respiration, and 32 Hz for each accelerometer axis. They were downsampled at

the sensor before wireless transmission at the rate of 28 packets/second, where

each packet has 5 samples. There are approximately five million samples per day.

This high enough frequency of physiological sensor data suffices for continuous

assessment of stress.
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2.2.1.2 Mobile Phone

Participants carrying a smart phone have four roles. First, it robustly and

reliably receive and store data wirelessly transmitted by the sensor suite. Second,

it store data from GPS and accelerometers sensors in the phone. These

measurements are synchronized to the measurements received from wearable

sensors. Third, participants use the phone to complete system-initiated

self-reports in the field (e.g., drinking and smoking events). Fourth, at random

moments smart phone prompt participants to complete Ecological Momentary

Assessment (EMA) self-report items. These items consist of affect items, single

choice items, multiple choice items, or recall based items. Most of these EMA

items are not readily detectable from sensor data (e.g., happy?), while some are

used for the validation of sensor inference (e.g., stressed?). There is also

provision to associated micro-incentive with each EMA to encourage

compliance [132].

2.2.2 ANALYZE

The second stage involves analysis and modeling of this high volume

physilogical sensor data obtained from the first stage. The outcome of this stage

are personalized machine learning models that convert raw sensor data into

bio-markers of health, behavior, and environment (e.g., stress [89], activity [151],

and location [104]). Validation of these markers is also challenging, as in most of

the cases there is a lack of gold standard while users are in their free living

condition.

2.2.2.1 cStress Model for Stress Assessment

The cStress [89] model uses electrocardiogram (ECG) and respiration data

to infer stress. Acquiring these physiological signals in the field setting has several

challenges. Wearable sensors sensing ECG and respiration signals, wirelessly

transmits data to the smartphone. Data is timestamped when received by the
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phone. Data losses and software delays on the phone introduce variability in the

time-stamping process. The granularity of stress is at the level of a minute while

the errors in timestamps may be on the order of milliseconds. The main issue of

time synchronization occurs due to data loss. A dynamic-programming based

approach is used to correct the timestamps [89]. In addition, this time-stamp

correction process identifies any losses in the sensor data stream. A small

amount of missing data (1 packet) is imputed using cubic Hermite splines, which

is known to be appropriate for interpolating physiological measurements [137].

Most packet losses involve only one packet, containing 5 samples (8% of an ECG

or respiration cycle). Imputation of 5 missing samples reduces the data loss rate

from 10% to less than 1.5%.

ECG data processing contains three phases. First, identification of the

acceptable portions of an ECG signal, which is considered acceptable if it retains

characteristic morphologies of standard ECG, i.e., contains identifiable QRS

complexes where R-peaks can be located. Otherwise, it is treated as

unacceptable. Second, R-peaks are detected using Pan and Tompkins’s

algorithm [140]. The time difference between two successive R-peaks is R-R

interval. Outlier R-R intervals (i.e., due to missing R-peaks) are removed from

analysis. Third, the R-R intervals are normalized in order to develop a

user-independent model. Respiration signal processing has similar phases, i.e.,

identifying and discarding unacceptable data, finding peaks and valleys, removing

outliers, computing respiration features (i.e., inhalation duration), and normalizing

the features.

As a next step in the stress assessment, a set of features is extracted from

each non-overlapping minute’s ECG and respiration sensor measurements.

Based on this feature vector, the model determines whether that minute’s sensor

readings correspond to a physiological response to stressors. Among the many
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features used by the model are such ECG features as 80th percentile of R-R

intervals and variance of R-R intervals, and respiration features such as mean IE

ratio and the median of Stretch [89]. This model was shown to classify stress and

non-stress minutes collected in a lab stress protocol with 95% accuracy (F1 score

of 0.78) on independent subject validation (different from the training set) [89]. In

contrast to other stress inference works, such as [122,123], which use only

Heart-Rate Variability (HRV) features extracted from the ECG signal, the cStress

model uses a richer feature set, containing other (non-HRV) ECG and respiration

features. The authors of cStress paper show that adding these features

significantly improves the performance of the model — F1 score jumps from 0.56

to 0.78.

Finally, the model was evaluated against self-reports collected in a

week-long field study from an independent population of 23 participants and was

found to have an F1 score of 0.71 [89]. In [158], the cStress model was evaluated

with self report collected from another independent population of 38 participants

who wore the sensors for 4 weeks and provided self-report of their stress level

multiple times daily. In this validation, the F1 score was reported to be 0.72.

2.2.2.2 Activity Inference from Accelerometer

To infer whether a subject is in motion or not, we use a simple threshold

based activity detector using the 3-axis on-body accelerometer (placed on chest).

Phone accelerometer data was not used because the phone may not be on the

person and thus may miss some physical activity. We adapt the physical

movement detection approach in [19,141]. As the placement of the accelerometer

and the participant population is different from that presented in prior works, we

used an existing approach proposed in [151] to infer activity. Training data was

used to determine an appropriate threshold for detecting activity. There was

labeled data under walking and running (354.16 minutes), and stationary
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Figure 2: Using cut-off point 0.21384 we observe that subjects were physically
active for around 20% of their total wearing time.

Table 1: Confusion Matrix for the Semantic Labeling model [104]. Restaurant is
sometime confused with store. Precision and recall related performance metrics
are available in Table 2.

Classified as
Home Work Store Restaurant Other

Home 617 11 10 0 4
Work 12 708 1 0 1
Store 8 7 203 6 9
Restaurant 4 1 43 27 3
Other 62 14 40 1 96

(1426.50 minutes) states from seven pilot participants who wore the same sensor

suite. We filtered the raw signal, removed the drift, and extracted the standard

deviation of magnitude, which is independent of the orientation of the

accelerometers and recommended in literature [19,141]. The distinguishing

threshold for our accelerometer to be 0.21384, which is able to distinguish

stationary from non-stationary states with an accuracy of 97% in 10-fold

cross-validation. Figure 2 shows that subjects were physically active for around

20% of their total wearing time.
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Table 2: Accuracy using semantic labeler model [104]. TP = true positive rate, FP
= false positive rate, P = precision, R = recall, F = F-Measure, and AUC = area
under the curve.

TP FP P R F AUC
Home 0.95 0.08 0.86 0.95 0.90 0.98
Work 0.97 0.03 0.96 0.97 0.97 0.99
Store 0.79 0.06 0.67 0.79 0.73 0.96
Restaurant 0.37 0.01 0.60 0.37 0.46 0.92
Other 0.43 0.02 0.77 0.43 0.55 0.89

0.86 0.05 0.85 0.86 0.85 0.97

2.2.2.3 Inference of Semantic Location

Locations of interest and their semantic labels are determined from GPS

traces that were collected on the phone. Figure 3 shows a typical GPS trace of a

participant for one day. Places of interest for a participant were places where the

participant spent a significant amount of time. We first apply a clustering algorithm

to the GPS data using the method proposed in [130]. Distance threshold of 100

meters and temporal threshold of 5 minutes are used to find the spatio-temporal

clusters throughout the day for each participant. These clusters represent the

locations of interest. Next, we assign semantic labels to these locations using

Semantic Context labeler from [104].

Label assignment is based on demographic, temporal and business

features. Demographic features include the age and gender of the participant,

which are obtained from recruitment forms. The temporal features include the

arrival time, visit midpoint time, departure time, season, holiday, and the duration

of stay at that location. These features were computed from the GPS traces and

clusters. Lastly, the business features include the count of different types of

business entities such as Arts/Entertainment, Food/Dining,

Government/community, Education, etc. within different distance thresholds from

the current location (see [104] for details). To compute the business features, we
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Figure 3: A sample GPS trace for one day from a participant. The red line shows
the path commuted by the participant. The pinned locations are the location at the
time of EMA prompt.

used Google Places API. For this model, we obtain an accuracy of 85.8% (and

κ = 0.80). Table 1 presents the confusion matrix for this semantic context labeler

model where F -measure is 0.85 and area under the curve is 0.97. We observe

that Home, Work, and Store are detected quite well. But, Restaurant is confused

with Store, because a Store and a Restaurant can be co-located. We correct the

labels (if necessary) by plotting the GPS traces in Google earth and by visually

inspecting it. These location labels were considered as ground truth. But, in some

cases we could not reliably distinguish between a store and a restaurant (due to

inherent GPS inaccuracy). We discard these data points by marking them

unknown.

We also obtain a detailed level of semantic labeling. For Home, detailed

label can be Indoor Home, Dormitory, and Backyard. Figure 4 shows a detailed

breakdown of the labels. Our labeling concept of these details evolved over

time [106] (e.g., by adding new levels). Hence, we made multiple iterations to

obtain consistent labels.
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Figure 4: Two level semantic labeling of GPS clusters.

2.2.2.4 Driving Detection from GPS

Driving is detected from GPS-derived speed and by applying a threshold

for maximum gait speed of 2.533 meters/sec [29]. A driving session is composed

of driving segments separated by stops, e.g., due to a traffic light being red. Stops

usually are of short duration unless there is a congestion. The end of a driving

session is defined as a stop (speed=0) for more than 2 minutes. Otherwise, two

driving segments sandwiched by a less than 2 minute stop is considered to be

part of the same driving session. In case of loss of GPS signal for more than 30

seconds we also end the driving session at the timestamp when we received the

last GPS sample. In order to determine whether participant is driving or just riding

a vehicle we use the EMA question “If you commuted since the last interview,

what type?”, where possible responses are “Driving”, “Biking”, “Walking”, “Riding

as a Passenger”, “Riding Public Transportation”, and “Did not commute”. Finally, if

an EMA prompting time is between start and end of a driving session, and the

self-report response mentions “Driving”, we mark that EMA to occur during driving.
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This stage reduces the data from 5 million per day to approximately 10

thousand samples per day.

2.2.3 ACT

The third stage is just-in-time intervention via investigating the markers

obtained from the second stage. The success of just in time intervention depends

on the timing of intervention that is “when” to provide an intervention?, the content

of intervention that is “what” to provide in that intervention? And the modality that

is “how” to provide an intervention. To identify the appropriate content and

modality of intervention we first need to identify the timing for intervention. This

proposed work address this timing part of the JITI that enables behavioral

scientist to find appropriate content and modality.

2.2.3.1 Content of Intervention

In a smoking cessation program caregiver can provide short message

(e.g., SMS, leaflet) to the quitters to guide them in the abstinence phase.

Research show that sending materials tailored to each individuals increases

efficacy of the program [135,172]. Because, those who receive the tailored

material perceive it as being written especially for them, and read it thoroughly in

compare to those who received non-tailored material. Text message tailored to

each individual contains information, such as, risks of smoking, monetary costs of

smoking, social norms of smoking, outcome expectancies, and motivation to

increase the impact of the intervention and reduce smoking [78,135].

In an automated coaching system for stress reduction system sets goal for

individuals (e.g., exercise, mediation, and accessibility). Users may fail to achieve

daily stress reduction goals in case goals are too easy or too difficult to complete.

An effective theoretically grounded system can set adaptive goals based on the

individual’s prior performances [102] and increase compliance [102].
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Interventions, such as, social networking, playing games, guided acupressure,

and guided breathing are effective for stress reduction [143].

Self-reflection or biofeedback is another category of content for

intervention. Biofeedback has been used clinically in relaxation skills training

aiding us to help reduce stress related symptoms [32]. Relax2Win is a

biofeedback game [163] where player control their character to go faster by being

more relaxed (EDA level). [175] investigates the effects of using biofeedback as

visual stress indicator during video-mediated collaboration between instructor and

worker. Instructors and workers using the biofeedback as compared to using

interfaces with facial view, reported lower mental workload and stress. In [162],

authors developed a visualization of time-series sensor data to inform the design

of just-in-time adaptive stress interventions. AffectAura [120] is an emotional

prosthetic that allows users to reflect on their emotional states over time. System

logs physiological state using audio, visual, sensors, and user activities and aims

to support reflection via visualization. Visualization is replaced by a wearable

butterfly in [113] that helps users reflect on their stress level and regulate it. A

self-reflective visualization of Blood pressure (BP) can enable users associate

among stress, food, and daily routines [98].

An animated conversational agent on a wallmounted display can act as a

virtual exercise advisor [26]. In [46,178] a group of users share their step counts

with each other via mobile phone. In case of daily goal is met system provides

rewards, such as, a symbol next to the user’s step count. UbiFit Garden [47]

encourage individuals for physical activity. System uses on-body sensing for

real-time assessment of physical activity. Smart phone glanceable display shows

a wallpaper of a garden with butterflies. System sets a weekly goal of physical

activity. Small butterflies in the garden indicate recent goal attainments, while

large butterfly indicates this week’s goal is met. The absence of flowers means no
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activity in current week. In a similar study Fish‘n’Steps [109] sets personal goal of

activity. User’s foot step count is linked to the growth, and activity of an animated

virtual fish in a virtual fish tank containing fishes of other users.

2.2.3.2 Modality of Intervention

Mobile phone SMS based intervention aim to motivate participants about

negative consequence of adverse health practice (e.g., smoking) and helps

individuals guiding in the cessation phase [78,135,172]. In a systematic

review [54] about the usage of mobile devices for mobile health care, authors

listed five smoking cessation studies. In each of the cases participant group

receiving mobile phone based (mostly text messaging) intervention are more likely

achieve abstinence comparing with those under controlled condition.

Intervention systems [26,47,109] use computer or mobile phone based

virtual assistant as a modality of intervention to encourage individuals for physical.

In comparison to a virtual assistant or text based intervention, a socially intelligent

robotic personal assistant is more effective when an intervention is provided [111].

Socially intelligent robots can show empathy and compassion which led to better

compliance [100]. In addition, robotic interaction is more natural and trusted in

compare to a virtual assistant or text based interface. Because many people are

habituated in getting information from a computer or mobile screen rather than

receiving it in spoken text from robot with an ability to express emotions.

In [38] authors presented a JITI system to prevent emotional food intake.

Another example is [149] that proposed a system where earpieces (to monitor

chewing and swallowing), augmented-reality glasses (for capturing food

consumed), and a physiological sensor (for heart rate) are connected to a

mobile-phone application that processes the data and gives feedback to the user.

MoodLight [117] system uses ambient light as a modality of stress

intervention. The ambient light is interactive and provides visual representation of
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momentary experiences of arousal (e.g., stress) by changing its color from blue to

red. Electro-Dermal Activity (EDA) sensors collect biometric data about the

current arousal level of an individual and change the color of the light accordingly

to show internal state of individuals and increase awareness. Authors were

motivated by a belief that cultivating self-awareness is one of the most important

potential contributions of affective computing to the problem of stress

management.

Lee et al. [108] developed a patina engraving system which engraves

patina-like patterns on an wrist wearable fashionable activity tracker according to

user’s activity logs. Patina motivates participants to increase physical activity for

engraving aesthetic patinas and triggers spontaneous social interactions.

Smart glass based system can provide intervention by facilitating visually

impaired persons to engage in a social conversation [16]. System provides

feedback to the visually impaired person about the facial expression and

emotional state of the person he or she is interacting with.

2.2.3.3 Timing of Intervention

Successful delivery of the content of an intervention using a modality is

critically depends on the appropriate timing of intervention. As a first step towards

identifying the timing of intervention, we need to detect adverse health practices of

individuals in their natural environment.

Inertial sensors embedded in the smart watch can track wearer’s wrist

movements and has capability to provide us health related information. We can

detect whether a person is smoking [142,155], eating [176], doing physical

activity [7], or driving [99,110] tracking these wrist movements. In addition to

inertial sensors smart watch also contains Photoplethysmographic (PPG)

sensors. PPG signals are obtained by pulse oximeter. It illuminated wearer’s skin

via a light-emitting diode (LED) and measures the change in light absorption in
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the skin. The periodicity of this PPG signals indicates cardiac activity. We can

estimate heart-rate (HR) from this signal [187] leading towards the detection of

physiological stress [89].

Visual exposure to specific cues induce craving for adverse health practice.

Persons going through a smoking abstinent phase will feel strong urge to smoke

viewing a tobacco advertisement or an outlet. Similarly, gazing at a lucrative

advertisement of palatable food in front of a restaurant will most likely induce

craving for food among people who are going through dietary restriction (e.g.,

obese). An outward camera in the smart glass can record the video of the

surroundings and assess such visual exposures [62]. Incorporation of an inward

camera can detect where a person is gazing at in the field of view. System can

detect exposure to cue (e.g., smoking, drug, and food) and can provide

intervention in real time. In addition, an inward camera in the smart glass can

track the eye movement [118,119,186] and can assess health condition, such as,

Parkinsons [24,31,170], Alzheimers [129], Autism [160], and others. Visually

impaired person can get non-verbal cue during a social interaction (e.g., smile

and yawn) [16] enabling them better engaged in a social conversation.

Wearables such as Zephyr BioHarness [2] and AutoSense [59] can collect

ECG, respiration, and skin temperature in wearer’s natural environment. Systems

have been developed to detect smoking [14,155], drug intake [88,134], mental

workload [44], and physiological stress [89,145] from collected physiological data.

Iqbal et al. [92,93] proposed a measure of mental workload for interactive tasks

using of task-evoked pupillary response. The magnitude of the pupillary dilation

appears to be a function of processing load, or the mental effort required to

perform the cognitive task. Functional Near Infrared Spectroscopy (fNIRs)

measures blood flow in different part of the brain and can be used as a metric of

mental workload [82]. Chest worn camera can take picture of food and assess the
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calorie intake of the person [174]. Sensors embedded in the clothing can collect

physiological signal (e.g., ECG, respiration, and posture) in an unobtrusive way

and reduce burden of wearing additional wearables [73,131,141,183].

A home reminder system for medication and healthcare was reported

in [97]. Smart home and wearable sensors were used to identify a person’s

contextual information for triggering an intervention. A similar study was

conducted using smart home sensors to remind patients about their medications

in [79], which considered availability of the patient when triggering a prompt, e.g.,

the system did not trigger a reminder when the patient was not at home, was in

bed, or was involved in a phone conversation.

A majority of these works so far are about detecting markers related

adverse health conditions from ubiquitous sensors. Presented work in this

dissertation is a bridge between this detection part and the delivery of the

intervention.
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Chapter 3

Trigger Generation for Sensor-Triggered Just-In-Time Intervention

— The Case of Stress Intervention

As a next step towards sensor-triggered just-in-time intervention we need

to identify the timing for intervention. In this dissertation, we use stress

intervention as a running example because of its well-known adverse effect on

health. For example, depression, heart disease, diabetes, and

addictions [10,11,43,55,56,80,124,125,153].

There are two parts in timing. First, identify when to deliver based on

whether the person is available for a task like intervention which requires

significant user involvement. Chapter 5 discusses about this availability part.

Second, identify the timing about when to generate a trigger for an intervention via

investigating the patterns in the time series. This is a noisy and rapidly varying

time series which can be attributed three major factors. First, participants wearing

the sensors may face problems, such as, intermittent loosening, improper

attachment, jerks, wireless packet loss, etc. Second, machine learning models

that obtain markers from the time series of physiological data are rarely perfect

and may contain inaccuracies. Third, physiology can be confounded by several

events in our daily life. The next major challenge is missing data due to wireless

signal loss or due to presence of confounder. In addition, stress assessments and

the triggering of interventions occurs in real time on resource-constrained and

battery-operated wearable sensors and smart phones. Therefore, the

computational model for providing just-in-time stress intervention needs to be

efficient computationally and in power consumption. Chapters 6 and 7 propose

methods about addressing each of these challenges of this triggering part. This

stage reduces the data (markers) from ten thousand per day to usually 5 or less

(interventions) per day.
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Chapter 4

Related Works

In this chapter, we will discuss two broad categories of literature that is

related to the timing for JITI. First, we will discuss close related works that assess

the availability of an individual for Just-In-Time-Intervention (JITI). Second, we will

discuss related works about generating the trigger for intervention.

4.1 Availability for Intervention

Research on interruption is closely related to the availability of individuals

for intervention. A majority of research in this area primarily focuses on the impact

of interruption in workplace. Information available from sensors installed in the

workplace (e.g., door magnetic sensor, keyboard/mouse logger, microphone) can

be used to develop a machine learning model to assess person’s interruptibility

level at workplace [65,90]. Research on interruption in the natural environment

has primarily focused on determining the receptivity of a user in receiving a phone

call [83]. Interruptibility has been assessed from Ecological Momentary

Assessment (EMA) [65,83,90] which can be biased due to number of factors,

such as subjective biases, urgency of complete, lack of motivation, and lack of

attention [28,165,184]. To address such challenges, objective measure such as

the state of the ring tone of person’s phone was used to assess his/her

interruptibility level [63,147]. We argue that the state of the phone ringer is a

broad measure of the interruptibility of a user and it does not assess the

availability of the user to engage in JITI.

Presented work complements prior works in several ways. First, a majority

of the related works either recruit volunteer with no compensation [63,147] or a

fixed compensation [83,91,115,126] for participation. Research shows that

introduction of micro-incentives in scientific studies helps achieve better

compliance with the protocol [132]. Our work uses micro-incentive to enhance
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participant’s motivation and compliance. In addition, a person unavailable even

though he or she may sacrifice the micro-incentive, provides us a stronger

measure of unavailability. Second, we use wearable sensors in addition to smart

phone sensors. Third, we report higher accuracy of 74.7% and a kappa of 0.494

compared to prior works [147]. Finally, to the best of our knowledge, this is the

first work to directly inform the timing of delivering EMA prompts in scientific

studies that use micro-incentives.

We will discuss the details of the related works related to availability for

intervention in Chapter 5 section 5.2.

4.2 Trigger Generation for Intervention

The first step towards finding the timing for just-in-time stress intervention is

detection of stress in a continuous manner. Recent advances of wearable sensors

and mobile sensors enables us to get physiological parameters (e.g., ECG) to

detect stress [59,75,81,173]. Stress detection can be done from a variety of

physiological parameters including ECG and respiration [89,145], electrodermal

response [117], photoplethysmography from fingertip [112], or near-infrared

spectroscopy from forehead [82]. Our method of generating trigger for JITI can be

applied to stress measurements obtained from any of the above methods.

Self-reflective visualization of person’s current stress level along with other

associated contextual information helps users to manage theirs stress [113,120].

MoodLight [117] finds episodes of arousal from electro-dermal activity (EDA) in

the lab environment. System regulates the color of a desk lamp to reflect the

user’s current stress level. When users reduce their stress level, the light color

changes from red to blue. In [95], the authors present a method to predict the time

series of heart-rate variability (HRV) using a first-order Hidden Markov Model. The

algorithm was tested in a simulated patient environment using a beta distribution

(α = 0.1 and β = 1). In contrast to these works, our model addresses real-life
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challenges of discontinuity and rapid variability in the time series of stress

assessments.

We will discuss the details of the related works related to the timing for

just-in-time intervention in Chapter 6 section 6.2.
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Chapter 5

Determining Availability for Intervention

5.1 Introduction

The success of Just-In-Time-Intervention (JITI) depends on successful

user engagement. Intervention will succeed only when the recipient user is

available physically, cognitively, and socially to attend to the intervention.

Assessing availability is even more critical in a smoking cessation program.

Smoking is responsible for every one in five death in US [128]. Although the

majority of the daily smokers want to quit, 90% of them eventually relapse

according to the Center for Disease Control. The first week of the abstinence is

the most critical period for the newly abstinent smokers when over 50% of them

lapse [13]. Smoking lapse is impulsive and the first lapse usually leads to full

relapse [166]. Hence, it is critical to help abstinent smokers break their urge when

and where it occurs (within first few days of quitting). Although wearable sensors

now provide us an ability to detect the potential precipitants (e.g., stress [145] or

smoking cues detected via smart eyeglasses) and trigger a JITI to break the urge,

it will succeed only if the user is available to be engaged when the JITI is

delivered. Otherwise, we may lose the precious opportunity to prevent the potent

first lapse. Hence, timing a JITI is critical.

Considerable research have been conducted in a closely related topic of

interruptibility [64,96]. These works largely aim to detect interruptibility of a user at

workplace by analyzing the user’s computer activity (e.g., key stokes), workplace

status via audio and/or video capture of the workplace, phone status, and physical

activity status via wearable sensors. Research on interruptibility provides insights

about tasks or social contexts where a person is more interruptible, however,

lessons from these studies cannot adequately guide the design of JITIs. This is

because, unlike the case of interruption that may disrupt concentration of a task,
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JITI is aimed at improving the user’s health and require appropriate engagement

of the user. Further, these works asked users to rate their availability

in-the-moment. Such reports are subjective, can become an additional source of

disruption, and do not assess user’s capability to engage in a JITI. It is desirable

to investigate whether availability of an individual can be inferred objectively from

data collected using lightweight wearable sensors. We also investigate whether

context of the user such as stress (inferred from physiological sensors) and

activity level (inferred from accelerometers) can be utilized to infer user’s

availability. Moreover, there is a subtle difference between interruption and

intervention. Interruption is for the the benefit of interrupter (e.g., marketing call)

while Intervention is for the benefit of receiver (e.g., smoking cessation).

In this chapter, we developed a model to predict availability in the natural

environment. The proposed model is derived from data collected from a

week-long mobile health study with 30 participants. The goal of this study was to

investigate the relationship among stress, smoking, alcohol consumption, and

their mediators (e.g., location, conversation) by measuring these via wearable

sensors, rather than via self-reports. During the study, participants wore a

wireless physiological sensor suite that collected ECG, respiration, and

accelerometry, and carried a smart phone that included GPS and accelerometers.

Participants were prompted by a smartphone to complete Ecological Momentary

Assessment (EMA) self-reports consisting of 42 items, multiple times daily.

Answering these 42-items required a level of engagement expected in JITI. Each

EMA was associated with micro-incentive to encourage compliance [132].

To address the biases in human estimates of availability [20], we used

delay in responding to EMA as an objective metric to measure the availability of a

participant. To predict availability, we used GPS traces to identify participants’

location and driving state, infer their physical activity states from on-body
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accelerometers, and stress from ECG and RIP sensor data. In addition, we use

time of day, day of the week, and self-reported affect, activity type, and

conversation status. We computed a total of 99 features.

We identified 30 most discriminating features and train a machine learning

model to predict the availability of a user. We found that several features derived

from sensors such as location, activity type, time, and day of the week, play

significant roles in predicting availability. In particular, features derived from stress

(inferred from physiological sensors) play a significant role in predicting

availability. We found that the machine learning model can predict availability with

74.7% accuracy (against a base accuracy of 50%). This compares favorably

against existing works on predicting interruptibility, where the prediction accuracy

was reported to be 79.5% against a base accuracy of 70.1% in the office

environment [65], and an accuracy of 77.85% against a base accuracy of 77.08%

in the natural environment [147]. We found that users are usually available when

walking outside of their home or work, or even if just outside of their home or work

location. But, they are usually not available when driving or at work. We also find

that participants are more available when they are happy or energetic versus

when they are stressed.

In summary, presented work makes the following contributions: 1.) we

propose a novel objective approach to determine user’s availability to engage in a

task which requires significant user involvement (as compared to [65,90,147]), 2.)

we propose a model with 74.7% accuracy (over 50% base accuracy) and 0.494

kappa to predict availability in the natural environment using data collected from a

real-life field study with wearable sensors, and 3.) to the best of our knowledge

this is the first study related to interruptibility which uses micro-incentives [132] to

obtain a stronger indicator of unavailability.

We note that EMAs are widely used in scientific studies on addictive
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behavior [127,161,165], pain [171], and mental health [15,114,139,181]. While

EMAs have obvious benefits, prompting EMAs at inopportune moments can be

very disruptive for the recipients’ current task [154] or social situation [21,154].

The work presented here can directly inform the appropriate timing for delivering

EMA prompts.

5.2 Related Works

In an era of mobile computing and ubiquitous sensors, we have

unprecedented visibility into user’s contexts (e.g., physical, psychological,

location, activity) and this awareness can be used to guide the design of

interventions.

A home reminder system for medication and healthcare was reported

in [97]. Smart home and wearable sensors were used to identify a person’s

contextual information for triggering an intervention. A similar study was

conducted using smart home sensors to remind patients about their medications

in [79], which considered availability of the patient when triggering a prompt, e.g.,

the system did not trigger a reminder when the patient was not at home, was in

bed, or was involved in a phone conversation. A context sensitive mobile

intervention for people suffering from depression was developed in [37]. Data

from phone sensors such as GPS and ambient light, and self-reported mood were

used to infer contextual information of the patient and predictions were made

about future mental health related state to trigger an appropriate intervention. A

system to assist diabetes patients was reported in [148] to keep track of their

glucose level, caloric food intake, and insulin dosage by logging user contexts

(e.g., location from GSM cell tower, activity) and used these logged data to learn

trends and provide tailored advice to the user. This thread of research highlights

the tremendous capabilities and utility of mobile sensor inferred context-sensitive

interventions. However, research in this area focuses primarily on determining the
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time of triggering the intervention. A timely intervention may still not be effective if

the receiver is not available physiologically or cognitively to engage in that

intervention. Thus, assessing the cognitive, physical, and social availability of a

user in the natural environment will extend and complement research in this area.

Research on interruption is closely related to availability of an individual. A

vast majority of research in this area focused on understanding the impact of

interruption in workplaces. A feasibility study for detecting interruptibility in work

environment used features extracted from video capture (a simulated sensor) [90].

Subjective probe of interruptibility in Likert scale was converted to binary labels of

interruptible and highly non-interruptible. A machine learning model was able to

classify these states with an accuracy of 78.1% (base=68.0%). An extension of

this research used sensors (e.g., door magnetic sensor, keyboard/mouse logger,

microphone) installed in the office [65], which improved the accuracy to 79.5%

(base=70.1%).

These studies provide insights on interruptibility in carefully instrumented

controlled environment (i.e., office), but may not capture the user’s receptivity

outside of these environments. For instance, a smoking urge may occur outside

of office setting, where most of the above used sensors (e.g., video, keystrokes,

etc.) may not be available. In addition, the approach of probing users at regular

intervals to gauge their interruptibility may not indicate their true availability due to

subjective biases as pointed out in [63].

Research on interruption in the natural environment has primarily focused

on determining the receptivity of a user to receive a phone call. In [83], a one-day

study was conducted with 25 users who wore accelerometers and responded to

prompted EMA’s on whether they are currently receptive to receiving phone calls.

Using accelerometers to detect transition, it is shown that people are more

receptive during postural transition (e.g., between sitting, standing, and walking).
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The first work to use an objective metric was [63] that conducted a

week-long study with 5 users. It collected the moments when users changed their

ring tones themselves and also in response to a prompt generated every 2 hours.

By using phone sensors (e.g., GPS, microphone, accelerometer, proximity) to infer

phone posture, voice activity, time, and location, and training a person-specific

model, it was able to predict the ringer state with an average accuracy of 96.1%.

The accuracy dropped to 81% if no active queries were used. We note that

predicting the state of ringer is a broad measure of the interruptibility of a user to

receive calls and it does not indicate the user’s availability to engage in a JITI.

The closest to our work is a recent work [147] that conducted a large-scale

study (with 79 users) to predict user’s availability to rate their mood on 2 items

when prompted by their smartphones. The prompt occurred every 3 hours, if the

phone was not muted. The notification is considered missed if not answered in 1

minute. The users can also actively reject a notification. A model is developed

based on phone sensor data (location provider, position accuracy, speed, roll,

pitch, proximity, time, and light level) to predict availability. It reports an accuracy

of 77.85% (base=77.08%, kappa=0.17), which is only marginally better than

chance.

The work presented here complements and improves upon the work

reported in [147] in several ways. First, [147] recruited volunteers without any

compensation. Other works in the area of interruptibility also either used no

compensation [63,147] or a fixed compensation [83,91,115,126] for participation.

Micro-incentives are now being used in scientific studies to achieve better

compliance with protocols [132]. Ours is the first work to use micro-incentive to

enhance participant’s motivation. In [147], participants answered only 23% of the

prompts (1508 out of 6581), whereas in our study participants responded to 88%

of the prompts (2394 out of 2717) within the same 1 minute cutoff used in [147].
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This is despite the fact that our EMA’s are more frequent (upto 20 per day) and

require a deeper involvement (to complete 42 item questionnaires), which may be

the case with JITI that require frequent and deeper engagement. Therefore, our

work complements all existing works by providing a stronger measure of

unavailability, not considered before. Second, we use wearable sensors in

addition to a subset of smartphone sensors used in [147]. Third, we report a

significantly higher accuracy of 74.7% (over 50% base accuracy) and a kappa of

0.494 compared to [147]. Finally, to the best of our knowledge, this is the first

work to directly inform the timing of delivering EMA prompts in scientific studies

that use micro-incentives.

5.3 Study Design

In this dissertation, we analyzed data collected in a scientific user study

that aimed to investigate relationship among stress, smoking, alcohol use, and

their mediators (e.g., location, conversation, activity) in the natural environment

when they are all measured via wearable sensors, rather than via traditional

self-reports. The study was approved by the Institutional Review Board (IRB), and

all participants provided written informed consents. In this section, we discussed

participant demographics, study setup, and data collection procedure.

Participants: Students from a large university (approximately 23,000

students) in the United States were recruited for the study. Thirty participants (15

male, 15 female) with a mean age of 24.25 years (range 18-37) were selected

who self-reported to be “daily smokers” and “social drinkers”.

Wearable Sensor Suite: Participants wore a AutoSense wireless

physiological sensor suite underneath their clothes. The wearable sensor suite

consisted of two-lead electrocardiograph (ECG), 3-axis accelerometer, and

respiration sensors. A description of this AutoSense sensor suite is available in

Chapter 2 and Section 2.2.1.1.
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Mobile Phone: Participants carried a smart phone that had four roles. First,

it robustly and reliably received and stored data wirelessly transmitted by the

sensor suite. Second, it stored data from GPS and accelerometers sensors in the

phone. These measurements were synchronized to the measurements received

from wearable sensors. Third, participants used the phone to complete

system-initiated self-reports in the field. Fourth, participants self-reported the

beginning of drinking and smoking episodes by pressing a button.

Self-report Measures: The mobile phone initiated field questionnaires

based on a composite time and event based scheduling algorithm. Our

time-based prompt was uniformly distributed to provide an unbiased experience to

participants throughout the day. However, using only time-based prompts may not

facilitate EMA collection about interesting events such as smoking or drinking. To

capture these, a prompt was also generated around a random subset of

self-reported smoking and drinking events.

For availability modeling, we only used random EMAs that are similar to

sensor-triggered JITI in unanticipated appearance. The 42-item EMA asked

participants to rate their subjective stress level on a 6-point scale. In addition, the

EMA requested contextual data on events of interest (stress, smoking, and

drinking episodes). For example, in case of a stress, users were asked about

social interactions, for smoking episodes they were asked about presence of other

smokers, and for drinking, they were asked about the number of drinks

consumed. EMAs pose burden on the users [96] and we adopted several

measures to reduce this burden. First, the smart phone software was

programmed to deliver no more than 20 questionnaire prompts in a day. Second,

two subsequent EMA prompts were at least 18 minutes apart. Third, the

anticipated completion time of the EMA was designed to range between 1 and 3

minutes. As selection of different answers leads to different paths, we reported a

41



time range considering the maximum and the minimum possible path length.

Fourth, participants had the option of delaying an EMA for up to 10 minutes. If the

participant did not respond to the prompt at the second opportunity, the prompt

would disappear. Fifth, participants were encouraged to specify time periods in

advance (every day before beginning the study procedure) when they did not wish

to receive prompts (e.g., during exams).

Participant Training: A training session was conducted to instruct

participants on the proper use of the field study devices. Participants were

instructed on the proper procedures to remove the sensors before going to bed

and put them back on correctly the next morning. In addition, participants

received an overview of the smart phone software’s user interface, including the

EMA questionnaires and the self-report interface. Once the study coordinator felt

that the participant understood the technology, the participant left the lab and

went about their normal life for seven days. For all seven days, the participant was

asked to wear the sensors during working hours, complete EMA questionnaires

when prompted, and self-report smoking and drinking episodes.

Incentives: We used micro-incentives to encourage compliance with

EMA’s [132]. Completing a self-report questionnaire was worth $1, if the sensors

were worn for 60% of the time since last EMA. An additional $0.25 bonus was

awarded if the questionnaire was completed within five minutes. A maximum of 20

requests for self-reports occurred each day. Thus, the participant could earn up to

$25 per day ($1.25 x 20 self-report requests), adding up to $175 over seven days

of field study ($25 x 7). Since wearing physiological sensors and answering

42-items questionnaire upto 20 times daily are highly burdensome, level of

compensation was derived from the prevailing wage in similar behavioral science

studies [132] that involve wearable sensors. Most interruptibility studies provided

fixed incentive to participants for completing the study [83,91,115,126], while
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some studies were purely voluntary [147]. We believe that micro-incentive

associated with each EMA helps obtain a stronger measure of unavailability.

Data Collected: Average number of EMA prompts delivered per day was

13.33, well below the upper limit of 20 per day. This EMA frequency is consistent

with prior work [65]. EMA compliance rate was 94%. An average of 9.83 hours

per day of good quality sensor data was collected from physiological sensors

across all participants.

5.4 Sensor Inference

We adapt existing algorithms to infer context from physiological and mobile

sensors. GPS data is used to infer semantic location and driving. To infer whether

a subject is doing physical activity, we use chest worn accelerometer data.

Measurements from the ECG and respiration sensors are used to infer

physiological stress. Chapter 2 and Section 2.2.2 describe these computational

procedures.

5.5 Metric for Measuring Availability

We define availability as a state of an individual in which (s)he is capable of

engaging in an incoming, unplanned activity. For example, consider a software

engineer who has just quit smoking, is working on a project, when (s)he receives

a JITI on the mobile phone, perhaps triggered by an acute stress detection from

sensors. In response, (s)he could – 1) stop ongoing work and engage in the

intervention (e.g., do a biofeedback exercise to relax), 2) continue working on the

project for a short time (pre-specified threshold) and then stop the work to engage

in JITI, 3) continue working on the project but attend to JITI later, or 4) completely

ignore the JITI. In our proposed definition, for cases 1 and 2 the software

engineer will be considered as available while for cases 3 and 4 (s)he will be

considered unavailable. We first consider delay in starting to answer a randomly

prompted EMA as a metric for measuring availability.
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Figure 5: Delay distribution is fitted with a Gamma distribution with shape
parameter κ=1.2669 and scale parameter θ=35.5021. We use the cutoff of
p = 0.95 that occurs at 124.1 seconds, as the grace period. A response delay
beyond this grace period is marked as unavailable.

5.5.1 Response Delay

Response delay for an EMA is the duration between the prompt time and

the time of completion of the first item in the EMA. Figure 5 shows the probability

distribution of response delay across all participants. Delay distribution fits a

Gamma distribution with shape parameter κ = 1.2669 and scale parameter

θ = 35.5021. We use the p = 0.95 cutoff (which occurs at 124 seconds) as the

grace period to obtain a good separation between the available and unavailable

states.

Since each EMA is associated with a micro-incentive, it is plausible that

some participants may be financially sensitive and fill out each EMA in a timely

fashion, even when not fully available. In such cases, they may complete some

EMA’s quickly without sufficient care. We, therefore, consider completion time as

another metric to complement response delay.

5.5.2 Completion Time

Completion Time for an EMA is the ratio of total completion time to the

44



number of items answered. However, time to answer the first item includes the

time to take the phone out. Therefore, we compute completion time, starting from

the second item. Finally, there is between person difference in completion time

due to participant’s cognitive processing, typing variations, and affinity to

micro-incentive. To remove these biases, we compute the z-score of completion

time for each participant and then use this z-score in further analysis.

To investigate if there is a threshold such that a completion time of lower

than this threshold indicates urgency and lack of care in answering an EMA, we

measure the consistency of response to the EMA. For this purpose, we use a

measure of consistency that is used widely in psychometrics. It is called

Cronbach’s alpha [27]. For a given set of items in an EMA (with numerical

responses) that measure the same psychological construct, Cronbach’s alpha is

given by

α =
k

k − 1
(1−

∑
s2i

s2T
),

where k is the number of items in the set, s2i is the variance in response to

the ith item, and s2T is the variance of the total scores formed by summing up the

responses to all the items in the set. We observe that if all the items in the set

have equal variance and thus were perfectly correlated, we obtain α = 1. On the

other hand, if all the items in the set are independent, α = 0. An α ≥ 0.7 is

regarded as acceptable [27].

In our 42-item EMA, there are several affect items that measure the same

psychological construct. These items are Cheerful?, Happy?, Energetic?,

Frustrated/Angry?, Nervous/Stressed?, and Sad?, where participants respond on

a Likert scale of 1–6. To compute alpha, items that assess positive affect

(Cheerful, Happy, and Energetic) are retained as scored and items that assess

negative affect (Frustrated/Angry, Nervous/Stressed, and Sad) are reverse coded
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Figure 6: We plot Cronbach’s alpha value for various thresholds of z-score of
completion times. We observe that the alpha is always acceptable (i.e., ≥ 0.7).
This holds even when we consider various subsets of items that require
recollection or multiple choice selection.

(e.g., 1 becomes 6). To test whether these six items indeed measure the same

psychological construct, we computed the overall alpha score for all responses

from all participants. The overall α = 0.88 indicates a good agreement [72].

We next computed the Cronbach’s alpha score for various thresholds of

(z-scores of) completion times. We observed that the 42-item EMA questionnaire

contains different types of item. First, there are single choice items which

participant can answer right away. Second, there are multiple choice items which

requires going through various possible answers, which may take more time.

Third, there are recall based items where participants need to remember about

past actions. An example of such an item is “How long ago was your last

conversation?”. Such items may require longer to complete. We consider subsets

of EMA items in each of the above three categories and compute their

corresponding z-scores. Figure 6 plots the alpha values for various thresholds on

completion times for four cases — when the completion time for all items is

considered and when the completion times for each of the above three subset of
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EMA items is considered. Since our goal is to find a lower threshold such that

completing EMA items quicker than this threshold may indicate lack of availability,

we only plot completion times lower than average (i.e., z-score of 0). We observe

that in each case, α ≥ 0.7, which implies that completing EMA items quickly does

not indicate inconsistent response. Hence, completion time is not a robust

estimator of unavailability and we retain only the response delay as our metric of

unavailability.

5.5.3 Labeling of Available and Unavailable States

When an EMA prompt occurs, the phone beeps for 4 minutes. If the

participant begins answering or presses the delay button, this sound goes away.

There are 4 possible outcomes for each such prompt — i) Missing: Participant

neither answers the EMA nor presses delay, i.e., just ignores it, ii) Delayed:

Participant explicitly delays the EMA, and plans to answer it when (s)he becomes

available, iii) After Grace: Participant answers after a grace period, which is

defined in Figure 5, iv) Before Grace: Participant answers within the grace period.

We mark the first three scenarios as Unavailable.

To identify available EMAs, we use two different approaches. In the first,

we take n quickest answered EMA’s from each participant, where n is the number

of EMA prompts when this participant was found to be unavailable. We mark each

such EMA as available. We call this a Representative dataset, because it gives

more weight to those participants’ data, who sometimes forego micro-incentives

by missing or delaying EMA’s when they are not available. This may be similar to

the situation in a class where several students may have a question, but only a

few speak up, thus helping others who may be shy. This dataset gives less weight

to data from those participants who are always prompt in answering EMA’s, due to

their sincerity, scientific devotion to the study, or affinity to micro-incentives. This
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dataset thus recognizes and respects wide between person variability inherent in

people.

Counting missed, delayed, or delayed above grace period (124.1s), we

label 170 EMA’s as triggered when participants were unavailable. Number of

instances when a participant was unavailable ranges from 0 to 15. By marking n

quickest answered EMA from each participant as available, where n is the

number of EMA prompts for which that particular participant was unavailable, we

obtain a total of 340 EMA’s for training data. This dataset provides a robust

separation of delay between the available and unavailable class (with a mean of

141.4s± 51.7s and a minimum separation of 107.7s). This kind of wide separation

helps us mitigate the effect of delay in taking out the phone to answer an EMA.

Due to the definition of Representative dataset, 3 participants are

completely ignored due to always being compliant, responding within grace

period, and never delaying an EMA. Hence, we construct a Democratic dataset,

where we consider equal number of EMA’s from each participant. To obtain a

similar size of training data as in the Representative dataset, we use 6 quickest

EMA from each participant as available and 6 slowest (including delayed or

missed) as unavailable. We thus obtain 12 samples from each participant, making

for a total of 360 samples. The delay separation between available and

unavailable class in this dataset has a similar mean of 169.8s, but a higher

standard deviation of 193.8s, and a smaller minimum separation of 5.2s.

5.6 Findings

Before presenting our model for predicting availability, we conducted a

preliminary analysis of various factors in this section to understand their role in

predicting availability. We investigated various contextual factors (e.g., location,

time, etc.), temporal factors (e.g., weekend vs. weekdays, time of transition, etc.),
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Figure 7: Probability of participants being available across different contexts. Here
morning is defined as before 9 AM and evening as after 5 PM. Arrived at a
location means arrival within 30 minute, while leaving means 30 minute prior to
leaving. Red line is drawn for p(A) = 0.5.

mental state (e.g., happy, stressed, etc.), and activity state (e.g., walking, driving,

etc.).

Figures 7 and 8 present the probability of participants being available and

the mean response delay across different contexts (e.g., location, activity, mental

state, and time) respectively. In these figures, outside refers to outside of home,

work, store, restaurant, and vehicle. We observe in Figure 8 that the response

delay has high variance (range 23.2-137.5) across different contexts, which can

be attributed to the Gamma distribution of response delay (see Figure 5).

Location: From Figure 7, we observe that participants are more likely to

be available (p(A) = 0.711) when they are outside and they are most likely to be

unavailable at work (p(A) = 0.34). When participants are outside, their response

delay is also lower than any other location (mean=41.0s; p = 0.074 on Wilcoxon

rank-sum) (see Figure 8). This lower response delay may be because when

participants are outside, they are unlikely to be engaged in a time-sensitive

activity (e.g., deadline, driving a vehicle) and thus can attend to the incoming

1We use p(A) to denote the probability of being available.
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Figure 8: Mean response delay across different contexts. Morning, evening,
arrival, and leaving are defined as in Figure 7. Red line represents the overall
mean of 49.5s (±116.0s).

prompt relatively quickly. As expected, during driving participants are usually

unavailable (p(A) = 0.33) and the delay in response during driving is significantly

higher than other times (p = 0.019 on Wilcoxon rank-sum).

Walking: In contrast to [83], which found posture change as an indication

of being interruptible, we find that in daily life, walking by itself does not indicate

availability (p(A) = 0.44). Interestingly though, walking outside indicates a highly

available state (p(A) = 0.92), while walking at work indicates a highly unavailable

state (p(A) = 0.16). We observe a mean response delay of 29.7s when

participants are walking outside, which is not significantly lower than stationary

(p = 0.318 on Wilcoxon rank-sum), but significantly lower (p = 0.008 on Wilcoxon

rank-sum) when compared with other locations (e.g., home, work, etc.).

Mental State: When participants are in a happier state, they are more

likely to be available (p(A) = 0.82) and we observe a lower response delay

(mean=41.3s; p = 0.008 on Wilcoxon rank-sum). Similarly, when participants are

feeling energetic, they are more available (p(A) = 0.6). But, unlike happy, in the

energetic state the delay (45.2s) decrease is not significant (p = 0.144 on
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Wilcoxon rank-sum). On the other hand, participants being stressed reduces the

probability of being available (p(A) = 0.43). A good news for JITI that may be

triggered upon detection of stress is that participants are not found to be highly

unavailable when stressed as is the case at work. Such JITI, therefore, may still

be attended to by users. Investigation of the receptivity of stress-triggered JITI

may represent an interesting future research opportunity.

Home: Since being at home indicates only a marginally available state

(p(A) = 0.54), we investigate whether time of day makes a difference. We find that

availability at home is lower during morning (p(A) = 0.5), and higher in the evening

(p(A) = 0.56), but not by much. However, response delay in the morning (54.5s) is

higher than that in the evening (41.8s) (p = 0.052 on Wilcoxon rank-sum). This

indicates that participants are more pressed for time in the morning.

Transition: To further investigate the effect of location on availability, we

analyze the availability of participants when they are about to leave a place (within

30 minutes of departure) or have just arrived at a place (30 minute since arrival).

We find that the availability of participants when leaving home (p(A) = 0.55) is

similar to when in home generally. But, their availability is higher when they have

just arrived home (p(A) = 0.67). The scenario is reversed at work. The availability

at work upon arrival (p(A) = 0.33) is similar to the overall availability at work. But,

their availability is higher when about to leave work (p(A) = 0.58).

Day: Finally, we analyze the effect of weekday vs. weekend. We find that

participants are more likely to be available on weekend (p(A) = 0.56) than on

weekdays (p(A) = 0.48). Interestingly, the response delay on weekends is higher

than that during weekdays (p = 0.061 on Wilcoxon rank-sum).

Although one could investigate several combinations of factors, we next

develop a model that uses several features derived from these factors to predict

availability of participants.
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Table 3: For 6 values of N (30 seconds, 1 min, 2 min, 3 min, 4 min, and 5 min),
the above four derivative features are computed for stress and activity, producing
24 features for each.

All-N
Event occurred in every past window within
N second of corresponding sensor prior to
random EMA prompt

Any-N
Event occurred in any past window within
N second of corresponding sensor prior to
random EMA prompt

Duration-N
Duration of occurrence of event within past
N second prior to EMA prompt

Change-N
Number of change where event occurred in
one window followed by non-event within N
second prior to EMA prompt

5.7 Predicting Availability

In this section, we develop a model to predict availability. We first discuss

the features we compute, feature selection methods to find the most discriminating

features, and then the machine learning model to predict availability. We conclude

this section by reporting the evaluation of our availability model.

5.7.1 Feature Computation

To predict availability, we compute a variety of features. Majority of them

come from sensors, but we also obtain several from self-reported EMA responses

because the sensor models for their detection is not mature enough today to

detect them with reasonable confidence. We expect that these features will also

become reliably detectable from sensors in near future. In total, we compute 99

features.

Clock: Time and Day (6 features): We compute several time related

features. We include “day of the week” since there may be a day-specific

influence, “elapsed hour” in a day to identify work vs. non-work hours, and “Time

since last EMA” to capture the cumulative fatigue caused by frequent EMA
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prompts. We also include binary features such as “Working Hour?”, which is

defined to be between 9 AM and 5 PM, “Weekend?”, and “Holiday?”.

Sensor: Stress (4+24 features): As discussed earlier, we infer stress

level for each 30 second window. Since sometimes EMA prompts itself may

cause stress, we used binary stress levels in the 30 second windows prior to the

generation of an EMA prompt. From these windows, 24 derived features are

computed (see Table 3), similar to that in [64]. We note that if the participant is

physically active during a 30-second window, we mark the stress feature as

undefined for this window (due to stress being confounded by physical activity).

Hence, stress level in each of the 30 second windows for derived features may

not be available. Consequently, we compute four other features. The first two of

these come from the first window preceding the prompt where stress inference is

available (i.e., unaffected by physical activity). Binary stress state and probability

of being stressed are used as features from this first window. The remaining two

features are the number of windows where the participant is stressed over the

prior 3 (and 5) windows preceding the prompt, for which stress inference is

available. These windows must occur within 5 minutes prior to the prompt.

Sensor: Location, Place, Commute Status (7 features): We compute

several location related features. This includes coarse level location such as

Home, Work, Store, Restaurant, Vehicle, and Other and detailed location such as

inside home, dormitory, backyard, etc. We also include “Previous Location” and

“time spent in current location” because it is likely that after immediate arrival at

home from work or from other locations people are less likely to be available. We

include a binary feature for “driving” because driving requires uninterrupted

attention and distraction during driving can result in injury, loss of life, and/or

property. It is also illegal in several parts of the world to engage a driver in a

secondary task such as texting. Since EMA prompts are generated randomly (as
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per the norm in behavioral science [167]), some EMA prompts did occur during

driving. Participants were instructed to find a safe place to park the car in such

cases before answering. A binary feature outdoor is also included since we

observe participants being more available when they are outdoors and walking.

Sensor: Physical Activity (3+24 features): Since physical activity can

also indicate availability, we use physical activity data from the chest

accelerometer sensor as a binary feature, and intensity of activity as a numeric

feature. EMA questionnaire contains items such as “Describe physical movement”

with possible answers “Limited (writing)”, “Light (walking)”, “Moderate (jogging)”,

and “Heavy (running)”. We include features such as writing as a categorical

feature because writing state may affect availability and we are unable to infer it

activities from our sensors with reasonable confidence today.

EMA: Activity Context (13 features): EMA questionnaire asked

participants to describe their ongoing activity using the following items: “How

would you describe your current activity?”, with possible responses as

“Leisure/Recreation” or “Work/Task/Errand”, a multiple choice item “What’s going

on?” with possible responses as Meeting, E-mail, Reading, Phone Call, Writing,

Sports, Video Game, Surfing the Internet, Watching Movies/TV/Video, Listening to

Music, and Other. Each possible response is used as a binary feature. We also

use binary response to the “Taken alcohol?” item.

EMA: Social Interaction (6 features): Research on interruption has

revealed that situations involving social engagement are considered less

interruptible [23,66,76]. To model availability, we used participants’ responses for

the social interaction related EMA queries that includes “In social interaction?”,

“Talking?”, “If talking, on the phone?”, “If talking, with whom?”, “If not talking, how

long ago was your last conversation?”, and “Who was it with?”.

EMA: Mental State (9 features): We also include emotional state due to
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Table 4: Selected 30 features ranked (R) according to information gain. Detailed
location offers the highest information gain.

R Feature R Feature
1 Detailed Location 16 Stress probability
2 Coarse Location 17 Stress count in 5 previous window
3 Weekday 18 StressChange-300
4 Outdoor? 19 StressChange-240
5 Sleepy? 20 ActivityAll-120
6 Happy? 21 StressAny-180
7 Energetic? 22 StressChange-180
8 Commute Mode? 23 StressAny-240
9 Recreation? 24 StressAny-60
10 Activity type 25 StressChange-30
11 Weekend? 26 StressDuration-30
12 Talking on phone? 27 ActivityAll-180
13 Taken Alcohol? 28 ActivityAll-240
14 Elapsed hour of day 29 ActivityAny-300
15 Time spent in current location 30 EMA Index

their wide acceptability as a factor in Human Computer Interaction [25,103].

Although stress is detectable from sensors, affect is not yet detectable reliably in

the field setting from physiological sensors. Hence, we use EMA responses. We

include response to our EMA items, “Cheerful?”, “Happy?”, “Frustrated/Angry?”,

“Nervous/Stressed?”, “Sad?”, “Facing a problem?”, “Thinking about things that

upset you?”, “Difficulties seem to be piling up?”, and “Able to control important

things?”. Response in Likert scale 1-6 is used as feature.

EMA: Fatigue (3 features): Each EMA prompt resulted in some level of

fatigue on the recipient [96]. We find that responses to the first half of the EMA’s

are more consistent than the second half EMA for the day (p = 0.056, n = 30,

paired t-test on Cronbach’s alpha). Therefore, we add EMA index of the day as a

feature. Our EMA questionnaire contained items such as “Energetic?” and

“Sleepy?”. Subjective responses of these items in 1-6 Likert scale are also used

as features.
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5.7.2 Feature Selection

As reported in the preceding, a total of 99 features were computed. But, to

avoid overfitting of the model, we select a subset of the features for modeling

availability. We base our feature selection on two complementary methods.

Correlation based Feature Subset Selection: Our goal is to find features

that are highly correlated to the class available vs. unavailable, and not correlated

with each other. We used Hall’s [74] method to find the optimal non-correlated

feature set regardless of the underlying machine learning algorithm.

Wrapper for Feature Subset Selection: Correlation based feature

selection may discard some features that are useful for a particular machine

learning algorithm. Therefore, we also use Wrapper [101] based feature selection

to find an optimal feature subset for the SVM machine learning algorithm [146].

By taking a union over the features selected by correlation based feature

selection and Wrapper applied to SVM, we obtain a total of 30 features. Table 4

lists these features ordered according to their information gain [48]. We make

several observations. First, we observe that most of the features selected are

either already detectable from sensors (1-4, 8, 11-30) or are potentially detectable

in near future from sensors (9-10). But, three features (5-7) are hard to detect

automatically today. An inward looking camera in smart eyeglasses could

potentially detect some of these in near future as well. Second, we observe that

stress features (16-19, 21-26) figure quite prominently in this list, indicating a

significant role of stress in predicting availability. Finally, we observe that driving is

not included in the list of selected features, though intuitively it appears relevant.

We hypothesize that features ranked 1, 2, 4, and 8 contain information about

driving and as such driving may not be needed as a separate feature.
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Table 5: Confusion Matrix for predicting availability using SVM model on RBF
kernel built on Representative Dataset. Overall Accuracy is 74.7% against a
base accuracy of 50%, with a kappa of 0.494.

SVM Classified as
Available Unavailable

Available 134 (78.8%) 36 (21.2%)
Unavailable 50 (29.4%) 120 (70.6%)

5.7.3 Model

Due to its well-accepted robustness, we train a Support Vector Machine

(SVM) [146] model with RBF kernel to predict availability of users. To evaluate the

model, we use both the standard 10 fold cross-validation and

leave-one-subject-out to evaluate between subject generalizability. As described

earlier, we use two diverse methods to label EMA’s as available and unavailable to

generate training data. We present the performance of the model on each of

these labeling methods.

Representative Dataset: Based on the missed, explicitly delayed, or

delayed above grace period (124.1s) we mark 170 EMA’s as triggered when

participants were unavailable. We mark the n quickest answered EMA from each

participant as available, where n is the number of EMA prompts for which that

particular participant was unavailable. This provides us with 340 instances as

training data for modeling with 170 instances coming from each class2.

Using this dataset we get an overall accuracy of 74.7% (against a base

accuracy of 50%) with kappa of 0.494 for 10-fold cross-validation. From the

confusion matrix in Table 5, we find that for 78.8% cases, the classifier is able to

predict availability versus 70.6% in the case of unavailability. We get a precision of

2We note that although only a small subset of EMA’s (340 out of 2717) is used in model
development, SVM can produce posterior probability of availability for any EMA. Hence, the appli-
cability of the model is not limited to the data used in training.
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Table 6: Confusion Matrix for predicting availability using SVM model on RBF
kernel built on Democratic Dataset. Overall Accuracy is 69.2% against a base
accuracy of 50%, with a kappa of 0.383.

SVM Classified as
Available Unavailable

Available 135 (75.0%) 45 (25.0%)
Unavailable 66 (36.7%) 114 (63.3%)

0.749, a recall of 0.747, an F -measure of 0.747, and area under the curve of 0.747.

For leave-one-subject-out, we get a weighted average accuracy of 77.9%.

Democratic Dataset: In this dataset, we take 12 samples from each

participant, which leads to similar 360 samples from 30 participants. The 6

quickest responded EMA’s are considered available and 6 slowest responded

ones (including explicitly delayed ones) are considered as unavailable.

For this labeling, the SVM model achieves an accuracy of 69.2% with a

kappa of 0.383, slightly lower than the Representative model. However, from the

confusion matrix in Table 6, we find that for 75.0% cases, classifier is able to

predict availability. We get a precision of 0.694, a recall of 0.692, an F -measure of

0.691, and area under the curve of 0.692. For leave-one-subject-out, we get an

accuracy of 76.4%.

5.8 Limitations and Future Work

Being the first work to inform the timing of sensor-triggered just-in-time

intervention (JITI), this work has several limitations that open up interesting

opportunities for future works.

First, several features used to predict availability are not yet reliably

detectable via sensors today. For a model to be automated in informing the timing

of JITI, all features need to be inferred from sensors. Second, this work used data

from wearable sensors. Since wearing sensors involves user burden, it is more

desirable to use only those sensors that are available on the phone. But, some
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features are not feasible to obtain today from phone sensors (e.g., stress) and

hence represents interesting future works. Third, the type of sensors available on

the phone is growing richer rapidly. Several sensors such as proximity sensor,

acoustic sensor, and phone orientation and other data in the phone (e.g.,

calendar, task being performed on the phone, etc.) that may inform the current

context of a user were not used in this work. Using these and other sensors

emerging in phone may further improve the prediction accuracy. Similarly, using

additional sensors on the body and those in instrumented spaces such as office,

home, and vehicle (e.g., cameras) can also be used wherever available to further

improve the prediction accuracy.

Fourth, this work used micro-incentive to improve compliance in responding

to EMA prompts and used it to accomplish a high level of motivation. Although the

work presented in this dissertation can inform the timing of delivering randomly

prompted self-reports in scientific studies, it remains an open question how well

the micro-incentive captures the motivation level expected in users who choose to

use JITI due to certain health condition or due to a wellness or fitness motivation.

Fifth, given that filling out a 42-item EMA requires significant user

involvement (i.e., 2.4 minutes to complete), the results of this work may be more

applicable to JITI that involve similar engagement. Its applicability to lighter JITI

may need further investigation. We note, however, that if the user is found to be

unavailable for a more involved active JITI (e.g., when driving), passive

intervention could be delivered in the meantime (e.g., by playing music [138]).

Sixth, the analysis in this work used only the unanticipated (i.e., randomly

prompted) EMA’s to simulate the triggering of a sensor-triggered JITI, but the

participants also filled out EMA’s that resulted from their self-initiation. Although

these self-initiated EMA’s were voluntary, they may add to the burden and fatigue
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of participants. It remains open whether the results of a future study that only

uses randomly prompted EMA’s may be any different than the one reported here.

Seventh, we used response delay as a metric for objectively assessing

availability. Although we label significant delay in response as unavailable, it is not

a gold-standard truth. In future, we can investigate other objective metrics (e.g.,

phone in airplane mode) and compare with each other.

5.9 Chapter Summary

Sensor-triggered just-in-time-interventions (JITI) promise to promote and

maintain healthy behavior. But, critical to the success of JITI is determining the

availability of the user to engage in the triggered JITI. This dissertation takes a

first step to inform the timing of delivering JITI. We propose a novel objective

metric to measure a user’s availability to engage in a JITI and propose a model to

predict availability in the natural environment based on data collected in real-life.

Our findings indicate that availability of a user depends not only on user’s ongoing

activity or physical state, but also on user’s psychological state. Our results can

inform the design of JITIs and opens up numerous opportunities for future works

to improve the accuracy, utility, and generalizability of our model.
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Chapter 6

Identifying Stress Episodes Based on Field Stress Data

6.1 Introduction

In addition to assessing the availability of a person, the success of

Just-In-Time Interventions (JITIs) critically depends on being able to mine the time

series of noisy sensor data and generate triggers for intervention at the most

opportune moments. We will use stress intervention as a running example.

Repeated exposures to stressors cause adverse effect on health, such as,

depression, heart disease, diabetes, and addictions, such as, smoking, alcohol,

and opioid [10,11,43,55,56,80,124,125,153]. It is estimated that productivity lost

due to stress in USA is $300 billion per year [6]. Now because of the widespread

use of wearable sensors we can now develop just-in-time stress intervention.

To trigger a stress intervention, we need to locate significant stress

episodes in the sensor data stream. This introduces several challenges. First,

stress measurements obtained from sensors usually have to be inferred from

physiological data, which by their very nature rapidly varying, similar to real-time

tracking of stock prices. Second, unlike stock-price data, the time series of stress

is discontinuous due to factors such as sensor detachment and wireless

losses [136,151]. Third, sensor measurements are frequently confounded by

physical activity (23% of the time [151]), that needs to be filtered out for an

accurate assessment of stress.

Another set of challenges concerns the triggering of the intervention. First,

the decision to trigger must be made quickly so the intervention can be effective.

Hence, simple methods that can be efficiently implemented on mobile devices are

needed. Second, too-frequent prompts of an intervention can lead to alarm

fatigue [96] and render the system useless. Ideally, the intervention policy should

be personalized to the tolerance level of the individual and the frequency of
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intervention (e.g., once per day) desired by the user. For example, a rapid but

transient physiological arousal due to a loud noise should not trigger a JITI,

whereas stress aroused in a newly abstinent smoker while passing through a

corner of the building where they used to smoke should be predicted and

prevented; otherwise the smoker may lapse to smoking.

In this chapter, we take first steps towards the development of such JITI

and develop time-series-pattern mining methods to detect significant stress

episodes in discontinuous ambulatory data. The goal of this work is to establish

the foundation on which a just-in-time stress intervention can be developed.

For model development and application, we use data collected in a 4-week

field study in 38 opioid-dependent polydrug users receiving opioid agonist

maintenance treatment, all of whom were in a larger trial investigating individual

and environmental influences on drug use. Each participant wore wireless

physiological sensors for 10+ hours per day, from which we obtained a continuous

measure of stress [89].

In brief, we first developed methods to deal with physical activity and

discontinuities in the time-series data. We then determined that data missing due

to physical activity could be considered Missing At Random (MAR) [53]. We

applied the cStress model [89], imputed the missing data, and validated the

output of cStress (together with its imputation) against self-reported stress and

found good agreement. Next, we trained a stock prediction method called Moving

Average Convergence Divergence (MACD) [17] to locate the time of an increase

in stress in rapidly varying continuous time-series data. We estimated the

probability distribution of the likelihood of stress assessments and the probability

distribution of stress durations (in the smoothed time series) to personalize the

algorithm for each individual. The threshold on stress likelihood can correspond to

tolerance level, and the duration can be selected to meet the daily intervention
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frequency preference. If, in a candidate window, the likelihood of stress crosses

the high likelihood threshold and remains elevated for a threshold duration, then

this window represents significant stress episode.

6.2 Related Works

The first category of related works are the ones on stress monitoring.

Assessment of stress and physiology can be obtained episodically when a user

interacts with a device or continuously via sensors on the body or in the user’s

environment. Examples of the former include capturing ECG from a smartphone

camera (during gaming [75]) or from electrodes embedded on smartphone jackets

(e.g., Alivecore), hand arm dynamics from the computer mouse [173], and

pressure from pressure sensitive keyboard and mouse [81]. Physiology can be

obtained continuously from wearable physiological sensors [59]. Stress detection

can be done from a variety of physiological parameters including ECG and

respiration [89,145], electrodermal response [117], photoplethysmography from

fingertip [112], or near-infrared spectroscopy from forehead [82]. Our method can

be applied to stress measurements obtained from any of the above methods.

The second category of works are those that assess interruptibility,

workload, or availability to decide when to deliver a prompt for intervention,

self-report, or phone call [65,92,93,175]. A recent work [157] proposed a model

that uses stress, time, location, and the current context to determine the

availability or interruptibility of users, in their natural environment, to respond to

randomly triggered self-report prompts. It found that users are least available at

work and during driving, and most available when walking outside. These works

are complementary to ours. Once a trigger for intervention has been generated by

our model, it should be delivered to the user only when they are determined as

being physically, cognitively, and socially available.

The third category includes works on stress interventions. An example is a
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reflective intervention called AffectAura [120] that logs physiological state using

audio, visual, sensors, and user activities and aims to support reflection via

visualization. Visualization is replaced by a wearable butterfly in [113] that helps

users reflect on their stress level and regulate it. Textiles have been designed that

can actuate in response to stress [50]. These complementary works indicate

interesting intervention possibilities, if appropriate methods such as ours can

reliably detect stress episodes in real-life.

The fourth category of related works are sensor-triggered JITIs that have

emerged in other contexts. For example, [38] presented a JITI to prevent

emotional food intake. Another example is [149] that proposed a system where

earpieces (to monitor chewing and swallowing), augmented-reality glasses (for

capturing food consumed), and a physiological sensor (for heart rate) are

connected to a mobile-phone application that processes the data and gives

feedback to the user. Sensor-triggered JITIs have also been proposed for

preventive maintenance of a plant (see [42] for a review) and for GPS-based

vehicle navigation [9,18]. But, none of these methods can be used directly to

mine the time series of stress to find significant stress episodes.

The closest related works are those that aim to discover or predict stress

episodes from time series of physiological data. MoodLight [117] finds episodes

of arousal from electro-dermal activity (EDA) in the lab environment and regulates

the color of a desk lamp to reflect the user’s stress level. When users reduce their

stress level, the light color changes to blue. In [95], the authors present a method

to predict the time series of heart-rate variability (HRV) using a first-order Hidden

Markov Model. The algorithm was tested in a simulated patient environment using

a beta distribution (α = 0.1 and β = 1). In contrast to these works, our model

addresses real-life challenges of discontinuity and rapid variability.
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6.3 Data Description

We used data collected as part of a larger outpatient study of relationships

among stress, addictive behaviors, and daily activities. The parent study, and this

substudy, were approved by the Institutional Review Board (IRB), and all

participants provided written informed consent. The participant demographics,

study setup, and the data we collected appear below.

6.3.1 Devices and Sensor Measurements

Participants carry a smart phone and wear AutoSense sensor suite under

their clothes that enables us to collect respiration, ECG, and accelerometer data.

A description of this AutoSense sensor suite is available in Chapter 2 and

Section 2.2.1.1.

6.3.2 Field Study Procedure

Participants were trained in the proper use of the devices. They were

shown how to remove the sensors before going to bed and how to put them back

on correctly the next morning. They were also asked to take them off during

showers and any contact sport. Participants received an overview of the

smartphone software’s user interface. Once the study coordinator felt that

participants understood the technology, they left the research clinic and went

about their normal lives. Participants were asked to wear the sensors during their

waking hours, complete self-reported questionnaires when prompted, and record

instances of drug use and craving on the phone.

Participants were asked to return to the research clinic daily. The study

coordinator uploaded the data collected the previous day and reviewed the

physiological measurements to ensure that sensors were working and were being

worn properly. On the final day, participants returned study equipment and

completed an Equipment and Experience Questionnaire. Finally, participants

were debriefed on their experiences and comfort with the study.
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Figure 9: Time of day when participants wear the wearable sensors and
contributed in the data collection campaign. X-axis indicates time of day, Y-axis
indicates number of person days. The number over each histogram indicates
average minutes of data collected on that hour of day.

We recruited 38 polydrug users (age 41± 10 years, 11 female, 6 dropped

out) who agreed to wear the sensor suite. Because drug use does not occur every

day in all these users, we conducted the study for four weeks to maximize the

likelihood of capturing real-life drug use events.

Compensation: Participants received $10/day for wearing the sensors (and

$5 bonus for 14+ hours of wearing), carrying the smartphone, and completing

device-prompted questionnaires consisting of 32 items. In total, participants were

paid up to $380 plus bonus (if any) for four weeks of participation.

Self-report: The smartphone initiated Ecological Momentary Assessment

(EMA) questionnaires at random times. The 32-item EMA asked participants to

rate their subjective assessment of affect on a 6-point scale. In addition,

participants were asked about the presence of drug and smoking cues.

Data Collected: Participants wore the physiological sensors and carried the
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smartphone for 12.52 hours each day in their daily, free-living condition. Due to

sensor detachment, displacement, loosening, and wireless loss between phone

and the sensor, some of the ECG data were not of acceptable quality. We

identified unacceptable ECG data using a method proposed in [151] and excluded

them. An average of 10.54 hours per day of acceptable ECG data (10,447 hours

of data in total) were obtained; these were the data we used for stress inference.

We observed that most of the participants wore the sensors and contributed data

between 6:00 AM to 8:00 PM of a day(see Figure 9). A total of 5,755 EMA

responses were collected (5.8/day), with a compliance rate of 88.0%.

6.4 Stress Inference from Physiological Data

In this section, we describe the procedure we used to infer physiological

stress from wearable sensors. We adapt a recent model called cStress proposed

in [89] and summarized in Section 2.2.2.1. The model infers stress from

electrocardiogram (ECG) and respiration data for each minute. We modified the

model to generate stress measurements every 5 seconds from overlapping

minute-windows to get a smoother time series.

6.4.1 Stress Likelihood & Stress Density

The cStress model provides a continuous measure of stress, scaled to be

between 0 and 1, for every 5 seconds of overlapping one-minute sensor data.

This time-series of 5-second probability-like measures of stress, for a particular

participant, is referred to hereafter as “stress likelihood.”

To assess stress within intervals longer than a minute, we use a different

measure, called “stress density,” which accounts for likely variation in contexts

and activities (e.g. morning vs. afternoon, driving vs. home). We define stress

density as the area under the stress-likelihood time-series divided by the length of

the interval.
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6.4.2 Need for Personalization

We next analyze the variability in stress densities across participants and

across different days for the same participant. Figure 10(a) shows the stress

density for each participant in increasing order. There is wide between-person

variation. The two participants with highest stress densities have each more than

twice the density of the two participants with lowest stress densities. Figure 10(b)

shows daily stress for the participant with maximum overall stress density. Here,

for 4 (out of 27) days, that participant had three times lower stress density than

he/she had on average. On the other hand, the most stressful day has a stress

density twice the overall average. These observations demonstrate that the

frequency (or even the content) of stress interventions may need to be calibrated

to each person and for each day.

6.5 Reducing the Impact of Confounding Factors

Although physiology is affected by several kinds of events in daily life, the

main confounder for stress assessment is physical activity. To isolate data

affected by activity, we first detect physical activity from chest-worn 3-axis

accelerometer data, using an existing model [151] described in Chapter 2 and

Section 2.2.2.2. Second, we estimate the time it takes for physiology to recover

from the effect of a just concluded activity episode. Both data are then excluded.

Physiological readings generally return to baseline within 2 minutes after

physical activity (unless the activity is especially intense) [60]. However, the

majority of activity episodes in our daily life are of short durations. Although our

participants were physically active 22.7% of their sensor-wearing time, 95% of

their activities lasted less than 2.1 minutes. Discarding 2 minutes of data after

each activity episode would result in excluding 35.0% of additional data (for a total

of 57.7% of all data). We, therefore, need a more systematic person- and
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Figure 10: (a) Stress density for each participant. We observe wide between
person variation here. (b) Day wise stress for the participant with highest stress
density. We observe wide between day-to-day variation for this (and other)
participants.
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Figure 11: R-R interval decreases (and heart rate increases) due to physical
activity and recovers exponentially after the conclusion of activity.

situation-specific method to estimate recovery time. We consider two

approaches — a data based method and a model based method.

6.5.1 Data Based Approach

To estimate the time it takes for physiology (e.g. heart-rate) to recover after

each episode of physical activity, as detected using accelerometry, we can simply

record the heart-rate before physical activity, designating it as the resting

heart-rate, and then compute the time it takes for the heart-rate to return to the

resting heart-rate after the end of physical activity. Heart-rate (HR) is defined as

the number of beats per minute.

A key weakness of this direct approach for computing the recovery time is

that, in the field setting, the HR may take a very long time to recover to the most

recent resting HR (see Figure 11), due to confounding factors, such as caffeine

intake, during or after the physical activity episode, that typically raise the HR,

resulting in a higher resting HR.
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6.5.2 Model Based Approach

To address this weakness, we developed an alternate, model-based

approach, which learns a participant-specific HR recovery rate that can be used to

estimate the time during which the heart-rate should recover, given the most

recent peak heart-rate during physical activity and resting heart-rate before

physical activity. An additional benefit of the model is that it summarizes the data

succinctly in one parameter. Finally, computation of the recovery rate in the

natural environment could serve as an indicator of cardiovascular fitness, similar

to the 6-minute walk tests [34,152] done in clinics.

Estimation of Recovery Rate: According to [69,87], heart-rate after an

arousal (e.g., activity) recovers exponentially (see Equation (6.1)). Figure 12,

which plots one participant’s heart-rate during a physical activity episode,

illustrates this exponential recovery. In Equation (6.1), HRRest is the resting

heart-rate before the physical activity episode, HRPeak is end-of-activity heart rate

at time t0, and HRR is heart rate during the recovery period at time t. The

constant τ represents the exponential recovery rate. Whilst there is a possibility

that it can vary across time, our model makes a simplifying assumption of a

constant participant-specific recovery rate.

After we have learned the recovery rate for a particular participant, we can

use Equation (6.2) to estimate the recovery duration once physical activity is over.

HRR = HRRest + (HRPeak −HRRest)e
− t−t0

τ (6.1)

t− t0 = τ ln
HRPeak −HRRest

HRR−HRRest

(6.2)

To learn the recovery rate parameter τ for each participant, we first identify

and isolate clean episodes where there is at least a 2-minute rest period (detected

by accelerometry), needed to compute HRRest, followed by an activity period of at
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Figure 12: Exponential recovery parameter τ is learned for each participant.
Black curves show 99% exponential recovery (Equation 6.1). In this case, before
the heart rate fully recovers from the first episode, another activity episode occurs.
Hence, baseline heart rate is carried forward.

least 2 minutes to represent a significant activity episode, and lastly at least a

2-minute stationary period so we can compute the latency to recover. Next, for

each such episode, we derive HRRest as the median HR of the last one minute of

the initial rest period, and HRPeak as the median HR of the last 10 seconds of the

activity period. Finally, we compute the times required for the HR to drop 10%,

20%, up to 90% of the total increase in HR from rest to peak —

[HRPeak −HRRest]. With these quantities defined for all episodes, Equation (6.2)

can be used to learn τ using least-squares regression.

We computed the recovery rate τ for each participant. The mean of

recovery rates across all 38 participants τ̄ is 19.8 seconds (SD=6.3). Participants’

mean 95% recovery duration of 59.3 seconds (SD=18.9), is consistent with the

literature [60].

Isolating and Excluding Activity Confounds: Figure 12 shows an

example of the effect of activity on heart rate in daily life. For any such activity

episode, we compute HRRest and HRPeak. Then, we use Equation (6.2) and the
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learned value of τ to estimate the time interval (t− t0) required for the heart-rate

to return to resting heart-rate. Rather than requiring HRR to return to HRRest

exactly, we consider the heart-rate that has dropped down to the line

HRRest + σHR as fully recovered, where σHR is the standard deviation of all

heart-rates during stationary intervals. Adding σHR to HRRest allows for any

natural variations in the resting heart-rate throughout the day.

Using this model, in addition to the entire physical activity interval, the

estimated recovery interval (t− t0) that follows is excluded from analysis, i.e.,

considered missing for the purpose of stress inferencing. With this approach, only

7.4% of data (as opposed to 35%) are excluded due to recovery from physical

activity, in addition to 22.7% that are directly affected by physical activity (for a

total of 30.1% of all data).

6.6 Missing Data Imputation

Standard methods for finding trends in time-series data [17,35] require

continuous data streams. To apply these methods, we needed a method to

impute the missing data. Missing data in time series of stress assessments can

be due to unavailability of data or due to presence of confounder such as physical

activity. Before imputation, we need to rule out the possibility that the data are

Missing Not At Random (MNAR) [53]. We use the self-report item

“Nervous/Stressed?” (Likert 1-6) to check the assumption of independence. To

address participant biases, we use the z-score of self-report responses. We find

no significant difference in self-reported stress during stationary moments and

moments of physical activity (p = 0.984 on Wilcoxon signed-rank test, paired

two-tail, n = 31). We also find no significant difference in self-reported stress

between stationary and missing data periods (p = 0.841 on Wilcoxon signed-rank

test, paired two-tail, n = 24). Therefore, we conclude that our missing data in
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stress assessments are not MNAR. They can be either Missing Completely At

Random (MCAR) or Missing At Random (MAR) [53].

We believe that our missing data should be considered Missing At Random

(MAR) [39] because stress can be explained by other known contextual variables

[61,70,150] such as day of the week, time of day, previous stress levels, and the

slope and intercept of previous time-series samples. We use these variables to

impute the missing data using the K-Nearest Neighbor method proposed

in [77,169,179].

We note that although we impute missing data to have a continuous

time-series of stress assessments, JITI can be programmed so that it provides an

intervention only when there are non-imputed sensor-inference data (data-loss

<50%) with no confounding physical activity.

6.7 Field Validation of Stress Assessment

The previously-described cStress model captures the instantaneous

physiological response to stress. Although this model was validated in both lab

and field settings [89], before using it on our dataset obtained from polydrug

users, we validate it against their field self-reports. We use the same approach

described in [89] to map cStress output to self-report ratings.

Figure 13 summarize the F1 scores across participants. They range from

0.130 to 0.917 with a median of 0.717. Although the F1 scores are acceptable for

majority of the participants, there are 5 participants whose low F1 score seem to

suggest poor agreement between self-reported stress and the model output. We,

therefore, analyze the consistency of their self-reports, because they may be

subject to consistent bias or careless responding.

We use Cronbach’s alpha [27] to assess the consistency of the

self-reported responses. Cronbach’s alpha measures the internal consistency of
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Figure 13: F1 score between self-report and sensor assessment range from
0.130 to 0.917 with median 0.717. Bottom 5 have unacceptable self-report
consistency score with median cronbach’s alpha score 0.335 while overall
consistency score is 0.843.

items that intended to measure the same psychological construct. In most

studies, an alpha score of 0.7 or higher is regarded as acceptable [27].

We compute the Cronbach’s alpha using 5 affect items of self-report —

“Cheerful?”, “Happy?”, “Frustrated/Angry?”, “Nervous/Stressed?”, and “Sad?”

(The two positive items, “Cheerful?” and “Happy?”, were reverse-coded). The

overall consistency score across all participant’s self-reports is 0.843. We

compute Cronbach’s alpha for the 5 participants from Figure 13 who show poor

F1 score. They have unacceptable self-report consistency scores with a median

Cronbach’s alpha of 0.335. Furthermore, the participant with the smallest F1

score (0.13) answered “3” on item “Nervous/Stressed?” in 173 out of 177

self-reports, suggesting a bias toward neutral self-assessment. These

observations also demonstrate the value of an objective sensor-based model of

stress.

The above test not only demonstrated the validity of the cStress model in
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Figure 14: Timing of just-in-time stress intervention for momentary and significant
stress episode. Starting of a rectangular region indicates timing of potential
proactive interventions as generated by MACD.

our independent data set, but it also shows the effectiveness of the imputation

process since this validation was done on the imputed time series.

6.8 Locating Stressful Episodes

There are two types of JITIs. Proactive JITIs are intended to precede and

prevent an adverse event, such as an escalation of moderate stress to severe

stress. Reactive JITIs follow an adverse event and are intended to mitigate its

effects. Although we did not implement a JITI in the current project, we developed

our assessment methods with that goal in mind. For either type of JITI, we need a

method to determine from a time series of stress data whether a significant stress

episode is occurring and if so, when it starts and ends.

To find significant stress episodes in our rapidly varying time-series data,

we adapt a stock-prediction model. Such a model operates on a similar dataset,

where there exist time series of stock prices and the objective is to predict the

precise moments of buy or sell events, based on prior observations. Methods

such as the Relative Strength Index (RSI) [182] and Bollinger Band [30] estimate
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whether stock is in an oversold or overbought condition and provide a buy or sell

signal, respectively. “Oversold” means there are fewer people who can sell the

stock relative to the number wishing to buy, indicating that the stock is

undervalued and will eventually increase in price. The reverse is true for stocks

that are overbought.

However, the assumptions that apply to stock prices do not hold for stress

levels. If someone is extremely relaxed it does not imply that his/her stress level

will go up as a consequence. Fortunately, this assumption is not built into the

method we use, called Moving Average Convergence Divergence (MACD) [17],

which has recently been used to detect trends in physiological data [87]. MACD

estimates the trend based on short-term and long-term Exponential Moving

Average (EMA). It provides one signal when the trend is going up and another

signal when it is going down. When applied on the stress-likelihood time series,

MACD can provide a signal for a proactive intervention when the stress likelihood

is going up and a reactive intervention when the stress likelihood is going down.

MACD is computed as follows:

M = EMA(L;wslow)− EMA(L;wfast)

S = EMA(M ;wsignal),

(6.3)

where L is the stress-likelihood time series, M is the so-called MACD line,

and S is the so-called MACD Signal Line. As the formula shows, M is calculated

by subtracting a fast-moving, short-term EMA line from a slow-moving, long-term

EMA line. The intersection of M and S indicates a change in trend, and the sign

of the difference between M and S indicates whether the trend is positive or

negative.
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Before applying MACD, it is important to address the fact that the

stress-likelihood time series is rapidly varying and that it may contain inaccuracies

as it is the output of a machine learning model that is rarely perfect. To account

for this, we first smooth the stress-likelihood time series using a simple moving

average with a 2 minute window length, a duration we selected based on visual

inspection.

We tune the window length parameters, wslow, wfast, and wsignal, used in

Equation (6.3), seeking to maximize gain
N

, where gain is defined as the total area

under the stress-likelihood time series curve during positive-trend intervals,

whereby the start and end of each positive-trend interval are dictated by the

MACD rule, mentioned above, and N is the number of positive-trend intervals.

Dividing by N discourages window lengths that result in a very large number of

short positive-trend intervals. Using a grid search with progressive zoom, with

initial grids covering the range from 5 seconds to 30 minutes for each parameter,

we found that the optimal window lengths are: wslow = 7.5 minutes, wfast = 1.67

minutes, and wsignal = 14.2 minutes.

Figure 14 shows a typical example of stress-likelihood time series, with

colored boxes highlighting the positive-trend intervals, chosen by the MACD rule

using the optimal window length parameters. As the figure illustrates, this

approach is able to detect starts for good-quality positive-trend intervals in the

stress-likelihood time series. Additionally, we show that stress densities for the

minute after the detected positive-trend interval starts are significantly greater

than those for the preceding minute (p < 0.001 on Wilcoxon signed-rank test,

paired one-tail, n = 15, 434). As an added bonus, we can use the MACD rule to

comprehensively mark the start and end of each stress episode, defined as the

interval containing a positive-trend interval and an immediately following

negative-trend interval.
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Figure 15: The likelihood of stress follow beta distribution with shape parameter
α = 0.222 and β = 1.027. The threshold for significant stress is 0.782 (p=0.95).

6.9 Parameterization of Episode Identification

As soon as we identify a stress episode we need to take a decision about

whether we should provide an intervention. Hence, we need to learn parameters

to identify stress episodes. We can do so via investigating the field study data or

via investigating a lab study.

6.9.1 Approach 1: Based on Field Study

Defining Significant and Momentary Stress Episode: We define two

types of stress episodes: Significant Stress Episode (SSE) and Momentary Stress

Episode (MSE). MACD divides the stress-likelihood time series into smaller

variable length, increasing and decreasing episodes. An episode in the time

series is defined as an increasing trend, immediately followed by a decreasing

trend. There are 15,434 such episodes. However, in some episodes, stress

likelihood does not cross the binary stress classification threshold (from cStress).

Such instances are discarded, leaving 9,087 episodes for further analysis.

Significant stress episodes are those that have a high likelihood of stress and

persist for a significant duration. All others are momentary.
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Figure 16: A momentary stress episode with high likelihood of stress (95th
percentile) (see Figure 15) and a duration of more than duration threshold is
marked as a significant stress episode. Duration threshold of 7.3 minute leads to
an average of one significant stressful episode per day (in 10+ hours of sensor
wearing time).

To decide which stress likelihoods are significantly high, we calculate a

stress-likelihood threshold ν based on the 95th percentile of stress-likelihood

values. To address the between-participant differences, we calculate

participant-specific thresholds, based on each participant’s stress likelihoods only.

All stress episodes with likelihoods above this threshold are marked as SSE

candidates.

Figure 15 is a histogram of all stress likelihoods pooled together. As it

shows, the stress likelihoods are right skewed and follow the Beta distribution with

parameter estimates α = 0.222 and β = 1.027. We had sufficient data for every

participant, from which ν’s could be easily found. If sufficient data are not

available for a participant (e.g., when a participant has just begin providing data),

we can compute ν based on the estimated parameters of the Beta distribution. In

particular, the likelihood threshold ν can be calculated using the inverse Beta

Cumulative Distribution Function (CDF), F−1
Beta(p = 0.95|α = 0.222, β = 1.027).
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Table 7: In total there are 9,087 stress episodes with an expected count per day of
9.2. A duration threshold of 13.5 minutes labels 498 significant stress episodes,
with an expected daily count of 0.5.

Significant Stress Episode Momentary Stress Episode
Duration
(minute)

Total
Count

E(count)
per day

Total
Count

E(count)
per day

13.5 498 0.5 8,589 8.7
7.3 997 1.0 8,090 8.2
2.4 1,992 2.0 7,095 7.2

Figure 16 illustrates how duration threshold, λ, informs the selection

process for SSE candidates. We first select the desired number of significant

stress episodes per day, d, and then, we can simply select the λ that corresponds

to d episodes per day. The durations of SSE candidates follow the LogNormal

distribution, with estimated parameters µ = 2.064 and σ = 0.871. Out of 9,087

stress episodes, 2,082 contains high stress likelihood (2.1/day). Researchers who

are in the designing phase of a stress intervention with no access to data, can

calculate λ using the following formula:

E(SSE/day) = (1− FlogNorm(λ|µ = 2.064, σ = 0.871)) ∗ 2.1, where FlogNorm(λ|µ, σ)

is the LogNormal CDF.

The rule for identifying the SSEs is as follows — all those stress episodes

that have stress likelihoods greater than the threshold of ν and persist for duration

greater than λ. We identify other stress episodes as MSEs. Figure 14 shows

several examples of SSEs and MSEs.

Table 7 summarizes descriptive statistics for SSEs and MSEs. In total,

there are 9,087 stress episodes, with an expected daily frequency of 9.2. A

duration threshold of 13.5 minutes labels 498 (or 0.5/day) as significant stress

episodes.
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6.9.2 Approach 2: Based on Lab Study

Previous approach involved very frequent stress assessments (every five

seconds), which is not feasible to implement on a smartphone with limited

computational capacity and battery life. In addition, the classification of stress

episodes was not based on lab stress data, but left as a user-defined parameter

that can be tuned on the basis of a global expected daily stress frequency. Stress

occurrence in the field setting varies widely between individuals and between

days for the same individual. Hence, the model has limited utility in real-life.

In contrast, we can use data collected in a lab stress study for model

development, where well-accepted stress tasks were performed. These protocol

labels are used to learn the parameters of a stress episode detection model. In

addition, the presented method should also be sensitive to the resource limitations

of mobile phones, so it can be deployed in a real-life. In Chapter 7 we will discuss

about this lab study based approach.

6.10 Chapter Summary

This chapter proposes a method to identify stress episodes from a

discontinuous time series of mobile sensor data. In addition, presented work

makes several methodological contributions. First, our method of estimating the

recovery time of physiology from a physical activity episode could possibly be

used as a measure of cardiovascular fitness outside of controlled settings for

heart patients. Second, missing data in the stress-likelihood time series is not

Missing Not At Random (MNAR), which enables us to do imputation and obtain a

continuous time series. Third, Validation of sensor inferred markers is the field

setting is challenging due to lack of gold standard truth. Self-reported assessment

is commonly used for this validation [89]. Presented work show that lack of

agreement between self-reported stress and sensor inferred stress can subject to

inconsistent self-report. Fourth, proposed a method to find trends in the
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stress-likelihood time series and identify stress episodes based on the distribution

of stress likelihood and stress duration.
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Chapter 7

Identifying Stress Episodes Based on Lab Stress Data

7.1 Introduction

The stress episodes identification approach proposed in Chapter 6 is

parameterized based on a field study data. It is not clear whether these

parameters will be directly applicable in other settings (e.g., other population).

This chapter discusses about an alternate approach where we learn the model

parameters based on a laboratory study data and validate it in an independent

smoking cessation field study data.

Smoking cessation is an important health issue because smoking causes

the largest number of deaths, accounting for one in every five death [67,128,128].

Smoking is very difficult to treat as most smokers trying to quit eventually lapse.

Stress is one of the major triggers for smoking lapses [22,49,164], and it is

usually elevated in early phases of smoking cessation, which is when most lapses

occur [13,49]. But, individuals who continue to be abstinent experience a gradual

decrease in their stress level [45].

During abstinence, in addition to coping with nicotine withdrawal effects,

participants have to deal with numerous other issues, especially if participating in

a mHealth smoking cessation study. They are usually asked to wear sensors (in

the form of a chest band and wrist bands) for measurement of stress and

detection of smoking lapses. In addition, participants are asked to respond to

frequent (about 10 per day) Ecological Momentary Assessments (EMAs) where

they self-report their mental state and surrounding contexts, which are not readily

available from sensors (e.g., experiencing craving). Hence, participants are

already being interrupted many times in the day (e.g., 10+ EMA prompt).

Therefore, engaging in a stress intervention that can also be perceived as an

interruption, such as, breathing exercise or meditation, may add further to their
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already heavy daily burden. Therefore, just-in-time stress interventions (which can

also be perceived as an interruption) should be limited to reduce the interruption

burden on participants.

There are several other considerations in the design of an effective

just-in-time stress intervention. First, when an intervention is triggered, we should

have high confidence in sensor-derived stress assessments. Second, the timing

of the intervention trigger should be selected to maximize efficacy. For example,

providing an intervention when a user is found to be stressed may further

increase their stress, whereas providing intervention during moments of low

stress with high likelihood of stress in the near future may help them prepare to

better tolerate a future stress event.

Third, stress assessments and the triggering of interventions occurs in real

time on resource-constrained and battery-operated wearable sensors and smart

phones. Although there are major advancements in technology, battery life is still

a major issue for continuous stress assessment in the natural environment.

Therefore, the computational model for providing just-in-time stress intervention

needs to be efficient computationally and in power consumption. Computational

efficiency is also needed to ensure that the entire computation method keeps

pace with the rapidly flowing stream of sensor data and does not fall behind.

Otherwise, the computational process will introduce a lag between measurements

and trigger generation that will grow larger with time. This chapter takes all of

these constraints into account in designing a just-in-time stress intervention to

help with stress management during smoking cessation.

Presented work in this chapter analyzes the time series of stress

measurements and identifies non-overlapping periods, classified as stressed,

unsure, not-stressed, and unknown. The unknown class occurs when data is

noisy, missing, or affected by confounders such as physical activity. The unsure
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class occurs when the physiological data cannot be classified into stressed or

non-stressed with sufficient confidence. We use data collected in a lab stress

study to train our models.

Stress is prevalent among nicotine dependent individuals, especially during

their abstinence. We applied the proposed model on data collected from a

smoking cessation field study to discover the stress patterns among nicotine

dependent participants in their natural environment. We found that experiencing

stressful episodes increased the likelihood of additional stress episodes in the

near future. Similarly, participants in a not-stressed state are likely remain in the

same state. Furthermore, transitioning from not-stressed to stressed is less likely

than transitioning from not-stressed to unsure, and then from unsure to stressed.

Observations like these suggest that providing a stress intervention when a user

experiences a stressful episode may help him/her better cope with future stress

episodes.

7.2 Overview

Figure 17 shows an overview of the approach in this chapter. First, we infer

stress from ECG and respiration data, and (confounding) physical activity from

accelerometers. Second, we identify and filter out physical activity confounded

stress assessments. Third, we develop our stress episode identification model on

lab study data and apply the model on smoking cessation field study data. Finally,

we present stress patterns observed in the smoking cessation field study data.

7.3 Data Description

Data collected in two user studies — a lab stress study and a smoking

cessation field study — was used to train the stress inference model and design

the just-in-time stress intervention. Each study was approved by the Institutional

Review Board (IRB), and all participants provided written informed consent. This

section provides an overview of the wearable sensor suite and a data description
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Figure 17: Overview of the approach. First, we infer stress from ECG and
respiration data, and confounder physical activity from accelerometer. Second, we
remove physical activity confounded stress assessments. Third, we develop our
stress episode identification model on lab study and apply the model on smoking
cessation field study. Finally, we discover stress patterns from the smoking
cessation field study.
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of lab stress study. The data description of smoking cessation field study is

presented in Section 7.6.

7.3.1 Wearable Sensor Suite

The sensors worn by the all participants in both studies are part of a large

suite of wearable biosensors, called AutoSense [59]. These unobtrusive sensors

are worn mostly under the clothes, and include a two-lead electrocardiograph

(ECG), 3-axis accelerometer, and respiration sensors, among others. A

description of this AutoSense sensor suite is available in Chapter 2 and

Section 2.2.1.1.

Participants were given a smartphone to carry at all times. It receives and

stores all sensor data. It is also used to fill out and store all the self-reports which

capture instantaneous ground-truth assessments of stress and craving, as well as

record various situational factors and events, such as physical activity levels,

places visited, consumption of food and alcohol.

7.3.2 Lab Stress Study

We use ground-truth labeled data collected in a lab study that was reported

in [89,145]. The stress lab session lasts two hours including instrumentation (for

30 minutes), resting baseline (for 30 minutes), stress protocol (for 30 minutes),

and post-stress rest (for 30 minutes) sessions.

Participants came to a lab where they wore the sensors for continuous

data collection throughout the session. Participants were asked to sit in a

comfortable chair and rest for 30 minutes during the initial baseline. The study

includes three validated stress protocols, in the form of socio-evaluative, cognitive,

and physical challenges.

During the socio-evaluative challenge, the participant was given a topic

and asked to prepare (for 4 minutes) and deliver (for 8 minutes) a speech in front

of a research staff. For a cognitive challenge (4 minutes), the participant was
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given a three digit number and asked to add three digits of that number, and then

add the sum to the three digit number. Participants in the train study repeated this

while seated and standing (counterbalanced). Participants in the test session

completed only a single instance of this task while seated (because no significant

effect of change in posture on stress response was observed in the train dataset).

Finally, during the physical stressor, the participant was asked to leave his/her

hand submerged in ice cold water, for 90 seconds. This was followed by a

30-minute rest period to allow the participants’ physiology and mental state to

return to baseline.

These tasks have been shown to reliably induce stress-related

physiological changes [12]. Therefore, the lab protocol is used to label the data

(i.e., gold standards) that are used to train and test the models. Time-stamping

each distinct rest and stress period allows us to construct ground-truth labels for

each minute of the lab-session, designating a minute as stressed, if the

participant was undergoing a stress task during that minute, and not-stressed

otherwise. These labels are subsequently used to train the cStress model and

obtain continuous stress assessments.

7.4 Stress Inference from Physiological Data

The first step in stress intervention is the inference of stress from

physiological sensor data in real time. In this section, we describe the procedure

we used to infer physiological stress from wearable sensors. We adapt a recent

model called cStress [89] summarized in Chapter 2 and Section 2.2.2.1.

As stated previously, the cStress model provides a continuous measure of

stress, scaled to be between 0 and 1, for every one minute of sensor data. These

time-series of probability-like measures of stress is referred to as stress likelihood.

To assess stress within intervals longer than a minute, we use a different

measure, called stress density, from [158]. Stress density is defined as the area
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under the stress-likelihood time series divided by the length of the interval, which

accounts for likely duration variation in contexts and activities (e.g. morning vs.

afternoon, home vs. work).

7.4.1 Reducing the Impact of Physical Activity Confounds

Although physiology is influenced by several kinds of events in daily life,

the main confounder for our sensor-based stress assessment is physical activity

such as walking, which occurs frequently in our daily life. To isolate data affected

by activity, we first detect physical activity from chest-worn 3-axis accelerometer

data, using an existing model [151]. Although the stress assessment window is

one minute, physical activity inference is available for every 10-second window. If

the majority of 6 activity windows in a stress assessment minute window show

presence of activity, the entire minute is excluded from stress assessment, i.e.,

considered missing.

Missing data due to sensor non-wear, sensor detachment, sensor

loosening, sensor displacement [136,151], or excluded due to the presence of

physical activity confounds introduce discontinuity in the stress likelihood time

series. In Chapter 6 (also in [158]), missing data was imputed using via k-nearest

neighbor method [77,169,179] where the imputation was based on other known

contextual variables such as day of the week, time of day, previous stress levels,

and the slope and intercept of previous time-series samples of the same user.

Such methods may be useful for offline analysis where we have access to

an entire day’s data, which is not the case during real-time computation on a

smartphone. Therefore, we impute the missing stress assessments by simply

carry forwarding the last known value. A stress episode containing majority of

these imputed data is marked as unknown for intervention purposes. This may

lead to some loss in accuracy, but makes it amenable to real-time efficient

computation on a smartphone.
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Figure 18: Classification performances for different smoothing window length
applied on stress likelihood time series in the lab study. We get the best
performance with a kappa of 0.817 for a window length of 3 minutes.

7.4.2 Time Series Smoothing

A basic fact of stress likelihood time series is that, because they are

produced by a model that is imperfect, they undergo rapid fluctuations and may

not be accurate for each minute. On the other hand, the number of stress

interventions delivered per day should be limited (e.g., few times daily). It is also

highly desirable to acquire high quality sensor outputs when triggering an

intervention. Consequently, we first smooth the stress likelihood time series using

a simple moving average as proposed in Chapter 6. However, in compare to

doing a visual inspection to find the optimal window length parameter of this

simple moving average, we can learn this parameter based on the lab study. In

order to find the optimal window length, we compare the original labels (derived

from the lab stress protocol) with each one minute assessment in the smoothed

cStress-based classification. Figure 18 shows classification performances for

different smoothing window lengths. We get the best performance with a kappa of

0.817 for a smoothing window length of 3 minutes. We considered only

odd-numbered window lengths to avoid introducing lag in the time series.
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(a) Intervention at ’c’ (b) Intervention at ’b’

Figure 19: A conceptual stress likelihood time series. We observe an increasing
trend from ‘a’ to ‘b’ and a decreasing trend from ‘b’ to ‘c’. An episode contains an
increasing trend and immediately followed by a decreasing trend, marked as from
‘a’ to ‘c’. For intervention (at ‘c’) we compute the stress density from ‘a’ to ‘c’ and if
stress density is above a specific cutoff we mark the episode as stressed.
Similarly for an intervention at ’b’ we compute stress density upto ’b’.

7.5 Determining the Timing of Intervention Delivery

Stress likelihood time series is a continuous time series of the outputs of

cStress model for each minute. Just like any time series, the stress time series

consists of peaks and valleys. The interval between two successive valleys is

considered to be an episode. Figure 19 shows such a conceptual time series. In

response to a stressor, stress likelihood starts increasing at ‘a’. At ‘b’, stress

likelihood starts decreasing down to point ‘c’, where there is another upward

trend. We define a stress episode as an increasing trend immediately followed by

a decreasing trend. Based on this definition, we mark the entire period from ‘a’ to

‘c’ in the stress likelihood time series as a potential stress episode.

At the conclusion of an episode, we calculate the area under the stress

likelihood time series of the concluded episode (at time ‘c’). The higher the area,

more likely it is that the user had a stressful experience. However, duration of an

episode is not constant. A short duration with a high area is more likely stressful
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in comparison with the same area for a longer duration. Hence, we divide the

area by the duration of the episode and refer to it as stress density. A higher

stress density indicates that the person has most likely experienced stress and

the corresponding episode is a stress episode. On the other hand, a lower stress

density in an episode indicates that the person is less likely to have experienced

stress; hence we can mark the concluded episode as a not-stressed episode. If

the concluded episode is identified as a stress episode, and the stress likelihood

starts increasing again, as it does at ’c’, we can instantly provide an intervention

(at ‘c’). As an alternate approach, using a similar approach – computing stress

density at ‘b’ we can provide an intervention when it is highly likely that the person

is stressed. An example of an appropriate intervention can be the

recommendation of a breathing exercise [102], allowing the person to be better

prepared for subsequent stress occurrences.

In this chapter, we primarily discuss about the identification and delivery of

an intervention at the conclusion of a stress episode (at ‘c’), which is also the

beginning of an increasing trend for the next episode. As an alternate approach,

we can consider the identification of the peak (at ‘b’) and deliver an intervention

when the person is highly likely to be experiencing stress. The approach

proposed in this chapter can also be adapted to identify the stress episode when it

is at peak (‘b’).

To generate triggers for stress intervention, we first need to locate and

mark episodes in the stress likelihood time series. Next, we need to train a model

to classify the episodes as stressed or not-stressed, which can then be used to

decide the timing of stress interventions.

7.5.1 Locating Episodes in the Time Series

To provide an intervention, we first identify episodes in the rapidly varying

stress likelihood time series. In addition, we need to identify increasing and
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decreasing trends in the time series. To identify episodes and find trends in the

time series we follow the similar Moving Average Convergence Divergence

(MACD) based approach proposed in Chapter 6 and Section 6.8. However, rather

than using the field study data to learn three window length parameters <wslow,

wfast, wsignal> of MACD we use lab study data. We found that the optimal window

lengths are: wslow = 19 minutes, wfast = 7 minutes, and wsignal = 2 minutes, which

maximize the metric gain
N

. In the lab time series using the specified parameters,

we obtained 119 episodes across 21 participants.

7.5.2 Threshold Selection for Identifying Stress Episodes

Conclusion of an episode also marks the start of an increasing trend for the

next episode. We need to assess whether the just concluded episode is a

candidate stress episode worthy for an intervention.

However, there are missing data (imputed) in the episodes of the time

series, which can be attributed to sensor detachment, equipment non-wear, lack

of good quality data, or discarded data due to the presence of confounder

physical activity. If more than 50% of the minutes in an episode are missing, we

mark the entire episode as unknown and discard the episode from the threshold

selection step. If a detected episode in the time series contains the majority of a

lab stressor, we mark it as a stress episode.

In the lab, we have the precise timings of the start of lab stressors, allowing

us to easily identify each stress episode. In the field, when we do not have such

markings of stressors, we require a metric for assessing or marking an episode as

stressed or not-stressed. We found that the aforementioned stress density is a

great candidate for such a metric. A high stress density identifies a stress episode

and low stress density identifies a not-stress episode. However, using a single

stress density cutoff to make this binary decision can lead to misidentifying those

‘gray-area’ episodes having stress density near the decision cutoff. To address
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this issue, we assign all such gray-area episodes into class unsure. Thus, rather

than picking one threshold, we pick two thresholds for these three episode

classes.

In summary, an episode is classified as not-stressed if its stress density is

below the first threshold (threshold 1), as stressed if its stress density is above the

second threshold (threshold 2), and as unsure if its stress density is between the

first and second thresholds. Using this approach allows us to identify stressed

and not-stressed episodes with high confidence.

Out of 119 episodes in the lab study, 24 are unknown due to missing data

or poor quality data. Figure 20 shows the stress density for each of the remaining

96 episodes in the lab study. Labeling episodes with stress density between two

thresholds (0.29 and 0.44) as unsure ensures both precision and recall for

stressed and not-stressed class above 95% while keeping the unsure episode

count as low as possible. Table 8 summarizes the calculation of precision and

recall for stressed and not-stressed class. Table 9 presents the confusion matrix.

Precision and recall for stressed class are 95.8% and 95.8%, respectively and for

not-stressed class are 98.3% and 98.3%, respectively.

In case we want to ensure 90% precision and recall in identifying stress

episodes, we can pick different thresholds — <0.29, 0.42>. For 85% precision

and recall, the thresholds are <0.29, 0.29>; in this case there is no unsure class

and the two threshold method simplifies to a binary decision with a single

threshold. Table 10 summarizes these results.

In an alternate approach when we provide intervention when it is highly

likely that the person is stressed (see Figure 19 b), we compute stress density at

‘b’. Based on a threshold of 0.36 we are able to identify stressed with a precision

of 95.7% and a recall of 0.88% and not-stressed with a precision of 86.7% and a

recall of 95.1%.
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Figure 20: Stress density of each session in the lab study. Discarding episodes
with stress density between two thresholds (0.29 and 0.44) ensures both precision
and recall of stressed and not-stressed class above 95% with episodes discarded
due to being unsure is minimum.

7.6 Smoking Cessation Field Study

Stress is prevalent among nicotine-dependent individuals, especially

during their abstinence. We applied our proposed model on smoking cessation

field study data to observe the stress patterns of abstinent smokers during their

first 3 post-quit days.

7.6.1 Data Description

Participants: We use data collected in a smoking cessation study that was

reported in [155]. In this study, the participants were cigarette smokers who

reported smoking 10 or more cigarettes per day for at least 2 years, and who

reported high motivation to quit. To qualify, participants had to pass a screening

session prior to being enrolled in the study. The screening includes assessment of

current medical and mental health status and history of any major medical and

psychiatric illness. Screening also includes assessment of smoking behavior,

mood, and other behavioral health measures. Participants were excluded if they

had ongoing major medical or psychiatric problems and if they had other
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Table 8: Computation of stress episodes classification performance metric —
precision and recall from Figure 20

Precision of stressed = Number of red triangles above threshold2 /
Total triangles above threshold2

Recall of stressed = Number of red triangles above threshold2 /
Total red triangles above threshold2 or below
threshold 1

Precision of not-stressed = Number of green triangles below threshold1 /
Total triangles below threshold1

Recall of not-stressed = Number of green triangles below threshold1
/ Total green triangles below threshold1 or
above threshold2

Table 9: Confusion matrix of stress episode identification for thresholds 0.29 and
0.44, ensuring 95% precision and recall, where we excluded 13 unsure episodes
and 24 unknown episodes.

Classified by Model
Stress Not stress Total

A
ct

ua
l Stress 23 (95.8%) 1 (4.2%) 24

Not stress 1 (1.7%) 57 (98.3%) 58
Total 24 58 82

comorbid psychiatric and substance use problems. Also, participants who did not

follow a normal day/light diurnal cycle were excluded to control for variation in

diurnal physiological activity and behaviors.

Protocol: Once enrolled, the participants picked a smoking quit date. Two

weeks prior to their quit date, subjects wore the sensor suite for 24 hours in their

natural environment. After completion of the 24 hour monitoring, which we call the

pre-quit session, subjects come back to the lab for their second visit. Smoking

cessation counseling is provided starting at this second visit to the lab. Then the

subjects come back to the lab on the assigned quit date to attend a counseling

session and to begin the 72 hours of monitoring in the field; this is referred to as

the post-quit session. They come back to the lab each day to confirm smoking

status by capturing an expired breath sample in a carbon monoxide (CO) monitor.
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Figure 21: F1 score between self-report and sensor assessment range from 0.36
to 1.00 with median 0.65.

During each day of monitoring (24 hour pre-quit and 72 hour post-quit), the

participants wear the sensor suite during awake hours, and complete 12

Ecological Momentary Assessments (EMAs) [167] daily.

Data Collected: We collected data from 53 participants. The participants

wore the sensor suite for a total of 2,706 hours with 1,350 hours of stress

assessments after excluding intermittently missing data, and excluding all stress

assessments confounded by physical activity. A total of 2,526 EMA prompts were

delivered (11.9 per day) with a completion rate of 94.2%.

We apply the proposed model on this smoking cessation field study data to

observe the stress patterns in the first 3 days after quitting. We compute the

stress likelihood for each minute from ECG and respiration data, impute the

missing data, apply simple moving average to smooth the time series, identify the

stress episodes using the MACD based approach, and mark them as stressed,

unsure, not-stressed, and unknown based on the stress density of each episode.

7.6.2 Validation of Stress Assessments in the Smoking Cessation Study

The cStress model was validated against lab study and independent field

studies [89,158] as described earlier. To validate the cStress assessments in this
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new data set, we followed the similar approach presented by Hovsepian et

al. [89]. First, we check the consistency of self-reports as they are subject to bias

and careless responding [158].

We use Cronbach’s alpha [27] to assess the consistency of the

self-reported responses. This metric is widely used in the field of psychometrics.

Cronbach’s alpha measures the internal consistency of items that are intended to

measure the same psychological construct. An alpha score of 0.7 or higher is

regarded as acceptable [27] in most studies. We compute the Cronbach’s alpha

using 5 affect items of self-report — “Cheerful?”, “Happy?”, “Frustrated/Angry?”,

“Anxious/Tense?”, and “Sad?” (The two positive items, “Cheerful?” and

“Happy?”, were reverse-coded). The overall consistency score across all

participant’s self-reports is 0.76, suggesting an acceptable consistency (≥ 0.7).

We then compare the sensor-inferred stress markers (for each minute) with

participant’s self-reported EMA. We used F1 as a metric, which is a harmonic

mean of precision and recall. Figure 21 summarizes the F1 scores across

participants from this smoking cessation field study. They range from 0.36 to 1.0

with a median of 0.65. This is lower as compared to those reported in the two

previously reported field studies, i.e., 0.71 in [89] and 0.72 in [158].

There are several potential reasons for a lower F1 score. First, the

presented work validates stress assessments in a smoking cessation phase when

participants may not fully available to provide accurate self-reports. We find some

evidence of it in that the self-report consistency of this presented study is

significantly lower as compared to [158] (0.76 vs. 0.84). In general, the median F1

score of 0.72 in [158] should be viewed against its self-report consistency of 0.84,

while the median F1 score of 0.65 for the present study should be viewed against

its self-report consistency of 0.76.

We compute Cronbach’s alpha for the participants who have F1 score
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below median (see Figure 21). They have unacceptable self-report consistency

scores with a median Cronbach’s alpha of 0.58. Participants with above median

F1 score have median Cronbach’s alpha 0.68. Median F1 score for participants

with acceptable Cronbach’s alpha score (≥0.7) is 0.68 while for participants with

unacceptable Cronbach’s alpha score (<0.7), F1 score is 0.63. In summary, in

cases of poor agreement between self-reports and cStress assessments, the

consistency of self-reports are poor, which may prevent obtaining a good F1

score.

Second, in comparison to [89]) that excluded missing or physical activity

confounded data from validation analysis, we use all the data (with imputation

where necessary). Imputation was also done in Chapter 6(also in [158]), but using

a heavy-weight and potentially more accurate method. In contrast, we can use a

simple and computationally efficient method for imputation to make it feasible to

run in real time on the phone. This may have also introduced some loss in

accuracy.

Finally, in comparison to Chapter 6(also in [158]), which used overlapping

windows with a 5 second moving increment for smoothing the time series

(resulting in computation of 12 stress values during a minute worth of data), we do

not use any overlapping windows for computational efficiency and to avoid any lag

between data and generation of stress trigger due to computational delays. This

may have led to some additional loss in accuracy.

The above validation is for the minute-level output from the cStress model.

To evaluate stress episodes rather than the minute-level outputs, we compare

them against self-report response to the item “Anxious/Tense?.” To remove

participant’s biases in self-report, we compute z-scores from the self-report. By

using this z-score, we can directly compare one participant’s response to another.

Values of z-score above 0 indicates stressed while values of less than 0 indicates
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not-stressed. Out of the 2,526 prompted EMAs at random moments, 22 were

triggered at moments when our model identified that the participant was stressed.

We found a median z-score of 0.21 in such cases which indicates stressed from

self-report. For the 673 EMAs triggered during when our model suggests

not-stressed, we found a median z-score of -0.20 indicating not-stressed from

self-report.

7.6.3 Stress Patterns Observed in the Smoking Cessation Study

We apply the approach proposed in Section 7.4 and Section 7.5 on

smoking cessation field study data collected from 53 participants. We obtain

stressed, unsure, not-stressed, and unknown episodes in the field using stress

density as a metric.

As discussed in Section 7.5.2, to ensure 95% precision and recall for both

stressed and not-stressed class we need to pick stress density threshold <0.29,

0.44>. As shown in Table 10, we find 28.3 not-stressed, 2.7 unsure, and 1.5

stress episodes per day on average. Figure 22 shows the episodes for one

participant and on pre-quit day.

If we relax the constraint by considering above 90% precision and recall,

we can pick stress density thresholds <0.29, 0.42> for episode assessing. We

observe 1.7 stress episodes per day as compare to 1.5 in case of 95%. In case

we relax even further, for 85% precision and recall we get stress density

thresholds <0.29, 0.29> meaning there is only one threshold and no unsure class.

We observe 4.2 stress episodes per day in such a case.

7.7 Chapter Summary

Identifying the appropriate timing of intervention is a critical component in a

just-in-time stress intervention. Providing frequent interventions will increase user

burden and hence it is critical to identify the opportune moments when there is

sufficient confidence in sensor-based stress assessment. In this chapter, we

101



Figure 22: Time series of stress likelihood of one participant on pre-quit day.

presented such an approach to determine the timings of stressed and

not-stressed episodes from sensor based measurements in the context of

smoking cessation. While there are numerous ways to further improve the

presented approach and the eventual intervention, the overall framework for data

analysis may be applicable to several other biomarkers obtained from sensor data.

Table 10: Stress episodes classification statistics for ensuring different precision
and recall (95%, 90%, and 85%).

Precision and Recall
95% 90% 85%

Lab Study
(Stress Density)

Threshold 1 0.29 0.29 0.29
Threshold 2 0.44 0.42 0.29

Field Study
(per day)

Not-stressed 28.3 28.3 28.3
Unsure 2.7 2.5 0

Stressed 1.5 1.7 4.2
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Chapter 8

Applications of Our Model

To demonstrate the utility of our model, we investigate four possible

applications of the model. First, triggering of the self-report for self-reflection.

Second, observe the patterns of stress which will help intervention designer.

Third, provide proactive and reactive intervention based on context. Fourth,

generalize the model for other possible interventions.

8.1 Application 1: Triggering of the Self-Report

First application for identifying stress episodes will be to initiate a

self-report at the conclusion of a stress episode. We can ask the user about the

reason for past stress experience. For example, is this stress experience related

to work, family relationships, health, housing, crime, etc? Recording this response

information in the smart phone or in the cloud will help the user to revisit those

recordings. Such self-reflections will enable the user to find patterns of stress in

his daily life [94,98,113,120,162]. For instance, via self-reflection user finds that

Monday morning at work is stressful. Information like this will enable the user to

better prepare for a stressful Monday (e.g., meditation at morning). Obtaining this

information also enables intervention designers to find patterns of stress and

provide intervention at appropriate moments.

8.2 Application 2: Patterns of Stress

8.2.1 Role of Prior Stress

We analyze the relationship between durations of successive stress

episodes. Figure 23 is a scatter plot of the duration of the current stress episode

versus the duration of the preceding stress episode. We observe a healthy

correlation of 0.42. This correlation can be explained by theory and

evidence [84,85,133] suggesting a spiral process where current exposure to

stressors can lead to subsequent reactivity to other stressors by attenuating the
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Figure 23: Next stress duration as a function of current stress duration. A healthy
correlation of 0.4243 is observed here.

state coping capability of the person. For example, stressors such as facing

financial troubles may decrease the person’s stress coping capacity. This may

lead the person to respond with subsequent stress to an event or an environment

that would, in other circumstances, be easy to deal with, such as being in a noisy

environment.

8.2.2 State Transition Probability

Stress episodes are classified as stressed (yes), unsure, not-stressed (no),

and unknown. We analyze transition probabilities among these classes which can

inform the intervention design and the modeling of the time-series data. Figure 24

shows the estimated transition probabilities between these types of episodes for

the field study of 53 participants.

Stress episodes more likely to be of similar kinds in successive episodes.

From Figure 24, we observe transition probabilities for no-no (71.3%),

unsure-unsure (23.1%), and yes-yes (30.7%). It was shown in our earlier work

in [158] as well that there is a correlation between the durations of successive

stress episodes. This can be explained by theory and evidence [84,85,133]
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Figure 24: State transition probabilities between different stress episode types,
stressed (yes), unsure, not-stressed (no), and unknown.

suggesting a spiral process where current exposure to stressors attenuate the

stress coping capability of the person. This can lead to subsequent reactivity to

other stressors. For example, a person in a conflict with a colleague at work

produces negative feelings and emotions that makes it difficult for the person to

manage his or her workload during the day, making him/her more prone to making

mistakes at work, which can lead to further stress.

If a person is not-stressed in the current episode it is likely that next

episode in the time series is also going to be a not-stressed one with probability
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Figure 25: Role of time and activity level on stress density. Here, morning is
before 8 AM, day time is 8 AM to 7 PM, and night is after 7 PM. Horizontal (red)
line represents the overall stress density.

71.3%. It is less likely to make a transition directly to stressed state (0.3%). The

more likely transition is from not-stressed to unsure (2.5%), and then to stressed

(9.2%).

Observations like these suggest that providing a stress intervention when

the person experiences a stressed episode or an unsure episode followed by a

not-stressed episode can help that person to cope with future stress occurrences.

As an alternate application, we can also feed the previous minute’s stress

estimate into the computational model (such as cStress) for estimating stress in

the current minute. Such recursive relationships may increase the accuracy of

stress assessment.

8.2.3 Temporal Effect on Stress

We do not observe any significant difference in stress level between

weekdays and weekends (0.168 vs. 0.163, p = 0.744 on Wilcoxon signed-rank

test, paired two-tail, n = 38). Most of our participants did not have full-time jobs;

this may explain the absence of a difference.

As hypothesized in [105], we observe that in our sample, stress varies by

time of day. It is low in the mornings, rises during the middle portion of the day,
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and subsides again at night. These differences were significant in pairwise

comparisons of midday versus morning (0.186 vs. 0.105, p < 0.001 on Wilcoxon

signed-rank test, one-tail, n = 38) and midday versus night (0.186 vs. 0.133,

p = 0.001 on Wilcoxon signed-rank test, one-tail, n = 38), and not morning versus

night (0.105 vs. 0.133, p = 0.055 on Wilcoxon signed-rank test, one-tail, n = 38).

These are expected observations, as the active day is likely spent looking for work

and drugs and being exposed to drug cues and potential conflicts. Some of these

events may occur during evening and night times as well, but are less likely than

during the daytime.

8.2.4 Effect of Activity on Stress

Even after we remove the confounding periods of moderate to high

physical activity, we still find that stress density for the next 15 minutes after a

walk is higher than usual, as shown in Figure 25. In contrast, stress density was

lower in the 60 minutes following 60 minutes of inactivity, (which generally happen

at home) (0.186 vs. 0.117, p = 0.001 on Wilcoxon signed-rank test, paired one-tail,

n = 38).

This observation seems to contradict the common belief that physical

activity such as walking helps to reduce stress [51]. This apparent contradiction

could be because our participants’ physical activities usually corresponds to

transportation (e.g., walking and public transport). Upon conclusion of these

episodes, they may be exposed to cues, unpleasant environments, work

challenges, etc. They could also have been engaged in jobs that required

significant physical activity. This observation prompted us to investigate the role of

environmental context in stress.

8.2.5 Environmental Effect on Stress

To analyze the effect of environment on stress, we use the Neighborhood

Inventory for Environmental Typology (NIfETy) [71] as a measure of environmental
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Figure 26: Effect on stress density across different location contexts detected
with κ > 0.7. Noisy environment is highly associated with stress.

disorder. GPS data is mapped to this index. The collection of NIfETy data has

occurred in several waves, starting in 2005. We use data from Wave Eight,

because they were collected close in time to our participants’ provision of GPS

data. During Wave Eight, trained NIfETy raters sampled 528 individual

georeferenced blockfaces in the city where the study was conducted. The raters

noted the presence or absence of each of 77 variables, which were divided a

priori into five categories: (1) Social Disorder, (2) Physical Disorder, (3) Drug

Paraphernalia, (4) Adult Activity, and (5) Youth Activity.

Method: To estimate probable NIfETy ratings for the areas between the

528 rated city blockfaces, we develop a model that incorporated data from

remote-sensing-derived maps of surface imperviousness and landcover [185].

The remote-sensing data consist of 180,000 pixel values measured as an image

across the city. Next, we use a distance matrix to measure the distance between

all NIfETy blockfaces and the centroid coordinate location for individual pixels in

the remote sensing image of the city. We complete the distance measurements

iteratively, where the first matrix is the distance from each of the 180,000 pixels to

the closest NIfETy blockface. The second iteration is the distance from each pixel
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to second-closest NIfETy blockface. This process is replicated with the distance

matrix for all 528 NIfETy blockfaces, so that we have 528 distance layers for each

of the 180,000 pixels. These layers are then rasterized for the city and sampled

for each NIfETy location.

Next, we develop a RandomForest based classifier [33] to predict a

dichotomous outcome (i.e., 0 = “absent” or 1 = “present”) for each of the 77

NIfETy variables, using the 2 remote sensing layers, coordinate location, and the

528 distance values. We reason that with the distance values included, the

machine-learning model would generate predictions similar to those of Kriging, a

common geospatial interpolation method that uses distance alone to make its

predictions [58]. By adding remote-sensing data to our model, we account for

real-world physical environments in the city.

We then generate a citywide map of inferred probabilities for each of the 77

NIfETy variables at each pixel. We use Cohen’s kappa to compare model-inferred

probabilities to actual ratings at the NifETy blockfaces (representing a gold

standard). Only NIfETy values with a kappa greater than 0.4 are used in our

analysis here (n=61) as predictors of stress ratings. The posterior probability

computed by the Random Forest model is used to infer the binary labels:

“absent”/“present”, using 0.5 as the binary threshold.

Findings: Figure 26 presents the stress densities across 37 different

location contexts, for which the classification κ > 0.7, distinguishes between cases

where the context is present and absent. We observe that noisy locations; the

presence of graffiti, cigarette butts, trash in street, and bars are associated with

high stress likelihood. Bars may be a potent cue for drugs and hence may elevate

stress in our population. In contrast, locations where the NIfETy raters had seen

male adults involved in positive interaction and youth playing are associated with

lower stress than average.
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Figure 27: The likelihood of stress for one participant overlaid on the disorder
map. Disorder here is the aggregated posterior probability value for top 10 NIfETy
variables (see Figure 26) with κ > 0.70.

This suggests that geolocation tracking can help inform the timing of JITIs,

that might, for example, propose a relatively less stressful route. As an example,

Figure 27 shows one participant’s stress assessments overlaid on disorder map

of the city. Disorder here is the aggregated posterior probability value for the top

10 NIfETy variables with κ > 0.70. The figure suggests that people are more likely

to be stressed in some specific parts of the city with high disorder score.

8.3 Application 3: Intervention

As the third application of identifying the stress episode, we can provide

just-in-time intervention. Stress intervention can be proactive or reactive by

nature.

8.3.1 Reactive Stress Intervention

As shown in Figure 28 we can provide a reactive intervention at ‘c’ or at ‘d.’

As soon as an episode is over (at ‘d’) we can compute the area under the curve.

Divide the area by time and compute stress density. If stress density is over a
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Figure 28: Timing for proactive or reactive intervention.
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specific threshold we can provide stress intervention. We can pick this threshold

based on a targeted precision and recall (e.g., 95%). Chapter 7 and Section 7.5.2

discusses about the threshold selection process. A person experiencing stress

may not be available for receiving intervention (see Chapter 5). We observed from

Figure 24 that a person recently experienced a stress episode is vulnerable for

future stress occurrences. In addition, at ‘d,’ when stress likelihood is least, it is

highly likely that the person is available. So it makes sense to provide a active

intervention that requires significant user engagement. Meditation and breathing

exercise are examples of such active interventions.

On the other hand, at ‘c’ when it is highly likely that the person is

experiencing stress, we can follow the same approach and compute stress

density. We can provide intervention if stress density is above some cutoff.

However, when experiencing a stress episode, a person is less likely available

(see Chapter 5). So we can provide a passive intervention which does not require

active user engagement. Changing ambient light [117] or playing music [138] are

examples of such passive interventions.

8.3.2 Proactive Stress Intervention

As another application of our model, we employ it to train a classifier for

predicting significant stress episodes. As described earlier, we use the MACD

method to identify and locate stress episodes. All stress episodes, momentary or

significant, are considered candidate windows during the training process. Our

goal in this prediction task is to determine early on, as soon as an MSE is

detected, whether it will become an SSE, which essentially becomes a MSE/SSE

classification task. For this task, we identify and compute 173 candidate features,

and then train a model with 100 selected features.

Feature Computation: We compute 173 features to train a MSE/SSE
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classifier. These features are based on the observations and findings presented

earlier.

Time and Day (3 features): As shown in Figure 25, there are temporal

factors that affect stress, such as time of day. Therefore, we include the following

features: “time of day,” “hour of day,” and “weekday”.

Previous Stress Episode (3 features): As shown in Figure 23, durations of

adjacent stress episodes are correlated. Hence, we include the features “duration

of previous stress episode,” “time since previous episode,” and “time required to

cross binary stress threshold.”

Slope and Intercept (22 features): We use the slope and intercept of a

best-fit line, fitted to past stress likelihood values. The rationale behind the

inclusion of this feature was an assumption of a “calm before the storm.” In

addition, a fast ramp-up of the stress likelihood has a good potential to break into

an SSE. To compute these features, we use the slope and intercept associated

with the crossing of the binary stress threshold. We also use the slope and

intercept of prior 30 sec, 1 min, 2 min, etc., up to 10 min.

Prior Stress Density and Skewness (30+30 features): Figure 23 suggests

that the prior stress density is correlated with the current stress density. Hence,

we compute the stress densities of the previous N minutes, where N increases

from 1 to 30. We also compute the skewness of the previous N minutes, varying

N from 1 to 30.

Location (61 features): Figure 26 shows the apparent effect of location on

stress density. We use 61 NIfETy scores out of 77 which are detected with

performance κ > 0.4.

Physical Activity (24 features): Figure 25 shows that there is a significant

association between the post-walk period and a high stress likelihood. Inspired

by [157], we use 24 aggregated features of activity (All-N, Any-N, Duration-N, and
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Figure 29: Trade-off analysis for triggering frequency of stress intervention. The
x-axis represents model-proposed triggering frequency of stress intervention per
day and two y-axes represent precision and recall for predicting SSEs.

Change-N) over windows of varying size N — 5 min, 10 min, 15 min, 20 min, 25

min, and 30 min.

Feature Selection: To improve the generalization performance of the

classifier, we perform feature selection and retain only the top 100 features with

the highest information gain [48]. This ensures approximately one feature for

every 100 samples (total 9,087 samples).

Model: We train a RandomForest learning algorithm [33] to discriminate

between MSEs and SSEs. To address the issue of imbalanced class sizes, we

use a cost-sensitive classification approach [52], assigning a higher cost to

misclassifications of actual SSEs. For evaluation, we use leave-one-subject-out

validation.

Table 11 summarizes the performance of our model. The model is able to

predict SSEs with a duration of 13.5 minutes with accuracy of 94.8% and

κ = 0.444. Figure 29 shows the tradeoff analysis. The x-axis represents a

triggering frequency of stress intervention per day and the two y-axes represent

precision and recall for predicting SSEs. Researchers designing an intervention
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Table 11: Performance of the model for predicting Significant Stress Episodes for
duration thresholds of 13.5, 7.3, and 2.4 minutes.

Duration
(minute)

E(count)
per day

Accuracy Kappa

13.5 0.5 94.8% 0.444
7.3 1.0 88.3% 0.428
2.4 2.0 77.7% 0.495

can use this information to find a triggering frequency that will achieve specific

values of precision and recall.

8.3.3 Phone Implementation

Finally, the proposed intervention timing design considerations are

presented to behavioral scientists. Out of the proactive and reactive approach,

behavioral scientists preferred the reactive one because of two primary reasons.

First, duration threshold that we used in identifying significant stress episodes

requires some domain knowledge to select, which is unavailable during the

designing phase of the intervention. Second, when we are providing intervention,

we need to have high confidence that the user is stressed. A false positive

intervention trigger will increase user burden.

As shown in Figure 28 we can provide a reactive intervention at ‘c’ or at ‘d.’

Out of the two, behavioral scientists preferred the intervention triggering timing at

‘c’ which will enable us to provide intervention when we have high confidence that

the user is currently experiencing stress. Proposed method is also sensitive to the

resource limitations of mobile phones, so it can be deployed in a real-life. In fact,

the source code and the app version of our method is available for free use, as

part of the MD2K software platform [4]. This implementation is being used in an

ongoing stress intervention study at Northwestern Medical School under the

supervision of Dr. Bonnie Spring.
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8.4 Other Applications

In this dissertation about just-in-time intervention, we use stress

intervention as a running example. We address confounding events, handle

missing data, construct the time series, validate the stress assessments, identify

episodes in the time series, discover patterns in the time series, and build models

to provide proactive or reactive intervention. This proposed method can be

generalized to design intervention for other adverse health conditions, such as,

craving for smoking, food, or drug. As a specific example, a recent work [40]

developed a computational model to estimate cigarette craving using mobile

sensor data. This Conditional Random Field (CRF) based model construct a time

series of craving probabilities via inferring cigarette-craving for each minute. We

can devise the similar time series pattern mining method that is described in this

dissertation to find episodes in the time series, identify patterns, and build models

to provide proactive or reactive intervention.

8.5 Chapter Summary

Identification of the timing of intervention is a critical step for the success of

just-in-time intervention. Proposed approach of stress episodes identification

opens up enormous opportunities for the behavioral scientists to design context

sensitive intervention content and modality. It is now possible for the users to

self-reflect, or the behavioral scientist to observe stress patterns and provide

proactive or reactive intervention.

Right now, it is not clear whether we should provide an intervention when

somebody is going through a stressful experience and may not be receptive to

receiving intervention. On the other hand, whether we should provide an

intervention when somebody are not stressed so that they can better tolerate

future stress episodes. Which one leads to better and efficacious intervention?

These are things that can be investigated via conducting a microrandomized trial.
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Chapter 9

Conclusion and Future Directions

9.1 Summary and Key Contribution

Sensor-triggered just-in-time-interventions (JITI) promise to promote and

maintain healthy behavior. But, critical to the success of JITI is determining the

availability of the user to engage in the triggered JITI.

Scheduled and context-sensitive interventions do not adequately support

just-in-time-interventions as they do not consider a user’s cognitive, physical, and

physiological availability to engage in a triggered intervention. This dissertation

takes a first step to inform the timing of delivering JITI. We propose a novel

objective metric to measure a user’s availability to engage in a JITI and propose a

model to predict availability in the natural environment based on data collected in

real-life. Findings indicate that availability of a user depends not only on user’s

ongoing activity or physical state, but also on user’s psychological state.

Context-sensitive just-in-time interventions have been possible for quite

some time for applications such as traffic-aware navigation. GPS sensors have

also made it possible to explore interventions that are based on geofencing.

Identifying the appropriate timing of intervention is a critical component in a

just-in-time stress intervention. This dissertation presents the first approach to

analyze the time-series of stress data for determining the timing of just-in-time

stress intervention. Given the wide prevalence of stress and its adverse impacts

on health, job performance, and quality of life, stress management is useful for

everyone. This work opens up numerous opportunities to now design efficacious

interventions for helping dealing with daily stress in work life, social life, or

otherwise. For the specific population addressed here — outpatients undergoing

treatment for addiction — stress management in real-world circumstances will be

most valuable if it is linked to prevention of drug or nicotine craving and relapse.
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During analysis of stress episodes in smoking cessation data, we have found that

there is a relationship between successive stress episodes which is informative

for intervention delivery. Stress is one of the major triggers for smoking and also

responsible for lapses during cessation. Providing stress intervention for such

population can help them maintain smoking cessation during abstinence.

In addition to showing how time-series data can be mined for determining

the timing of interventions, presented work makes several methodological

contributions. First, presented method of estimating the recovery time of

physiology from a physical activity episode could possibly be used as a measure

of cardiovascular fitness outside of controlled settings for heart patients. Second,

Missing data is prevalent among wirelessly transmitted physiological signals. In

addition, there are confounding activities (e.g., physical activity) for a specific

biomarker (e.g., stress). This causes discontinuity in the time-series. To analyze

trends in the series and to compute statistical features, we need a continuous time

series. Imputation of missing data is an important step in such cases. But we

can’t do imputation if missing data is Missing Not At Random (MNAR). We found

that missing stress assessments are not MNAR. Hence, it is possible to impute

missing stress markers. Third, Validation of sensor inferred markers is the field

setting is challenging due to lack of gold standard truth. Self-reported assessment

is commonly used for this validation [89]. Presented work show that lack of

agreement between self-reported stress and sensor inferred stress can subject to

inconsistent self-report. Fourth, Providing frequent interventions will increase user

burden and hence it is critical to identify the opportune moments when there is

sufficient confidence in sensor-based stress assessment. This work also

proposes a method to mine time-series sensor data on human health status and

explore the tradeoffs between intervention frequency and probability of capturing

the event of interest.
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In summary, This dissertation presented an approach to determine the

timings of just-in-time-intervention from sensor based measurements in the

context of smoking and opioid cessation. While there are numerous ways to

further improve the presented approach and the eventual intervention, the overall

framework for data analysis may be applicable to several other biomarkers

obtained from sensor data.

9.2 Future Directions

Being the first work to inform the timing of sensor-triggered just-in-time

intervention (JITI), this dissertation has several limitations that open up interesting

future research directions.

9.2.1 Availability Assessment

• Some features used to predict availability are not yet reliably detectable via

sensors today. These features includes the affect items, such as, being

happy or being energetic. We estimated these affect items from self-report.

For a model to be automated in informing the timing of JITI, all features need

to be inferred from sensors.

• The type of sensors available on the phone or on smart watch is growing

richer rapidly. Several sensors such as proximity sensor, acoustic sensor,

and phone orientation and other data in the phone (e.g., calendar, task

being performed on the phone, etc.) that may inform the current context of a

user were not used in this work for assessing availability. Using these and

other sensors emerging in phone may further improve the prediction

accuracy. Similarly, using additional sensors on the body and those in

instrumented spaces such as office, home, and vehicle (e.g., cameras) can

also be used wherever available to further improve the prediction accuracy.

For example, task-evoked pupillary response [92] can be used as a metric of

mental workload, where head-mounted eye tracker measures the size of
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pupil that indicates cognitive load. Electromyogram (EMG) can measure the

intensity of subvocalization [144] which is significantly different when

someone is involved in a difficult programming related task. Similarly,

Electroencephalogram (EEG) can be used to detect a user’s cognitive

state [41,116].

• This work use 42-item EMA task for assessing significant user involvement

(i.e., 2.4 minutes to complete). The results of this work may be more

applicable to JITI that involve similar engagement. Its applicability to lighter

JITI may need further investigation. On a side note, however, that if the user

is found to be unavailable for a more involved active JITI (e.g., when

driving), passive intervention could be delivered in the meantime (e.g., by

playing music [138]).

• We used response delay as a metric for objectively assessing availability.

Although we label significant delay in response as unavailable, it is not a

gold-standard truth. In future, we can investigate other objective metrics

(e.g., phone in airplane mode) and compare with each other.

9.2.2 Just-in-Time Stress Intervention

• We have inferred physical activity from chest worn accelerometer sensor

which can capture whole body movement. It is possible that there are other

intense hand (or leg) activities which are not captured from chest worn

accelerometer sensors and can be confounder for stress inference.

Detection of such physical activities from other modalities (e.g., smart

watch) will enable us to isolate those confounded stress inferences.

• In addition to physical activity, stress can be confounded by pharmacological

factors such as caffeine, smoking, or drugs. Automated detection of such

events can improve stress assessment accuracy.
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• Wearing of ECG and respiration sensors in a chest band is not very

convenient and unlikely to scale widely. Collection of physiological data from

other devices such as smartwatches may capture stress more conveniently.

Also, assessment of stress from multiple sensors (e.g., PPG and galvanic

skin response in smartwatches) can improve data yield. In case data is

missing from one modality, one can use data from the other modality for

stress assessment.

• Presented model for generating stress intervention triggers can be

supplemented with visual-exposure (via smart eyeglasses), digital traces

(e.g., appointments on a smartphone calendar), and social exposures (e.g.,

twitter, facebook, etc.) to improves its accuracy and context sensitivity.

• This work demonstrates a mechanism for determining the timing for an

intervention. It does not directly provide any efficacious intervention, which

requires making choices on not only the timing of delivery, but also the right

content, the adaptation mechanisms for personalizing it to the individual, the

user’s context, and the selection of the right modality for delivery (e.g., on

the phone, on a smartwatch). Right now, it’s not clear whether we should

provide an intervention when somebody is going through a stressful

experience and may not be receptive to receiving intervention. On the other

hand, we may consider providing an intervention when somebody is

not-stressed so that they can better tolerate future stress episodes. These

issues can be investigated via conducting a micro-randomized trial.

• This dissertation have presented the relationship between stress episodes

among the nicotine dependent individuals who are going through

abstinence. Detection of the first lapse during abstinence [155] made it

feasible to investigate the relationship between stress episodes and smoking
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relapse via objective sensor based approach. Discovery of additional

insights from such data can contribute to designing an efficacious smoking

cessation intervention.
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