
University of Memphis University of Memphis 

University of Memphis Digital Commons University of Memphis Digital Commons 

Electronic Theses and Dissertations 

11-22-2016 

On Some Exact Nonparametric Conditional Test for Clustered On Some Exact Nonparametric Conditional Test for Clustered 

Binary Data Binary Data 

Nana Akwasi Abayie Boateng 

Follow this and additional works at: https://digitalcommons.memphis.edu/etd 

Recommended Citation Recommended Citation 
Boateng, Nana Akwasi Abayie, "On Some Exact Nonparametric Conditional Test for Clustered Binary Data" 
(2016). Electronic Theses and Dissertations. 1534. 
https://digitalcommons.memphis.edu/etd/1534 

This Dissertation is brought to you for free and open access by University of Memphis Digital Commons. It has 
been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of University of 
Memphis Digital Commons. For more information, please contact khggerty@memphis.edu. 

https://digitalcommons.memphis.edu/
https://digitalcommons.memphis.edu/etd
https://digitalcommons.memphis.edu/etd?utm_source=digitalcommons.memphis.edu%2Fetd%2F1534&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.memphis.edu/etd/1534?utm_source=digitalcommons.memphis.edu%2Fetd%2F1534&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:khggerty@memphis.edu


ON SOME EXACT NONPARAMETRIC CONDITIONAL TESTS FOR

CLUSTERED BINARY DATA

by

Nana Akwasi Abayie Boateng

A Dissertation

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

Major: Mathematical Sciences

The University of Memphis

December 2016



Copyright c© 2016 Nana Akwasi Abayie Boateng

All rights reserved

ii



ACKNOWLEDGMENTS

I am thankful to my Lord Jesus Christ for granting me the strength to make this

work a possibility. I cannot forget about the enormous help I have received from my

advisor Dr. E. O. George throughout the period of writing this thesis. I thank him

so much for all his advice, suggestions and directions. I am particularly grateful to

Dr. Dale Bowman for her tremendous support, guidance and incisive suggestions

through out the period of writing this dissertation and all of the time that I have

spent here as a student in the Mathematics Department at the University of

Memphis. I also would like to say a special thank you to my dissertation committee

members Dr. Albert Okunade and Dr. Su Chen for their role in making this whole

work a success.

iii



ABSTRACT

Boateng, Nana Akwasi Abayie . Ph.D. The University of Memphis.
December, 2016. On Some Exact Nonparametric Conditional Test for Clustered
Binary Data. Co-Major Professors: E. O. George, Ph.D. and D. Bowman Ph.D.

The development of exact, non-asymptotic, procedures for analyzing clustered

discrete data has remained a challenging problem for research statisticians due to

the dearth of tractable probability models for describing complex dependence

structures of discrete data points within clusters. Under an assumption of de

Finetti’s [15] definition of infinite exchangeability, several models have been

developed. However, these procedures are not valid when data come from

intrinsically finite exchangeable population. Moreover, the procedures invariably

conduct inference based on asymptotic distribution of estimators or test statistics.

For example, for testing association between the rows and columns of a contingency

table the asymptotic distribution of the likelihood ratio statistic under null

hypothesis of independence is widely used in many applications. Such asymptotic

distributions are known to be inaccurate when sample size is moderate or when data

are unbalanced or sparse[34]. The goal of this dissertation is to develop and

implement exact conditional nonparametric testing procedures for sparse,

unbalanced correlated clustered binary data under an assumption of finite

exchangeability. The methods proposed in this dissertation takes advantage of the

increasing availability of computational power and the development of efficient

procedures for enumerating tables, such as the network algorithm [33] and

Patefield’s algorithm [36]. These methods have facilitated the computation of exact

p-value in many cases. We show that for fixed cluster sizes, the distribution of

marginal sums of responses can be modeled as a multinomial distribution and that

these marginal sums are jointly sufficient statistics [10]. We construct an exact test

by conditioning on the sufficient statistics of the multinomial distribution, thereby

eliminating all nuisance parameters. By conditioning on the cluster sizes, we
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develop an exact nonparametric test for linear a trend. We illustrate the

performance of the tests proposed in comparison to those based on unconditional

and asymptotic methods by using Monte-Carlo and other stochastic simulations.

Our research demonstrates that the exact tests that we have developed can have

significantly different p-values, and in many cases superior power, when compared

to those using large sample theory approximation when data are sparse or cluster

sizes are unbalanced.
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CHAPTER 1

INTRODUCTION

The validity of statistical inference based on large sample theory is often

questionable whenever data are clustered (correlated), sparse and unbalanced or the

sample size is small. One of the common mistakes made by practitioners of data

science in this era of big data is to assume that big data correspond to a large

sample. This assumption often leads to the use of software with algorithms

constructed for large sample for inference with multidimensional sparse big data sets

that have intrinsically small samples. In dealing with data (big or small) in which

data points are discrete and categorical, parametric distributional assumptions are

usually difficult to formulate or verify. Exact Nonparametric procedures have long

been known to be suitable for inference involving such data.

Significant progress has been made in the development and implementation of

exact hypothesis testing in the field of uncorrelated categorical data. Agresti [2]

gives an overview of both exact conditional and exact unconditional inference. The

same cannot be said for correlated binary data. Very few alternatives exist for

making valid statistical inference on clustered binary data with a small sparse or

unbalanced samples. Exact methods guarantee that the size of a hypothesis test

does not exceed the nominal level and also that the coverage probability for a

confidence interval is at least the nominal confidence coefficient [2]. Exact methods

have often been criticized for their conservativeness, especially when relevant

conditional distribution is highly discrete leading to the conservativeness [2]. One

way to address the discreteness is to use the mid-p-value which can smooth out the

P − value and consequently reduce the discreteness.

Correlated clustered data occur frequently in biomedical research settings such

as teratological experiments, opthalmologic, otolaryngic and developmental studies.

What constitutes a cluster depends on the set up of the experiment. A cluster in a
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developmental toxicity study consists of the fetuses of a single dam, while in familial

studies a cluster could be a set of family members. The sampling units in a

developmental study are the pregnant dams and the observational units are the

fetuses of each dam. Since fetuses in a cluster share similar genetic traits and

environmental exposure, they tend to exhibit similar individual responses. Failure

to account for these intra-litter correlations among fetuses could potentially lead to

erroneous inferences. Several approaches for dealing with this problem of

intra-cluster correlation have been proposed. Some of the early approaches include

the use of quasi-likelihood methods such as generalized estimating equations

methods [37], [50], a saturated model [10], Beta-Binomial,Compound-Beta Binomial

and Corrected Binomial models [48], [39]. Marginal models such as the GEE were

popularized for clustered binary data due to the availability of software and relative

computational ease [41]. Expectation maximization(EM) algorithms have also been

used to analyze clustered binary data with unequal cluster sizes[43]. Kuk and Pang

[51] proposed smoothing methods for unequal cluster sizes under marginal

compatibility assumption. Their model accounts for the variability of the estimated

null expectation under marginal compatibility. The assumption of marginal

compatibility allows estimation to be done over different cluster sizes. When data

are sparse, the probability function estimated using a saturated model can be very

jagged and some kind of smoothing is needed [51]. Kuk et al extended the penalized

kernel method to obtain parameter estimates for unequal cluster sizes using an

EM-type algorithm.

Luta et al [30] proposed an exact conditional logistic regression for correlated

binary data that conditions on nuisance parameters and treats the clusters as fixed

effects. Their approach however, results in over conditioning as the number of

clusters increases [12]. Log-linear models have also been used in analyzing clustered

data. Log-linear models may estimate parameters with different standard errors and
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different covariances making interpretation of the analysis difficult [8]. Corcoran et

al [12] proposed an exact linear trend test for correlated binary data based on an

exponential model proposed by Molenberghs and Ryan [41]. By conditioning on

sufficient statistics, they eliminate the nuisance parameters under the null

hypothesis of no treatment effect, leading to a conditional test analogous to Fisher’s

Exact test. The exponential model from which the conditional test is obtained

however, only accounts for pairwise interactions and assumes a linear logistic model

for the marginal response probability using the Cochran-Armitage trend statistic

[46]. Higher order interactions in the clusters are set to zero.

Difficulty with using many procedures arise when data are sparse, unbalanced or

when sample size is small. For example when data are sparse, statistical procedures

that involve maximization of the likelihood may suffer convergence problems [2].

Valid statistical inference can be conducted whenever one is presented with a small

sample, sparse or unbalanced data by conducting exact inference. The justification

for exact conditional inference lies in three main principles [32]:the sufficiency,

ancillary and randomization principles. An exact conditional test can be obtained

by conditioning on sufficient statistic to eliminate nuisance parameters in the model

under the null hypothesis of no association between response and treatment. The

data can be represented in a contingency table format with treatment groups as

rows (or columns) and response types as columns (or rows). To test for treatment

effect using exact methods, a reference set is specified. The reference set contains all

tables with marginal sums equal to that of the observed table. The exact P − value

can consequently be computed by comparing the observed table with tables in the

reference set. If the observed table is unlikely under the null hypothesis when

compared to the reference set, the null hypothesis is rejected.

Exact inference has gained increased popularity in recent times due to the

availability of computational power and efficient table generation algorithms. Some
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of the various table enumeration methods include the network algorithm [33],

Fourier transform and Algorithm AS 159 [36]. Mehta and Patel [33], with their

introduction of the network algorithm, greatly extended the bounds of

computational feasibility for exact inference. The network algorithm implicitly lists

all tables in the reference set through a series of nodes and arcs. Each table in the

reference set is represented by the sum of lengths of a distinct path in the network.

The network representation is used in computing the exact distribution by a

stage-wise recursion process through the network path. The speed of computation

of P − values is increased by computing at each node, lower and upper bounds on

the test statistic value for each table that passes through that node [3].

Explicit enumeration of all tables becomes impractical as the sample size

increases. For example, tables with sample sizes 20 and 100, have about 40000 and

7× 109 tables respectively [2]. For large sample sizes, an alternative is to use

Monte-Carlo methods to sample a large number of tables from the reference set and

make inference on the sample of tables. This reduces the computational time

significantly for large sample sizes.

The remainder of this dissertation is organized as follows. In chapter 2, we

provide a review of various nonparametric approaches to modeling categorical data.

The Fisher’s exact test is among the most popular conditional exact test [18]. Its

popularity has being easily spurred on by accessible computer software. In chapter

3, we formally introduce the problem of modeling exchangeable clustered binary

data by conditioning on complete sufficient statistics. We discuss the formulation of

the problem, computation of the P − values and various algorithms that allow

sampling from the reference set to be computationally feasible. The Monte Carlo

approach provides a convenient way to overcome the computational challenge of

explicitly listing every single table in the reference set. Two simulation studies are

performed to examine the performance of the test under several hypothetical cluster
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sizes, intra-litter correlations and sample sizes. We also implement the test using

real data obtained from the EDGE toxicology experiment.

In chapter 4, we introduce the exact stratified linear rank test for clustered data.

We assign non decreasing monotone Weights to the ranked row and column sums

for each stratum. By conditioning on the cluster sizes, we order each stratum by a

linear trend statistic. The overall test statistic is obtained by summing the

individual linear trend test statistics over all the available strata.

In chapter 5, we extend the exact test to the field of multiple testing.

Simultaneous testing of multiple hypothesis introduces type-I error probability

which approaches one as the number of test increase. The adjusted P − value is used

to make inference in multiple testing to control for both the Familywise Error Rate

and False Discovery rate. Various approaches to compute the adjusted p-values are

discussed including resampling methods to estimate the exact adjusted P − value .
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CHAPTER 2

LITERATURE REVIEW

2.1 Overview of Nonparametric Models for Categorical Data

2.1.1 Unconditional Distributions for Categorical Data

The exact probability of any categorical data X, depends on the sampling

scheme that is used to generate X. Three key distributions for modeling categorical

responses are the full multinomial, product multinomial and Poisson distributions.

2.1.2 Multinomial Distribution

Suppose that each of n independent, identical trials has an outcome one of K

possible categories. Let Xi be the number of times an outcome of category i is

observed in n independent trials,then the vector X = (X1, X2 · · · , XK) has

multinomial distribution. Let πi denote the probability of outcome in category i for

each trial. The probability mass function of the multinomial distribution is given as:

P (X1 = x1, X2 = x2 · · · , XK = xK) =


n!

x1!x2!···xk!

K∏
i=1

πxii , if
K∑
i=1

xi = n,
K∑
i=1

πi = 1

0 otherwise

The binomial distribution is a special case where K = 2. The expected value,

covariance and variance for the multinomial distribution is given as: E(Xi) = nπi

,cov(Xi, Xj) = −nπiπj and var(Xi) = nπi(1− πi) respectively.

2.1.3 Full Multinomial Sampling

Consider two factors with g and K categories respectively. Suppose n items are

sampled independently from the population, classify each Xij as the cell count in

the ith row of the jth column, i = 1, · · · , g and j = 1, · · ·K. Let the probability of

an outcome in the ith category of factor 1 and the jth category of factor 2 be

denoted as πij for i = 1, · · · , g and j = 1, · · ·K. In this approach the sample size n

is assumed to be fixed, and the cell counts Xij are random.
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(X11, · · · , XgK) ∼Mult(n, π11, · · · , πgK). The hypothesis of interest is

independence of factor 1 and factor 2, H0 : πij = πi.π.j. Where πi. is the marginal

probability of being in the ith category of factor 1 and π.j is the marginal

probability of being in the jth category of factor 2. Binomial sampling is a special

case when each of the factors has only two categories.

2.1.4 Product Multinomial Sampling

Product multinomial sampling is generated if for any table X either the

marginal sums of factor 1 are fixed and the margins sums of factor 2 are allowed to

vary or vice versa, for i = 1, · · · , g and j = 1, · · ·K. Let mi be the fixed marginal

sum of the ith category of factor 1 which is independently sampled. Each cell count

Xij is classified into j category of factor 2. Each row of the table with mi

observations, i = 1, · · · , g has a multinomial distribution with parameters,

(Xi1, · · · , XiK) ∼Mult(mi, πi1, · · · , πiK). The distribution of any table X is

therefore the product of independent multinomial distributions from the rows.

P (X = x) = P (x) =

g∏
i=1

mi!
K∏
j=1

π
xij
ij

g∏
i=1

K∏
j=1

xij!

(2.1)

Independent binomial sampling is a special case of product multinomial sampling

where the row and column variables, factors 1 and 2 have two levels. An example of

a product multinomial sampling is if each of g different treatments is administered

to mi patients,i = 1, · · · , g and the responses to each treatment level i is recorded in

K categories. The hypothesis of interest would be whether the different treatments

are equivalent thus whether the probability πij of treatment i with response j is the

same across all treatment levels i, specifically H0 : πij = πj, for j = 1, 2, · · · , K.
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2.1.5 Poisson Sampling

In Poisson sampling the number trials/sample size is not fixed but random.

Each cell count Xij is considered as an independent Poisson random variable,

Xij ∼ Poisson(λij), where λij is the rate of an occurrence of an event in cell (i, j).

The sampling scheme is under the assumption that the data generation process

follows the Poisson distribution. Poisson sampling scheme is useful in modeling

counts where the probability of success of an event is very small in a very large

number of trials. It is usually used in modeling counts over a fixed period of time or

space. The distribution of a table X with independent cell counts Xij, i = 1, · · · , g

and j = 1, · · ·K is

P (x) =

g∏
i=1

K∏
j=1

(λij)
xije−λij

xij!
(2.2)

The hypothesis of interest is independence of each cell,H0 : πij = πi.π.j. An

example of Poisson sampling is a situation in which there are g ×K groups of

people, one group for each cell of the g ×K table. The members of each group

arrive randomly at a hospital for a medical check up over a period of time. There

exists a connection between the Poisson and multinomial distributions. Suppose

Xij ∼ Poisson(λij),i = 1, · · · , g and j = 1, · · ·K. Let

n =
∑
i

∑
j

Xij then
∑
i

∑
j

Xij ∼ Poisson(λ) where λ =
∑
i

∑
j

λij

P (X11 = x11, · · · , XgK = xgK |
∑
i

∑
j

xij = n) =
P (X11 = x11, · · · , XgK = xgK)

P (
∑
i

∑
j

xij = n)

=

g∏
i=1

K∏
j=1

λ
xij
ij exp−λij

xij !

λnexp−λ

n!

=

exp

− g∑
i=1

k∑
j=1

λij

 g∏
i=1

K∏
j=1

−λxijij
xij!

λnexp−λ

n!

=

exp(−λ)

g∏
i=1

K∏
j=1

λ
xij
ij

xij!

λnexp−λ

n!
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= n!

g∏
i=1

K∏
j=1

1

xij!

(
λij
λ

)xij
Hence the distribution of Poisson counts conditional on their sum is a

multinomial distribution.

=
n!

g∏
i=1

k∏
j=1

xij

g∏
i=1

K∏
j=1

π
xij
ij where πij =

λij
λ

2.2 Conditional Distributions for Unordered g×K Contingency Tables

2.2.1 Fishers Exact Test

Consider N observations of two dichotomous factors, factor 1 and factor 2 with

possible combinations given in a 2× 2 contingency table 1 below.

Table 1: Fisher’s Exact Test for 2× 2 Tables

Factor 1

1 2 RowTotal

Factor 2 1 A11 A12 m1

2 A21 A22 m2

Column Total A1 A2 N

For each fixed row, the counts A11 and A21 are distributed as two independent

binomial distributions with parameters, (m1, π1) and (m2, π2) respectively. Where

π1 and π2 are the probability of success in row 1 and 2 respectively. Under the null

hypothesis of row independence, H0 : π1 = π2 = π, the distribution of Aij

conditioned on the row and column marginals is the hypergeometric distribution.

Let X = (m1,m2, A1, A2).Then

pX =

(
m1

A11

)(
m2

A21

)(
N
A1

) (2.3)

Two common sampling schemes for 2× 2 tables are the Binomial and
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Multinomial. Binomial sampling is obtained by fixing the row sums. The hypothesis

of interest is H0 : π1 = π2 versus Ha : π1 6= π2. In the multinomial case the cell

counts (A11, A12, A21, A22) are multinomial distributed with a fixed sample size N

and probability of cell count in cell(i, j) is πij,i = 1, 2 and j = 1, 2. The hypothesis

of interest in the test of independence of the cells is H0 : πij = πi.π.j versus

Ha : πij 6= πi.π.j,i = 1, 2 and j = 1, 2.

The hypothesis may equivalently be expressed in terms of the odds

ratio.H0 : OR = 1 and Ha : OR 6= 1. where,

π11π22

π12π21

An odds ratio equal to one indicates independence of the cells.

Let the observed table be x with marginals (A1, A2,m1,m2). Define the

reference set

Γ = (Y : Y is 2× 2;A1, A2,m1,m2)

is defined as the set of all tables with marginal sums equal to the observed. The

exact two sided p-value P is defined as :∑
Y ∈Γ∗

PY where Γ∗ = (Y : Y ∈ Γ is 2× 2;PY ) ≥ PX)

The exact p-value P is then obtained as the sum of distributions PY of all tables

in the reference set at least as extreme as the observed table PX .

The 2× 2 Fishers exact test can be easily extended to tables of size g ×K.

Suppose patients are now assigned to g treatments and response to treatment is

recorded in K categories as shown in Table 2. For each fixed row, (Ai1, · · · , AiK), is

distributed as a multinomial distribution with parameters (mi, πi1, · · · πiK) for

i = 1, · · · , g. The null hypothesis can be expressed as

H0 : π1j = π2j = · · · = πgj = πj j = 1, · · · , K

Under the null hypothesis of independence of rows, the row sums

10



Table 2: Fisher’s Exact Test for g × k Tables

Factor 1

1 2 · · · K RowTotal

1 A11 A12 A1K m1

2 A21 A22 · · · A2K m2

3 A31 A32 · · · A3K m3
Factor 2

...
...

...
...

...

g Ag1 Ag2 · · · AgK mg

Column Total A1 A2 · · · Ag N

(A1, · · · , Ag|H0) are also multinomial distributed with parameters

(N, π1, · · · , πk|H0)

P (Ai1 = ai1, · · · , AgK = agK , i = 1, · · · g|H0;A1, · · · , Ag) =

P (Ai1 = ai1, · · · , AgK = agK ; i = 1, · · · g|H0)

P (A1 = a1, A2 = a2, · · · , AK = aK)

=

g∏
i=1

(
mi

ai1,··· ,aiK

) K∏
j=1

π
aij
ij(

N
a1,··· ,aK

) K∏
j=1

π
aj
j

=

g∏
i=1

(
mi

ai1,··· ,aiK

) K∏
j=1

π

∑
i
aij

j(
N

a1,··· ,aK

) K∏
j=1

π
aj
j

=

g∏
i=1

(
mi

ai1,··· ,aiK

)
(

N
a1,··· ,aK

)

=

g∏
i=1

K∏
j=1

mi!aj

N !
g∏
i=1

K∏
j=1

aij

Conditioning on the row and column marginals is a convenient way to eliminate

parameters which in this case are the probabilities πij from the distribution of PX of
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the g ×K table.

The reference set Γ of the g ×K table is defined by restricting the sample space

of the observed table X to the set of tables with fixed row and column marginal

sums. Specifically the reference set is defined as:

Γ =

{
Y : Y is g ×K

g∑
i=0

Aij = Aj;
K∑
j=1

Aij = mi; for all i, j

}
Fisher’s exact test orders the tables in Γ according to it’s hypergeometric

distribution PY . The test statistic for each Y ∈ Γ is defined as [34]:

TY = −2 log(γPY )

where

γ = (2π)
(g−1)(K−1)

2 N−
(gK−1)

2

g∏
i=1

m
K−1

2
i

K∏
j=1

A
g−1
2

j

Freeman and Halton(1951) extended the asymptotic distribution of a 2× 2 table

by Fisher(1925) to g ×K. Under the null hypothesis of independence of row and

columns, TY has a chi-square distribution with (g − 1)(K − 1) degrees of freedom.

The exact p-value is found as the sum of probabilities all tables in the reference

set that are at least as extreme as the observed table. Specifically the exact p-value

is defined below :∑
Y ∈Γ∗

PY where Γ∗ = (Y : Y ∈ Γ;PY ≥ PX)

where PY and PX are the probability distributions of the tables in the reference

set and the observed table respectively computed under the null hypothesis.

2.2.2 Choosing a Test Statistic

Several tests are available for g × k contingency tables with row and column

marginals mi and nj respectively, i = 1 · · · , g and j = 1, · · · , k. If there is no

ordering of either the columns or rows, then Fishers exact test, Likelihood Ratio

and the Pearson chi-squared test are appropriate and are the most powerful against

any other alternative test of the null hypothesis of no row and column interaction.
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For discrepancy measure D(Y ), large absolute values of D(Y ) provide greater

evidence against the null hypothesis, while small absolute values are consistent with

it. Fishers test orders each table Y ∈ Γ by a hypergeometric distribution P (Y ).

Discrepancy measures of various tests are given below, where yij is the count in the

ith row and the jth column:

For the Pearson Chi-square test:

D(y) =

g∑
i=1

K∑
j=1

(yij − minj
N

)2

minj
N

∼ X2
(g−1)(K−1) (2.4)

The likelihood ratio test orders every table y ∈ Γ according to the likelihood ratio

statistic:

D(y) = 2

g∑
i=1

K∑
j=1

yijlog

(
yij
minj
N

)
(2.5)

The Kullback and Leibler modified log-likelihood ratio statistic

D(y) = 2

g∑
i=1

K∑
j=1

minj
N

log

( minj
N

yij

)
(2.6)

The N statistics of Neyman

D(y) =

g∑
i=1

K∑
j=1

(yij − minj
N

)2

yij
(2.7)

The Freeman-Tukey statistic

D(y) = 4

g∑
i=1

K∑
j=1

(
√
yij −

√
minj
N

)2

(2.8)

The modified Freeman-Tukey statistic

D(y) =

g∑
i=1

K∑
j=1

(
√
yij +

√
yij + 1−

√
4
(minj

N

)
+ 1

)2

(2.9)

The Cresie and Read statistic
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D(y) =
9

5

g∑
i=1

K∑
j=1

yij

[(
yij
minj
N

) 2
3

− 1

]
(2.10)

A general representation of most of the test statistics above is given below:

D(y)δ =
2

δ(1 + δ)

g∑
i=1

K∑
j=1

yij

[(
yij
minj
N

)δ
− 1

]
(2.11)

Where δ = 1, 0,−2,−1,−0.5 and 2
3

corresponds to the Pearson-Chi-squared

statistic, log likelihood ratio statistic, Neyman statistics, Kullback and Leibler,

Freeman-Tukey and Cresie -Read respectively.

2.3 Singly Ordered R× C Contingency Tables : Kruskal-Wallis Test

The Kruskal-Walli (KW) test is a rank based method to compare K independent

samples. Kruskal and Wallis(1952) list several advantages of rank based methods.

Specifically, they simplify calculations and only general assumptions are made about

the distribution of observations (independence). The null hypothesis that the K

independent samples originate from the same distribution is tested against the

alternate that at least one sample is stochastically larger than another. It’s the

nonparametric analogue of the parametric one-way analysis of variance (ANOVA)

test. In KW test, the population mean of ranks is compared instead of comparing

population means in ANOVA. The Mann-Whitney test is a special case of

Kruskal-Wallis test for two samples. H0 : F1 = F2 = · · · = Fk vs H1 : Fi < Fj for

some i 6= j

Where Fi is the distribution of sample i. Under the null hypothesis, the

observations are a combined sample of size N from the common population. The

combined sample is ranked from 1, · · · , N . The total sum of ranks is
N∑
i

i = N(N+1)
2

.

The expected proportion of the ith sample i, · · · , K in the combined sample is

ni
N
N(N+1)

2
= ni(N+1)

2
under the null hypothesis.
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A test statistic t based on a function of deviations between the observed and

expected rank sum is given as t =
K∑
i=1

[
ri − ni(N+1)

2

]2

,where ri is the sum of ranks

assigned to the elements of the ith sample. The null hypothesis of equal distribution

of the K samples is rejected for large values of t. The number of ways to assign N

observations into K columns of size ni, i = 1, · · · , k is N !
k∏
i=1

ni!

. Each N !
K∏
i=1

ni!

possible

table assignment is evaluated and t is calculated for each table. The distribution of

the test statistic is then obtained as ft(t) = t
N !
K∏
i=1

ni!

Kruskal and Wallis (1952) proposed a modified test statistic H that is weighted

sum of square deviations that uses the the reciprocals of the sample sizes ni as

weights.

H =
12

N(N + 1)

K∑
i=1

1

ni

[
ri −

ni(N + 1)

2

]2

(2.12)

An equivalent computationally preferred version of H can be expressed as:

H =
12

N(N + 1)

K∑
i=1

r2
i

ni
− 3(N + 1) (2.13)

When the sample sizes ni are the same, the statistic t is equivalent to H [20].

Tables exist for exact probabilities of t and H for small sample sizes and the

number of columns K. Due to the large number of computations to carry out to

obtain these exact probabilities, large sample approximations have been developed

for relatively large samples.

H∗ =
K∑
i=1

12ni
[
ri − (N+1)

2

]2

N(N + 1)
(2.14)

The statistic H∗ is approximately distributed chi squared with (K − 1) degrees

of freedom (Detailed proof can be found in [20]).The null hypothesis H0 is rejected

in favor of the alternative if H∗ ≥ X2
(α,K−1). A correction for ties i uses the midrank
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method. A modified test statistic for correcting for the number of ties present in the

population, t is:

H ′ =
H

1−
∑
t(t2−1)

N(N2−1)

(2.15)

The correction statistic for ties H ′, does not significantly alter H for relatively

small number of ties. When the null hypothesis is rejected, multiple pairwise

comparisons could be made for any two groups say i and j (1 ≤ i ≤ j ≤ K) by the

statistic:

Zij =
|r̄i − r̄j|√

N(N+1)
2

[
1
ni

+ 1
nj

] (2.16)

The critical region is Zij ≤ Z α
K(K−1)

, where z is the standard normal quantile.

The Type 1 error rate α is corrected by dividing α by the number of pairwise

comparisons
(
K
2

)
. This kind of Type-I correction is the conservative Bonferroni

method. The null hypothesis that the two populations are the same is rejected if

P (Zij ≤ Z α
K(K−1)

) ≤ α
k(k−1)

. The Wilcoxon test is a special case of the Kruskal-Wallis

test for the location parameter of two independent samples.

2.4 Doubly Ordered R×C Contingency Tables : Jonckheere-Terpstra

Test

The Jonckheere-Terpstra test is a nonparametric test for ordered alternative

within independent samples. The null hypothesis tests for homogeneity among

independent samples. It exhibits greater statistical power over comparable tests like

the Kruskal-Wallis test if the samples are ordered from the population from which

they are drawn. The Jonckheere-Terpstra Test hypothesis can be states as:

H0 : θ1 = θ2 = · · · = θk

Ha : θ1 ≤ θ2 ≤ · · · ≤ θk ,i = 1, · · · , K,(at least one strict inequality)

Where θi is the median of the ith population. An alternative expression of the

alternate hypothesis is
(
K
2

)
multiple comparisons of θi ≤ θi+1 with at least one
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θi ≤ θi+1. This then reduces the problem of multiple comparison to a two sample

comparison problem. The statistic for combining these multiple two sample

comparisons into a single final statistic is the Mann-Whitney statistic Uij,

i, j = 1, 2, · · · , K with i ≤ j. The addition of all Uij results in the statistic B. The

Mann-Whitney statistic Uij is defined for any two samples Xi and Xj with sample

sizes ni and nj respectively as:

Uij =


1 if xjs < xirfor s = 1, · · · , G r = 1, · · · , K

0 if xjs > xir

B = U12 + U13 + · · ·+ U1k + U23 + · · ·+ U2k + · · ·+ U(k−1)k

=
∑
1<

∑
i<j≤K

Uij =
K−1∑
i=1

K∑
j=i+1

nj∑
r=1

I(xir < xjs), where I is the indicator function.

where xir is the rth observation in the ith sample and xjs is the sth observation

in the jth sample. The rejection region is B ≥ B(α,K, n1, n2, · · · , nk), where α is

the nominal significance level. The null hypothesis is rejected if

P [B ≥ B(α,K, n1, n2, · · · , nk)] ≤ α. Tables of exact probabilities for small sample

sizes and small populations is available. For sufficiently large sample sizes and large

populations, the computation of exact probabilities becomes computationally

challenging. An approximate large sample distribution for B is the chi-square

distribution with one degree of freedom.

[B − E(B)]2

var(B)
∼ χ2

(1) (2.17)

where

E(B) =
k−1∑
1<i

∑
<j<k

ninj
2

=

N2 −
k∑
r=1

2
and Var(B) =

N2(2N + 3)−
k∑
i=1

ni(2ni + 3)

72

The asymptotic approximation test rejects the null hypothesis if
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P (χ2
(1) ≥ χ

2
(α,1)) ≤ α

The Mann-Whitney statistic Uij used in computation of the Jonckheere-Terpstra

test is modified for tied observations as U∗ij =
ni∑
r=1

nj∑
s=1

Drs where

Drs =


1 if xir < xjs

1
2

if xir = xjs

0 if xir > xjs

The modified Jonckheere-Terpstra test statistic B∗ =
K−1∑
i=1

K∑
j=1

U∗ij

2.5 Analysis of 2×K Tables

2.5.1 Cochran-Armitage Trend Test for 2×K Tables

Consider N subjects who are each exposed to some treatment levels 0 and 1.

Assume the responses to treatment is progressively increasing from 1 to K. Let pj

be the probability of response of a subject exposed to treatment level 1 with

response level j, j = 1, 2, · · · , K. In table 3, Xij is an observation in the ith row of

Table 3: Cochran- Armitage Trend Test For 2×K Tables

Treatment Response
Row score 1 2 3 · · · K RowTotal

Row 1 1 x11 x12 x13 · · · n1k m1

Treatment Row 2 0 x21 x22 x23 · · · x2k m2

Column Total n1 n2 n3 · · · nk N

Column Score w1 w2 w3 · · · wK

the jth category, i = 1, 2 and j = 1, · · · , K, w1 < w2 < · · · < wk are column scores

assigned to response categories 1, · · · , K and 0, 1 are the row scores of row 1 and 2

respectively. For 2×K tables with ordered columns and K independent bin(ni, pi)

variates, Armitage [4] proposed a linear trend test for testing association between
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variable 1 (Treatment) with 2 categories and variable 2 (Response) with K

categories. The proportion of observations in any category j is given by pj =
x1j
nj

,

whereas the overall proportion in row 1 is given as p = m1

N
. Each observation on row

one is assigned a row score of 1 and each observation on row 2 is assigned a row

score of 0.

The null hypothesis of the Cochran-Armitage trend test is that all of K

independent binomial proportions are equal with response probability p :

H0 : p1 = p2 = · · · = pk = p where pj =
x1j
nj

against an ordered alternative of the form

Ha : p1 ≤ p2 ≤ · · · ≤ pk

The test is equivalent to the null hypothesis H0 : β = 0 for the linear probability

regression model pi = α + βwi + εi.

The Pearson test statistic for the K category of responses XK can be expressed

in terms of variation among the K proportions by

χ2
K = 1

p(1−p)

K∑
i

ni(pi − p)2.

The chi-squared statistic can be decomposed into two chi-squared statistic to

test for the lack of goodness of fit of the model and the existence of a linear test [1].

χ2
K = Z2 +X2

L

where X2
K = 1

p(1−p)

K∑
i

ni(pi − p̂)2 has asymptotic chi-squared distribution with

K − 2 degrees of freedom. It test’s the goodness of fit of the model.

Z2 =
b2

p(1− p)

K∑
i

ni(wi − w̄)2 =


K∑
i

(wi − w̄)x1i√
p(1− p)

K∑
i

ni(wi − w̄)


2

. (2.18)

Z2 has an asymptotic chi-square distribution with one degree of freedom and is used

to test H0 : β = 0 for the linear trend in the proportions.
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2.5.2 Cochran-Mantel-Haenszel Test for S × 2× 2 Tables

The Cochran-Mantel-Haenszel Test is non-model based approach to testing

conditional independence. Data can be stratified to control for possible confounding

variables. The Cochran-Mantel-Haenszel test provides a measure of association

which is a summary of the weighted average of the risk or odds ratio across the

different strata. The null hypothesis tests homogeneity of association between

treatment and response groups across the S strata. The test provides a summary

estimate of the exposure effect stratified by multiple studies. The odds ratio

obtained from each of the stratified subgroups represents exposure effect in the

group when the overall joint effect of the stratification variable has been held

constant. The overall odds estimate across all the strata can be combined to form a

summary estimate adjusted for effects of those variables used in the stratification.

The Mantel-Haenszel test statistic ORMH(OddsRatio) or RRMH(RiskRatio) can be

considered as weighted averages of odds ratios of each stratum in the data provided

bi and ci are greater than 0, for bi , ci, ai, di as in the table below

For subgroups i = 1, · · · , S. The stratum i is given below

Table 4: Cochran- Mantel-Haenszel Test for S × 2× 2 Tables

Cases Outcome Row Total

Exposure positive negative

Yes ai bi m1i

No ci di m2i

Column Total n1i n2i ni

The test statistics are given by:

RRMH =

S∑
i=1

ai(ci+di)
ni

S∑
i=1

ci(ai+bi)
ni

. (2.19)
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ORMH =

S∑
i=1

aidi
ni

S∑
i=1

bici
ni

. (2.20)

A major disadvantage of stratified analysis is the inability to control

simultaneously for multiple confounding variables. The sampling schemes for cell

counts (ai, bi, ci, di) given row and column marginals (n1i, n2i,m1i,m2i) is the

hypergeometric distribution. The mean and variance are given below

µi = E(ai) =
m1in1i

Ni

. (2.21)

V ar(ai) =
m1im2in1in2i

N2
i (Ni − 1)

. (2.22)

Cell counts from different strata are assumed to be independent. The test

statistic for combining information from the S strata is obtained by comparing ai to

its expected value.

Q =

[∑
i

(ai − µi)
]2

∑
i

Var(ai)
ãsymp χ2

(1) (2.23)

The test gives similar results to a logit model with sufficiently large strata size ni.

The set back in a parametric model such as the logit model is that, the maximum

likelihood estimates of log odds ratio may be over estimated for sparse data [1].

Logit models may also fail to converge.

2.5.3 Generalized Cochran-Mantel-Haenszel Association Statistic for

s× g ×K Tables

Let Nijh ,i = 1, · · · , g,j = 1, · · ·K be the cell counts in the hth stratum of a

g ×K table, where i represents the levels of factor of interest such as treatment and
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j represents another factor such as levels of response. Conditional on row and

column marginals each stratum has (g − 1)× (K − 1) non-redundant cell counts [1].

For each stratum h the vector of cell counts

nh = (n11h, · · · , n1(k−1)h, n11h, · · · , n1(k−1)h, · · · , n(g−1)1h, · · · , n(g−1)(k−1)h) has

probability function (2.24) .

g∏
i=1

ni.h!
K∏
j=1

n.jh!

n..h!
g∏
i=1

K∏
j=1

nijh

. (2.24)

Let µh = E(nh) under H0 : no row by column association. Then

µh =
nh
n..h

=
(n11h, · · · , n1(k−1)h, n11h, · · · , n1(k−1)h, · · · , n(g−1)1h, · · · , n(g−1)(k−1)h)

n..h
(2.25)

Let Vh be the covariance matrix of nh where

Cov(nijh, ni′j′) =
ni.k(δii′n..h − ni′.h)n.jh(δjj′n..k − n.j′h)

n2
..h(n..h − 1)

(2.26)

where

δab =


1 if a = b

0 otherwise

Let Gh = nh − E(n) = nh − µh.Now G =
∑
h

Gh =
∑
h

(nh − µh) is the aggregation

over all (g − 1)(k − 1) strata. Let the covariance matrix of V =
∑
h

Vh. The general

association test statistic for the Cochran-Mantel-Haenszel(CMH) test under the null

hypothesis is QG = GTV G. The distribution of the test statistic approaches

X2
(g−1)(K−1) as the total sample size (n =

∑
h

n..h) approaches infinity. When the

CMH statistic is significant at some level α, then there exists some association

between the row and column variables in at least one stratum.
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2.5.4 Generalized Cochran-Mantel-Haenszel Mean Score Statistic for

S × g ×K Tables

Consider a set of S independent g ×K tables where cell counts in the hth

stratum is given by nijh,i = 1, · · · , g − 1 and j = 1, · · · , K. Assume the column

variable is ordinal and has assigned scores w1h, , · · · , wKh. The null hypothesis of no

association between row and column variables in any of the S strata is tested

against the alternative that there is a difference in the g mean scores on average

across the S strata. Define Mh =
K∑
j=1

wjh(nh − E(nh), the vector of differences

between the observed and expected mean scores under the null hypothesis. Let

M =
S∑
h=1

Mh which has expectation zero and covariance matrix VM =
S∑
h=1

Vh.Then

QM = M ′V −1
M M ,is the CMH mean score statistic which is approximately X2

(g−1) if

the null hypothesis is true. The statistic is used only when the column variable is

ordinal or when the variable is an interval column variable. Special cases of the

CMH mean statistic arise when S = 1 and g = 2, QM is the

Wilcoxon-Mann-Whitney statistic. If S = 1 and r > 2, QM is the Kruskal-Wallis

statistic. If S > 1 and nhi. = 1 for i = 0, · · · , g and h = 1, · · · , S, then the QM is the

Friedman’s chi-square statistic.

2.5.5 Generalized Cochran- Mantel-Haenszel Correlation Statistic for

s× g ×K Tables

Consider a set of S independent g ×K tables with ordinal row and column

variables. Let the scores assigned to the row and column be u1h, , · · · , ugh and

w1h, , · · · , wKh respectively. The null hypothesis that there is no association between

row and column variables in any of the S strata is tested against the alternative

that there is consistent positive or negative association between the rows and

column scores across all stratum. Define Ch =
∑
i

∑
j

uihwjh(nh −E(nh) as the vector

of difference between the observed and expected association scores in the hth
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stratum under the null hypothesis. Let C =
∑
h

Ch, then C has expectation zero and

variance denoted by VC . The CMH correlation statistic QC = C ′VCC has

asymptotic distribution as χ2
1 for sufficiently large total sample size (n... =

∑
h

n..h).

The Pearson correlation coefficient ρ between row and column scores is a special

case of of CMH correlation statistic Qc = (n... − 1)ρ2 where S = 1.
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CHAPTER 3

EXACT CONDITIONAL TEST FOR EXCHANGEABLE BINARY

RESPONSES

3.1 Formulation of Exact Test

A finite sequence of random variables (X1, · · · , Xk) is exchangeable if for any k

P (Xπ(1) = x1, · · · , Xπ(k) = xk) = P (X1 = x1, · · · , Xk = xk)

for any permutation π(1) · · · π(n) of indices 1, · · · k. Let (X1, · · · , Xn) be

exchangeable random variables with λ0,n = 1 and λk,n = P{X1, · · · , Xk = 1}, then

P{X1 = x1, · · · , Xn = xn} =
n−r∑
k=0

(−1)k
(
n− r
k

)
λr+k,n

where

r =
n∑
i=1

xi

In this thesis we consider an experiment involving g treatment groups and

exchangeable binary responses. For the ith treatment group, let (Xij1, · · · , Xijnij)

be the set of binary data from the jth cluster of the ith treatment group, where

j = 1, · · · ,m(i),i = 1, · · · , g, and let

P (i)
rij ,nij

=

nij−rij∑
k=0

(−1)k
(
nij − rij

k

)
λrij+k,nij

where

nij∑
k=1

xijk = rij

If A
(i)
r,n represents the number of clusters of size n with r responses in the ith

treatment group

P{Xij1 = xij1, · · · , Xijnij = xijnij , j = 1, · · · ,m(i), i = 1, · · · , g} =
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g∏
i=1

K∏
n=1

n∏
r=0

[
P (i)
r,n

]A(i)
r,n

(3.1)

where K denotes the maximum possible cluster size in the experiment

It is clear from (3.1) and the factorization theorem that A
(i)
r,n’s form a set of joint

sufficient statistic for P
(i)
r,n’s. Thus we can summarize the dataset as given in Table 5

with each fixed cluster size.

Table 5: Summary of Data

Treatment Response Cluster size
1 2 3 · · · K Row Total

Control 0 A
(1)
0,1 A

(1)
0,2 A

(1)
0,3 · · · 0 n1

0

1 0 A
(1)
1,2 A

(1)
1,3 · · · A

(1)
1,K n1

1

2 0 0 A
(1)
2,3 · · · A

(1)
2,K n1

2

...
...

...
...

...
...

n 0 0 0 · · · A
(1)
n,K n1

n

Column Total m
(1)
1 m

(1)
2 m

(1)
3 · · · m

(1)
K m(1)

Treatment 1 0 A
(2)
0,1 A

(2)
0,2 A

(2)
0,3 · · · A

(2)
0,K n2

0

1 A
(2)
1,1 A

(2)
1,2 A

(2)
1,3 · · · A

(1)
1,K n2

1

2 0 A
2)
2,2 A

(2)
2,3 · · · A

(2)
K,3 n2

2

...
...

...
...

...
...

...

n 0 0 0 · · · A
(1)
n,K n2

n

Column Total m
(1)
1 m

(1)
2 m

(1)
3 · · · m

(1)
K m(2)

...
...
...

...
...

...
...

...

Treatment g 0 A
(g)
0,1 A

(g)
0,2 A

(g)
0,3 · · · A

(g)
0,K ng0

1 A
(g)
1,1 A

(g)
1,2 A

(g)
1,3 · · · A

(g)
1,K ng1

...
...

...
...

...
...

...
n 0 0 0 · · · A

(g)
n,K ngn

Column Total m
(g)
1 m

(g)
2 m

(g)
3 · · · m

(g)
K m(g)
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where
K∑
n=1

Air,n = nir and
n∑
r=0

Air,n = mi
n

K∑
n=1

Air,n = nir and
n∑
r=0

Air,n = mi
n

Now for each fixed n, n = 1, · · · , K, {A(i)
r,n, r = 0, · · · , n, i = 0, · · · , g} ∼

Multinomial

(
m(i)
n , P

(i)
0,n,

(
n

1

)
P

(i)
1,n, · · · ,

(
n

n− 1

)
P

(i)
n−1,n · · · , P (i)

n,n

)
Now consider testing the hypotheses: H0 : No treatment effect vs Ha : There

is a treatment effect and let T be the test statistic for testing these hypothesis and

suppose that we reject H0 if T ∈ C,where C is the critical region.. Then under

H0, P
(i)
r,n = Pr,n, i = 1, · · · , g r = 0, · · · , n n = 1, · · · , K and Ar,n =

g∑
i=1

A
(i)
r,n,

where {Ar,n, r = 0, 1, · · · , n} form a set of joint complete sufficient statistics for

(P0,n, · · · , Pn,n).

Thus the null hypothesis of of no treatment effect reduces to

H0 : P
(i)
r,n = Pr,n, i = 1, · · · , g r = 0, · · · , n n = 1, · · · , K.

Under H0,

{
g∑
i=1

A
(i)
r,n = ar,n|H0, r = 0, · · · , n, i = 1, · · · , g, n = 1, · · · , K

}
has a

Multinomial
(
Mn, P0,n,

(
n
1

)
P1,n, Pn,n · · · ,

(
n
r

)
Pr,n · · ·Pn,n

)
, and

P
(
A

(i)
0,n = a

(i)
0,n, · · · , A(i)

n,n = a(i)
n,n|H0, A0,n = a0,n, · · · , An,n = an,n, n = 1, · · · , K, i = 0, · · · , g

)
=

P
(
A

(i)
0,n = a

(i)
0,n, · · · , A

(i)
K,K = a

(i)
K,K , A0,n = a0,n, · · · , AK,K = aK,K , n = 1, · · · , K, i = 0, · · · , g

)
P (A0,n = a0,n, · · · , AK,K = aK,K , n = 1, · · · , K)
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=



g∏
i=1

K∏
n=1

(
P
(
A

(i)
0,n = a

(i)
0,n, · · · , A(i)

n,n = a(i)
n,n, A0,n = a0,n, · · · , An,n = an,n

))
K∏
n=1

P (A0,n = a0,n, · · · , An,n = an,n)

if
g∑
i=1

A
(i)
r,n = ar,n

0 if
g∑
i=1

A
(i)
r,n 6= ar,n

=



g∏
i=1

K∏
n=1

(
m

(i)
n

a
(i)
0,n, · · · , a

(i)
n,n

) K∏
r=0

P

g∑
i=1

A
(i)
r,n

r,n

K∏
n=1

(
Mn

a0,n, · · · , an,n

) K∏
r=0

P

g∑
i=1

A
(i)
r,n

r,n

if
g∑
i=1

A
(i)
r,n = ar,n, r = 0, · · · , n

0 if
g∑
i=1

A
(i)
r,n 6= ar,n

=



g∏
i=1

K∏
n=1

(
m

(i)
n

a
(i)
0,n, · · · , a

(i)
n,n

)
K∏
n=1

(
Mn

a0,n, · · · , an,n

) if
g∑
i=1

A
(i)
r,n = ar,n, r = 0, · · · , n

0 if
g∑
i=1

A
(i)
r,n 6= ar,n

3.2 Reference Set and P-value

Define a reference set Γ as the set of all possible contingency tables with fixed

marginal column and row sums as the observed table sums for treatment groups

i = 1, · · · , g, cluster sizes n = 1, · · · , K, with responses r = 0, · · · , n, that is

Γ =

{
Y : Y is n×K;

K∑
n=1

Air,n = nir,
n∑
r=0

Air,n = mi
n

}
Then for an observed value t of a test statistic T , the P − value of a test which

rejects H0, for large value of T is given by
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P-value=p(T > tobs|H0) =
∑
T>tobs


g∏
i=1

K∏
n=1

(
m

(i)
n

a
(i)
0,n, · · · , a

(i)
n,n

)
K∏
n=1

(
Mn

a0,n, · · · , an,n

)


3.3 Monte Carlo Method Using Likelihood Function

Monte Carlo methods, provide powerful tools to compute unbiased estimates of

the exact P − value for small data sets , sparse ,unbalanced tables, non normal data

and when the data that does not to conform to any particular parametric

distribution. For any observed table, a large number of tables with the same column

and marginal sums are randomly sampled from the reference set to obtain a set of

P − values. The enumeration of all possible tables in a reference set can be

computationally expensive for large tables. The accuracy of the Monte Carlo

estimate of the exact P − value increases as the number of tables sampled from the

reference set increases.

The procedure for Monte-Carlo computation may be summarized as follows

• Let the critical region of the reference set be defined as:

Γ∗ = {Y : Y ∈ Γ and PY ≥ PX}

and PX is the probability of the observed table and PY is the probability of

the sampled table Y . The probability of each table P (Y ) is given by,

P (Y ) =



g∏
i=1

K∏
n=1

(
m

(i)
n

a
(i)
0,n, · · · , a

(i)
n,n

)
K∏
n=1

(
Mn

a0,n, · · · , an,n

) if
g∑
i=1

A
(i)
r,n = ar,n, r = 0, · · · , n

0 if
g∑
i=1

A
(i)
r,n 6= ar,n

n = 1, · · · , K, i = 1, · · · , g
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• A Monte Carlo estimate of the P − value is obtained by sampling N tables

from the reference set Γ. Each of the N tables sampled from the reference set

Γ is ordered by the modified Freeman-Tukey statistic,

DY =
K∑
n=1

g∑
i=1

n∑
r=0

(
√
aij +

√
aij + 1−

√
4

(
mi
nn

i
r

N

)
+ 1

)2

(3.2)

to detect those tables that are at least as extreme as the observed table X.

• For each table Yi ∈ Γ that is sampled,define Wi as:

Wi =


1 DYi ≥ DX

0 otherwise

The Monte-Carlo P − value is then given by

P̂ − value =
1

N

N∑
i=1

Wi

Since variable Wi is a Bernoulli random variable. The asymptotic standard error of

the Monte Carlo estimate of the P − value is given by:

s.e.(p̂) =

√
p̂(1− p̂)
N − 1

and the asymptotic 100(1− α)% confidence intervals is given by:

p̂± zα
2
s.e.(p̂)

Although P̂ is an unbiased estimate of the exact P − value, simply replacing the

exact P − value with P̂ fails to control correctly for type I error rate[42] . P̂

underestimates the P − value if the null hypothesis is true when the number of Wi

is very small relative to N , and it can result in obtaining a P − value of zero if the

observed statistic is greater than all the permuted test statistics. For this reason an

adjusted Monte Carlo P − value estimate was suggested [13] as is:

p̂ =
1

(N + 1)

(
N∑
i=1

Wi + 1

)
(3.3)
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The Curtis adjusted P − value has expectation, NP+1
N+1

, and is biased and

overestimates the P − value by 1−P
N+1

.

The discreteness in small sample distributions can be adjusted by using the

mid-p− value approach suggested by Lancaster [27]. The mid P-value behaves

much more like the P-value of a test statistic with a continuous distribution. For a

test statistic T with observed value tobs and one-sided alternate hypothesis Ha. The

mid P-value is given by :

mid P − value =
1

2
P (T = tobs) + P (T > tobs)

This adjustment causes the mid P − value to be less than the ordinary P-value by

about half of the observed result, but it is less conservative compared to the

ordinary P − value of an exact test [1].

3.4 An Algorithm for Generating Tables

The tables from the reference set are generated by the Algorithm AS 159

Patefield (1981). Each table with the same row and column marginal sums is

generated under the null hypothesis assumption of no association between the rows

and columns categories. The conditional probability distribution of each entry Ar,n

and its expected value in a table given the previous entries in the rows and columns

is found. The probability distribution of Ar,n is accumulated starting with the Ar,n

equal to the nearest integer of it’s expected value. The c.p.u. times required for this

algorithm unlike the algorithm by Boyett(1979), depends more on the dimension of

the table rather than the sample size. Patefield’s algorithm performs considerably

better than Boyett’s Algorithm AS 144 for large dimension tables.

3.5 Simulation Study I

A simulation study was conducted to determine the operating characteristics of

the conditional exact test. The P − values of a homogeneity test between two

groups (control and treatment) were computed using various sample sizes by

varying the difference in success probabilities between the two groups. The marginal
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probability for the control group p1 was held constant at 0.1 and the probability of

the treatment group was varied from p2 = 0.1, · · · , 0.9. The sample sizes for both

the control and treatment groups were equal and varied from 50, 100 and 200.

The method proposed by Lunn and Davies [29] was used to generate correlated

binary random variables with exchangeable correlation structure ρj within the jth

cluster. Although this method is very simple to implement, it seems to be faster

than other existing algorithms for generating clustered binary data.

To give a brief description of the algorithm, let Xijk be the kth binary random

variable in the jth cluster of the ith treatment group for i = 1, 2, k = 1, · · · , nij

,j = 1, · · · , Ni. Thus N1 and N2 are the number of clusters in Control and

Treatment group respectively. The cluster sizes nij were chosen to follow a random

Poisson distribution with mean λ = 5 and λ = 10. Xijk’s and were generated as

follows:

Let Yijk and Zij be independent binary random variables with

pi = P (Yijk = Zij = 1). Further let Uijk be a binary random variable with

P (Uijk = 1) = θi independent of Yijk and Zij. Generate

Xijk = (1− Uijk)Yijk + UijkZij. Then E(Xijk) = (1− θi)pi + θipi = pi and

var(Xijk) = E(Xijk)
2 − (E(Xijk))2 = pj(1− pj). Further

cov(Xijk, Xijl) = E(Xijk, Xijl)− p2
i = θ2

ipi(1− pi) for k 6= l and cov(Xijk, Xijl) = 0

for j 6= l so that ρi = θ2
i .

The results from the simulation are displayed in Table 6. The exact conditional

approach detects a significant change in treatments as the marginal probabilities of

the two treatment groups begin to change. The level of significance increases as the

difference in probabilities of the two groups increases. Generally, it was also

observed that an increase in sample size is more likely to detect significance. The

p− values appear to increase as the intra cluster correlation is varied from 0.3 to

0.9. This demonstrates that there is some intra cluster effect. The results of the
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simulation study also show that the size of the clusters did not have any significant

effect on the p− values. Increasing the mean cluster size from 5 to 10, the results

remained generally the same.
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Table 6: Simulation Study I Results

Simulation Parameters P- Value,N1 = N2 = 50 P- Value,N1 = N2 = 100 P- Value,N1 = N2 = 200
p1 = p2 = 0.1
ρ1 = ρ2 = 0.3 0.5036603 0.4883057 0.4906973
λ = 5
p1 = 0.1, p2 = 0.2
ρ1 = ρ2 = 0.3 0.2881089 0.1443886 0.03172927
λ = 5
p1 = 0.1, p2 = 0.3
ρ1 = ρ2 = 0.3 0.07149251 0.005467532 0.001004995
λ = 5
p1 = 0.1, p2 = 0.5
ρ1 = ρ2 = 0.3 0.001715285 0.000999001 0.000999001
λ = 5
p1 = 0.1, p2 = 0.7
ρ1 = ρ2 = 0.3 0.000999001 0.000999001 0.000999001
λ = 5
p1 = 0.1, p2 = 0.9
ρ1 = ρ2 = 0.3 0.000999001 0.000999001 0.000999001
λ = 5
p1 = 0.1, p2 = 0.1
ρ1 = ρ2 = 0.6 0.5102378 0.503006 0.4948531
λ = 5
p1 = 0.1, p2 = 0.2
ρ1 = ρ2 = 0.6 0.3466993 0.238026 0.1015674
λ = 5
p1 = 0.1, p2 = 0.3
ρ1 = ρ2 = 0.6 0.1478362 0.03147852 0.001747253
λ = 5
p1 = 0.1, p2 = 0.5
ρ1 = ρ2 = 0.6 0.00674026 0.001015984 0.000999001
λ = 5
p1 = 0.1, p2 = 0.7

Continued on next page
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Table 6 – continued from previous page
Simulation Parameters P- Value,N1 = N2 = 50 P- Value,N1 = N2 = 100 P- Value,N1 = N2 = 200
ρ1 = ρ2 = 0.6 0.001010989 0.000999001 0.000999001
λ = 5
p1 = 0.1, p2 = 0.9
ρ1 = ρ2 = 0.6 0.000999001 0.000999001 0.000999001
λ = 5
p1 = p2 = 0.1
ρ1 = ρ2 = 0.9 0.5095644 0.509015 0.4906503
λ = 5
p1 = 0.1, p2 = 0.2
ρ1 = ρ2 = 0.9 0.4020539 0.3217502 0.1935874
λ = 10
p1 = 0.1, p2 = 0.3
ρ1 = ρ2 = 0.9 0.2189271 0.09046254 0.01030569
λ = 5
p1 = 0.1, p2 = 0.5
ρ1 = ρ2 = 0.9 0.001564436 0.001564436 0.000999001
λ = 5
p1 = 0.1, p2 = 0.7
ρ1 = ρ2 = 0.9 0.001114885 0.000999001 0.000999001
λ = 5
p1 = 0.1, p2 = 0.9
ρ1 = ρ2 = 0.3 0.000999001 0.000999001 0.000999001
λ = 5
p1 = 0.1, p2 = 0.1
ρ1 = ρ2 = 0.3 0.5124665 0.4985754 0.5069441
λ = 10
p1 = 0.1, p2 = 0.2
ρ1 = ρ2 = 0.3 0.2722398 0.1042607 0.01398202
λ = 10
p1 = 0.1, p2 = 0.3
ρ1 = ρ2 = 0.3 0.05241459 0.002683317 0.000999001
λ = 10

Continued on next page
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Table 6 – continued from previous page
Simulation Parameters P- Value,N1 = N2 = 50 P- Value,N1 = N2 = 100 P- Value,N1 = N2 = 200
p1 = 0.1, p2 = 0.5
ρ1 = ρ2 = 0.3 0.001330669 0.000999001 0.000999001
λ = 10
p1 = 0.1, p2 = 0.7 0.001 0.000999001 0.000999001
ρ1 = ρ2 = 0.3
λ = 10
p1 = 0.1, p2 = 0.9
ρ1 = ρ2 = 0.3 0.000999001 0.000999001 0.000999001
λ = 10
p1 = 0.1, p2 = 0.1 0.4909351 0.4971698 0.4943417
ρ1 = ρ2 = 0.6
λ = 10
p1 = 0.1, p2 = 0.2
ρ1 = ρ2 = 0.6 0.3182138 0.2037013 0.06839161
λ = 10
p1 = 0.1, p2 = 0.3
ρ1 = ρ2 = 0.6 0.1065634 0.01919381 0.001151848
λ = 10
p1 = 0.1, p2 = 0.5
ρ1 = ρ2 = 0.6 0.004274725 0.001 0.000999001
λ = 10
p1 = 0.1, p2 = 0.7
ρ1 = ρ2 = 0.6 0.001004995 0.000999001 0.000999001
λ = 10
p1 = 0.1, p2 = 0.9
ρ1 = ρ2 = 0.6 0.000999001 0.000999001 0.000999001
λ = 10
p1 = 0.1, p2 = 0.1
ρ1 = ρ2 = 0.9 0.4761019 0.4751439 0.5038921
λ = 10
p1 = 0.1, p2 = 0.2
ρ1 = ρ2 = 0.9 0.4080639 0.3138551 0.1967662

Continued on next page

36



Table 6 – continued from previous page
Simulation Parameters P- Value,N1 = N2 = 50 P- Value,N1 = N2 = 100 P- Value,N1 = N2 = 200
λ = 10
p1 = 0.1, p2 = 0.3
ρ1 = ρ2 = 0.9 0.2180729 0.09042458 0.09042458
λ = 10
p1 = 0.1, p2 = 0.5
ρ1 = ρ2 = 0.9 0.02597003 0.001347652 0.000999001
λ = 10
p1 = 0.1, p2 = 0.7
ρ1 = ρ2 = 0.9 0.001376623 0.000999001 0.000999001
λ = 10
p1 = 0.1, p2 = 0.9
ρ1 = ρ2 = 0.9 0.000999001 0.000999001 0.000999001
λ = 10
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3.6 Simulation Study II

Theorem 3.6.1 (de Finetti). An infinite sequence of binary random variables

(X1, X2, · · · , ) is exchangeable if and only if there exists a probability distribution

function F on [0, 1] such that for all n [15]

P (X1 = x1, X2 = x2, · · · , Xn = xn) =

∫ 1

0

θsn(1− θ)n−sndF(θ), (3.4)

P

(
n∑
i=1

Xi = sn

)
=

(
n

sn

)∫ 1

0

θsn(1− θ)n−sndF (θ) (3.5)

where,
n∑
i=1

Xi = sn

de Finetti’s theorem assumes that any finite set under consideration is a subset

of an infinite sequence. This assumption is not necessarily true in many practical

applications. The Beta-Binomial may be derived from De Finetti’s theorem when

the mixing distribution F is a beta distribution. The intra-litter correlation is

restricted to be positive in a Beta-Binomial model [10]. Diaconis [15], showed how

the De Finetti theorem fails in a finite sequence scenario and also obtained finite

sequence representation of de Finetti’s theorem.

3.6.1 The p-power and q-power Models

In the interest of formulating parametric models, Kuk [26] introduced p-power

for exchangeable binary random variables. Kuk [26] showed that the power family

model is a completely monotone function. This constraint is needed in order that

the forward differences of all marginal response probabilities is positive for a valid

probability model [10]. Define

λr+k = P (X1 = · · · = Xr+k = 1) = p(r+k)γ , 0 ≤ p, γ ≤ 1. (3.6)

Thus,

P (R = r) =

(
n

r

) n−r∑
k=0

(−1)k
(
n− r
k

)
p(r+k)γ ,where

n∑
k=1

Xk = R. (3.7)
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Kuk also gave the q-power model as

λ′k = P (X ′1 = · · · = X ′k = 1) = P (X1 = 0 = · · · = Xk = 0) = qk
γ

(3.8)

where

P (R = r) = P (R′ = n− r) =

(
n

r

) n−r∑
k=0

(−1)k
(
r

k

)
q(n−r+k)γ (3.9)

Using this ,we can show that the intra cluster correlation is given as

ρ =
q2γ − q2

q(1− q)
, where 0 < q < 1 (3.10)

where γ is the measure of positive intra-cluster correlation. γ = 1 represents the

case of independent observations and γ = 0 specifies complete intra-cluster

dependence. γ > 1 results in negative intra-cluster correlation (ρ < 0). 0 < γ < 1

indicates positive intra cluster correlation.

A reparametrization gives

γ =

log

[
log(q2+ρq(1−q))

log(q)

]
log(2)

(3.11)

The p-power distribution given by (3.7) under-estimates the probability of at

least one positive response P (R ≥ 1) by assigning high probability mass at zero[26].

This leads to overestimation of a safe dose in a litter-based approach to quantitative

risk assessment [26]. The q-power distribution given by (3.9) does not have this

problem. Kuk [26] showed that the probability distribution functions of the q-power

distribution in cases where the response probability or intra-cluster correlation is

small closely follows bell shape in comparison to their p-power counterparts.[26].

The q-power model in (3.9) does not model positive intra-litter correlation only. In

most practical applications that involve clustered binary data, intra-litter

correlation is positive. It can be shown that −1
nmax

≤ ρ ≤ 1, where nmax is the

maximum cluster size [17]. If
n∑
r=0

P (R ≥ r) = 1 the q-power model (3.9) defines a

valid distribution even when γ > 1 as long as P (R ≥ r) ≥ 0. For r = 0, · · · , n, this
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leads to negative intra-cluster correlation defined by Equation 3.10. A value of

γ > 1 results in negative intra-cluster correlation. Thus when these simple

conditions are satisfied, the q-power distribution can be adapted to model data with

negative intra-litter correlation. The q-power distribution is convenient in dose

response modeling when the probability that at least one cluster variable is affected

in contrast to the p-power distribution, since

P (R ≥ 1) = 1− P (R = 0) = 1− P (X1 = · · · , Xn = 0) = 1− qnγ (3.12)

The corresponding p-power family is given by

P (R ≥ 1) = 1− P (R = 0) = 1−
(
n

r

) n−r∑
k=0

(−1)k
(
n

k

)
pk

γ

(3.13)

A second simulation study was conducted to determine the characteristics of the

conditional exact tests. The P − values of a homogeneity test between a control

and a treatment groups were computed at various sample sizes by varying the

difference in success probabilities between the two groups. The marginal probability

for the control group p1 was held constant at 0.1 and the probability of the

treatment group was varied from p2 = 0.1, · · · , 0.9. The number of clusters for both

the control and treatment groups were made equal and varied at 50, 100 and 200. λ

is the mean of the Poisson distribution used to generate random cluster sizes. For

each set of parameters, the simulation was repeated a thousand times and the mean

p-value recorded.

3.6.2 Inverse Transform Method

The Inverse Transform method was used to generate correlated binary random

variables with intra-litter correlation ρ. To generate a random variable R with

probability distribution given by (3.9), we follow these two steps:

Steps

1. Generate probabilities p0 = P (R ≤ 0), p1 = P (R ≤ 1), p2 = P (R ≤ 2), · · ·
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2. Generate U ∼ u(0, 1) then set R = k if pk−1 < U < pk.

The results from the simulation are summarized in Table 7. The exact

conditional approach detects a significant change between control and treatment

group as the marginal probabilities of the two treatment groups begin to change.

The p-values decrease as the difference in marginal probabilities between the control

and treatment group increases. Generally, the increase in sample size has an effect

on significance. Larger sample sizes were more likely to detect significance for a

fixed set of parameters as expected, while for a fixed set of parameters, increasing

intra-cluster correlation resulted in increasing p-values. This suggests that

intra-cluster correlation has an effect on the significance of the test. Larger sample

sizes are needed to detect significant differences as intra-litter correlations increase.
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Table 7: Simulation Study II Results

Simulation Parameters P- Value,N1 = N2 = 50 P- Value,N1 = N2 = 100 P- Value,N1 = N2 = 200
p1 = p2 = 0.1
ρ1 = ρ2 = 0.3 0.5075455 0.5068741 0.4948332
λ = 5
p1 = 0.1, p2 = 0.2
ρ1 = ρ2 = 0.3 0.3366064 0.2118432 0.07347453
λ = 5
p1 = 0.1, p2 = 0.3
ρ1 = ρ2 = 0.3 0.1192218 0.01818382 0.001256743
λ = 5
p1 = 0.1, p2 = 0.5
ρ1 = ρ2 = 0.3 0.00458042 0.001003996 0.000999001
λ = 5
p1 = 0.1, p2 = 0.7
ρ1 = ρ2 = 0.3 0.001010989 0.000999001 0.000999001
λ = 5
p1 = 0.1, p2 = 0.9
ρ1 = ρ2 = 0.3 0.000999001 0.000999001 0.000999001
λ = 5
p1 = 0.1, p2 = 0.1
ρ1 = ρ2 = 0.6 0.4972358 0.5091479 0.5035944
λ = 5
p1 = 0.1, p2 = 0.2
ρ1 = ρ2 = 0.6 0.3752328 0.2706613 0.156002
λ = 5
p1 = 0.1, p2 = 0.3
ρ1 = ρ2 = 0.6 0.176035 0.06263437 0.00662038
λ = 5
p1 = 0.1, p2 = 0.5 0.01225175 0.001110889 0.000999001
ρ1 = ρ2 = 0.6
λ = 5
p1 = 0.1, p2 = 0.7

Continued on next page
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Table 7 – continued from previous page
Simulation Parameters P- Value,N1 = N2 = 50 P- Value,N1 = N2 = 100 P- Value,N1 = N2 = 200
ρ1 = ρ2 = 0.6 0.001063936 0.000999001 0.000999001
λ = 5
p1 = 0.1, p2 = 0.9
ρ1 = ρ2 = 0.6 0.000999001 0.000999001 0.000999001
λ = 5
p1 = 0.1, p2 = 0.1 0.5154116 0.5028581 0.5005315
ρ1 = ρ2 = 0.9
λ = 5
p1 = 0.1, p2 = 0.2
ρ1 = ρ2 = 0.9 0.3893546 0.3132098 0.1918781
λ = 5
p1 = 0.1, p2 = 0.3
ρ1 = ρ2 = 0.9 0.222013 0.08045654 0.01461738
λ = 5
p1 = 0.1, p2 = 0.5
ρ1 = ρ2 = 0.9 0.02365135 0.001455544 0.000999001
λ = 5
p1 = 0.1, p2 = 0.7
ρ1 = ρ2 = 0.9 0.001165834 0.000999001 0.000999001
λ = 5
p1 = 0.1, p2 = 0.9
ρ1 = ρ2 = 0.9 0.000999001 0.000999001 0.000999001
λ = 5
p1 = p2 = 0.1 0.4975125 0.5038791 0.5048911
ρ1 = ρ2 = 0.3
λ = 10
p1 = 0.1, p2 = 0.2
ρ1 = ρ2 = 0.3 0.3001578 0.1708402 0.04642657
λ = 10
p1 = 0.1, p2 = 0.3
ρ1 = ρ2 = 0.3 0.08166134 0.01356244 0.001064935
λ = 10

Continued on next page
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Table 7 – continued from previous page
Simulation Parameters P- Value,N1 = N2 = 50 P- Value,N1 = N2 = 100 P- Value,N1 = N2 = 200
p1 = 0.1, p2 = 0.5
ρ1 = ρ2 = 0.3 0.003024975 0.000999001 0.000999001
λ = 10
p1 = 0.1, p2 = 0.7
ρ1 = ρ2 = 0.3 0.001018981 0.000999001 0.000999001
λ = 10
p1 = 0.1, p2 = 0.9 0.000999001 0.000999001 0.000999001
ρ1 = ρ2 = 0.3
λ = 10
p1 = 0.1, p2 = 0.1 0.5004855 0.4963666 0.5109191
ρ1 = ρ2 = 0.6
λ = 10
p1 = 0.1, p2 = 0.2
ρ1 = ρ2 = 0.6 0.3816813 0.2802967 0.1594915
λ = 10
p1 = 0.1, p2 = 0.3
ρ1 = ρ2 = 0.6 0.1927493 0.06670829 0.00782018
λ = 10
p1 = 0.1, p2 = 0.5
ρ1 = ρ2 = 0.6 0.01223177 0.001152847 0.000999001
λ = 10
p1 = 0.1, p2 = 0.7 0.001191808 0.000999001 0.000999001
ρ1 = ρ2 = 0.6
λ = 10
p1 = 0.1, p2 = 0.9
ρ1 = ρ2 = 0.6 0.000999001 0.000999001 0.000999001
λ = 10
p1 = 0.1, p2 = 0.1
ρ1 = ρ2 = 0.9 0.50203 0.5016913 0.5188941
λ = 10
p1 = 0.1, p2 = 0.2
ρ1 = ρ2 = 0.9 0.4172587 0.3215764 0.2148541

Continued on next page
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Table 7 – continued from previous page
Simulation Parameters P- Value,N1 = N2 = 50 P- Value,N1 = N2 = 100 P- Value,N1 = N2 = 200
λ = 10
p1 = 0.1, p2 = 0.3
ρ1 = ρ2 = 0.9 0.2392268 0.1025734 0.01953247
λ = 10
p1 = 0.1, p2 = 0.5
ρ1 = ρ2 = 0.9 0.03052048 0.001665335 0.000999001
λ = 10
p1 = 0.1, p2 = 0.7
ρ1 = ρ2 = 0.9 0.001525475 0.000999001 0.000999001
λ = 10
p1 = 0.1, p2 = 0.9
ρ1 = ρ2 = 0.9 0.000999001 0.000999001 0.000999001
λ = 10
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The Lunn and Davis approach to generating correlated binary data results in

p-values that are in general slightly less than that of the Inverse Transform of the

q-power distribution for any fixed set of parameters. The two simulation methods

share all other similar characteristics with each other.
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3.7 Application

The exact test procedure was applied to the analysis of a developmental toxicity

study of ethylene glycol diethyl ether (EDGE). The data was obtained in an

experiment in which pregnant New Zealand white rabbits were exposed to the

compound EGDE. The effect of ethylene glycol diethyl ether on their fetal

development was then studied. In the study, four groups of pregnant does were

randomly assigned to dose levels 0, 25, 50, and 100 milligrams per kilogram body

weight of EGDE. For each litter and at each dose level, the adverse response used is

the combined number of fetal malformation and fetal death. The data are presented

in Table 8. The frequency distribution of live fetuses with malformations are

grouped into cluster sizes ranging from 2 to 15. The data appears to be relatively

sparse with no indication that dose level has impact on cluster size. From the table,

for each fixed cluster size, frequency of malformations appears to increase with

increasing dose level. Figure 1 shows the probability of at least one, two, three and

four responses across the various dose groups. In general, these probabilities

increase with increasing dose demonstrating the existence of a trend. Figure 2 shows

a strip chart plot of the responses. It is observed that dose group 100 has the

highest proportion fetuses with malformations. Lower dose groups 0, 25 and 50 have

relatively lower proportion of fetuses with malformations. Figure 3 shows that the

marginal proportion of fetuses affected also increase with increasing dose.
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Table 8: Data from Ethylene glycol ether(EDGE) Laboratory experiment: A Fre-
quency Table Representation

No. malformed No. of live fetuses
Dose Level i 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 2 1 1 2 3 1 3 1 1
1 1 1 1 1 1
2
3 1
4 1 2
5 1
6 1
7 1
8 1

25 0 1 1 4 2 1 2 2 1 1
1 1 1 1 2 1
2 2 1
3 1 2 1
4 1 1
5
6
7 1
8 1

50 0 2 1 1 1 1 1 1
1 1 1 1
2 1 1 1 1 1 1 1
3 1 1 1
4 1
5
6
7 1
8 1 1

100 0 1 2 1
1 1
2
3 1 1 1
4 1 1 1
5 1 1 3 1
6 1 2 1 1
7 1
8 1
9 2
10 1 1
12 2 1

3.7.1 Summary Statistics for Edge Data

Table 9: Summary Statistics for EDGE Data

Dose Level

0 25 50 100 Total

Clusters 21 23 25 25 94

Mean Cluster Size 7.79 8.28 8.31 7.71 8.02

Sample Size 218 265 216 239 938

Malformations 40 47 54 171 312

Response Rate (%) 18.35 17.74 25 71.55 33.26

Probability of at least 0.46 0.53 0.69 0.87 0.64
one fetus affected
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Figure 1: Marginal Response Probability Plot for EDGE Data
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Figure 2: Strip chart Representation for EDGE Data
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Figure 3: Fit of Marginal Probability for Edge Data

3.7.2 Treatment Test of Heterogeneity

To test the hypothesis of no adverse effect of EDGE against possible adverse

effect. We test the null hypothesis

H0 : P
(i)
r,n = Pr,n, i = 1, · · · , 4 r = 0, · · · , 12 n = 2, · · · , 15 versus the alternate

Ha:At least one P
(i)
r,n 6= P

(i+1)
r,n

In Table 10, we summarize the results of this test across all four treatment

groups. The results indicate a significant difference in response rates between the

four dose groups(p− value = 0.02894971). The estimates are based on 10, 000
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random samples from the reference set. The distribution of the test statistic DY

displayed by Figure 4 shows, the test statistic appears to be unimodal and skewed

to the left.

Table 10: Exact Conditional Test

Treatment Groups Mid P-value P-value 99% Confidence Interval

0,25,50,100 0.028945 0.02894971 (0.02758443, 0.03031499)

Table 11: Comparison with Other Test

Treatment Groups Exact Conditional Rao-Scott Homogeneity Test(Asymptotic)

0,25,50,100 0.028945 < 0.001
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Figure 4: 10000 Simulated Tables of Eq 3.2 for Edge data
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CHAPTER 4

EXACT STRATIFIED LINEAR RANK TEST

4.1 Stratified Representation of Data

Stratification of clustered data allows analysis to be made on data with the same

cluster sizes. When cluster sizes are fixed, each row in a stratum of the g treatment

groups can be viewed as g independent multinomial distributions with K categories.

Each observation Air,j represents the number of clusters with r responses

r = 0, · · · , K and stratum/cluster size j, j = 1, ·, K in the ith treatment group,

i = 1, · · · , g.

The stratum scores wi,j ,i = 0, 1, · · · , K and j = 1, · · · , K are monotone

non-decreasing weights assigned (w0,j ≤ w1,j ≤ · · · ≤ wK,j) to the jth stratum with

r responses. The weights wi,j are assigned to the ranked column in each stratum.

Let (u0i, u1i, u2i · · · , ugi) be monotone non-decreasing weights that is

(u0i ≤ u1i ≤ u2i ≤ · · · ≤ ugi). The weights uij,i = 1, · · · g and j = 1, · · · , K are

weights assigned to the ranked row sum in each stratum. The stratified

representation is shown in Table 12.

54



Table 12: Stratified Representation of Clustered Data

Cluster size Treatment Response
0 1 2 · · · n Row Total Row Weights

Stratum 1

1 0 A
(1)
0,1 A

(1)
1,1 0 · · · 1 m1

1 u11

2 A
(2)
0,1 A

(2)
1,1 0 · · · 0 m2

1 u21

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

g A
(g)
0,1 A

(g)
1,1 A

(g)
2,1 · · · A

(g)
r,1 m

g
1 ug1

Column Total n0,1 n1,1 n2,1 · · · nr,1 N1

Column Weights w01 w11 w21 · · · wr1

Stratum 2

2 1 A
(1)
0,2 A

(1)
1,2 A

(1)
2,2 · · · 0 m1

2 u12

2 A
(2)
0,2 A

(2)
1,2 A

(2)
2,2 · · · 0 m2

2 u22

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

g A
(g)
0,2 A

(g)
1,2 A

(g)
2,2 · · · A

(g)
r,2 m

g
2 ug2

Column Total n0,2 n1,2 n2,2 · · · nr,2 N2

Column Weights w02 w12 w22 · · · wr2

Stratum 3

3 1 A
(1)
0,3 A

(1)
1,3 A

(1)
2,3 · · · 0 m1

3 u13

2 A
(2)
0,3 A

(2)
1,3 A

(2)
2,3 · · · 0 m1

3 u23

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

g A
(g)
0,3 A

(g)
1,3 A

(g)
2,3 · · · A

(g)
r,3 m

g
3 ug3

Column Total n0,3 n1,3 n2,3 · · · nr,3 N3

Column Weights w03 w13 w23 · · · wr3

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
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.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
Stratum K

K 1 A
(1)
0,K

A
(1)
1,K

A
(1)
2,K

· · · A
(1)
K,K

m1
K u1K

2 A
(2)
0,K

A
(2)
1,K

A
(2)
2,K

· · · A
(2)
K,K

m2
K u2K

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

g A
(g)
0K

A
(g)
1K

A
(g)
2K

· · · A
(g)
rK

m
g
K

ugK

Column Total n0,K n1,K n2,K · · · nr,K NK

Column Weights w0,K w1,K w2,K · · · wr,K

Where A
(i)
r,j = 0, whenever r > j.
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4.2 Reference Set

Denote the reference set for each stratum j as the set of all possible contingency

tables with fixed marginal column and row sums as the observed table sums for

treatment groups i = 1, · · · , g, cluster sizes j = 1, · · · , K, where K is the maximum

cluster size in the experiment with responses r = 0, · · · , n. The reference set in the

jth stratum is:

γj =

{
yj : yj is g ×Kcontingency table;

n∑
r=0

Air,j = mi
r,

g∑
i=1

Air,j = nr,j

}
The reference set across all the strata can therefore be represented by the

Cartesian product of all reference sets from each of the j strata .

Γ = γ1 × γ2 · · · × γK = {Y : yj ∈ γj, j = 1, · · · , K}

Thus Y is made of γj stratums, j = 1, · · · , K. Each Y can be seen as

K × (g ×K) dimensional array.

4.3 Exact Linear Trend Test

The g rows of each stratum represent increasing doses of a drug and the K

distinctly ordered columns represent the progressively increasing responses. We wish

to investigate whether response increases with increasing dose. We consider a

general linear rank statistic T , which detects departure from the null hypothesis of

no dose effect. T is the sum of linear rank statistics across the K strata. The

asymptotic distribution of the standardized test statistic T ∗ is the standard normal

distribution with mean and standard deviation of 0 and 1 respectively. The square

of the standard test statistic is also asymptotically distributed as a chi-square with

one degree of freedom. Suppose each response falls into one of the K categories of a

multinomial distribution, Let Πi
j = (πij0, π

i
j1, · · · , πijK) be the multinomial

probabilities along each row in stratum j for dose group i. The null hypothesis for

stratum j can be written as

Hj
0 : Π1

j = Π2
j = · · · = Πg

j

and the hypothesis of trend as Hj
a : Υ1

j ≤ Υ2
j ≤ · · · ≤ Υg

j with at least one
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strict inequality

where for each fixed stratum j ,j = 1, · · · , K ,Υi
j =

n∑
r=0

πijr.

The linear trend test statistic is given by:

T =
K∑
j=1

Tj =
K∑
k=1

g∑
i=1

n∑
r=0

uijwrjA
(i)
r,j (4.1)

where wr,j is the weight assigned to the rth response within the jth stratum and

uij is the weight assigned to the ith treatment group in the jth stratum. There exist

several possible choices of weights, with each choice resulting in a different test. The

weights can be chosen to make the test cluster size invariant or cluster size specific.

For cluster size invariant scores, define nj =
K∑
k=1

nj,k, thus the sum of response is

used in weight computation in each response group.

Theorem 4.3.1. Under the null hypothesis of no row by column interaction, for the

jth stratum j = 1, · · · , K, the test statistic is Tj as given in (4.1) has mean and

variance as:

E(Tj) =

(
g∑
i=1

uijm
i
j

)(
n∑
r=0

wrjnjj

)
Nj

V ar(Tj) =

 g∑
i=1

u2
ijm

i
j −

(
g∑
i=1

uijm
i
j

)2

Nj


 n∑
r=0

w2
rjnrj −

(
K∑
r=0

wrjnrj

)2

Nj


Nj − 1

Proof. : We give the proof 2× 2 case. The g ×K case follows as a natural

extension.

Table 13: Stratified Exact Linear Trend Test for 2× 2 Tables

Treatment Response
0 1 Row Total Row Weights

0 A0
0,k A0

1,k m0
k u0

k

1 A1
0,k A1

1,k m1
k u1

k

Column Total n0,k n1,k Nk

Column Weights w0,k w1,k
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If each is treatment is fixed,the the number of 0 responses in treatment group 0,

A0
0,k and the number of 0 responses in treatment group 1, A1

0,k are independently

distributed as Binomial distributions B(m0
k, π00) and B(m1

k, π10) respectively.

π00 and π10 are probability of 0 response in treatment groups 0 and 1

respectively.

Let Ak0 = A0
0,k + A1

0,k and Ak1 = A0
1,k + A1

1,k,then under the null hypothesis that

π00 = π01 = π10 = π11 = π and Ak0 ∼ B(Nk, π) and Ak1 ∼ B(Nk, π). The distribution

of each Air,k stated in terms of A0
0,k

P (A0
0,k = a0

0,k, A
0
1,k = a0

1,k, A
1
0,k = a1

0,k, A
1
1,k = a1

1,k|H0, A
k
0 = ak0, A

k
1 = ak1)

=
P (A0

0,k = a0
0,k, A

0
1,k = a0

1,k, A
1
0,k = a1

0,k, A
1
1,k = a1

1,k|H0)

P (Ak0 = ak0, A
k
1 = ak1)

=

(
m0
k

a0
0,k

)
πa

0
0,kπm

0
k−a

0
0,k

(
m1
k

a1
0,k

)
πa

1
0,kπm

1
k−a

1
0,k(

Nk

ak0

)
πa

k
0 (π)Nk−a

k
0

=

(
m0
k

a0
0,k

)(
m1
k

a1
0,k

)
(
Nk

ak0

) =

(
m0
k

a0
0,k

)(
Nk −m0

k

n0,k − a0
0,k

)
(
Nk

ak0

)

That is A
(i)
r,k ∼ Hypergeometric

(
ak0,m

(0)
k ,m

(1)
k

)
. Hence E(A0

0,k) =
m0
knok
Nk

and

Var(A0
0,k) =

m0
kn0km

1
kn1k

N2
k (Nk − 1)

. Let π00 = P (0 responses in dose group 0) and

π01 = P (0 responses in dose group 1).

Under the null hypothesis that π00 = π10 = π the conditional distribution of any

Table i, with counts Air,k given row and column marginals has a hypergeometric

distribution with mean and variance given below:
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E(Air,k) =
mi
knrk
Nk

Var(Air,k) =
mi
k(Nk −mi

k)nrk(Nk − nrk)
N2
k (Nk − 1)

Tk =

g∑
i=1

n∑
r=0

uikwrkA
(i)
r,k

E(Tk) =

g∑
i=1

n∑
r=0

uikwrkE(A
(i)
r,k)

E(Tk) =

g∑
i=1

n∑
r=0

uikwrk
mi
knrk
Nk

E(Tk) =
1

Nk

g∑
i=1

(
uikm

i
k

) n∑
r=0

(wrknrk)

Var(Air,k) =
mi
k(Nk −mi

k)nrk(Nk − nrk)
N2
k (Nk − 1)

=
mi
knrk

Nk − 1

(
Nk −mi

k

Nk

)(
Nk − nrk

Nk

)

=
mi
knrk

Nk − 1

(
1− mi

k

Nk

)(
1− nrk

Nk

)

=
1

Nk − 1

(
mi
k −

(mi
k)

2

Nk

)(
nrk −

n2
rk

Nk

)
Under the null hypothesis of no row by column interaction:
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Var(Tk) =

g∑
i=0

K∑
r=0

u2
ikw

2
rkV ar(A

(i)
r,k)

Var(Tk) =

g∑
i=0

K∑
r=0

u2
ikw

2
rk

1

Nk − 1

(
mi
k −

(mi
k)

2

Nk

)(
nrk −

n2
rk

Nk

)

=
1

Nk − 1

 g∑
i=0

u2
ikm

i
k −

g∑
i=0

u2
ik(m

i
k)

2

Nk


 K∑

r=0

w2
rknrk −

K∑
r=0

w2
rkn

2
rk

Nk



=
1

Nk − 1


g∑
i=0

u2
ikm

i
k −

(
g∑
i=0

uikm
i
k

)2

Nk




K∑
r=0

w2
rknrk −

(
K∑
r=0

wrknrk

)2

Nk



T ∗k =
Tk − E(Tk)√
V ar(Tk)

ãsymp. N(0, 1)

The standardized linear trend statistic T ∗k of each stratum k, is thus

asymptotically standard normal distribution with mean 0 and variance = 1. Hence,

the square of the standardized linear trend statistic T ∗k is asymptotic chi-squared

distribution with one degree of freedom.

Theorem 4.3.2. The asymptotic distribution of the statistic across k strata can be

summarized by the M2 statistic.

M2 =

[
k∑
j=1

(Tk − E(Tk))

]2

k∑
j=1

var(Tk)

∼ χ2
(1) (4.2)

Proof. :
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Let T be the sum of K independent random variables with a from each of K

strata

T =
K∑
k=1

Tk

Then E(T ) is the sum of expectations of K independent random variables with

hypergeometric distribution.

E(T ) =
K∑
k=1

E(Tk)

Var(T ) =
K∑
k=1

V ar(Tk)

Then

(T − E(T ))2

V ar(T )
ãsymp. χ2

(1)

For g ×K tables without column ordering but with ordering of the rows, the

nonparametric Kruskal Wallis test and generalized one way ANOVA provide the

uniformly most powerful invariant, or UMP unbiased against the null hypothesis of

no column and row association. When the number of rows g = 2, the Kruskal Wallis

reduces to the Wilcoxon rank sum test. Both test are asymptotically chi-squared

with g − 1 degrees of freedom.

The Linear by Linear and Jonckheere-Terpstra test has the highest power for

doubly ordered g ×K contingency tables. These test do well in detecting existence

of a progressive trend in the alternate hypothesis. The flexibility in arbitrarily

selecting scores, makes the linear by Linear test very powerful. A special case in

which the original observations are used in place of the weights uij and wrj results

in a significance test for Pearson’s correlation coefficient. However, if the weights are

replaced by the mid-rank scores of the the observed data, Spearman correlation

61



coefficient between the ordered responses and ordered treatment groups is obtained

[32]. A special case of the linear Trend statistic where there are only 2 dose groups

and K strata is the simple linear rank statistic:

Tj =
n∑
r=0

wr,jA
(1)
r,j

This test statistic Tj is also equal to the Spearman correlation between

treatment levels 0, 1, · · · , g and the Responses 0, 1, · · · , K in stratum k multiplied

by
√
Nk − 1. ([1]; [5]). When the observed data are used as weights, then the linear

rank test is a significance test of the Pearson correlation coefficient. However, if the

ranks of the data are used then the result is a significance test of the Spearman

correlation coefficient [32].

Some of the commonly used linear rank weights are listed below:

• Wilcoxon Scores: The Wilcoxon scores are the ranks of the underlying

responses. Mid-ranks are used in the case of tied observations.

wr,k = n0,k + n1,k + · · ·+ nj−1,k +
(nj,k+1)

2

uik = m0
k +m1

k + · · ·+mj−1
k +

mjk+1

2

In the special case where we have only two treatment groups, using the

Wilcoxon scores reduces to the rank sum and the Wilcoxon-Mann-Whitney

test statistic [5].

• Normal Scores: The normal scores are defined as the percentile of the

standard normal distribution.

wrk = 1
nr,k

(
vr,k∑

j=vr−1,k+1

Φ−1
(

j
Ni+1

))

uik = 1
mik

(
wi,k∑

l=wi−1,k+1

Φ−1
(

l
Ni+1

))
where vj,k = n1,k + n2,k + · · ·+ nj,k,

wj,k = m0
k +m1

k + · · ·+mg
k and Φ−1(α) is the 100αth percentile of the

standard normal distribution.

• Logrank Scores: The logrank scores are the same as the scores for Savage
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(exponential scores) when they is no censoring [34]. They are used for survival

data.

wrk = 1
nr,k

(
vr,k∑

t=vr−1,k+1

t∑
l=1

(
1

Ni−l+1

))
− 1

uik = 1
mik

(
wi,k∑

t=wi−1,k+1

i∑
l=1

(
1

Ni−l+1

))
− 1

where vr,k = n0,k + n1,k + · · ·+ nr,k

wi,k = m0
k +m1

k + · · ·+mg
k

• Equally Spaced Scores:

wrk = (1, · · · , K)

uik = (1, · · · , g)

The Cohran-Armitage trend test is a special case of equally spaced scores

wj,k = j − 1 and ui,k = i− 1 ; when there are only two treatment groups [34].

4.4 Exact Two-sided P-value Computation

Let PY be the exact probability distribution of each table Y in the reference set

Γ. The distribution of the test statistic can be found empirically by limiting the

sample space of each table Y to the reference set Γ and randomly permuting the

probability distribution PY a large number of times. Define the discrepancy measure

D as a real valued function D : Γ→ R mapping g ×K tables in Γ onto the real

number line R. An exact test is formed by ordering the tables in Γ according to

some test statistic or discrepancy measure DY . The discrepancy measure quantifies

the extent of deviation of a table Y ∈ Γ from the null hypothesis of no row by

column interaction. Various choices of D include the Linear Rank, Pearson,

Chi-Square, Fisher’s Exact and Likelihood Ratio test statistics. The p-value is

found as the sum of all null probabilities of all tables Y in Γ which are at least as

extreme as the observed table X with respect to D .

p-value =
∑

DX≥DX
PY = Pr[DY ≥ DX ]

Classical nonparametric methods rely on the large sample/asymptotic
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distribution of D such as chi-squared distribution to estimate the p-value. With the

increased computational power and efficient enumerating algorithms now available,

the exact distribution of D can be found and the p-value subsequently computed.

An adjustment for correcting the discreteness that arises in small samples

distributions is to make inferences based on the mid p-value (Lancaster 1961). This

adjustment reduces the ordinary p-value by half the probability of the observed

result. The mid p-value is found as:

mid P-value = 1
2
Pr[DY = DX ] + Pr[DY > DX ]

Classical non-parametric methods rely on the asymptotic distribution of D to

approximate the p-value. This approximation can be considerably different from the

exact distribution when presented with unbalanced or sparse data or data with a

small sample size. Mehta et al (1998) suggest that the main advantage of the exact

p-value over its asymptotic approximation is that it is guaranteed to bound the type

I error rate of the hypothesis testing procedure to any desired level [32].

Table 14: Size of Reference Sets (Mehta, Patel, Senchaudhuri, 1992)

Sample Size(N) Tables in Reference Set Γ

20 1.8 ×105

30 1.5 ×108

40 1.4 ×1011

50 1.3 ×1014

100 1.0 ×1029

Explicit enumeration of all the tables in the reference set Γ would be

computationally expensive and infeasible for relatively large tables. An example of

the size of reference sets for different N values is given in Table 14. Mehta, Patel,

and Tsiatis (1984) developed a network algorithm that implicitly enumerates all

tables in the reference set by connecting a series of networks and nodes. Some of

these tables in the reference sets are also rather sparse and not likely to yield

accurate p-values. This is the motivation for the Monte Carlo approach. For all
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practical purposes, the Monte Carlo exact p-value is equivalent to the exact p-value

obtained by enumeration of all tables in the reference set. The expected value of the

Monte Carlo p-value is equal to that in which all tables are enumerated.

4.5 Application using Edge Data

The procedure was implemented using the Edge Toxicology Laboratory data

available in the R statistical programming language; the data was obtained from a

developmental toxicity experiment in which pregnant New Zealand white rabbits

exposed to ethylene glycol diethyl ether (EGDE). The effect of ethylene glycol

diethyl ether on their fetal development were then studied. In the study, four groups

of pregnant does were randomly assigned to dose levels 0, 25, 50, and 100 milligrams

per kilogram body weight of EGDE. For each litter and at each dose level, the

adverse response used is the combined number of fetal malformation and fetal

death. The data are presented in Table 8. The frequency distribution of live fetuses

with malformations are grouped into cluster sizes ranging from 2 to 15. The data

appears to be relatively sparse with no indication that dose level has impact on

cluster size. From the table, for each fixed cluster size, frequency of malformations

appears to increase with increasing dose level.

4.5.1 Results

In Tables 15 and 16 we summarize the results of the tests of homogeneity of

response rates across all four treatment groups with the linear rank statistic as the

discrepancy measure D. The results for all four dose groups is displayed in Table 15

and individual comparison between dose group 0 and the remaining dose groups is

displayed in Table 16, where SO is the stochastic ordering test [46], RS is the

Rao-Scott linear trend test [38] and GEE is the Generalized Estimating Equation

[50]. The results indicate significant difference in response rates when all four dose

groups are considered together. There is significant difference between dose group

100 and the control group when pairwise hypothesis are considered. There is no
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significant difference between dose groups (0, 25) and (0, 50). The estimates are

based on 10, 000 random samples from the reference set Γ. The distribution of the

test statistic displayed shows, the test statistic appears to be approximately

normally distributed with some discreteness at the peak of the histogram of the

sample. Each of the two sets of weights used (midranks and equal spacing) lead to

significant outcomes at 0.05 level. The asymptotic approximate distribution of the

test statistic using Wilcoxon weights and Equally spaced weights also resulted in

significant p-values. The Pearson Chi-Squared family of test statistics are

inapplicable because of the level of sparsity in the data. Many of the expected cell

frequencies are zero.

Hj
0 : Π0

j = Π1
j = · · · = Πg

j

Hj
a : Υ0

j ≤ Υ1
j ≤ · · · ≤ Υg

j with at least one strict inequality

Table 15: EDGE Data, Dose groups (0, 25, 50, 100)

Weights P value Mid P-value Asymptotic

Exact Exact P-value

Equal spacing 9.99× 10−6 5.0× 10−6 1.97× 10−8

Midranks 9.99× 10−6 5.0× 10−6 9.6× 10−8

Table 16: First three columns from Aniko Szabo,2010

Dose SO RS GEE Exact Linear Trend
(Equally Spaced Weights)

0,25 0.116 0.536 0.610 0.485

0,50 0.014 0.150 0.272 0.259

0,100 < 0.001 2× 10−7 4× 10−11 5× 10−6
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4.5.2 Application using 2,4,5-T Data

The 2,4,5-T Data was obtained from a study conducted at the National Center

for Toxicological Research, Food and Drug Administration [10]. Several strains of

mice were used in a multiplicative teratology experiment. About 100 pregnant mice

in each strain were daily exposed to ordered dose levels 0, 30, 60, 45, 60, 75 and 90

mg/kg of the herbicide 2,4,5-trichlorophenoxyacetic acid from day 6 to day 14 of

gestation. The number of fetal implantation sites, deaths, resorptions, cleft palate

malformations, and fetal weights of the live fetuses were recorded for each pregnant

female. The data from the experiment are summarized in Table 18. For each

pregnant mouse, s represents the number of implantation sites and t, the number of

combined endpoints, is the number of reabsorbed embryos or dead fetuses together

with the number of fetuses with cleft palate malformation. Table 18 gives the

frequency of each combination of s and t.
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Table 17: Frequency Distribution of the Number of Implant(s) and Number of Com-
bined Endpoints(t) Following Exposure to 2,4,5-T (Bowman and George 1995)

Birth Defects Number of Implants
No. of live fetuses(s)

Dose t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 21
0 0 1 1 1 1 2 1 5 4 6 7 2 2

1 1 2 1 7 6 5 2 1
2 1 1 5 3 1 1
3 1 1
4 1

30 0 1 1 2 2 2 1 2 4 8 2 3 2 1
1 1 1 2 8 4 5 5 2 2
2 2 2 1 1 2 1 2 1
3
4 1 1
5 1
6 1
7
8 1
15 1

45 0 1 1 1 1 1 1 8 3 1
1 1 1 1 1 3 2 4 3 1 1 1
2 1 1 1 5 4 3 2 1
3 1 2 3 1 1 1
4 1
5 1 1 1 3 1 1
6 1 2 3 1 1
7 1
8 1 1
9 1
10 1
11 1
12 2
13 2 1
14 1
18 1

60 0 1 1 1 3 1
1 1 2 2 4 2 1 1
2 1 1 1 4 1
3 2 1 3 1
4 1 1 2 1
5 2 2 1
6 1 1 1
7 1 1
8 2 1 2
9 1 2 1
10 5 1
11 2 1
12 3
13 2
14 2

75 0 1 1
1 1
2 2 2
3 1
4 1
5 2 1 1
7 1 1
8 1 1 1
9 3 1
10 1 1 1
11 4 2
12 3 4
13 3
14 2
15 1

90 0 1
1 1
3
4 1 1
6 1
7 1
10 4 2 1
11 2
12 6
13 2
14 2
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Table 19: Results of T-245 Data

Weights P value Mid P-value Asymptotic

Exact(Monte Carlo) Exact(Monte Carlo) P-value

Midranks 0.000149985 0.0000999 < 0.000001

Equal spacing 0.000149985 0.0000999 < 0.000001

Exact Conditional Likelihood 0.000449955 0.00039996 ——
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CHAPTER 5

FUTURE RESEARCH:ADJUSTING FOR MULTIPLICITY IN EXACT

TESTS

5.1 Introduction

Multiple testing occurs in the analysis of data when several hypotheses are

tested simultaneously. For example in genomics, one may be interested in

simultaneously testing thousands of hypotheses to determine which genes are

differentially expressed. In clinical trials, one may also be interested in

simultaneously comparing a control group with different levels of treatment groups.

In a single hypothesis test, a level of significance α, is chosen to control the type-I

error rate, otherwise known as a false positive. This is the probability of incorrectly

rejecting the null hypothesis. When multiple hypotheses are tested simultaneously

to make inference on a global hypothesis of interest, the probability of incorrectly

declaring significance when no effect exist, is greatly increased. Specifically, suppose

n independent hypotheses H01, · · · , H0n are tested each at a significance level α,

then the probability of incorrectly rejecting at least one null hypothesis is

1− (1− α)n. Thus, as n increases, the probability of type-I error increases and

tends to one. The probability of making at least one type-I error in a multiple test

is called a familywise error rate denoted FWER.

5.2 Application with EDGE Data

In a plan to explore the use of various procedures that adjust P − values in the

context of multiple exact test we have done a preliminary analysis of the EDGE

data. We simultaneously tested for trend between the control group(dose 0) and

other dose groups 25, 50 and 100. We implemented the exact linear trend test

procedure described in chapter 4 using the EDGE dataset. Table 20 shows the

unadjusted p-values. There is no significant difference between dose groups

(0, 25), (0, 50) and (25, 50). In Table 21, the p-values are adjusted using the

70



familywise error rate and false discovery rates aproaches for controlling type-I error

described earlier in this chapter. As expected the Bonferroni procedure is the most

conservative among all the procedures. The Familywise Error control procedures are

conservative in comparison to the False Discovery Pocedure. The exact linear trend

test detects significant diffrence between dose groups 0 and 100. There is no

significant difference between dose groups (0, 25) and (0, 50) even with multiple

adjustment correction.

Table 20: Raw p-values with equally spaced scores

Dose p-value Mid p-value

0,25 0.5383462 0.49135

0,50 0.3055694 0.26335

0,100 9.999× 10−5 5× 10−5

25,50 0.3264674 0.27615

25,100 9.999× 10−5 5× 10−5
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5.3 Conclusion

In this dissertation, we have introduced an exact test for testing for trend using

binary and multinomial exchangeable data for developmental toxicity studies. Our

procedure generalized the well-known Fisher’s Exact test and the version for

correlated data introduced by Cocoran et al [12]. We implemented an exact

conditional test for exchangeable clustered binary data analogous to a generalized

Fisher’s exact test. We eliminate the nuisance parameters( in this case the

probabilities of response) by conditioning on joint sufficient statistics. Conditional

tests are known to be conservative, a test of Homogeneity of responses across

different treatment groups using the EDGE data of the exact test implemented here

compared with the Rao-Scott Homogeneity (asymptotic) test validates this belief.

We also implemented an exact linear rank test for correlated binary data. We have

conducted two simulation studies to demonstrate the performance of the exact

conditional test. The results from the two simulation studies are very close to each

other. The simulation study generating random values from the q-power model has

slightly larger p-values than that of the Lunn and Davis approach for any set of

fixed parameters. We have also shown that an exact linear trend test can be

simultaneously performed to test multiple hypotheses and the p-values accordingly

adjusted to control for multiplicity errors. Our future work will be to develop an

exact conditional stochastic trend test to capture trends which are not necessarily

linear like the one developed in this dissertation.
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APPENDIX A

COMPUTER PROGRAMMING CODES

Stratified Linear Exact Test

1 rm( l i s t=l s ( ) )

2 l i b r a r y ( CorrBin )

3 l i b r a r y ( vcd )

4 l i b r a r y ( co in )

5 data ( s h e l l t o x )

6 #input data

7 data ( egde )

8 edge <− egde # rename datase t because o f typo in the code

9

10 s h e l l =(xtabs ( Freq˜Trt+NResp+Clus t e rS i z e , data=s h e l l t o x ) )

11

12 c=s h e l l

13

14 c=xtabs ( Freq˜Trt+NResp+Clus t e rS i z e , data=edge )

15 #c=c [ c (1 , 2 ) , , ]

16

17

18 dim ( c )

19

20

21 ## rank each stratum####

22

23 #### Wiloxon ranks o f n i j , midranks f o r t i e s####

24

25 midrankscores=func t i on ( c ) {

26

27 d=matrix (0 , dim ( c ) [ 1 ] , dim ( c ) [ 2 ] )

28
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29 d [ 1 , ] =0.5∗ ( c [1 , ]+1 )

30

31 d [2 , ]= c [ 1 , ] + 0 . 5 ∗ ( c [ 2 , ]+1)

32

33 f o r ( i in 3 : dim ( c ) [ 1 ] ) {

34

35

36 d [ i , ]= colSums ( c [ 1 : ( i −1) , ] ) +0.5∗ ( c [ i , ]+1)

37

38

39 }

40 re turn (d)

41 }

42

43

44

45 #################

46 ##### mid rank weights o f the column sums

47 ######### in each stratum

48

49 v=midrankscores ( apply ( colSums ( c ) ,2 , rank ) )

50

51 #################

52 ##### mid rank weights o f the row sums

53 ######### in each stratum

54

55 u=midrankscores ( apply ( apply ( c , 3 , rowSums) ,2 , rank ) )

56

57

58 mult ip ly2=func t i on ( c , u , v ) {

59 t s=array (0 , c ( dim ( c ) [ 1 ] , dim ( c ) [ 2 ] , dim ( c ) [ 3 ] ) )

60

61 f o r ( k in 1 : dim ( c ) [ 3 ] ) {
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62

63 t s [ , , k]= t (u [ , k ] ∗c [ , , k ] ) ∗v [ , k ]

64

65 }

66

67 t s s=sum( t s )

68 re turn ( l i s t ( t s s ) )

69 }

70

71

72

73 tobs=mult ip ly2 ( c , u , v ) [ [ 1 ] ]

74

75 t s=c ( )

76 nsim=100000

77 f o r ( j in 1 : nsim ) {

78

79 t=array (0 , c ( dim ( c ) [ 1 ] , dim ( c ) [ 2 ] , dim ( c ) [ 3 ] ) )

80

81

82

83 f o r ( i in 1 : dim ( c ) [ 3 ] ) {

84

85 t [ , , i ]= r2dtab l e (1 , rowSums( c [ , , i ] ) , colSums ( c [ , , i ] ) ) [ [ 1 ] ]

86

87 }

88 v=midrankscores ( apply ( colSums ( t ) ,2 , rank ) )

89

90 u=midrankscores ( apply ( apply ( t , 3 , rowSums) ,2 , rank ) )

91

92 t s [ j ]= mult ip ly2 ( t , u , v ) [ [ 1 ] ]

93

94
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95 }

96

97

98 p . value1=( length ( ( ( t s [ ts>=tobs ] ) ) )+1)/ ( nsim+1)

99 p . value1

100

101

102 p . value1+p . value2

103 ### mid p−value ##########

104 pval =0.5∗ ( l ength ( ( ( t s [ t s=tobs ] ) ) ) ) / ( nsim )+( l ength ( ( ( t s [ ts>tobs ] ) ) ) ) / (

nsim )

105 pval

106

107 # tobss=abs ( tobs−mean( t s ) )

108 # tnn=abs ( ts−mean( t s ) )

109 # twosidedpvalue=( length ( ( ( tnn [ tobss<=tnn ] ) ) ) +1)/ ( nsim+1)

110 # twosidedpvalue

111 # midpvalue=( l ength ( ( ( tnn [ tobss<=tnn ] ) ) ) ) / ( nsim ) +0.5∗mean( tobss==tnn )

112 # midpvalue

113 # cbind ( tobss , tnn )

114 # which ( tobs s==tnn )

115 #h i s t ( ts , breaks=”fd ” , c o l=”gray ” , main=”D i s t r i b u t i o n o f t e s t s t a t i s t i c s

us ing midranks ” , xlab =””,prob=TRUE, ylab=”P(T=t ) ”)

116 #a b l i n e ( v =tobs , c o l=”blue ”)

117 #box ( l t y = ’ s o l i d ’ , c o l = ’ black ’ )

118

119 #png (” ˜/Documents/ memphisc lassesbooks /RESEARCH/Trend/w. png ”)

120 #h i s t ( ts , breaks=”fd ” , c o l=”gray ” , main=” ” , xlab =””,prob=TRUE, ylab=”P(T=t

) ”)

121 #a b l i n e ( v =tobs , c o l=”blue ”)

122 #box ( l t y = ’ s o l i d ’ , c o l = ’ black ’ )

123 #dev . o f f ( ) ;

124
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125

126

127

128

129

130

131

132

133

134 x=(apply ( colSums ( c ) ,2 , rank ) )

135 r=(apply ( apply ( c , 3 , rowSums) ,2 , rank ) )

136 r [ 1 , ] = 0 . 5 ∗ ( r [ 1 , ]+1)

137 r [ 2 , ]= r [ 1 , ] + 0 . 5 ∗ ( r [ 2 , ]+1)

138

139 #### Wiloxon ranks o f n i j , midranks f o r t i e s####

140

141 midrankscores=func t i on ( x ) {

142

143 d=matrix (0 , dim ( x ) [ 1 ] , dim ( x ) [ 2 ] )

144

145 d [ 1 , ] =0.5∗ ( x [1 , ]+1 )

146

147 d [2 , ]= x [ 1 , ] + 0 . 5 ∗ ( x [ 2 , ]+1)

148

149 f o r ( i in 3 : dim ( x ) [ 1 ] ) {

150

151

152 d [ i , ]= colSums ( x [ 1 : ( i −1) , ] ) +0.5∗ ( x [ i , ]+1)

153

154

155 }

156 re turn (d)

157 }
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158

159

160 #################

161 ##### mid rank weights o f the column sums

162 ######### in each stratum

163

164 v=midrankscores ( apply ( colSums ( c ) ,2 , rank ) )

165

166 #################

167 ##### mid rank weights o f the row sums

168 ######### in each s t r a t u s

169

170 r=(apply ( apply ( c , 3 , rowSums) ,2 , rank ) )

171 u=matrix (0 , dim ( r ) [ 1 ] , dim ( r ) [ 2 ] )

172 u [ 1 , ] = 0 . 5 ∗ ( r [ 1 , ]+1)

173 u [2 , ]= r [ 1 , ] + 0 . 5 ∗ ( r [ 2 , ]+1)

174

175

176

177

178

179 mult ip ly2=func t i on ( c , u , v ) {

180 t s=array (0 , c ( dim ( c ) [ 1 ] , dim ( c ) [ 2 ] , dim ( c ) [ 3 ] ) )

181

182 f o r ( k in 1 : dim ( c ) [ 3 ] ) {

183

184 t s [ , , k]= t (u [ , k ] ∗c [ , , k ] ) ∗v [ , k ]

185

186 }

187

188 t s s=sum( t s )

189 re turn ( l i s t ( t s s ) )

190 }
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191

192

193

194 tobs=mult ip ly2 ( c , u , v ) [ [ 1 ] ]

195

196 t s=c ( )

197 nsim=1000

198 f o r ( j in 1 : nsim ) {

199

200 t=array (0 , c ( dim ( c ) [ 1 ] , dim ( c ) [ 2 ] , dim ( c ) [ 3 ] ) )

201

202

203

204 f o r ( i in 1 : dim ( c ) [ 3 ] ) {

205

206 t [ , , i ]= r2dtab l e (1 , rowSums( c [ , , i ] ) , colSums ( c [ , , i ] ) ) [ [ 1 ] ]

207

208 }

209 v=midrankscores ( apply ( colSums ( t ) ,2 , rank ) )

210

211

212 r=(apply ( apply ( t , 3 , rowSums) ,2 , rank ) )

213 u=matrix (0 , dim ( r ) [ 1 ] , dim ( r ) [ 2 ] )

214 u [ 1 , ] = 0 . 5 ∗ ( r [ 1 , ]+1)

215 u [2 , ]= r [ 1 , ] + 0 . 5 ∗ ( r [ 2 , ]+1)

216

217

218 t s [ j ]= mult ip ly2 ( t , u , v ) [ [ 1 ] ]

219

220

221 }

222

223

87



224 p . value1=( length ( ( ( t s [ ts>=tobs ] ) ) )+1)/ ( nsim+1)

225 p . value1

226

227

228

229 ### mid p−value ##########

230 pval =0.5∗ ( l ength ( ( ( t s [ t s=tobs ] ) ) ) ) / ( nsim )+( l ength ( ( ( t s [ ts>tobs ] ) ) ) ) / (

nsim )

231 pval

1 rm( l i s t=l s ( ) )

2 l i b r a r y ( CorrBin )

3 l i b r a r y ( vcd )

4 l i b r a r y ( co in )

5 data ( s h e l l t o x )

6 s h e l l t o x=s h e l l t o x

7 head ( s h e l l t o x )

8 #input data

9 data ( egde )

10 edge <− egde # rename datase t because o f typo in the code

11

12 s h e l l =(xtabs ( Freq˜Trt+NResp+Clus t e rS i z e , data=s h e l l t o x ) )

13

14 s h e l l 1 =(xtabs ( Freq˜Trt+NResp+Clus t e rS i z e , data=s h e l l t o x ) ) [ c ( 1 , 4 ) , , ]

15

16

17 c=s h e l l

18 c=xtabs ( Freq˜Trt+NResp+Clus t e rS i z e , data=edge )

19 #c=c [ c (1 , 2 ) , , ]

20 ###########Cochran−Armitage Trend Test w=j−1###

21

22 #### rank o f columns ###

23
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24 v=seq (1 , dim ( c ) [ 2 ] , 1 )−1

25 u=seq (1 , dim ( c ) [ 1 ] , 1 )−1

26

27

28 ## observed t e s t s t a t i s t i c

29 tobs=apply (u∗c , 3 , f unc t i on ( x ) t ( x ) ) ∗v

30 tobs=apply ( tobs , 1 , sum)

31 sum( tobs )

32 tob=(apply ( ( apply (u∗c , 3 , f unc t i on ( x ) t ( x ) ) ∗v ) ,2 , sum) )

33 sum( tob )

34 mult ip ly3=func t i on ( c , u , v ) {

35 t s=array (0 , c ( dim ( c ) [ 1 ] , dim ( c ) [ 2 ] , dim ( c ) [ 3 ] ) )

36

37 f o r ( k in 1 : dim ( c ) [ 3 ] ) {

38

39 t s [ , , k]= t (u [ , k ] ∗c [ , , k ] ) ∗v [ , k ]

40

41 }

42

43 t s s =( t s )

44 re turn ( l i s t ( t s s ) )

45 }

46

47

48

49

50

51 ###########Asymptotic pvalue o f Linear by Linear As soc i a t i on Test######

52 ########### u=0 ,1 ,2 ,3 and v =0 ,1 ,2 ,3 ,4 ,5 ,6 ##########################

53 n=colSums ( c )

54 m=apply ( c , 3 , rowSums)

55 n=apply ( c , 3 , colSums )

56 N=apply ( c , 3 , sum)
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57

58 v1=matrix (v , dim ( c ) [ 2 ] , dim ( c ) [ 3 ] )

59

60 u1=matrix (u , dim ( c ) [ 1 ] , dim ( c ) [ 3 ] )

61

62

63 tobs=apply ( mult ip ly3 ( c , u1 , v1 ) [ [ 1 ] ] , 3 , sum)

64 sum( tobs )

65 mean=colSums ( u1∗m) ∗colSums ( v1∗n) /N

66 sum(mean)

67 var =(( colSums ( ( u1 ˆ2) ∗m)−(colSums ( u1∗m) ˆ2) /N) ∗ ( colSums ( v1ˆ2∗n)−(colSums (

v1∗n) ˆ2) /N) ) /N

68

69

70 t s t a r =(sum( tobs−mean) ˆ2) /sum( var )

71

72 pch i sq ( t s ta r , df =1, ncp = 0 , lower . t a i l = F, l og . p = FALSE)

73 pch i sq ( t s ta r , df =1, ncp = 0 , lower . t a i l = T, log . p = FALSE)

74

75 1−pch i sq ( t s ta r , df =1, ncp = 0 , lower . t a i l = T, log . p = FALSE)

76

77

78 #################################################

79 ##### wilcoxon s c o r e s##############

80

81 n=colSums ( c )

82 m=apply ( c , 3 , rowSums)

83 n=apply ( c , 3 , colSums )

84 N=apply ( c , 3 , sum)

85

86

87 midrankscores=func t i on ( c ) {

88
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89 d=matrix (0 , dim ( c ) [ 1 ] , dim ( c ) [ 2 ] )

90

91 d [ 1 , ] =0.5∗ ( c [1 , ]+1 )

92

93 d [2 , ]= c [ 1 , ] + 0 . 5 ∗ ( c [ 2 , ]+1)

94

95 f o r ( i in 3 : dim ( c ) [ 1 ] ) {

96

97

98 d [ i , ]= colSums ( c [ 1 : ( i −1) , ] ) +0.5∗ ( c [ i , ]+1)

99

100

101 }

102 re turn (d)

103 }

104

105

106 mult ip ly3=func t i on ( c , u , v ) {

107 t s=array (0 , c ( dim ( c ) [ 1 ] , dim ( c ) [ 2 ] , dim ( c ) [ 3 ] ) )

108

109 f o r ( k in 1 : dim ( c ) [ 3 ] ) {

110

111 t s [ , , k]= t (u [ , k ] ∗c [ , , k ] ) ∗v [ , k ]

112

113 }

114

115 t s s =( t s )

116 re turn ( l i s t ( t s s ) )

117 }

118

119

120

121
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122

123 v1=midrankscores ( apply ( colSums ( c ) ,2 , rank ) )

124

125 u1=midrankscores ( apply ( apply ( c , 3 , rowSums) ,2 , rank ) )

126

127 tobs=apply ( mult ip ly3 ( c , u1 , v1 ) [ [ 1 ] ] , 3 , sum)

128

129 mean=colSums ( u1∗m) ∗colSums ( v1∗n) /N

130

131

132 var =(( colSums ( ( u1 ˆ2) ∗m)−(colSums ( u1∗m) ˆ2) /N) ∗ ( colSums ( v1ˆ2∗n)−(colSums (

v1∗n) ˆ2) /N) ) /N

133

134

135

136

137 t s t a r=sum( tobs−mean) ˆ2/sum( var )

138

139 pch i sq ( t s ta r , df =1, ncp = 0 , lower . t a i l = F, l og . p = FALSE)

140

141 pch i sq ( t s ta r , df =1, ncp = 0 , lower . t a i l = T, log . p = FALSE)

Simulation of Correlated Binary Data

1 s e t . seed (148)

2 N<−30

3 meanlambda<−5

4 p=.8

5 q=.1

6

7

8 ############################################

9 ##genera t ing observed v a r i a b l e in a c l u s t e r
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10

11 n<−rep (0 ,N) #s i z e o f c l u s t e r s

12 r<−rep (0 ,N) #response type one

13

14 f o r ( i in 1 :N) {

15 r [ i ]<−0

16

17 n [ i ]<−r p o i s (1 , meanlambda )

18 Z1<−rbinom (1 ,1 , p )

19

20 f o r ( j in 1 : n [ i ] ) {

21 Y1<−rbinom (1 ,1 , p )

22

23

24 U<−rbinom (1 ,1 , q )

25 x<−(1−U) ∗Y1+U∗Z1

26 i f ( x==0) r [ i ]<−r [ i ]+1

27

28 }

29 obs1<−cbind ( r , n )

30 }

31

32

33

34 obs1

35

36

37

38

39

40

41 ############################################

42 ##genera t ing observed v a r i a b l e in a c l u s t e r
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43 #s e t . seed (148)

44 N=100

45 n<−rep (0 ,N) #s i z e o f c l u s t e r s

46 r<−rep (0 ,N) #response type one

47 treatment=rep (0 ,N)

48

49 f o r ( i in 1 :N) {

50

51 #n [ i ]<−r p o i s (1 , meanlambda )

52 n [ i ]=sample ( seq (1 , 3 ) )

53 Z1<−rbinom (1 ,1 , p )

54

55 p= r u n i f (n=1, min = 0 , max = 0 . 5 )

56 q=2∗p

57

58 i f ( q <=0.25){

59 treatment [ i ] <− 0

60 } e l s e i f ( q >0.25& q <=0.6){

61 treatment [ i ] <− 50

62

63

64 } e l s e {

65 treatment [ i ] <− 100

66

67 }

68

69

70

71

72

73 x=c ( )

74 f o r ( j in 1 : n [ i ] ) {

75 Y1<−rbinom (1 ,1 , p )
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76

77

78 U<−rbinom (1 ,1 , q )

79 x [ j ]<−(1−U) ∗Y1+U∗Z1

80

81

82 }

83 r [ i ]<−sum( x )

84 obs<−data . frame ( treatment , r , n )

85 }

86

87

88

89 obs

90

91 d= xtabs ( ˜ r+n+treatment , data=obs )

92 d

93 apply (d , 3 , sum)

94

95

96 c=xtabs ( ˜ r+treatment+n , data=obs )

97 c=array (d [ , , 1 ] , c ( 4 , 3 , 2 ) )

98

99

100

101

102

103 ############################################

104 ##genera t ing observed v a r i a b l e in a c l u s t e r

105 #s e t . seed (148)

106 N=100

107 n<−rep (0 ,N) #s i z e o f c l u s t e r s

108 r<−rep (0 ,N) #response type one
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109 treatment=rep (0 ,N)

110 meanlambda=3

111

112 f o r ( i in 1 :N) {

113

114 n [ i ]<−r p o i s (1 , meanlambda )

115 #n [ i ]=sample ( seq (1 , 3 ) )

116 Z1<−rbinom (1 ,1 , p )

117

118 p= r u n i f (n=1, min = 0 , max = 0 . 5 )

119 q=2∗p

120

121 i f ( q <=0.25){

122 treatment [ i ] <− 0

123 } e l s e i f ( q >0.25& q <=0.6){

124 treatment [ i ] <− 50

125

126

127 } e l s e {

128 treatment [ i ] <− 100

129

130 }

131

132

133

134

135

136 x=c ( )

137 f o r ( j in 1 : n [ i ] ) {

138 Y1<−rbinom (1 ,1 , p )

139

140

141 U<−rbinom (1 ,1 , q )
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142 x [ j ]<−(1−U) ∗Y1+U∗Z1

143

144

145 }

146 r [ i ]<−sum( x )

147 obs<−data . frame ( treatment , r , n )

148 }

149

150

151

152 obs

153

154 d= xtabs ( ˜ r+n+treatment , data=obs )

155 d

156 apply (d , 3 , sum)

157

158

159 c=xtabs ( ˜ r+treatment+n , data=obs )

160 c

161

162 N<−30

163 meanlambda<−5

164 p=.8

165 q=.1

166

167 n i t e r<−100

168 LAMBDA=matrix (0 , n i t e r , 6 )

169

170

171

172 # ############################################

173 # ##genera t ing observed v a r i a b l e in a c l u s t e r

174 # N=100
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175 # n<−rep (0 ,N) #s i z e o f c l u s t e r s

176 # r<−rep (0 ,N) #response type one

177 # Treatment=rep (0 ,N)

178 # Frequency=rep (0 ,N)

179 # meanlambda=1

180 # p=0.2

181 # q=0.5

182 # f o r ( i in 1 :N) {

183 # r [ i ]<−0

184 #

185 # #n [ i ]<−r p o i s (1 , meanlambda )

186 # n [ i ]<−sample ( 1 : 5 , 1 , r e p l a c e=T)

187 # Z1<−rbinom (1 ,1 , p )

188 #

189 # f o r ( j in 1 : n [ i ] ) {

190 # Y1<−rbinom (1 ,1 , p )

191 #

192 #

193 # U<−rbinom (1 ,1 , q )

194 # x<−(1−U) ∗Y1+U∗Z1

195 # i f ( x==0) r [ i ]<−r [ i ]+1

196 #

197 # }

198 # Frequency= sample ( 0 : 5 ,N, r e p l a c e=T)

199 # obs1<−cbind ( r , n , Frequency )

200 # }

201 #

202 #

203 #

204 # c1=xtabs ( Frequency˜ r+n , data=obs2 )

205 # #c1=xtabs ( ˜ r+n , data=obs1 )

206 # c1

207 #
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208 #

209 # ############################################

210 # ##genera t ing observed v a r i a b l e in a c l u s t e r

211 # N=100

212 # n<−rep (0 ,N) #s i z e o f c l u s t e r s

213 # r<−rep (0 ,N) #response type one

214 # Treatment=rep (0 ,N)

215 # Frequency=rep (0 ,N)

216 # sample ( 0 : 1 ,N, r e p l a c e=T)

217 # meanlambda=1

218 # p=0.2

219 # q=0.5

220 # x=c ( )

221 # f o r ( i in 1 :N) {

222 # #r [ i ]<−0

223 # r=c ( )

224 # # n [ i ]<−r p o i s (1 , meanlambda )

225 # n [ i ]<−sample ( 1 : 5 , 1 , r e p l a c e=T)

226 #

227 # Z1<−rbinom (1 ,1 , p )

228 #

229 # f o r ( j in 1 : n [ i ] ) {

230 # Y1<−rbinom (1 ,1 , p )

231 #

232 #

233 # U<−rbinom (1 ,1 , q )

234 #

235 # x [ j ]<−(1−U) ∗Y1+U∗Z1

236 # #i f ( x==0) r [ i ]<−r [ i ]+1

237 #

238 #

239 # }

240 # r [ i ]=sum( x )
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241 # Frequency= sample ( 0 : 5 ,N, r e p l a c e=T)

242 # obs2<−cbind ( r , n , Frequency )

243 # }

244 #

245 #

246 #

247 # c2= xtabs ( Frequency˜ r+n , data=obs2 )

248 # #c2=xtabs ( ˜ r+n , data=obs2 )

249 # c2

250 #

251 # c= array ( c ( c1 , c2 ) , c ( dim ( c2 ) [ 1 ] , dim ( c2 ) [ 2 ] , 2 ) )

252 # c

253 apply ( c , 3 , f i s h e r . t e s t ( c ,B=2000 , workspace=2e+10) )

254

255 a=matrix (0 , 2 , 2 )

256 b=matrix ( c ( 1 , 2 , 3 , 4 ) , 2 , 2 )

257 array ( c ( a , b ) , c ( 2 , 2 , 2 ) )

258

259 s e t . seed (3486)

260 l i b r a r y ( CorrBin )

261 l i b r a r y ( l a t t i c e )

262 s s <− expand . g r id ( Trt =0:2 , C l u s t e r S i z e =1:10 , Freq=5)

263 #Trt i s converted to a f a c t o r

264 rd <− ran . CBData( ss , p . gen . fun=func t i on ( g ) 0.2+0.1 ∗g )

265 rd <− ran . CBData( ss , p . gen . fun=func t i on ( g ) 0 . 1 ∗g )

266 rd

267 c=xtabs ( Freq˜Trt+NResp+Clus t e rS i z e , data=rd )

268

269 s s $ C l u s t e r S i z e [ 1 ]

270 cs <− s s $ C l u s t e r S i z e [ 1 ]

271 t r t <− unc l a s s ( s s $Trt ) [ 1 ]

272 n <− s s $Freq [ 1 ]

273 p <− p . gen . fun ( t r t )
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274 rho <− rho . gen . fun ( t r t )

275 probs <− pdf . fun (p , rho , cs )

276

277 r1= rmultinom (1 , s i z e = 17 , prob = c ( 0 . 7 , 0 . 7 , 0 . 7 , 0 . 7 , 0 . 7 ) )

278 r2=rmultinom (1 , s i z e = 10 , prob = c ( 0 . 5 , 0 . 5 , 0 . 5 , 0 . 5 , 0 . 5 ) )

279 r3=rmultinom (1 , s i z e = 10 , prob = c ( 0 . 1 , 0 . 1 , 0 . 1 , 0 . 1 , 0 . 1 ) )

280 apply ( cbind ( r1 , r2 , r3 ) ,2 , sum)

281 pr <− c (1 , 3 , 6 , 10 ) # norma l i za t i on not nece s sa ry f o r gene ra t i on

282 rmultinom (10 , 20 , prob = pr )

283

284

285 rm( l i s t=l s ( ) )

286 #s e t . seed (148)

287 N<−50

288 meanlambda<−10

289 p=.1

290 q=.3

291 n=c ( )

292 z=c ( )

293 x=c ( )

294 y=c ( )

295 u=c ( )

296 r=c ( )

297 s=c ( )

298 c=c ( )

299 f o r ( j in 1 :N) {

300 y<−rbinom (1 ,1 , p )

301 u<−rbinom (1 ,1 , p )

302 n [ j ]= r p o i s (1 , meanlambda )

303 #n [ j ]= sample ( 1 : 1 0 , 1 , r e p l a c e=T)

304 #g=NULL

305 g=c ( )

306
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307 f o r ( i in 1 : n [ j ] ) {

308 z<−rbinom (1 ,1 , p )

309 x =(1−u) ∗y+u∗z

310

311 g=c ( g , x )

312 r [ j ] =sum( g )

313 c [ j ]= length ( g )

314 }

315

316 }

317

318 obs1=cbind ( r=r , n=c , t=rep (1 , l ength ( r ) ) )

319

320 #xtabs ( ˜ r+n , data=obs1 )

321 p=.5

322 q=.3

323 n=c ( )

324 z=c ( )

325 x=c ( )

326 y=c ( )

327 u=c ( )

328 r=c ( )

329 s=c ( )

330 c=c ( )

331 f o r ( j in 1 :N) {

332 y<−rbinom (1 ,1 , p )

333 u<−rbinom (1 ,1 , p )

334 n [ j ]= r p o i s (1 , meanlambda )

335 #n [ j ]= sample ( 1 : 1 0 , 1 , r e p l a c e=T)

336 #g=NULL

337 g=c ( )

338

339 f o r ( i in 1 : n [ j ] ) {
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340 z<−rbinom (1 ,1 , p )

341 x =(1−u) ∗y+u∗z

342

343 g=c ( g , x )

344 r [ j ] =sum( g )

345 c [ j ]= length ( g )

346 }

347

348 }

349

350 obs2=cbind ( r=r , n=c , t=rep (2 , l ength ( r ) ) )

351

352 obs= rbind ( obs1 , obs2 )

353

354 c= xtabs ( ˜ t+r+n , data=obs )

355 c

356

357

358

359

360

361

362

363 s . pvalue=c ( )

364 f o r ( i in 1 : 1 0 ) {

365 N<−50

366 meanlambda<−10

367 p1=.1

368 q1=.3

369 n=c ( )

370 z=c ( )

371 x=c ( )

372 y=c ( )
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373 u=c ( )

374 r=c ( )

375 s=c ( )

376 c=c ( )

377 f o r ( j in 1 :N) {

378 y<−rbinom (1 ,1 , p1 )

379 u<−rbinom (1 ,1 , p1 )

380 n [ j ]= r p o i s (1 , meanlambda )

381

382 g=c ( )

383

384 f o r ( i in 1 : n [ j ] ) {

385 z<−rbinom (1 ,1 , p1 )

386 x =(1−u) ∗y+u∗z

387

388 g=c ( g , x )

389 r [ j ] =sum( g )

390 c [ j ]= length ( g )

391 }

392

393 }

394

395 obs1=cbind ( r=r , n=c , t=rep (1 , l ength ( r ) ) )

396

397 p2=.5

398 q2=.3

399 n=c ( )

400 z=c ( )

401 x=c ( )

402 y=c ( )

403 u=c ( )

404 r=c ( )

405 s=c ( )
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406 c=c ( )

407 f o r ( j in 1 :N) {

408 y<−rbinom (1 ,1 , p2 )

409 u<−rbinom (1 ,1 , p2 )

410 n [ j ]= r p o i s (1 , meanlambda )

411

412 g=c ( )

413

414 f o r ( i in 1 : n [ j ] ) {

415 z<−rbinom (1 ,1 , p2 )

416 x =(1−u) ∗y+u∗z

417

418 g=c ( g , x )

419 r [ j ] =sum( g )

420 c [ j ]= length ( g )

421 }

422

423 }

424

425 obs2=cbind ( r=r , n=c , t=rep (2 , l ength ( r ) ) )

426

427 obs= rbind ( obs1 , obs2 )

428

429 c= xtabs ( ˜ t+r+n , data=obs )

430 c

431

432 s . pvalue [ i ]=Homogeneity ( c , nsim=1000)

433 }

434

435 s . pvalue

436

437

438
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439

440

441

442 p=.5

443 q=.3

444

445 rm( l i s t=l s ( ) )

446 genfunc=func t i on (p , q , meanlambda ,N) {

447

448

449 #

450 # N<−30

451 # meanlambda<−5

452 # p=.8

453 # q=.1

454

455

456 ############################################

457 ##genera t ing observed v a r i a b l e in a c l u s t e r

458

459 n<−rep (0 ,N) #s i z e o f c l u s t e r s

460 r<−rep (0 ,N) #response type one

461

462 f o r ( i in 1 :N) {

463 r [ i ]<−0

464

465 n [ i ]<−r p o i s (1 , meanlambda )

466 Z1<−rbinom (1 ,1 , p )

467

468 f o r ( j in 1 : n [ i ] ) {

469 Y1<−rbinom (1 ,1 , p )

470

471
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472 U<−rbinom (1 ,1 , q )

473 x<−(1−U) ∗Y1+U∗Z1

474 i f ( x==0) r [ i ]<−r [ i ]+1

475

476 }

477 obs1<−cbind ( r , n )

478 }

479

480

481

482 obs1

483

484 re turn ( obs1 )

485

486 }

487

488

489 genfunc (p=0.1 ,q=0.2 ,meanlambda=5,N=30)

490

491 obs1=cbind ( genfunc (p=0.1 ,q=0.2 ,meanlambda=5,N=30) , Trt=rep (1 ,N=30) )

492 obs2=cbind ( genfunc (p=0.1 ,q=0.2 ,meanlambda=5,N=30) , Trt=rep (2 ,N=30) )

493

494

495

496 obs= data . frame ( rbind ( obs1 , obs2 ) )

497

498 c= xtabs ( ˜Trt+r+n , data=obs )

499 c

500

501

502

503

504
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505

506 s . pvalue=c ( )

507

508 f o r ( i in 1 :1000) {

509

510 obs1=cbind ( genfunc (p=0.1 ,q=0.9 ,meanlambda=10,N=50) , Trt=rep (1 ,N=50) )

511 obs2=cbind ( genfunc (p=0.9 ,q=0.9 ,meanlambda=10,N=50) , Trt=rep (2 ,N=50) )

512

513

514

515 obs= data . frame ( rbind ( obs1 , obs2 ) )

516

517 c= xtabs ( ˜Trt+r+n , data=obs )

518

519

520

521 s . pvalue [ i ]=Homogeneity ( c , nsim=1000)

522

523 avg . pvalue=mean( s . pvalue )

524 }

525 avg . pvalue

Simulation of Correlated Binary Data by Inverse Transform of the q-power

Distribution

1 rm( l i s t=l s ( ) )

2 l i b r a r y ( CorrBin )

3 data ( egde )

4 edge <− egde

5 data ( s h e l l t o x )

6

7

8
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9 #

#########################################################################################################

10 ####### Generate random v a r i a a v l e s R with the

##########################################################

11 ####### Inve r s e trans form method from the l o g i s t i c d i s t r i b u t i o n

#####################################

12

13 beta1 =0.4553394;

14 beta2 =0.0042140;

15 dose=c (0 ,25 )

16 #beta1 =4.9568

17 #beta2 =−5.54101

18 #beta=beta1+beta2 ∗ ( dose / 100) ;

19 beta=beta1+beta2 ∗ ( dose ) ;

20

21 l o g i s t i c . pdf<−f unc t i on (n , beta ) {

22 v=c ( )

23 f o r ( r in 0 : n) {

24

25 k =0:(n−r )

26

27 v [ r+1]=choose (n , r ) ∗sum((−1)ˆk∗ choose (n−r , k ) ∗ (2 /(1+exp ( ( beta ) ∗ l og ( r

+k+1) ) ) ) )

28

29 }

30 v = pmax( pmin (v , 1 ) , 0 )

31 re turn ( v )

32 }

33

34

35 cd f=func t i on (n , beta ) {c=c ( ) ; c=cumsum( l o g i s t i c . pdf (n , beta ) ) ; r e turn ( c ) }

36
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37 cd f (50 ,2 )

38

39

40

41 generate . r=func t i on ( beta , n ) {

42

43 c=c (0 , cd f (n , beta ) ) ;

44 u=r u n i f (1 ) ;

45

46 f o r ( i in 2 : l ength ( c ) ) {

47 i f ( (u>=c [ i −1])&(u<c [ i ] ) ) {

48 r=( i −2)

49

50

51 }

52 }

53 re turn ( l i s t (n=n , r=r , u=u) )

54

55 }

56 generate . r ( beta=beta [ 1 ] , n=5)

57 generate . r ( beta=beta [ 2 ] , n=5)

58

59 s . pvalue=c ( )

60

61 f o r ( i in 1 : 100 ) {

62

63

64 n=50

65 s1=sapply ( r p o i s (n , lambda = 5) , generate . rq , p=0.1 , rho =0.3)

66 s2=sapply ( r p o i s (n , lambda = 5) , generate . rq , p=0.1 , rho =0.3)

67

68

69 obs1=cbind ( r=u n l i s t ( s1 [ 2 , ] ) ,n=u n l i s t ( s1 [ 1 , ] ) , Trt=rep (1 , n) )
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70 obs2=cbind ( r=u n l i s t ( s2 [ 2 , ] ) ,n=u n l i s t ( s2 [ 1 , ] ) , Trt=rep (2 , n) )

71

72

73 obs= data . frame ( rbind ( obs1 , obs2 ) )

74

75 c= xtabs ( ˜Trt+r+n , data=obs )

76

77

78

79

80 s . pvalue [ i ]=Homogeneity ( c , nsim=1000)

81

82 avg . pvalue=mean( s . pvalue )

83 }

84 avg . pvalue

85

86

87 #

#########################################################################################################

88 ####### Generate random v a r i a a v l e s R with the

##########################################################

89 ####### Inve r s e trans form method from q power d i s t r i b u t i o n

##############################################

90

91 qpower pdf <− f unc t i on (p , rho , n) {

92 q <− 1−p

93 gamma <− l og2 ( l og ( qˆ2+rho∗q∗(1−q ) ) / log ( q ) )

94 pr <− numeric (n+1)

95 f o r ( r in 0 : n) {

96 k <− 0 : r

97 pr [ r +1] <− choose (n , r ) ∗ sum( (−1)ˆk ∗ choose ( r , k ) ∗ q ˆ( ( n−r+k ) ˆ

gamma) )
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98 }

99 pr <− pmax( pmin ( pr , 1 ) , 0 ) #to account f o r numerica l impre c i s i on

100 pr

101 }

102

103

104

105 cdfq=func t i on (p , rho , n) {c=c ( ) ; c=cumsum( qpower pdf (p , rho , n) ) ; r e turn ( c )

}

106

107 generate . rq=func t i on (p , rho , n) {

108

109 c=c (0 , cdfq (p , rho , n) ) ;

110 u=r u n i f (1 ) ;

111

112 f o r ( i in 2 : l ength ( c ) ) {

113 i f ( (u>=c [ i −1])&(u<c [ i ] ) ) {

114 r=( i −2)

115

116

117 }

118 }

119 re turn ( l i s t (n=n , r=r , u=u) )

120

121 }

122

123

124 # generate . rq (p=0.9 , rho =0.9 ,n=5)

125 # cdfq (p=0.9 , rho =0.9 ,n=8)

126 # sapply ( r p o i s (n=5,lambda = 5) , generate . rq , p=0.1 , rho=−0.9)

127 # p=0.9

128 # q=0.1

129 # rho =0.9

112



130 # log2 ( l og ( qˆ2+rho∗q∗(1−q ) ) / log ( q ) )

131

132

133

134 s . pvalue=c ( )

135

136 f o r ( i in 1 :1000) {

137

138

139 n=50

140 s1=sapply ( r p o i s (n , lambda = 5) , generate . rq , p=0.1 , rho =0.9)

141 s2=sapply ( r p o i s (n , lambda = 5) , generate . rq , p=0.9 , rho =0.9)

142

143

144 obs1=cbind ( r=u n l i s t ( s1 [ 2 , ] ) ,n=u n l i s t ( s1 [ 1 , ] ) , Trt=rep (1 , n) )

145 obs2=cbind ( r=u n l i s t ( s2 [ 2 , ] ) ,n=u n l i s t ( s2 [ 1 , ] ) , Trt=rep (2 , n) )

146

147

148 obs= data . frame ( rbind ( obs1 , obs2 ) )

149

150 c= xtabs ( ˜Trt+r+n , data=obs )

151

152

153

154

155 s . pvalue [ i ]=Homogeneity ( c , nsim=1000)

156

157 avg . pvalue=mean( s . pvalue )

158 }

159 avg . pvalue

160

161

162
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163

164

165

166 #

#########################################################################################################

167 ####### Generate random v a r i a a v l e s R with the

##########################################################

168 ####### Inve r s e trans form method from the Beta−Binomial d i s t r i b u t i o n

#####################################

169

170

171 betabin pdf <− f unc t i on (p , rho , n) {

172 a <− p∗ (1 /rho−1)

173 b <− (1−p) ∗ (1 /rho−1)

174 k <− 0 : n

175 pr <− choose (n , k ) ∗beta ( a+k , b+n−k ) / beta ( a , b )

176

177 re turn ( pr )

178 }

179

180 betabin pdf ( 0 . 2 , . 3 , 5 )

181

182 cdfbb=func t i on (p , rho , n) {c=c ( ) ; c=cumsum( betabin pdf (p , rho , n) ) ; r e turn ( c

) }

183 cdfbb (p=0.2 , rho =0.3 ,n=8)

184

185 generate . rbb=func t i on (p , rho , n) {

186

187 c=c (0 , cdfq (p , rho , n) ) ;

188 u=r u n i f (1 ) ;

189

190 f o r ( i in 2 : l ength ( c ) ) {
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191 i f ( (u>=c [ i −1])&(u<c [ i ] ) ) {

192 r=( i −2)

193

194

195 }

196 }

197 re turn ( l i s t (n=n , r=r , u=u) )

198

199 }

200

201

202 generate . rbb (p=0.2 , rho =0.3 ,n=8)

203

204

205 s . pvalue=c ( )

206

207 f o r ( i in 1 : 100 ) {

208

209

210 n=50

211 s1=sapply ( r p o i s (n , lambda = 5) , generate . rbb , p=0.1 , rho =0.3)

212 s2=sapply ( r p o i s (n , lambda = 5) , generate . rbb , p=0.1 , rho =0.3)

213

214

215 obs1=cbind ( r=u n l i s t ( s1 [ 2 , ] ) ,n=u n l i s t ( s1 [ 1 , ] ) , Trt=rep (1 , n) )

216 obs2=cbind ( r=u n l i s t ( s2 [ 2 , ] ) ,n=u n l i s t ( s2 [ 1 , ] ) , Trt=rep (2 , n) )

217

218

219 obs= data . frame ( rbind ( obs1 , obs2 ) )

220

221 c= xtabs ( ˜Trt+r+n , data=obs )

222

223
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224

225

226 s . pvalue [ i ]=Homogeneity ( c , nsim=1000)

227

228 avg . pvalue=mean( s . pvalue )

229 }

230 avg . pvalue

231

232

233 #

#########################################################################################################

234 ####### p l o t s o f i n t r a c l u s t e r c o r r e l a t i o n

##########################################################

235 ####### ##########################################################

#####################################

236

237

238 p=c (0 .4948332 ,0 . 5035944 ,0 . 5005315)

239 rho=c ( 0 . 3 , 0 . 6 , 0 . 9 )

240 p lo t ( rho , p)

Multiple Testing

1 alpha=c ( 0 . 1 , 0 . 0 5 , 0 . 0 1 , 0 . 0 0 1 )

2 n=100

3 s=seq (1 , n , 1 )

4 p1=1−(1−0.1)ˆ s

5 p2=1−(1−0.05)ˆ s

6 p3=1−(1−0.01)ˆ s

7 p4=1−(1−0.001)ˆ s

8

9 p lo t ( s , p1 , lwd=2, c o l=” blue ” , pch=2)
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10 l i n e s ( s , p2 , type=” l ” , lwd=2, c o l=” red ” )

11 l i n e s ( s , p3 , type=” l ” , lwd=2, c o l=” green ” )

12 l i n e s ( s , p4 , type=” l ” , lwd=2, c o l=” pink ” )

13 # s e t up graph

14 xrange <− range ( s )

15 yrange <− round ( range (p) )

16 c o l o r s <− rainbow ( l ength ( alpha ) )

17 p=cbind ( p1 , p2 , p3 , p4 )

18

19 p lo t ( xrange , yrange , type=”n” ,

20 xlab=” s ” ,

21 ylab=”P( at l e a s t one Type I Error ) ” )

22 #panel . f i r s t=gr id ( )

23 # add power curves

24 opts = c ( ”p” , ” l ” , ”o” , ”b” )

25

26

27 f o r ( i in 1 : l ength ( alpha ) ) {

28 l i n e s ( s , p [ , i ] , type=opts [ i ] , lwd=1, c o l=c o l o r s [ i ] , cex =0.5)

29 }

30

31 # add annotat ion ( g r id l i n e s , t i t l e , l egend )

32 a b l i n e ( v=0, h=seq (0 , yrange [ 2 ] , 0 . 1 0 ) , l t y =2, c o l=” grey89 ” )

33 a b l i n e (h=0, v=seq (0 , xrange [ 2 ] , 1 0 ) , l t y =2,

34 c o l=” grey89 ” )

35 t i t l e ( ”Graph o f d i f f e r e n t type−I e r r o r r a t e s l e v e l s \n” )

36 #legend (” top r i gh t ” ,1 , alpha , t i t l e =”alpha ” , opts )

37 l egend ( xrange [ 1 ] , yrange [ 2 ] , alpha , cex =0.8 , c o l=co l o r s ,

38 pch=plotchar , l t y=l ine type , t i t l e=” alpha ” )

39

40 #png (” ˜/Documents/ memphisc lassesbooks /RESEARCH/Trend/mult . png ”)

41 #matplot ( s , p , pch=c (15 ,16 ,17 ,20 ) , c o l = rainbow (4) , ylab=”P( at l e a s t one

Type I Error ) ” , xlab=”n” , lwd=1, cex =0.5 , l t y =1”4”)
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42 l i n e t y p e <− c ( 1 : l ength ( alpha ) )

43 p lo t char <− seq (17 ,17+ length ( alpha ) −1 ,1)

44 opts = c ( ”p” , ” l ” , ”o” , ”b” )

45 matplot ( s , p , lwd=1, l t y=l ine type , c o l = co l o r s , pch=plotchar , type=opts , cex

=0.6 , xlab=” s ” , ylab=”P( at l e a s t one Type I Error ) ” )

46 # add a legend

47 t i t l e ( ”Graph o f d i f f e r e n t type−I e r r o r r a t e s l e v e l s ” , ”” )

48 # add a legend

49 l egend ( xrange [ 1 ] , yrange [ 2 ] , alpha , cex =0.8 , c o l=co l o r s ,

50 pch=plotchar , l t y=l ine type , t i t l e=” alpha ” )

51

52 # add annotat ion ( g r id l i n e s , t i t l e , l egend )

53 a b l i n e ( v=0, h=seq (0 , yrange [ 2 ] , 0 . 1 0 ) , l t y =2, c o l=” grey89 ” )

54 a b l i n e (h=0, v=seq (0 , xrange [ 2 ] , 1 0 ) , l t y =2,

55 c o l=” grey89 ” )

56

57 box ( l t y = ’ s o l i d ’ , c o l = ’ b lack ’ )

58

59

60

61

62 #png (” ˜/Documents/ memphisc lassesbooks /RESEARCH/Trend/mult . png ”)

63 #x11 ( )

64 getwd ( )

65 png ( ”C: / Users /Gucci148/Desktop/Trend/mult . png” )

66 c o l o r s <− rainbow ( l ength ( alpha ) )

67 l i n e t y p e <− c ( 1 : l ength ( alpha ) )

68 p lo t char <− seq ( 1 7 : 2 0 )

69 opts = c ( ”b” , ”p” , ” l ” , ”o” )

70 p lo t ( xrange , yrange ,

71 xlab=” s ” ,

72 ylab=”P( at l e a s t one Type I Error ) ” )

73
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74 # Plot s o l i d c i r c l e s with s o l i d l i n e s

75 po in t s ( s , p1 , type=opts [ 1 ] , pch=plo t char [ 1 ] , lwd=1, cex =0.5 , c o l=c o l o r s [ 1 ] )

76 # Add open squares with dashed l i n e , with heav i e r l i n e width

77 po in t s ( s , p2 , type=opts [ 2 ] , pch=plo t char [ 2 ] , l t y =2, lwd=1, cex =0.5 , c o l=

c o l o r s [ 2 ] )

78

79 po in t s ( s , p3 , type=opts [ 3 ] , pch=plo t char [ 3 ] , # Diamond shape

80 l t y=” dotted ” , cex =0.5 , c o l=c o l o r s [ 3 ] , # Dotted l i n e ,

double−s i z e shapes

81 lwd=1)

82

83 po in t s ( s , p4 , type=opts [ 4 ] , pch=plo t char [ 4 ] , l t y =2, lwd=1, cex =0.5 , c o l=

c o l o r s [ 4 ] )

84

85 #legend (” top r i gh t ” , 8 , alpha , f i l l = rainbow (4) )

86 # add annotat ion ( g r id l i n e s , t i t l e , l egend )

87 # add a t i t l e and s u b t i t l e

88 t i t l e ( ”Graph o f var i ous type−I e r r o r r a t e s ” , ”Number o f Test ” )

89 # add a legend

90 l egend ( xrange [1 ] −0 .5 , yrange [ 2 ] , alpha , cex =0.8 ,

91 pch=plotchar , l t y=l ine type , t i t l e=expr e s s i on ( alpha ) , c o l=c o l o r s )

92

93 a b l i n e ( v=0, h=seq (0 , yrange [ 2 ] , 0 . 1 0 ) , l t y =2, c o l=” grey89 ” )

94 a b l i n e (h=0, v=seq (0 , xrange [ 2 ] , 1 0 ) , l t y =2,

95 c o l=” grey89 ” )

96

97 # add a legend

98

99 box ( l t y = ’ s o l i d ’ , c o l = ’ b lack ’ )

100 dev . o f f ( )

101

102

103 ###########makes you see the p l o t in r and saves the graph in the
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104 ####################### same f o l d e r as the r program

105 #dev . copy ( jpeg , f i l ename=”mult . jpg ”) ;

106 #dev . o f f ( ) ;

107

108

109

110 # Create Line Chart

111

112 #png (” ˜/Documents/ memphisc lassesbooks /RESEARCH/Trend/mult . png ”)

113 # get the range f o r the x and y a x i s

114 xrange <− range ( s )

115 yrange <− round ( range (p) )

116 # s e t up the p l o t

117 p lo t ( xrange , yrange , type=”n” , xlab=” s ” ,

118 ylab=”P( at l e a s t one Type I Error ) ” )

119 c o l o r s <− rainbow ( l ength ( alpha ) )

120 l i n e t y p e <− c ( 1 : l ength ( alpha ) )

121 p lo t char <− seq (18 ,18+ length ( alpha ) ,1 )

122 opts = c ( ”p” , ” l ” , ”o” , ”b” )

123 # add l i n e s

124 f o r ( i in 1 : l ength ( alpha ) ) {

125

126 l i n e s ( s , p [ , i ] , type=opts [ i ] , lwd =1.0 ,

127 l t y=l i n e t y p e [ i ] , c o l=c o l o r s [ i ] , pch=p lo t char [ i ] , cex =0.5)

128

129 }

130

131 # add a t i t l e and s u b t i t l e

132 t i t l e ( ”Graph o f d i f f e r e n t type−I e r r o r r a t e s l e v e l s ” , ”” )

133

134 # add a legend

135 l egend ( xrange [ 1 ] , yrange [ 2 ] , alpha , cex =0.8 , c o l=co l o r s ,

136 pch=plotchar , l t y=l ine type , t i t l e=” alpha ” )

120



137

138

139 # add annotat ion ( g r id l i n e s , t i t l e , l egend )

140 a b l i n e ( v=0, h=seq (0 , yrange [ 2 ] , 0 . 1 0 ) , l t y =2, c o l=” grey89 ” )

141 a b l i n e (h=0, v=seq (0 , xrange [ 2 ] , 1 0 ) , l t y =2,

142 c o l=” grey89 ” )

143

144 box ( l t y = ’ s o l i d ’ , c o l = ’ b lack ’ )

145

146

147

148

149

150

151

152 # Create Line Chart

153

154 # get the range f o r the x and y a x i s

155 xrange <− range ( s )

156 yrange <− round ( range (p) )

157 # s e t up the p l o t

158 p lo t ( xrange , yrange , type=”n” , xlab=” s ” ,

159 ylab=”P( at l e a s t one Type I Error ) ” )

160 c o l o r s <− rainbow ( l ength ( alpha ) )

161 l i n e t y p e <− c ( 1 : l ength ( alpha ) )

162 p lo t char <− seq (18 ,18+ length ( alpha ) ,1 )

163 opts = c ( ”p” , ” l ” , ”o” , ”b” )

164 # add l i n e s

165 f o r ( i in 1 : l ength ( alpha ) ) {

166

167 po in t s ( s , p [ , i ] , type=opts [ i ] , lwd =1.0 ,

168 l t y=l i n e t y p e [ i ] , c o l=c o l o r s [ i ] , pch=p lo t char [ i ] , cex =0.5)

169
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170 }

171

172 # add a t i t l e and s u b t i t l e

173 t i t l e ( ”Graph o f d i f f e r e n t type−I e r r o r r a t e s l e v e l s ” , ”” )

174

175 # add a legend

176 l egend ( xrange [ 1 ] , yrange [ 2 ] , alpha , cex =0.8 , c o l=co l o r s ,

177 pch=plotchar , l t y=l ine type , t i t l e=” alpha ” )

178

179

180 # add annotat ion ( g r id l i n e s , t i t l e , l egend )

181 a b l i n e ( v=0, h=seq (0 , yrange [ 2 ] , 0 . 1 0 ) , l t y =2, c o l=” grey89 ” )

182 a b l i n e (h=0, v=seq (0 , xrange [ 2 ] , 1 0 ) , l t y =2,

183 c o l=” grey89 ” )

184

185 box ( l t y = ’ s o l i d ’ , c o l = ’ b lack ’ )

186

187

188

189

190

191 #dev . o f f ( ) ;

192

193 matplot ( s , p , type=” l ” , c o l = rainbow (4) , ylab=”P( at l e a s t one Type I Error

) ” , xlab=”n” , lwd=2,pch =1:4)

194 l egend (80 , 0 . 95 , as . cha rac t e r ( alpha ) , f i l l = rainbow (4) )

195 # add annotat ion ( g r id l i n e s , t i t l e , l egend )

196 a b l i n e ( v=0, h=seq (0 , yrange [ 2 ] , 0 . 1 0 ) , l t y =2, c o l=” grey89 ” )

197 a b l i n e (h=0, v=seq (0 , xrange [ 2 ] , 1 0 ) , l t y =2,

198 c o l=” grey89 ” )

199

200 dev . o f f ( ) ;

201
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202

203

204 s e t . seed (123)

205 x <− rnorm (50 , mean = c ( rep (0 , 25) , rep (3 , 25) ) )

206 p <− 2∗pnorm( s o r t (−abs ( x ) ) )

207 #p=r u n i f (6 )

208 p1=p . ad jus t (p , method = ’ fd r ’ , n = length (p) )

209 p2=p . ad jus t (p , method = ’ holm ’ , n = length (p) )

210 p3=p . ad jus t (p , method = ’ hochberg ’ , n = length (p) )

211 p4=p . ad jus t (p , method = ’hommel ’ , n = length (p) )

212 p5=p . ad jus t (p , method = ’ bo n f e r r o n i ’ , n = length (p) )

213 p6=p . ad jus t (p , method = ’BH’ , n = length (p) )

214 p7=p . ad jus t (p , method = ’BY’ , n = length (p) )

215 p8=p . ad jus t (p , method = ’ none ’ , n = length (p) )

216 pp=cbind ( p1 , p2 , p3 , p4 , p5 , p6 , p7 , p7 )

217 pp

218

219 matplot (p , pp , ylab=”p . ad jus t ” , type = ” l ” , asp = 1 , l t y = 1 : 8 ,

220 main = ”P−value adjustments ” )

221 l egend ( 0 . 7 , 0 . 6 , c ( ” fd r ” , ”holm” , ” hochberg ” , ”hommel” , ” bon f e r r o n i ” , ”BH

” , ”BY” , ”none” ) ,

222 c o l = rainbow (8) , l t y = 1 : 8 , f i l l = rainbow (8) )

223

224

225 # s e t up graph

226 xrange <− range (p)

227 yrange <− round ( range (pp) )

228 # add annotat ion ( g r id l i n e s , t i t l e , l egend )

229 a b l i n e ( v=0, h=seq (0 , yrange [ 2 ] , 0 . 1 ) , l t y =2, c o l=” grey89 ” )

230 a b l i n e (h=0, v=seq (0 , xrange [ 2 ] , 1 0 ) , l t y =2,

231 c o l=” grey89 ” )

232

233 p lo t ( rank (p) ,p , l t y =2,pch=20, type=” l ” )
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234

235

236

237 p . ad jus t (p , n = 70)

238

239

240

241 #######################

242 ### Q−VALUE ################

243 i n s t a l l . packages ( ” qvalue ” )

244 l i b r a r y ( qvalue )

245 data ( heden fa lk )

246 pvalues <− heden fa lk $p

247 qobj <− qvalue (p = pvalues )

248

249 Qvalue ( pValues=p , lambda=seq (0 , 0 . 9 , 0 . 0 5 ) , p i0 . method=”smoother” ,

250 f d r . l e v e l=NULL, robust=FALSE, smooth . df =3, smooth . l og . p i0=FALSE,

251 s i l e n t=FALSE)

252

253

254

255 p=c (0 . 49135 , 0 . 26335 , 0 . 000005 )

256 p . ad jus t (p , method = p . ad jus t . methods , n = length (p) )

257 p . adj

258 p . ad jus t .M <− p . ad jus t . methods [ p . ad jus t . methods != ”none” ]

259 p . adj <− sapply (p . ad jus t .M, func t i on ( meth ) p . ad jus t (p , meth ) )

260 p . adj

261

262 p lo t ( rank (p) ,p , l t y =2,pch=20, type=” l ” )

263

264

265 l i b r a r y ( B i o c I n s t a l l e r )

266 b i o c L i t e ( )
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267 l i b r a r y ( qvalue )

268 data ( heden fa lk )

269 pvalues <− heden fa lk $p

270 pvalues=c (0 . 49135 , 0 . 26335 , 0 . 000005 )

271 qobj <− qvalue (p = pvalues )

272

273

274

275 ## try http : // i f https : // URLs are not supported

276 source ( ” https : // bioconductor . org / b i o c L i t e .R” )

277 b i o c L i t e ( )

278 i n s t a l l . packages ( ”mutoss” )

279 i n s t a l l . packages ( ” mul t te s t ” )

280 l i b r a r y ( mutoss )

281 l i b r a r y ( mul t te s t )

282 i n s t a l l . packages ( ” dev too l s ” )

283 l i b r a r y ( ” dev too l s ” )

284 i n s t a l l g ithub ( ” j d s t o r e y / qvalue ” )

285 p=c (0 . 49135 , 0 . 26335 , 0 . 000005 )

286 qvalue (p)

287

288 #p=r u n i f (10)

289 p=c (0 . 49135 , 0 . 26335 , 0 . 000005 )

290 qvalue (p , lambda=seq ( 0 , 0 . 9 9 , 0 . 0 5 ) , p i0 . method=”smoother” , f d r . l e v e l

=0.05 , robust=T, gui=FALSE,

291 smooth . df =3, smooth . l og . p i0=T)

292

293

294 ###################################################################

295 ###### Adaptive Benjamini Hochberg2001

####################################

296 p=c (0 . 49135 , 0 . 26335 , 0 . 000005 )

297 adaptiveBH ( pValues=p , alpha =0.05 , s i l e n t=FALSE)
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298

299

300

301

302 #

#####################################################################################################

303 ###### Storey−Taylor−Siegmund ’ s (2004) adapt ive step−up procedure

####################################

304

305 ABH=adaptiveSTS (p , alpha =0.05 , lambda =0.5 , s i l e n t=TRUE)

306 ABH

307

308 adjPValuesPlot ( adjPValues=ABH$adjPValues , alpha =0.05)

309

310 #

#####################################################################################################

311 ###### Benjamini−Hochbergs Linear Step−Up Procedure

.####################################

312 BH( pValues=p , alpha =0.05 , s i l e n t=FALSE)

313

314 ###################################################################

315 ###### Benjamini Y e k u t i e l i 2001####################################

316 p=c (0 . 49135 , 0 . 26335 , 0 . 000005 )

317 BY( pValues=p , alpha =0.05 , s i l e n t=FALSE)

318

319

320 hommel (p , alpha =0.05)

321 bo n f e r r on i (p , alpha =0.05)

322 holm (p , alpha =0.05)

323 hochberg (p , alpha =0.05)

324 s idak ( pValues=p , alpha =0.05 , s i l e n t=FALSE)
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325 SidakSD ( pValues=p , alpha =0.05 , s i l e n t=FALSE)

326

327

328 i n s t a l l . packages ( ” f d r t o o l ” )

329 l i b r a r y ( f d r t o o l )
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