University of Memphis
University of Memphis Digital Commons

On Some Exact Nonparametric Conditional Test for Clustered Binary Data

Nana Akwasi Abayie Boateng

Follow this and additional works at: https://digitalcommons.memphis.edu/etd

Recommended Citation

Boateng, Nana Akwasi Abayie, "On Some Exact Nonparametric Conditional Test for Clustered Binary Data" (2016). Electronic Theses and Dissertations. 1534.
https://digitalcommons.memphis.edu/etd/1534

This Dissertation is brought to you for free and open access by University of Memphis Digital Commons. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of University of Memphis Digital Commons. For more information, please contact khggerty@memphis.edu.

ON SOME EXACT NONPARAMETRIC CONDITIONAL TESTS FOR CLUSTERED BINARY DATA by
 Nana Akwasi Abayie Boateng

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

Major: Mathematical Sciences

The University of Memphis
December 2016

Copyright © 2016 Nana Akwasi Abayie Boateng
All rights reserved

ACKNOWLEDGMENTS

I am thankful to my Lord Jesus Christ for granting me the strength to make this work a possibility. I cannot forget about the enormous help I have received from my advisor Dr. E. O. George throughout the period of writing this thesis. I thank him so much for all his advice, suggestions and directions. I am particularly grateful to Dr. Dale Bowman for her tremendous support, guidance and incisive suggestions through out the period of writing this dissertation and all of the time that I have spent here as a student in the Mathematics Department at the University of Memphis. I also would like to say a special thank you to my dissertation committee members Dr. Albert Okunade and Dr. Su Chen for their role in making this whole work a success.

Abstract

Boateng, Nana Akwasi Abayie . Ph.D. The University of Memphis. December, 2016. On Some Exact Nonparametric Conditional Test for Clustered Binary Data. Co-Major Professors: E. O. George, Ph.D. and D. Bowman Ph.D.

The development of exact, non-asymptotic, procedures for analyzing clustered discrete data has remained a challenging problem for research statisticians due to the dearth of tractable probability models for describing complex dependence structures of discrete data points within clusters. Under an assumption of de Finetti's [15] definition of infinite exchangeability, several models have been developed. However, these procedures are not valid when data come from intrinsically finite exchangeable population. Moreover, the procedures invariably conduct inference based on asymptotic distribution of estimators or test statistics. For example, for testing association between the rows and columns of a contingency table the asymptotic distribution of the likelihood ratio statistic under null hypothesis of independence is widely used in many applications. Such asymptotic distributions are known to be inaccurate when sample size is moderate or when data are unbalanced or sparse[34]. The goal of this dissertation is to develop and implement exact conditional nonparametric testing procedures for sparse, unbalanced correlated clustered binary data under an assumption of finite exchangeability. The methods proposed in this dissertation takes advantage of the increasing availability of computational power and the development of efficient procedures for enumerating tables, such as the network algorithm [33] and Patefield's algorithm [36]. These methods have facilitated the computation of exact p-value in many cases. We show that for fixed cluster sizes, the distribution of marginal sums of responses can be modeled as a multinomial distribution and that these marginal sums are jointly sufficient statistics [10]. We construct an exact test by conditioning on the sufficient statistics of the multinomial distribution, thereby eliminating all nuisance parameters. By conditioning on the cluster sizes, we

develop an exact nonparametric test for linear a trend. We illustrate the performance of the tests proposed in comparison to those based on unconditional and asymptotic methods by using Monte-Carlo and other stochastic simulations. Our research demonstrates that the exact tests that we have developed can have significantly different p-values, and in many cases superior power, when compared to those using large sample theory approximation when data are sparse or cluster sizes are unbalanced.

TABLE OF CONTENTS

Chapter Page
Acknowledgments iii
Abstract v
List of Tables viii
1 Introduction 1
2 Literature Review 6
Overview of Nonparametric Models for Categorical Data 6
Unconditional Distributions for Categorical Data 6
Multinomial Distribution 6
Full Multinomial Sampling 6
Product Multinomial Sampling 7
Poisson Sampling 8
Conditional Distributions for Unordered $g \times K$ Contingency Tables 9
Fishers Exact Test 9
Choosing a Test Statistic 12
Singly Ordered $R \times C$ Contingency Tables: Kruskal-Wallis Test 14
Doubly Ordered $R \times C$ Contingency Tables : Jonckheere-Terpstra Test 16
Analysis of $2 \times K$ Tables 18
Cochran-Armitage Trend Test for $2 \times K$ Tables 18
Cochran-Mantel-Haenszel Test for $S \times 2 \times 2$ Tables 20
Generalized Cochran-Mantel-Haenszel Association Statistic for $s \times g \times K$ Tables 21
Generalized Cochran-Mantel-Haenszel Mean Score Statistic for $S \times g \times K$ Tables 23
Generalized Cochran- Mantel-Haenszel Correlation Statistic for $s \times g \times K$ Tables 23
3 Exact Conditional Test for Exchangeable Binary Responses 25
Formulation of Exact Test 25
Reference Set and P-value 28
Monte Carlo Method Using Likelihood Function 29
An Algorithm for Generating Tables 31
Simulation Study I 31
Simulation Study II 38
The p-power and q-power Models 38
Inverse Transform Method 40
Application 47
Summary Statistics for Edge Data 48
Treatment Test of Heterogeneity 51
4 Exact Stratified Linear Rank Test 54
Stratified Representation of Data 54
Reference Set 56
Exact Linear Trend Test 56
Exact Two-sided P-value Computation 63
Application using Edge Data 65
Results 65
Application using 2,4,5-T Data 67
5 Future Research:Adjusting for Multiplicity in Exact Tests 70
Introduction 70
Application with EDGE Data 70
Conclusion 73
Appendices 80
A Computer Programming Codes 81

LIST OF TABLES

$$
\text { Table } \quad \text { Page }
$$

1 Fisher's Exact Test for 2×2 Tables 9
2 Fisher's Exact Test for $g \times k$ Tables 11
3 Cochran- Armitage Trend Test For $2 \times K$ Tables 18
4 Cochran- Mantel-Haenszel Test for $S \times 2 \times 2$ Tables 20
5 Summary of Data 26
8 Data from Ethylene glycol ether(EDGE) Laboratory experiment: A Frequency Table Representation 48
9 Summary Statistics for EDGE Data 48
10 Exact Conditional Test 52
11 Comparison with Other Test 52
12 Stratified Representation of Clustered Data 55
13 Stratified Exact Linear Trend Test for 2×2 Tables 57
14 Size of Reference Sets (Mehta, Patel, Senchaudhuri, 1992) 64
15 EDGE Data, Dose groups ($0,25,50,100$) 66
16 First three columns from Aniko Szabo,2010 66
17 Frequency Distribution of the Number of Implant(s) and Number of Combined Endpoints(t) Following Exposure to 2,4,5-T (Bowman and George 1995) 68
19 Results of T-245 Data 69
20 Raw p-values with equally spaced scores 71
21 Adjusted p-values 72

CHAPTER 1

INTRODUCTION

The validity of statistical inference based on large sample theory is often questionable whenever data are clustered (correlated), sparse and unbalanced or the sample size is small. One of the common mistakes made by practitioners of data science in this era of big data is to assume that big data correspond to a large sample. This assumption often leads to the use of software with algorithms constructed for large sample for inference with multidimensional sparse big data sets that have intrinsically small samples. In dealing with data (big or small) in which data points are discrete and categorical, parametric distributional assumptions are usually difficult to formulate or verify. Exact Nonparametric procedures have long been known to be suitable for inference involving such data.

Significant progress has been made in the development and implementation of exact hypothesis testing in the field of uncorrelated categorical data. Agresti [2] gives an overview of both exact conditional and exact unconditional inference. The same cannot be said for correlated binary data. Very few alternatives exist for making valid statistical inference on clustered binary data with a small sparse or unbalanced samples. Exact methods guarantee that the size of a hypothesis test does not exceed the nominal level and also that the coverage probability for a confidence interval is at least the nominal confidence coefficient [2]. Exact methods have often been criticized for their conservativeness, especially when relevant conditional distribution is highly discrete leading to the conservativeness [2]. One way to address the discreteness is to use the mid-p-value which can smooth out the P - value and consequently reduce the discreteness.

Correlated clustered data occur frequently in biomedical research settings such as teratological experiments, opthalmologic, otolaryngic and developmental studies. What constitutes a cluster depends on the set up of the experiment. A cluster in a
developmental toxicity study consists of the fetuses of a single dam, while in familial studies a cluster could be a set of family members. The sampling units in a developmental study are the pregnant dams and the observational units are the fetuses of each dam. Since fetuses in a cluster share similar genetic traits and environmental exposure, they tend to exhibit similar individual responses. Failure to account for these intra-litter correlations among fetuses could potentially lead to erroneous inferences. Several approaches for dealing with this problem of intra-cluster correlation have been proposed. Some of the early approaches include the use of quasi-likelihood methods such as generalized estimating equations methods [37], [50], a saturated model [10], Beta-Binomial,Compound-Beta Binomial and Corrected Binomial models [48], [39]. Marginal models such as the GEE were popularized for clustered binary data due to the availability of software and relative computational ease [41]. Expectation maximization(EM) algorithms have also been used to analyze clustered binary data with unequal cluster sizes[43]. Kuk and Pang [51] proposed smoothing methods for unequal cluster sizes under marginal compatibility assumption. Their model accounts for the variability of the estimated null expectation under marginal compatibility. The assumption of marginal compatibility allows estimation to be done over different cluster sizes. When data are sparse, the probability function estimated using a saturated model can be very jagged and some kind of smoothing is needed [51]. Kuk et al extended the penalized kernel method to obtain parameter estimates for unequal cluster sizes using an EM-type algorithm.

Luta et al [30] proposed an exact conditional logistic regression for correlated binary data that conditions on nuisance parameters and treats the clusters as fixed effects. Their approach however, results in over conditioning as the number of clusters increases [12]. Log-linear models have also been used in analyzing clustered data. Log-linear models may estimate parameters with different standard errors and
different covariances making interpretation of the analysis difficult [8]. Corcoran et al [12] proposed an exact linear trend test for correlated binary data based on an exponential model proposed by Molenberghs and Ryan [41]. By conditioning on sufficient statistics, they eliminate the nuisance parameters under the null hypothesis of no treatment effect, leading to a conditional test analogous to Fisher's Exact test. The exponential model from which the conditional test is obtained however, only accounts for pairwise interactions and assumes a linear logistic model for the marginal response probability using the Cochran-Armitage trend statistic [46]. Higher order interactions in the clusters are set to zero.

Difficulty with using many procedures arise when data are sparse, unbalanced or when sample size is small. For example when data are sparse, statistical procedures that involve maximization of the likelihood may suffer convergence problems [2]. Valid statistical inference can be conducted whenever one is presented with a small sample, sparse or unbalanced data by conducting exact inference. The justification for exact conditional inference lies in three main principles [32]:the sufficiency, ancillary and randomization principles. An exact conditional test can be obtained by conditioning on sufficient statistic to eliminate nuisance parameters in the model under the null hypothesis of no association between response and treatment. The data can be represented in a contingency table format with treatment groups as rows (or columns) and response types as columns (or rows). To test for treatment effect using exact methods, a reference set is specified. The reference set contains all tables with marginal sums equal to that of the observed table. The exact $P-$ value can consequently be computed by comparing the observed table with tables in the reference set. If the observed table is unlikely under the null hypothesis when compared to the reference set, the null hypothesis is rejected.

Exact inference has gained increased popularity in recent times due to the availability of computational power and efficient table generation algorithms. Some
of the various table enumeration methods include the network algorithm [33], Fourier transform and Algorithm AS 159 [36]. Mehta and Patel [33], with their introduction of the network algorithm, greatly extended the bounds of computational feasibility for exact inference. The network algorithm implicitly lists all tables in the reference set through a series of nodes and arcs. Each table in the reference set is represented by the sum of lengths of a distinct path in the network. The network representation is used in computing the exact distribution by a stage-wise recursion process through the network path. The speed of computation of P-values is increased by computing at each node, lower and upper bounds on the test statistic value for each table that passes through that node [3].

Explicit enumeration of all tables becomes impractical as the sample size increases. For example, tables with sample sizes 20 and 100, have about 40000 and 7×10^{9} tables respectively [2]. For large sample sizes, an alternative is to use Monte-Carlo methods to sample a large number of tables from the reference set and make inference on the sample of tables. This reduces the computational time significantly for large sample sizes.

The remainder of this dissertation is organized as follows. In chapter 2, we provide a review of various nonparametric approaches to modeling categorical data. The Fisher's exact test is among the most popular conditional exact test [18]. Its popularity has being easily spurred on by accessible computer software. In chapter 3 , we formally introduce the problem of modeling exchangeable clustered binary data by conditioning on complete sufficient statistics. We discuss the formulation of the problem, computation of the P-values and various algorithms that allow sampling from the reference set to be computationally feasible. The Monte Carlo approach provides a convenient way to overcome the computational challenge of explicitly listing every single table in the reference set. Two simulation studies are performed to examine the performance of the test under several hypothetical cluster
sizes, intra-litter correlations and sample sizes. We also implement the test using real data obtained from the EDGE toxicology experiment.

In chapter 4, we introduce the exact stratified linear rank test for clustered data. We assign non decreasing monotone Weights to the ranked row and column sums for each stratum. By conditioning on the cluster sizes, we order each stratum by a linear trend statistic. The overall test statistic is obtained by summing the individual linear trend test statistics over all the available strata.

In chapter 5 , we extend the exact test to the field of multiple testing. Simultaneous testing of multiple hypothesis introduces type-I error probability which approaches one as the number of test increase. The adjusted P-value is used to make inference in multiple testing to control for both the Familywise Error Rate and False Discovery rate. Various approaches to compute the adjusted p-values are discussed including resampling methods to estimate the exact adjusted P-value .

CHAPTER 2

LITERATURE REVIEW

2.1 Overview of Nonparametric Models for Categorical Data

2.1.1 Unconditional Distributions for Categorical Data

The exact probability of any categorical data \mathbf{X}, depends on the sampling scheme that is used to generate \mathbf{X}. Three key distributions for modeling categorical responses are the full multinomial, product multinomial and Poisson distributions.

2.1.2 Multinomial Distribution

Suppose that each of n independent, identical trials has an outcome one of K possible categories. Let X_{i} be the number of times an outcome of category i is observed in n independent trials, then the vector $\underline{\mathbf{X}}=\left(X_{1}, X_{2} \cdots, X_{K}\right)$ has multinomial distribution. Let π_{i} denote the probability of outcome in category i for each trial. The probability mass function of the multinomial distribution is given as:
$P\left(X_{1}=x_{1}, X_{2}=x_{2} \cdots, X_{K}=x_{K}\right)= \begin{cases}\frac{n!}{x_{1}!x_{2}!\cdots x_{k}!} \prod_{i=1}^{K} \pi_{i}^{x_{i}} & , \text { if } \sum_{i=1}^{K} x_{i}=n, \quad \sum_{i=1}^{K} \pi_{i}=1 \\ 0 & \text { otherwise }\end{cases}$ The binomial distribution is a special case where $K=2$. The expected value, covariance and variance for the multinomial distribution is given as: $E\left(X_{i}\right)=n \pi_{i}$, $\operatorname{cov}\left(X_{i}, X_{j}\right)=-n \pi_{i} \pi_{j}$ and $\operatorname{var}\left(X_{i}\right)=n \pi_{i}\left(1-\pi_{i}\right)$ respectively.

2.1.3 Full Multinomial Sampling

Consider two factors with g and K categories respectively. Suppose n items are sampled independently from the population, classify each $X_{i j}$ as the cell count in the i th row of the j th column, $i=1, \cdots, g$ and $j=1, \cdots K$. Let the probability of an outcome in the i th category of factor 1 and the j th category of factor 2 be denoted as $\pi_{i j}$ for $i=1, \cdots, g$ and $j=1, \cdots K$. In this approach the sample size n is assumed to be fixed, and the cell counts $X_{i j}$ are random.

$$
\left(X_{11}, \cdots, X_{g K}\right) \sim \operatorname{Mult}\left(n, \pi_{11}, \cdots, \pi_{g K}\right) . \text { The hypothesis of interest is }
$$

independence of factor 1 and factor $2, H_{0}: \pi_{i j}=\pi_{i .} \pi_{. j}$. Where π_{i}. is the marginal probability of being in the i th category of factor 1 and $\pi_{. j}$ is the marginal probability of being in the j th category of factor 2 . Binomial sampling is a special case when each of the factors has only two categories.

2.1.4 Product Multinomial Sampling

Product multinomial sampling is generated if for any table \mathbf{X} either the marginal sums of factor 1 are fixed and the margins sums of factor 2 are allowed to vary or vice versa, for $i=1, \cdots, g$ and $j=1, \cdots K$. Let m_{i} be the fixed marginal sum of the i th category of factor 1 which is independently sampled. Each cell count $X_{i j}$ is classified into j category of factor 2 . Each row of the table with m_{i} observations, $i=1, \cdots, g$ has a multinomial distribution with parameters, $\left(X_{i 1}, \cdots, X_{i K}\right) \sim \operatorname{Mult}\left(m_{i}, \pi_{i 1}, \cdots, \pi_{i K}\right)$. The distribution of any table \mathbf{X} is therefore the product of independent multinomial distributions from the rows.

$$
\begin{equation*}
P(\underline{X}=\underline{x})=P(\underline{\mathbf{x}})=\prod_{i=1}^{g} \frac{m_{i}!\prod_{j=1}^{K} \pi_{i j}^{x_{i j}}}{\prod_{i=1}^{g} \prod_{j=1}^{K} x_{i j}!} \tag{2.1}
\end{equation*}
$$

Independent binomial sampling is a special case of product multinomial sampling where the row and column variables, factors 1 and 2 have two levels. An example of a product multinomial sampling is if each of g different treatments is administered to m_{i} patients, $i=1, \cdots, g$ and the responses to each treatment level i is recorded in K categories. The hypothesis of interest would be whether the different treatments are equivalent thus whether the probability $\pi_{i j}$ of treatment i with response j is the same across all treatment levels i, specifically $H_{0}: \pi_{i j}=\pi_{j}$, for $j=1,2, \cdots, K$.

2.1.5 Poisson Sampling

In Poisson sampling the number trials/sample size is not fixed but random. Each cell count $X_{i j}$ is considered as an independent Poisson random variable, $X_{i j} \sim \operatorname{Poisson}\left(\lambda_{i j}\right)$, where $\lambda_{i j}$ is the rate of an occurrence of an event in cell (i, j). The sampling scheme is under the assumption that the data generation process follows the Poisson distribution. Poisson sampling scheme is useful in modeling counts where the probability of success of an event is very small in a very large number of trials. It is usually used in modeling counts over a fixed period of time or space. The distribution of a table \mathbf{X} with independent cell counts $X_{i j}, i=1, \cdots, g$ and $j=1, \cdots K$ is

$$
\begin{equation*}
P(\mathbf{x})=\prod_{i=1}^{g} \prod_{j=1}^{K} \frac{\left(\lambda_{i j}\right)^{x_{i j}} e^{-\lambda_{i j}}}{x_{i j}!} \tag{2.2}
\end{equation*}
$$

The hypothesis of interest is independence of each cell, $H_{0}: \pi_{i j}=\pi_{i .} \pi_{. j}$. An example of Poisson sampling is a situation in which there are $g \times K$ groups of people, one group for each cell of the $g \times K$ table. The members of each group arrive randomly at a hospital for a medical check up over a period of time. There exists a connection between the Poisson and multinomial distributions. Suppose $X_{i j} \sim \operatorname{Poisson}\left(\lambda_{i j}\right), i=1, \cdots, g$ and $j=1, \cdots K$. Let

$$
\begin{aligned}
& n=\sum_{i} \sum_{j} X_{i j} \text { then } \sum_{i} \sum_{j} X_{i j} \sim \text { Poisson }(\lambda) \text { where } \lambda=\sum_{i} \sum_{j} \lambda_{i j} \\
& P\left(X_{11}=x_{11}, \cdots, X_{g K}=x_{g K} \mid \sum_{i} \sum_{j} x_{i j}=n\right)=\frac{P\left(X_{11}=x_{11}, \cdots, X_{g K}=x_{g K}\right)}{P\left(\sum_{i} \sum_{j} x_{i j}=n\right)} \\
& =\frac{\prod_{i=1}^{g} \prod_{j=1}^{K} \frac{\lambda_{i j}^{x_{i j}} \exp ^{-\lambda_{i j}}}{x_{i j}!}}{\frac{\lambda^{n} e^{-x p^{-\lambda}}}{n!}}=\frac{\exp \left(-\sum_{i=1}^{g} \sum_{j=1}^{k} \lambda_{i j}\right) \prod_{i=1}^{g} \prod_{j=1}^{K} \frac{-\lambda_{i j}^{x_{i j}}}{x_{i j}!}}{\frac{\lambda^{n} e^{n} p^{-\lambda}}{n!}}=\frac{\exp (-\lambda) \prod_{i=1}^{g} \prod_{j=1}^{K} \frac{\lambda_{i j}^{x_{i j}}}{x_{i j}!}}{\frac{\lambda^{n} e^{-x p^{-\lambda}}}{n!}}
\end{aligned}
$$

$$
=n!\prod_{i=1}^{g} \prod_{j=1}^{K} \frac{1}{x_{i j}!}\left(\frac{\lambda_{i j}}{\lambda}\right)^{x_{i j}}
$$

Hence the distribution of Poisson counts conditional on their sum is a multinomial distribution.

$$
=\frac{n!}{\prod_{i=1}^{g} \prod_{j=1}^{k} x_{i j}} \prod_{i=1}^{g} \prod_{j=1}^{K} \pi_{i j}^{x_{i j}} \text { where } \pi_{i j}=\frac{\lambda_{i j}}{\lambda}
$$

2.2 Conditional Distributions for Unordered $g \times K$ Contingency Tables

2.2.1 Fishers Exact Test

Consider N observations of two dichotomous factors, factor 1 and factor 2 with possible combinations given in a 2×2 contingency table 1 below.

Table 1: Fisher's Exact Test for 2×2 Tables

		Factor 1		
		1	2	RowTotal
Factor 2	1	A_{11}	A_{12}	m_{1}
	2	A_{21}	A_{22}	m_{2}
	Column Total	A_{1}	A_{2}	N

For each fixed row, the counts A_{11} and A_{21} are distributed as two independent binomial distributions with parameters, $\left(m_{1}, \pi_{1}\right)$ and $\left(m_{2}, \pi_{2}\right)$ respectively. Where π_{1} and π_{2} are the probability of success in row 1 and 2 respectively. Under the null hypothesis of row independence, $H_{0}: \pi_{1}=\pi_{2}=\pi$, the distribution of $A_{i j}$ conditioned on the row and column marginals is the hypergeometric distribution. Let $X=\left(m_{1}, m_{2}, A_{1}, A_{2}\right)$.Then

$$
\begin{equation*}
p_{X}=\frac{\binom{m_{1}}{A_{11}}\binom{m_{2}}{A_{21}}}{\binom{N}{A_{1}}} \tag{2.3}
\end{equation*}
$$

Two common sampling schemes for 2×2 tables are the Binomial and

Multinomial. Binomial sampling is obtained by fixing the row sums. The hypothesis of interest is $H_{0}: \pi_{1}=\pi_{2}$ versus $H_{a}: \pi_{1} \neq \pi_{2}$. In the multinomial case the cell counts $\left(A_{11}, A_{12}, A_{21}, A_{22}\right)$ are multinomial distributed with a fixed sample size N and probability of cell count in $\operatorname{cell}(i, j)$ is $\pi_{i j}, i=1,2$ and $j=1,2$. The hypothesis of interest in the test of independence of the cells is $H_{0}: \pi_{i j}=\pi_{i .} \pi_{. j}$ versus $H_{a}: \pi_{i j} \neq \pi_{i .} \pi_{. j}, i=1,2$ and $j=1,2$.

The hypothesis may equivalently be expressed in terms of the odds ratio. $H_{0}: O R=1$ and $H_{a}: O R \neq 1$. where,

$$
\frac{\pi_{11} \pi_{22}}{\pi_{12} \pi_{21}}
$$

An odds ratio equal to one indicates independence of the cells.
Let the observed table be x with marginals $\left(A_{1}, A_{2}, m_{1}, m_{2}\right)$. Define the reference set

$$
\Gamma=\left(Y: Y \text { is } 2 \times 2 ; A_{1}, A_{2}, m_{1}, m_{2}\right)
$$

is defined as the set of all tables with marginal sums equal to the observed. The exact two sided p-value P is defined as :

$$
\left.\sum_{Y \in \Gamma^{*}} P_{Y} \quad \text { where } \quad \Gamma^{*}=\left(Y: Y \quad \in \Gamma \text { is } 2 \times 2 ; P_{Y}\right) \geq P_{X}\right)
$$

The exact p-value P is then obtained as the sum of distributions P_{Y} of all tables in the reference set at least as extreme as the observed table P_{X}.

The 2×2 Fishers exact test can be easily extended to tables of size $g \times K$. Suppose patients are now assigned to g treatments and response to treatment is recorded in K categories as shown in Table 2. For each fixed row, $\left(A_{i 1}, \cdots, A_{i K}\right)$, is distributed as a multinomial distribution with parameters $\left(m_{i}, \pi_{i 1}, \cdots \pi_{i K}\right)$ for $i=1, \cdots, g$. The null hypothesis can be expressed as

$$
H_{0}: \pi_{1 j}=\pi_{2 j}=\cdots=\pi_{g j}=\pi_{j} \quad j=1, \cdots, K
$$

Under the null hypothesis of independence of rows, the row sums

Table 2: Fisher's Exact Test for $g \times k$ Tables

		Factor 1				
	1	2	\ldots	K	RowTotal	
	1	A_{11}	A_{12}		$A_{1 K}$	m_{1}
Factor 2	A_{21}	A_{22}	\cdots	$A_{2 K}$	m_{2}	
	3	A_{31}	A_{32}	\cdots	$A_{3 K}$	m_{3}
	\vdots	\vdots	\vdots		\vdots	\vdots
	g	$A_{g 1}$	$A_{g 2}$	\cdots	$A_{g K}$	m_{g}
	A_{1}	A_{2}	\cdots	A_{g}	N	

$\left(A_{1}, \cdots, A_{g} \mid H_{0}\right)$ are also multinomial distributed with parameters $\left(N, \pi_{1}, \cdots, \pi_{k} \mid H_{0}\right)$

$$
\begin{gathered}
P\left(A_{i 1}=a_{i 1}, \cdots, A_{g K}=a_{g K}, i=1, \cdots g \mid H_{0} ; A_{1}, \cdots, A_{g}\right)= \\
\frac{P\left(A_{i 1}=a_{i 1}, \cdots, A_{g K}=a_{g K} ; i=1, \cdots g \mid H_{0}\right)}{P\left(A_{1}=a_{1}, A_{2}=a_{2}, \cdots, A_{K}=a_{K}\right)} \\
=\frac{\prod_{i=1}^{g}\left(\begin{array}{c}
m_{i 1}, \cdots, a_{i K}
\end{array}\right) \prod_{j=1}^{K} \pi_{i j}^{a_{i j}}}{\binom{N}{a_{1}, \cdots, a_{K}} \prod_{j=1}^{K} \pi_{j}^{a_{j}}} \\
=\frac{\prod_{i=1}^{g}\binom{m_{i}}{a_{i 1}, \cdots, a_{i K}} \prod_{j=1}^{K} \pi_{j}^{\sum_{i}^{i} a_{i j}}}{\binom{N}{a_{1}, \cdots, a_{K}}} \prod_{j=1}^{K} \pi_{j}^{a_{j}}\binom{m_{i}}{\left.m_{i 11}, \cdots, a_{i K}\right)} \\
\binom{N}{a_{1}, \cdots, a_{K}} \\
=\frac{\prod_{i=1}^{g} \prod_{j=1}^{K} m_{i}!a_{j}}{N!\prod_{i=1}^{g} \prod_{j=1}^{K} a_{i j}}
\end{gathered}
$$

Conditioning on the row and column marginals is a convenient way to eliminate parameters which in this case are the probabilities $\pi_{i j}$ from the distribution of P_{X} of
the $g \times K$ table.
The reference set Γ of the $g \times K$ table is defined by restricting the sample space of the observed table X to the set of tables with fixed row and column marginal sums. Specifically the reference set is defined as:

$$
\Gamma=\left\{Y: Y \quad \text { is } g \times K \quad \sum_{i=0}^{g} A_{i j}=A_{j} ; \sum_{j=1}^{K} A_{i j}=m_{i} ; \text { for all } i, j\right\}
$$

Fisher's exact test orders the tables in Γ according to it's hypergeometric distribution P_{Y}. The test statistic for each $Y \in \Gamma$ is defined as [34]:

$$
T_{Y}=-2 \log \left(\gamma P_{Y}\right)
$$

where

$$
\gamma=(2 \pi)^{\frac{(g-1)(K-1)}{2}} N^{-\frac{(g K-1)}{2}} \prod_{i=1}^{g} m_{i}^{\frac{K-1}{2}} \prod_{j=1}^{K} A_{j}^{\frac{g-1}{2}}
$$

Freeman and Halton(1951) extended the asymptotic distribution of a 2×2 table by Fisher(1925) to $g \times K$. Under the null hypothesis of independence of row and columns, T_{Y} has a chi-square distribution with $(g-1)(K-1)$ degrees of freedom.

The exact p-value is found as the sum of probabilities all tables in the reference set that are at least as extreme as the observed table. Specifically the exact p-value is defined below :
$\sum_{Y \in \Gamma^{*}} P_{Y} \quad$ where $\Gamma^{*}=\left(Y: Y \quad \in ; P_{Y} \geq P_{X}\right)$
where P_{Y} and P_{X} are the probability distributions of the tables in the reference set and the observed table respectively computed under the null hypothesis.

2.2.2 Choosing a Test Statistic

Several tests are available for $g \times k$ contingency tables with row and column marginals m_{i} and n_{j} respectively, $i=1 \cdots, g$ and $j=1, \cdots, k$. If there is no ordering of either the columns or rows, then Fishers exact test, Likelihood Ratio and the Pearson chi-squared test are appropriate and are the most powerful against any other alternative test of the null hypothesis of no row and column interaction.

For discrepancy measure $D(Y)$, large absolute values of $D(Y)$ provide greater evidence against the null hypothesis, while small absolute values are consistent with it. Fishers test orders each table $Y \in \Gamma$ by a hypergeometric distribution $P(Y)$.

Discrepancy measures of various tests are given below, where $y_{i j}$ is the count in the i th row and the j th column:

For the Pearson Chi-square test:

$$
\begin{equation*}
D(y)=\sum_{i=1}^{g} \sum_{j=1}^{K} \frac{\left(y_{i j}-\frac{m_{i} n_{j}}{N}\right)^{2}}{\frac{m_{i n} n_{j}}{N}} \sim X_{(g-1)(K-1)}^{2} \tag{2.4}
\end{equation*}
$$

The likelihood ratio test orders every table $y \in \Gamma$ according to the likelihood ratio statistic:

$$
\begin{equation*}
D(y)=2 \sum_{i=1}^{g} \sum_{j=1}^{K} y_{i j} \log \left(\frac{y_{i j}}{\frac{m_{i n} n_{j}}{N}}\right) \tag{2.5}
\end{equation*}
$$

The Kullback and Leibler modified log-likelihood ratio statistic

$$
\begin{equation*}
D(y)=2 \sum_{i=1}^{g} \sum_{j=1}^{K} \frac{m_{i} n_{j}}{N} \log \left(\frac{\frac{m_{i} n_{j}}{N}}{y_{i j}}\right) \tag{2.6}
\end{equation*}
$$

The N statistics of Neyman

$$
\begin{equation*}
D(y)=\sum_{i=1}^{g} \sum_{j=1}^{K} \frac{\left(y_{i j}-\frac{m_{i} n_{j}}{N}\right)^{2}}{y_{i j}} \tag{2.7}
\end{equation*}
$$

The Freeman-Tukey statistic

$$
\begin{equation*}
D(y)=4 \sum_{i=1}^{g} \sum_{j=1}^{K}\left(\sqrt{y_{i j}}-\sqrt{\frac{m_{i} n_{j}}{N}}\right)^{2} \tag{2.8}
\end{equation*}
$$

The modified Freeman-Tukey statistic

$$
\begin{equation*}
D(y)=\sum_{i=1}^{g} \sum_{j=1}^{K}\left(\sqrt{y_{i j}}+\sqrt{y_{i j}+1}-\sqrt{4\left(\frac{m_{i} n_{j}}{N}\right)+1}\right)^{2} \tag{2.9}
\end{equation*}
$$

The Cresie and Read statistic

$$
\begin{equation*}
D(y)=\frac{9}{5} \sum_{i=1}^{g} \sum_{j=1}^{K} y_{i j}\left[\left(\frac{y_{i j}}{\frac{m_{i} n_{j}}{N}}\right)^{\frac{2}{3}}-1\right] \tag{2.10}
\end{equation*}
$$

A general representation of most of the test statistics above is given below:

$$
\begin{equation*}
D(y)^{\delta}=\frac{2}{\delta(1+\delta)} \sum_{i=1}^{g} \sum_{j=1}^{K} y_{i j}\left[\left(\frac{y_{i j}}{\frac{m_{i} n_{j}}{N}}\right)^{\delta}-1\right] \tag{2.11}
\end{equation*}
$$

Where $\delta=1,0,-2,-1,-0.5$ and $\frac{2}{3}$ corresponds to the Pearson-Chi-squared statistic, log likelihood ratio statistic, Neyman statistics, Kullback and Leibler, Freeman-Tukey and Cresie -Read respectively.

2.3 Singly Ordered $R \times C$ Contingency Tables : Kruskal-Wallis Test

The Kruskal-Walli (KW) test is a rank based method to compare K independent samples. Kruskal and Wallis(1952) list several advantages of rank based methods. Specifically, they simplify calculations and only general assumptions are made about the distribution of observations (independence). The null hypothesis that the K independent samples originate from the same distribution is tested against the alternate that at least one sample is stochastically larger than another. It's the nonparametric analogue of the parametric one-way analysis of variance (ANOVA) test. In KW test, the population mean of ranks is compared instead of comparing population means in ANOVA. The Mann-Whitney test is a special case of Kruskal-Wallis test for two samples. $H_{0}: F_{1}=F_{2}=\cdots=F_{k}$ vs $H_{1}: F_{i}<F_{j}$ for some $i \neq j$

Where F_{i} is the distribution of sample i. Under the null hypothesis, the observations are a combined sample of size N from the common population. The combined sample is ranked from $1, \cdots, N$. The total sum of ranks is $\sum_{i}^{N} i=\frac{N(N+1)}{2}$. The expected proportion of the i th sample i, \cdots, K in the combined sample is $\frac{n_{i}}{N} \frac{N(N+1)}{2}=\frac{n_{i}(N+1)}{2}$ under the null hypothesis.

A test statistic \mathbf{t} based on a function of deviations between the observed and expected rank sum is given as $\mathbf{t}=\sum_{i=1}^{K}\left[r_{i}-\frac{n_{i}(N+1)}{2}\right]^{2}$, where r_{i} is the sum of ranks assigned to the elements of the $i t h$ sample. The null hypothesis of equal distribution of the K samples is rejected for large values of \mathbf{t}. The number of ways to assign N observations into K columns of size $n_{i}, i=1, \cdots, k$ is $\frac{N!}{\prod_{i=1}^{k} n_{i}!}$. Each $\frac{N!}{\prod_{i=1}^{K} n_{i}!}$ possible table assignment is evaluated and \mathbf{t} is calculated for each table. The distribution of the test statistic is then obtained as $f_{\mathbf{t}}(\mathbf{t})=\mathbf{t} \frac{N!}{\prod_{i=1}^{K} n_{i}!}$

Kruskal and Wallis (1952) proposed a modified test statistic H that is weighted sum of square deviations that uses the the reciprocals of the sample sizes n_{i} as weights.

$$
\begin{equation*}
H=\frac{12}{N(N+1)} \sum_{i=1}^{K} \frac{1}{n_{i}}\left[r_{i}-\frac{n_{i}(N+1)}{2}\right]^{2} \tag{2.12}
\end{equation*}
$$

An equivalent computationally preferred version of H can be expressed as:

$$
\begin{equation*}
H=\frac{12}{N(N+1)} \sum_{i=1}^{K} \frac{r_{i}^{2}}{n_{i}}-3(N+1) \tag{2.13}
\end{equation*}
$$

When the sample sizes n_{i} are the same, the statistic \mathbf{t} is equivalent to H [20]. Tables exist for exact probabilities of \mathbf{t} and H for small sample sizes and the number of columns K. Due to the large number of computations to carry out to obtain these exact probabilities, large sample approximations have been developed for relatively large samples.

$$
\begin{equation*}
H^{*}=\sum_{i=1}^{K} \frac{12 n i\left[r_{i}-\frac{(N+1)}{2}\right]^{2}}{N(N+1)} \tag{2.14}
\end{equation*}
$$

The statistic H^{*} is approximately distributed chi squared with $(K-1)$ degrees of freedom (Detailed proof can be found in [20]). The null hypothesis H_{0} is rejected in favor of the alternative if $H^{*} \geq X_{(\alpha, K-1)}^{2}$. A correction for ties i uses the midrank
method. A modified test statistic for correcting for the number of ties present in the population, t is:

$$
\begin{equation*}
H^{\prime}=\frac{H}{1-\frac{\sum t\left(t^{2}-1\right)}{N\left(N^{2}-1\right)}} \tag{2.15}
\end{equation*}
$$

The correction statistic for ties H^{\prime}, does not significantly alter H for relatively small number of ties. When the null hypothesis is rejected, multiple pairwise comparisons could be made for any two groups say i and $j(1 \leq i \leq j \leq K)$ by the statistic:

$$
\begin{equation*}
Z_{i j}=\frac{\left|\bar{r}_{i}-\overline{r_{j}}\right|}{\sqrt{\frac{N(N+1)}{2}}\left[\frac{1}{n_{i}}+\frac{1}{n_{j}}\right]} \tag{2.16}
\end{equation*}
$$

The critical region is $Z_{i j} \leq Z_{\frac{\alpha}{K(K-1)}}$, where z is the standard normal quantile. The Type 1 error rate α is corrected by dividing α by the number of pairwise comparisons $\binom{K}{2}$. This kind of Type-I correction is the conservative Bonferroni method. The null hypothesis that the two populations are the same is rejected if $P\left(Z_{i j} \leq Z_{\frac{\alpha}{K(K-1)}}\right) \leq \frac{\alpha}{k(k-1)}$. The Wilcoxon test is a special case of the Kruskal-Wallis test for the location parameter of two independent samples.

2.4 Doubly Ordered $R \times C$ Contingency Tables: Jonckheere-Terpstra Test

The Jonckheere-Terpstra test is a nonparametric test for ordered alternative within independent samples. The null hypothesis tests for homogeneity among independent samples. It exhibits greater statistical power over comparable tests like the Kruskal-Wallis test if the samples are ordered from the population from which they are drawn. The Jonckheere-Terpstra Test hypothesis can be states as:
$H_{0}: \theta_{1}=\theta_{2}=\cdots=\theta_{k}$
$H_{a}: \theta_{1} \leq \theta_{2} \leq \cdots \leq \theta_{k}, i=1, \cdots, K,($ at least one strict inequality)
Where θ_{i} is the median of the $i t h$ population. An alternative expression of the alternate hypothesis is $\binom{K}{2}$ multiple comparisons of $\theta_{i} \leq \theta_{i+1}$ with at least one
$\theta_{i} \leq \theta_{i+1}$. This then reduces the problem of multiple comparison to a two sample comparison problem. The statistic for combining these multiple two sample comparisons into a single final statistic is the Mann-Whitney statistic $U_{i j}$, $i, j=1,2, \cdots, K$ with $i \leq j$. The addition of all $U_{i j}$ results in the statistic B. The Mann-Whitney statistic $U_{i j}$ is defined for any two samples X_{i} and X_{j} with sample sizes n_{i} and n_{j} respectively as:

$$
\begin{gathered}
U_{i j}= \begin{cases}1 & \text { if } x_{j s}<x_{i r} \text { for } s=1, \cdots, G r=1, \cdots, K \\
0 & \text { if } x_{j s}>x_{i r}\end{cases} \\
B=U_{12}+U_{13}+\cdots+U_{1 k}+U_{23}+\cdots+U_{2 k}+\cdots+U_{(k-1) k} \\
=\sum_{1<} \sum_{i<j \leq K} U_{i j}=\sum_{i=1}^{K-1} \sum_{j=i+1}^{K} \sum_{r=1}^{n_{j}} \mathrm{I}\left(x_{i r}<x_{j s}\right), \quad \text { where I is the indicator function. }
\end{gathered}
$$

where $x_{i r}$ is the r th observation in the $i t h$ sample and $x_{j s}$ is the $s t h$ observation in the j th sample. The rejection region is $B \geq B\left(\alpha, K, n_{1}, n_{2}, \cdots, n_{k}\right)$, where α is the nominal significance level. The null hypothesis is rejected if $P\left[B \geq B\left(\alpha, K, n_{1}, n_{2}, \cdots, n_{k}\right)\right] \leq \alpha$. Tables of exact probabilities for small sample sizes and small populations is available. For sufficiently large sample sizes and large populations, the computation of exact probabilities becomes computationally challenging. An approximate large sample distribution for B is the chi-square distribution with one degree of freedom.

$$
\begin{equation*}
\frac{[B-E(B)]^{2}}{\operatorname{var}(B)} \sim \chi_{(1)}^{2} \tag{2.17}
\end{equation*}
$$

where

$$
E(B)=\sum_{1<i}^{k-1} \sum_{<j<k} \frac{n_{i} n_{j}}{2}=\frac{N^{2}-\sum_{r=1}^{k}}{2} \quad \text { and } \quad \operatorname{Var}(B)=\frac{N^{2}(2 N+3)-\sum_{i=1}^{k} n_{i}\left(2 n_{i}+3\right)}{72}
$$

The asymptotic approximation test rejects the null hypothesis if

$$
P\left(\chi_{(1)}^{2} \geq \chi_{(\alpha, 1)}^{2}\right) \leq \alpha
$$

The Mann-Whitney statistic $U_{i j}$ used in computation of the Jonckheere-Terpstra test is modified for tied observations as $U_{i j}^{*}=\sum_{r=1}^{n_{i}} \sum_{s=1}^{n_{j}} D_{r s}$ where

$$
D_{r s}= \begin{cases}1 & \text { if } x_{i r}<x_{j s} \\ \frac{1}{2} & \text { if } x_{i r}=x_{j s} \\ 0 & \text { if } x_{i r}>x_{j s}\end{cases}
$$

The modified Jonckheere-Terpstra test statistic $B^{*}=\sum_{i=1}^{K-1} \sum_{j=1}^{K} U_{i j}^{*}$

2.5 Analysis of $2 \times K$ Tables

2.5.1 Cochran-Armitage Trend Test for $2 \times K$ Tables

Consider N subjects who are each exposed to some treatment levels 0 and 1.
Assume the responses to treatment is progressively increasing from 1 to K. Let p_{j} be the probability of response of a subject exposed to treatment level 1 with response level $j, j=1,2, \cdots, K$. In table $3, X_{i j}$ is an observation in the $i t h$ row of

Table 3: Cochran- Armitage Trend Test For $2 \times K$ Tables

		Treatment	Response					
Treatment	Row score	1	2	3	\cdots	K	RowTotal	
	Row 1	1		x_{11}	x_{12}	x_{13}	\cdots	$n_{1 k}$
	Row 2	0	x_{21}	x_{22}	x_{23}	\cdots	$x_{2 k}$	m_{2}
	Column Total		n_{1}	n_{2}	n_{3}	\cdots	n_{k}	N
	Column Score		w_{1}	w_{2}	w_{3}	\cdots	w_{K}	

the j th category, $i=1,2$ and $j=1, \cdots, K, w_{1}<w_{2}<\cdots<w_{k}$ are column scores assigned to response categories $1, \cdots, K$ and 0,1 are the row scores of row 1 and 2 respectively. For $2 \times K$ tables with ordered columns and K independent $\operatorname{bin}\left(n_{i}, p_{i}\right)$ variates, Armitage [4] proposed a linear trend test for testing association between
variable 1 (Treatment) with 2 categories and variable 2 (Response) with K categories. The proportion of observations in any category j is given by $p_{j}=\frac{x_{1 j}}{n_{j}}$, whereas the overall proportion in row 1 is given as $p=\frac{m_{1}}{N}$. Each observation on row one is assigned a row score of 1 and each observation on row 2 is assigned a row score of 0 .

The null hypothesis of the Cochran-Armitage trend test is that all of K independent binomial proportions are equal with response probability p :
$H_{0}: p_{1}=p_{2}=\cdots=p_{k}=p$ where $p_{j}=\frac{x_{1 j}}{n_{j}}$
against an ordered alternative of the form
$H_{a}: p_{1} \leq p_{2} \leq \cdots \leq p_{k}$
The test is equivalent to the null hypothesis $H_{0}: \beta=0$ for the linear probability regression model $p_{i}=\alpha+\beta w_{i}+\epsilon_{i}$.

The Pearson test statistic for the K category of responses X_{K} can be expressed in terms of variation among the K proportions by
$\chi_{K}^{2}=\frac{1}{p(1-p)} \sum_{i}^{K} n_{i}\left(p_{i}-p\right)^{2}$.
The chi-squared statistic can be decomposed into two chi-squared statistic to test for the lack of goodness of fit of the model and the existence of a linear test [1].
$\chi_{K}^{2}=Z^{2}+X_{L}^{2}$
where $X_{K}^{2}=\frac{1}{p(1-p)} \sum_{i}^{K} n_{i}\left(p_{i}-\hat{p}\right)^{2}$ has asymptotic chi-squared distribution with $K-2$ degrees of freedom. It test's the goodness of fit of the model.

$$
\begin{equation*}
Z^{2}=\frac{b^{2}}{p(1-p)} \sum_{i}^{K} n_{i}\left(w_{i}-\bar{w}\right)^{2}=\left[\frac{\sum_{i}^{K}\left(w_{i}-\bar{w}\right) x_{1 i}}{\sqrt{p(1-p)} \sum_{i}^{K} n_{i}\left(w_{i}-\bar{w}\right)}\right]^{2} \tag{2.18}
\end{equation*}
$$

Z^{2} has an asymptotic chi-square distribution with one degree of freedom and is used to test $H_{0}: \beta=0$ for the linear trend in the proportions.

2.5.2 Cochran-Mantel-Haenszel Test for $S \times 2 \times 2$ Tables

The Cochran-Mantel-Haenszel Test is non-model based approach to testing conditional independence. Data can be stratified to control for possible confounding variables. The Cochran-Mantel-Haenszel test provides a measure of association which is a summary of the weighted average of the risk or odds ratio across the different strata. The null hypothesis tests homogeneity of association between treatment and response groups across the S strata. The test provides a summary estimate of the exposure effect stratified by multiple studies. The odds ratio obtained from each of the stratified subgroups represents exposure effect in the group when the overall joint effect of the stratification variable has been held constant. The overall odds estimate across all the strata can be combined to form a summary estimate adjusted for effects of those variables used in the stratification. The Mantel-Haenszel test statistic $O R_{M H}\left(O d d s\right.$ Ratio) or $R R_{M H}($ RiskRatio) can be considered as weighted averages of odds ratios of each stratum in the data provided b_{i} and c_{i} are greater than 0 , for $b_{i}, c_{i}, a_{i}, d_{i}$ as in the table below

For subgroups $i=1, \cdots, S$. The stratum i is given below
Table 4: Cochran- Mantel-Haenszel Test for $S \times 2 \times 2$ Tables

Cases	Outcome		Row Total
Exposure	positive	negative	
Yes	a_{i}	b_{i}	$m_{1 i}$
No	c_{i}	d_{i}	$m_{2 i}$
Column Total	$n_{1 i}$	$n_{2 i}$	n_{i}

The test statistics are given by:

$$
\begin{equation*}
R R_{M H}=\frac{\sum_{i=1}^{S} \frac{a_{i}\left(c_{i}+d_{i}\right)}{n_{i}}}{\sum_{i=1}^{S} \frac{c_{i}\left(a_{i}+b_{i}\right)}{n_{i}}} . \tag{2.19}
\end{equation*}
$$

$$
\begin{equation*}
O R_{M H}=\frac{\sum_{i=1}^{S} \frac{a_{i} d_{i}}{n_{i}}}{\sum_{i=1}^{S} \frac{b_{i} c_{i}}{n_{i}}} \tag{2.20}
\end{equation*}
$$

A major disadvantage of stratified analysis is the inability to control simultaneously for multiple confounding variables. The sampling schemes for cell counts $\left(a_{i}, b_{i}, c_{i}, d_{i}\right)$ given row and column marginals $\left(n_{1 i}, n_{2 i}, m_{1 i}, m_{2 i}\right)$ is the hypergeometric distribution. The mean and variance are given below

$$
\begin{gather*}
\mu_{i}=E\left(a_{i}\right)=\frac{m_{1 i} n_{1 i}}{N_{i}} . \tag{2.21}\\
\operatorname{Var}\left(a_{i}\right)=\frac{m_{1 i} m_{2 i} n_{1 i} n_{2 i}}{N_{i}^{2}\left(N_{i}-1\right)} . \tag{2.22}
\end{gather*}
$$

Cell counts from different strata are assumed to be independent. The test statistic for combining information from the S strata is obtained by comparing a_{i} to its expected value.

$$
\begin{equation*}
Q=\frac{\left[\sum_{i}\left(a_{i}-\mu_{i}\right)\right]^{2}}{\sum_{i} \operatorname{Var}\left(a_{i}\right)} \widetilde{\operatorname{asymp}} \quad \chi_{(1)}^{2} \tag{2.23}
\end{equation*}
$$

The test gives similar results to a logit model with sufficiently large strata size n_{i}.

The set back in a parametric model such as the logit model is that, the maximum likelihood estimates of \log odds ratio may be over estimated for sparse data [1]. Logit models may also fail to converge.

2.5.3 Generalized Cochran-Mantel-Haenszel Association Statistic for

 $s \times g \times K$ TablesLet $N_{i j h}, i=1, \cdots, g, j=1, \cdots K$ be the cell counts in the $h t h$ stratum of a $g \times K$ table, where i represents the levels of factor of interest such as treatment and
j represents another factor such as levels of response. Conditional on row and column marginals each stratum has $(g-1) \times(K-1)$ non-redundant cell counts [1]. For each stratum h the vector of cell counts $n_{h}=\left(n_{11 h}, \cdots, n_{1(k-1) h}, n_{11 h}, \cdots, n_{1(k-1) h}, \cdots, n_{(g-1) 1 h}, \cdots, n_{(g-1)(k-1) h}\right)$ has probability function (2.24).

$$
\begin{equation*}
\frac{\prod_{i=1}^{g} n_{i . h}!\prod_{j=1}^{K} n_{. j h}!}{n_{. . h}!\prod_{i=1}^{g} \prod_{j=1}^{K} n_{i j h}} \tag{2.24}
\end{equation*}
$$

Let $\mu_{h}=E\left(n_{h}\right)$ under H_{0} : no row by column association. Then

$$
\begin{equation*}
\mu_{h}=\frac{n_{h}}{n_{. . h}}=\frac{\left(n_{11 h}, \cdots, n_{1(k-1) h}, n_{11 h}, \cdots, n_{1(k-1) h}, \cdots, n_{(g-1) 1 h}, \cdots, n_{(g-1)(k-1) h}\right)}{n_{. . h}} \tag{2.25}
\end{equation*}
$$

Let V_{h} be the covariance matrix of n_{h} where

$$
\begin{equation*}
\operatorname{Cov}\left(n_{i j h}, n_{i^{\prime} j^{\prime}}\right)=\frac{n_{i . k}\left(\delta_{i i^{\prime}} n_{. . h}-n_{i^{\prime} . h}\right) n_{. j h}\left(\delta_{j j^{\prime}} n_{. . k}-n_{. j^{\prime} h}\right)}{n_{. . h}^{2}\left(n_{. . h}-1\right)} \tag{2.26}
\end{equation*}
$$

where

$$
\delta_{a b}= \begin{cases}1 & \text { if } a=b \\ 0 & \text { otherwise }\end{cases}
$$

Let $G_{h}=n_{h}-E(n)=n_{h}-\mu_{h}$. Now $G=\sum_{h} G_{h}=\sum_{h}\left(n_{h}-\mu_{h}\right)$ is the aggregation over all $(g-1)(k-1)$ strata. Let the covariance matrix of $V=\sum_{h} V_{h}$. The general association test statistic for the Cochran-Mantel-Haenszel(CMH) test under the null hypothesis is $Q_{G}=G^{T} V G$. The distribution of the test statistic approaches $X_{(g-1)(K-1)}^{2}$ as the total sample size $\left(n=\sum_{h} n_{. . h}\right)$ approaches infinity. When the CMH statistic is significant at some level α, then there exists some association between the row and column variables in at least one stratum.

2.5.4 Generalized Cochran-Mantel-Haenszel Mean Score Statistic for $S \times g \times K$ Tables

Consider a set of S independent $g \times K$ tables where cell counts in the $h t h$ stratum is given by $n_{i j h}, i=1, \cdots, g-1$ and $j=1, \cdots, K$. Assume the column variable is ordinal and has assigned scores $w_{1 h},, \cdots, w_{K h}$. The null hypothesis of no association between row and column variables in any of the S strata is tested against the alternative that there is a difference in the g mean scores on average across the S strata. Define $M_{h}=\sum_{j=1}^{K} w_{j h}\left(n_{h}-E\left(n_{h}\right)\right.$, the vector of differences between the observed and expected mean scores under the null hypothesis. Let $M=\sum_{h=1}^{S} M_{h}$ which has expectation zero and covariance matrix $V_{M}=\sum_{h=1}^{S} V_{h}$. Then $Q_{M}=M^{\prime} V_{M}^{-1} M$, is the CMH mean score statistic which is approximately $X_{(g-1)}^{2}$ if the null hypothesis is true. The statistic is used only when the column variable is ordinal or when the variable is an interval column variable. Special cases of the CMH mean statistic arise when $S=1$ and $g=2, Q_{M}$ is the Wilcoxon-Mann-Whitney statistic. If $S=1$ and $r>2, Q_{M}$ is the Kruskal-Wallis statistic. If $S>1$ and $n_{h i}=1$ for $i=0, \cdots, g$ and $h=1, \cdots, S$, then the Q_{M} is the Friedman's chi-square statistic.

2.5.5 Generalized Cochran- Mantel-Haenszel Correlation Statistic for $s \times g \times K$ Tables

Consider a set of S independent $g \times K$ tables with ordinal row and column variables. Let the scores assigned to the row and column be $u_{1 h}, \cdots, u_{g h}$ and $w_{1 h},, \cdots, w_{K h}$ respectively. The null hypothesis that there is no association between row and column variables in any of the S strata is tested against the alternative that there is consistent positive or negative association between the rows and column scores across all stratum. Define $C_{h}=\sum_{i} \sum_{j} u_{i h} w_{j h}\left(n_{h}-E\left(n_{h}\right)\right.$ as the vector of difference between the observed and expected association scores in the $h t h$
stratum under the null hypothesis. Let $C=\sum_{h} C_{h}$, then C has expectation zero and variance denoted by V_{C}. The CMH correlation statistic $Q_{C}=C^{\prime} V_{C} C$ has asymptotic distribution as χ_{1}^{2} for sufficiently large total sample size $\left(n_{. .}=\sum_{h} n_{. .}\right)$. The Pearson correlation coefficient ρ between row and column scores is a special case of of CMH correlation statistic $Q_{c}=\left(n_{\ldots}-1\right) \rho^{2}$ where $S=1$.

CHAPTER 3

EXACT CONDITIONAL TEST FOR EXCHANGEABLE BINARY RESPONSES

3.1 Formulation of Exact Test

A finite sequence of random variables $\left(X_{1}, \cdots, X_{k}\right)$ is exchangeable if for any k

$$
P\left(X_{\pi(1)}=x_{1}, \cdots, X_{\pi(k)}=x_{k}\right)=P\left(X_{1}=x_{1}, \cdots, X_{k}=x_{k}\right)
$$

for any permutation $\pi_{(1)} \cdots \pi_{(n)}$ of indices $1, \cdots k$. Let $\left(X_{1}, \cdots, X_{n}\right)$ be exchangeable random variables with $\lambda_{0, n}=1$ and $\lambda_{k, n}=P\left\{X_{1}, \cdots, X_{k}=1\right\}$, then

$$
P\left\{X_{1}=x_{1}, \cdots, X_{n}=x_{n}\right\}=\sum_{k=0}^{n-r}(-1)^{k}\binom{n-r}{k} \lambda_{r+k, n}
$$

where

$$
r=\sum_{i=1}^{n} x_{i}
$$

In this thesis we consider an experiment involving g treatment groups and exchangeable binary responses. For the $i t h$ treatment group, let $\left(X_{i j 1}, \cdots, X_{i j n_{i j}}\right)$ be the set of binary data from the j th cluster of the $i t h$ treatment group, where $j=1, \cdots, m^{(i)}, i=1, \cdots, g$, and let

$$
\begin{gathered}
P_{r_{i j}, n_{i j}}^{(i)}=\sum_{k=0}^{n_{i j}-r_{i j}}(-1)^{k}\binom{n_{i j}-r_{i j}}{k} \lambda_{r_{i j}+k, n_{i j}} \\
\text { where } \sum_{k=1}^{n_{i j}} x_{i j k}=r_{i j}
\end{gathered}
$$

If $A_{r, n}^{(i)}$ represents the number of clusters of size n with r responses in the $i t h$ treatment group

$$
P\left\{X_{i j 1}=x_{i j 1}, \cdots, X_{i j n_{i j}}=x_{i j n_{i j}}, \quad j=1, \cdots, m^{(i)}, \quad i=1, \cdots, g\right\}=
$$

$$
\begin{equation*}
\prod_{i=1}^{g} \prod_{n=1}^{K} \prod_{r=0}^{n}\left[P_{r, n}^{(i)}\right]^{A_{r, n}^{(i)}} \tag{3.1}
\end{equation*}
$$

where K denotes the maximum possible cluster size in the experiment
It is clear from (3.1) and the factorization theorem that $A_{r, n}^{(i)}$, s form a set of joint sufficient statistic for $P_{r, n}^{(i)}$, s. Thus we can summarize the dataset as given in Table 5 with each fixed cluster size.

Table 5: Summary of Data

Treatment	Response	Cluster size					
		1	2	3	\cdots	K	Row Total
Control	0	$A_{0,1}^{(1)}$	$A_{0,2}^{(1)}$	$A_{0,3}^{(1)}$	\cdots	0	n_{0}^{1}
	1	0	$A_{1,2}^{(1)}$	$A_{1,3}^{(1)}$	\cdots	$A_{1, K}^{(1)}$	n_{1}^{1}
	2	0	0	$A_{2,3}^{(1)}$	\ldots	$A_{2, K}^{(1)}$	n_{2}^{1}
	\vdots	\vdots	\vdots	:	\vdots	:	
	n	0	0	0	\ldots	$A_{n, K}^{(1)}$	n_{n}^{1}
Column Total		$m_{1}^{(1)}$	$m_{2}^{(1)}$	$m_{3}^{(1)}$	\ldots	$m_{K}^{(1)}$	$m^{(1)}$
Treatment 1	0	$A_{0,1}^{(2)}$	$A_{0,2}^{(2)}$	$A_{0,3}^{(2)}$	\ldots	$A_{0, K}^{(2)}$	n_{0}^{2}
	1	$A_{1,1}^{(2)}$	$A_{1,2}^{(2)}$	$A_{1,3}^{(2)}$	\ldots	$A_{1, K}^{(1)}$	n_{1}^{2}
	2	0	$A_{2,2}^{2)}$	$A_{2,3}^{(2)}$	\ldots	$A_{K, 3}^{(2)}$	n_{2}^{2}
	:	\vdots	\vdots	\vdots	\vdots	\vdots	\vdots
	n	0	0	0	...	$A_{n, K}^{(1)}$	n_{n}^{2}
Column Total		$m_{1}^{(1)}$	$m_{2}^{(1)}$	$m_{3}^{(1)}$. .	$m_{K}^{(1)}$	$m^{(2)}$
	:	\vdots	\vdots	\vdots	:	\vdots	
Treatment g	0	$A_{0,1}^{(g)}$	$A_{0,2}^{(g)}$	$A_{0,3}^{(g)}$	\ldots	$A_{0, K}^{(g)}$	n_{0}^{g}
	1	$A_{1,1}^{(g)}$	$A_{1,2}^{(g)}$	$A_{1,3}^{(g)}$.	$A_{1, K}^{(g)}$	n_{1}^{g}
	$:$ n	\vdots 0	\vdots 0	\vdots 0	\vdots \cdots	\vdots $A_{n, K}^{(g)}$	n_{n}^{g}
Column Total		$m_{1}^{(g)}$	$m_{2}^{(g)}$	$m_{3}^{(g)}$. .	$m_{K}^{(g)}$	$m^{(g)}$

where

$$
\begin{aligned}
& \sum_{n=1}^{K} A_{r, n}^{i}=n_{r}^{i} \quad \text { and } \quad \sum_{r=0}^{n} A_{r, n}^{i}=m_{n}^{i} \\
& \sum_{n=1}^{K} A_{r, n}^{i}=n_{r}^{i} \quad \text { and } \quad \sum_{r=0}^{n} A_{r, n}^{i}=m_{n}^{i}
\end{aligned}
$$

Now for each fixed $n, n=1, \cdots, K,\left\{A_{r, n}^{(i)}, r=0, \cdots, n, i=0, \cdots, g\right\} \sim$

$$
\text { Multinomial }\left(m_{n}^{(i)}, P_{0, n}^{(i)},\binom{n}{1} P_{1, n}^{(i)}, \cdots,\binom{n}{n-1} P_{n-1, n}^{(i)} \cdots, P_{n, n}^{(i)}\right)
$$

Now consider testing the hypotheses: H_{0} : No treatment effect vs H_{a} : There is a treatment effect and let T be the test statistic for testing these hypothesis and suppose that we reject $H_{0} \quad$ if $\quad T \in C$, where C is the critical region.. Then under $H_{0}, P_{r, n}^{(i)}=P_{r, n}, i=1, \cdots, g \quad r=0, \cdots, n \quad n=1, \cdots, K$ and $A_{r, n}=\sum_{i=1}^{g} A_{r, n}^{(i)}$, where $\left\{A_{r, n}, r=0,1, \cdots, n\right\}$ form a set of joint complete sufficient statistics for $\left(P_{0, n}, \cdots, P_{n, n}\right)$.

Thus the null hypothesis of of no treatment effect reduces to

$$
\begin{aligned}
& H_{0}: P_{r, n}^{(i)}=P_{r, n}, i=1, \cdots, g \quad r=0, \cdots, n \quad n=1, \cdots, K . \\
& \quad \text { Under } H_{0},\left\{\sum_{i=1}^{g} A_{r, n}^{(i)}=a_{r, n} \mid H_{0}, r=0, \cdots, n, i=1, \cdots, g, n=1, \cdots, K\right\} \text { has a } \\
& \text { Multinomial }\left(M_{n}, P_{0, n},\binom{n}{1} P_{1, n}, P_{n, n} \cdots,\binom{n}{r} P_{r, n} \cdots P_{n, n}\right) \text {, and } \\
& P\left(A_{0, n}^{(i)}=a_{0, n}^{(i)}, \cdots, A_{n, n}^{(i)}=a_{n, n}^{(i)} \mid H_{0}, A_{0, n}=a_{0, n}, \cdots, A_{n, n}=a_{n, n}, n=1, \cdots, K, i=0, \cdots, g\right)= \\
& P\left(A_{0, n}^{(i)}=a_{0, n}^{(i)}, \cdots, A_{K, K}^{(i)}=a_{K, K}^{(i)}, A_{0, n}=a_{0, n}, \cdots, A_{K, K}=a_{K, K}, n=1, \cdots, K, i=0, \cdots, g\right) \\
& P\left(A_{0, n}=a_{0, n}, \cdots, A_{K, K}=a_{K, K}, n=1, \cdots, K\right)
\end{aligned}
$$

$$
\begin{aligned}
& = \begin{cases}\begin{array}{ll}
i=1 n=1 & \prod_{n=1}^{K} P\left(A_{0, n}=a_{0, n}, \cdots, A_{n, n}=a_{n, n}\right) \\
0 &
\end{array} \\
\end{cases} \\
& \text { if } \sum_{i=1}^{g} A_{r, n}^{(i)}=a_{r, n} \\
& \left(\prod_{i=1}^{g} \prod_{n=1}^{K}\binom{m_{n}^{(i)}}{a_{0, n}^{(i)}, \cdots, a_{n, n}^{(i)}} \prod_{r=0}^{K} P_{r, n}^{\sum_{i=1}^{g} A_{r, n}^{(i)}}\right. \\
& =\left\{\begin{array}{l}
\frac{\prod_{i=1 n=1}^{K}\binom{M_{n}}{a_{0, n}, \cdots, a_{n, n}} \prod_{r=0}^{K} P_{r, n}^{\sum_{i=1}^{g} A_{r, n}^{(i)}}}{0} \\
0
\end{array}\right. \\
& \text { if } \sum_{i=1}^{g} A_{r, n}^{(i)}=a_{r, n}, r=0, \cdots, n \\
& \text { if } \sum_{i=1}^{g} A_{r, n}^{(i)} \neq a_{r, n} \\
& = \begin{cases}\frac{\prod_{i=1}^{g} \prod_{n=1}^{K}\left(\begin{array}{c}
m_{n}^{(i)} \\
\left.a_{0, n}^{(i)}, \cdots, a_{n, n}^{(i)}\right) \\
\prod_{n=1}^{K}\binom{M_{n}}{a_{0, n}, \cdots, a_{n, n}}
\end{array}\right.}{} \quad \text { if } \sum_{i=1}^{g} A_{r, n}^{(i)}=a_{r, n}, r=0, \cdots, n \\
0 & \text { if } \sum_{i=1}^{g} A_{r, n}^{(i)} \neq a_{r, n} \\
\end{cases}
\end{aligned}
$$

3.2 Reference Set and P-value

Define a reference set Γ as the set of all possible contingency tables with fixed marginal column and row sums as the observed table sums for treatment groups $i=1, \cdots, g$, cluster sizes $n=1, \cdots, K$, with responses $r=0, \cdots, n$, that is

$$
\Gamma=\left\{Y: Y \text { is } n \times K ; \sum_{n=1}^{K} A_{r, n}^{i}=n_{r}^{i}, \sum_{r=0}^{n} A_{r, n}^{i}=m_{n}^{i}\right\}
$$

Then for an observed value t of a test statistic T, the P-value of a test which rejects H_{0}, for large value of T is given by

P-value $=p\left(T>t_{o b s} \mid H_{0}\right)=\sum_{T>t_{o b s}}\left[\frac{\prod_{i=1}^{g} \prod_{n=1}^{K}\binom{m_{n}^{(i)}}{a_{0, n}^{(i)}, \cdots, a_{n, n}^{(i)}}}{\prod_{n=1}^{K}\binom{M_{n}}{a_{0, n}, \cdots, a_{n, n}}}\right]$

3.3 Monte Carlo Method Using Likelihood Function

Monte Carlo methods, provide powerful tools to compute unbiased estimates of the exact P - value for small data sets, sparse , unbalanced tables, non normal data and when the data that does not to conform to any particular parametric distribution. For any observed table, a large number of tables with the same column and marginal sums are randomly sampled from the reference set to obtain a set of P - values. The enumeration of all possible tables in a reference set can be computationally expensive for large tables. The accuracy of the Monte Carlo estimate of the exact $P-$ value increases as the number of tables sampled from the reference set increases.

The procedure for Monte-Carlo computation may be summarized as follows

- Let the critical region of the reference set be defined as:

$$
\Gamma^{*}=\left\{Y: Y \in \Gamma \text { and } P_{Y} \geq P_{X}\right\}
$$

and P_{X} is the probability of the observed table and P_{Y} is the probability of the sampled table Y. The probability of each table $P(Y)$ is given by,

$$
\begin{aligned}
& P(Y)= \begin{cases}\frac{\prod_{i=1}^{g} \prod_{n=1}^{K}\binom{m_{n}^{(i)}}{a_{0, n}^{(i)}, \cdots, a_{n, n}^{(i)}}}{\prod_{n=1}^{K}\binom{M_{n}}{a_{0, n}, \cdots, a_{n, n}}} & \text { if } \sum_{i=1}^{g} A_{r, n}^{(i)}=a_{r, n}, r=0, \cdots, n \\
0 & \text { if } \sum_{i=1}^{g} A_{r, n}^{(i)} \neq a_{r, n} \\
n=1, \cdots, K, i=1, \cdots, g\end{cases} \\
&
\end{aligned}
$$

- A Monte Carlo estimate of the P-value is obtained by sampling N tables from the reference set Γ. Each of the N tables sampled from the reference set Γ is ordered by the modified Freeman-Tukey statistic,

$$
\begin{equation*}
D_{Y}=\sum_{n=1}^{K} \sum_{i=1}^{g} \sum_{r=0}^{n}\left(\sqrt{a_{i j}}+\sqrt{a_{i j}+1}-\sqrt{4\left(\frac{m_{n}^{i} n_{r}^{i}}{N}\right)+1}\right)^{2} \tag{3.2}
\end{equation*}
$$

to detect those tables that are at least as extreme as the observed table X.

- For each table $Y_{i} \in \Gamma$ that is sampled,define W_{i} as:

$$
W_{i}= \begin{cases}1 & D_{Y_{i}} \geq D_{X} \\ 0 & \text { otherwise }\end{cases}
$$

The Monte-Carlo P-value is then given by

$$
\hat{P}-\text { value }=\frac{1}{N} \sum_{i=1}^{N} W_{i}
$$

Since variable W_{i} is a Bernoulli random variable. The asymptotic standard error of the Monte Carlo estimate of the P-value is given by:

$$
\text { s.e. }(\hat{p})=\sqrt{\frac{\hat{p}(1-\hat{p})}{N-1}}
$$

and the asymptotic $100(1-\alpha) \%$ confidence intervals is given by:

$$
\hat{p} \pm z_{\frac{\alpha}{2}} \operatorname{s.e} .(\hat{p})
$$

Although \hat{P} is an unbiased estimate of the exact P-value, simply replacing the exact P - value with \hat{P} fails to control correctly for type I error rate[42] . \hat{P}
underestimates the P - value if the null hypothesis is true when the number of W_{i} is very small relative to N, and it can result in obtaining a P-value of zero if the observed statistic is greater than all the permuted test statistics. For this reason an adjusted Monte Carlo P - value estimate was suggested [13] as is:

$$
\begin{equation*}
\hat{p}=\frac{1}{(N+1)}\left(\sum_{i=1}^{N} W_{i}+1\right) \tag{3.3}
\end{equation*}
$$

The Curtis adjusted P - value has expectation, $\frac{N P+1}{N+1}$, and is biased and overestimates the $P-$ value by $\frac{1-P}{N+1}$.

The discreteness in small sample distributions can be adjusted by using the mid- p - value approach suggested by Lancaster [27]. The mid P-value behaves much more like the P -value of a test statistic with a continuous distribution. For a test statistic T with observed value $t_{o b s}$ and one-sided alternate hypothesis H_{a}. The mid P -value is given by :

$$
\operatorname{mid} \quad P-\text { value }=\frac{1}{2} P\left(T=t_{o b s}\right)+P\left(T>t_{o b s}\right)
$$

This adjustment causes the mid P-value to be less than the ordinary P-value by about half of the observed result, but it is less conservative compared to the ordinary P - value of an exact test [1].

3.4 An Algorithm for Generating Tables

The tables from the reference set are generated by the Algorithm AS 159 Patefield (1981). Each table with the same row and column marginal sums is generated under the null hypothesis assumption of no association between the rows and columns categories. The conditional probability distribution of each entry $A_{r, n}$ and its expected value in a table given the previous entries in the rows and columns is found. The probability distribution of $A_{r, n}$ is accumulated starting with the $A_{r, n}$ equal to the nearest integer of it's expected value. The c.p.u. times required for this algorithm unlike the algorithm by Boyett(1979), depends more on the dimension of the table rather than the sample size. Patefield's algorithm performs considerably better than Boyett's Algorithm AS 144 for large dimension tables.

3.5 Simulation Study I

A simulation study was conducted to determine the operating characteristics of the conditional exact test. The P - values of a homogeneity test between two groups (control and treatment) were computed using various sample sizes by varying the difference in success probabilities between the two groups. The marginal
probability for the control group p_{1} was held constant at 0.1 and the probability of the treatment group was varied from $p_{2}=0.1, \cdots, 0.9$. The sample sizes for both the control and treatment groups were equal and varied from 50, 100 and 200.

The method proposed by Lunn and Davies [29] was used to generate correlated binary random variables with exchangeable correlation structure ρ_{j} within the j th cluster. Although this method is very simple to implement, it seems to be faster than other existing algorithms for generating clustered binary data.

To give a brief description of the algorithm, let $X_{i j k}$ be the $k t h$ binary random variable in the j th cluster of the i th treatment group for $i=1,2, k=1, \cdots, n_{i j}$ $, j=1, \cdots, N_{i}$. Thus N_{1} and N_{2} are the number of clusters in Control and Treatment group respectively. The cluster sizes $n_{i j}$ were chosen to follow a random Poisson distribution with mean $\lambda=5$ and $\lambda=10 . X_{i j k}$'s and were generated as follows:

Let $Y_{i j k}$ and $Z_{i j}$ be independent binary random variables with $p_{i}=P\left(Y_{i j k}=Z_{i j}=1\right)$. Further let $U_{i j k}$ be a binary random variable with $P\left(U_{i j k}=1\right)=\theta_{i}$ independent of $Y_{i j k}$ and $Z_{i j}$. Generate
$X_{i j k}=\left(1-U_{i j k}\right) Y_{i j k}+U_{i j k} Z_{i j}$. Then $E\left(X_{i j k}\right)=\left(1-\theta_{i}\right) p_{i}+\theta_{i} p_{i}=p_{i}$ and $\operatorname{var}\left(X_{i j k}\right)=E\left(X_{i j k}\right)^{2}-\left(E\left(X_{i j k}\right)\right)^{2}=p_{j}\left(1-p_{j}\right)$. Further $\operatorname{cov}\left(X_{i j k}, X_{i j l}\right)=E\left(X_{i j k}, X_{i j l}\right)-p_{i}^{2}=\theta^{2}{ }_{i} p_{i}\left(1-p_{i}\right)$ for $k \neq l$ and $\operatorname{cov}\left(X_{i j k}, X_{i j l}\right)=0$ for $j \neq l$ so that $\rho_{i}=\theta_{i}^{2}$.

The results from the simulation are displayed in Table 6. The exact conditional approach detects a significant change in treatments as the marginal probabilities of the two treatment groups begin to change. The level of significance increases as the difference in probabilities of the two groups increases. Generally, it was also observed that an increase in sample size is more likely to detect significance. The p-values appear to increase as the intra cluster correlation is varied from 0.3 to 0.9. This demonstrates that there is some intra cluster effect. The results of the
simulation study also show that the size of the clusters did not have any significant effect on the p-values. Increasing the mean cluster size from 5 to 10 , the results remained generally the same.

Table 6: Simulation Study I Results

Simulation Parameters	P- Value,$N_{1}=N_{2}=50$	P- Value,$N_{1}=N_{2}=100$	P- Value,$N_{1}=N_{2}=200$
$p_{1}=p_{2}=0.1$ $\rho_{1}=\rho_{2}=0.3$ $\lambda=5$	0.5036603	0.4883057	0.4906973
$p_{1}=0.1, p_{2}=0.2$ $\rho_{1}=\rho_{2}=0.3$ $\lambda=5$	0.2881089	0.1443886	0.03172927
$p_{1}=0.1, p_{2}=0.3$ $\rho_{1}=\rho_{2}=0.3$ $\lambda=5$	0.07149251	0.005467532	0.001004995
$p_{1}=0.1, p_{2}=0.5$ $\rho_{1}=\rho_{2}=0.3$ $\lambda=5$	0.001715285	0.000999001	0.000999001
$p_{1}=0.1, p_{2}=0.7$ $\rho_{1}=\rho_{2}=0.3$ $\lambda=5$	0.000999001	0.000999001	0.000999001
$p_{1}=0.1, p_{2}=0.9$ $\rho_{1}=\rho_{2}=0.3$ $\lambda=5$	0.000999001	0.000999001	0.000999001
$p_{1}=0.1, p_{2}=0.1$ $\rho_{1}=\rho_{2}=0.6$ $\lambda=5$	0.5102378	0.503006	0.4948531
$p_{1}=0.1, p_{2}=0.2$ $\rho_{1}=\rho_{2}=0.6$ $\lambda=5$	0.3466993	0.238026	0.1015674
$p_{1}=0.1, p_{2}=0.3$ $\rho_{1}=\rho_{2}=0.6$ $\lambda=5$	0.00674026	0.001015984	0.001747253
$p_{1}=0.1, p_{2}=0.5$ $\rho_{1}=\rho_{2}=0.6$ $\lambda=5$	Continued on next page		
$p_{1}=0.1, p_{2}=0.7$	0.000999001		

Table 6 - continued from previous page

Simulation Parameters	P- Value,$N_{1}=N_{2}=50$	P- Value, $N_{1}=N_{2}=100$	P- Value,$N_{1}=N_{2}=200$
$\rho_{1}=\rho_{2}=0.6$ $\lambda=5$	0.001010989	0.000999001	0.000999001
$p_{1}=0.1, p_{2}=0.9$ $\rho_{1}=\rho_{2}=0.6$ $\lambda=5$	0.000999001	0.000999001	0.000999001
$p_{1}=p_{2}=0.1$ $\rho_{1}=\rho_{2}=0.9$ $\lambda=5$	0.5095644	0.509015	0.4906503
$p_{1}=0.1, p_{2}=0.2$ $\rho_{1}=\rho_{2}=0.9$ $\lambda=10$	0.4020539	0.3217502	0.1935874
$p_{1}=0.1, p_{2}=0.3$ $\rho_{1}=\rho_{2}=0.9$ $\lambda=5$	0.2189271	0.09046254	0.01030569
$p_{1}=0.1, p_{2}=0.5$ $\rho_{1}=\rho_{2}=0.9$ $\lambda=5$	0.001564436	0.001564436	0.000999001
$p_{1}=0.1, p_{2}=0.7$ $\rho_{1}=\rho_{2}=0.9$ $\lambda=5$	0.001114885	0.000999001	0.000999001
$p_{1}=0.1, p_{2}=0.9$ $\rho_{1}=\rho_{2}=0.3$ $\lambda=5$	0.5124665	0.4985754	0.000999001
$p_{1}=0.1, p_{2}=0.1$ $\rho_{1}=\rho_{2}=0.3$ $\lambda=10$	0.2722398	0.1042607	0.5069441
$p_{1}=0.1, p_{2}=0.2$ $\rho_{1}=\rho_{2}=0.3$ $\lambda=10$	0.05241459	0.002683317	0.01398202
$p_{1}=0.1, p_{2}=0.3$ $\rho_{1}=\rho_{2}=0.3$ $\lambda=10$	Continued on next page		
$=000999001$			

Table 6 - continued from previous page

Simulation Parameters	P- Value,$N_{1}=N_{2}=50$	P- Value,$N_{1}=N_{2}=100$	P- Value,$N_{1}=N_{2}=200$
$p_{1}=0.1, p_{2}=0.5$ $\rho_{1}=\rho_{2}=0.3$ $\lambda=10$	0.001330669	0.000999001	0.000999001
$p_{1}=0.1, p_{2}=0.7$ $\rho_{1}=\rho_{2}=0.3$ $\lambda=10$	0.001	0.000999001	0.000999001
$p_{1}=0.1, p_{2}=0.9$ $\rho_{1}=\rho_{2}=0.3$ $\lambda=10$	0.000999001	0.000999001	0.000999001
$p_{1}=0.1, p_{2}=0.1$ $\rho_{1}=\rho_{2}=0.6$ $\lambda=10$	0.4909351	0.4971698	0.4943417
$p_{1}=0.1, p_{2}=0.2$ $\rho_{1}=\rho_{2}=0.6$ $\lambda=10$	0.3182138	0.2037013	0.06839161
$p_{1}=0.1, p_{2}=0.3$ $\rho_{1}=\rho_{2}=0.6$ $\lambda=10$	0.1065634	0.001	0.001151848
$p_{1}=0.1, p_{2}=0.5$ $\rho_{1}=\rho_{2}=0.6$ $\lambda=10$	0.004274725	0.000999001	0.000999001
$p_{1}=0.1, p_{2}=0.7$ $\rho_{1}=\rho_{2}=0.6$ $\lambda=10$	0.001004995	0.000999001	0.000999001
$p_{1}=0.1, p_{2}=0.9$ $\rho_{1}=\rho_{2}=0.6$ $\lambda=10$	0.000999001	0.4751439	0.000999001
$p_{1}=0.1, p_{2}=0.1$ $\rho_{1}=\rho_{2}=0.9$ $\lambda=10$	0.4761019	0.3138551	Continued on next page

Table 6 - continued from previous page

Simulation Parameters	P- Value,$N_{1}=N_{2}=50$	P- Value,$N_{1}=N_{2}=100$	P- Value,$N_{1}=N_{2}=200$
$\lambda=10$	0.2180729	0.09042458	0.09042458
$p_{1}=0.1, p_{2}=0.3$ $\rho_{1}=\rho_{2}=0.9$ $\lambda=10$	0.02597003	0.001347652	0.000999001
$p_{1}=0.1, p_{2}=0.5$ $\rho_{1}=\rho_{2}=0.9$ $\lambda=10$	0.001376623	0.000999001	0.000999001
$p_{1}=0.1, p_{2}=0.7$ $\rho_{1}=\rho_{2}=0.9$ $\lambda=10$	0.000999001	0.000999001	0.000999001
$p_{1}=0.1, p_{2}=0.9$ $\rho_{1}=\rho_{2}=0.9$ $\lambda=10$			

3.6 Simulation Study II

Theorem 3.6.1 (de Finetti). An infinite sequence of binary random variables $\left(X_{1}, X_{2}, \cdots,\right)$ is exchangeable if and only if there exists a probability distribution function F on $[0,1]$ such that for all n [15]

$$
\begin{gather*}
P\left(X_{1}=x_{1}, X_{2}=x_{2}, \cdots, X_{n}=x_{n}\right)=\int_{0}^{1} \theta^{s_{n}}(1-\theta)^{n-s_{n}} d F(\theta), \tag{3.4}\\
P\left(\sum_{i=1}^{n} X_{i}=s_{n}\right)=\binom{n}{s_{n}} \int_{0}^{1} \theta^{s_{n}}(1-\theta)^{n-s_{n}} d F(\theta) \tag{3.5}
\end{gather*}
$$

where, $\sum_{i=1}^{n} X_{i}=s_{n}$
de Finetti's theorem assumes that any finite set under consideration is a subset of an infinite sequence. This assumption is not necessarily true in many practical applications. The Beta-Binomial may be derived from De Finetti's theorem when the mixing distribution F is a beta distribution. The intra-litter correlation is restricted to be positive in a Beta-Binomial model [10]. Diaconis [15], showed how the De Finetti theorem fails in a finite sequence scenario and also obtained finite sequence representation of de Finetti's theorem.

3.6.1 The p-power and q-power Models

In the interest of formulating parametric models, Kuk [26] introduced p-power for exchangeable binary random variables. Kuk [26] showed that the power family model is a completely monotone function. This constraint is needed in order that the forward differences of all marginal response probabilities is positive for a valid probability model [10]. Define

$$
\begin{equation*}
\lambda_{r+k}=P\left(X_{1}=\cdots=X_{r+k}=1\right)=p^{(r+k)^{\gamma}}, \quad 0 \leq p, \gamma \leq 1 . \tag{3.6}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
P(R=r)=\binom{n}{r} \sum_{k=0}^{n-r}(-1)^{k}\binom{n-r}{k} p^{(r+k)^{\gamma}}, \text { where } \sum_{k=1}^{n} X_{k}=R . \tag{3.7}
\end{equation*}
$$

Kuk also gave the q-power model as

$$
\begin{equation*}
\lambda_{k}^{\prime}=P\left(X_{1}^{\prime}=\cdots=X_{k}^{\prime}=1\right)=P\left(X_{1}=0=\cdots=X_{k}=0\right)=q^{k \gamma} \tag{3.8}
\end{equation*}
$$

where

$$
\begin{equation*}
P(R=r)=P\left(R^{\prime}=n-r\right)=\binom{n}{r} \sum_{k=0}^{n-r}(-1)^{k}\binom{r}{k} q^{(n-r+k)^{\gamma}} \tag{3.9}
\end{equation*}
$$

Using this ,we can show that the intra cluster correlation is given as

$$
\begin{equation*}
\rho=\frac{q^{2^{\gamma}}-q^{2}}{q(1-q)}, \text { where } 0<q<1 \tag{3.10}
\end{equation*}
$$

where γ is the measure of positive intra-cluster correlation. $\gamma=1$ represents the case of independent observations and $\gamma=0$ specifies complete intra-cluster dependence. $\gamma>1$ results in negative intra-cluster correlation $(\rho<0) .0<\gamma<1$ indicates positive intra cluster correlation.

A reparametrization gives

$$
\begin{equation*}
\gamma=\frac{\log \left[\frac{\log \left(q^{2}+\rho q(1-q)\right)}{\log (q)}\right]}{\log (2)} \tag{3.11}
\end{equation*}
$$

The p-power distribution given by (3.7) under-estimates the probability of at least one positive response $P(R \geq 1)$ by assigning high probability mass at zero[26]. This leads to overestimation of a safe dose in a litter-based approach to quantitative risk assessment [26]. The q-power distribution given by (3.9) does not have this problem. Kuk [26] showed that the probability distribution functions of the q-power distribution in cases where the response probability or intra-cluster correlation is small closely follows bell shape in comparison to their p-power counterparts.[26]. The q-power model in (3.9) does not model positive intra-litter correlation only. In most practical applications that involve clustered binary data, intra-litter correlation is positive. It can be shown that $\frac{-1}{n_{\max }} \leq \rho \leq 1$, where $n_{\max }$ is the maximum cluster size [17]. If $\sum_{r=0}^{n} P(R \geq r)=1$ the q-power model (3.9) defines a valid distribution even when $\gamma>1$ as long as $P(R \geq r) \geq 0$. For $r=0, \cdots, n$, this
leads to negative intra-cluster correlation defined by Equation 3.10. A value of $\gamma>1$ results in negative intra-cluster correlation. Thus when these simple conditions are satisfied, the q-power distribution can be adapted to model data with negative intra-litter correlation. The q-power distribution is convenient in dose response modeling when the probability that at least one cluster variable is affected in contrast to the p-power distribution, since

$$
\begin{equation*}
P(R \geq 1)=1-P(R=0)=1-P\left(X_{1}=\cdots, X_{n}=0\right)=1-q^{n^{\gamma}} \tag{3.12}
\end{equation*}
$$

The corresponding p-power family is given by

$$
\begin{equation*}
P(R \geq 1)=1-P(R=0)=1-\binom{n}{r} \sum_{k=0}^{n-r}(-1)^{k}\binom{n}{k} p^{k^{\gamma}} \tag{3.13}
\end{equation*}
$$

A second simulation study was conducted to determine the characteristics of the conditional exact tests. The P-values of a homogeneity test between a control and a treatment groups were computed at various sample sizes by varying the difference in success probabilities between the two groups. The marginal probability for the control group p_{1} was held constant at 0.1 and the probability of the treatment group was varied from $p_{2}=0.1, \cdots, 0.9$. The number of clusters for both the control and treatment groups were made equal and varied at 50, 100 and 200. λ is the mean of the Poisson distribution used to generate random cluster sizes. For each set of parameters, the simulation was repeated a thousand times and the mean p-value recorded.

3.6.2 Inverse Transform Method

The Inverse Transform method was used to generate correlated binary random variables with intra-litter correlation ρ. To generate a random variable R with probability distribution given by (3.9), we follow these two steps:

Steps

1. Generate probabilities $p_{0}=P(R \leq 0), p_{1}=P(R \leq 1), p_{2}=P(R \leq 2), \cdots$
2. Generate $U \sim u(0,1)$ then set $R=k$ if $p_{k-1}<U<p_{k}$.

The results from the simulation are summarized in Table 7. The exact conditional approach detects a significant change between control and treatment group as the marginal probabilities of the two treatment groups begin to change. The p-values decrease as the difference in marginal probabilities between the control and treatment group increases. Generally, the increase in sample size has an effect on significance. Larger sample sizes were more likely to detect significance for a fixed set of parameters as expected, while for a fixed set of parameters, increasing intra-cluster correlation resulted in increasing p -values. This suggests that intra-cluster correlation has an effect on the significance of the test. Larger sample sizes are needed to detect significant differences as intra-litter correlations increase.

Table 7: Simulation Study II Results

Simulation Parameters	P- Value,$N_{1}=N_{2}=50$	P- Value,$N_{1}=N_{2}=100$	P- Value,$N_{1}=N_{2}=200$
$p_{1}=p_{2}=0.1$ $\rho_{1}=\rho_{2}=0.3$ $\lambda=5$	0.5075455	0.5068741	0.4948332
$p_{1}=0.1, p_{2}=0.2$ $\rho_{1}=\rho_{2}=0.3$ $\lambda=5$	0.3366064	0.2118432	0.07347453
$p_{1}=0.1, p_{2}=0.3$ $\rho_{1}=\rho_{2}=0.3$ $\lambda=5$	0.1192218	0.01818382	0.001256743
$p_{1}=0.1, p_{2}=0.5$ $\rho_{1}=\rho_{2}=0.3$ $\lambda=5$	0.00458042	0.001003996	0.000999001
$p_{1}=0.1, p_{2}=0.7$ $\rho_{1}=\rho_{2}=0.3$ $\lambda=5$	0.001010989	0.000999001	0.000999001
$p_{1}=0.1, p_{2}=0.9$ $\rho_{1}=\rho_{2}=0.3$ $\lambda=5$	0.000999001	0.000999001	0.000999001
$p_{1}=0.1, p_{2}=0.1$ $\rho_{1}=\rho_{2}=0.6$ $\lambda=5$	0.4972358	0.5091479	0.5035944
$p_{1}=0.1, p_{2}=0.2$ $\rho_{1}=\rho_{2}=0.6$ $\lambda=5$	0.3752328	0.2706613	0.156002
$p_{1}=0.1, p_{2}=0.3$ $\rho_{1}=\rho_{2}=0.6$ $\lambda=5$	0.176035	0.06263437	0.00662038
$p_{1}=0.1, p_{2}=0.5$ $\rho_{1}=\rho_{2}=0.6$ $\lambda=5$	0.01225175	Continued on next page	
$p_{1}=0.1, p_{2}=0.7$		0.001110889	

Table 7 - continued from previous page

Simulation Parameters	P- Value, $N_{1}=N_{2}=50$	P- Value, $N_{1}=N_{2}=100$	P- Value,$N_{1}=N_{2}=200$
$\rho_{1}=\rho_{2}=0.6$ $\lambda=5$	0.001063936	0.000999001	0.000999001
$p_{1}=0.1, p_{2}=0.9$ $\rho_{1}=\rho_{2}=0.6$ $\lambda=5$	0.000999001	0.000999001	0.000999001
$p_{1}=0.1, p_{2}=0.1$ $\rho_{1}=\rho_{2}=0.9$ $\lambda=5$	0.5154116	0.5028581	0.5005315
$p_{1}=0.1, p_{2}=0.2$ $\rho_{1}=\rho_{2}=0.9$ $\lambda=5$	0.3893546	0.3132098	0.1918781
$p_{1}=0.1, p_{2}=0.3$ $\rho_{1}=\rho_{2}=0.9$ $\lambda=5$	0.222013	0.08045654	0.01461738
$p_{1}=0.1, p_{2}=0.5$ $\rho_{1}=\rho_{2}=0.9$ $\lambda=5$	0.02365135	0.001455544	0.000999001
$p_{1}=0.1, p_{2}=0.7$ $\rho_{1}=\rho_{2}=0.9$ $\lambda=5$	0.001165834	0.000999001	0.000999001
$p_{1}=0.1, p_{2}=0.9$ $\rho_{1}=\rho_{2}=0.9$ $\lambda=5$	0.000999001	0.000999001	0.000999001
$p_{1}=p_{2}=0.1$ $\rho_{1}=\rho_{2}=0.3$ $\lambda=10$	0.4975125	0.5038791	0.5048911
$p_{1}=0.1, p_{2}=0.2$ $\rho_{1}=\rho_{2}=0.3$ $\lambda=10$	0.3001578	0.08166134	Continued on next page

Table 7 - continued from previous page

Simulation Parameters	P- Value,$N_{1}=N_{2}=50$	P- Value,$N_{1}=N_{2}=100$	P- Value,$N_{1}=N_{2}=200$
$p_{1}=0.1, p_{2}=0.5$ $\rho_{1}=\rho_{2}=0.3$ $\lambda=10$	0.003024975	0.000999001	0.000999001
$p_{1}=0.1, p_{2}=0.7$ $\rho_{1}=\rho_{2}=0.3$ $\lambda=10$	0.001018981	0.000999001	0.000999001
$p_{1}=0.1, p_{2}=0.9$ $\rho_{1}=\rho_{2}=0.3$ $\lambda=10$	0.000999001	0.000999001	0.000999001
$p_{1}=0.1, p_{2}=0.1$ $\rho_{1}=\rho_{2}=0.6$ $\lambda=10$	0.5004855	0.4963666	0.5109191
$p_{1}=0.1, p_{2}=0.2$ $\rho_{1}=\rho_{2}=0.6$ $\lambda=10$	0.3816813	0.2802967	0.1594915
$p_{1}=0.1, p_{2}=0.3$ $\rho_{1}=\rho_{2}=0.6$ $\lambda=10$	0.1927493	0.06670829	0.00782018
$p_{1}=0.1, p_{2}=0.5$ $\rho_{1}=\rho_{2}=0.6$ $\lambda=10$	0.01223177	0.001152847	0.000999001
$p_{1}=0.1, p_{2}=0.7$ $\rho_{1}=\rho_{2}=0.6$ $\lambda=10$	0.001191808	0.000999001	0.000999001
$p_{1}=0.1, p_{2}=0.9$ $\rho_{1}=\rho_{2}=0.6$ $\lambda=10$	0.000999001	0.5016913	0.000999001
$p_{1}=0.1, p_{2}=0.1$ $\rho_{1}=\rho_{2}=0.9$ $\lambda=10$	0.50203	0.3215764	Continued on next page

Table 7 - continued from previous page

Simulation Parameters	P- Value,$N_{1}=N_{2}=50$	P-Value,$N_{1}=N_{2}=100$	P- Value,$N_{1}=N_{2}=200$
$\lambda=10$	0.2392268	0.1025734	0.01953247
$p_{1}=0.1, p_{2}=0.3$ $\rho_{1}=\rho_{2}=0.9$ $\lambda=10$	0.03052048	0.001665335	0.000999001
$p_{1}=0.1, p_{2}=0.5$ $\rho_{1}=\rho_{2}=0.9$ $\lambda=10$	0.001525475	0.000999001	0.000999001
$p_{1}=0.1, p_{2}=0.7$ $\rho_{1}=\rho_{2}=0.9$ $\lambda=10$	0.000999001	0.000999001	0.000999001
$p_{1}=0.1, p_{2}=0.9$ $\rho_{1}=\rho_{2}=0.9$ $\lambda=10$			

The Lunn and Davis approach to generating correlated binary data results in p-values that are in general slightly less than that of the Inverse Transform of the q-power distribution for any fixed set of parameters. The two simulation methods share all other similar characteristics with each other.

3.7 Application

The exact test procedure was applied to the analysis of a developmental toxicity study of ethylene glycol diethyl ether (EDGE). The data was obtained in an experiment in which pregnant New Zealand white rabbits were exposed to the compound EGDE. The effect of ethylene glycol diethyl ether on their fetal development was then studied. In the study, four groups of pregnant does were randomly assigned to dose levels $0,25,50$, and 100 milligrams per kilogram body weight of EGDE. For each litter and at each dose level, the adverse response used is the combined number of fetal malformation and fetal death. The data are presented in Table 8. The frequency distribution of live fetuses with malformations are grouped into cluster sizes ranging from 2 to 15 . The data appears to be relatively sparse with no indication that dose level has impact on cluster size. From the table, for each fixed cluster size, frequency of malformations appears to increase with increasing dose level. Figure 1 shows the probability of at least one, two, three and four responses across the various dose groups. In general, these probabilities increase with increasing dose demonstrating the existence of a trend. Figure 2 shows a strip chart plot of the responses. It is observed that dose group 100 has the highest proportion fetuses with malformations. Lower dose groups 0,25 and 50 have relatively lower proportion of fetuses with malformations. Figure 3 shows that the marginal proportion of fetuses affected also increase with increasing dose.

Table 8: Data from Ethylene glycol ether(EDGE) Laboratory experiment: A Frequency Table Representation

	No. malformed	No. of live fetuses													
Dose Level	i	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	0	2			1	1	2	3	1	3	1	1			
	1		1		1	1		1					1		
	2														
	3		1												
	4				1				2						
	5									1					
	6											1			
	7						1								
	8							1							
25	0		1	1	4	2	1	2	2	1		1			
	1					1	1		1	2	1				
	2											2	1		
	3								1	2			1		
	4					1				1					
	5														
	6														
	7						1								
	8							1							
50	0	2	1		1		1	1	1	1					
	1				1					1	1				
	2			1		1	1	1	1	1	1				
	3							1			1				1
	4													1	
	5														
	6														
	7											1			
	8							1					1		
100	0	1	2							1					
	1	1													
	2														
	3				1	1				1					
	4			1		1			1						
	5				1	1		3	1						
	6						1	2		1	1				
	7						1								
	8							1							
	9								2						
	10								1	1					
	12										2	1			

3.7.1 Summary Statistics for Edge Data

Table 9: Summary Statistics for EDGE Data

	Dose Level				
	0	25	50	100	Total
Clusters	21	23	25	25	94
Mean Cluster Size	7.79	8.28	8.31	7.71	8.02
Sample Size	218	265	216	239	938
Malformations	40	47	54	171	312
Response Rate (\%) Probability of at least one fetus affected $\mathbf{1 8 . 3 5}$	17.74	25	71.55	33.26	

Marginal Probability of EDGE Data

Figure 1: Marginal Response Probability Plot for EDGE Data

Stripchart Representation of EDGE Data

Figure 2: Strip chart Representation for EDGE Data

Marginal Proportion and Estimated Marginal Proportions

Figure 3: Fit of Marginal Probability for Edge Data

3.7.2 Treatment Test of Heterogeneity

To test the hypothesis of no adverse effect of EDGE against possible adverse effect. We test the null hypothesis $H_{0}: P_{r, n}^{(i)}=P_{r, n}, i=1, \cdots, 4 \quad r=0, \cdots, 12 \quad n=2, \cdots, 15 \quad$ versus the alternate
H_{a} :At least one $P_{r, n}^{(i)} \neq P_{r, n}^{(i+1)}$
In Table 10, we summarize the results of this test across all four treatment groups. The results indicate a significant difference in response rates between the four dose $\operatorname{groups}(p-$ value $=0.02894971)$. The estimates are based on 10,000
random samples from the reference set. The distribution of the test statistic D_{Y} displayed by Figure 4 shows, the test statistic appears to be unimodal and skewed to the left.

Table 10: Exact Conditional Test

Treatment Groups	Mid P-value	P-value	99% Confidence Interval
$0,25,50,100$	0.028945	0.02894971	$(0.02758443,0.03031499)$

Table 11: Comparison with Other Test

Treatment Groups	Exact Conditional	Rao-Scott Homogeneity Test(Asymptotic)
$0,25,50,100$	0.028945	<0.001

Figure 4: 10000 Simulated Tables of Eq 3.2 for Edge data

CHAPTER 4

EXACT STRATIFIED LINEAR RANK TEST

4.1 Stratified Representation of Data

Stratification of clustered data allows analysis to be made on data with the same cluster sizes. When cluster sizes are fixed, each row in a stratum of the g treatment groups can be viewed as g independent multinomial distributions with K categories. Each observation $A_{r, j}^{i}$ represents the number of clusters with r responses $r=0, \cdots, K$ and stratum/cluster size $j, j=1, \cdot, K$ in the i th treatment group, $i=1, \cdots, g$.

The stratum scores $w_{i, j}, i=0,1, \cdots, K$ and $j=1, \cdots, K$ are monotone non-decreasing weights assigned $\left(w_{0, j} \leq w_{1, j} \leq \cdots \leq w_{K, j}\right)$ to the j th stratum with r responses. The weights $w_{i, j}$ are assigned to the ranked column in each stratum. Let ($u_{0 i}, u_{1 i}, u_{2 i} \cdots, u_{g i}$) be monotone non-decreasing weights that is $\left(u_{0 i} \leq u_{1 i} \leq u_{2 i} \leq \cdots \leq u_{g i}\right)$. The weights $u_{i j}, i=1, \cdots g$ and $j=1, \cdots, K$ are weights assigned to the ranked row sum in each stratum. The stratified representation is shown in Table 12.

Table 12: Stratified Representation of Clustered Data

Where $A_{r, j}^{(i)}=0$, whenever $r>j$.

4.2 Reference Set

Denote the reference set for each stratum j as the set of all possible contingency tables with fixed marginal column and row sums as the observed table sums for treatment groups $i=1, \cdots, g$, cluster sizes $j=1, \cdots, K$, where K is the maximum cluster size in the experiment with responses $r=0, \cdots, n$. The reference set in the j th stratum is:
$\gamma_{j}=\left\{y_{j}: y_{j}\right.$ is $g \times K$ contingency table; $\left.\sum_{r=0}^{n} A_{r, j}^{i}=m_{r}^{i}, \sum_{i=1}^{g} A_{r, j}^{i}=n_{r, j}\right\}$
The reference set across all the strata can therefore be represented by the Cartesian product of all reference sets from each of the j strata.
$\Gamma=\gamma_{1} \times \gamma_{2} \cdots \times \gamma_{K}=\left\{Y: y_{j} \in \gamma_{j}, j=1, \cdots, K\right\}$
Thus Y is made of γ_{j} stratums, $j=1, \cdots, K$. Each Y can be seen as $K \times(g \times K)$ dimensional array.

4.3 Exact Linear Trend Test

The g rows of each stratum represent increasing doses of a drug and the K distinctly ordered columns represent the progressively increasing responses. We wish to investigate whether response increases with increasing dose. We consider a general linear rank statistic T, which detects departure from the null hypothesis of no dose effect. T is the sum of linear rank statistics across the K strata. The asymptotic distribution of the standardized test statistic T^{*} is the standard normal distribution with mean and standard deviation of 0 and 1 respectively. The square of the standard test statistic is also asymptotically distributed as a chi-square with one degree of freedom. Suppose each response falls into one of the K categories of a multinomial distribution, Let $\Pi_{j}^{i}=\left(\pi_{j 0}^{i}, \pi_{j 1}^{i}, \cdots, \pi_{j K}^{i}\right)$ be the multinomial probabilities along each row in stratum j for dose group i. The null hypothesis for stratum j can be written as
$H_{0}^{j}: \Pi_{j}^{1}=\Pi_{j}^{2}=\cdots=\Pi_{j}^{g}$
and the hypothesis of trend as $H_{a}^{j}: \Upsilon_{j}^{1} \leq \Upsilon_{j}^{2} \leq \cdots \leq \Upsilon_{j}^{g} \quad$ with at least one
strict inequality
where for each fixed stratum $j, j=1, \cdots, K, \Upsilon_{j}^{i}=\sum_{r=0}^{n} \pi_{j r}^{i}$.
The linear trend test statistic is given by:

$$
\begin{equation*}
T=\sum_{j=1}^{K} T_{j}=\sum_{k=1}^{K} \sum_{i=1}^{g} \sum_{r=0}^{n} u_{i j} w_{r j} A_{r, j}^{(i)} \tag{4.1}
\end{equation*}
$$

where $w_{r, j}$ is the weight assigned to the $r t h$ response within the $j t h$ stratum and $u_{i j}$ is the weight assigned to the $i t h$ treatment group in the $j t h$ stratum. There exist several possible choices of weights, with each choice resulting in a different test. The weights can be chosen to make the test cluster size invariant or cluster size specific. For cluster size invariant scores, define $n_{j}=\sum_{k=1}^{K} n_{j, k}$, thus the sum of response is used in weight computation in each response group.

Theorem 4.3.1. Under the null hypothesis of no row by column interaction, for the j th stratum $j=1, \cdots, K$, the test statistic is T_{j} as given in (4.1) has mean and variance as:

$$
\begin{aligned}
& E\left(T_{j}\right)=\frac{\left(\sum_{i=1}^{g} u_{i j} m_{j}^{i}\right)\left(\sum_{r=0}^{n} w_{r j} n_{j j}\right)}{N_{j}} \\
& \operatorname{Var}\left(T_{j}\right)=\frac{\left[\sum_{i=1}^{g} u_{i j}^{2} m_{j}^{i}-\frac{\left(\sum_{i=1}^{g} u_{i j} m_{j}^{i}\right)^{2}}{N_{j}}\right]\left[\sum_{r=0}^{n} w_{r j}^{2} n_{r j}-\frac{\left(\sum_{r=0}^{K} w_{r j} n_{r j}\right)^{2}}{N_{j}}\right]}{N_{j}-1}
\end{aligned}
$$

Proof. : We give the proof 2×2 case. The $g \times K$ case follows as a natural extension.

Table 13: Stratified Exact Linear Trend Test for 2×2 Tables

Treatment	Response 0	1	Row Total	Row Weights
0	$A_{0, k}^{0}$	$A_{1, k}^{0}$	m_{k}^{0}	u_{k}^{0}
1	$A_{0, k}^{\perp}$	$A_{1, k}^{\perp}$	m_{k}^{1}	u_{k}^{1}
Column Total	$n_{0, k}$	$n_{1, k}$	N_{k}	
Column Weights	$w_{0, k}$	$w_{1, k}$		

If each is treatment is fixed,the the number of 0 responses in treatment group 0 , $A_{0, k}^{0}$ and the number of 0 responses in treatment group $1, A_{0, k}^{1}$ are independently distributed as Binomial distributions $B\left(m_{k}^{0}, \pi_{00}\right)$ and $B\left(m_{k}^{1}, \pi_{10}\right)$ respectively.
π_{00} and π_{10} are probability of 0 response in treatment groups 0 and 1 respectively.

Let $A_{0}^{k}=A_{0, k}^{0}+A_{0, k}^{1}$ and $A_{1}^{k}=A_{1, k}^{0}+A_{1, k}^{1}$, then under the null hypothesis that $\pi_{00}=\pi_{01}=\pi_{10}=\pi_{11}=\pi$ and $A_{0}^{k} \sim B\left(N_{k}, \pi\right)$ and $A_{1}^{k} \sim B\left(N_{k}, \pi\right)$. The distribution of each $A_{r, k}^{i}$ stated in terms of $A_{0, k}^{0}$

$$
\begin{gathered}
P\left(A_{0, k}^{0}=a_{0, k}^{0}, A_{1, k}^{0}=a_{1, k}^{0}, A_{0, k}^{1}=a_{0, k}^{1}, A_{1, k}^{1}=a_{1, k}^{1} \mid H_{0}, A_{0}^{k}=a_{0}^{k}, A_{1}^{k}=a_{1}^{k}\right) \\
=\frac{P\left(A_{0, k}^{0}=a_{0, k}^{0}, A_{1, k}^{0}=a_{1, k}^{0}, A_{0, k}^{1}=a_{0, k}^{1}, A_{1, k}^{1}=a_{1, k}^{1} \mid H_{0}\right)}{P\left(A_{0}^{k}=a_{0}^{k}, A_{1}^{k}=a_{1}^{k}\right)} \\
=\frac{\binom{m_{k}^{0}}{a_{0, k}^{0}} \pi^{a_{0, k}^{0}} \pi^{m_{k}^{0}-a_{0, k}^{0}}\binom{m_{k}^{1}}{a_{0, k}^{1}} \pi^{a_{0, k}^{1}} \pi^{m_{k}^{1}-a_{0, k}^{1}}}{\binom{N_{k}}{a_{0}^{k}} \pi^{a_{0}^{k}}(\pi)^{N_{k}-a_{0}^{k}}} \\
=\frac{\binom{m_{k}^{0}}{a_{0, k}^{0}}\binom{m_{k}^{1}}{a_{0, k}^{1}}}{\binom{N_{k}}{a_{0}^{k}}}=\frac{\binom{m_{k}^{0}}{a_{0, k}^{0}}\binom{N_{k}-m_{k}^{0}}{n_{0, k}-a_{0, k}^{0}}}{\binom{N_{k}}{a_{0}^{k}}}
\end{gathered}
$$

That is $A_{r, k}^{(i)} \sim$ Hypergeometric $\left(a_{0}^{k}, m_{k}^{(0)}, m_{k}^{(1)}\right)$. Hence $E\left(A_{0, k}^{0}\right)=\frac{m_{k}^{0} n_{o k}}{N_{k}}$ and $\operatorname{Var}\left(A_{0, k}^{0}\right)=\frac{m_{k}^{0} n_{0 k} m_{k}^{1} n_{1 k}}{N_{k}^{2}\left(N_{k}-1\right)}$. Let $\pi_{00}=P(0$ responses in dose group 0$)$ and $\pi_{01}=P(0$ responses in dose group 1$)$.

Under the null hypothesis that $\pi_{00}=\pi_{10}=\pi$ the conditional distribution of any Table i, with counts $A_{r, k}^{i}$ given row and column marginals has a hypergeometric distribution with mean and variance given below:

$$
\begin{gathered}
E\left(A_{r, k}^{i}\right)=\frac{m_{k}^{i} n_{r k}}{N_{k}} \\
\operatorname{Var}\left(A_{r, k}^{i}\right)=\frac{m_{k}^{i}\left(N_{k}-m_{k}^{i}\right) n_{r k}\left(N_{k}-n_{r k}\right)}{N_{k}^{2}\left(N_{k}-1\right)} \\
T_{k}=\sum_{i=1}^{g} \sum_{r=0}^{n} u_{i k} w_{r k} A_{r, k}^{(i)} \\
E\left(T_{k}\right)=\sum_{i=1}^{g} \sum_{r=0}^{n} u_{i k} w_{r k} E\left(A_{r, k}^{(i)}\right) \\
E\left(T_{k}\right)=\sum_{i=1}^{g} \sum_{r=0}^{n} u_{i k} w_{r k} \frac{m_{k}^{i} n_{r k}}{N_{k}} \\
E\left(T_{k}\right)=\frac{1}{N_{k}} \sum_{i=1}^{g}\left(u_{i k} m_{k}^{i}\right) \sum_{r=0}^{n}\left(w_{r k} n_{r k}\right) \\
=\frac{1}{N_{k}-1}\left(m_{k}^{i}-\frac{\left(m_{k}^{i}\right)^{2}}{N_{k}}\right)\left(n_{r k}-\frac{n_{r k}^{2}}{N_{k}}\right) \\
\operatorname{Var}\left(A_{r, k}^{i}\right)=\frac{m_{k}^{i}\left(N_{k}-n_{r k}^{i}\right) n_{r k}\left(N_{k}-n_{r k}\right)}{N_{k}^{2}\left(N_{k}-1\right)}=\frac{m_{k}^{i} n_{r k}}{N_{k}-1}\left(\frac{N_{k}-m_{k}^{i}}{N_{k}}\right)\left(\frac{N_{k}-n_{r k}}{N_{k}}\right)\left(1-\frac{n_{r k}}{N_{k}}\right)
\end{gathered}
$$

Under the null hypothesis of no row by column interaction:

$$
\begin{gathered}
\operatorname{Var}\left(T_{k}\right)=\sum_{i=0}^{g} \sum_{r=0}^{K} u_{i k}^{2} w_{r k}^{2} \operatorname{Var}\left(A_{r, k}^{(i)}\right) \\
\operatorname{Var}\left(T_{k}\right)=\sum_{i=0}^{g} \sum_{r=0}^{K} u_{i k}^{2} w_{r k}^{2} \frac{1}{N_{k}-1}\left(m_{k}^{i}-\frac{\left(m_{k}^{i}\right)^{2}}{N_{k}}\right)\left(n_{r k}-\frac{n_{r k}^{2}}{N_{k}}\right) \\
\left.=\frac{1}{N_{k}-1}\left(\sum_{i=0}^{g} u_{i k}^{2} m_{k}^{i}-\frac{\sum_{i=0}^{g} u_{i k}^{2}\left(m_{k}^{i}\right)^{2}}{N_{k}}\right)\left(\sum_{r=0}^{K} w_{r k}^{2} n_{r k}-\frac{\sum_{r=0}^{K} w_{r k}^{2} n_{r k}^{2}}{N_{k}}\right)^{2}\right) \\
=\frac{1}{N_{k}-1}\left(\sum_{i=0}^{g} u_{i k}^{2} m_{k}^{i}-\frac{\left(\sum_{i=0}^{g} u_{i k} m_{k}^{i}\right)^{2}}{N_{k}}\right)\left(\sum_{r=0}^{K} w_{r k}^{2} n_{r k}-\frac{\left(\sum_{r=0}^{K} w_{r k} n_{r k}\right)^{2}}{N_{k}}\right) \\
T_{k}^{*}=\frac{T_{k}-E\left(T_{k}\right)}{\sqrt{\operatorname{Var}\left(T_{k}\right)}} \widetilde{a s y m p .} N(0,1)
\end{gathered}
$$

The standardized linear trend statistic T_{k}^{*} of each stratum k, is thus asymptotically standard normal distribution with mean 0 and variance $=1$. Hence, the square of the standardized linear trend statistic T_{k}^{*} is asymptotic chi-squared distribution with one degree of freedom.

Theorem 4.3.2. The asymptotic distribution of the statistic across k strata can be summarized by the M^{2} statistic.

$$
\begin{equation*}
M^{2}=\frac{\left[\sum_{j=1}^{k}\left(T_{k}-E\left(T_{k}\right)\right)\right]^{2}}{\sum_{j=1}^{k} \operatorname{var}\left(T_{k}\right)} \sim \chi_{(1)}^{2} \tag{4.2}
\end{equation*}
$$

Proof. :

Let T be the sum of K independent random variables with a from each of K strata

$$
T=\sum_{k=1}^{K} T_{k}
$$

Then $E(T)$ is the sum of expectations of K independent random variables with hypergeometric distribution.

$$
\begin{aligned}
E(T) & =\sum_{k=1}^{K} E\left(T_{k}\right) \\
\operatorname{Var}(T) & =\sum_{k=1}^{K} \operatorname{Var}\left(T_{k}\right)
\end{aligned}
$$

Then

$$
\frac{(T-E(T))^{2}}{\operatorname{Var}(T)} \widetilde{\text { asymp. }} \quad \chi_{(1)}^{2}
$$

For $g \times K$ tables without column ordering but with ordering of the rows, the nonparametric Kruskal Wallis test and generalized one way ANOVA provide the uniformly most powerful invariant, or UMP unbiased against the null hypothesis of no column and row association. When the number of rows $g=2$, the Kruskal Wallis reduces to the Wilcoxon rank sum test. Both test are asymptotically chi-squared with $g-1$ degrees of freedom.

The Linear by Linear and Jonckheere-Terpstra test has the highest power for doubly ordered $g \times K$ contingency tables. These test do well in detecting existence of a progressive trend in the alternate hypothesis. The flexibility in arbitrarily selecting scores, makes the linear by Linear test very powerful. A special case in which the original observations are used in place of the weights $u_{i j}$ and $w_{r j}$ results in a significance test for Pearson's correlation coefficient. However, if the weights are replaced by the mid-rank scores of the the observed data, Spearman correlation
coefficient between the ordered responses and ordered treatment groups is obtained [32]. A special case of the linear Trend statistic where there are only 2 dose groups and K strata is the simple linear rank statistic:

$$
T_{j}=\sum_{r=0}^{n} w_{r, j} A_{r, j}^{(1)}
$$

This test statistic T_{j} is also equal to the Spearman correlation between treatment levels $0,1, \cdots, g$ and the Responses $0,1, \cdots, K$ in stratum k multiplied by $\sqrt{N_{k}-1}$. ([1]; [5]). When the observed data are used as weights, then the linear rank test is a significance test of the Pearson correlation coefficient. However, if the ranks of the data are used then the result is a significance test of the Spearman correlation coefficient [32].

Some of the commonly used linear rank weights are listed below:

- Wilcoxon Scores: The Wilcoxon scores are the ranks of the underlying responses. Mid-ranks are used in the case of tied observations.
$w_{r, k}=n_{0, k}+n_{1, k}+\cdots+n_{j-1, k}+\frac{\left(n_{j, k}+1\right)}{2}$
$u_{i k}=m_{k}^{0}+m_{k}^{1}+\cdots+m_{k}^{j-1}+\frac{m_{k}^{j}+1}{2}$
In the special case where we have only two treatment groups, using the Wilcoxon scores reduces to the rank sum and the Wilcoxon-Mann-Whitney test statistic [5].
- Normal Scores: The normal scores are defined as the percentile of the standard normal distribution.
$w_{r k}=\frac{1}{n_{r, k}}\left(\sum_{j=v_{r-1, k}+1}^{v_{r, k}} \Phi^{-1}\left(\frac{j}{N_{i}+1}\right)\right)$
$u_{i k}=\frac{1}{m_{k}^{i}}\left(\sum_{l=w_{i-1, k}+1}^{w_{i, k}} \Phi^{-1}\left(\frac{l}{N_{i}+1}\right)\right)$
where $v_{j, k}=n_{1, k}+n_{2, k}+\cdots+n_{j, k}$,
$w_{j, k}=m_{k}^{0}+m_{k}^{1}+\cdots+m_{k}^{g}$ and $\Phi^{-1}(\alpha)$ is the $100 \alpha t h$ percentile of the standard normal distribution.
- Logrank Scores: The logrank scores are the same as the scores for Savage
(exponential scores) when they is no censoring [34]. They are used for survival data.
$w_{r k}=\frac{1}{n_{r, k}}\left(\sum_{t=v_{r-1, k}+1}^{v_{r, k}} \sum_{l=1}^{t}\left(\frac{1}{N_{i}-l+1}\right)\right)-1$
$u_{i k}=\frac{1}{m_{k}^{i}}\left(\sum_{t=w_{i-1, k}+1}^{w_{i, k}} \sum_{l=1}^{i}\left(\frac{1}{N_{i}-l+1}\right)\right)-1$
where $v_{r, k}=n_{0, k}+n_{1, k}+\cdots+n_{r, k}$
$w_{i, k}=m_{k}^{0}+m_{k}^{1}+\cdots+m_{k}^{g}$
- Equally Spaced Scores:
$w_{r k}=(1, \cdots, K)$
$u_{i k}=(1, \cdots, g)$
The Cohran-Armitage trend test is a special case of equally spaced scores $w_{j, k}=j-1$ and $u_{i, k}=i-1$; when there are only two treatment groups [34].

4.4 Exact Two-sided P-value Computation

Let P_{Y} be the exact probability distribution of each table Y in the reference set Γ. The distribution of the test statistic can be found empirically by limiting the sample space of each table Y to the reference set Γ and randomly permuting the probability distribution P_{Y} a large number of times. Define the discrepancy measure \mathcal{D} as a real valued function $\mathcal{D}: \Gamma \rightarrow \mathcal{R}$ mapping $g \times K$ tables in Γ onto the real number line \mathcal{R}. An exact test is formed by ordering the tables in Γ according to some test statistic or discrepancy measure D_{Y}. The discrepancy measure quantifies the extent of deviation of a table $Y \in \Gamma$ from the null hypothesis of no row by column interaction. Various choices of \mathcal{D} include the Linear Rank, Pearson, Chi-Square, Fisher's Exact and Likelihood Ratio test statistics. The p-value is found as the sum of all null probabilities of all tables Y in Γ which are at least as extreme as the observed table X with respect to \mathcal{D}.
p-value $=\sum_{D_{X} \geq D_{X}} P_{Y}=P_{r}\left[D_{Y} \geq D_{X}\right]$
Classical nonparametric methods rely on the large sample/asymptotic
distribution of \mathcal{D} such as chi-squared distribution to estimate the p-value. With the increased computational power and efficient enumerating algorithms now available, the exact distribution of \mathcal{D} can be found and the p-value subsequently computed. An adjustment for correcting the discreteness that arises in small samples distributions is to make inferences based on the mid p-value (Lancaster 1961). This adjustment reduces the ordinary p-value by half the probability of the observed result. The mid p -value is found as:
mid P-value $=\frac{1}{2} P_{r}\left[D_{Y}=D_{X}\right]+P_{r}\left[D_{Y}>D_{X}\right]$
Classical non-parametric methods rely on the asymptotic distribution of D to approximate the p-value. This approximation can be considerably different from the exact distribution when presented with unbalanced or sparse data or data with a small sample size. Mehta et al (1998) suggest that the main advantage of the exact p-value over its asymptotic approximation is that it is guaranteed to bound the type I error rate of the hypothesis testing procedure to any desired level [32].

Table 14: Size of Reference Sets (Mehta, Patel, Senchaudhuri, 1992)

Sample Size(N)	Tables in Reference Set Γ
20	1.8×10^{5}
30	1.5×10^{8}
40	1.4×10^{11}
50	1.3×10^{14}
100	1.0×10^{29}

Explicit enumeration of all the tables in the reference set Γ would be computationally expensive and infeasible for relatively large tables. An example of the size of reference sets for different N values is given in Table 14. Mehta, Patel, and Tsiatis (1984) developed a network algorithm that implicitly enumerates all tables in the reference set by connecting a series of networks and nodes. Some of these tables in the reference sets are also rather sparse and not likely to yield accurate p-values. This is the motivation for the Monte Carlo approach. For all
practical purposes, the Monte Carlo exact p-value is equivalent to the exact p-value obtained by enumeration of all tables in the reference set. The expected value of the Monte Carlo p-value is equal to that in which all tables are enumerated.

4.5 Application using Edge Data

The procedure was implemented using the Edge Toxicology Laboratory data available in the R statistical programming language; the data was obtained from a developmental toxicity experiment in which pregnant New Zealand white rabbits exposed to ethylene glycol diethyl ether (EGDE). The effect of ethylene glycol diethyl ether on their fetal development were then studied. In the study, four groups of pregnant does were randomly assigned to dose levels $0,25,50$, and 100 milligrams per kilogram body weight of EGDE. For each litter and at each dose level, the adverse response used is the combined number of fetal malformation and fetal death. The data are presented in Table 8. The frequency distribution of live fetuses with malformations are grouped into cluster sizes ranging from 2 to 15 . The data appears to be relatively sparse with no indication that dose level has impact on cluster size. From the table, for each fixed cluster size, frequency of malformations appears to increase with increasing dose level.

4.5.1 Results

In Tables 15 and 16 we summarize the results of the tests of homogeneity of response rates across all four treatment groups with the linear rank statistic as the discrepancy measure \mathcal{D}. The results for all four dose groups is displayed in Table 15 and individual comparison between dose group 0 and the remaining dose groups is displayed in Table 16, where SO is the stochastic ordering test [46], RS is the Rao-Scott linear trend test [38] and GEE is the Generalized Estimating Equation [50]. The results indicate significant difference in response rates when all four dose groups are considered together. There is significant difference between dose group 100 and the control group when pairwise hypothesis are considered. There is no
significant difference between dose groups $(0,25)$ and $(0,50)$. The estimates are based on 10,000 random samples from the reference set Γ. The distribution of the test statistic displayed shows, the test statistic appears to be approximately normally distributed with some discreteness at the peak of the histogram of the sample. Each of the two sets of weights used (midranks and equal spacing) lead to significant outcomes at 0.05 level. The asymptotic approximate distribution of the test statistic using Wilcoxon weights and Equally spaced weights also resulted in significant p-values. The Pearson Chi-Squared family of test statistics are inapplicable because of the level of sparsity in the data. Many of the expected cell frequencies are zero.

$$
\begin{aligned}
& H_{0}^{j}: \Pi_{j}^{0}=\Pi_{j}^{1}=\cdots=\Pi_{j}^{g} \\
& H_{a}^{j}: \Upsilon_{j}^{0} \leq \Upsilon_{j}^{1} \leq \cdots \leq \Upsilon_{j}^{g} \quad \text { with at least one strict inequality }
\end{aligned}
$$

Table 15: EDGE Data, Dose groups (0, 25, 50, 100)

Weights	P value Exact	Mid P-value Exact	Asymptotic P-value
Equal spacing	9.99×10^{-6}	5.0×10^{-6}	1.97×10^{-8}
Midranks	9.99×10^{-6}	5.0×10^{-6}	9.6×10^{-8}

Table 16: First three columns from Aniko Szabo,2010

Dose	SO	RS	GEE	Exact Linear Trend (Equally Spaced Weights)
0,25	0.116	0.536	0.610	0.485
0,50	0.014	0.150	0.272	0.259
0,100	<0.001	2×10^{-7}	4×10^{-11}	5×10^{-6}

4.5.2 Application using 2,4,5-T Data

The 2,4,5-T Data was obtained from a study conducted at the National Center for Toxicological Research, Food and Drug Administration [10]. Several strains of mice were used in a multiplicative teratology experiment. About 100 pregnant mice in each strain were daily exposed to ordered dose levels $0,30,60,45,60,75$ and 90 $\mathrm{mg} / \mathrm{kg}$ of the herbicide 2,4,5-trichlorophenoxyacetic acid from day 6 to day 14 of gestation. The number of fetal implantation sites, deaths, resorptions, cleft palate malformations, and fetal weights of the live fetuses were recorded for each pregnant female. The data from the experiment are summarized in Table 18. For each pregnant mouse, s represents the number of implantation sites and t, the number of combined endpoints, is the number of reabsorbed embryos or dead fetuses together with the number of fetuses with cleft palate malformation. Table 18 gives the frequency of each combination of s and t.

Table 17: Frequency Distribution of the Number of Implant(s) and Number of Combined Endpoints(t) Following Exposure to 2,4,5-T (Bowman and George 1995)

Table 19: Results of T-245 Data

Weights	P value Exact(Monte Carlo)	MidP-value Exact(Monte Carlo)	Asymptotic P-value
Midranks	0.000149985	0.0000999	<0.000001
Equal spacing	0.000149985	0.0000999	<0.000001
Exact Conditional Likelihood	0.000449955	0.00039996	-

CHAPTER 5

FUTURE RESEARCH:ADJUSTING FOR MULTIPLICITY IN EXACT TESTS

5.1 Introduction

Multiple testing occurs in the analysis of data when several hypotheses are tested simultaneously. For example in genomics, one may be interested in simultaneously testing thousands of hypotheses to determine which genes are differentially expressed. In clinical trials, one may also be interested in simultaneously comparing a control group with different levels of treatment groups. In a single hypothesis test, a level of significance α, is chosen to control the type-I error rate, otherwise known as a false positive. This is the probability of incorrectly rejecting the null hypothesis. When multiple hypotheses are tested simultaneously to make inference on a global hypothesis of interest, the probability of incorrectly declaring significance when no effect exist, is greatly increased. Specifically, suppose n independent hypotheses $H_{01}, \cdots, H_{0 n}$ are tested each at a significance level α, then the probability of incorrectly rejecting at least one null hypothesis is $1-(1-\alpha)^{n}$. Thus, as n increases, the probability of type-I error increases and tends to one. The probability of making at least one type-I error in a multiple test is called a familywise error rate denoted $F W E R$.

5.2 Application with EDGE Data

In a plan to explore the use of various procedures that adjust P-values in the context of multiple exact test we have done a preliminary analysis of the EDGE data. We simultaneously tested for trend between the control group(dose 0) and other dose groups 25,50 and 100 . We implemented the exact linear trend test procedure described in chapter 4 using the EDGE dataset. Table 20 shows the unadjusted p-values. There is no significant difference between dose groups $(0,25),(0,50)$ and $(25,50)$. In Table 21, the p-values are adjusted using the
familywise error rate and false discovery rates aproaches for controlling type-I error described earlier in this chapter. As expected the Bonferroni procedure is the most conservative among all the procedures. The Familywise Error control procedures are conservative in comparison to the False Discovery Pocedure. The exact linear trend test detects significant diffrence between dose groups 0 and 100. There is no significant difference between dose groups $(0,25)$ and $(0,50)$ even with multiple adjustment correction.

Table 20: Raw p-values with equally spaced scores

Dose	p-value	Mid p-value
0,25	0.5383462	0.49135
0,50	0.3055694	0.26335
0,100	9.999×10^{-5}	5×10^{-5}
25,50	0.3264674	0.27615
25,100	9.999×10^{-5}	5×10^{-5}

Table 21: Adjusted p-values

Adjusted p-values									
Dose Group	Raw p-values	Holm	Hochberg	Hommel	Bonferroni	Šidák	Benjamini Hochberg (2000)	Benjamini Yekutieli (2001)	q-values
0,25	0.5383462	0.526700	0.491350	0.491350	1.000000	0.8683996	0.491350	0.9008083	0.3275667
0,50	0.3055694	0.526700	0.491350	0.491350	0.790050	0.6002545	0.395025	0.7242125	0.2633500
0,100	0.00005	0.000015	0.000015	0.000015	0.000015	0.000015	0.000015	0.0000275	0.0000100

5.3 Conclusion

In this dissertation, we have introduced an exact test for testing for trend using binary and multinomial exchangeable data for developmental toxicity studies. Our procedure generalized the well-known Fisher's Exact test and the version for correlated data introduced by Cocoran et al [12]. We implemented an exact conditional test for exchangeable clustered binary data analogous to a generalized Fisher's exact test. We eliminate the nuisance parameters(in this case the probabilities of response) by conditioning on joint sufficient statistics. Conditional tests are known to be conservative, a test of Homogeneity of responses across different treatment groups using the EDGE data of the exact test implemented here compared with the Rao-Scott Homogeneity (asymptotic) test validates this belief. We also implemented an exact linear rank test for correlated binary data. We have conducted two simulation studies to demonstrate the performance of the exact conditional test. The results from the two simulation studies are very close to each other. The simulation study generating random values from the q-power model has slightly larger p-values than that of the Lunn and Davis approach for any set of fixed parameters. We have also shown that an exact linear trend test can be simultaneously performed to test multiple hypotheses and the p-values accordingly adjusted to control for multiplicity errors. Our future work will be to develop an exact conditional stochastic trend test to capture trends which are not necessarily linear like the one developed in this dissertation.

REFERENCES

[1] Agresti, A. (2013). Categorical Data Analysis, Wiley \& Sons, New York.
[2] Agresti, A. (2001). Exact inference for categorical data: recent advances and continuing controversies. Statistics in Medicine, 20:27092722.
[3] Agresti, A. (1992). A Survey of Exact Inference for Contingency Tables. Statistical Science. Vol. 7, No. 1., pp. 131-153.
[4] Armitage, P. (1955). Tests for linear trends in proportions and frequencies. Biometrics, vol. 11, 375386.
[5] Baso, D., Pesarin, F., Salmaso, L. and Solari, A. (2009). Permutation Test for Stochastic Ordering and ANOVA, Theory and Applications with R. Lecture Notes in Statistics, Springer, 194.
[6] Benjamini, Y. and Yekutieli, D. (2001). The Control of the False Discovery Rate in Multiple Testing under Dependency. The Annals of Statistics, Vol. 29, No. 4 , pp. 1165-1188.
[7] Bernard, R. (1989). Multivariate Methods for Clustered Binary Data with More Than One Level of Nesting. Journal of the American Statistical Association. Vol. 84, No. 406, pp. 373- 380.
[8] Best, J. D. (1999). Test of Fit and Other Nonparametric Data Analysis. Doctor of Philosophy Thesis. University of Wollongong Thesis Collection.
[9] Best, J. D., Rayner, W. C. J. and Thas, O. (2006), Nonparametric Analysis of Blocked Ordered Categories Data: Some Examples Revisited. Journal of Applied Mathematics and Decision Sciences. Vol. 2006, Article ID 31089, 19.
[10] Bowman, D. and George, E. O. (1995). A Saturated Model for Analyzing Exchangeable Binary Data. Journal of the American Statistical Association, Vol. 91, No. 436, pp. 1602-1610.
[11] Bretz, F., Hothorn, T. and Westfall, P. (2011). Multiple Comparisons using R. Taylor and Francis.
[12] Cocoran, C., Ryan, L., Senchaudhuri, P., Mehta, C., Patel, N. and Molenberghs, G. (2001). An Exact Trend Test for Correlated Binary Data. Biometrics 57, 941-948.
[13] Curtis, D. (2002). Letters to the Editor. The American Society of Human Genetics, Am. J. Hum. Genet. 71:439441.
[14] Davis, S. C. (2002). Statistical Methods For The Analysis of Repeated Measurements, Springer Text in Statistics.
[15] Diaconis, P. (1977). Finite Forms of de Finetti Theorem on Exchangeability. Synthese, 36: 271. doi:10.1007/BF00486116
[16] George, E. O. and Kodell, L. R. (1995). Tests of Independence, Treatment Heterogeneity, and Dose-Related Trend With Exchangeable Binary Data. Journal of the American Statistical Association, Vol. 90, No. 431, pp. 871-879.
[17] Eldridge, M. S., Ukoumunne, C. O., Carlin, B. J. (2009). The Intra-Cluster Correlation Coefficient in Cluster Randomized Trials: A Review of Definitions. International Statistical Review, 77, 3, 378394.
[18] Fisher, R. A. (1925). Statistical Methods for Research Workers, Oliver and Boyed, Edinburg.
[19] Freeman, G. H. and Halton, J.H. (1951). Note on an Exact Treatment of Contingency Tables : Goodness of Fit and other Significance Problems. Biometrika, 38:141-149.
[20] Gibbons, D. J. and Chakraborti, S. (2003). Nonparametric Statistical Inference. Fourth Edition, Revised and Expanded.
[21] Hochberg, Y. (1988). A Sharper Bonferroni Procedure for Multiple Test of Significance. Biometrika. Vol. 75, No. 4 (Dec., 1988), pp. 800-802.
[22] Holm, S. (1979). A Simple Sequentially Rejective Multiple Test Procedure. Scandinavian Journal of Statistics, Vol. 6,, pp. 65-70.
[23] Hommel, G. (1988). A Stagewise Rejective Multiple Test Procedure Based on a Modified Bonferroni Test. Bimetrika, Vol. 75, pp. 383-386.
[24] Jan, S. , Jiří, V. and Ivan, S. (2000) , On the Life and Work of Zbynék Šidăk (1933-1999). Applications of Mathematics. Vol. 45, No. 5, 321-336.
[25] Kruskal, H. W. and Wallis, A. W. (1952). Use of Ranks in One-Criterion Variance Analysis. Journal of the American Statistical Association. Vol. 47, pp. 583-621.
[26] Kuk, Y. C. A. (2004). A Litter-Based Approach to Risk Assessment in Developmental Toxicity Studies via a Power Family of Completely Monotone Functions. Journal of the Royal Statistical Society. Series C (Applied Statistics). Vol. 53, pp. 369-386.
[27] Lancaster, H. 0. (1961). Significance Tests in Discrete Distributions. Journal of the American Statistical Association, Vol. 56, No. 294, pp. 223-234
[28] Leek, T. J. and Storey, D. J. (2008). A General Framework for Multiple Testing Dependence. Proceedings of the National Academy of Sciences of the United States of America. Vol. 105, pp. 18718-18723.
[29] Lunn D. A. and Davies, J. S. (1998). A Note on Generating Correlated Binary Variables . Biometrika, Vol. 85, No. 2, pp. 487-490.
[30] Luta, G., Koch, G., Cascio, W., and Smith, W. (1996). Categorical data analysis strategies for a cardiovascular study with small sample size and clustered binary responses. ASA Proceedings of the Section on Statistical Education,18-27.
[31] Mantel, N. (1980). Assessing Laboratory Evidence for Neoplastic Activity. International Biometric Society. Vol. 36, pp. 381-399.
[32] Mehta, R. C. (1994), The Exact Analysis of Contingency Tables in Medical Research. American Statistical Association. Vol. 1, pp. 21-40
[33] Mehta, R. C. and Patel, R. N. (1983). A Network Algorithm for Performing Fisher's Exact Test in $R \times C$ Tables with Given Row and Column Totals. Journal of the American Statistical Association. Vol. 78, pp. 427-434.
[34] Mehta, R. C., Patel, N. and Senchaudhuri, P. (1992). Exact Stratified Linear Rank Tests for Ordered Categorical and Binary Data. American Statistical Association. Vol. 1, No. 1 (1992), pp. 21-40.
[35] Mehta, R. C., Patel, N. (2011). IBM SPSS Exact Test.
[36] Patefield, M. W. (1981). Algorithm AS 159: An Efficient Method of Generating Random $R \times C$ Contingency Tables. Journal of the Royal Statistical Society. Series C (Applied Statistics), Vol. 30, No. 1, pp. 91-97.
[37] Prentice, R. L. and Zhao, L. P. (1991). Estimating equations for parameters in means and covariances of multivariate discrete and continuous responses. Biometrics,Vol. 47, No. 3 , pp. 825-839.
[38] Rao, K. N. J. and Scott, J. A. (1992). A Simple Method for the Analysis of Clustered Binary Data. International Biometric Society. Vol. 48, No. 2 , pp. 577-585.
[39] Rosner, B., Willet,W. C., Spigelman, D.(1989). Correction of logistic regression relative risk estimates and confidence intervals for systematic within-person measurement error. Statistics in Medicine. Vol. 8, pp. 1051-1061.
[40] Robert, P. C. and Casella, G. (2010). Introducing Monte Carlo Methods with R. Springer, New York.
[41] Ryan, M. L. and Molenberghs, G. (1999). An Exponential Family Model for Clustered Multivariate Binary Data. Environmetrics 10,279-300.
[42] Smyth, K. G. and Phipson, B. (2010). Permutation P-values Should Never Be Zero:Calculating Exact P-values When Permutations Are Randomly Drawn. Statistical Applications in Genetics and Molecular Biology. 9, No. 1, Article 39.
[43] Stefanescu, C., Turnbull, W.,B. (2003). Likelihood Inference for Exchangeable Binary Data with Varying Cluster Sizes. Biometrics. Vol. 59, 1, pp. 18-24
[44] Storey, D. J. (2003). The Positive False Discovery Rate: A Bayesian Interpretation and the q-Value. The Annals of Statistics. Vol. 31, No. 6, pp. 2013-2035
[45] Sulewski, P., Motyka, R. (2015). Power Analysis of Independence Testing For Contingency Tables. Scientific Journal of Polish Naval Academy. DOI: 10.5604/0860889X.1161260.
[46] Szabo, A., George, E. O . (2010). On The Use of Stochastic Ordering to Test for Trend with Clustered Binary Data. Biometrika, vol. 97, pp. 95108.
[47] Wenjian, Y. (2000). On Some Exact Statistical Procedures for Analyzing Correlated Binary Data. Doctor of Philosophy Degree Dissertation. University of Memphis.
[48] Williams, D. A. (1975). The Analysis of Binary Responses from Toxicological Experiments Involving Reproduction and Teratogenicity. Biometrics. Vol. 31, No. 4 , pp. 949-952.
[49] Zbynek, S. (1967). Rectangular Confidence Regions for the Means of Multivariate Normal Distributions. Journal of the American Statistical Association. Vol. 62, pp. 626-633.
[50] Zeger, S. L., Liang, Y. K. and Albert, S. P. (1988). Models for Longitudinal Data: A Generalized Estimating Equation Approach. Biometrics. Vol. 44, pp. 1049-1060.
[51] Zhen, P., Kuk, Y. C. A. (2007). Test of Marginal Compatibility and Smoothing Methods for Exchangeable Binary Data with Unequal Cluster Sizes. Biometrics. Vol. 63, pp. 218-227.

Appendices

APPENDIX A

COMPUTER PROGRAMMING CODES

Stratified Linear Exact Test

```
rm(list=ls())
library(CorrBin)
library(vcd)
4 library(coin)
data(shelltox)
#input data
data(egde)
8 edge <- egde # rename dataset because of typo in the code
9
shell=(xtabs(Freq ~ Trt+NResp+ClusterSize, data=shelltox ) )
1 1
c=shell
1 3
c=xtabs(Freq~ Trt+NResp+ClusterSize, data=edge)
#c=c[c(1, 2), ,]
1 6
1 7
    dim(c)
1 9
20
21 ## rank each stratum####
2 2
23 #### Wiloxon ranks of nij, midranks for ties####
24
25 midrankscores=function(c){
26
27
28
```

```
    d[1,] =0.5*(c[1,]+1 )
    d[2,]=c[1,]+0.5*(c[2,]+1)
    for (i in 3:dim(c)[1]){
    d[i,]=\operatorname{colSums}(c[1:(i-1),])+0.5*(c[i, ]+1)
    }
    return(d)
}
4 2
4 3
4 4
45 ####################
#### mid rank weights of the column sums
###||||## in each stratum
v=midrankscores(apply(colSums(c),2,rank))
####################
##### mid rank weights of the row sums
######## in each stratum
u=midrankscores(apply(apply(c,3,rowSums),2,rank))
multiply2=function(c,u,v) {
    ts=array (0,c(\operatorname{dim}(c)[1],\operatorname{dim}(c)[2],\operatorname{dim}(c)[3]))
    for (k in 1:dim(c)[3]){
```

```
6 2
6 3
6 4
6 5
6 6
6 7
68
69}
70
7 1
72
73 tobs=multiply2(c,u,v)[[1]]
ts=c ()
nsim=100000
for (j in 1:nsim){
    t=array(0,c(dim(c)[1], dim(c)[2], dim(c)[3]))
    for (i in 1:dim(c)[3]){
        t[,,i]=r2dtable(1, rowSums(c[,,i]), colSums(c[,, i ]))[[1]]
    }
    v=midrankscores(apply(colSums(t),2,rank))
    u=midrankscores(apply(apply(t, 3,rowSums),2,rank))
    ts[j]=multiply2(t,u,v)[[1]]
```

${ }_{98} \mathrm{p} \cdot$ value1 $=(\operatorname{length}(((\operatorname{ts}[\mathrm{ts}>=\operatorname{tobs}])))+1) /(\operatorname{nsim}+1)$
${ }_{99}$ p.value1
$04 \operatorname{pval}=0.5 *(\operatorname{length}(((\operatorname{ts}[\operatorname{ts}=\operatorname{tobs}])))) /(\operatorname{nsim})+(\operatorname{length}(((\operatorname{ts}[\operatorname{ts}>\operatorname{tobs}])))) /($
nsim)
pval
107 \# tobss=abs(tobs-mean (ts))
108 \# tnn=abs (ts-mean (ts))
109 \# twosidedpvalue $=(\operatorname{length}(((\operatorname{tnn}[\operatorname{tobss}<=\operatorname{tnn}])))+1) /(\operatorname{nsim}+1)$
110 \# twosidedpvalue
$111 \#$ midpvalue $=(\operatorname{length}(((\operatorname{tnn}[\operatorname{tobss}<=\operatorname{tnn}])))) /(\operatorname{nsim})+0.5 * \operatorname{mean}(\operatorname{tobss}=\operatorname{tnn})$
112 \# midpvalue
113 \# cbind (tobss, tnn)
114 \# which(tobss==tnn)
115 \#hist(ts, breaks="fd", col="gray", main="Distribution of test statistics
using midranks ", xlab="", prob=TRUE, ylab="P(T=t)")
116 \#abline ($\mathrm{v}=$ tobs, col="blue")
117 \#box (lty $=$ 'solid', col $=$ 'black')
118
119 \#png (" ~ /Documents/memphisclassesbooks/RESEARCH/Trend/w.png")
120 \#hist(ts, breaks="fd", col="gray", main=" ", xlab="", prob=TRUE, ylab="P(T=t
)")
121 \#abline ($\mathrm{v}=$ =tobs, col="blue")
122 \#box (lty $=$ 'solid', col $=$ 'black')
123 \#dev. off();
34 x=(apply(colSums(c),2,rank))
r=(apply(apply(c,3,rowSums) ,2,rank))
r[1,]=0.5*(r[1,]+1)
r[2,]=r[1,]+0.5*(r[2,]+1)
138
1 3 9
140
1 4 1
155 }
return(d)
}

```
```

1 5 8
1 5 9
60 \#\#||||||||||||||||||||
61 \#\#\#\# mid rank weights of the column sums
162 \#\#\#\#\#\#\#\#\#\# in each stratum
1 6 3
1 6 4 \mathrm { v } = \mathrm { midrankscores } (\operatorname { a p p l y } (\operatorname { c o l S u m s } (\mathrm { c }) , 2 , r a n k))
1 6 5
166 \#\#|||||||||||||||||||
167 \#\#\#\#\# mid rank weights of the row sums
168 \#\#\#\#\# in each stratus
1 6 9
170 r=(apply(apply(c,3,rowSums),2,rank))
171 u=matrix(0, dim(r)[1], dim(r) [2])
172 u[1,]=0.5*(r [1,]+1)
.73 u[2,]=r[1,]+0.5*(r[2,]+1)
1 7 4
1 7 5
1 7 6
1 7 7
1 7 8
7 9
ts=array(0,c(dim(c)[1], dim(c)[2], dim(c)[3]))
}
187
188 tss=sum(ts)
1 8 9
return(list(tss))
190 }

```
```

1 9 1
1 9 2
1 9 3
94
1 9 5
196 ts=c ()
nsim}=100
for (j in 1:nsim){
t=array(0,c(dim(c)[1], dim(c)[2], dim(c)[3]))
2 0 1
202
203

```
```

 t[,,i]=r2dtable(1, rowSums(c[,, i]), colSums(c[,, i]))[[1]]
 }
 v=midrankscores(apply(colSums(t),2,rank))
 r=(apply(apply(t,3,rowSums),2,rank))
 u=matrix(0, dim(r)[1], dim(r)[2])
 u[1,]=0.5*(r[1,]+1)
 u[2,]=r[1,]+0.5*(r[2,]+1)
 ts[j]=multiply2(t,u,v)[[1]]
 }
    ```
for (i in 1: \(\operatorname{dim}(\mathrm{c})[3])\{\)
```

24 p.value1=(length (((ts[ts>=tobs]))) +1)/(nsim+1)
25 p.value1
2 2 6
2 2 7
2 2 8
29 \#\#\# mid p-value \#\#\#\#\#\#\#\#\#\#\#
pval=0.5*(length(((ts[ts=tobs]))))/(nsim)+(length(((ts[ts>tobs]))))/(
nsim)
pval
rm(list=ls())
library(CorrBin)
library(vcd)
library(coin)
data(shelltox)
shelltox=shelltox
head(shelltox)
\#input data
data(egde)
edge <- egde \# rename dataset because of typo in the code
shell=(xtabs(Freq ~ Trt+NResp+ClusterSize, data=shelltox))
shell1=(xtabs(Freq ~ Trt+NResp+ClusterSize, data=shelltox)) [c(1,4), ,]
1 5
1 6
17 c=shell
c=xtabs(Freq ~ Trt+NResp+ClusterSize, data=edge)
\#c=c[c(1, 2), ,]
\#\#\#\#\#\#\#\#\#\#\#Cochran-Armitage Trend Test w=j-1\#\#\#

rank of columns

2 3

```
```

v=seq(1, dim (c)[2],1)-1
u=seq(1, dim(c)[1],1)-1
2 6
27

observed test statistic

tobs=apply(u*c,3,function(x) t(x))*v
tobs=apply(tobs,1,sum)
sum(tobs)
tob=(apply((apply(u*c,3,function(x) t(x))*v),2,sum))
sum(tob)
multiply3=function(c,u,v) {
ts=array (0,c(dim(c)[1],\operatorname{dim}(c)[2],\operatorname{dim}(c)[3]))
for (k in 1:dim(c)[3]){
ts[,,k]=t(u[,k]*c[,,k])*v[,k]
}
tss=(ts)
return(list(tss))
}
6
4 7
4 8
51 \#\#\#\#\#\#\#\#\#\#\#\#Asymptotic pvalue of Linear by Linear Association Test\#\#\#\#\#\#
\#\#\#\#\#\#\#\#\#\#\#\# u=0,1,2,3 and v=0,1,2,3,4,5,6 \#
n=colSums(c)
m=apply(c,3,rowSums)
n=apply(c,3,colSums)
N=apply(c,3,sum)

```
```

5 7
v1=matrix(v, dim(c)[2], dim(c)[3])
u1=matrix(u,\operatorname{dim}(c)[1], dim(c)[3])
6 1
6 2
tobs=apply(multiply3(c,u1,v1)[[1]],3,sum)
sum(tobs)
mean=colSums (u1*m)*colSums(v1*n)/N
sum(mean)
var=((colSums ((u\mp@subsup{1}{}{\wedge}2)*m)-(\operatorname{colSums}(u1*m)^2)/N)*(\operatorname{colSums}(v\mp@subsup{1}{}{\wedge}2*n)-(\operatorname{colSums}(
v(*n) ^2)/N))/N
tstar=(sum(tobs-mean)^2)/sum(var)
pchisq(tstar, df=1, ncp = 0, lower.tail = F, log.p = FALSE)
pchisq(tstar, df=1, ncp = 0, lower.tail = T, log.p = FALSE)
1-pchisq(tstar, df=1, ncp = 0, lower.tail = T, log.p = FALSE)
\#

wilcoxon scores\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#

n=colSums(c)
m=apply(c,3,rowSums)
n=apply(c,3,colSums)
N=apply(c,3,sum)
midrankscores=function(c){

```
```

 d=matrix(0, dim(c)[1], dim(c)[2])
 d[1,]=0.5*(c[1,]+1)
 d[2,]=c[1,]+0.5*(c[2,]+1)
 for (i in 3:dim(c)[1]){
 d[i,]= colSums(c[1:(i-1),])+0.5*(c[i,]+1)
 }
 return(d)
 }
multiply 3=function(c,u,v) {
ts=array (0,c(\operatorname{dim}(c)[1],\operatorname{dim}(c)[2],\operatorname{dim}(c)[3]))
for (k in 1:\operatorname{dim}(\textrm{c})[3]){
ts[,, k]=t(u[, k]*c[,, k])*v[, k]
}
tss=(ts)
return(list(tss))
}

```
```

1 2 2
v1=midrankscores(apply(colSums(c), 2, rank))
u1=midrankscores(apply(apply(c,3,rowSums),2,rank))
tobs=apply(multiply 3(c,u1,v1)[[1]], 3, sum)
mean=colSums (u1*m)*\operatorname{colSums}(\textrm{v}1*\textrm{n})/\textrm{N}
1 3 0
1 3 1
32 var=((colSums ((u1^2)*m)-(colSums (u1*m)^2)/N)*(\operatorname{colSums (v1^2*n)}-(\operatorname{colSums}(
v}1*\textrm{n}\mp@subsup{)}{}{\wedge}2)/\textrm{N}))/\textrm{N
1 3 3
1 3 4
1 3 5
1 3 6
1 3 7
1 3 8
39 pchisq(tstar, df=1, ncp = 0, lower.tail = F, log.p = FALSE)
1 4 0
1 4 1 ~ p c h i s q (t s t a r , ~ d f = 1 , ~ n c p = 0 , ~ l o w e r . t a i l ~ = ~ T , ~ l o g . p = ~ F A L S E) ~

```

\section*{Simulation of Correlated Binary Data}
```

set.seed (148)
2 N}<<-3
meanlambda<-5
p=.8
q=.1
6
7
8 \#\#||
9 \#\#generating observed variable in a cluster

```
```

n<-rep(0,N) \#size of clusters

```
n<-rep(0,N) #size of clusters
r<-rep(0,N) #response type one
r<-rep(0,N) #response type one
    for (i in 1:N) {
    for (i in 1:N) {
    r [ i ] <-0
    r [ i ] <-0
        n[i]<-rpois(1,meanlambda)
        n[i]<-rpois(1,meanlambda)
        Z1<-rbinom(1,1,p)
        Z1<-rbinom(1,1,p)
            for (j in 1:n[i]){
            for (j in 1:n[i]){
        Y1<-rbinom(1,1,p)
        Y1<-rbinom(1,1,p)
        U<-rbinom (1,1,q)
        U<-rbinom (1,1,q)
        x<-(1-U)*Y1+U*Z1
        x<-(1-U)*Y1+U*Z1
            if (x==0) r[i]<-r [ i ] +1
            if (x==0) r[i]<-r [ i ] +1
        }
        }
        obs1<-cbind(r,n)
        obs1<-cbind(r,n)
    }
    }
    obs1
```

 obs1
    ```


```

 ##generating observed variable in a cluster
    ```
```

 ##generating observed variable in a cluster
    ```
```

\#set.seed (148)

```
#set.seed (148)
N=100
N=100
    n<-rep(0,N) #size of clusters
    n<-rep(0,N) #size of clusters
    r<-rep(0,N) #response type one
    r<-rep(0,N) #response type one
    treatment=rep (0,N)
    treatment=rep (0,N)
    for (i in 1:N){
    for (i in 1:N){
    #n[i]<-rpois(1,meanlambda)
    #n[i]<-rpois(1,meanlambda)
    n[i]=sample(seq (1,3))
    n[i]=sample(seq (1,3))
    Z1<-rbinom(1,1,p)
    Z1<-rbinom(1,1,p)
    p= runif(n=1, min = 0, max = 0.5)
    p= runif(n=1, min = 0, max = 0.5)
    q=2*p
    q=2*p
    if(q<<=0.25){
    if(q<<=0.25){
        treatment[i] <- 0
        treatment[i] <- 0
    } else if(q>0.25& q <=0.6){
    } else if(q>0.25& q <=0.6){
        treatment [i] <- 50
        treatment [i] <- 50
    }else {
    }else {
        treatment[i] <- 100
        treatment[i] <- 100
    }
    }
    x=c()
    x=c()
    for (j in 1:n[i]){
    for (j in 1:n[i]){
        Y1<-rbinom(1,1,p)
```

 Y1<-rbinom(1,1,p)
    ```
```

76
77
105 \#set . seed (148)

```
\(106 \mathrm{~N}=100\)
\(107 \mathrm{n}<-\operatorname{rep}(0, \mathrm{~N})\) \#size of clusters
\(08 \mathrm{r}<-\mathrm{rep}(0, \mathrm{~N})\) \#response type one
```

1 0 9
treatment=rep (0,N)
meanlambda=3
1 1 1
1 1 2 ~ f o r ~ (i ~ i n ~ 1 : N) \{ ,
1 1 3
114 n[i]<-rpois(1, meanlambda)
115 \#n[i]=sample(seq (1,3))
116 Z1<-rbinom(1,1,p)
1 1 7
118
119 q}=2*
1 2 0
1 2 1
122 treatment[i] <- 0
1 2 3
1 2 4
1 2 5
1 2 6
127
128
1 2 9
1 3 0
1 3 1
1 3 2
x[j]<-(1-U)*Y1+U*Z1
152 obs
153
$154 \mathrm{~d}=\mathrm{xtabs}\left({ }^{\sim} \mathrm{r}+\mathrm{n}+\right.$ treatment, data=obs $)$
155 d
$156 \operatorname{apply}(\mathrm{~d}, 3$, sum $)$
157
158
$159 \mathrm{c}=\mathrm{xtabs}(\sim \mathrm{r}+$ treatment +n , data=obs)
160 C
161
$162 \mathrm{~N}<-30$
163 meanlambda<-5
$164 \mathrm{p}=.8$
$165 \mathrm{q}=.1$
166
167 niter <-100
168 LAMBDA=matrix (0, niter , 6)
169
170
171
172 \# \#
173 \# \#\#generating observed variable in a cluster
$174 \quad \mathrm{~N}=100$

```
```

175 \#
176 \#
177 \# Treatment=rep (0,N)
178 \# Frequency=rep (0,N)
179 \# meanlambda=1
180 \# p=0.2
181 \# q=0.5
182 \# for (i in 1:N){
183 \# r [i]<-0
184 \#
185\# \#n[i]<-rpois(1,meanlambda)
186 \# n[i]<-sample(1:5,1, replace=T)
187 \# Z1<-rbinom (1,1,p)
188 \#
189 \# for (j in 1:n[i]){
190\# Y1<-rbinom (1,1,p)
191 \#
192 \#
193 \# U<-rbinom (1,1,q)
194 \# x<-(1-U)*Y1+U*Z1
195\# if (x==0)r[i]<-r [i]+1
196 \#
197 \# }
198 \# Frequency= sample(0:5,N, replace=T)
199 \# obs1<-cbind(r,n,Frequency)
200\# }
201 \#
202 \#
203 \#
204 \#
205 \# \#c1=xtabs(~r+n, data=obs1)
206 \# c1
207 \#

```
```

208 \#
209 \#
210 \# \#\#generating observed variable in a cluster
211 \# N=100
212 \# n<-rep(0,N) \#size of clusters
2 1 3 ~ \# ~ r < - r e p (0 , N) ~ \# r e s p o n s e ~ t y p e ~ o n e
214 \# Treatment=rep (0,N)
215 \# Frequency=rep (0,N)
216 \# sample(0:1,N, replace=T)
217 \# meanlambda=1
218 \# p=0.2
219 \# q=0.5
220 \# x=c ()
221 \# for (i in 1:N){
222 \# \#r [i]<-0
223 \# r=c ()
224 \# \# n[i]<-rpois(1,meanlambda)
225 \# n[i]<-sample (1:5,1, replace=T)
226 \#
227 \# Z1<-rbinom (1,1,p)
228 \#
229 \# for (j in 1:n[i]){
230\# Y1<-rbinom (1,1,p)
231 \#
232 \#
233 \# U<<rbinom (1,1,q)
234 \#
235\# x [j]<-(1-U)*Y1+U*Z1
236 \# \#if (x==0) r[i]<-r[i]+1
237 \#
238 \#
239 \# }
240 \# r[i]=sum(x)

```
```

241 \# Frequency= sample(0:5,N, replace=T)
242 \# obs2<-cbind(r,n, Frequency)
243 \# }
244 \#
245 \#
246 \#
247 \# c 2= xtabs(Frequency r r+n, data=obs2)

\#c2=xtabs(~r+n, data=obs2)

c2

250 \#
251 \# c= array(c(c1,c2),c(dim(c2)[1], dim(c2)[2],2))
252 \# c
253 apply(c,3, fisher.test (c, B=2000,workspace=2e+10))
2 5 4
255 a=matrix (0,2,2)
256
257
258
259 set.seed (3486)
260 library(CorrBin)
library(lattice)
ss <- expand.grid(Trt=0:2, ClusterSize=1:10, Freq=5)
\#Trt is converted to a factor
rd <- ran.CBData(ss, p.gen.fun=function(g) 0.2+0.1*g)
rd <- ran.CBData(ss, p.gen.fun=function(g) 0.1*g)
rd
c=xtabs(Freq ~ Trt+NResp+ClusterSize, data=rd)
268
269 ss$ClusterSize[1]
270 cs <- ss$ClusterSize[1]
271 trt <- unclass(ss$Trt)[1]
272 n <- ss$Freq[1]
273 p <- p.gen.fun(trt)

```
```

2 7 4

```
    rho <- rho.gen.fun(trt)
```

 rho <- rho.gen.fun(trt)
 probs <- pdf.fun(p, rho, cs)
 probs <- pdf.fun(p, rho, cs)
 r1= rmultinom(1, size = 17, prob =c(0.7,0.7,0.7,0.7,0.7))
r1= rmultinom(1, size = 17, prob =c(0.7,0.7,0.7,0.7,0.7))
r2=rmultinom(1, size = 10, prob = c(0.5,0.5,0.5,0.5,0.5))
r2=rmultinom(1, size = 10, prob = c(0.5,0.5,0.5,0.5,0.5))
r}3=rmultinom(1, size = 10, prob = c(0.1,0.1,0.1,0.1,0.1))
r}3=rmultinom(1, size = 10, prob = c(0.1,0.1,0.1,0.1,0.1))
apply(cbind(r1,r2,r3),2,sum)
apply(cbind(r1,r2,r3),2,sum)
pr <- c(1,3,6,10) \# normalization not necessary for generation
pr <- c(1,3,6,10) \# normalization not necessary for generation
rmultinom(10, 20, prob = pr)
rmultinom(10, 20, prob = pr)
rm(list=ls())
rm(list=ls())
\#set.seed (148)
\#set.seed (148)
N}<-5
N}<-5
meanlambda<-10
meanlambda<-10
p=.1
p=.1
q=.3
q=.3
n=c()
n=c()
z=c()
z=c()
x=c()
x=c()
y=c()
y=c()
u=c ()
u=c ()
r=c ()
r=c ()
s=c ()
s=c ()
c=c ()
c=c ()
for (j in 1:N) {
for (j in 1:N) {
y<-rbinom (1,1,p)
y<-rbinom (1,1,p)
u<-rbinom (1,1,p)
u<-rbinom (1,1,p)
n[j]=rpois(1, meanlambda)
n[j]=rpois(1, meanlambda)
\#n[j]= sample(1:10,1, replace=T)
\#n[j]= sample(1:10,1, replace=T)
\#g=NULL
\#g=NULL
g=c()

```
        g=c()
```

```
        for(i in 1:n[j]){
```

 for(i in 1:n[j]){
 z<-rbinom (1,1,p)
 z<-rbinom (1,1,p)
 x =(1-u) *y+u*z
 x =(1-u) *y+u*z
 g=c(g, x)
 g=c(g, x)
 r[j] =sum(g)
 r[j] =sum(g)
 c[j]=length(g)
 c[j]=length(g)
 }
 }
 }
 }
 obs1=cbind(r=r,n=c,t=rep(1, length(r)))
 obs1=cbind(r=r,n=c,t=rep(1, length(r)))
 #xtabs(~r+n, data=obs1)
 #xtabs(~r+n, data=obs1)
 p=.5
 p=.5
 q=.3
 q=.3
 n=c()
 n=c()
 z=c()
 z=c()
 x=c()
 x=c()
 y=c()
 y=c()
 u=c ()
 u=c ()
 r=c ()
 r=c ()
 s=c ()
 s=c ()
 c=c ()
 c=c ()
 for (j in 1:N) {
 for (j in 1:N) {
 y<-rbinom (1,1,p)
 y<-rbinom (1,1,p)
 u<-rbinom (1,1,p)
 u<-rbinom (1,1,p)
 n[j]=rpois(1, meanlambda)
 n[j]=rpois(1, meanlambda)
 #n[j]= sample(1:10,1, replace=T)
 #n[j]= sample(1:10,1, replace=T)
 #g=NULL
 #g=NULL
 g=c()
 g=c()
 for(i in 1:n[j]){
    ```
        for(i in 1:n[j]){
```

```
                z<-rbinom(1,1,p)
```

 z<-rbinom(1,1,p)
 x =(1-u) *y+u*z
 x =(1-u) *y+u*z
 g=c(g, x)
 g=c(g, x)
 r [j] =sum(g)
 r [j] =sum(g)
 c[j]=length(g)
 c[j]=length(g)
 }
 }
 }
 }
 obs2=cbind(r=r,n=c,t=rep(2, length(r)))
 obs2=cbind(r=r,n=c,t=rep(2, length(r)))
 obs= rbind(obs1,obs2)
 obs= rbind(obs1,obs2)
 c= xtabs(~ t+r+n, data=obs)
 c= xtabs(~ t+r+n, data=obs)
 c
    ```
    c
```



```
    s.pvalue=c()
```

 s.pvalue=c()
 for (i in 1:10) {
 for (i in 1:10) {
 N}<-5
 N}<-5
 meanlambda<-10
 meanlambda<-10
 p1=.1
 p1=.1
 q1=.3
 q1=.3
 n=c()
 n=c()
 z=c()
 z=c()
 x=c()
 x=c()
 y=c()
    ```
    y=c()
```

```
\(\mathrm{u}=\mathrm{c}()\)
```

$\mathrm{u}=\mathrm{c}()$
$\mathrm{r}=\mathrm{c}()$
$\mathrm{r}=\mathrm{c}()$
$\mathrm{s}=\mathrm{c}()$
$\mathrm{s}=\mathrm{c}()$
$\mathrm{c}=\mathrm{c}()$
$\mathrm{c}=\mathrm{c}()$
for (j in 1:N) $\{$
for (j in 1:N) $\{$
$\mathrm{y}<-\operatorname{rbinom}(1,1, \mathrm{p} 1)$
$\mathrm{y}<-\operatorname{rbinom}(1,1, \mathrm{p} 1)$
$u<-\operatorname{rbinom}(1,1, p 1)$
$u<-\operatorname{rbinom}(1,1, p 1)$
$\mathrm{n}[\mathrm{j}]=\operatorname{rpois}(1$, meanlambda $)$
$\mathrm{n}[\mathrm{j}]=\operatorname{rpois}(1$, meanlambda $)$
$\mathrm{g}=\mathrm{c}()$
$\mathrm{g}=\mathrm{c}()$
for (i in 1:n[j])\{
for (i in 1:n[j])\{
$\mathrm{z}<-\operatorname{rbinom}(1,1, \mathrm{p} 1)$
$\mathrm{z}<-\operatorname{rbinom}(1,1, \mathrm{p} 1)$
$\mathrm{x}=(1-\mathrm{u}) \quad * \mathrm{y}+\mathrm{u} * \mathrm{z}$
$\mathrm{x}=(1-\mathrm{u}) \quad * \mathrm{y}+\mathrm{u} * \mathrm{z}$
$\mathrm{g}=\mathrm{c}(\mathrm{g}, \mathrm{x})$
$\mathrm{g}=\mathrm{c}(\mathrm{g}, \mathrm{x})$
$\mathrm{r}[\mathrm{j}]=\operatorname{sum}(\mathrm{g})$
$\mathrm{r}[\mathrm{j}]=\operatorname{sum}(\mathrm{g})$
$\mathrm{c}[\mathrm{j}]=\operatorname{length}(\mathrm{g})$
$\mathrm{c}[\mathrm{j}]=\operatorname{length}(\mathrm{g})$
\}
\}
\}
\}
$\operatorname{obs} 1=\operatorname{cbind}(r=r, n=c, t=r e p(1, \operatorname{length}(r)))$
$\operatorname{obs} 1=\operatorname{cbind}(r=r, n=c, t=r e p(1, \operatorname{length}(r)))$
$\mathrm{p} 2=.5$
$\mathrm{p} 2=.5$
$\mathrm{q} 2=.3$
$\mathrm{q} 2=.3$
$\mathrm{n}=\mathrm{c}(\mathrm{)}$
$\mathrm{n}=\mathrm{c}(\mathrm{)}$
$\mathrm{z}=\mathrm{c}$ ()
$\mathrm{z}=\mathrm{c}$ ()
$\mathrm{x}=\mathrm{c}()$
$\mathrm{x}=\mathrm{c}()$
$\mathrm{y}=\mathrm{c}()$
$\mathrm{y}=\mathrm{c}()$
$\mathrm{u}=\mathrm{c}()$
$\mathrm{u}=\mathrm{c}()$
$\mathrm{r}=\mathrm{c}(\mathrm{)}$
$\mathrm{r}=\mathrm{c}(\mathrm{)}$
$\mathrm{s}=\mathrm{c}(\mathrm{)}$

```
    \(\mathrm{s}=\mathrm{c}(\mathrm{)}\)
```

```
c=c ()
```

c=c ()
for (j in 1:N){
for (j in 1:N){
y<-rbinom(1,1,p2)
y<-rbinom(1,1,p2)
u<-rbinom(1,1,p2)
u<-rbinom(1,1,p2)
n[j]=rpois(1,meanlambda)
n[j]=rpois(1,meanlambda)
g=c()
g=c()
for(i in 1:n[j]){
for(i in 1:n[j]){
z<-rbinom(1,1,p2)
z<-rbinom(1,1,p2)
x =(1-u) *y+u*z
x =(1-u) *y+u*z
g=c(g, x)
g=c(g, x)
r [j] =sum(g)
r [j] =sum(g)
c[j]=length(g)
c[j]=length(g)
}
}
}
}
obs2=cbind (r=r,n=c,t=rep (2, length(r)))
obs2=cbind (r=r,n=c,t=rep (2, length(r)))
obs= rbind(obs1,obs2)
obs= rbind(obs1,obs2)
c= xtabs(~ t+r+n, data=obs)
c= xtabs(~ t+r+n, data=obs)
c
c
s.pvalue[i]=Homogeneity(c,nsim=1000)
s.pvalue[i]=Homogeneity(c,nsim=1000)
}
s.pvalue

```
    s.pvalue
```

```
4 3 9
    440
    4 4 1
    442
    4 4 3
    444
    4 4 5
    4 4 6
    447
    448
    4 4 9
\(\mathrm{p}=.5\)
\(\mathrm{q}=.3\)
rm(list \(=1 \mathrm{~s}())\)
genfunc=function (p, q, meanlambda, N\()\{\)
47
448
49
\# N \(<-30\)
\# meanlambda<-5
\# p=. 8
\# q \(=.1\)
```



```
\#\#generating observed variable in a cluster
n<-rep (0,N) \#size of clusters
\(\mathrm{r}<-\mathrm{rep}(0, \mathrm{~N})\) \#response type one
for (i in \(1: N)\{\)
r \([\mathrm{i}]<-0\)
\(\mathrm{n}[\mathrm{i}]<-\mathrm{rpois}(1\), meanlambda)
\(\mathrm{Z} 1<-\operatorname{rbinom}(1,1, \mathrm{p})\)
for ( j in 1:n[i])\{ \(\mathrm{Y} 1<-\operatorname{rbinom}(1,1, \mathrm{p})\)
```

```
                U<-rbinom(1,1,q)
```

 U<-rbinom(1,1,q)
 x<-(1-U)*Y1+U*Z1
 x<-(1-U)*Y1+U*Z1
 if (x==0) r[i]<-r[i]+1
 if (x==0) r[i]<-r[i]+1
 }
 }
 obs1<-cbind(r,n)
 obs1<-cbind(r,n)
 }
 }
 obs1
 obs1
 return(obs1)
 return(obs1)
 }
 genfunc(p=0.1,q=0.2,meanlambda = 5,N=30)
 genfunc(p=0.1,q=0.2,meanlambda = 5,N=30)
 obs1=\operatorname{cbind}(\operatorname{genfunc}(p=0.1,q=0.2,meanlambda=5,N=30),Trt=rep (1,N=30))
 obs1=\operatorname{cbind}(\operatorname{genfunc}(p=0.1,q=0.2,meanlambda=5,N=30),Trt=rep (1,N=30))
 obs2=cbind (genfunc (p=0.1,q=0.2,meanlambda=5,N=30),Trt=rep (2,N=30))
 obs2=cbind (genfunc (p=0.1,q=0.2,meanlambda=5,N=30),Trt=rep (2,N=30))
 obs= data.frame(rbind(obs1,obs2))
 obs= data.frame(rbind(obs1,obs2))
 c= xtabs(~}\operatorname{Trt+r+n, data=obs)
 c= xtabs(~}\operatorname{Trt+r+n, data=obs)
 c
    ```
```

505
s.pvalue=c()
for (i in 1:1000){
obs1=cbind(genfunc(p=0.1,q=0.9,meanlambda = 10,N=50),Trt=rep (1,N=50))
obs2=cbind(genfunc(p=0.9,q=0.9,meanlambda = 10,N=50),Trt=rep (2,N=50))
obs= data.frame(rbind(obs1,obs2))
c= xtabs(~ Trt+r+n, data=obs)
s.pvalue[i]=Homogeneity(c,nsim=1000)
avg.pvalue=mean(s.pvalue)
}
avg.pvalue

```
    Simulation of Correlated Binary Data by Inverse Transform of the q-power
    Distribution
rm(list=ls())
library (CorrBin)
data(egde)
edge \(<-\) egde
data(shelltox)
6
7
8
```

10 \#\#\#\# Generate random variaavles R with the

```

```

11 Inverse transform method from the logistic distribution

```

```

beta1 $=0.4553394 ;$
beta $2=0.0042140 ;$
dose $=c(0,25)$
$\#$ beta1 $=4.9568$
$\#$ beta2 $=-5.54101$
$\#$ beta=beta $1+$ beta $2 *($ dose $/ 100)$;
beta=beta $1+$ beta $2 *($ dose $) ;$
logistic. pdf $<-$ function (n, beta) $\{$
$\mathrm{v}=\mathrm{c}()$
for (r in 0:n) \{
$\mathrm{k}=0:(\mathrm{n}-\mathrm{r})$
$\mathrm{v}[\mathrm{r}+1]=\operatorname{choose}(\mathrm{n}, \mathrm{r}) * \operatorname{sum}\left((-1)^{\wedge} \mathrm{k} * \operatorname{choose}(\mathrm{n}-\mathrm{r}, \mathrm{k}) *(2 /(1+\exp ((\right.$ beta $) * \log (\mathrm{r}$
$+(\mathrm{k}+1))$))
\}
$\mathrm{v}=\operatorname{pmax}(\operatorname{pmin}(\mathrm{v}, 1), 0)$
return (v)
\}
cdf=function (n, beta) $\{c=c() ; c=c u m s u m(l o g i s t i c . p d f(n, b e t a)) ; ~ r e t u r n(c)\}$

```
```

cdf(50,2)

```
generate. r=function (beta, \(n\) ) \{
    \(\mathrm{c}=\mathrm{c}(0, \operatorname{cdf}(\mathrm{n}\), beta \())\);
    \(u=r u n i f(1)\);
    for (i in 2:length(c))\{
        if \((\quad(u>=c[i-1]) \&(u<c[i]) \quad)\{\)
            \(\mathrm{r}=(\mathrm{i}-2)\)
        \}
    \}
    return(list \((\mathrm{n}=\mathrm{n}, \mathrm{r}=\mathrm{r}, \mathrm{u}=\mathrm{u})\) )
\}
generate.r(beta=beta[1], \(\mathrm{n}=5)\)
generate.r(beta=beta [2], \(n=5\) )
s.pvalue=c ()
for (i in 1:100)\{
    \(\mathrm{n}=50\)
    \(\mathrm{s} 1=\) sapply (rpois \((\mathrm{n}\), lambda \(=5)\), generate. \(\mathrm{rq}, \mathrm{p}=0.1, \mathrm{rho}=0.3)\)
    \(\mathrm{s} 2=\operatorname{sapply}(\mathrm{rpois}(\mathrm{n}\), lambda \(=5)\), generate. \(\mathrm{rq}, \mathrm{p}=0.1, \mathrm{rho}=0.3)\)
    obs1=cbind (r=unlist (s1[2,]),n=unlist(s1[1,]), Trt=rep(1,n))

\#\#\#\#\#\# Generate random variaavles R with the
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#n
\#\#\#\#\#\# Inverse transform method from \(q\) power distribution


91 qpower_pdf \(<-\) function (p, rho, \(n)\{\)
\(\mathrm{q}<-1-\mathrm{p}\)
gamma \(<-\log 2\left(\log \left(q^{\wedge} 2+r h o * q *(1-q)\right) / \log (q)\right)\)
pr \(<-\) numeric \((n+1)\)
for \((r\) in \(0: n)\{\)
\(\mathrm{k}<-0: r\)
\(\operatorname{pr}[\mathrm{r}+1]<-\operatorname{choose}(\mathrm{n}, \mathrm{r}) * \operatorname{sum}\left((-1)^{\wedge} \mathrm{k} * \operatorname{choose}(\mathrm{r}, \mathrm{k}) * \mathrm{q}^{\wedge}\left((\mathrm{n}-\mathrm{r}+\mathrm{k})^{\wedge}\right.\right.\)
gamma) )
```

98
}
pr<- pmax(pmin(pr,1),0) \#to account for numerical imprecision
pr
}
1 0 2
103
1 0 4
cdfq=function(p, rho, n){c=c(); c=cumsum(qpower_pdf(p,rho,n)); return(c)
}
1 0 6
107 generate.rq=function(p, rho, n){
108
109 c=c(0, cdfq(p, rho, n));
110 u=runif(1);
1 1 1
112 for (i in 2:length(c)){
113 if((u>=c[i - 1])\&(u<c[i])){
114 r=(i -2)
1 1 5
116
117 }
118 }
return(list(n=n,r=r,u=u))
1 2 0
121}
1 2 2
1 2 3
124\# generate.rq(p=0.9,rho=0.9,n=5)
125\# cdfq(p=0.9,rho =0.9,n=8)
126 \# sapply(rpois (n=5,lambda = 5), generate.rq, p=0.1, rho= - 0.9)
127 \# p=0.9
128 \# q = 0.1
129 \# rho=0.9

```
```

1 3 0
1 3 1
1 3 2
1 3 3
1 3 4
1 3 5
136 for (i in 1:1000){
1 3 7
138
39
4 0
4 1
1 4 2
1 4 3
1 4 4
1 4 5
1 4 6
1 4 7
48 obs= data.frame(rbind(obs1,obs2))
1 4 9
150
1 5 1
1 5 2
153
1 5 4
1 5 5
1 5 6
157 avg.pvalue=mean(s.pvalue)
158}
159 avg.pvalue

```
1 6 3
1 6 4
1 6 5
1 6 6 ~ \#
```



```
1 6 7
####### Generate random variaavles R with the
```



```
168 Inverse transform method from the Beta-Binomial distribution
```



```
1 6 9
170
171 betabin_pdf <- function(p, rho, n){
    a <- p*(1/rho - 1)
    b}<-(1-\textrm{p})*(1/\mathrm{ rho - 1)
    k<- 0:n
    pr <- choose(n, k)*beta(a+k, b+n-k)/beta(a,b)
        return(pr)
178 }
1 7 9
80 betabin_pdf(0.2,.3,5)
1 8 1
182 cdfbb=function(p, rho, n){c=c(); c=cumsum(betabin_pdf(p,rho,n)); return(c
        ) }
    cdfbb(p=0.2,rho = 0.3,n=8)
    generate.rbb=function(p, rho, n){
    c=c(0, cdfq(p, rho, n));
    u=runif(1);
    for (i in 2:length(c)){
```

 \}
 if \((\quad(u>=c[i-1]) \&(u<c[i]) \quad)\{\)
 \(r=(i-2)\)
 \}
 \}
 return(list \((n=n, r=r, u=u))\)
 generate. \(\mathrm{rbb}(\mathrm{p}=0.2, \mathrm{rho}=0.3, \mathrm{n}=8)\)
 s.pvalue=c ()
 for (i in 1:100)\{
$\mathrm{n}=50$
$\mathrm{s} 1=$ sapply (rpois $(\mathrm{n}$, lambda $=5)$, generate. $\mathrm{rbb}, \mathrm{p}=0.1, \mathrm{rho}=0.3)$
$\mathrm{s} 2=\operatorname{sapply}(\mathrm{rpois}(\mathrm{n}$, lambda $=5)$, generate. $\mathrm{rbb}, \mathrm{p}=0.1, \mathrm{rho}=0.3)$
obs1=cbind (r=unlist (s1[2, $]), n=u n l i s t(s 1[1]),, \operatorname{Tr} t=r e p(1, n))$
$\operatorname{obs} 2=\operatorname{cbind}(r=u n l i s t(s 2[2]),, n=u n l i s t(s 2[1]),, \operatorname{Trt}=r e p(2, n))$
obs= data.frame(rbind (obs1, obs2))
$\mathrm{c}=\mathrm{xtabs}\left({ }^{\sim} \operatorname{Tr} \mathrm{t}+\mathrm{r}+\mathrm{n}\right.$, data=obs)
229}
30 a

```
234 \#\#\#\#\#\#\# plots of intracluster correlation
\({ }_{238} \mathrm{p}=\mathrm{c}(0.4948332,0.5035944,0.5005315)\)
\(239 \mathrm{rho}=\mathrm{c}(0.3,0.6,0.9)\)
240 plot(rho,p)
```


Multiple Testing

alpha=c $(0.1,0.05,0.01,0.001)$
$\mathrm{n}=100$
$\mathrm{s}=\mathrm{seq}(1, \mathrm{n}, 1)$
$\mathrm{p} 1=1-(1-0.1)^{\wedge} \mathrm{s}$
$\mathrm{p} 2=1-(1-0.05)^{\wedge} \mathrm{s}$
$\mathrm{p} 3=1-(1-0.01)^{\wedge} \mathrm{s}$
$\mathrm{p} 4=1-(1-0.001)^{\wedge} \mathrm{s}$

8
plot(s, p1, lwd=2, col="blue", pch=2)

```
lines(s, p2, type="l", lwd=2, col="red")
lines(s, p3, type="l", lwd=2, col="green")
lines(s, p4, type="l", lwd=2, col="pink")
# set up graph
xrange <- range(s)
yrange <- round(range(p))
colors <- rainbow(length(alpha))
p=cbind (p1, p2, p3,p4)
plot(xrange, yrange, type="n",
    xlab="s",
    ylab="P(at least one Type I Error)")
#panel.first=grid()
# add power curves
opts=c("p","l","o","b")
for (i in 1:length(alpha)){
    lines(s, p[,i], type=opts[i], lwd=1, col=colors[i],cex=0.5)
    }
30
31 # add annotation (grid lines, title, legend)
    abline(v=0, h=seq(0,yrange[2],0.10), lty=2, col="grey89")
    abline(h=0, v=seq(0,xrange[2],10), lty =2,
        col="grey89")
    title("Graph of different type-I error rates levels \n")
    #legend("topright",1, alpha, title="alpha", opts)
    legend (xrange[1], yrange[2], alpha, cex=0.8, col=colors,
        pch=plotchar, lty=linetype, title="alpha")
    #png(" ~ /Documents/memphisclassesbooks /RESEARCH/Trend/mult . png")
    #matplot(s,p, pch=c(15,16,17,20), col = rainbow(4),ylab="P(at least one
        Type I Error)",xlab="n", lwd=1,cex=0.5,lty=1"4")
```

```
linetype <- c(1:length(alpha))
plotchar <- seq(17,17+length(alpha) - 1,1)
opts=c("p","l","o","b")
matplot(s,p,lwd=1,lty=linetype, col = colors, pch=plotchar, type=opts, cex
        =0.6,xlab="s",ylab="P(at least one Type I Error)")
    # add a legend
    title("Graph of different type-I error rates levels", "")
    # add a legend
    legend(xrange[1], yrange[2], alpha, cex=0.8, col=colors,
        pch=plotchar, lty=linetype, title="alpha")
    # add annotation (grid lines, title, legend)
    abline(v=0,h=seq(0,yrange[2],0.10), lty=2, col="grey89")
    abline(h=0, v=seq(0,xrange[2],10), lty=2,
        col="grey89")
    box(lty = 'solid', col ='black')
62 #png(" ~ /Documents/memphisclassesbooks/RESEARCH/Trend/mult . png")
    #x11()
    getwd()
    png("C:/Users/Gucci148/Desktop/Trend/mult.png")
    colors <- rainbow(length(alpha))
    linetype <- c(1:length(alpha))
    plotchar <- seq(17:20)
    opts=c("b","p","l","o")
    plot(xrange, yrange,
        xlab="s",
        ylab="P(at least one Type I Error)")
```

58
59
60
61

```
# Plot solid circles with solid lines
    points(s, p1, type=opts[1], pch=plotchar[1],lwd=1, cex=0.5, col=colors[1])
76 # Add open squares with dashed line, with heavier line width
77 points(s, p2, type=opts[2], pch=plotchar[2], lty=2, lwd=1,cex=0.5,col=
        colors[2])
78
79 points(s, p3, type=opts[3], pch=plotchar[3], # Diamond shape
                lty="dotted", cex=0.5, col=colors[3], # Dotted line,
        double-size shapes
            lwd=1)
points(s, p4, type=opts[4], pch=plotchar[4], lty=2, lwd=1,cex=0.5, col=
        colors[4])
84
85 #legend("topright", 8, alpha, fill = rainbow(4))
86 # add annotation (grid lines, title, legend)
87 # add a title and subtitle
title("Graph of various type-I error rates ", "Number of Test")
89 # add a legend
    legend(xrange[1]-0.5, yrange[2], alpha, cex =0.8,
        pch=plotchar, lty=linetype, title=expression(alpha), col=colors)
    abline(v=0, h=seq(0,yrange[2],0.10), lty=2, col="grey89")
    abline(h=0, v=seq(0,xrange[2],10), lty=2,
        col="grey89")
    # add a legend
    box(lty = 'solid', col ='black')
    dev.off()
1 0 1
102
103 ###makes you see the plot in r and saves the graph in the
```

```
104 ##################### same folder as the r program
105 #dev.copy(jpeg, filename="mult.jpg");
106 #dev.off ();
1 0 7
108
1 0 9
110 # Create Line Chart
1 1 1
1 1 2 ~ \# p n g ( " \sim / D o c u m e n t s / m e m p h i s c l a s s e s b o o k s / R E S E A R C H / T r e n d / m u l t ~ . ~ p n g " ) )
113 # get the range for the x and y axis
1 1 4 \text { xrange <- range(s)}
1 1 5 \text { yrange <- round(range(p))}
116 # set up the plot
117 plot(xrange, yrange, type="n", xlab="s",
118 ylab="P(at least one Type I Error)" )
1 1 9 ~ c o l o r s ~ < - ~ r a i n b o w ( l e n g t h ( a l p h a ) )
120 linetype <- c(1:length(alpha))
121 plotchar <- seq(18,18+length(alpha),1)
122 opts = c("p","l","o","b")
123 # add lines
1 2 4 ~ f o r ~ ( i ~ i n ~ 1 : l e n g t h ( a l p h a ) ) ~ \{ ,
1 2 5
126 lines(s, p[,i], type=opts[i], lwd=1.0,
127 lty=linetype[i], col=colors[i], pch=plotchar[i],cex=0.5)
1 2 8
129 }
1 3 0
31 # add a title and subtitle
1 3 2 \text { title("Graph of different type-I error rates levels", "")}
133
134 # add a legend
135 legend(xrange[1], yrange[2], alpha, cex=0.8, col=colors,
136
pch=plotchar, lty=linetype, title="alpha")
```

```
1 3 7
138
139 # add annotation (grid lines, title, legend)
140 abline(v=0, h=seq(0,yrange[2],0.10), lty=2, col="grey89")
141 abline(h=0, v=seq(0,xrange[2],10), lty=2,
142 col="grey89")
1 4 3
1 4 4 \text { box(lty = 'solid', col ='black')}
1 4 5
1 4 6
1 4 7
148
1 4 9
1 5 0
1 5 1
152 # Create Line Chart
1 5 3
154 # get the range for the x and y axis
155 xrange <- range(s)
1 5 6 ~ y r a n g e ~ < - ~ r o u n d ( r a n g e ( p ) ) ~
157 # set up the plot
158 plot(xrange, yrange, type="n", xlab="s",
159 ylab="P(at least one Type I Error)" )
1 6 0 \text { colors <- rainbow(length(alpha))}
61 linetype <- c(1:length(alpha))
1 6 2 \text { plotchar <- seq(18,18+length(alpha),1)}
163 opts = c("p","l","o","b")
164 # add lines
1 6 5 \text { for (i in 1:length(alpha)) \{}
1 6 6
167 points(s, p[,i], type=opts[i], lwd=1.0,
1 6 8
lty=linetype[i], col=colors[i], pch=plotchar[i],cex=0.5)
1 6 9
```

```
70 }
1 7 1
172 # add a title and subtitle
1 7 3 \text { title("Graph of different type-I error rates levels", "")}
1 7 4
175 # add a legend
176 legend(xrange[1], yrange[2], alpha, cex=0.8, col=colors,
177 pch=plotchar, lty=linetype, title="alpha")
1 7 8
1 7 9
180 # add annotation (grid lines, title, legend)
181 abline(v=0, h=seq(0,yrange[2],0.10), lty=2, col="grey89")
182 abline(h=0, v=seq(0,xrange[2],10), lty =2,
183 col="grey89")
1 8 4
185 box(lty = 'solid', col = 'black')
1 8 6
187
188
1 8 9
1 9 0
191 #dev.off();
1 9 2
1 9 3 \text { matplot(s,p, type="l",col = rainbow(4),ylab="P(at least one Type I Error}
)",xlab="n", lwd=2,pch=1:4)
194 legend(80, 0.95, as.character(alpha), fill = rainbow(4))
195 # add annotation (grid lines, title, legend)
196 abline(v=0, h=seq(0,yrange[2],0.10), lty=2, col="grey89")
197 abline(h=0, v=seq(0, xrange[2],10), lty = 2,
198 col="grey89")
1 9 9
200 dev.off();
2 0 1
```

```
202
203
04 set.seed(123)
    x <- rnorm(50, mean =c(rep (0, 25), rep (3, 25)))
    p<- 2*pnorm(sort(-abs(x)))
    07 #p=runif (6)
    p1=p.adjust(p, method = 'fdr', n = length(p))
    p2=p.adjust(p, method ='holm', n = length(p))
    p3=p.adjust(p, method = 'hochberg', n = length(p))
    p4=p.adjust(p, method = 'hommel', n = length(p))
    p5=p.adjust(p, method = 'bonferroni', n = length(p))
    p6=p.adjust(p, method = 'BH', n = length(p))
    p7=p.adjust(p, method = 'BY', n = length(p))
    p8=p.adjust(p, method = 'none', n = length(p))
    pp=cbind(p1,p2,p3,p4,p5,p6,p7,p7)
    pp
2 1 8
2 1 9 ~ m a t p l o t ( p , ~ p p , ~ y l a b = " p . a d j u s t " , ~ t y p e ~ = ~ " l " , ~ a s p ~ = ~ 1 , ~ l t y ~ = ~ 1 : 8 , ~
220 main = "P-value adjustments")
21 legend (0.7, 0.6, c("fdr","holm" ,"hochberg", "hommel", "bonferroni", "BH
        ", "BY", " none"),
        col = rainbow(8), lty = 1:8, fill = rainbow(8))
2 2 3
224
25 # set up graph
    xrange <- range(p)
    yrange <- round(range(pp))
2 2 8 ~ \# ~ a d d ~ a n n o t a t i o n ~ ( g r i d ~ l i n e s , ~ t i t l e , ~ l e g e n d )
    abline(v=0,h=seq (0,yrange[2],0.1), lty=2, col="grey89")
    abline(h=0, v=seq(0,xrange[2],10), lty=2,
        col="grey89")
232
2 3 3 ~ p l o t ( r a n k ( p ) , p , l t y = 2 , p c h = 2 0 , t y p e = " l " ) )
```

```
234
235
236
237
238
2 4 4 ~ l i b r a r y ( q v a l u e )
2 4 5 \text { data(hedenfalk)}
2 4 6 ~ p v a l u e s ~ < - ~ h e d e n f a l k \$ p
247 qobj <- qvalue(p = pvalues)
248
2 4 9
251 silent=FALSE)
252
253
254
255 p=c(0.49135,0.26335,0.000005)
56 p.adjust(p, method = p.adjust.methods, n = length(p))
257 p.adj
258 p.adjust.M <- p.adjust.methods[p.adjust.methods != "none"]
259 p.adj <- sapply(p.adjust.M, function(meth) p.adjust(p, meth))
260 p.adj
261
262 plot(rank(p),p,lty=2,pch=20,type="l")
263
264
265 library(BiocInstaller)
2 6 6 ~ b i o c L i t e ( )
```

```
2 6 7
    library(qvalue)
    data(hedenfalk)
    pvalues <- hedenfalk$p
    pvalues=c(0.49135,0.26335,0.000005)
    qobj <- qvalue(p = pvalues)
2 7 2
2 7 3
274
5 ## try http:// if https:// URLs are not supported
76 source("https:// bioconductor.org/biocLite.R")
    biocLite()
    install.packages("mutoss")
    install.packages("multtest")
    library(mutoss)
    library(multtest)
    install.packages("devtools")
    library("devtools")
    install_github("jdstorey/qvalue")
    p=c(0.49135,0.26335,0.000005)
    qvalue(p)
2 8 7
288 #p=runif(10)
    p=c(0.49135,0.26335,0.000005)
    qvalue(p, lambda=seq(0,0.99,0.05), pi0.method="smoother", fdr.level
        =0.05, robust=T, gui=FALSE,
        smooth.df=3, smooth.log.pi0=T)
```



```
295 ##### Adaptive Benjamini Hochberg2001
```



```
296 p=c(0.49135,0.26335,0.000005)
297 adaptiveBH(pValues=p, alpha=0.05, silent=FALSE)
```

```
298
2 9 9
3 0 0
3 0 1
302 #
```



```
###### Storey-Taylor-Siegmund's (2004) adaptive step-up procedure
    ##########################################
304
30
06 ABH
307
08 adjPValuesPlot(adjPValues=ABH$adjPValues, alpha=0.05)
3 0 9
310 #
```

```
311 ####### Benjamini-Hochbergs Linear Step-Up Procedure
    ##########################################
3 1 2
316 p=c(0.49135,0.26335,0.000005)
317 BY(pValues=p, alpha=0.05, silent=FALSE)
320 hommel \((\mathrm{p}\), alpha \(=0.05)\)
321 bonferroni (p, alpha=0.05)
\(322 \operatorname{holm}(\mathrm{p}\), alpha \(=0.05)\)
323 hochberg (p, alpha \(=0.05\) )
324 sidak(pValues \(=\mathrm{p}\), alpha \(=0.05\), silent=FALSE)
```

```
325 SidakSD(pValues=p, alpha=0.05, silent=FALSE)
326
327
328 install.packages("fdrtool")
3 2 9 ~ l i b r a r y ( f d r t o o l )
```

