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ABSTRACT

Boateng, Nana Akwasi Abayie . Ph.D. The University of Memphis.
December, 2016. On Some Exact Nonparametric Conditional Test for Clustered
Binary Data. Co-Major Professors: E. O. George, Ph.D. and D. Bowman Ph.D.

The development of exact, non-asymptotic, procedures for analyzing clustered
discrete data has remained a challenging problem for research statisticians due to
the dearth of tractable probability models for describing complex dependence
structures of discrete data points within clusters. Under an assumption of de
Finetti’s [15] definition of infinite exchangeability, several models have been
developed. However, these procedures are not valid when data come from
intrinsically finite exchangeable population. Moreover, the procedures invariably
conduct inference based on asymptotic distribution of estimators or test statistics.
For example, for testing association between the rows and columns of a contingency
table the asymptotic distribution of the likelihood ratio statistic under null
hypothesis of independence is widely used in many applications. Such asymptotic
distributions are known to be inaccurate when sample size is moderate or when data
are unbalanced or sparse[34]. The goal of this dissertation is to develop and
implement exact conditional nonparametric testing procedures for sparse,
unbalanced correlated clustered binary data under an assumption of finite
exchangeability. The methods proposed in this dissertation takes advantage of the
increasing availability of computational power and the development of efficient
procedures for enumerating tables, such as the network algorithm [33] and
Patefield’s algorithm [36]. These methods have facilitated the computation of exact
p-value in many cases. We show that for fixed cluster sizes, the distribution of
marginal sums of responses can be modeled as a multinomial distribution and that
these marginal sums are jointly sufficient statistics [10]. We construct an exact test
by conditioning on the sufficient statistics of the multinomial distribution, thereby

eliminating all nuisance parameters. By conditioning on the cluster sizes, we

v



develop an exact nonparametric test for linear a trend. We illustrate the
performance of the tests proposed in comparison to those based on unconditional
and asymptotic methods by using Monte-Carlo and other stochastic simulations.
Our research demonstrates that the exact tests that we have developed can have
significantly different p-values, and in many cases superior power, when compared
to those using large sample theory approximation when data are sparse or cluster

sizes are unbalanced.
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CHAPTER 1

INTRODUCTION

The validity of statistical inference based on large sample theory is often
questionable whenever data are clustered (correlated), sparse and unbalanced or the
sample size is small. One of the common mistakes made by practitioners of data
science in this era of big data is to assume that big data correspond to a large
sample. This assumption often leads to the use of software with algorithms
constructed for large sample for inference with multidimensional sparse big data sets
that have intrinsically small samples. In dealing with data (big or small) in which
data points are discrete and categorical, parametric distributional assumptions are
usually difficult to formulate or verify. Exact Nonparametric procedures have long
been known to be suitable for inference involving such data.

Significant progress has been made in the development and implementation of
exact hypothesis testing in the field of uncorrelated categorical data. Agresti [2]
gives an overview of both exact conditional and exact unconditional inference. The
same cannot be said for correlated binary data. Very few alternatives exist for
making valid statistical inference on clustered binary data with a small sparse or
unbalanced samples. Exact methods guarantee that the size of a hypothesis test
does not exceed the nominal level and also that the coverage probability for a
confidence interval is at least the nominal confidence coefficient [2]. Exact methods
have often been criticized for their conservativeness, especially when relevant
conditional distribution is highly discrete leading to the conservativeness [2]. One
way to address the discreteness is to use the mid-p-value which can smooth out the
P — value and consequently reduce the discreteness.

Correlated clustered data occur frequently in biomedical research settings such
as teratological experiments, opthalmologic, otolaryngic and developmental studies.

What constitutes a cluster depends on the set up of the experiment. A cluster in a



developmental toxicity study consists of the fetuses of a single dam, while in familial
studies a cluster could be a set of family members. The sampling units in a
developmental study are the pregnant dams and the observational units are the
fetuses of each dam. Since fetuses in a cluster share similar genetic traits and
environmental exposure, they tend to exhibit similar individual responses. Failure
to account for these intra-litter correlations among fetuses could potentially lead to
erroneous inferences. Several approaches for dealing with this problem of
intra-cluster correlation have been proposed. Some of the early approaches include
the use of quasi-likelihood methods such as generalized estimating equations
methods [37], [50], a saturated model [10], Beta-Binomial,Compound-Beta Binomial
and Corrected Binomial models [48], [39]. Marginal models such as the GEE were
popularized for clustered binary data due to the availability of software and relative
computational ease [41]. Expectation maximization(EM) algorithms have also been
used to analyze clustered binary data with unequal cluster sizes[43]. Kuk and Pang
[51] proposed smoothing methods for unequal cluster sizes under marginal
compatibility assumption. Their model accounts for the variability of the estimated
null expectation under marginal compatibility. The assumption of marginal
compatibility allows estimation to be done over different cluster sizes. When data
are sparse, the probability function estimated using a saturated model can be very
jagged and some kind of smoothing is needed [51]. Kuk et al extended the penalized
kernel method to obtain parameter estimates for unequal cluster sizes using an
EM-type algorithm.

Luta et al [30] proposed an exact conditional logistic regression for correlated
binary data that conditions on nuisance parameters and treats the clusters as fixed
effects. Their approach however, results in over conditioning as the number of
clusters increases [12]. Log-linear models have also been used in analyzing clustered

data. Log-linear models may estimate parameters with different standard errors and



different covariances making interpretation of the analysis difficult [8]. Corcoran et
al [12] proposed an exact linear trend test for correlated binary data based on an
exponential model proposed by Molenberghs and Ryan [41]. By conditioning on
sufficient statistics, they eliminate the nuisance parameters under the null
hypothesis of no treatment effect, leading to a conditional test analogous to Fisher’s
Exact test. The exponential model from which the conditional test is obtained
however, only accounts for pairwise interactions and assumes a linear logistic model
for the marginal response probability using the Cochran-Armitage trend statistic
[46]. Higher order interactions in the clusters are set to zero.

Difficulty with using many procedures arise when data are sparse, unbalanced or
when sample size is small. For example when data are sparse, statistical procedures
that involve maximization of the likelihood may suffer convergence problems [2].
Valid statistical inference can be conducted whenever one is presented with a small
sample, sparse or unbalanced data by conducting exact inference. The justification
for exact conditional inference lies in three main principles [32]:the sufficiency,
ancillary and randomization principles. An exact conditional test can be obtained
by conditioning on sufficient statistic to eliminate nuisance parameters in the model
under the null hypothesis of no association between response and treatment. The
data can be represented in a contingency table format with treatment groups as
rows (or columns) and response types as columns (or rows). To test for treatment
effect using exact methods, a reference set is specified. The reference set contains all
tables with marginal sums equal to that of the observed table. The exact P — value
can consequently be computed by comparing the observed table with tables in the
reference set. If the observed table is unlikely under the null hypothesis when
compared to the reference set, the null hypothesis is rejected.

Exact inference has gained increased popularity in recent times due to the

availability of computational power and efficient table generation algorithms. Some



of the various table enumeration methods include the network algorithm [33],
Fourier transform and Algorithm AS 159 [36]. Mehta and Patel [33], with their
introduction of the network algorithm, greatly extended the bounds of
computational feasibility for exact inference. The network algorithm implicitly lists
all tables in the reference set through a series of nodes and arcs. Each table in the
reference set is represented by the sum of lengths of a distinct path in the network.
The network representation is used in computing the exact distribution by a
stage-wise recursion process through the network path. The speed of computation
of P —walues is increased by computing at each node, lower and upper bounds on
the test statistic value for each table that passes through that node [3].

Explicit enumeration of all tables becomes impractical as the sample size
increases. For example, tables with sample sizes 20 and 100, have about 40000 and
7 x 10° tables respectively [2]. For large sample sizes, an alternative is to use
Monte-Carlo methods to sample a large number of tables from the reference set and
make inference on the sample of tables. This reduces the computational time
significantly for large sample sizes.

The remainder of this dissertation is organized as follows. In chapter 2, we
provide a review of various nonparametric approaches to modeling categorical data.
The Fisher’s exact test is among the most popular conditional exact test [18]. Tts
popularity has being easily spurred on by accessible computer software. In chapter
3, we formally introduce the problem of modeling exchangeable clustered binary
data by conditioning on complete sufficient statistics. We discuss the formulation of
the problem, computation of the P — values and various algorithms that allow
sampling from the reference set to be computationally feasible. The Monte Carlo
approach provides a convenient way to overcome the computational challenge of
explicitly listing every single table in the reference set. Two simulation studies are

performed to examine the performance of the test under several hypothetical cluster



sizes, intra-litter correlations and sample sizes. We also implement the test using
real data obtained from the EDGE toxicology experiment.

In chapter 4, we introduce the exact stratified linear rank test for clustered data.
We assign non decreasing monotone Weights to the ranked row and column sums
for each stratum. By conditioning on the cluster sizes, we order each stratum by a
linear trend statistic. The overall test statistic is obtained by summing the
individual linear trend test statistics over all the available strata.

In chapter 5, we extend the exact test to the field of multiple testing.
Simultaneous testing of multiple hypothesis introduces type-I error probability
which approaches one as the number of test increase. The adjusted P — value is used
to make inference in multiple testing to control for both the Familywise Error Rate
and False Discovery rate. Various approaches to compute the adjusted p-values are

discussed including resampling methods to estimate the exact adjusted P — value .



CHAPTER 2

LITERATURE REVIEW

2.1 Overview of Nonparametric Models for Categorical Data

2.1.1 Unconditional Distributions for Categorical Data

The exact probability of any categorical data X, depends on the sampling
scheme that is used to generate X. Three key distributions for modeling categorical

responses are the full multinomial, product multinomial and Poisson distributions.

2.1.2 Multinomial Distribution

Suppose that each of n independent, identical trials has an outcome one of K
possible categories. Let X; be the number of times an outcome of category 7 is
observed in n independent trials,then the vector X = (X1, X5+, Xk ) has
multinomial distribution. Let 7; denote the probability of outcome in category ¢ for

each trial. The probability mass function of the multinomial distribution is given as:

\ K K
z1lzol-xy! H 7Tiz 71f Z Ty =1, Z T = 1
P<X1 =x1,Xo=129""" 7XK:xK) = im1 i=1 i=1
0 otherwise

The binomial distribution is a special case where K = 2. The expected value,
covariance and variance for the multinomial distribution is given as: F(X;) = nm;

cou(X;, X;) = —nmm; and var(X;) = nm;(1 — ;) respectively.

2.1.3 Full Multinomial Sampling

Consider two factors with g and K categories respectively. Suppose n items are
sampled independently from the population, classify each X;; as the cell count in
the ith row of the jth column, ¢ =1,--- ,g and j =1,--- K. Let the probability of
an outcome in the ith category of factor 1 and the jth category of factor 2 be
denoted as m;j for ¢ =1,--- ,g and j = 1,--- K. In this approach the sample size n

is assumed to be fixed, and the cell counts X;; are random.
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(X1, -+, Xyk) ~ Mult(n,mq, - ,myx). The hypothesis of interest is
independence of factor 1 and factor 2, Hy : m;; = m; 7 ;. Where 7; is the marginal
probability of being in the ith category of factor 1 and 7 ; is the marginal
probability of being in the jth category of factor 2. Binomial sampling is a special

case when each of the factors has only two categories.

2.1.4 Product Multinomial Sampling

Product multinomial sampling is generated if for any table X either the
marginal sums of factor 1 are fixed and the margins sums of factor 2 are allowed to
vary or vice versa, fori=1,--- ,gand j =1,--- K. Let m; be the fixed marginal
sum of the ith category of factor 1 which is independently sampled. Each cell count
Xi; is classified into j category of factor 2. Each row of the table with m,
observations, ¢ = 1,--- , g has a multinomial distribution with parameters,
(X1, -+, Xig) ~ Mult(m;, 7, -+, 7). The distribution of any table X is

therefore the product of independent multinomial distributions from the rows.

E
—=

N
<8

(2.1)

T
[
Il
@
Il
s
3
Il
-
e
&

s
Il

—_
<
Il

—

Independent binomial sampling is a special case of product multinomial sampling
where the row and column variables, factors 1 and 2 have two levels. An example of
a product multinomial sampling is if each of ¢ different treatments is administered
to m; patients,i = 1,--- , g and the responses to each treatment level ¢ is recorded in
K categories. The hypothesis of interest would be whether the different treatments
are equivalent thus whether the probability m;; of treatment ¢ with response j is the

same across all treatment levels 4, specifically Hy : m;; = 7, for j =1,2,--- | K.



2.1.5 Poisson Sampling

In Poisson sampling the number trials/sample size is not fixed but random.
Each cell count Xj; is considered as an independent Poisson random variable,
Xij ~ Poisson(\;j), where \;; is the rate of an occurrence of an event in cell (4, j).
The sampling scheme is under the assumption that the data generation process
follows the Poisson distribution. Poisson sampling scheme is useful in modeling
counts where the probability of success of an event is very small in a very large
number of trials. It is usually used in modeling counts over a fixed period of time or
space. The distribution of a table X with independent cell counts X;;, i =1,--- g

and j=1,--- K is

:HH x”e o (2.2)

i=1j=1

The hypothesis of interest is independence of each cell,Hy : m;; = m; 7;. An
example of Poisson sampling is a situation in which there are g x K groups of
people, one group for each cell of the g x K table. The members of each group
arrive randomly at a hospital for a medical check up over a period of time. There
exists a connection between the Poisson and multinomial distributions. Suppose

Xi; ~ Poisson(N\;;),i=1,---,gand j=1,--- K. Let

n= Z Z X;; then Z Z X;j ~ Poisson()\) where X\ = Z Z Aij
i g i g i g

ZZ P(Xy =21, , Xy = Tgk)
P(Xll :x117... 7XQK :ng| I‘Z‘] :n) — P( — —gn) g
— L= DD T =

i g

9k T; .
T” . Zl Zl Aij _)\ ij 9 K )\fjﬁ]
1 = =
(112 | ear(-NTTI 25
i=1j= i=1 j=1 im1 jo1 Yigt
o /\”exp—A - Atexp—A o Aexp—A
n! n! n!




—”‘HH% ( )

=1 j=1
Hence the distribution of Poisson counts conditional on their sum is a

multinomial distribution.

LS Aij
= HHWZ-” where m;; = %
[ Ty 0
2.2 Conditional Distributions for Unordered g x K Contingency Tables
2.2.1 Fishers Exact Test
Consider N observations of two dichotomous factors, factor 1 and factor 2 with

possible combinations given in a 2 X 2 contingency table 1 below.

Table 1: Fisher’s Exact Test for 2 x 2 Tables

Factor 1
1 2 | RowTotal
Factor 2 1 A Aqp my
2 Ay Agy ma
Column Total Ay A, N

For each fixed row, the counts A;; and A, are distributed as two independent
binomial distributions with parameters, (mq,m) and (mq, m) respectively. Where
m and 7y are the probability of success in row 1 and 2 respectively. Under the null
hypothesis of row independence, Hy : m = mp = m, the distribution of A;;
conditioned on the row and column marginals is the hypergeometric distribution.

Let X = (ml, ma, Al, Ag).Then

_ G GE)

Px = (i\,l)

Two common sampling schemes for 2 x 2 tables are the Binomial and



Multinomial. Binomial sampling is obtained by fixing the row sums. The hypothesis
of interest is Hy : m; = my versus H, : m; # m. In the multinomial case the cell
counts (Ajq, Ais, Aa1, Agg) are multinomial distributed with a fixed sample size N
and probability of cell count in cell(i, j) is m;;,4 = 1,2 and j = 1,2. The hypothesis
of interest in the test of independence of the cells is Hy : m;; = m; 7 ; versus
Hy:myj#mmji=12andj=1,2.

The hypothesis may equivalently be expressed in terms of the odds
ratio.Hy : OR =1 and H, : OR # 1. where,

11722

12721

An odds ratio equal to one indicates independence of the cells.
Let the observed table be x with marginals (A;, As, m1, msy). Define the

reference set
I'= (Y (Y is 2x 2;A1,A2,m1,m2)
is defined as the set of all tables with marginal sums equal to the observed. The

exact two sided p-value P is defined as :

ZPY where T =(Y:Y €T is 2x2;Py)> Pyx)
Yel'*

The exact p-value P is then obtained as the sum of distributions Py of all tables
in the reference set at least as extreme as the observed table Px.

The 2 x 2 Fishers exact test can be easily extended to tables of size g x K.
Suppose patients are now assigned to g treatments and response to treatment is
recorded in K categories as shown in Table 2. For each fixed row, (A;1, -, Aik), 18
distributed as a multinomial distribution with parameters (m;, m;y, - - - mx) for
1 =1,---,¢g. The null hypothesis can be expressed as

Hy:mj=my==mgj=m; j=1,--- K

Under the null hypothesis of independence of rows, the row sums

10



Table 2: Fisher’s Exact Test for g x k Tables

Factor 1
1 2 .- K | RowTotal

Ay Ao Ak my

2 Ay A Asg mo

Az Az Az ms3

Factor 2

g Ap Agp - Ay Mg

Column Total Ay Ay - A N

(Ay, -+, Ay|Hp) are also multinomial distributed with parameters

(Na Ty, 77Tk|HO)

P(Ail = A1, aAgK:agKai:17"'9|H0;A1a"' 7149):

P<Az’1:ai1a"' 7AgK=agK;i:1,"'g|Ho)
P(A =a1,Ay =ag, -+ ,Ax = ak)

K
(e T
i1, AiK /s ij

g9
i=1

K > aij g

M) 1177 (a )
s *
(ai17“'7aiK jl:[l J i1y 505 K

g
i=1 1

=

( N )ﬁwqj (al,...,aK)

:lte
—=
E
L

s
Il
-
<.
Il
—

=
e
—=
8

@
Il
—_
.
I
—_

Conditioning on the row and column marginals is a convenient way to eliminate

parameters which in this case are the probabilities m;; from the distribution of Px of
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the g x K table.
The reference set I' of the g x K table is defined by restricting the sample space
of the observed table X to the set of tables with fixed row and column marginal

sums. Specifically the reference set is defined as:

g K
I = {Y Y is gx KOY Ay =Ap Y Ay = my;for all z]}
i=0 j=1
Fisher’s exact test orders the tables in I' according to it’s hypergeometric

distribution Py. The test statistic for each Y € I' is defined as [34]:
Ty = -2 IOg(’)/Py)

where

K—-1
2

g K
(g—1)(K—-1) (gK—1) g—1
J— - 2
y=(2m) z Nz ”ml ||Aj
i=1 j=1

Freeman and Halton(1951) extended the asymptotic distribution of a 2 x 2 table

by Fisher(1925) to g x K. Under the null hypothesis of independence of row and
columns, Ty has a chi-square distribution with (¢ — 1)(K — 1) degrees of freedom.
The exact p-value is found as the sum of probabilities all tables in the reference
set that are at least as extreme as the observed table. Specifically the exact p-value
is defined below :
YZ; Py where " = (Y : Y €T;Py > Py)
T

where Py and Px are the probability distributions of the tables in the reference

set and the observed table respectively computed under the null hypothesis.

2.2.2 Choosing a Test Statistic
Several tests are available for g x k contingency tables with row and column
marginals m; and n; respectively, i =1--- ,g and j =1,--- k. If there is no
ordering of either the columns or rows, then Fishers exact test, Likelihood Ratio
and the Pearson chi-squared test are appropriate and are the most powerful against

any other alternative test of the null hypothesis of no row and column interaction.

12



For discrepancy measure D(Y'), large absolute values of D(Y’) provide greater
evidence against the null hypothesis, while small absolute values are consistent with
it. Fishers test orders each table Y € I' by a hypergeometric distribution P(Y).
Discrepancy measures of various tests are given below, where y;; is the count in the
ith row and the jth column:

For the Pearson Chi-square test:

Sy o E e X (24

i=1 j=1
The likelihood ratio test orders every table y € I' according to the likelihood ratio

statistic:

g

=2) iymlog <wgilij) (2.5)

=1 j5=1

The Kullback and Leibler modified log-likelihood ratio statistic

_zzzmnflog(mf?]) (2.6)

=1 j=1 yl]

The N statistics of Neyman

K mln
_ i (ke (2.7)
i=1 j=1
The Freeman-Tukey statistic
g K 2
m;n;
D =133 (Vi - /") 28)
i=1 j=1

The modified Freeman-Tukey statistic

ZZ(\/%+ v+ 1— /4 ( j’vnj>+1)2 (2.9)

=1 j=1

The Cresie and Read statistic

13



D(y)=§Z§:yij [(f_ﬁ)i—ll (2.10)

A general representation of most of the test statistics above is given below:

5 9 g K Uij )
D(y) :mzzyij [(@) _1] (2.11)

i=1 j=1 N

Where 6 =1,0,—2,—1,—0.5 and % corresponds to the Pearson-Chi-squared
statistic, log likelihood ratio statistic, Neyman statistics, Kullback and Leibler,
Freeman-Tukey and Cresie -Read respectively.

2.3 Singly Ordered R x (' Contingency Tables : Kruskal-Wallis Test

The Kruskal-Walli (KW) test is a rank based method to compare K independent
samples. Kruskal and Wallis(1952) list several advantages of rank based methods.
Specifically, they simplify calculations and only general assumptions are made about
the distribution of observations (independence). The null hypothesis that the K
independent samples originate from the same distribution is tested against the
alternate that at least one sample is stochastically larger than another. It’s the
nonparametric analogue of the parametric one-way analysis of variance (ANOVA)
test. In KW test, the population mean of ranks is compared instead of comparing
population means in ANOVA. The Mann-Whitney test is a special case of
Kruskal-Wallis test for two samples. Hy : F} = Iy = --- = F}, vs H, : F; < F} for
some i # j

Where F; is the distribution of sample 7. Under the null hypothesis, the
observations are a combined sample of size N from the common population. The
combined sample is ranked from 1,---, N. The total sum of ranks is sz = w

The expected proportion of the ¢th sample 4,--- , K in the combined sample is

ng N(N+1) _ ni(N+1
2

N = ) under the null hypothesis.

14



A test statistic t based on a function of deviations between the observed and
K

2
expected rank sum is given as t = ) [ri — %} ,where r; is the sum of ranks
i=1
assigned to the elements of the ith sample. The null hypothesis of equal distribution

of the K samples is rejected for large values of t. The number of ways to assign N

observations into & columns of size n;, i = 1,--- , k is -*—. Each -2~ possible
IT ns! 11 ni!
=1 =1
table assignment is evaluated and t is calculated for each table. The distribution of

N!
K

i=1

the test statistic is then obtained as fi(t) =t

Kruskal and Wallis (1952) proposed a modified test statistic H that is weighted
sum of square deviations that uses the the reciprocals of the sample sizes n; as

weights.

12 K1 ni(N +1)]?
H:m;n_i {ri——] (2.12)

An equivalent computationally preferred version of H can be expressed as:

12 K 2
H=—— S _3(n+1 2.1
N(N+1)izlni SN+1) (213)

When the sample sizes n; are the same, the statistic t is equivalent to H [20].
Tables exist for exact probabilities of t and H for small sample sizes and the
number of columns K. Due to the large number of computations to carry out to
obtain these exact probabilities, large sample approximations have been developed

for relatively large samples.

2
K 12m [ri — (Ngrl)}

NN +1)

H = (2.14)

=1

The statistic H* is approximately distributed chi squared with (K — 1) degrees
of freedom (Detailed proof can be found in [20]).The null hypothesis Hy is rejected

in favor of the alternative if H* > X (QQ’ K—1)- A correction for ties 7 uses the midrank
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method. A modified test statistic for correcting for the number of ties present in the

population, ¢ is:

H
, —
H = iy =D (2.15)

The correction statistic for ties H', does not significantly alter H for relatively
small number of ties. When the null hypothesis is rejected, multiple pairwise

comparisons could be made for any two groups say ¢ and j (1 <i < j < K) by the

statistic:
Zy = Iri = 7| (2.16)
N(N+1) [L L]
2 g n;

The critical region is Z;; < Z . S where z is the standard normal quantile.

The Type 1 error rate « is corrected by dividing o by the number of pairwise

K

2). This kind of Type-I correction is the conservative Bonferroni

comparisons (

method. The null hypothesis that the two populations are the same is rejected if

P(Ziy; < Z_o ) < 5% The Wilcoxon test is a special case of the Kruskal-Wallis
R(K-1) (k—1)

test for the location parameter of two independent samples.

2.4 Doubly Ordered R x C' Contingency Tables : Jonckheere-Terpstra
Test

The Jonckheere-Terpstra test is a nonparametric test for ordered alternative
within independent samples. The null hypothesis tests for homogeneity among
independent samples. It exhibits greater statistical power over comparable tests like
the Kruskal-Wallis test if the samples are ordered from the population from which
they are drawn. The Jonckheere-Terpstra Test hypothesis can be states as:
Hy:0,=0,=---=04

Hy:0,<0y<---<6,i=1,--- K, (at least one strict inequality)

Where 6; is the median of the ith population. An alternative expression of the

alternate hypothesis is (I; ) multiple comparisons of 6; < 6,1 with at least one

16



0; < 0;11. This then reduces the problem of multiple comparison to a two sample
comparison problem. The statistic for combining these multiple two sample
comparisons into a single final statistic is the Mann-Whitney statistic Uj;,

1,7 =1,2,---, K with ¢« < j. The addition of all U;; results in the statistic B. The
Mann-Whitney statistic U;; is defined for any two samples X; and X; with sample

sizes n; and n; respectively as:

1 if oy <apfor s=1,---  Gr=1,--- | K
Uij:

0 if Tjs > Tip

B:U12+U13++U1k+U23+'+U2k++U(k_1)k

K-1 K n;
= Z Z Uy = Z Z ZI(:@-T < x;5), where I is the indicator function.

1< i<j<K i=1 j=i+1 r=1

where x;, is the rth observation in the ith sample and z; is the sth observation
in the jth sample. The rejection region is B > B(«, K,ny,ng, -+ ,ng), where « is
the nominal significance level. The null hypothesis is rejected if
P[B > B(a, K,n1,ng, -+ ,ni)] < a. Tables of exact probabilities for small sample
sizes and small populations is available. For sufficiently large sample sizes and large
populations, the computation of exact probabilities becomes computationally
challenging. An approximate large sample distribution for B is the chi-square

distribution with one degree of freedom.

[B— E(B)’
(D) ~ X?n (2.17)
where . .
b1 - N2 - N2(2N+3)—Zni(2ni—|—3)
E(B) = Z Z 22 L = 5 =L and Var(B) = 7;:1

1<i <j<k
The asymptotic approximation test rejects the null hypothesis if

17



P(X{y = Xi) <@

The Mann-Whitney statistic U;; used in computation of the Jonckheere-Terpstra
L]
test is modified for tied observations as Uj; = > > D, where

r=1s=1

1 if x5 < ZTjs

DTS:< % if Tir = Tjs
0 if Tip > Tjs
\
K—1 K
The modified Jonckheere-Terpstra test statistic B* = Y > U
i=1 j=1

2.5 Analysis of 2 x K Tables
2.5.1 Cochran-Armitage Trend Test for 2 x K Tables
Consider N subjects who are each exposed to some treatment levels 0 and 1.
Assume the responses to treatment is progressively increasing from 1 to K. Let p;
be the probability of response of a subject exposed to treatment level 1 with

response level j, 7 =1,2,--- K. In table 3, X;; is an observation in the ith row of

Table 3: Cochran- Armitage Trend Test For 2 x K Tables

Treatment | Response
Row score 1 2 3 -+ K RowTotal
Row 1 1 T11 T12 X133 - Nk mi
Treatment Row 2 0 To1 Tog Xoz -+ Lok Mo
Column Total ny Ng N3 -+ Ny N
Column Score wy Wy W3 Wk
the jth category,i=1,2 and j =1,--- , K, w; < wy < --- < wy are column scores
assigned to response categories 1,--- , K and 0,1 are the row scores of row 1 and 2

respectively. For 2 x K tables with ordered columns and K independent bin(n;, p;)

variates, Armitage [4] proposed a linear trend test for testing association between
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variable 1 (Treatment) with 2 categories and variable 2 (Response) with K

categories. The proportion of observations in any category j is given by p; = n%?,
whereas the overall proportion in row 1 is given as p = +. Each observation on row

one is assigned a row score of 1 and each observation on row 2 is assigned a row
score of 0.

The null hypothesis of the Cochran-Armitage trend test is that all of K
independent binomial proportions are equal with response probability p :

Ho3P1=p2="'=pk=pWhefer:3;—1;

against an ordered alternative of the form

Hy:pr <pa<---<pg

The test is equivalent to the null hypothesis Hy : 8 = 0 for the linear probability
regression model p; = a + fw; + ¢;.

The Pearson test statistic for the K category of responses X can be expressed
in terms of variation among the K proportions by

Xk = p(ll—p) f:m(pl —p)*.

The chi-squared statistic can be decomposed into two chi-squared statistic to

test for the lack of goodness of fit of the model and the existence of a linear test [1].
Xk =2"+X}
where X7 = Zﬁ f ni(p; — p)? has asymptotic chi-squared distribution with
K — 2 degrees of freedoin. It test’s the goodness of fit of the model.

K 2

VAT =) i — )

Z? has an asymptotic chi-square distribution with one degree of freedom and is used

Q—L = ni(w: — )2
Z _p(l_p); i(w; — ) (2.18)

to test Hy : § = 0 for the linear trend in the proportions.
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2.5.2 Cochran-Mantel-Haenszel Test for S x 2 x 2 Tables

The Cochran-Mantel-Haenszel Test is non-model based approach to testing
conditional independence. Data can be stratified to control for possible confounding
variables. The Cochran-Mantel-Haenszel test provides a measure of association
which is a summary of the weighted average of the risk or odds ratio across the
different strata. The null hypothesis tests homogeneity of association between
treatment and response groups across the S strata. The test provides a summary
estimate of the exposure effect stratified by multiple studies. The odds ratio
obtained from each of the stratified subgroups represents exposure effect in the
group when the overall joint effect of the stratification variable has been held
constant. The overall odds estimate across all the strata can be combined to form a
summary estimate adjusted for effects of those variables used in the stratification.
The Mantel-Haenszel test statistic O Ry (OddsRatio) or RRyy(RiskRatio) can be
considered as weighted averages of odds ratios of each stratum in the data provided
b; and ¢; are greater than 0, for b; , ¢;, a;, d; as in the table below

For subgroups ¢ = 1,--- , 5. The stratum ¢ is given below

Table 4: Cochran- Mantel-Haenszel Test for S x 2 x 2 Tables

Cases Outcome Row Total
Exposure positive  negative
Yes a; b; my;
No C; d; ma;
Column Total ny; N9; n;

The test statistics are given by:

ai(ci+d;)

NgES
3

.
Il
—_

RRyy = (2.19)

ci(ai+bs)

Mo
3

-
Il
—

DO
(@)



(]
R
ES

g .

ORyp =

<.
Il

—_

-MOJ
<
Iy

; 3

(2.20)

-
I
-

S

A major disadvantage of stratified analysis is the inability to control

simultaneously for multiple confounding variables. The sampling schemes for cell

counts (a;, b;, ¢;,d;) given row and column marginals (ny;, n9;, My, Me;) is the

hypergeometric distribution. The mean and variance are given below

. 2.21
N; ( )
MMM 113124

Cell counts from different strata are assumed to be independent. The test

statistic for combining information from the S strata is obtained by comparing a; to
its expected value.

S-n]
O S Va@) P Xo

(2.23)
The test gives similar results to a logit model with sufficiently large strata size n;.

The set back in a parametric model such as the logit model is that, the maximum

likelihood estimates of log odds ratio may be over estimated for sparse data [1].
Logit models may also fail to converge.

2.5.3

Generalized Cochran-Mantel-Haenszel Association Statistic for
s X g x K Tables

Let Nijn i=1,---,g9,7 =1,--- K be the cell counts in the hth stratum of a

g X K table, where ¢ represents the levels of factor of interest such as treatment and
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J represents another factor such as levels of response. Conditional on row and
column marginals each stratum has (¢ — 1) x (K — 1) non-redundant cell counts [1].
For each stratum h the vector of cell counts

np = (Naip, - - y TMU(E=1)hs TRy * 0 3 TMU(E—=1)hs " " 5 To(g—1)1hy " ° 7n(g—1)(k:—1)h> has

probability function (2.24) .

g K
H nzh' H n.jh!
=1 j=1

P (2.24)
n._p! H H Nijn
i=15=1
Let up = E(ny) under Hy : no row by column association. Then
_ ﬂ _ (nllhu e 7n1(k2—1)h) N1k, " 7n1(k2—1)h7 e 7n(g—1)1h7 e an(g—l)(k‘—l)h)
i N h n.h
(2.25)
Let V;, be the covariance matrix of nj, where
ik (O — Ny in (05 — N
Coulni,nuy) = "0 Z Gt Z 1) (g 5)

".z.h("..h —1)

where

1 fa=0b
5ab:

0 otherwise

Let Gy, = ny — E(n) = np — up.Now G = > G, = > (nn, — pp) is the aggregation
I h

over all (¢ — 1)(k — 1) strata. Let the covariance matrix of V' = )" V},. The general
association test statistic for the Cochran—Mantel—Haenszel(CMH)htest under the null
hypothesis is Qg = GTVG. The distribution of the test statistic approaches

X (29_1)( K1) 88 the total sample size (n = Zh: n_p) approaches infinity. When the

CMH statistic is significant at some level «, then there exists some association

between the row and column variables in at least one stratum.
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254 Generalized Cochran-Mantel-Haenszel Mean Score Statistic for
S x g x K Tables

Consider a set of S independent g x K tables where cell counts in the hth
stratum is given by n;,,i =1,--- ,g —1and j =1,---, K. Assume the column
variable is ordinal and has assigned scores wyy, , -+, wgp. The null hypothesis of no
association between row and column variables in any of the S strata is tested
against the alternative that there is a difference in the g mean scores on average
across the S strata. Define M, = iwjh(nh — E(ny), the vector of differences

j=

between the observed and expected mean scores under the null hypothesis. Let
5 S

M = %" Mj which has expectation zero and covariance matrix Vj; = > Vj,.Then
Qn :h7\14' V,; M jis the CMH mean score statistic which is approximat}g; X (2971) if
the null hypothesis is true. The statistic is used only when the column variable is
ordinal or when the variable is an interval column variable. Special cases of the
CMH mean statistic arise when S =1 and g = 2, Q;; is the
Wilcoxon-Mann-Whitney statistic. If S =1 and r > 2, Q;; is the Kruskal-Wallis
statistic. If S >1and ny;, =1fori=0,---,gand h=1,---,5, then the Q) is the

Friedman’s chi-square statistic.

2.5.5 Generalized Cochran- Mantel-Haenszel Correlation Statistic for
s x g X K Tables
Consider a set of S independent g x K tables with ordinal row and column

variables. Let the scores assigned to the row and column be wyp,, -+, 4y, and

Wip,, -+, Wkp respectively. The null hypothesis that there is no association between
row and column variables in any of the S strata is tested against the alternative
that there is consistent positive or negative association between the rows and
column scores across all stratum. Define C}, = Z E wipnw;n(np, — E(ny) as the vector

i
of difference between the observed and expected association scores in the hth
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stratum under the null hypothesis. Let C' = > C},, then C has expectation zero and
h

variance denoted by V. The CMH correlation statistic Q¢ = C'VC has

asymptotic distribution as X7 for sufficiently large total sample size (n_ =Y n_j).

h

The Pearson correlation coefficient p between row and column scores is a special

case of of CMH correlation statistic Q. = (n_ — 1)p? where S = 1.
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CHAPTER 3

EXACT CONDITIONAL TEST FOR EXCHANGEABLE BINARY

RESPONSES
3.1 Formulation of Exact Test
A finite sequence of random variables (X7, - -, X}) is exchangeable if for any &

P(Xry =21, Xay =) = P(Xi =21, -+, Xj = x3)
for any permutation 7y - - - 7(, of indices 1,--- k. Let (Xi,---,X,) be

exchangeable random variables with Ao, = 1 and A, = P{Xy, -+, X} = 1}, then

P{Xi = a1 Xy =2} = > (~1)F (" . 7’) Mrtkn
where
r= i x;
In tlgs1 thesis we consider an experiment involving g treatment groups and
exchangeable binary responses. For the ith treatment group, let (Xjji,- -, Xijn,,)
be the set of binary data from the jth cluster of the ith treatment group, where

j=1,--- ,mWi=1---, ¢, and let

where E Tijk = Tij
k=1

If A,(ﬁ)l represents the number of clusters of size n with r responses in the ith

treatment group

P{Xijlzxijla"'aXijnij:I'ijnija ]:177m(l)7 221779}:
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g K n A A(i)
LTI (3.1)
i=1 n=1r=0
where K denotes the maximum possible cluster size in the experiment
It is clear from (3.1) and the factorization theorem that A%’s form a set of joint
sufficient statistic for P,n(z’s. Thus we can summarize the dataset as given in Table 5

with each fixed cluster size.

Table 5: Summary of Data

Treatment Response Cluster size
1 2 R K Row Total
1 1 1
Control 0 A(()g A((),% A(()yg)) 0 ng
1 1 1
S
1 1
2 0 0 AS) AS ns
n 0 0 0 Al n}
Column Total miV miV m{’ - ml m™)
P 7 P P
Treatment 1 0 Aé’% Aé’% Aé% Aé} ng
2 2 2 1
LAY An A e ond
2 2 2
2 0 A2?2 Ag; A&(,)?) 3
n 0 0 0 AN w2
Column Total mgl) mél) mél) ceeom ;) m?)
Treatment g 0 A((f% A((f’% A((f% fe A((f;( ng
A R A I
n 0 0 0 A ng
Column Total m'? my? m .. m m)
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where

K n

§ : i i
Aryn =n, and § Ar,n =m,

n=1 r=0

K n

Z AT,” =N, and E Ar,n =1m,

n=1 r=0

Now for each fixed n7n:17”' 7K7{A(l) 7":0,"' 7n;i:0,-.. ,Q}N

rns

Multinomial (mg), PO(?I, (n) Pl(fr)” cee < K >Pr(f_)1,n cee Pé%)
’ 1 n—1

Now consider testing the hypotheses: Hy : No treatment effect vs H, : There
is a treatment effect and let T be the test statistic for testing these hypothesis and
suppose that we reject Hy if T € C,where C is the critical region.. Then under
Hy, P)=P.i=1--.g9 r=0--,n n=1-- KandA,= iAffL,
where {4, ,,r =0,1,--- ,n} form a set of joint complete sufficient statzi;iics for
(Po,n, . )Pn,n)-

Thus the null hypothesis of of no treatment effect reduces to
HO:P,SQ:PM,Z':L--- ,g r=0---n n=1,--- K.

Under H,, {iA@L = app|Hp,r=0,--- ,ni=1,---,gn=1,--- ,K} has a
Multinomial (]\/[Zn,lP(m7 (?) P, Py, (") P, an), and

r

n,n

P(A(()Z,L :G/(()i')n? ,A('L) :agi)n‘Ho’AO,n :CLO,n>"' ’An’n :arhn’n: 1’ ,K,i :O7

P<Ag’%:a((31"” ’AQK:CL%{MAO»HIGOW'“ ;AK,K:(IK,Kyn:L"' K, i=0,---

P(A07n:a0,n,"' 7AK,K:CLK,K7TL: 17 7K)
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g K
H H <P (A(()Z)n = CL(<)Zn7 7141(11)” - a’q(ff)n7 AO,n = Ao,n, 7An,n - an,n))
5 ’ ’ ’ ’ g )
== = ity O =a,,
H P (AO,n = Qo,n, 7Ann - an,n) -
= < n=1
aW10
0 it S A £ ay.,
=1

(9 K m K 5540,
mn 1=1
fit(e )i
i=1 n=1 ) ’ r=0 - lf 2 'E-Zzzzarrwr:o?'” y TV
K v K 55 A0 =1 ’
n P;?Ll
B (i
n=1 ’ ’ r=0
I 40
0 if Z Ar,n 7é Qrn
i=1

. 9 .
, ' ;
= if > wl:am,r:O,---,n
11 < " ) a
= Qon, -, Gnn

oo
0 it S AY) #ap,
=1

3.2 Reference Set and P-value
Define a reference set I' as the set of all possible contingency tables with fixed

marginal column and row sums as the observed table sums for treatment groups

1=1,---,¢, cluster sizesn =1,--- , K, with responses r = 0, --- , n, that is
K n
I'= {Y:Yisnx K;ZAi7n:n;,ZAi’n:m;}
n=1 r=0

Then for an observed value t of a test statistic T, the P — value of a test which

rejects Hy, for large value of T is given by
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ﬁﬁ((%) ! ‘))

i—1 n= 0,ns° ) Ann
P-value=p(T > t.s|Ho) = Z =1n=l

K
T>tobs H < >
o Aoyt 5 Apon

3.3 Monte Carlo Method Using Likelihood Function

Monte Carlo methods, provide powerful tools to compute unbiased estimates of
the exact P — value for small data sets , sparse ,unbalanced tables, non normal data
and when the data that does not to conform to any particular parametric
distribution. For any observed table, a large number of tables with the same column
and marginal sums are randomly sampled from the reference set to obtain a set of
P — values. The enumeration of all possible tables in a reference set can be
computationally expensive for large tables. The accuracy of the Monte Carlo
estimate of the exact P — value increases as the number of tables sampled from the
reference set increases.

The procedure for Monte-Carlo computation may be summarized as follows

e Let the critical region of the reference set be defined as:

F*:{Y:YefandPyZPX}

and Py is the probability of the observed table and Py is the probability of

the sampled table Y. The probability of each table P (Y') is given by,

p
9 K mgf)
III(,0 ()
i=1 n=1 o 7 if ZArn—arna'r:O;"'an
(")
P(Y) = < ne1 Qo ,n, s Anon
L0
0 if > Arn # app
i=1
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e A Monte Carlo estimate of the P — value is obtained by sampling N tables
from the reference set I'. Each of the N tables sampled from the reference set

I' is ordered by the modified Freeman-Tukey statistic,

K g n 2

— mni
Dy:;izz;;(,/aij—i‘ a¢j+1—\/4(—N )+1> (32)
to detect those tables that are at least as extreme as the observed table X.

e For each table Y; € I' that is sampled,define W; as:

1 Dy, > Dy
W, =

0 otherwise
The Monte-Carlo P — value is then given by
[N
value = — ;
Since variable W; is a Bernoulli random variable. The asymptotic standard error of
the Monte Carlo estimate of the P — value is given by:
o p(l—p)
s.e.(p) = N1

and the asymptotic 100(1 — «)% confidence intervals is given by:

p+zes.e.(p)

Although P is an unbiased estimate of the exact P — value, simply replacing the
exact P — value with P fails to control correctly for type I error rate[42] . P
underestimates the P — value if the null hypothesis is true when the number of W;
is very small relative to N, and it can result in obtaining a P — value of zero if the
observed statistic is greater than all the permuted test statistics. For this reason an

adjusted Monte Carlo P — value estimate was suggested [13] as is:

) 1 al
P= (;Wﬁl) (3.3)
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NP+1
7 N+1

The Curtis adjusted P — value has expectation , and is biased and
overestimates the P — value by zlv;fl)'

The discreteness in small sample distributions can be adjusted by using the
mid-p — value approach suggested by Lancaster [27]. The mid P-value behaves
much more like the P-value of a test statistic with a continuous distribution. For a
test statistic T" with observed value t,,, and one-sided alternate hypothesis H,. The
mid P-value is given by :

1
mid P — value = §P(T = tops) + P(T > tops)

This adjustment causes the mid P — value to be less than the ordinary P-value by
about half of the observed result, but it is less conservative compared to the
ordinary P — value of an exact test [1].
3.4 An Algorithm for Generating Tables
The tables from the reference set are generated by the Algorithm AS 159
Patefield (1981). Each table with the same row and column marginal sums is
generated under the null hypothesis assumption of no association between the rows
and columns categories. The conditional probability distribution of each entry A, ,
and its expected value in a table given the previous entries in the rows and columns
is found. The probability distribution of A, , is accumulated starting with the A, ,
equal to the nearest integer of it’s expected value. The c.p.u. times required for this
algorithm unlike the algorithm by Boyett(1979), depends more on the dimension of
the table rather than the sample size. Patefield’s algorithm performs considerably
better than Boyett’s Algorithm AS 144 for large dimension tables.
3.5 Simulation Study I
A simulation study was conducted to determine the operating characteristics of
the conditional exact test. The P — values of a homogeneity test between two
groups (control and treatment) were computed using various sample sizes by

varying the difference in success probabilities between the two groups. The marginal
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probability for the control group p; was held constant at 0.1 and the probability of
the treatment group was varied from p, = 0.1,--- ,0.9. The sample sizes for both
the control and treatment groups were equal and varied from 50, 100 and 200.

The method proposed by Lunn and Davies [29] was used to generate correlated
binary random variables with exchangeable correlation structure p; within the jth
cluster. Although this method is very simple to implement, it seems to be faster
than other existing algorithms for generating clustered binary data.

To give a brief description of the algorithm, let X;j; be the kth binary random
variable in the jth cluster of the ith treatment group for i =1,2, k =1, -+, ny;

. =1,--- N;. Thus N; and N, are the number of clusters in Control and
Treatment group respectively. The cluster sizes n;; were chosen to follow a random
Poisson distribution with mean A =5 and A = 10. Xj;;’s and were generated as
follows:

Let Y;;; and Z;; be independent binary random variables with
pi = P(Yijx = Z;j = 1). Further let U;j;, be a binary random variable with
P(Ujjr = 1) = 6, independent of Y;;;, and Z,;. Generate
Xijk = (1 = Uiji)Yij + UgjrZs;. Then E(X;5) = (1 = 6;)p; + 0ip; = p; and
var(Xj,) = E(Xijk)? — (E(X51))? = p;(1 — p;). Further
cov(Xiju, Xijit) = E(Xijr, Xiji) — p; = 0%pi(1 — p;) for k # 1 and cov(Xijr, Xij) =0
for j # [ so that p; = 02.

The results from the simulation are displayed in Table 6. The exact conditional
approach detects a significant change in treatments as the marginal probabilities of
the two treatment groups begin to change. The level of significance increases as the
difference in probabilities of the two groups increases. Generally, it was also
observed that an increase in sample size is more likely to detect significance. The
p — values appear to increase as the intra cluster correlation is varied from 0.3 to

0.9. This demonstrates that there is some intra cluster effect. The results of the
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simulation study also show that the size of the clusters did not have any significant
effect on the p — values. Increasing the mean cluster size from 5 to 10, the results

remained generally the same.
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Table 6: Simulation Study I Results

Simulation Parameters

P- Value,N; = N, =50

P- Value,N; = N, = 100

P- Value,N; = N, =200

p1=p2=0.1

p1=p2 =03 0.5036603 0.4883057 0.4906973
A=5

P1 = 0.1,]?2 =0.2

p1=p2 =03 0.2881089 0.1443886 0.03172927
P1 = 0.1,}?2 =0.3

p1=p2 =03 0.07149251 0.005467532 0.001004995

P1 = O.]_,pg =0.5

p1=p2 =03 0.001715285 0.000999001 0.000999001
A=5H

p1=0.1,pp =0.7

p1=p2=03 0.000999001 0.000999001 0.000999001
pl_: 0.1,p2 =09

p1=p2=03 0.000999001 0.000999001 0.000999001
p1=0.1,po =0.1

p1=p2=0.6 0.5102378 0.503006 0.4948531

A et

P1 = O.l,pz =0.2

p1=p2=0.6 0.3466993 0.238026 0.1015674
pl_: 0.1,p, =0.3

p1=p2=0.6 0.1478362 0.03147852 0.001747253
A=5

P1 = O.l,pz =0.5

p1=p2=0.6 0.00674026 0.001015984 0.000999001
A pu—

P1 = O.l,pg =0.7

Continued on next page
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Table 6 — continued from previous page

Simulation Parameters

P- Value,N; = Ny, =50

P- Value,N; = N, =100

P- Value,N; = N, = 200

L1 = P2 = 0.6

0.001010989

0.000999001

0.000999001

p1=0.1,p, =0.9

p1=p2 = 0.6 0.000999001 0.000999001 0.000999001
A=5

p1=p2=0.1

p1=p2=0.9 0.5095644 0.509015 0.4906503

N\ —

P1 = O.l,pg =0.2

p1=p2=0.9 0.4020539 0.3217502 0.1935874
A=10

P1 = O.l,pg =0.3

p1=p2=0.9 0.2189271 0.09046254 0.01030569
A=5

P11 = 0.1,])2 =0.5

p1=p2=0.9 0.001564436 0.001564436 0.000999001
N\ =

P11 = O.l,pg =0.7

p1=p2=0.9 0.001114885 0.000999001 0.000999001
P1 = O.]_,pg =0.9

p1=p2 =03 0.000999001 0.000999001 0.000999001
A=25

P1 = O.]_,pg =0.1

p1=p2=0.3 0.5124665 0.4985754 0.5069441
A=10

P1 = O.]_,pg =0.2

p1=p2=0.3 0.2722398 0.1042607 0.01398202
A=10

P1 = O.]_,pg =0.3

p1=p2=0.3 0.05241459 0.002683317 0.000999001
A=10

Continued on next page
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Table 6 — continued from previous page

Simulation Parameters

P- Value,N; = Ny, =50

P- Value,N; = N, =100

P- Value,N; = N, = 200

P1 = O.]_,pg =0.5

p1=p2=0.3 0.001330669 0.000999001 0.000999001
A=10

p1=0.1,p, =0.7 0.001 0.000999001 0.000999001
p1=p2=0.3

A =10

P1 = O.]_,pg =09

p1=p2 =03 0.000999001 0.000999001 0.000999001
A =10

p1=0.1,p2 =0.1 0.4909351 0.4971698 0.4943417
L1 = P2 = 0.6

A =10

pr=0.1,py =0.2

p1=p2 = 0.6 0.3182138 0.2037013 0.06839161
A =10

P1 = O.l,pz =0.3

p1=p2 = 0.6 0.1065634 0.01919381 0.001151848
A =10

P1 = O.l,pg =0.5

p1=p2 = 0.6 0.004274725 0.001 0.000999001
A =10

P1 = O.l,pg =0.7

p1=p2 = 0.6 0.001004995 0.000999001 0.000999001
A =10

P11 = 0.1,])2 =09

p1=p2 = 0.6 0.000999001 0.000999001 0.000999001
A =10

p1=0.1,pp=0.1

p1=p2 =09 0.4761019 0.4751439 0.5038921
A=10

p1=0.1,pp=0.2

p1=p2=0.9 0.4080639 0.3138551 0.1967662

Continued on next page




LE

Table 6 — continued from previous page

Simulation Parameters

P- Value,N; = Ny, =50

P- Value,N; = N, =100

P- Value,N; = N, = 200

A= 10

P1 = O.l,pg =0.3

p1=p2=0.9 0.2180729 0.09042458 0.09042458
A =10

P1 = O.l,pg =0.5

p1=p2=0.9 0.02597003 0.001347652 0.000999001
A =10

P =01p;=07

p1=p2=0.9 0.001376623 0.000999001 0.000999001
A =10

p1=0.1,p=0.9

p1=p2=0.9 0.000999001 0.000999001 0.000999001
A =10




3.6 Simulation Study II
Theorem 3.6.1 (de Finetti). An infinite sequence of binary random variables

(X1, Xo, -+ ) is exchangeable if and only if there exists a probability distribution
function F on [0,1] such that for all n [15]

1
P(Xy = 20, Xo = 29, Xy = 1) — / 6 (1 — 0)"=*dF(0), (3.4)
0

p <i X, = Sn) — (571) /0 1 0° (1 — 0)"*"dF(0) (3.5)

n
where, Y X; = s,

=1

de Finetti’s theorem assumes that any finite set under consideration is a subset
of an infinite sequence. This assumption is not necessarily true in many practical
applications. The Beta-Binomial may be derived from De Finetti’s theorem when
the mixing distribution F'is a beta distribution. The intra-litter correlation is
restricted to be positive in a Beta-Binomial model [10]. Diaconis [15], showed how
the De Finetti theorem fails in a finite sequence scenario and also obtained finite

sequence representation of de Finetti’s theorem.

3.6.1 The p-power and g-power Models
In the interest of formulating parametric models, Kuk [26] introduced p-power
for exchangeable binary random variables. Kuk [26] showed that the power family
model is a completely monotone function. This constraint is needed in order that
the forward differences of all marginal response probabilities is positive for a valid

probability model [10]. Define
Argk = P(Xl ==X = 1) = p(Hk)W’ 0<p~y<1 (3-6)

Thus,

P(R=r) = (") W(—nk (” . 7ﬁ) P where ;Xk - R. (3.7)
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Kuk also gave the g-power model as

N=PX =..=X;=1)=P(X;=0=---= X, =0) = ¢" (3.8)

_ — I I «— _ r (n—r+k)”
P(R=r)=P(R =n—r)= <T) ;( 1) (k)q (3.9)
Using this ,we can show that the intra cluster correlation is given as

¢ =
q(1—gq)’

where v is the measure of positive intra-cluster correlation. v = 1 represents the

p= where 0 < ¢ <1 (3.10)
case of independent observations and v = 0 specifies complete intra-cluster
dependence. v > 1 results in negative intra-cluster correlation (p < 0). 0 <~y <1
indicates positive intra cluster correlation.

A reparametrization gives

log(q)

log {log(q%rpq(lq)) ]

Y= (3.11)

log(2)
The p-power distribution given by (3.7) under-estimates the probability of at
least one positive response P(R > 1) by assigning high probability mass at zero[26].
This leads to overestimation of a safe dose in a litter-based approach to quantitative
risk assessment [26]. The g-power distribution given by (3.9) does not have this
problem. Kuk [26] showed that the probability distribution functions of the q-power
distribution in cases where the response probability or intra-cluster correlation is
small closely follows bell shape in comparison to their p-power counterparts.[26].

The g-power model in (3.9) does not model positive intra-litter correlation only. In

most practical applications that involve clustered binary data, intra-litter

—1

max

correlation is positive. It can be shown that — < p <1, where ny,q, is the
maximum cluster size [17]. If Y  P(R > r) = 1 the g-power model (3.9) defines a
r=0

valid distribution even when v > 1 as long as P(R > r) > 0. For r =0,--- ,n, this
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leads to negative intra-cluster correlation defined by Equation 3.10. A value of

~v > 1 results in negative intra-cluster correlation. Thus when these simple
conditions are satisfied, the g-power distribution can be adapted to model data with
negative intra-litter correlation. The g-power distribution is convenient in dose
response modeling when the probability that at least one cluster variable is affected

in contrast to the p-power distribution, since
PR>1)=1-P(R=0)=1-P(X;=-,X,=0)=1—¢" (3.12)
The corresponding p-power family is given by

P(R>1)=1-P(R=0)=1- (n) n_T(—1)k (Z)pm (3.13)

r

A second simulation study was conducted to determine the characteristics of the
conditional exact tests. The P — values of a homogeneity test between a control
and a treatment groups were computed at various sample sizes by varying the
difference in success probabilities between the two groups. The marginal probability
for the control group p; was held constant at 0.1 and the probability of the
treatment group was varied from py = 0.1,--- ,0.9. The number of clusters for both
the control and treatment groups were made equal and varied at 50,100 and 200. A
is the mean of the Poisson distribution used to generate random cluster sizes. For
each set of parameters, the simulation was repeated a thousand times and the mean

p-value recorded.

3.6.2 Inverse Transform Method
The Inverse Transform method was used to generate correlated binary random
variables with intra-litter correlation p. To generate a random variable R with

probability distribution given by (3.9), we follow these two steps:

Steps
1. Generate probabilities pg = P(R < 0), p1 = P(R< 1), pp = P(R < 2),
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2. Generate U ~ u(0,1) then set R=Fk if p,_1 < U < pg.

The results from the simulation are summarized in Table 7. The exact
conditional approach detects a significant change between control and treatment
group as the marginal probabilities of the two treatment groups begin to change.
The p-values decrease as the difference in marginal probabilities between the control
and treatment group increases. Generally, the increase in sample size has an effect
on significance. Larger sample sizes were more likely to detect significance for a
fixed set of parameters as expected, while for a fixed set of parameters, increasing
intra-cluster correlation resulted in increasing p-values. This suggests that
intra-cluster correlation has an effect on the significance of the test. Larger sample

sizes are needed to detect significant differences as intra-litter correlations increase.
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Table 7: Simulation Study II Results

Simulation Parameters

P- Value,N; = N, =50

P- Value,N; = N, = 100

P- Value,N; = N, =200

P1 = P2 = 0.1

p1=p2=0.3 0.5075455 0.5068741 0.4948332
A=5

P1 = 0.1,]?2 =0.2

p1=p2=0.3 0.3366064 0.2118432 0.07347453
P1 = 0.1,}?2 =0.3

p1=p2=0.3 0.1192218 0.01818382 0.001256743
P1 = O.]_,pg =0.5

p1=p2 =03 0.00458042 0.001003996 0.000999001
A=25

P1 = O‘]_,pg =0.7

p1=p2 =03 0.001010989 0.000999001 0.000999001
P1 = O.]_,pg =0.9

p1=p2 =03 0.000999001 0.000999001 0.000999001
P1 = 0.]_,]92 =0.1

p1=p2=0.6 0.4972358 0.5091479 0.5035944

\ =

P1 = O.l,pz =0.2

p1=p2=0.6 0.3752328 0.2706613 0.156002
pl_: 0.1,p, =0.3

p1=p2 = 0.6 0.176035 0.06263437 0.00662038
A=D

p1=0.1,p2 = 0.5 0.01225175 0.001110889 0.000999001
€\1 = P2 = 0.6

P1 = O.l,pg =0.7

Continued on next page
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Table 7 — continued from previous page

Simulation Parameters

P- Value,N; = Ny, =50

P- Value,N; = N, =100

P- Value,N; = N, = 200

L1 = P2 = 0.6

0.001063936

0.000999001

0.000999001

p1=0.1,p, =0.9

p1=p2 = 0.6 0.000999001 0.000999001 0.000999001
A=5

P =01, p, =01 0.5154116 0.5028581 0.5005315
P1 = P2 = 0.9

A=

P1 = O.l,pg =0.2

p1=p2=0.9 0.3893546 0.3132098 0.1918781
P1 = O.l,pg =0.3

p1=p2 =09 0.222013 0.08045654 0.01461738
A=5

P11 = 0.1,])2 =0.5

p1=p2 =09 0.02365135 0.001455544 0.000999001
A=

P11 = O.l,pg =0.7

p1=p2 =09 0.001165834 0.000999001 0.000999001
P1 = O.]_,pg =0.9

p1=p2 =09 0.000999001 0.000999001 0.000999001
A=5

p1=p2=0.1 0.4975125 0.5038791 0.5048911
P1 = P2 = 0.3

A=10

P1 = O.]_,pg =0.2

p1=p2=0.3 0.3001578 0.1708402 0.04642657
A=10

P1 = O.]_,pg =0.3

p1=p2=0.3 0.08166134 0.01356244 0.001064935
A=10

Continued on next page
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Table 7 — continued from previous page

Simulation Parameters

P- Value,N; = Ny, =50

P- Value,N; = N, =100

P- Value,N; = N, = 200

P1 = O.]_,pg =0.5

p1=p2=0.3 0.003024975 0.000999001 0.000999001
A=10

p1=0.1,p =07

p1=p2=0.3 0.001018981 0.000999001 0.000999001
A=10

p1=0.1,p, =0.9 0.000999001 0.000999001 0.000999001
p1=p2=0.3

A=10

p1=0.1,p, =0.1 0.5004855 0.4963666 0.5109191
L1 = P2 = 0.6

A=10

pr=0.1,py =0.2

p1=p2=0.6 0.3816813 0.2802967 0.1594915
A=10

P1 = O.l,pz =0.3

p1=p2=0.6 0.1927493 0.06670829 0.00782018
A=10

P1 = O.l,pg =0.5

p1=p2=0.6 0.01223177 0.001152847 0.000999001
A=10

p1 =0.1,p, =0.7 0.001191808 0.000999001 0.000999001
p1=p2=0.6

A=10

P11 = 0.1,])2 =09

p1=p2=0.6 0.000999001 0.000999001 0.000999001
A=10

p1=0.1,pp=0.1

p1=p2=0.9 0.50203 0.5016913 0.5188941
A=10

p1=0.1,pp=0.2

p1=p2=0.9 0.4172587 0.3215764 0.2148541

Continued on next page
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Table 7 — continued from previous page

Simulation Parameters

P- Value,N; = Ny, =50

P- Value,N; = N, =100

P- Value,N; = N, = 200

A= 10

P1 = O.l,pg =0.3

p1=p2=0.9 0.2392268 0.1025734 0.01953247
A =10

P1 = O.l,pg =0.5

p1=p2=0.9 0.03052048 0.001665335 0.000999001
A =10

P =01p;=07

p1=p2=0.9 0.001525475 0.000999001 0.000999001
A =10

p1=0.1,p=0.9

p1=p2=0.9 0.000999001 0.000999001 0.000999001
A =10




The Lunn and Davis approach to generating correlated binary data results in
p-values that are in general slightly less than that of the Inverse Transform of the
g-power distribution for any fixed set of parameters. The two simulation methods

share all other similar characteristics with each other.
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3.7 Application

The exact test procedure was applied to the analysis of a developmental toxicity
study of ethylene glycol diethyl ether (EDGE). The data was obtained in an
experiment in which pregnant New Zealand white rabbits were exposed to the
compound EGDE. The effect of ethylene glycol diethyl ether on their fetal
development was then studied. In the study, four groups of pregnant does were
randomly assigned to dose levels 0,25, 50, and 100 milligrams per kilogram body
weight of EGDE. For each litter and at each dose level, the adverse response used is
the combined number of fetal malformation and fetal death. The data are presented
in Table 8. The frequency distribution of live fetuses with malformations are
grouped into cluster sizes ranging from 2 to 15. The data appears to be relatively
sparse with no indication that dose level has impact on cluster size. From the table,
for each fixed cluster size, frequency of malformations appears to increase with
increasing dose level. Figure 1 shows the probability of at least one, two, three and
four responses across the various dose groups. In general, these probabilities
increase with increasing dose demonstrating the existence of a trend. Figure 2 shows
a strip chart plot of the responses. It is observed that dose group 100 has the
highest proportion fetuses with malformations. Lower dose groups 0, 25 and 50 have
relatively lower proportion of fetuses with malformations. Figure 3 shows that the

marginal proportion of fetuses affected also increase with increasing dose.
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Table 8: Data from Ethylene glycol ether(EDGE) Laboratory experiment: A Fre-
quency Table Representation

No. malformed No. of Tive fetuses
Dose Level 7 2 3 ES 5 © 7 8 9 10 1T 12 13 14 15
0 2 T T 2 3 T 3 T T
1 1 1 1 1 1
2
3 1
4 1 2
5 1
6 1
7 1
8 1
25 0 1 1 4 2 1 2 2 1 1
1 1 1 1 2 1
2 2 1
3 1 2 1
4 1 1
5
6
7 1
8 1
50 0 2 1 1 1 1 1 1
1 1 1 1
2 1 1 1 1 1 1 1
3 1 1 1
4 1
5
6
7 1
8 1 1
100 0 1 2 1
1 1
2
3 1 1 1
4 1 1 1
5 1 1 3 1
6 1 2 1 1
7 1
8 1
9 2
10 1 1
12 2 1

3.7.1 Summary Statistics for Edge Data

Table 9: Summary Statistics for EDGE Data

Dose Level

0 25 50 100  Total
Clusters 21 23 25 25 94
Mean Cluster Size 779 828 831 T7.71 8.02
Sample Size 218 265 216 239 938
Malformations 40 47 54 171 312

Response Rate (%) 1835 17.74 25  71.55 33.26

Probability of at least 0.46 0.53 0.69 0.87 0.64
one fetus affected
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Figure 1: Marginal Response Probability Plot for EDGE Data

49



Propaortion affected

1.0

0.8

0.6

0.4

0.2

0.0

Stripchart Representation of EDGE Data

] Opo
Qg
o °
a0
O
@]
53_)
&
€ o0
o a
St c
0
o
("'.-..
oD 0
| | T I
0 25 a0 100

Dose Groups

Figure 2: Strip chart Representation for EDGE Data
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Figure 3: Fit of Marginal Probability for Edge Data

3.7.2 Treatment Test of Heterogeneity
To test the hypothesis of no adverse effect of EDGE against possible adverse
effect. We test the null hypothesis
H, : PT(Q =P i=1---,4 r=0,---,12 n=2,---,15 versus the alternate
H,:At least one PT(Q #* Pr(f;fl)
In Table 10, we summarize the results of this test across all four treatment
groups. The results indicate a significant difference in response rates between the

four dose groups(p — value = 0.02894971). The estimates are based on 10,000
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random samples from the reference set. The distribution of the test statistic Dy

displayed by Figure 4 shows, the test statistic appears to be unimodal and skewed

to the left.
Table 10: Exact Conditional Test
Treatment Groups Mid P-value P-value 99% Confidence Interval
0,25,50,100 0.028945 0.02894971 (0.02758443, 0.03031499)
Table 11: Comparison with Other Test
Treatment Groups Exact Conditional Rao-Scott Homogeneity Test(Asymptotic)
0,25,50,100 0.028945 < 0.001
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CHAPTER 4

EXACT STRATIFIED LINEAR RANK TEST

4.1 Stratified Representation of Data

Stratification of clustered data allows analysis to be made on data with the same
cluster sizes. When cluster sizes are fixed, each row in a stratum of the g treatment
groups can be viewed as ¢ independent multinomial distributions with K categories.
Each observation Aﬁ,y ; represents the number of clusters with r responses

r=20,---, K and stratum/cluster size j, 7 = 1,-, K in the ith treatment group,

1=1,--,9.
The stratum scores w; ; 4 =0,1,--- K and j = 1,--- , K are monotone
non-decreasing weights assigned (wg; < wy; < -+ < wg ;) to the jth stratum with

r responses. The weights w; ; are assigned to the ranked column in each stratum.
Let (woi, w4, U2; - - - , Ug;) be monotone non-decreasing weights that is

(uo; < upy < ug < -+ <wy). The weights w50 =1,---gand j=1,--- , K are
weights assigned to the ranked row sum in each stratum. The stratified

representation is shown in Table 12.
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Table 12: Stratified Representation of Clustered Data

Cluster size Treatment Response
0 I 2 e n Row Total Row Weights
Stratum 1
1 0 Aég Agli 0 s 1 my U1l
2 A% A® 0 - 0 m2 us1
> (9) (9) (9) i (9) X )
& Ao AT A e ArL my Ug1
Column Total no,1 ni,1 na1 cee N1 Ny
Column Weights wo1 w1l w21 s w1
Stratum 2
1 1 1
2 1 Aé’% Ag,; A(Q,g e 0 m} ui2
2 2 p)
2 A% Al Ag) . 0 m32 uz2
- (9) (9) (9) i (9) g )
& Ap.2 AyTs Ao e Ay my Ug2
Column Total no,2 ni,2 n2 2 ce T 2 No
Column Weights w2 w1 woo cen Wyo
Stratum 3
1 1 1
3 1 Al Al Al 0 m} w3
2 2 2
2 Aé’% A(l_g A;’% 0 md uas
- (9) (9) (9) i (9) g )
g Ao,z Atz Az T Ars m3 Ug3
Column Total no,3 n1,3 n2.3 cee N3 N3
Column Weights wo3 w13 wa3 ce w3
Stratum K
(1) (1) (1) (1) 1
) I B R NaeoTx e
2 2 2 2
2 AO,K Al,K A2,K AK,K MK U2K
(9) (9) (9) (9) g
g Aok Ak Ask T Ark MK UgK
Column Total no,K ni K na K cee Ny K Nk
Column Weights wo, K w1, K wo, K cee W K

Where Aff; = 0, whenever r > j.
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4.2 Reference Set

Denote the reference set for each stratum j as the set of all possible contingency
tables with fixed marginal column and row sums as the observed table sums for
treatment groups ¢ = 1,--- , g, cluster sizes j = 1, , K, where K is the maximum
cluster size in the experiment with responses » = 0, --- ,n. The reference set in the

Jth stratum is:

n

v = Yj ¢ y;is g X Kcontingency table; Z Aﬁ,yj =m’, Zg: Afw- =N,

The reference set across all the strata Caﬁztoherefore be ;zlloresented by the
Cartesian product of all reference sets from each of the j strata .

F=yxmy-xyx={Y:y€y,j=1--,K}

Thus Y is made of 7; stratums, j = 1,--- , K. Each Y can be seen as
K x (g x K) dimensional array.
4.3 Exact Linear Trend Test

The g rows of each stratum represent increasing doses of a drug and the K
distinctly ordered columns represent the progressively increasing responses. We wish
to investigate whether response increases with increasing dose. We consider a
general linear rank statistic 7', which detects departure from the null hypothesis of
no dose effect. T' is the sum of linear rank statistics across the K strata. The
asymptotic distribution of the standardized test statistic 7™ is the standard normal
distribution with mean and standard deviation of 0 and 1 respectively. The square
of the standard test statistic is also asymptotically distributed as a chi-square with
one degree of freedom. Suppose each response falls into one of the K categories of a
multinomial distribution, Let II} = (7, 7%, - - - , 7%, ) be the multinomial
probabilities along each row in stratum j for dose group 7. The null hypothesis for
stratum 7 can be written as

Hy 1 =10 = =11

and the hypothesis of trend as H? : T with at least one

IA
N
IA
A
p_%
s}
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strict inequality
n
where for each fixed stratum j ,j =1,--- , K )T} = 23071';7,.
r=

The linear trend test statistic is given by:

k=1 i=1 r=0

K K g n
T=)T=3 3 > wuyAl (4.1)
=1

where w, ; is the weight as]signed to the rth response within the jth stratum and
u;; is the weight assigned to the ith treatment group in the jth stratum. There exist
several possible choices of weights, with each choice resulting in a different test. The
weights can be chosen to make the test cluster size invariant or cluster size specific.
For cluster size invariant scores, define n; = f: n;k, thus the sum of response is
used in weight computation in each responsekgioup.
Theorem 4.3.1. Under the null hypothesis of no row by column interaction, for the

Jth stratum j =1,--- | K, the test statistic is T; as given in (4.1) has mean and

variance as:

g ‘ K
20 uigm; D WM

9 2
N LN N E :
7 1=1 =
S umt =SS | S gy — A
=1 r=0

N; N;

Var(T)) = ¥

Proof. : We give the proof 2 x 2 case. The g x K case follows as a natural

extension.

Table 13: Stratified Exact Linear Trend Test for 2 x 2 Tables

Treatment Response
0 1 | Row Total | Row Weights
0 Ak Aty mj) uj
1 Ao Al my, uj
Column Total N0,k N1k N
Column Weights Wo W1 g
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If each is treatment is fixed,the the number of 0 responses in treatment group 0,
A87  and the number of 0 responses in treatment group 1, Atl), , are independently
distributed as Binomial distributions B(m{, o) and B(mj, m19) respectively.

oo and 719 are probability of 0 response in treatment groups 0 and 1
respectively.

Let Af = Aj, + Ay and A} = A | + A, then under the null hypothesis that
Too = To1 = Ti0 = m11 = m and AF ~ B(Ny, 7) and AY ~ B(Ny, 7). The distribution

of each A7, stated in terms of A,

0 _ 0 0 _ 0 1 1 1 1 E_ ko Ak _ k
P(AO,k: = Qg k> Al,k = %,on,k = Qg 1, Al,k = al,k|H0a Ay = ag, A} = ay)
0 _ .0 0 _ 0 11 1 1
P(Ao,k = aO,k?Al,k = ay g Ao,k = Ay k> Al,k = al,k‘HO)

E_ k Ak _ k
P(AG = ag, AT = af)

0 1
m m
k 7Ta’8,k7rm(k):7a8,k: k Waé,kﬂ'mkiaé,k
al al
- 0,k 0,k
Ny k _ K
( . %0 (ﬂ-)Nk ag
a
0
0 1 0 0
(mk) (mk) (mk)(Nk_mk>
0 1 0 _ 0
Qo 1/ \Qok Ao/ \N0k — Qi

)

; 0
That is A% ~ Hypergeometric <a’(§, m,(co), m,i”). Hence E(A§,) = m;\;”o % and
’ ’ k
0 1
Var(Af,) = w. Let mgo = P(0 responses in dose group 0) and
’ NZ(N, —1)

mo1 = P(0 responses in dose group 1).
Under the null hypothesis that 7oy = w9 = 7 the conditional distribution of any
Table i, with counts A%, given row and column marginals has a hypergeometric

Ty

distribution with mean and variance given below:
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Var(A},,) = =

Ny — g,

mt (N, — mi)ng (N — ngx)  ming (Nk —mt

N2(Nj, — 1) Ne—1\ N,

_ om0 mi (] e
N -1 N Ny,

_ 1 i (mi)Z ”3k
TN -1 (mk N, )" TN,

Under the null hypothesis of no row by column interaction:
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9 .
1 g ) ;)u?k(miy K Zowrknrk
= Nk — 1 Zulkmk - Nk Zwrknrk Nk
1=0 r=0
g . 2 K 2
1 g <Z uzkm;g> K (Z wrk”rk)
_ 2 ) =0 2 r=0
=N -1 Zuikmk — N, Zwrknrk N
i= r=0
O
Ty = T — E(Th) asymp. N(0,1)
Var(Ty)

The standardized linear trend statistic 7} of each stratum k, is thus
asymptotically standard normal distribution with mean 0 and variance = 1. Hence,
the square of the standardized linear trend statistic 7} is asymptotic chi-squared

distribution with one degree of freedom.

Theorem 4.3.2. The asymptotic distribution of the statistic across k strata can be

summarized by the M? statistic.

-

(T}, — E(Ty))

M2

~ X (4.2)

M=

var(T})

=1

<
Il

Proof. -
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Let T be the sum of K independent random variables with a from each of K

strata

K
T=>Y T,
k=1
Then E(T') is the sum of expectations of K independent random variables with

hypergeometric distribution.

Then

For g x K tables without column ordering but with ordering of the rows, the
nonparametric Kruskal Wallis test and generalized one way ANOVA provide the
uniformly most powerful invariant, or UMP unbiased against the null hypothesis of
no column and row association. When the number of rows g = 2, the Kruskal Wallis
reduces to the Wilcoxon rank sum test. Both test are asymptotically chi-squared
with g — 1 degrees of freedom.

The Linear by Linear and Jonckheere-Terpstra test has the highest power for
doubly ordered g x K contingency tables. These test do well in detecting existence
of a progressive trend in the alternate hypothesis. The flexibility in arbitrarily
selecting scores, makes the linear by Linear test very powerful. A special case in
which the original observations are used in place of the weights u;; and w,; results
in a significance test for Pearson’s correlation coefficient. However, if the weights are

replaced by the mid-rank scores of the the observed data, Spearman correlation
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coefficient between the ordered responses and ordered treatment groups is obtained
[32]. A special case of the linear Trend statistic where there are only 2 dose groups
and K strata is the simple linear rank statistic:

T = éo wr AL

This test statistic 7} is also equal to the Spearman correlation between
treatment levels 0,1, --- , g and the Responses 0,1, --- , K in stratum k& multiplied
by /N, — 1. ([1];[5]). When the observed data are used as weights, then the linear
rank test is a significance test of the Pearson correlation coefficient. However, if the
ranks of the data are used then the result is a significance test of the Spearman
correlation coefficient [32].

Some of the commonly used linear rank weights are listed below:

e Wilcoxon Scores: The Wilcoxon scores are the ranks of the underlying

responses. Mid-ranks are used in the case of tied observations.

n;ir+1

Wy =Nogk + N1k + -+ Nj1x+ (i +1) J*’; )

—1 mj—i—l
uik—m%+m,1€—1—---—i-m§g + kz

In the special case where we have only two treatment groups, using the
Wilcoxon scores reduces to the rank sum and the Wilcoxon-Mann-Whitney

test statistic [5].

e Normal Scores: The normal scores are defined as the percentile of the

standard normal distribution.

1 o 1(
_ — J
Wy = Tk Z P <Ni+1)

j:Urfl,k'+1

Ws, ke
:m—( > @1(Nfﬂ)>

l=w; 1 p+1
where 'Uj,k =M1k + Na K + -+ ang’

wjr =my+mp+ -+ mi and @ («) is the 100ath percentile of the

standard normal distribution.

e Logrank Scores: The logrank scores are the same as the scores for Savage
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(exponential scores) when they is no censoring [34]. They are used for survival

data.

1 Vr k t L
Wrk = 5 > > <Ni_z+1> —1
’ t:’ljr_l’k-f—l =1

1 Wi,k 7 1
Wik = 51 > X (Nﬁlﬂ) —1
t:wi,17k+1 =1

where v, = nor +n1 5+ -+ N

Wi =My +my, + -+ mi

Equally Spaced Scores:

we = (1, , K)

ug = (L .g)

The Cohran-Armitage trend test is a special case of equally spaced scores

wj =7 —1and uw; =7 — 1 ; when there are only two treatment groups [34].

Exact Two-sided P-value Computation

Let Py be the exact probability distribution of each table Y in the reference set

I'. The distribution of the test statistic can be found empirically by limiting the

sample space of each table Y to the reference set I' and randomly permuting the

probability distribution Py a large number of times. Define the discrepancy measure

D as a real valued function D : I' = R mapping g x K tables in I' onto the real

number line R. An exact test is formed by ordering the tables in I' according to

some test statistic or discrepancy measure Dy . The discrepancy measure quantifies

the extent of deviation of a table Y € I' from the null hypothesis of no row by

column interaction. Various choices of D include the Linear Rank, Pearson,

Chi-Square, Fisher’s Exact and Likelihood Ratio test statistics. The p-value is

found as the sum of all null probabilities of all tables Y in I" which are at least as

extreme as the observed table X with respect to D .

p—Value = Z Py = PT[DY Z Dx]

Dx>Dx
Classical nonparametric methods rely on the large sample/asymptotic
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distribution of D such as chi-squared distribution to estimate the p-value. With the
increased computational power and efficient enumerating algorithms now available,
the exact distribution of D can be found and the p-value subsequently computed.
An adjustment for correcting the discreteness that arises in small samples
distributions is to make inferences based on the mid p-value (Lancaster 1961). This
adjustment reduces the ordinary p-value by half the probability of the observed
result. The mid p-value is found as:

mid P-value = %PT [Dy = Dx| + P,[Dy > Dx]|

(Classical non-parametric methods rely on the asymptotic distribution of D to
approximate the p-value. This approximation can be considerably different from the
exact distribution when presented with unbalanced or sparse data or data with a
small sample size. Mehta et al (1998) suggest that the main advantage of the exact
p-value over its asymptotic approximation is that it is guaranteed to bound the type

I error rate of the hypothesis testing procedure to any desired level [32].

Table 14: Size of Reference Sets (Mehta, Patel, Senchaudhuri, 1992)

Sample Size(N) Tables in Reference Set I'
20 1.8 x10°

30 1.5 x10%

40 1.4 <10

50 1.3 <104

100 1.0 x10%

Explicit enumeration of all the tables in the reference set I' would be
computationally expensive and infeasible for relatively large tables. An example of
the size of reference sets for different N values is given in Table 14. Mehta, Patel,
and Tsiatis (1984) developed a network algorithm that implicitly enumerates all
tables in the reference set by connecting a series of networks and nodes. Some of
these tables in the reference sets are also rather sparse and not likely to yield

accurate p-values. This is the motivation for the Monte Carlo approach. For all
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practical purposes, the Monte Carlo exact p-value is equivalent to the exact p-value
obtained by enumeration of all tables in the reference set. The expected value of the
Monte Carlo p-value is equal to that in which all tables are enumerated.
4.5 Application using Edge Data

The procedure was implemented using the Edge Toxicology Laboratory data
available in the R statistical programming language; the data was obtained from a
developmental toxicity experiment in which pregnant New Zealand white rabbits
exposed to ethylene glycol diethyl ether (EGDE). The effect of ethylene glycol
diethyl ether on their fetal development were then studied. In the study, four groups
of pregnant does were randomly assigned to dose levels 0,25, 50, and 100 milligrams
per kilogram body weight of EGDE. For each litter and at each dose level, the
adverse response used is the combined number of fetal malformation and fetal
death. The data are presented in Table 8. The frequency distribution of live fetuses
with malformations are grouped into cluster sizes ranging from 2 to 15. The data
appears to be relatively sparse with no indication that dose level has impact on
cluster size. From the table, for each fixed cluster size, frequency of malformations

appears to increase with increasing dose level.

4.5.1 Results

In Tables 15 and 16 we summarize the results of the tests of homogeneity of
response rates across all four treatment groups with the linear rank statistic as the
discrepancy measure D. The results for all four dose groups is displayed in Table 15
and individual comparison between dose group 0 and the remaining dose groups is
displayed in Table 16, where SO is the stochastic ordering test [46], RS is the
Rao-Scott linear trend test [38] and GEE is the Generalized Estimating Equation
[50]. The results indicate significant difference in response rates when all four dose
groups are considered together. There is significant difference between dose group

100 and the control group when pairwise hypothesis are considered. There is no
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significant difference between dose groups (0, 25) and (0,50). The estimates are
based on 10,000 random samples from the reference set I'. The distribution of the
test statistic displayed shows, the test statistic appears to be approximately
normally distributed with some discreteness at the peak of the histogram of the
sample. Each of the two sets of weights used (midranks and equal spacing) lead to
significant outcomes at 0.05 level. The asymptotic approximate distribution of the
test statistic using Wilcoxon weights and Equally spaced weights also resulted in
significant p-values. The Pearson Chi-Squared family of test statistics are
inapplicable because of the level of sparsity in the data. Many of the expected cell
frequencies are zero.

Hj MO =1}=... =TI

HI: T? < T} <---<TY  with at least one strict inequality

a

Table 15: EDGE Data, Dose groups (0, 25, 50, 100)

Weights P value Mid P-value  Asymptotic

Exact Exact P-value

Equal spacing 9.99 x 1076 5.0 x 1076 1.97 x 1078

Midranks 9.99 x 10~¢ 5.0 x 107¢ 9.6 x 1078

Table 16: First three columns from Aniko Szabo,2010

Dose SO RS GEE Exact Linear Trend
(Equally Spaced Weights)

0,25 0.116 0.536 0.610 0.485

0,50 0.014 0.150 0.272 0.259

0,100 < 0.001 2x1077 4x107! 5x 1076
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4.5.2 Application using 2,4,5-T Data

The 2,4,5-T Data was obtained from a study conducted at the National Center
for Toxicological Research, Food and Drug Administration [10]. Several strains of
mice were used in a multiplicative teratology experiment. About 100 pregnant mice
in each strain were daily exposed to ordered dose levels 0, 30, 60, 45, 60, 75 and 90
mg/kg of the herbicide 2,4,5-trichlorophenoxyacetic acid from day 6 to day 14 of
gestation. The number of fetal implantation sites, deaths, resorptions, cleft palate
malformations, and fetal weights of the live fetuses were recorded for each pregnant
female. The data from the experiment are summarized in Table 18. For each
pregnant mouse, s represents the number of implantation sites and ¢, the number of
combined endpoints, is the number of reabsorbed embryos or dead fetuses together
with the number of fetuses with cleft palate malformation. Table 18 gives the

frequency of each combination of s and t.
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Table 17: Frequency Distribution of the Number of Implant(s) and Number of Com-
bined Endpoints(t) Following Exposure to 2,4,5-T (Bowman and George 1995)

Birth Defects

Number of Tmplants

No. of live fetuses(s)
T

Dose t 3 5 [ 7 8 9 T0 1T 12 I3 12 15 16 17 I8 2T
0 0 T T T T 2 T 5 4 [ 7 2 2
1 1 2 1 7 6 5 2 1
2 1 1 5 3 1 1
3 1 1
4 1
30 0 1 2 2 1 2 4 8 2 3 2 1
1 1 1 2 8 4 5 5 2 2
2 2 2 1 1 2 1 2 1
3
4 1 1
5 1
6 1
7
8 1
15 1
45 0 1 1 1 1 1 8 3 1
1 1 1 1 1 3 2 4 3 1 1 1
2 1 1 1 5 4 3 2 1
3 1 2 3 1 1 1
4 1
5 1 1 1 3 1 1
6 1 2 3 1 1
7 1
8 1 1
9 1
10 1
11 1
12 2
13 2 1
14 1
18 1
60 0 1 1 1 3 1
1 2 2 4 2 1 1
2 1 1 1 4 1
3 2 1 3 1
4 1 1 2 1
5 2 2 1
6 1 1 1
7 1 1
8 2 1 2
9 1 2 1
10 5 1
11 2 1
12 3
13 2
14 2
75 0 1 1
1 1
2 2 2
3 1
4 1
5 2 1 1
7 1 1
8 1 1 1
9 3 1
10 1 1 1
11 4 2
12 3 4
13 3
14 2
15 1
90 0 1
1 1
3
4 1
6 1
7 1
10 4 2 1
11 2
12 6
13 2
14 2
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Table 19: Results of T-245 Data

Weights P value Mid P-value

Asymptotic
Exact(Monte Carlo) Exact(Monte Carlo) P-value
Midranks 0.000149985 0.0000999 < 0.000001
Equal spacing 0.000149985 0.0000999 < 0.000001
Exact Conditional Likelihood 0.000449955 0.00039996 —
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CHAPTER 5

FUTURE RESEARCH:ADJUSTING FOR MULTIPLICITY IN EXACT
TESTS

5.1 Introduction

Multiple testing occurs in the analysis of data when several hypotheses are
tested simultaneously. For example in genomics, one may be interested in
simultaneously testing thousands of hypotheses to determine which genes are
differentially expressed. In clinical trials, one may also be interested in
simultaneously comparing a control group with different levels of treatment groups.
In a single hypothesis test, a level of significance «, is chosen to control the type-I
error rate, otherwise known as a false positive. This is the probability of incorrectly
rejecting the null hypothesis. When multiple hypotheses are tested simultaneously
to make inference on a global hypothesis of interest, the probability of incorrectly
declaring significance when no effect exist, is greatly increased. Specifically, suppose
n independent hypotheses Hyyq, - - - , Hy, are tested each at a significance level «,
then the probability of incorrectly rejecting at least one null hypothesis is
1 — (1 — @)™ Thus, as n increases, the probability of type-I error increases and
tends to one. The probability of making at least one type-I error in a multiple test
is called a familywise error rate denoted FWER.
5.2 Application with EDGE Data

In a plan to explore the use of various procedures that adjust P — values in the
context of multiple exact test we have done a preliminary analysis of the EDGE
data. We simultaneously tested for trend between the control group(dose 0) and
other dose groups 25, 50 and 100. We implemented the exact linear trend test
procedure described in chapter 4 using the EDGE dataset. Table 20 shows the
unadjusted p-values. There is no significant difference between dose groups

(0,25), (0,50) and (25,50). In Table 21, the p-values are adjusted using the
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familywise error rate and false discovery rates aproaches for controlling type-I error
described earlier in this chapter. As expected the Bonferroni procedure is the most
conservative among all the procedures. The Familywise Error control procedures are
conservative in comparison to the False Discovery Pocedure. The exact linear trend
test detects significant diffrence between dose groups 0 and 100. There is no
significant difference between dose groups (0, 25) and (0, 50) even with multiple

adjustment correction.

Table 20: Raw p-values with equally spaced scores

Dose  p-value Mid p-value
0,25 0.5383462 0.49135
0,50 0.3055694 0.26335
0,100 9.999 x 10~° 5x 1075
25,50  0.3264674 0.27615

25,100 9.999 x 107° 5x107°
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5.3 Conclusion

In this dissertation, we have introduced an exact test for testing for trend using
binary and multinomial exchangeable data for developmental toxicity studies. Our
procedure generalized the well-known Fisher’s Exact test and the version for
correlated data introduced by Cocoran et al [12]. We implemented an exact
conditional test for exchangeable clustered binary data analogous to a generalized
Fisher’s exact test. We eliminate the nuisance parameters( in this case the
probabilities of response) by conditioning on joint sufficient statistics. Conditional
tests are known to be conservative, a test of Homogeneity of responses across
different treatment groups using the EDGE data of the exact test implemented here
compared with the Rao-Scott Homogeneity (asymptotic) test validates this belief.
We also implemented an exact linear rank test for correlated binary data. We have
conducted two simulation studies to demonstrate the performance of the exact
conditional test. The results from the two simulation studies are very close to each
other. The simulation study generating random values from the g-power model has
slightly larger p-values than that of the Lunn and Davis approach for any set of
fixed parameters. We have also shown that an exact linear trend test can be
simultaneously performed to test multiple hypotheses and the p-values accordingly
adjusted to control for multiplicity errors. Our future work will be to develop an
exact conditional stochastic trend test to capture trends which are not necessarily

linear like the one developed in this dissertation.
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APPENDIX A

COMPUTER PROGRAMMING CODES

Stratified Linear Exact Test

rm(list=1s())
library (CorrBin)
library (ved)
library (coin)

data (shelltox)

; #input data

data (egde)

edge <— egde +# rename dataset because of typo in the code

shell=(xtabs (Freq Trt+NResp+ClusterSize ,data=shelltox))

c=shell

c=xtabs (Freq Trt+NResp+ClusterSize , data=edge)

5 #e=c[c(1,2) ,,]

dim (c)

21 ### rank each stratum#HHH#

#### Wiloxon ranks of nij ,midranks for ties#HHH#

s midrankscores=function (¢){

d=matrix (0,dim(c¢) [1],dim(c) [2])
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30

31

32

33

49

60

61

d[1,] =0.5%(c[1,]+1 )

d[2,]=c[1,]4+0.5%(c[2,]+1)
for (i in 3:dim(c)[1]){
d[i,]=colSums(c[1l:(i-1),])+0.5%(c[i,]+1)
}
return (d)
}
TR AT
s . mid rank weights of the column sums

HHEHHHAHAHAHE in each stratum

v=midrankscores (apply (colSums(c) ,2,rank))

S L) ) ) L L
T eIy

##HHHE mid rank weights of the row sums

HHHHHAHAH# in each stratum

u=midrankscores (apply (apply (c,3 ,rowSums) ,2,rank))

multiply2=function (c¢,u,v) {

ts=array (0,c(dim(c)[1],dim(c)[2],dim(c)[3]))

for (k in 1:dim(c)[3]){
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63 ts|,,k]=t(ul,k]=*c[,,k])=*v[,k]

67 tss=sum(ts)

6s  return(list (tss))

73 tobs=multiply2 (c¢,u,v) [[1]]

7 ts=c ()
76 nsim=100000

77 for (j in 1l:nsim){

7o t=array (0,c(dim(c)[1],dim(c)[2],dim(c)[3]))

ss for (1 in l:dim(c)[3]){

85 t[,,i]=r2dtable (1, rowSums(c[,,i]), colSums(c[,,i]))[[1]]

_—
ss v=midrankscores (apply (colSums(t) ,2,rank))

89

90 u=midrankscores (apply (apply (t,3,rowSums) ,2,rank))
91

o2 ts[jl=multiply2(t,u,v)[[1]]

93

94
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os p.valuel=(length (((ts[ts>=tobs])))+1)/(nsim+1)

99 p.valuel

100

101

102 p.valuel+p.value2

103 #HE mid p—value FHHEHHHHHHHE

104 pval=0.5«(length (((ts[ts=tobs]))))/(nsim)+(length (((ts[ts>tobs]))))/(
nsim)

105 pval

106

107 # tobss=abs(tobs—mean(ts))

108 # tnn=abs (ts—mean(ts))

109 # twosidedpvalue=(length (((tnn[tobss<=tnn])))+1)/(nsim+1)

110 # twosidedpvalue

111 # midpvalue=(length (((tnn[tobss<=tnn]))))/(nsim)-+0.5*mean(tobss=—tnn)

112 # midpvalue

113 # cbind (tobss , tnn)

114 # which (tobss=—=tnn)

115 #hist (ts, breaks="fd”, col="gray” ,main="Distribution of test statistics
using midranks 7 ,xlab="" prob=TRUE, ylab="P(T=t)")

116 #abline (v =tobs, col="blue”)

117 #box (lty = ’solid 7, col = ’black’)

118

119 #png (7~ /Documents/ memphisclassesbooks /RESEARCH/ Trend /w.png”)

120 #hist (ts, breaks="fd”, col="gray” ,main=" ” xlab="" prob=TRUE, ylab="P(T=t
)7)

121 #abline (v =tobs, col="blue”)

122 #box (lty = ’solid 7, col = ’black’)

123 #dev . off () ;

124
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128
129
130
131
132
133
131 x=(apply (colSums (c¢) ,2,rank))

5 r=(apply (apply(c¢,3 ,rowSums) ,2,rank))

1:

w

156 T[1,]=0.5%(r[1,]+1)

7 r[2,]=r[1,]+0.5%(r[2,]4+1)

138

130 ### Wiloxon ranks of nij ,midranks for ties#HHH#

140

midrankscores=function (x){
142

35 d=matrix (0,dim(x) [1] ,dim(x) [2])

1

144
145 d[1,] =0.5x%(x[1,]4+1 )
146

147 d[2,]=x[1,]4+0.5%(x[2,]+1)

149 for (i in 3:dim(x)[1]){

152 d[i,]=colSums(x[1:(i-1),])+0.5%(x[i,]+1)

155 }

156 return(d)
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1 //,///,/,/////////////,/,///,/,///,/,// ////
60 FHAHAH 17

161 #H#H#H#H#  mid rank weights of the column sums
162 HHHHHHHHAE in each stratum

163

164 v=midrankscores (apply (colSums(c¢) ,2,rank))
165

166 S ) ) L L
OO T AT T T T i i1

167 #EHHE  mid rank weights of the row sums
168 HHHHHHFHHH in each stratus

169

170 r=(apply (apply (c,3 ,rowSums) ,2 ,rank))

171 u=matrix (0,dim(r)[1],dim(r)[2])

12 u[l,]=0.5%(r[1,]+1)

s u[2,]=r[1,]+0.5%(r[2,]+1)

170 multiply2=function (c,u,v) {

150 ts=array (0,c(dim(c)[1],dim(c)[2],dim(c)[3]))
181

152 for (k in 1:dim(c)[3]){

183

184 ts|,,k]=t(ul,k]=*c[,,k])=*v[,k]

186 }
187
155 tss=sum(ts)

1o return(list (tss))

190 }
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191
192

193

194 tobs=multiply2 (c,u,v) [[1]]

195

196 ts=c ()

197 nsim=1000

108 for (j in 1l:nsim){

199

200 t=array (0,c(dim(c)[1],dim(c)[2],dim(c)[3]))
201

202

203

200 for (i in 1:dim(c¢)[3]){

206 t[,,i]=r2dtable (1, rowSums(c[,,i]), colSums(c[,,i]))[[1]]

200 v=midrankscores (apply (colSums(t) ,2,rank))
210

211

212 r=(apply (apply (t,3 ,rowSums) ,2,rank))

213 u=matrix (0,dim(r) [1],dim(r)[2])

214 u[l,]=0.5%(r[1,]+1)

215 ul2,]=r[1,]40.5%(r[2,]+1)

216

217

215 ts[j]l=multiply2 (t,u,v) [[1]]
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224 p.valuel=(length (((ts[ts>=tobs])))+1)/(nsim+1)
225 p.valuel

226

220 #HHF mid p—value HHHHHHHHHH
230 pval=0.5%(length (((ts[ts=tobs]))))/(nsim)+(length (((ts[ts>tobs]))))/(
nsim)

231 pval

1 rm(list=ls ())

2 library (CorrBin)

w

library (ved)
4 library (coin)

data(shelltox)

w

6 shelltox=shelltox

~

head(shelltox)
s #input data
o data(egde)

10 edge <— egde # rename dataset because of typo in the code

12 shell=(xtabs (Freq Trt+NResp+ClusterSize ,data=shelltox))

11 shelll=(xtabs (Freq Trt+NResp+ClusterSize ,data=shelltox))[c(1,4) ,,]

17 c=shell

15 c=xtabs (Freq Trt+NResp+ClusterSize , data=edge)

19 #e=c[c(1,2) ,,]

20 HHHHEHHHHEHHAHCochran—Armitage Trend Test w=j—1#HH#

21

22 #HHHE rank of columns #H#

23
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21 v=seq (1,dim(c)[2],1)-1

25 u=seq (1,dim(c)[1],1)-1

26

27

28 ## observed test statistic

20 tobs=apply (u*c,3, function (x) t(x))*v

30 tobs=apply (tobs,1,sum)

31 sum(tobs)

s2 tob=(apply ((apply (uxc,3,function(x) t(x))*v),2,sum))
33 sum (tob)

31 multiply3=function (c,u,v) {

35 ts=array (0,c(dim(c)[1],dim(c)[2],dim(c)[3]))
36

37 for (k in 1:dim(c)[3]){

39 ts[,,kj=t(u],k]=*c[,,k])=*v[, k]

41 }

43 tSSZ(tS)

11 return(list (tss))

51 HHHHEHEAHHHAHA symptotic pvalue of Linear by Linear Association Test#HHHHHH
52 HHHARARAHA u=0,1,2,3 and v=0,1,2,3,4,5,6

53 n=colSums (c¢)

52 m=apply (¢,3 ,rowSums)
55 n=apply (c¢,3,colSums)

56 N=apply (c,3 ,sum)
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55 vi=matrix (v,dim(c) [2],dim(c¢) [3])

60 ul=matrix (u,dim(c) [1],dim(c) [3])
61
62

tobs=apply (multiply3 (c,ul,vl)[[1]],3 ,sum)

6:

w

62 sum(tobs)

55 mean=colSums (ul*m)*colSums (vl*n) /N

66 sum (mean )

7 var=((colSums ((ul"2)*m)—(colSums (ulsm) "2) /N)x*(colSums (vl 2*n)—(colSums (

vlsn)"2)/N))/N

70 tstar=(sum(tobs—mean) "2) /sum(var)

72 pchisq(tstar, df=1, ncp = 0, lower.tail = F, log.p = FALSE)

73 pchisq(tstar, df=1, ncp = 0, lower.tail = T, log.p = FALSE)

75 1—pchisq (tstar , df=1, ncp = 0, lower.tail =T, log.p = FALSE)

- JL ) ) g ) ) g ) L) L
8 T T T iy

70 HHAAHE Wilcoxon  scorestRRRARRHHHATH

n=colSums (c)

o0

s2 m=apply (¢,3 ,rowSums)
ss n=apply (c¢,3,colSums)
sa N=apply (c,3 ,sum)

85

86

midrankscores=function (c){

4]
~
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90



so d=matrix (0,dim(c)[1],dim(c) [2])
90

o d[1,] =0.5%(c[1,]+1 )

92

o3 d[2,]=c[1,]4+0.5%(c[2,]+1)

94

o5 for (i in 3:dim(c)[1]){

96

o7

98 d[i,]=colSums(c[1l:(i-1),])+0.5%(c[i,]+1)
99

100

o

102 return(d)

103}

104

105

16 multiply3=function (c,u,v) {

7 ts=array (0,c(dim(c) [1],dim(c)[2],dim(c)[3]))
108

o for (k in 1:dim(c)[3]){

110

111 ts[,,k]l=t (u[,k]=*c[,,k])=*v][, k]
112

ns o}

114

115 tss=(ts)

116 return(list (tss))

)

118

119

120
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125 vl=midrankscores (apply (colSums(c) ,2,rank))

125 ul=midrankscores (apply (apply (¢,3 ,rowSums) ,2,rank))

127 tobs=apply (multiply3 (c¢,ul,vl)[[1]],3 ,sum)

120 mean=colSums (ul#m)*colSums(vl*n) /N

132 var=((colSums ((ul "2)*m)—(colSums (ul+m) "2) /N)* (colSums (vl 2xn)—(colSums (

vlsn)"2)/N))/N

137 tstar=sum(tobs—mean) "2 /sum(var)

130 pchisq(tstar , df=1, ncp = 0, lower.tail = F, log.p = FALSE)

140
141 pchisq(tstar, df=1, ncp = 0, lower.tail =T, log.p = FALSE)
Simulation of Correlated Binary Data
1 set.seed (148)
2 N<—30

3 meanlambda<—5
1 p=.8

5 q=.1

9 F#generating observed variable in a cluster
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10

n<—rep (0,N) #size of clusters

11

r<—rep (0,N) #response type one

12

13

n[i]<—rpois(1,meanlambda)

Zl<—rbinom (1,1 ,p)

18

19

for (j in 1:n[i]){

20

Yl<—rbinom (1,1,p)

21

22

23

U<—rbinom (1,1 ,q)

24

x<—(1-U)*Y1+UxZ1

(x==0) r[i]<—r[i]+1

if

obsl<—cbind (r,n)

29

30

31

36

38

39

40

LYy gy gy gy gy gy g gy g gy gy gy gy gy g gy gy gy gy g gy gy gy gy g gy g gy g gy gy g g

T T e T ey

a cluster

in

##generating observed variable

42
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48

49

50

60

61

62

63

64

#set .seed (148)

N=100

n<—rep (0,N) #size of clusters
r<—rep (0,N) #response type one

treatment=rep (0,N)

for (i in 1:N){

#n[i]<—rpois(1,meanlambda)
n[i]=sample(seq(1,3))

Zl<—rbinom (1,1 ,p)

p= runif(n=1, min = 0, max =

q=2%p

if(q <=0.25){
treatment [i] <— 0
} else if(q >0.25& q <=0.6){

treatment [i] <— 50

telse {

treatment [1] <— 100

x=c ()
for (j in 1l:n[i]){
Yl<—rbinom (1,1 ,p)

0.5)
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78

80

81

83

84

86

87

88

89

90

92

3

94

96

97

98

99

100

101

102

103

104

105

106

107

108

U<—rbinom (1,1,q)
x[j]<—(1-U) «Y14+UxZ1
r[i]<—sum(x)
obs<—data.frame (treatment ,r,n)
obs
d= xtabs( r4nttreatment ,data=obs)
d
apply (d,3 ,sum)
c=xtabs( r+treatment+n, data=obs)
c=array (d[,,1],c(4,3,2))
S L) ) L ) g ) ) L
T T i i i i e
##generating observed variable in a cluster

#set .seed (148)
N=100
n<—rep (0,N) #size of clusters

r<—rep (0,N) #response type one
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109

110

111

112

113

114

115

116

117

119

120

121

123

124

S

126

128

129

130

131

132

133

135

136

138

139

140

141

treatment=rep (0,N)

meanlambda=3

for (i in 1:N){

nli]<—rpois(1,meanlambda)
#n|[i]=sample(seq(1,3))

Zl<—rbinom (1,1 ,p)

p= runif(n=1, min = 0, max =

q=2%p

if(q <=0.25){
treatment [i] <— 0
b oelse if(q >0.25& q <=0.6){

treatment [1] <— 50

telse {

treatment [1] <— 100

x=c ()
for (j in 1:n[i]){
Yi<—rbinom (1,1,p)

U<—rbinom (1,1 ,q)

0.5)
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142 x[j]<—(1-U)«Y14+UxZ1

143

144

145}

146 r[i]<—sum(x)

117 obs<—data.frame (treatment ,r,n)

148 }
149

150

152 obs

151 d= xtabs( r4nttreatment ,data=obs)

155 d

156 apply (d,3 ,sum)

150 c=xtabs( r+treatment+n,data=obs)

160 C

162 N<—=30

163 meanlambda<—5

164 p=.8
165 q=.1
166

167 niter<—100

165 LAMBDA=matrix (0, niter ,6)

172 #

173 #  ##generating observed variable in a cluster

17a # N=100
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175 #  n<—rep (0,N) #size of clusters
176 F# r<—rep (0,N) #response type one
177 # Treatment=rep (0,N)

178 #  Frequency=rep (0,N)

179 # meanlambda=1

180 # p=0.2

181 # q=0.5
182 # for (i in 1:N){

183 # r[i]<=0

184 f

185 # #n[i]<—rpois (1,meanlambda)
186 # n[i]<—sample(1:5,1,replace=T)
187 # Zl<—rbinom (1,1 ,p)

188 #

189 # for (j in 1:n[i]){

190 F# Yl<—rbinom (1,1 ,p)

101 7

102 FF

193 # U<—rbinom (1,1 ,q)

104 # x<—(1-U) *Y1+UxZ1

195 # if (x==0) r[i]<—r[i]+1
196 FF

107 # }

108 # Frequency= sample (0:5,N, replace=T)
100 ## obsl<—cbind (r,n, Frequency)
200 #}

201 #

202 #

203 #

204 # cl=xtabs (Frequency r+n, data=obs2)
205 #  #Hcl=xtabs( r+n,data=obsl)

206 F cl

207 #
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208 #

s AL
- T Ty

210 #  #Hgenerating observed variable in a cluster
211 # N=100

212 #  n<—rep(0,N) #size of clusters

213 #  r<—rep (0,N) #response type one

214 #  Treatment=rep (0,N)

215 #  Frequency=rep (0,N)

216 #  sample (0:1,N, replace=T)

217 # meanlambda=1

218 F# p=0.2
210 #  q=0.5
20 #  x=c()

221 # for (i in 1:N){
222 F# #r[i]<=0
223 # r=c ()

224 # # nli]<—rpois(1,meanlambda)

225 # n[i]<—sample(1:5,1,replace=T)
226 #

207 # Zl<—rbinom (1,1 ,p)

228 #

229 # for (j in 1:n[i]){

230 # Yl<—rbinom (1,1,p)

231 #

232 #

233 # U<—rbinom (1,1 ,q)

234 #

25 # x[j]<—(1-U) *Y14UsZ1

236 # #if (x==0) r[i]<-r[i]+1
237 #

238 #

239 # }

210 # r[i]=sum(x)
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241 F
212 #
243 #
245 #
216 #
247 #
249 #
250 #
251 H#
252

253 QA

255

Frequency= sample (0:5 N, replace=T)

obs2<—cbind (r,n, Frequency)

c2= xtabs(Frequency r+n, data=obs2)
#c2=xtabs ( r4n, data=obs2)

c2

c= array(c(cl,c2),c(dim(c2)[1],dim(c2)[2],2))

C

pply (¢,3, fisher.test (c,B=2000,workspace=2e+10))

a=matrix (0,2,2)

256 b=matrix(c(1,2,3,4),2,2)

260

261

262

263

264

265

266

267

268

array (c(a,b),c(2,2,2))

set.seed (3486)

library (CorrBin)

library (lattice)

ss <— expand.grid (Trt=0:2, ClusterSize=1:10, Freq=5)
#Trt is converted to a factor

rd <— ran.CBData(ss, p.gen.fun=function(g) 0.24+0.1xg)
rd <— ran.CBData(ss, p.gen.fun=function(g) 0.1xg)

rd

c=xtabs (Freq Trt+NResp+ClusterSize , data=rd)

ss$ClusterSize [1]

cs <— ss$ClusterSize[1]
trt <— unclass(ss$Trt) [1]
n <— ss$Freq[1]

p <— p.gen.fun(trt)
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274 rtho <— rho.gen.fun(trt)

275 probs <— pdf.fun(p, rho, cs)

277 rl= rmultinom (1,size = 17, prob = ¢(0.7,0.7,0.7,0.7,0.7))

o7 r2=rmultinom (1, size = 10, prob = ¢(0.5,0.5,0.5,0.5,0.5))

279 r3=rmultinom (1, size = 10, prob = ¢(0.1,0.1,0.1,0.1,0.1))

280 apply (¢bind (rl,r2,r3) ,2,sum)

251 pr <— ¢(1,3,6,10) # normalization not necessary for generation

252 rmultinom (10, 20, prob = pr)

25 tm(list=ls ())
256 #tset .seed (148)
287 N<—50

288 meanlambda<—10

290 q=.
291 n=c
2902 zZ=C
293 X=C

3
(
(
(
294 y=c (
(
(
(
(

205 U=C
206 I=C

207 s=c

208 C=C

200 for (j in 1:N){

300 y<—rbinom (1,1,p)

301 u<—rbinom (1,1,p)

302 n[j]=rpois (1,meanlambda)

303 #n[j]= sample(1:10,1,replace=T)
304 #e=NULL

305 g=c ()

306

101



307 for(i in 1:n[j]){

S0 z<—rbinom (1,1 ,p)
400 x =(1—u) *xytuxz
310

311 g=c(g,x)

a1 r[j] =sum(g)

213 c[j]=length(g)
314 }

315

a6}

317

315 obsl=cbind (r=r ,n=c, t=rep (1,length(r)))
319

320  F#xtabs( r4n, data=obsl)

321 p=.

322 q=.3

324 Z=C
325 X=C
326 y=c

(
(
(
(
327 u=c (
(
(
(

328 T=C

329 S=cC

330  c=c

331 for (j in 1:N){

332 y<—rbinom (1,1 ,p)

333 u<—rbinom (1,1,p)

334 n[j]=rpois (1, meanlambda)
335 #n[j]= sample(1:10,1,replace=T)
- #g-NULL

337 g=c()

338

339 for(i in 1:n[j]){
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340 z<—rbinom (1,1 ,p)

341 x =(1—u) sy+tuxz

343 g=c(g,x)
344 r[j] =sum(g)

345 C[J]:l()l'lgth(g)

349

350  obs2=cbind (r=r ,n=c, t=rep (2,length(r)))

352 obs= rbind (obsl ,obs2)

351 c= xtabs( t+r+n, data=obs)

355 C

359
360
361
362
363 s.pvalue=c ()

364 for (i in 1:10) {

365 N<—50

366 meanlambda<—10
367 pl=.1

368 ql=.3

369 n=c

370 zZ=C
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373 u=c ()

374 r=c ()

375 s=c ()

376 c=c ()

377 for (j in 1:N){

378 y<—rbinom (1,1 ,pl)
379 u<—rbinom (1,1 ,pl)
380 n[j]=rpois (1, meanlambda)
381

w g=c()

383

384 for(i in 1:n[j]){
385 z<—rbinom (1,1 ,pl)
386 x =(1—u) *xytuxz
387

g=c(g,%)

389 r[j] =sum(g)

390 c[j]=length(g)
391 }

392

so3}

394

395 obsl=cbind (r=r ,n=c, t=rep (1,length(r)))

396

397 p2=.5
398 q2=.3
399 n=c

400 zZ=C

401 X=C

403 u=c

404 r=cC

0
0
0
w02 y=c()
0
0
0

405 S=C
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406 c=c ()

407 for (j in 1:N){

408 y<—rbinom (1,1 ,p2)

409 u<—rbinom (1,1 ,p2)

410 n[j]=rpois (1,meanlambda)
a11

w g=()

413

414 for(i in 1:n[j]){

415 z<—rbinom (1,1 ,p2)

416 x =(1—u) =xy+tuxz

417

118 g=c(g,x)

419 r[j] =sum(g)

420 c[j]=length(g)
)

422

23}

424

425 obs2=cbind (r=r ,n=c, t=rep (2,length(r)))
426

427 obs= rbind (obsl,obs2)
428

429 c¢c= xtabs( t+r+n, data=obs)

430 c
431

432 s.pvalue[i]=Homogeneity (¢, nsim=1000)
133}

434

135 s.pvalue
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439

440

441

442

443

446

447

448

449

460

461

462

464

465

466

467

469

470

471

ko)
I
ot

N
I
o

rm( list=1s())

genfunc=function (p,q, meanlambda ,N){

#

# N<—=30

# meanlambda<—5
# p=.8

# q=.1

##generating observed variable in a cluster

n<—rep (0,N) #size of clusters

r<—rep (0,N) #response type one

n[i]<—rpois (1,meanlambda)

Zl<—rbinom (1,1 ,p)

for (j in 1l:n[i]){
Yl<—rbinom (1,1 ,p)
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472 U<—rbinom (1,1 ,q)
473 X<—(1—U) *Y1+UxZ1
474 if (x==0) r[i]<—r[i]+1

476 }

477 obsl<—cbind (r,n)

480
481
482 obsl1
483

as1 return (obsl)

188
1so genfunc(p=0.1,q=0.2 ,meanlambda=>5,N=30)

490

191 obsl=cbind (genfunc (p=0.1,q=0.2 ,meanlambda=5N=30) , Trt=rep (1 ,N=30))
192 obs2=cbind (genfunc (p=0.1,q=0.2,meanlambda=5N=30) , Trt=rep (2 ,N=30))
493

494

195

16 obs= data.frame(rbind (obsl, obs2))

497

105 c= xtabs( Trt+r+n, data=obs)

499 C

500

501

502

503

504
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506 s.pvalue=c ()

so0s for (i in 1:1000){

509

510 obsl=cbind (genfunc (p=0.1,q=0.9 ,meanlambda=10,N=50) , Trt=rep (1 ,N=50))
511 obs2=cbind (genfunc (p=0.9,q=0.9,meanlambda=10,N=50) , Trt=rep (2 ,N=50))

515 obs= data.frame(rbind (obsl,obs2))

516

517 c= xtabs( Trt+r+n, data=obs)

518

519

520

521 s.pvalue[i]=Homogeneity (¢, nsim=1000)
522

523 avg.pvalue=mean(s.pvalue)

524}

525 avg.pvalue

Simulation of Correlated Binary Data by Inverse Transform of the g-power

Distribution

rm( list=1s())
2 library (CorrBin)

» data(egde)

edge <— egde
data(shelltox)

w

~
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10 #HHHHH# Generate random variaavles R with the

JL L) g gy ) gy ) g ) ) ) g g g g g g g g gy ) g g g g g gy ) g g ) ) g ) g g ) ) ) ) ) )

T A A i i i i i i i i1t

distribution

11 #EEEHEHAHE Inverse transform method from the logistic

JY gL gy g g g gy g ) gy ) ) ) g ) ) g ) g ) ) ) ) ) ) ) )

T A A i i i i i i i i i i i i i it

12

13 betal=0.4553394;

=0.0042140;

14 beta2

dose=c (0,25)

15

=4.9568

16 #betal

17 #beta2=-5.54101

betal+beta2x(dose/100);

1s #beta

betal+beta2x*(dose);

19 beta

20

21 logistic.pdf<—function (n,beta){

c()
for(r in 0:n){

V=

22

23

24

k =0:(n—r)

26

choose (n,r)*sum((—1) kxchoose (n—r ,k)*(2/(1+exp ((beta)*log(r

v[r+1]

27

+k+1)))))

28

29

pmax (pmin(v,1) ,0)

v =

30

return (v)

31

33

34

¢();c=cumsum(logistic.pdf(n,beta)); return(c)

cdf=function (n, beta){c

35

36
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7

38

39

40

42

43

60

61

62

63

64

69

cdf(50,2)

generate.r=function (beta ,n){

c=c(0,cdf(n,beta));

u=runif (1);

for (i in 2:length(c)){
if( (w=c[i-1)&(u<c[i]) ){
r=(i—-2)

}

return (list (n=n,r=r,u=u))

)

generate.r(beta=beta [1],n=5)

generate.r(beta=beta[2] ,n=5)

s.pvalue=c ()

for (i in 1:100){

n=50

sl=sapply (rpois(n,lambda = 5),generate.rq,p=0.1,rho=0.3)

s2=sapply (rpois(n,lambda = 5),generate.rq,p=0.1,rho=0.3)

obsl=cbind (r=unlist (s1[2,]) ,n=unlist (s1[1,]),Trt=rep(1,n))
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70 obs2=cbind (r=unlist (82[2,]) ,n=unlist (s2[1,]),Trt=rep(2,n))

72

75 obs= data.frame(rbind (obsl, obs2))

75 ¢= xtabs( Trt+r4n, data=obs)

so s.pvalue[i]=Homogeneity (¢, nsim=1000)

s2 avg.pvalue=mean(s.pvalue)

83 }

sa avg.pvalue

86

N N N N N NI NI eIy
T T T T T T T T T ey

ss #HHHHHAHE Generate random variaavles R with the

90
91 gqpower _pdf <— function (p, rho, n){

92 q <— 1-p

93 gamma <— log2(log(q 2+rhox*xqx(1—q))/log(q))

94 pr <— numeric(n+1)

o5 for (r in 0:n){

96 k <— 0O:r

o7 pr{r+1] <— choose(n,r) * sum( (—1)"k * choose(r,k) * q " ((n—r+k)"

gamma) )
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98
99
100
101 }
102
103

104

}

pr <— pmax(pmin(pr,1),0) #to account for numerical

pr

imprecision

105 cdfg=function (p, rho, n){c=c() ;c=cumsum(qpower_pdf(p,rho,n)); return(c)

106

}

17 generate.rq=function (p, rho, n){

108
109
110
111
112
113

114

116
117
118
119

120

121 }

123
124 #
125 #
126 #
127 #
128 #
129 #

¢=c(0,cdfq(p, rho, n));

u=runif(1);

for (i in 2:length(c)){
if( (w=cli-1])&(u<c[i]) )
r=(i-2)

}

return (list (n=n,r=r,u=u))

generate.rq(p=0.9,rho=0.9 ,n=5)
cdfq(p=0.9,rho=0.9,n=8)

sapply (rpois (n=5,lambda = 5),generate.rq,p=0.1,rho=-0.9)

p=0.9
q=0.1
rho=0.9



130

131

134

135

136

137

138

140

141

142

143

144

146

147

148

149

150

160

161

162

# log2(log(q 2+rhoxq*(1—q))/log(q))

s.pvalue=c ()

for (i in 1:1000){

n=>50
sl=sapply (rpois(n,lambda = 5),generate.rq,p=0.1,rho=0.9)

s2=sapply (rpois(n,lambda = 5),generate.rq,p=0.9,rho=0.9)

obsl=cbind (r=unlist (s1[2,]) ,n=unlist (s1[1,]),Trt=rep(1,n))

5 obs2=cbind (r=unlist (82[2,]) ,n=unlist (s2[1,]),Trt=rep(2,n))

obs= data.frame (rbind (obsl,obs2))

c= xtabs( Trt+r+n, data=obs)

55 s.pvalue [ i]=Homogeneity (¢ ,nsim=1000)

- avg.pvalue=mean(s.pvalue)

)

avg.pvalue
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164
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167 #HHHHH#H Generate random variaavles R with the

JJ J ) g g) g ) gy g g ) g g g g g g g g g g g g g g g g g g g ) ) g g ) ) g g ) g ) )

168 #HHHHHHH Inverse transform method from the Beta—Binomial distribution

J) L g) g gy gy gy gy ) g ) g ) g ) g g ) g g g ) ) g ) )

T T T Ty

169

170

171 betabin _pdf <— function(p, rho, n){

a <— px(1/rho—1)

172

b <— (1-p)*(1/rho—1)

173

O:n

k <

174

pr <— choose(n, k)xbeta(at+k, b+n—k)/beta(a,b)

175

176

return (pr)

177

179

150 betabin _pdf(0.2,.3,5)

181

¢ () ; c=cumsum (betabin _pdf(p,rho,n)); return(c

function (p, rho, n){c

152 cdfbb

0.3,n=8)

=0.2,rho

153 ¢dfbb (p

184

function (p, rho, n){

generate.rbb=

185

186

c¢(0,cdfq(p, rho, n));

187

runif(1);

u=

188

189

(i in 2:length(c)){

for

190
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191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

H( (w=ci-1])&(u<c[i]) )]
r=(i—2)

}

return (list (n=n,r=r,u=u))

generate.rbb(p=0.2,rho=0.3,n=_8)

s.pvalue=c()

for (i in 1:100){

n=>50
sl=sapply(rpois(n,lambda = 5),generate.rbb,p=0.1,rho=0.3)

s2=sapply (rpois(n,lambda = 5),generate.rbb ,p=0.1,rho=0.3)

obsl=chind (r=unlist (s1[2,]) ,n=unlist (s1[1,]),Trt=rep(1l,n))

obs2=cbind (r=unlist (s2[2,]) ,n=unlist (s2[1,]),Trt=rep(2,n))

obs= data.frame(rbind (obsl, obs2))

c= xtabs( Trt+r+n, data=obs)
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225

1000)

Homogeneity (¢ ,nsim

s.pvalue [1i]

226

227

avg.pvalue=mean(s.pvalue)

228

229 }

230 avg.pvalue

231

232

233 #

T T T T T T T T T T T Ty

correlation

intracluster

of

281 FHHHARAF Plots

JL L) gy gy ) gy g g ) g g g ) gy g gy ) g g ) ) g ) g g ) g ) g g ) ) g ) g g ) ) ) ) g ) )

T A A A A A A A A A A A A A

10
@

JL L) g gy ) gy gy g gy ) g ) g ) ) ) g ) g ) ) ) ) ) L) ) )

T T eIy

236

237

,0.5005315)

,0.5035944

(0.4948332

—C

238

¢(0.3,0.6,0.9)

239 I'hO

210 plot (rho,p)

Multiple Testing

¢(0.1,0.05,0.01,0.001)

1 alpha

100

2 N=

3 s=seq(1l,n,1)

1—(1-0.1)"s

1+ pl

1—-(1-0.05)"s

p2=

10

1-(1-0.01)"s

6 p3

1—(1-0.001)"s

7 pd=

" blue” ,pch=2)

col

2,

o plot (s, pl, lwd
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0 lines (s, p2, type="1", lwd=2, col="red”)
1 lines (s, p3, type="1", lwd=2, col="green”)
12 lines (s, p4, type="17, lwd=2, col="pink”)
13 # set up graph

14 xrange <— range(s)

15 yrange <— round(range(p))

16 colors <— rainbow (length (alpha))

17 p=cbind (pl,p2,p3,p4)

18

10 plot (xrange, yrange, type="n”",

20 xlab="s" ,

21 ylab="P(at least one Type I Error)”)
22 #panel. first=grid ()

23 # add power curves

24 opts — C(”p”,”l”7770” ,’7b7’)

o7 for (i in 1:length (alpha)){

28 lines (s, p[,i], type=opts[i], lwd=1, col=colors[i],cex=0.5)

s1 # add annotation (grid lines , title , legend)

32 abline (v=0, h=seq (0,yrange[2],0.10), lty=2, col="grey89”)

33 abline (h=0, v=seq(0,xrange[2],10), lty=2,

34 col="grey89")

35 title (”Graph of different type—I error rates levels\n”)

36 #legend (7 topright” ;1 ,alpha, title="alpha”, opts)

s7 legend (xrange [1], yrange[2], alpha, cex=0.8, col=colors,

38 pch=plotchar , lty=linetype, title="alpha”)

39

10 #png(” ~/Documents/memphisclassesbooks /RESEARCH/ Trend /mult . png”)
11 #matplot (s,p, pch=c(15,16,17,20),col = rainbow (4) ,ylab="P(at least one

Type I Error)”,xlab="n", lwd=1,cex=0.5,1ty=174")

117



)

linetype <— c¢(1l:length(alpha))
plotchar <— seq(17,17+1length (alpha)—1,1)

y OptS — C(”p””’1”7”0”,”]3”)

matplot (s,p,lwd=1,1ty=linetype ,col = colors ,pch=plotchar ,type=opts, cex

=0.6,xlab="s" ylab="P(at least one Type I Error)”)

; # add a legend

title ("Graph of different type—I error rates levels”, ””)
# add a legend
legend (xrange [1], yrange[2], alpha, cex=0.8, col=colors,

pch=plotchar , lty=linetype, title="alpha”)

# add annotation (grid lines, title, legend)
abline (v=0, h=seq(0,yrange[2],0.10), lty=2, col="grey89”)
abline (h=0, v=seq(0,xrange[2],10), lty=2,

col="grey89")

box(lty = ’solid’, col = ’black’)

#png (” 7 /Documents/memphisclassesbooks /RESEARCH/ Trend /mult . png”)
#x11 ()
getwd ()
png (”C: /Users/Guccil48 /Desktop/Trend /mult.png”)
colors <— rainbow (length (alpha))
linetype <— c¢(1:length (alpha))
plotchar <— seq(17:20)
opts = c¢("b”,7p”,"17 ,70")
plot (xrange, yrange,
xlab="5" ,

ylab="P(at least one Type I Error)”)
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74

75

76

77

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

98

99

100

101

102

103

# Plot solid circles with solid lines

points (s, pl, type=opts[1l], pch=plotchar[1l],lwd=1,cex=0.5,col=colors[1])

# Add open squares with dashed line, with heavier line width

points (s, p2, type=opts[2], pch=plotchar[2], Ilty=2, lwd=1,cex=0.5,col=
colors [2])

points (s, p3, type=opts[3], pch=plotchar 3], # Diamond shape
lty="dotted”, cex=0.5, col=colors[3] |, # Dotted line
double—size shapes

lwd=1)

points (s, p4, type=opts[4], pch=plotchar[4], lty=2, lwd=1,cex=0.5,col=
colors [4])

#legend (” topright”, 8, alpha, fill = rainbow (4))

# add annotation (grid lines, title , legend)

# add a title and subtitle

title (”Graph of various type—I error rates 7, "Number of Test”)
# add a legend

legend (xrange[1] —0.5, yrange[2], alpha, cex=0.8,

pch=plotchar , lty=linetype, title=expression (alpha),col=colors)
abline (v=0, h=seq(0,yrange[2],0.10), lty=2, col="grey897)
abline (h=0, v=seq(0,xrange[2],10), lty=2,

col="grey89")

# add a legend

box(lty = ’solid’, col = ’black’)
dev.off ()

HHHHHH A makes you see the plot in r and saves the graph in the
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104 HHHHHHHHHHHHHHAHAHAEAHAHEAAE same folder as the r program
105 #dev . copy (jpeg , filename="mult . jpg”);

106 #dev. off () ;

107

108

109

110 # Create Line Chart

111

112 #png(” ~/Documents/memphisclassesbooks /RESEARCH/ Trend /mult . png”)
113 # get the range for the x and y axis

114 xrange <— range(s)

115 yrange <— round (range(p))

116 # set up the plot

1

r plot (xrange, yrange, type="n”, xlab="s",
118 ylab="P(at least one Type I Error)” )
119 colors <— rainbow (length (alpha))

120 linetype <— c¢(1l:length (alpha))

121 plotchar <— seq(18,18+length (alpha) ,1)

122 opts = ¢("p”,"17,70”,"b")

123 # add lines

124 for (i in 1l:length (alpha)) {

126 lines(s, p[,i], type=opts[i], lwd=1.0,

127 lty=linetype[i], col=colors[i], pch=plotchar[i],cex=0.5)
128

)

130

131 # add a title and subtitle

132 title ("Graph of different type—I error rates levels”, 77)

133

134 # add a legend

135 legend (xrange [1], yrange[2], alpha, cex=0.8, col=colors,

136 pch=plotchar , lty=linetype, title="alpha”)
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138

139

140

1¢

1

142

143

144

145

146

147

148

149

154

155

156

157

160

161

162

163

164

165

166

167

168

169

# add annotation (grid lines, title, legend)
abline (v=0, h=seq(0,yrange[2],0.10), lty=2, col="grey89”)
abline (h=0, v=seq(0,xrange[2],10), lty=2,

col="grey89")

box(lty = ’solid’, col = ’black’)

# Create Line Chart

# get the range for the x and y axis

xrange <— range(s)

yrange <— round (range(p))

# set up the plot

plot (xrange, yrange, type="n", xlab="s"
ylab="P(at least one Type I Error)” )

colors <— rainbow (length (alpha))

linetype <— c¢(1:length (alpha))

plotchar <— seq(18,18+length (alpha) 1)

opts = C(”p”,”1”,”0”,”]3”)
# add lines
for (i in 1:length(alpha)) {
points(s, p[,i], type=opts[i], lwd=1.0,
lty=linetype[i], col=colors[i], pch=plotchar[i],cex=0.5)

121



172 # add a title and subtitle

173 title ("Graph of different type—I error rates levels”, 77)

175 # add a legend
176 legend (xrange[1], yrange[2], alpha, cex=0.8, col=colors,

177 pch=plotchar , lty=linetype, title="alpha”)

150 # add annotation (grid lines, title , legend)

151 abline (v=0, h=seq (0,yrange[2],0.10), lty=2, col="grey89”)
152 abline (h=0, v=seq(0,xrange[2],10), lty=2,

183 col="grey89")

184

185 box(lty = ’solid’, col = ’black’)

186

187

188

189

190

101 #dev. off ();

1903 matplot (s,p, type="1”,col = rainbow (4),ylab="P(at least one Type I Error
)7 ,xlab="n", lwd=2,pch=1:4)

191 legend (80, 0.95, as.character(alpha), fill = rainbow (4))

195 # add annotation (grid lines, title, legend)

196 abline (v=0, h=seq (0,yrange[2],0.10), lty=2, col="grey89”)

17 abline (h=0, v=seq(0,xrange[2],10), lty=2,

198 col="grey89")

199

200 dev. off () ;

201
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202

203

201 set .seed (123)
205 x <— rnorm (50, mean = c(rep (0, 25), rep(3, 25)))
206 p <— 2xpnorm(sort(—abs(x)))

207 #p=runif (6)
208 pl=p.adjust (p, method = "fdr’, n = length(p))
200 p2=p.adjust (p, method = "holm’, n = length(p))
210 p3=p.adjust (p, method = "hochberg’, n = length(p))
211 pd=p.adjust
, method = ’"bonferroni

212 pb=p.adjust ", n = length(p))

, method = 'BH’, n = length(p))

p
p
p
p, method = "hommel’ | n = length(p))
p
213 pb=p.adjust (p
p

214 p7=p.adjust (p, method = 'BY’, n = length(p))

215 p8=p.adjust (p, method = 'none’, n = length(p))
216 pp=cbind (pl,p2,p3,p4,p5,p6,p7,pT7)

217 pp

210 matplot (p, pp, ylab="p.adjust”, type = 717, asp = 1, lty = 1:8,

220 main = "P—value adjustments”)

221 legend (0.7, 0.6, c(”fdr” ,”holm” ,”hochberg”, "hommel” , ”bonferroni”, "BH
", "BY”, "none”),

222 col = rainbow (8), 1ty = 1:8,fill = rainbow (8))

225 # set up graph

226 Xrange <— range (p)

227 yrange <— round(range(pp))

228 # add annotation (grid lines, title, legend)

220 abline (v=0, h=seq(0,yrange[2],0.1), lty=2, col="grey89”)
230 abline (h=0, v=seq(0,xrange[2],10), lty=2,

231 col="grey89")

233 plot (rank(p) ,p, lty=2,pch=20,type="1")
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234
235
236

237 p.adjust (p, n = 70)

241 HHHHA AT
o [Zé[ (2 S L )LL)
242 VAL[JE T Ty

243 install.packages(” qvalue”)

224 library (gvalue)
245 data (hedenfalk)
216 pvalues <— hedenfalk$p

217 qobj <— qvalue(p = pvalues)

210 Qvalue (pValues=p, lambda=seq(0, 0.9, 0.05), pi0.method="smoother”,

250 fdr.level=NULL, robust=FALSE, smooth.df=3, smooth.log.pi0=FALSE,
251 silent=FALSE)

253

254

255 p=c(0.49135,0.26335,0.000005)

256 p.adjust (p, method = p.adjust.methods, n = length(p))

257 p.adj

258 p.adjust M <— p.adjust.methods[p.adjust.methods != "none” |

250 p.adj <— sapply(p.adjust .M, function (meth) p.adjust(p, meth))
260 p.ad]

261

262 plot (rank(p) ,p, lty=2,pch=20,type="1")
263

264

265 library (BiocInstaller)

266 biocLite ()
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267

268

269

library (gqvalue)

data(hedenfalk)

pvalues <— hedenfalk$p
pvalues=c(0.49135,0.26335,0.000005)

qobj <— qvalue(p = pvalues)

275 ## try http:// if https:// URLs are not supported

76 source (" https://bioconductor.org/biocLite .R”)

biocLite ()
install.packages(”mutoss”)

install.packages(” multtest”)

2s0 library (mutoss)

283

284

285

286

287

289

290

291

292

293

294

295

296

297

library (multtest)
install.packages(”devtools”)
library (”devtools™)

install _github (”jdstorey/qvalue”)
p=c(0.49135,0.26335,0.000005)

qvalue (p)

#p=runif (10)

p=c(0.49135,0.26335,0.000005)

gqvalue (p, lambda=seq(0,0.99,0.05), pi0.method="smoother” , fdr.level
=0.05, robust=T, gui=FALSE,

smooth . df=3, smooth.log.pi0=T)

p=c(0.49135,0.26335,0.000005)

adaptiveBH (pValues=p, alpha=0.05, silent=FALSE)
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298
299
300
301

302 #

303 #HHHHHE Storey —Taylor—Siegmund’s (2004) adaptive step—up procedure

S ) ) ) ) ) ) ) L
T i i i i i i i i i i i i i i it

304
305 ABH=adaptiveSTS (p, alpha=0.05, lambda=0.5, silent=TRUE)
306 ABH

307

s0s adjPValuesPlot (adjPValues=ABH$adjPValues, alpha=0.05)
309

310 #

312 BH(pValues=p, alpha=0.05, silent=FALSE)

313

S ) ) ) ) ) ) ) ) ) ) L)

314 T A A A A A A A A A

315 #HHHH#H#  Benjamini Yekutieli 20k

216 p=c (0.49135,0.26335,0.000005)

317 BY(pValues=p, alpha=0.05, silent=FALSE)
318

319

320 hommel (p, alpha=0.05)

321 bonferroni(p,alpha=0.05)

322 holm (p, alpha=0.05)

323 hochberg (p,alpha=0.05)

324 sidak (pValues=p, alpha=0.05, silent=FALSE)
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325 SidakSD (pValues=p, alpha=0.05, silent=FALSE)

¥}

326

328 install.packages(” fdrtool”)

320 library (fdrtool)
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