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ABSTRACT

Niraula, Nobal Bikram Ph.D. The University of Memphis. August, 2015.
Automatic Question Generation and Student Answer Assessment in Dialogue-based
Intelligent Tutoring Systems. Major Professor: Vasile Rus, Ph.D.

Dialogue-based Intelligent Tutoring Systems (ITSs) have already proven to

be very effective at inducing learning gains in students. These systems are guided

by dialog scripts, the heart of many dialog systems, for the interactions with

students. The scripts typically consist of a list of questions and corresponding ideal

answers. In most ITSs, such scripts are manually crafted from instructional task

descriptions. Such manual efforts not only cost more in terms of time and effort but

also set a bottleneck in the scalability of the systems. Another major challenge they

face is to automatically assess student answers with respect to the ideal answers. To

address these challenges, this research proposes novel approaches to automatically

generate questions. Furthermore, it focuses on finding appropriate approaches to

assess and understand student responses in the form of natural text inputs.

The question generation process generates cloze and open-cloze questions.

Cloze questions are automatically generated by mining recorded tutorial dialogues

between actual students and a state-of-the-art ITS. It complements the existing

systems that rely only on the contents of instructional texts. Open-cloze questions

are generated by minimizing human efforts. Specifically, active learning is used to

train classifiers for judging the quality of automatically generated open-cloze

questions, the most expensive step in generating open-cloze questions. Experiments

show that a reasonably good classifier can be built with 300-500 examples labeled

by using active learning which can provide about 5-10% more in accuracy and about

3-5% more in F1-measure than random sampling.

Towards assessing and understanding student responses, this research

addresses pronoun resolution and semantic textual similarity (STS) problems in the

context of tutorial dialog. For pronoun resolution, a supervised machine learning
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approach is proposed which has a F-measure of 88.93%, showing its robustness in

resolving pronouns. For assessing student responses, STS methods are used as they

provide numeric scores indicating the degrees of equivalence in meaning between

student answers and corresponding ideal answers. Since student responses in

tutorial dialog are typically short in length, this research seeks to find the best

methods for short text-to-text STS. To this end, Latent Dirichlet Allocation-based

and regression-based methods are proposed. The methods are found to be very

promising for computing short text-to-text semantic similarities.

Although approaches to the STS problem provide numeric scores, they fail to

explain the reasons behind them. To this direction, an interpretable STS system has

been proposed which has been ranked at the top tier of this kind in the literature.
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Chapter 1

Introduction

1.1 Intelligent Tutoring Systems

Intelligent Tutoring Systems (ITSs) are relatively new Natural Language

Processing (NLP) applications to education. They belong to a category of advanced

educational technology that tailor instruction to each individual student in order to

maximize learning for every single student. Indeed, ITSs have already proven to be

very effective at inducing learning gains in students (Rus, D’Mello, Hu, & Graesser,

2013; VanLehn, 2011a). For instance, VanLehn (2011a) reported an effect size (the

performance measure for learning gains) of 0.76 for ITSs which is very close to the

effect size of human tutors (0.79).

The nature of interaction with an ITS varies from multiple choice questions

to fully dialogue based. A lot of research works are ongoing towards developing

effective computational models from computational linguistics, artificial intelligence,

psychology, and other interdisciplinary fields. Many of the ITSs that have developed

during the last 20 years have proven to be quite successful, particularly in the

domains of mathematics, science, and technology (Graesser, VanLehn, Rosé, Jordan,

& Harter, 2001). Autotutor (Graesser et al., 2004) and DeepTutor (Rus, Stefanescu,

et al., 2014) are two typical examples of dialogue-based ITSs for teaching conceptual

Physics.

An ITS experiment typically consists of pretest, learning and posttest. The

pretest measures the existing knowledge (i.e., the pre-knowledge) that a student has

before the tutoring. The score also helps the tutor to choose the appropriate

challenges (aka. tasks or problems) for the student to solve during the tutoring

session. The learning involves solving a number of tasks by a student with a series

of dialog interactions with an ITS. Finally, the student takes posttest to evaluate the
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effectiveness of learning (of an ITS) which can be measured in terms of learning

gains.

VanLehn (2011b) proposed a general architecture for an ITS which is

presented in Fig. 1.1. According to this architecture an ITS consists of two loops:

the outer loop and the inner loop. The outer loop helps to determine the appropriate

tasks and their ordering for a student based on the principle of learning undertaken

by the ITS. The inner loop, on the other hand, provides adaptive feedback while

solving a problem. Specifically, in the inner loop, tutor asks a question and the

student submits the solution to the question. The tutor then assesses the student’s

answer to determine whether the task is completed. If the task is achieved, then the

inner loop handovers the control to the outer loop. Otherwise, the inner loop

provides feedback and hints to the student for achieving the task.

Although ITSs were initially emerged from academics where the major goal

was to help students learning the instruction materials, their encouraging learning

gains pushed them beyond the academic settings. For example, industries have

started developing ITSs to train their employees for the internal processes, new tools

and techniques etc. as they reduce the training cost (Ong & Ramachandran, 2003).

In addition, with personalized ITSs, employees can learn the contents at their own

pace and time, providing a great flexibility over human instructor-based training.

1.2 Research Challenges and Possibilities

In this electronic era, digital contents such as Wikipedia1 and free online

books, essays, and articles are wide-spread over the Internet. That is, learning

materials are abundant and is not a concern for learning. The real concern for

learning is the effectiveness of the learning. It is reported that reading learning

materials without any tutor is less effective than learning the same materials using

1http://wikipedia.org

2



Fig. 1.1: Inner and outer loops in an ITS
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ITSs because they provide interactive and adaptive environments to the learner

(VanLehn, 2011a).

Digital contents are not readily consumed by the ITSs. In order to do so, the

contents have to be processed and transformed to the suitable formats of the ITSs.

For dialogue-based ITSs, the processing typically takes learning materials as input

and generates dialog scripts, the heart of the dialog systems, for the learner-tutor

interactions. In most of these systems such scripts are handcrafted from

instructional task descriptions which typically consist of generating a list of

problems and the corresponding ideal answers, and feedback and hints in the form

of questions. However, manual approaches not only cost more in terms of time and

effort but also set a bottleneck in the scalability of the system. For instance, it is

estimated that 200 hours of content development are required for creating an hour

of instruction (Anderson, Corbett, Koedinger, & Pelletier, 1995). Thus, automatic

generation of questions is very useful while building dialog systems such as ITSs.

Indeed, it is already proven that test construction is an expensive and a very

time-consuming process for instructors and educational researchers and the use of

computer assisted assessment dramatically reduces the burden (Pollock,

Whittington, & Doughty, 2000). Mitkov, Ha, and Karamanis (2006) also reported

that automatic question construction followed by manual correction is more

time-efficient than manual construction of the questions alone.

Furthermore, in a conversational ITS it is important to understand students’

natural language inputs in order to assess their level of understanding of the target

topic to be learned and, consequently, provide appropriate feedback (Rus, D’Mello,

Hu, & Graesser, 2013). One frequently used approach to address this student input

assessment problem is to compute how similar the student response is to a

benchmark response such as an expert-articulated response (Graesser, Olney,

Haynes, & Chipman, 2005; Rus & Graesser, 2006). That is, the student response
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assessment task is being modeled as a text-to-text similarity problem. It is a

practical alternative of finding true understanding of student response which is

intractable as it requires world knowledge. As such, automatic and effective

methods for text-to-text semantic between student responses and benchmark

answers are very critical requirements for scaling and effectiveness of an ITS.

As mentioned above, on one hand we found tremendous research works that

are validating the effectiveness of ITSs. On the other hand, we observed question

generation and student answer assessment as two key bottlenecks in scaling ITSs.

These observations provide motivations for seeking the techniques that address the

bottlenecks.

1.3 The Goal

We concentrate on automating the inner loop of a dialogue based ITS rather

than focusing on the outer loop. In other words, we assume that we receive a task

to be solved by a student from the outer loop. Our goal, for the given task, then is

to generate hints in the form of questions and understand student responses to

provide appropriate feedback.

Before explaining our approaches, let’s examine the real dialogue flows

between a state-of-art dialogue-based ITS, DeepTutor, and a student in the inner

loop. We presented an snapshot of DeepTutor while it was at its inner loop in Fig.

1.2. Student is challenged to solve a task whose description is given in the top-right

block in the picture. Tutor asks a question to the student and the student answers

the question by typing his answer to the bottom-left section of the figure. The

dialogues interactions are shown in the left-top section of the figure. The

right-bottom section provides images that are relevant during the conversation.

The templates for dialog flows in many state-of-art tutoring systems are

constructed manually. The process starts with writing a (problem, ideal answers)

pair. Several types of questions corresponding to the ideal answers are then
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Fig. 1.2: DeepTutor at inner-loop

formulated. When a student submits a response to a question, his answer will be

compared with the ideal answer. If the student answers the question correctly, the

next question is provided, if any. Otherwise the tutor provides hints to solve the

question being asked. Typically the hints consists of prompts (e.g. gap-fill question)

targeting the ideal answer.

If we observe carefully, there are two major things that are needed for this

type of conversational system to work properly. The first is to generate the

questions corresponding to sentences in the ideal answers. Typically, experts

generate such questions manually. Secondly, the answer given by the students

should be matched with the ideal answers. Computing the semantic similarity

between the student’s answer and the ideal answer is another crucial factor to

consider for the system because this determines the type of feedback we give to the
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student. Moreover, failing to understand the student’s input correctly prompts to

choose an incorrect feedback which makes the student frustrated sometimes to the

point of quitting the system. The assessment task is more difficult as students

frequently use pronouns (such as it, he, and she) in their answers which refer to

some entities in the problem or the the tutor’s question. The resolution of the

pronoun is needed to better access their answers.

While writing templates for dialog generation using manual approach works

for small-scale ITS, it becomes a real challenge when the ITS has to be scaled up.

Even for a small-scale ITS, new problems are to be encoded manually. This limits

the scalability of the ITS and demands more costs in terms of time and effort. Thus,

we consider automatic question generation and student answer assessment as two

key bottlenecks for the scalability of an ITS. We will address the bottleneck posed

by the manual system of generating questions by automatically generating hints. In

addition, we will seek for appropriate semantic similarity approaches that help to

better understand the students’ responses.

1.4 Dissertation Statement and Primary Contributions

This section presents a thesis statement and main contributions of this

dissertation work.

1.4.1 Statement

Automatically generating different types of questions and finding effective

methods for assessing students’ knowledge are two key aspects of dialog generation

in an dialog based ITS. The methods that automate the question generation process

and reduce manual efforts and costs will be presented. Moreover, effective measures

will be investigated for assessing student answers.

1.4.2 Objectives

While the objective of this dissertation is towards the bigger goal of

automatic generation of tutorial dialog, the specific objectives are listed as follows:
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1. Generate cloze and open-cloze questions for tutorial dialogue

2. Solve pronoun resolution in tutorial dialogue

3. Identify the best semantic similarity methods for tutorial dialog

1.4.3 Summary of Primary Contributions

From this work, we make following contributions towards automatic

generation of tutorial dialog.

In Chapter 2, we present techniques to automatically generate different types

of questions for tutorial dialog. Particularly, we generate cloze and open-cloze

questions. We contribute many novel question generation techniques to the question

generation literature including the one that exploits wisdom-of-students i.e., we

generate cloze questions by exploiting the students responses to the open-cloze

questions.

In Chapter 3, we describe our approach to handle pronouns in tutorial

dialog. Students use pronouns in their answers frequently. Thus the assessment of

the students responses needs resolution of the pronouns. Although a plethora of

pronoun resolution approaches for written texts are available in the literature, they

are not optimal for tutorial dialog as these are specific systems with different

assumptions. Our adaptation techniques to resolve pronouns in tutorial dialog will

provide novel techniques on the literature of anaphora resolution in NLP.

In Chapter 4, we describe our experiments towards assessing the students’

responses. Since the students responses are typically short, e.g., single sentence to

few sentences, we contribute to the literature on semantic similarity between two

short texts in NLP. We also present our approach for interpretable semantic textual

similarity that aims at providing reasons behind two texts being similar, related or

unrelated.

8



1.5 Delimitations and Assumptions

Our approach is not a one-size-fits-all solution for intelligent tutoring

systems. We have made some specific assumptions which are listed below.

• Dialog-based Interaction: We assume that the interactions between students

and the tutor are a chat-like interactions. It means that only the textual

inputs are accepted.

• Expectation and Misconception Tailored Model: Although the proposed

approach can be used in other models, we inherently support expectation and

misconception tailored dialog model as in AutoTutor (Graesser et al., 2004).

An expectation refers to a set of sentences representing good answers whereas

a misconception refers to a set of erroneous sentences that a tutor anticipates

from a learner.

• Conceptual Domains: We assume that our target domain be more conceptual

rather than quantitative which requires mathematical computation.

• Input as Problem-Answer Pairs : We assume that experts provide

problem-answer pairs from which the tutorial dialog is to be generated.

Moreover, deep questions are assumed to be provided by experts.

9



Chapter 2

Question Generation

An important issue for automatically generating tutorial dialog is to

automate the generation of pedagogically good questions by taking the dialog

context into consideration. The minimum the cost of the automation, the better the

solution. This chapter addresses these issues in detail based on the following

published works: Niraula and Rus (2015) and Niraula, Rus, Stefanescu, and

Graesser (2014).

2.1 Introduction

Questions are one of the critical components of ITSs. If adaptive to

individual learners, they must assess learners’ knowledge before, during, and after

students’ interactions with the platform. For instance, in order to identify

knowledge deficits before and after a session, pre-test and post-test can be used

respectively. The knowledge deficits discovered based on pre-test can guide the ITSs

to select appropriate instructional tasks for the learner. Furthermore, pre- and

post-tests can be used to measure learning gains with ITSs, e.g., by subtracting the

pre-test score from the post-test score. The bottom line is that assessment is critical

for adaptive instruction. Various kinds of questions are used to assess students’

knowledge levels varying from True/False questions to multiple choice questions to

open-ended questions.

In addition to pre- and post-learning assessments, ITSs use questions to

interact with students during learning sessions. For example, DeepTutor starts its

inner loop by asking a deep (e.g., why and what) question to a student. The deep

question demands not only the answer but its justification too. When the student

answers the question, DeepTutor chooses another question based on the assessment

of the student’s answer. The question could be another deep question or a shallow

(e.g., gap-fill) question. The process continues until the task is done.
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Besides test construction for ITSs, automatic question generation (QG) are

very useful in several other applications such as reading comprehension (Eason,

Goldberg, Young, Geist, & Cutting, 2012), vocabulary assessment (Brown,

Frishkoff, & Eskenazi, 2005), and academic writing (Liu, Calvo, & Rus, 2012).

Other usages include generating questions for frequently asked questions, generating

suggested questions for patients and caretakers in medicine domain, generating

suggesting question that learner might ask while reading documents and other

media etc. (Rus & Graesser, 2009).

Given the wide usage, automatic question generation is very useful while

building dialog systems such as ITSs. They not only speed up the scaling process

but also lower the human efforts. Indeed, it is already proven that test construction

is an expensive and a very time-consuming process for instructors and educational

researchers and the use of computer assisted assessment dramatically reduces the

burden (Pollock et al., 2000). Mitkov et al. (2006) also reported that automatic

question construction followed by manual correction is more time-efficient than

manual construction of the questions alone. As a result, a particular attention has

been given by the NLP community to automatically generate several types of

questions. In fact, automatic question generation for educational purposes is going

on over three decades. Autoquest is one of the earliest works which generated

questions for independent study of text articles (Wolfe, 1976). Other examples

include factoid question and gap-fill questions (Ali, Chali, & Hasan, 2010; Curto,

Mendes, & Coheur, 2011; Heilman & Smith, 2009; Kalady, Elikkottil, & Das, 2010;

Mannem, Prasad, & Joshi, 2010; Mitkov et al., 2006; Mostow & Chen, 2009; Varga

& Ha, 2010; Wyse & Piwek, 2009; W. Chen, Aist, & Mostow, 2009; Wolfe, 1976;

Yao & Zhang, 2010). Moreover, significant contributions have been made to this

end via shared tasks (Rus et al., 2010).

Despite its benefits, automatic test construction is a demanding task
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requiring significant resources. Any level of automation in question generation

would therefore be very useful for this expensive and time-consuming process.

2.2 Types of Questions

There are several types of questions, and the literature contains a various

taxonomies for organizing them. One of such works is by Graesser, Rus, and Cai

(2008) which presents a concise description of the dimensions to classify the

questions. They mention five types of characteristics that can be used to categorize

the questions. The characteristics are: purpose, type of information, source of

information, and length of the expected answer, cognitive processes.

2.2.1 Purpose

Graesser et al. (2008) listed the purpose of questions as: the correction of

knowledge deficits, the monitoring of common ground, the social coordination of

action and the control of conversation and attention.

2.2.2 Type

Graesser et al. (2008) proposed 16 categories for questions based on the type

of information that ranges from simple to complex. Concept completion,

verification, goal orientation and judgmental questions are typical examples of these

question categories. A system that generates complex question likely requires a

significant human knowledge to be encoded for the question type and the domain.

2.2.3 Source

Questions can be classified based on the location of their answers. That is,

some questions’ answers might lie at some particular sentences whereas some

questions’ answer might lie at paragraph level, document level or even needs

inference, common sense or opinions.
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2.2.4 Length of Expected Answer

The questions can be classified based on the expected length of their

answers. For instance, some questions require long essays while some other need

just a word or phrase.

2.2.5 Cognitive Process

Some question needs simply recognition and recall of information where as

some other need the comprehension, inference, application, synthesis or other

complex processing is involved.

2.3 Approaches

Automatic question generation for educational purposes is going on over

three decades. Autoquest system is one of the earliest works which generated

questions for independent study of text articles (Wolfe, 1976). The system was used

to generate Wh-Questions from randomly selected sentences from the text articles

and was fully based on the syntactic structure of sentences rather than semantic.

Several question generation systems are proposed since then which can be broadly

classified into three categories: template-based, syntax-based, and semantics-based.

2.3.1 Syntax-based

Syntax-based methods share a large portion of the current QG literature (Ali

et al., 2010; Kalady et al., 2010; Varga & Ha, 2010; Wolfe, 1976). The common

approach of these systems is to parse the given sentence to find its syntactic

structure (i.e., syntax trees). The structure is then exploited to simplify the

sentence, to identify the key phrases, and to apply syntactic transformation rules

and question word replacement.

2.3.2 Semantic-based

Semantics-based question generation systems apply several transformations

to generate questions (Mannem et al., 2010; Yao & Zhang, 2010). As name suggests,

the transformations are semantic rather than syntactic. Typically, they use the
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information from Semantic Role Labeling to get predicates and arguments and use

them to find target words and apply semantic transformations.

2.3.3 Template-based

Template-based approach is probably the most easiest way to generate

questions. Systems that rely on this approach use question templates which are

pre-defined texts containing placeholder variables. The values of placeholder

variables are changed to have different questions. This approach is quite popular in

the literature (W. Chen et al., 2009; Curto et al., 2011; Mostow & Chen, 2009;

Wyse & Piwek, 2009). Mark-up languages, such as NLGML (Chai et al., 2001), are

proposed to facilitate template-based question generation. Although template-based

systems easy to build, the major hurdles are that they are domain-specific and need

extra human efforts to make such systems viable.

2.3.4 Overgenerate-and-Rank

Overgenerate-and-rank is one of the popular approaches for question

generation regardless of question types (Heilman & Smith, 2010; Becker, Basu, &

Vanderwende, 2012). The idea is first to generate many candidate questions

(overgeneration) and then rank them to obtain the good questions at the top. This

approach has been adopted in this work to generate different types of questions.

2.4 Related Works

The target of this work is to generate factoid questions for tutorial dialog

which are the questions that can be generated from given sentences. Particularly,

the focus will be on generating gap-fill and free-response questions.

2.4.1 Gap-fill Questions

Gap-fill questions are fill-in-the-blank questions which consist of one or more

gaps (blanks) in a sentence / paragraph and a number of choices for each gap. This

type of questions can be of two types: with choices and without choices. The former
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is known as cloze (aka multiple choice) question and the latter is know as open-cloze

question.

One of the choices in cloze question is the correct answer to the question,

called the key. The rest of the choices are the distractors, i.e., incorrect answers that

tempt less proficient students who often confuse them with the key. The sentence

containing a gap (s) is also known as the stem. Consider a cloze question below :

Newton’s law is relevant after the mover doubles his force as we just

established that there is a non-zero net force acting on the desk then.

(a) third

(b) second

(c) first

(d) heating

In the cloze question above, the question sentence contains a gap and there

are four potential choices for the gap. The key is second and first, third and heating

are three distractors. Two of distractors are very close to the key while another,

heating is quite remotely related.

Open-cloze questions are also a type of fill-in-the-blank questions consisting

of a sentence/paragraph with one or more gaps (blanks). A typical open-cloze

question is presented below:

Newton’s law is relevant after the mover doubles his force as we just established

that there is a non-zero net force acting on the desk then.

The open-cloze question presented above has a word missing (i.e., a gap). A

open-cloze question can have one more than one gaps too. Students (test takers) are

supposed to predict the missing word(s) in their answer(s).

The attractiveness of gap-fill questions is that they are well-suited for

automatic grading. This is because the correct answer for open-cloze questions is

simply the original word/phrase corresponding to the gap in the original sentence.
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The correct answer in case of a cloze question is one of the choices shown to

learners. As a result, they are frequently used in educational contexts such as

MOOCs and ITSs (Graesser et al., 2003). Specifically, ITSs use such questions for

diagnosing and assessing students’ knowledge level and their learning gains as parts

of their assessment and practice modules.

Related Works in Cloze Question Generation

Four main steps are needed to generate gap-fill questions with choices from

an instructive text:

1. Selecting useful sentences from the text

2. Identifying gaps (i.e., words to be deleted) in the selected sentences

3. Generating distractor candidate list and

4. Ranking the distractors in the list

The literature of gap-fill question generation contains methods that go

through each of the steps or focus on particular steps. Since we mine the gap-fill

questions using the responses given to the open-cloze questions from ITS dialogues,

we do not need to address the first two steps of the process.

Mitkov et al. (2006) proposed a computer-aided procedure to generate

multiple-choice questions from textbooks that goes through all the four steps. It

starts by finding domain specific terms (nouns and noun phrases) using a shallow

parser that satisfies certain regular expressions. The terms satisfying a count

threshold are considered as key terms. The declarative sentences corresponding to

the key terms are converted to WH-questions to form question sentences (aka.

stems) using syntactic transformations. Then, they collect hypernyms and

coordinates (concepts with the same hypernym) of a term from WordNet (Miller,

1995) to generate the distractor list. The ranking is done using semantic similarity
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functions on the assumption that a distractor should be as semantically close to the

key as possible.

A more recent work to generate cloze question was proposed by Agarwal and

Mannem (2011). Their system automatically generates gap-fill questions from

textbooks for reading comprehension tests. Their approach also goes through all

four steps of a typical gap-fill question generation process: first, it selects

informative sentences from the book using a list of features; second, it finds the key

words in each selected sentences using POS tags and chunks of the sentences; third,

it generates distractors using contextual similarity (between the key and a candidate

word), sentence similarity (between the key’s sentence and the candidate word’s

sentence) and difference between term frequencies (between the key and the

candidate word); fourth, it ranks the distractors based on the similarity scores.

Hoshino and Nakagawa (2005) modeled the problem of generating

multiple-choice questions as a learning problem. They proposed a machine learning

approach to generate such questions for language testing. They did not transform a

declarative sentence into a interrogative sentence to form a question sentence rather

proposed methods to decide the position of the gap i.e., missing word(s), and

corresponding distractors. To decide whether a given word can be left blank in the

declarative stem, they trained classifiers using the training instances which were

generated by collecting fill-in-the-blank questions from a TOEIC preparation book.

The positive examples were the exact blanks positions in the question from the

book whereas the negative examples were generated by shifting the blank position.

The distractors were the random words from the same article excluding punctuation

and the same word.

Sumita, Sugaya, and Yamamoto (2005) generated gap-fill questions

considering verbs as gaps in a sentence. Thesaurus was used to obtain distractors

for the keys of the gaps. To rank distractors, they took each distractor, filled the

17



gap using it, and searched the web to get the hit counts of the sentence. The basic

idea was that the web-hits for a question sentence when filled by distractors should

have low or zero-hits as distractors would lead to incorrect sentences.

There are other works in cloze question generation. For example, Pino,

Heilman, and Eskenazi (2008) described a system that started with sample

sentences from WordNet to form question sentences as a baseline. They improved

the technique using linguistic features. Similarly, Smith, Avinesh, and Kilgarriff

(2010) generated cloze questions in English language learning. They used

distributional thesaurus to find the distractors.

As one may note, existing cloze and open-cloze question generation

approaches were mainly proposed for language learning assessment, vocabulary

assessment, and reading comprehension tasks. Most of these works require

instructional texts such as textbook chapters and encyclopedia entries in addition to

thesauri to generate gap-fill questions. Our approach is novel in exploiting actual

student-generated potential distractors from recorded tutorial dialogues.

Related Works in Open-cloze Question Generation

The methods that generate open-cloze questions can be classified into two

categories: heuristics based and machine learning based. Heuristics based methods

make some heuristics (e.g., POS of a word) to make a gap. The approach by Sumita

et al. (2005) is an example of heuristic based approach. It generates gap-fill

questions considering verbs as the gaps in a sentence. Simply considering verbs as

gaps does not always work as not all verbs are equally important in a sentence. For

example, some missing verbs are easier to guess from the context than other verbs.

Moreover, it does not consider other content words such as nouns and adjectives as

potential candidates for the gaps. It also does not rank the question candidates.

Another example of heuristics based approach is by Agarwal and Mannem

who proposed a system to generate cloze questions (Agarwal & Mannem, 2011)
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from text books for reading comprehension tests. As mentioned previously, they

first select informative sentences from the book using a list of features and consider

the gaps as the key words in each selected sentences by using POS tags and chunks

of the sentences.

Machine learning based approaches model the problem of generating

questions as a learning problem. Hoshino and Nakagawa (2005) proposed a machine

learning approach to generate multiple-choice questions for language testing. They

form a question sentence by deciding the position of the gap i.e., missing word(s).

To decide whether a given word can be left blank (i.e., gap) in the declarative stem,

they trained classifiers using the training instances which were generated by

collecting fill-in-the-blank questions from a TOEIC preparation book. The positive

examples were the exact blanks positions in the question from the book whereas the

negative examples were generated by shifting the blank position.

Recently a machine learning based approach is proposed by Becker et al.

(2012). Their system, aka. Mind the Gap, uses text summarization technique to

select useful sentences from text articles for which gap-fill questions are to be

generated. For each of the selected sentence, it generates potential gap-fill

candidates using semantic constraints. Each candidate question is then labeled to

one of Good, Bad and Okay class with the help of Amazon’s Mechanical Turkers.

They defined Good questions as the questions that test key concepts from the

sentence and are reasonable to answer, Okay questions as the questions that test the

key concepts but are difficult to answer (e.g., too long, ambiguous) and Bad

questions as the questions that ask about unimportant aspect of the sentence or

their answers are easy to guess from the context. The data set is then used to build

a classifier which can rank the candidate questions with confidence score. They

reported that the classifier largely agrees with the human judgement on question

quality.
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2.5 Cloze Question Generation

Cloze questions are very useful for assessing students’ knowledge. In fact, it

is reported that knowledge tests with cloze questions are effective at diagnosing and

assessing students’ knowledge (Mitkov, Ha, Varga, & Rello, 2009). Since this type of

questions is very suitable for automatic marking, is has been popular in ITSs for

diagnosing and assessing students’ knowledge level and their learning gains as parts

of their assessment and practice modules (Graesser et al., 2003). This section

presents a novel method that mines cloze questions from tutorial dialogues.

Table 2.1 shows a real student-tutor interaction from the intelligent tutoring

system DeepTutor (Rus et al., 2013). The dialogue is started by the tutor

describing a problem followed by an invitation to the student to solve the problem.

The solution to the problem must include a justification including concepts and

principles of the target domain, which in the case of DeepTutor is conceptual

Newtonian Physics. The tutor assesses students’ answers and provides appropriate

feedback. If some of the steps in the solution are missing, e.g., in case a student did

not provide a justification of her answer or some important parts of the justification

are vague, the computer tutor will provide appropriate hints, some in the form of

open-cloze questions, to help the student articulate the missing or vague parts by

herself. Open-cloze questions are frequently used by state-of-art ITSs to provide

prompts to the students and guide them towards the learning goals (Graesser et al.,

2004; Rus, D’Mello, et al., 2013). We can see an open-cloze question posed by the

tutor at the end of the dialogue shown in Table 2.1. The student then provided his

best answer words to fill the gaps.

In recent online ITSs which offer tutoring to hundreds of students (Rus,

Stefanescu, et al., 2014), instructional tasks or problems are solved by many

students. Consequently, many student responses to hints in the form of questions,

some of which are open-cloze questions, are collected and recorded in log files. The
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Table 2.1: Student-DeepTutor interactions while solving a task

TUTOR: A stuntman must drop from a helicopter onto a target on the roof of
a moving train. The plan is for the helicopter to hover over the train, matching
the train’s constant speed before the stuntman drops.
TUTOR: Where should the helicopter be positioned relative to the target?
Please begin by briefly answering the above question. After briefly answering
the above question, please go on to explain your answer in as much detail as you
can.
STUDENT: ahead of the target
TUTOR: Let me try again. Which principle can be applied when the motion
of an object is complex, for instance, it can be thought of as motion in two
perpendicular dimensions?
STUDENT: Netwon’s first law
TUTOR: Let me give you a hint. The decomposition principle says that the
analyses of forces and motion along two directions, such as horizontal and
vertical, can be done .
STUDENT: perpendicular, separately

approach presented here exploits this richness of information available in recorded

tutorial dialogues from massive online training with ITSs. An advantage of mining

these tutorial dialogues is the fact that we have access to actual students answers to

open-cloze questions. That is, students’ responses to these questions are words that

they think best fill the gaps in the open-cloze question. Because not all the

responses are correct, the incorrect responses can be used as potential candidates for

distractors. These candidates are then ranked to obtain the best set of distractors.

The proposed method is unique because it is based on a generative approach,

i.e., the potential distractors are generated by students themselves, unlike existing

approaches which are discriminative, i.e., they rely on extracting questions from

instructional texts. Thus, it complements existing works by mining questions and

distractors from recorded dialogues. Furthermore, this is one of the first approaches

that relies on actual students answers to create test materials - wisdom of students.
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2.5.1 The Methodology

As described in the previous section, four main steps are needed to generate

gap-fill questions from an instructional text: selecting useful sentences from the

text, identifying gaps, generating distractor candidates and ranking the distractors.

Since the process does not start with content-related text but with student

responses to open-cloze questions, the first two steps are not needed. Therefore, this

section describes only the processes of finding and ranking of distractors.

Although an open-cloze question can have multiple gaps, this study only

considers generating questions with single gap as this is sufficient for a proof of

concept. Moreover, the methodology for single gap questions could be easily

extended to handle cloze-questions with multiple gaps.

Generating Distractor Candidates

Finding plausible distractors that separate knowledgeable students from

knowledge-poor students is one of the major challenges for cloze question

generation. A good distractor is a concept that is semantically similar at some

extent to the key but it is not a correct answer (Mitkov et al., 2006).

Many existing approaches to finding distractors use WordNet (Mitkov et al.,

2006; Pino et al., 2008), in-house thesauri (Smith et al., 2010; Sumita et al., 2005),

or words from instructional texts (Agarwal & Mannem, 2011; Hoshino & Nakagawa,

2005). In contrast, the current approach uses a generative approach to find the

distractors meaning that it exploits responses generated by students to open-cloze

questions during tutorial dialogues. The hypothesis is that the incorrect responses

given by students are a good source of distractors because these are actual words

that students thought would best fill the gaps.

Because open-cloze questions are answered by many students in massive

online ITSs, or massive online courses (MOOCs) for that matter, there is a large

pool of candidate distractors from which to select. To exemplify this, consider an
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example extracted from a tutorial dialogue corpus of a state-of-art ITS in Table 2.2.

The open-cloze question contains a gap and is solved by 15 students. Altogether

there are 9 different answers which are ranked in descending order by their

frequency. The word curved, which is the key of the problem, is the provided by 4

students. Similarly, the word straight is the answer provided by three students and

so on.

Note that not all open-cloze questions used as hints are equally triggerred

while students solve problems with a DeepTutor. This happens because students

who correctly solve a problem in their first attempt will simply get positive feedback

from the system. There is no need to provide scaffolding in such cases in the form of

helpful hints, some of which could be open-cloze questions. That is, high knowledge

students who do well at solving problem will most likely not see the open-cloze

questions. In contrast, low knowledge students who are less likely to solve a problem

immediately without any assistance, would more likely be prompted with open-cloze

questions as a scaffolding move. In others words, low knowledge students are more

likely to receive hints from the computer tutor in the form of open-cloze questions.

This is good news for our approach because it means we will have a good pool of

distractors as low knowledge students will more likely provide incorrect answers, i.e.,

distractors. The bottom line is that some open-cloze questions may not have enough

student responses, depending on the distribution of students as low or high

knowledge students, from which to select distractors. In such cases, we follow some

of the existing techniques for finding distractor candidates, e.g., we use WordNet as

in (Mitkov et al., 2006). We extract the hypernyms and coordinated concepts

(concepts with the same hypernym) of the key and consider them as the potential

distractor candidates for the key.
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Table 2.2: Students’ responses and their frequencies (i.e., votes) to an open-cloze
problem

While the wind is blowing, the shape of the sled’s path will be .
curved = > 4
straight = > 3
diagonal = > 2
no = > 1
linear = > 1
uhm no = > 1
idk = > 1
a triangle = > 1
west = > 1

Ranking Distractors

Once we have the distractor candidates for a key, the next step is to rank

them. The top candidates in the ranked list will be used as distractors for the

fill-gap question. The example in Table 2.2 indicates that not all student responses

are good candidates for distractors. For instance, idk, no, uhm no etc. are not good

distractors compared to straight, diagonal for the key triangle.

We used the following two ideas to rank the candidates:

• R1 : Use the semantic similarity score between the key and the distractors.

This idea was used by Mitkov et al. (2006), according to which, a good

distractor is very related but not identical to the key. We used Latent

Semantic Analysis (LSA) (Landauer, McNamara, Dennis, & Kintsch, 2013), a

fully unsupervised methods for inferring words meaning, to get the similarity

score between the key and the distractors. LSA is a vectorial representation in

which a word is represented as a vector in a reduced dimensionality space,

where each dimension is believed to be representative of an abstract/latent

semantic concept. Computing the similarity between two words is equivalent

to computing the cosine, i.e., normalized dot product, between the

corresponding word vectors. Candidate distractors with high similarity scores
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are given higher rank than those with low similarity scores. In the running

example, similarity scores between word pairs (curved,idk), (curved,no), and

(curved,uhm no) will be lower compared to the similarity scores between the

word pairs (curved,straight), (curved,diagonal) and (curved,triangle). This

results in the former candidates being moved at the bottom of the ranked list

and the latter at the top rank.

• R2 : Use the counts. A candidate distractor for a question is the number of

students who typed the candidate as the answer to the question. According to

this idea, the top three distractors for the problem in Table 2.2 are straight,

diagonal, and no. These are the top three non-key words in the list after

curved, the key of the problem. Whenever there is a tie i.e., two distractors

have same counts, we break the tie using the semantic similarity score.

2.5.2 Experiments and Results

We first analyzed the distribution of gaps in the set of open-cloze questions

from our tutorial dialogue corpus which consists of recorded interactions between

high-school students and the intelligent tutoring system DeepTutor. A total of 113

Physics problems were available for use.

The distribution of gaps in the open-cloze questions associated with these

problems are presented in Fig. 2.1. It can be observed that the questions with one

and two gaps are the most frequent: 65% of the questions have a single gap and 30%

of the questions have two gaps. More gaps reduce the contextual information in the

problem text, making it harder for studnts to answer correctly. We only focus on

single-gap open-cloze questions in the rest of the experiments. It would be somehow

straightforward to extend the current solution to questions with multiple gaps.

Next, we mined the corpus of tutorial dialogues obtained from our two

experiments that spanned for several weeks. From the first experiment we extracted

tutorial dialogues for 297 students who solved 32 tasks (problems). Since a task was
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Fig. 2.1: Percentage of gaps in the open-cloze questions

solved by zero or more students, we had 2,687 task sessions altogether i.e., on

average 9 tasks per student. Similarly, from the second experiment, we extracted

4,430 task sessions corresponding to 349 students and 37 tasks. That is, on average

a student solved 13 tasks in the second experiment.

A total 102 unique single-gap open-cloze questions were mined from the

dialogues. We then computed the number of student responses per each of these

questions. The result is plotted in Fig. 2.2. It is very interesting to see that some

questions received a large number of responses while others received only a few. It

would be interesting to see the statistics in weighted counts form. For this, consider

Table 2.3 where we provided the percentage of questions corresponding to different

count thresholds. All of the single gap open-cloze questions (100%) received at least

two responses. Similarly, 82.85% of the problems received at least three responses

and 72.38% of questions received at least 4 responses. Interestingly, 44.76% of

questions have at least 10 responses. These figures motivate us to generate

cloze-questions from the responses of open-cloze questions.
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Fig. 2.2: Distribution of questions over number of responses

Relation between a Response’s Similarity and its Rank

In this experiment, we wanted to see if there is any relation between the

frequency rank (FR) of a student response and the semantic similarity score

between the student response and the corresponding key. We define the FR of a

student response i in a q question as follows:

FR(i) =
100 ∗ fi∑

fi
where fi is the number of students who typed i as the answer for q. We call

fi as the votes received by i (or simply the votes of i). The FR of i, thus, is nothing

but the percentage of votes i received out of the total votes for q. For instance, FR

of the response curved in Table 2.2 is 26.6( = 100*4/15) because it has 4 responses

out of total 15 responses in the problem.

Table 2.3: Percentage of questions meeting the count threshold

Counts (≥) 2 3 4 5 10
Percentage(%) 100 82.85 72.38 66.66 44.76

We gathered for each open-cloze question its key and the corresponding
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student responses. Because many students can give the same response, we

computed the frequency and FR for each student response. Student responses had

to be filtered as they may have contained spelling mistakes, smileys, etc.(see Table

2.2). We detected and discarded such responses using simple rules and a small

lexicons of such words or emoticons. Then for each student response, we computed

its similarity with the corresponding key. We used LSA to compute the similarity

score between each response and the key.

Once we obtained the similarity and FR values for all student responses, we

computed a correlation coefficient between the scores at different levels of response

frequencies. The results are presented in Table 2.4. First, we computed the

coefficient for all responses (i.e., minimum frequency ≥ 1) and obtained a

correlation coefficient of 0.682. Next, we computed the score for responses generated

by at least two students (i.e., minimum frequency ≥2) and obtained the correlation

coefficient of 0.72. We repeated the process for minimum frequencies of 3, 4, and 5,

and obtained correlation coefficients of 0.737, 0.733 and 0.754 respectively.

Table 2.4: Correlation between similarity and weighted frequency

Min Freq 1 2 3 4 5
Correlation LSA 0.682 0.725 0.737 0.733 0.754

The positive correlation coefficients indicate that there is clearly a positive

relation between the rank of a response and its semantic similarity with the key. As

we noticed, the correlation coefficients increased as we increased the minimum

frequency. Based on these results, we conclude that ranking student responses by

their similarity scores with the key is approximated by the vote counts of responses

it received from students, i.e., how many students generated the answer. The higher

the counts, the more similar the response is to the key. As the distractors for a key
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should be as semantically close to the key as possible, we can rank the incorrect

responses by their frequencies and utilize them as potential distractors .

Evaluation of Distractor Selection

We conducted two types of evaluations in order to assess the quality of

distractors generated by our automated method. In each evaluation, we generated

the distractors for the key in a gap-fill question and performed a fine-grain analysis

for each distractor to test their quality. Specifically, we classified each of the

generated distractors into three categories: good, ok, and bad . The good distractors

are the ideal distractors, the ok distractors can be considered as potential

distractors but are not as appropriate as the good distractors. The bad distractors

do not make sense as a distractor or have the exact meaning with the key.

In the first experiment, we considered questions that had at least three

different student responses and had at least two votes per response. There were 23

questions that satisfied this condition. We ranked the distractor candidates by using

R2 presented at Section 2.5.1. That is, we ranked them by their frequencies and

chose the top 3 candidates as the three distractors for the question. If two

candidates had the same frequency, we ranked them using their semantic similarity

score with the key. We rejected the candidates if they were synonyms of the key.

We considered a key and distractor synonyms when their semantic similarity score

was above or equal to 0.9. We also made sure there were no duplicate distractors in

the final list. To reduce the annotation bias, we introduced a random word from a

Wikipedia article as the fourth distractor. The order of the four distractors were

randomized. Next, we provided annotators the question sentence, its key and asked

them to classify each of the four distractors into three categories: good, ok, and bad .

A typical annotated instance is showed in the Table 2.5.

We computed the inter-rater agreements using the unweighted version of the

Cohen’s kappa statistic. The statistic was 0.64 when we considered good, ok, and
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Table 2.5: Sample annotation

Question The force of gravity exerted by the Earth on the cat is
all the time.

Key constant
Distractors relative horizontal zero smile
Annotation good good good bad

Table 2.6: Annotation results for 23 questions with 4 distractors each

good ok bad expected bad
Annotator 1 46 11 35 23
Annotator 2 41 16 35 23

bad groups separately. It increased to 0.86 when we merged good and ok groups into

a single group. The annotation results are presented in Table 2.6. The proportion of

the good questions is the highest among all groups for both annotators. Since we

introduced one bad distractor per question and we had 23 questions, we expected 23

bad distractors per annotator. Discounting this number in the table clearly

indicates that we can achieve very good distractors using the voting scheme. Note

that we did not even check the part-of-speech of the distractors when we chose the

top 3 candidates as the distractors. This means that it is further possible to boost

the performance by considering their parts-of-speech and the higher threshold for

the minimum votes.

In the second experiment, we considered 100 single gap questions. We

generated three lists of distractor candidates for each question. The first list was

generated by ranking the student responses using the R2 described at Section 2.5.1.

It is possible that different questions can have the same key. Thus, we combined all

the student responses in the whole dialog corpus for a key and ranked them using

the R1, i.e., using the semantic similarity scores between the distractor and its key.

The motivation here was that we wanted to use as many students responses as

distractor candidates as possible. We extracted the distractors from the combined
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list corresponding to a key and put them in our second list only if they were not in

the first list. For the third list, we extracted the hypernym and coordinates of the

key from WordNet as described in Section 2.5.1 and ranked them using their

semantic similarity score with the key(R1 ).

We combined all three lists into a single list while preserving their order.

This was needed to process the distractor candidates in the first list before the

candidates in the second and third lists, and the candidates in second list before the

candidates in the third list. For each distractor in the list, we checked whether their

parts-of-speech matched with that of the key. If matched, we put the candidate as a

potential distractor for the key. Once we had three distractors, we stopped. The

forth distractor was generated using a random word from a Wikipedia article as in

the first experiment.

The annotation results for this experiment are shown in Table 2.7. The

unweighted Cohen’s kappa static was 0.54 when we considered all the three classes

separately and 0.63 when we considered good and ok as classes as one. Since we had

100 questions and we introduced a distractor randomly per question, we expected

100 bad distractors from each annotators. Compared to the results in Experiment 1,

the concentration of the bad distractors increased and the inter-rater agreement

decreased.

Table 2.7: Annotation results for 100 questions with 4 distractors each

good ok bad expected bad
Annotator 1 161 64 175 100
Annotator 2 122 47 231 100

To identify the causes that degraded the quality of the distractors, we

analyzed the distractors that were marked bad by the annotators. We noticed an

interesting fact about the quality of the distractors that were generated by the
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WordNet. Noticed that we used the hypernyms and coordinate concepts of a key to

find the potential distractors (see Section 2.5.1) and we ranked them by the

similarity scores between the key and the distractors. Although this returned the

similar concepts with the key, it failed to provide the distractors that were suitable

for the context of the question. An annotated instance shown in Table 2.8

exemplifies the problem. The fourth distractor black was a random word inserted in

the annotation. The WordNet-based approach generated one, two, and three as the

three distractors for the key zero. The three candidates are perfect distractors for

zero when we removed the context. However, for the given question, they are bad

distractors. Since students provide contextual words as their answers to the

open-cloze questions, considering their responses as distractor candidates would not

face this challenge and supports to our hypothesis.

Table 2.8: A problem with WordNet-based distractor selection

Question Newton’s first law says that if an object moves with a constant
velocity or is at rest, the net force on the object is .

Key zero
Distractors one two three black
Annotation bad bad bad bad

Note that we have many good candidates for distractors which were not

selected as we only need three distractors per question. We can utilize such

distractors to generate gap-fill questions dynamically. One idea would be to select

top N good candidates and choose 3 of them randomly. This would generate

different gap-fill questions each time, increasing the diversity of the answer choices

and eventually reducing effects of gaming-the-system behavior.

Analysis of Errors

Since our approach relies on student-generated responses, it is prone to errors

found in those responses. In fact, this was one of the major factors for limiting the
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performance of the system. The first problem was misspelling of words. Students

sometimes make spelling mistakes: seperately vs separately, thirrd vs third etc.

These can be easily repaired at some extent except cases where the mispelled word

is itself a valid word, for instance, on instead of no. In this case, both of these words

are valid words unlike in the case of misspelling. Use of numbers is another

problem. Students typed numbers in their answers, e.g., 1st for first, 0 for zero,

9.8m/s for constant acceleration etc. They also use phrases for single word keys e.g.,

gravity vs force of gravity.

The most challenging factor was finding the similarities between students’

answers with the key. Although the words in the following pairs (is, equals),

(vertical, y-direction), (identical, constant) may have slightly different meanings,

they have same meanings in the context of Newtonian Physics. Our semantic

similarity measure, i.e., LSA, failed to handle such pairs and thus performed poorly

at finding distractors in those cases. Domain knowledge is required to properly

handle these pairs. A domain-specific LSA space might be a good solution, which

we plan to do as part of our future work.

2.6 Open-cloze Question Generation

A typical pipeline to automatically generate open-cloze questions is shown in

Fig. 2.3. It follows the three steps paradigm for question generation (Rus &

Graesser, 2009) : Sentence Selection, Candidate Generation (overgeneration) and

Candidate Selection (ranking).

Step 1 - Sentence Selection: To generate open-cloze questions, a set of

meaningful sentences are needed first. The sentences can be selected from a larger

source, e.g., a chapter in a textbook, using particular instructional criteria such as

being difficult to comprehend or more general informationl criteria such as being a

good summary of the source (Mihalcea, 2004) or directly from subject matter

experts.
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Fig. 2.3: A pipeline for gap-fill question generation

Step 2 - Candidate Generation: This step generates a list of candidate

questions (overgeneration) from the target sentences selected in Step 1. The

simplest method might be a brute force approach which generates candidate

questions by considering each word (or a phrase) as a gap. A more advanced

technique may target the content words as gaps or exploit the arguments of

semantic roles for the gaps (Becker et al., 2012). An example of overgeneration of

questions is shown in Table 2.9.

Step 3 - Candidate selection: Not all of the questions generated in the

candidate generation step are of the same quality. The classes can be Good, Okay,

and Bad as in Becker et al. (2012) or simply the binary classes Good and Bad. Good

questions are the questions that ask about key concepts from the sentence and are

reasonable to answer, Okay questions are questions that target the key concepts but

are difficult to answer (e.g., too long, ambiguous), and Bad questions are questions

which ask about unimportant aspect of the sentence or their answers are easy to

guess from the context. The candidate selection step is about rating the question

candidates. Supervised machine learning models are typically employed in the form

of classifiers to label the candidate questions as Good, Okay, or Bad.

2.6.1 Question Quality

Question quality can be judged linguistically or pedagogically. In linguistic

evaluation, questions are evaluated with respect to whether they are grammatically
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Table 2.9: Typical overgenerated questions from a sentence with their ratings Good,
Okay and Bad.

Bad ........ net force is equal to the mass times its acceleration.
Good The ........ force is equal to the mass times its acceleration.
Good The net ........ is equal to the mass times its acceleration.
Good ........ is equal to the mass times its acceleration.
Bad The net force ........ equal to the mass times its acceleration.
Okay The net force is ........ to the mass times its acceleration.
Bad The net force is equal ........ the mass times its acceleration.
Good The net force is equal to the ........ times its acceleration.
Okay The net force is equal to the mass ........ its acceleration.
Bad The net force is equal to the mass times ........ acceleration.

and semantically correct. In pedagogical evaluation, questions are evaluated to see

whether they are helpful for understanding and learning the target concepts. Our

focus here is on the pedagogical evaluation of automatically generated open-cloze

questions since they are always linguistically correct.

The third step, i.e., candidate selection is expensive when supervised

approaches are used because model building in supervised learning requires large

amount of human annotated examples. The advantage of supervised methods,

however, is that their performances are in general better than, for instance, that of

unsupervised methods. As such, ideally, we would like to keep the advantages of

supervised methods while reducing the costs of annotating data. Such a method

that offers a good compromise between annotation costs and performance is active

learning, which we adopt in this work. Such models are always attractive choices

especially when there is a limited budget e.g., fixed annotation time / cost, a highly

probable case.

Active learning and interactive learning are two well-known approaches that

maximize performance of machine learning methods for a given budget. They are

successfully applied for rapidly scaling dialog systems (Williams et al., 2015),

parts-of-speech tagging (Ringger et al., 2007), sequence labeling (Settles & Craven,
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2008), word sense disambiguation (J. Chen, Schein, Ungar, & Palmer, 2006), named

entity tagging (Shen, Zhang, Su, Zhou, & Tan, 2004), etc. Instead of selecting and

presenting to an annotator a random sample of unlabeled instances to annotate,

these approaches intelligently rank the set of unlabeled instances using certain

criteria (see Section 2.6.3) and present to the annotator the best candidate(s). This

characteristic of active learning and interactive labeling hopefully demands fewer

instances than random sampling to obtain the same level of performance.

Here, we propose an active learning based approach to judge the quality of

open-cloze questions with the goal of reducing the annotation costs. We are not

aware of any previous effort that uses active learning for question generation. We

chose active learning particularly because it is well-suited when unlabeled data is

abundant but manual annotation is tedious and expensive. As mentioned, this is

the case in open-cloze question question generation in overgeneration approaches

when plenty of questions are available but their quality needs to be specified. The

remaining challenge is to judge the quality of these questions. Our plan is to build a

probabilistic classifier at reduced costs that would automatically label each

candidate questions as good or bad using an active learning approach.

2.6.2 Existing Approaches for Ranking Questions

Currently, statistical and machine learning based approaches are the most

popular approaches that are used to rank the automatically generated questions of

various kinds e.g., free-response and open-cloze questions. For example, Heilman et

al. (Heilman & Smith, 2010) used logistic regression, a supervised method, to

predict the acceptability of each free-response question candidate. The candidate

questions were automatically generated by using a set of rules. They used fifteen

native English-speaking university students for the construction of training

examples required for building the logistic regression model.

Hoshino and Nakagawa (Hoshino & Nakagawa, 2005) proposed a machine
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learning approach to generate multiple-choice questions for language testing. They

formed a question sentence by deciding the position of the gap, i.e., missing word(s).

To decide whether a given word can be left blank (i.e., serve as a gap) in the

declarative stem, they trained classifiers using the training instances which were

generated by collecting fill-in-the-blank questions from a TOEIC preparation book.

The positive examples were the exact blank positions in the question from the book

whereas the negative examples were generated by shifting the blank position.

Similarly, Becker et al. (2012) proposed Mind the Gap system that applied

logistic regression to rank automatically generated open-cloze questions. They used

text summarization technique to select useful sentences from text articles for which

open-cloze questions are to be generated. From each of the selected sentence, it

generated potential open-cloze candidates using semantic constraints. Each

candidate question was then labeled by four Amazon’s Mechanical Turkers to one of

Good, Bad and Okay classes. In total, 85 unique turkers were involved in the

annotation. That data set was used to build a logistic regression classifier and

ranked the candidate questions. They reported that the classifier largely agreed

with the human judgment on question quality.

In recent works Mazidi and Nielsen (Mazidi & Nielsen, 2014a, 2014b)

generated free-response questions from sentences by using the patterns which were

manually authored by exploiting the semantic role labels. They evaluated the

questions linguistically and pedagogically using human annotators and reported

that their systems produced higher quality questions than comparable systems. The

main limitation of their approaches is that they do not exploit the examples

obtained from the annotation process to evaluate unseen (or not yet evaluated)

questions. Moreover, their approaches do not provide any ranking for the questions

they generated using those patterns.
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2.6.3 Active Learning for Judging Question Quality

As mentioned before, active learning fits well when abundant data can be

available but manual labeling costs are high. As a result, the technique has been

applied to many NLP tasks such as text classification, Word Sense Disambiguation,

sequence labeling, and parsing. We use active learning for guiding our annotation

process for judging the quality of automatically generated open-cloze questions.

Active Learning Algorithms

An active learning system mainly consists of a classification model and

querying algorithm. Typically the classification models are the probabilistic

classifiers such as Näıve Bayes and Logistic Regression which provide a class

probability distribution for a given instance. Querying algorithms/functions actively

choose unlabeled instance samples by exploiting these probabilities.

Algorithm 1: Pool-based active learning algorithm

Input: Labeled instances L, unlabeled instances U , query batch size B, query
function f(.) ;
while some stopping criterion do

θ = Train the model using L;
for i = 1 to B do

b∗i = arg maxu∈U f(u);
L = L ∪ < b∗i , label(b

∗
i ) >;

U = U − b∗i ;
end

end

We follow the standard pool-based active learning algorithm as shown in

Algorithm 1. It starts with a set of initially labeled instances (seed examples) and a

set of unlabeled instances (U). A new model is built using the labeled examples in

L. Next, a batch of instances are extracted from the unlabeled set U using a query

function f(.) and then the selected instances are labeled by human judges. The new

labeled instances are added to the labeled list L. The process repeats until a
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stopping criterion is met. The criteria could be the number of examples labeled,

expected accuracy of the model, or something else.

Querying Algorithms

Many query functions exist. They differ on how they utilize the class

probability distributions. We use two variants of query functions: uncertainty

sampling and query by committee sampling.

A. Query by Uncertainty or Uncertainty Sampling

Uncertainty sampling chooses the samples for which the model’s predictions

are least certain. These examples reside very near to the decision boundary. We use

three functions that predict the samples in the decision boundary.

(a) Least Confidence: This function chooses the sample x that has the highest

fLC(.) score and is defined as : fLC(x) = 1− P (y∗|x; θ) where y∗ is the most likely

class predicted by the model (Settles & Craven, 2008).

(b) Minimum Margin: This function chooses the sample x that has the least fMM(.)

score and is defined as: fMM(x) = |P (y∗1|x; θ)− P (y∗2|x; θ)| where y∗1 and y∗2 are the

first and the second most likely classes predicted by the model (J. Chen et al., 2006).

(c) Entropy : This function chooses the sample x that has the highest entropy i.e.,

fEN(.) score and is defined as: fEN(x) = −
∑C

c=1 P (yc|x; θ) ∗ log(P (yc|x; θ)) where C

is the total number of classes (J. Chen et al., 2006).

B. Query by Committee

Our query by committee sampling algorithm consists of a committee of

models. These models are trained on the same labeled examples but learn different

hypotheses. We compute for a given instance the class distribution mean over all

committee members and assume that the mean scores represent the votes received

from the committee. Next we apply fLC(.) , fMM(.) and fEN(.) over the mean class

distribution and view them as selection scores.
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2.6.4 Experiments

Data Set

Although an active learning system does not require all the unannotated

instances to be labeled initially, having such an annotated data set is very useful for

simulations since it allows us to conduct experiments to inverstigate active learning,

in our case, for judging the quality of automatically generated questions. To this

end, we used the existing data set called Mind the Gap data set which was created

and made publicly available by Becker et al. (2012)1. The data set consists of 2,252

questions generated using sentences extracted from 105 Wikipedia’s articles across

historical, social, and scientific topics. Each question was rated by four Amazon

Mechanical Turkers as Good, Okay, or Bad (see definitions in Section 2.6).

For experiments, we binarized the questions into positive and negative

examples. We considered a question positive when all of its ratings were Good or at

most one rating was Okay or Bad. The rest of the questions were considered as

negative examples. This way we obtained 747 positive and 1,505 were negative

examples. The chosen requirement for being a positive example was needed in order

to focus on high quality questions.

Features

In order to build models to judge the quality of questions, we implemented

five types of features as in Becker et al. (2012) including Token Count, Lexical,

Syntatic, Semantic and Named Entity. In total we had 174 features which are

summarized in Table 2.10. The numbers inside parentheses are the indices of the

features used.

Questions with many gaps (with many missing words) are harder to answer.

Similarly, gaps with many overlapped words with the remaining words in the

question are not suitable since they can be easily inferred from the context. We

1http://research.microsoft.com/s̃umitb/questiongeneration
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Table 2.10: List of features used in the experiments

Type Features

Token Count - 5
no. of tokens in answer(1) and in sentence(2), % of
tokens in answer (3), no.(4) and %(5) of tokens in answer
matching with non-answer tokens

Lexical - 9

% of tokens in answer that are capitalized words(6), pro-
nouns(7), stopwords(8), and quantifiers(9), % of capital-
ized words(10) and pronouns(11) in sentence that are in
answer, does sentence start with discourse connectives
?(12), does answer start with quantifier ?(13), does an-
swer end with quantifier ?(14)

Syntatic - 116

is answer before head verb ? (15), depth of answer
span in constituent parse tree (16), presence/absence
of POS tags right before the answer span(17-54),
presence/absence of POS tags right after the answer
span(55-92), no. of tokens with each POS tag in
answers(93-130)

Semantic - 34

Answer covered by (131-147), answer contains(148-164)
the semantic roles: {A0, A1, A2, A3, A4, AM-ADV,
AM-CAU, AM-DIR, AM-DIS, AM-LOC, AM-MNR,
AM-PNC, AM-REC, AM-TMP, CA0, CA1, Predicate}

Named Entities - 11

does answer contain a LOC(165), PERS(166), and
ORG(167) named entities ? does non-answer span con-
tain a LOC(168), PERS(169), and ORG(164) named
entities ? no. (170) and % (171) of tokens in answer
that are named entities, no. (172) and % (173) of to-
kens in sentence that are named entities, % of named
entities in sentence present in answer (174)

used 5 different Token Count features to capture such properties. We also used 9

Lexical features to capture different statistics of pronouns, stop words, quantifiers,

capitalized words, and discourse connectives. Similarly, we used 116 Syntatic

features that include mostly binary features indicating presence/absence of a

particular POS tag just before the gap and just after the gap, and number of

occurrences of each POS tag inside the gap. Our semantic features includes 34
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binary features indicating whether the answer contained a list of semantic roles and

whether semantic roles cover the answer. In addition, we used 11 Named Entities

features to capture presence/absence of LOC, PERS and ORG entities inside the

answer and outside the answer. We also computed the entity density i.e., number of

named entities present in the answer. We used SENNA tool for getting semantic

roles (Collobert et al., 2011) and Stanford CoreNLP toolkit (Manning et al., 2014)

for getting POS tags and named entities.

Results

We conducted a number of experiments to see how active learning performs

at judging the quality of questions at different settings: type of classifiers (simple

and committee), evaluation metrics (accuracy and F-Measure), seed data size, batch

size, and sampling algorithms. An experiment consists of a number of runs. In each

run, we divided the data set into three folds using stratified sampling. We

considered one of the folds as the test data set and merged the other two to

construct the unlabeled data set (U). Remember that our data set is already labeled

but we pretended that it is unlabeled U . Typically, the selected instances from U

have to be labeled by a human. Since we already know all the labels in the data set,

we mimic the human labeling by simply using the existing labels. This allows us to

conduct several experiments very efficiently.

In the first experiment, we compared the various sampling techniques in

terms of their impact of the overall performance of question quality classifier. To

this end, we randomly selected 8 examples (four positive and 4 negative) from U for

the seed data set, removed them from U and put them into the labeled data set (L).

We then built a Näıve Bayes model for judging the quality of questions using L. All

the machine learning algorithms we used are available in Weka (Hall et al., 2009).

Next, we applied a given sampling strategy to select 4 best examples (i.e., a batch of

size 4) to be labeled. These new labeled examples were added to L and the question
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quality classifier was retrained with this extended data set. We used the test data

subset to evaluate the question quality classifier at each iteration and report

accuracy and F-measure. The process was iterated until the unlabeled data set U

was empty.

Fig. 2.4: Full simulation for Näıve Bayes accuracy

We used the four sampling algorithms (i.e., least confidence, minimum

margin, entropy and random) and report results in terms of average across 100

different runs; in each such run we ran the active learning approach entirely on all

the data we had available. Fig. 2.4 and Fig. 2.6 present the accuracy and F1 scores

of Näıve Bayes for each of the sampling algorithms with respect to the number of

labeled instances used. Fig. 2.5 and Fig. 2.7 are close-ups of leftmost part of the

curves in Fig. 2.4 and Fig. 2.6, respectively. As we can see, all uncertainty sampling

methods (Min-margin, Entropy and Least confident) outperformed random

sampling for both accuracy and F1 measures after few annotations were made. For

instance, with 200 examples selected by active learning, the model provided 10%

more in accuracy and 4% more in F1 measure compared to the case when the same

number of instances were used by sample randomly. It is a promising observation
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that can save annotation budgets significantly. Moreover, close-up graphs show that

all three uncertainty sampling approaches rival each other. Note that all the

sampling methods converged (i.e., have same accuracy and F1 measure) at the end

of the simulation. It is normal because they would have the same set of labeled

instances by then.

Fig. 2.5: Close-up view of Näıve Bayes accuracy

Fig. 2.6: Full simulation for Näıve Bayes F1
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Fig. 2.7: Close-up view of Näıve Bayes F1

In the second experiment, we formed a committee of three probabilistic

classifiers provided by Weka: Näıve Bayes, Logistic Regression, and SMO. These

classifiers learnt different hypotheses from the same set of training examples. As

discussed in Section 2.6.3, we generated three models from the same labeled set of

examples and computed mean probability distributions. For this experiment, we set

seed size of 8, batch size of 4, and 100 runs as in experiment 1 and measured the

performances of the sampling algorithms. Fig. 2.8 and Fig. 2.10 show the accuracy

and F-measure for several sampling strategies as a function of the number of

annotated examples. Fig. 2.9 and Fig. 2.11 are the close-up views for Fig. 2.8 and

Fig. 2.10 respectively. Again, the uncertainty based sampling algorithms are very

competitive to each other and they outperform random sampling significantly in

both accuracy and F-measure. This suggests that committee based active learning

is also useful for checking question quality.

To get an idea of the level of annotation savings when using active learning,

consider we have a budget for annotating about 160 instances. With this budget (in

Fig. 2.8), uncertainty sampling algorithms provide 70% accuracy whereas random
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sampling provides only 65% accuracy. To attain 70% accuracy, random sampling

needs at least 360 samples (i.e., 200 examples more) to be labeled. With 360

samples, uncertainty sampling algorithms provide 74% accuracy. Similar

observations can be made when focusing on the F-measure. These observations

clearly show the effectiveness of using active learning for judging the quality of

automatically generated questions.

Fig. 2.8: Full simulation for committee accuracy

In the third experiment, we focused on the effect of the batch size on the

behavior of the active learning approach. Note that we generate a new model as

soon as a new batch of labeled instances is ready. For instance, a batch size of 2

means as soon as the annotators provide two annotated instances, we add them to

the labeled set and generate a new model from all the available labeled instances.

The new model is generally a better one as it is trained on a larger training set than

the previous one. However, the smaller the batch size the larger the computational

cost because we need to generate a model frequently. So, a balance between the

computation cost and the better model should be determined.

To this end, we chose Näıve based active learning with entropy based
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Fig. 2.9: Close-up view of committee accuracy

Fig. 2.10: Full simulation for committee F1

sampling. We varied the batch size from 1, 2, 4, and 8 and ran the experiment for

50 runs. The plot can be seen in Fig. 2.12. As the plot suggests, the performances

are less sensitive to batch sizes. A reasonable choice could be a batch size of 4. But

again, it depends on the amount of computation cost available for model

construction.

In the last experiment, we varied initial seed size to see its effect of the initial
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Fig. 2.11: Close-up view of committee F1

Fig. 2.12: Effect of batch size

seed size on our active learning approach. We experimented with seed sizes of 4, 8,

16 and 32. We applied Näıve based active learning with the batch size of 4 and 100

runs. The plot in Fig. 2.13 shows F1 measures of Entropy based sampling at
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Fig. 2.13: Effect of seed data

different seed set sizes. It can be seen that the smaller the seed size, the smaller the

F1 score initially. Having a larger seed data initially is beneficial which is obvious

because in general the larger the training set the better. We also included a plot of

the F1 measure corresponding to random sampling with 32 seeds in Fig. 2.13. It is

interesting to note that although random sampling with 32 seeds has larger F1 score

initially, it eventually performs poorly when more data is added.

2.7 Discussions and Conclusions

This chapter discussed several issues related to automatically generating

pedagogically good quality questions in the context of tutorial dialog. We started by

presenting an approach that automatically mines cloze questions from recorded

tutorial dialogues between actual students and a state-of-the-art ITS unlike most of

the existing systems that rely on the content of an instructional text. We used the

responses given by students to open-cloze questions to identify potential distractors

for the gap-fill questions. For the questions that had less number of student
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responses, we used WordNet to extract distractors similar to previous approaches

proposed by others. We proposed different ranking functions to prioritize the list of

potential distractor candidates including the one based on the frequency of students

responses (votes). As such, this would be particularly useful for MOOCs and

scalable ITSs where thousands of student solve the same problem. The proposed

method can be applied to generate dynamic gap-fill questions and to make the

assessment and dialog interactions more realistic.

Next, we presented a work that used active learning for training classifiers for

judging the quality of automatically generated open-cloze questions. Experiments

showed that active learning is very useful for creating cost-efficient methods for

training question quality classifiers. A reasonably good classifier can be built with

300-500 labeled examples using active learning (a potential stopping criteria) that

can provide about 5-10% more in accuracy and about 3-5% more in F1-measure

than with random sampling. Indeed, the proposed approach can accelerate the

question generation process, saving annotation time and budget.
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Chapter 3

Anaphora Resolution

Anaphora resolution is one of the key problems to be addressed in order to

understand students’ responses. This chapter presents a machine learning approach

to deal with this problem based on my published work (Niraula & Rus, 2014).

3.1 Introduction

The task of anaphora resolution is to identify the referent of a pronoun in

dialogue and discourse. It is one of the important tasks in many NLP applications

such as information extraction, automated essay grading, and summarization. It

also plays a critical role in conversational ITSs as it can increase the accuracy of

assessing students’ knowledge level, i.e., mental model, based on their natural

language inputs.

Students’ natural language responses to tutors’ questions are major sources

of information about what a student knows. Incorrect assessment of student

responses could lead to incorrect feedback provided by the system which, in turn,

could frustrate students sometimes to the point of quitting using the system, an

undesired effect. Because student responses often contain pronouns, the accuracy of

the inferred student model is directly dependent on resolving anaphors in such

student responses.

Consider the real student-tutor interaction below from a state-of-the-art ITS,

DeepTutor:

PROBLEM: A mover pushes a desk with constant velocity V0 across a carpeted

floor. Suddenly, the mover stops pushing. What can you say about the motion of the

desk after the mover stops pushing ? Explain why.

STUDENT ANSWER: The desk will stop moving because it was only moving due to

the applied force of the mover pushing on it. It does not have a constant velocity or
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Table 3.1: Use of pronouns in student responses

(a) Intra-turn :
TUTOR:What does Newton’s second law say?
STUDENT:for every force, there is another equal force to counteract it
(b) Inter-turn immediate:
TUTOR:What can you say about the acceleration of the piano based on New-
ton’s second law and the fact that the force of gravity acts on the piano?
STUDENT: It remains constant.
(c) Inter-turn history:
TUTOR: Since the ball’s velocity is upward and its acceleration is downward,
what is happening to the ball’s velocity?
STUDENT: increasing
TUTOR: Can you please elaborate?
STUDENT: it is increasing

acceleration to keep it going.

The student answer in the example above has four pronouns, all referring to

desk. To fully understand the student response these pronouns must be resolved. A

pronoun resolution algorithm such as the one proposed here could help resolve the

four pronouns. The need for such an algorithm is further emphasized by the fact

that students’ use of pronouns while conversing with a computer tutor is quite

frequent (Niraula, Rus, & Stefanescu, 2013). The authors reported 5,881 pronouns

in 25,945 student turns. Moreover, our analysis shows that about 22% of the total

students turns contain at least one pronoun.

Three types of anaphora usage in students’ answers can be identified in

student-tutor interactions. They include Intra-turn, Inter-turn intermediate and

Inter-turn history anaphora - see Table 3.1. In the case of Intra-turn anaphora, the

referents are found within the student’s current dialogue turn. In Inter-turn

intermediate anaphora, the referents lie in the most recent tutor turn (Rus,

Stefanescu, et al., 2014) and in Inter-turn history anaphora, the referents are

located in earlier dialogue turns or even the problem description.
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While anaphora resolution is a well-studied problem in written texts

(Mitkov, 1999; Poesio & Kabadjov, 2004; Rahman & Ng, 2009) and dialogue

(Poesio, Patel, & Di Eugenio, 2006; Stent & Bangalore, 2010; Strube & Müller,

2003), there are very limited works which address anaphora resolution in dialogue

based ITSs which are more specific systems with different assumptions. Due to the

peculiarities of tutorial dialogues, existing solutions for anaphora resolutions must

be adapted to get optimal resolutions of anaphors in ITSs dialogues. To this end,

we propose Deep Anaphora Resolution Engine++ (DARE++) for resolving

pronouns in conversational ITSs. DARE++ is the improved version of DARE

(Niraula, Rus, & Stefanescu, 2013), a previously developed heuristics-based

anaphora resolution engine for dialogue based ITSs. DARE++ is one of the first

machine learning techniques proposed for resolving pronouns in ITSs. It is guided

by thousands of student-tutor interactions obtained from a state-of-the-art tutoring

system, DeepTutor.

3.2 Related Works

The more general problem of finding coreferents, i.e., words and expressions

referring to the same entity or event, is called coreference resolution. Anaphora is

the special case of finding referents of pronouns. The literature on anaphora /

coreference resolution for written texts is rich (Mitkov, Evans, & Orasan, 2002;

Poesio & Kabadjov, 2004; Qiu, Kan, & Chua, 2004; Rahman & Ng, 2009; Versley et

al., 2008). Similarly, considerable work on resolving pronouns in dialogue can be

found in the literature (Ferguson, Allen, Galescu, Quinn, & Swift, 2009; Poesio et

al., 2006; Stent & Bangalore, 2010; Soon, Ng, & Lim, 2001; Strube & Müller, 2003).

Methodologies for resolving pronouns in dialogue and discourse can be

classified into knowledge-poor and classification approaches. Knowledge-poor

approaches rely on hand-crafted rules or heuristics. A simple rule based approach

proposed for ITSs and closest to this work is by Niraula, Rus, and Stefanescu
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(2013). The authors learned simple rules from few annotated instances and applied

them on top of an existing state-of-the-art coreference tool. The limitation of their

approach is that learned rules using a few hundred observations is not sufficient for

handling all the cases. Moreover, peculiar characteristics of the dialogue based ITSs

are underutilized.

Classification approaches, on the other hand, work by means of models

acquired through annotated corpora using machine learning algorithms. One such

example is by Soon et al. (2001) who used a decision tree algorithm for coreference

resolution. Strube and Müller (2003) proposed a machine learning approach to

resolve pronouns in spoken dialogue. They also used decision tree to classify valid

antecedent-pronoun pairs using their feature sets. Stent and Bangalore (2010) used

logistic regression for mention-referent classification. Kernel based methods are also

found in the literature to classify the pairs (Yang, Su, & Tan, 2006).

Anaphora resolution techniques proposed for English written texts need to

be adapted when applied to texts in specific domains, genres (e.g., dialogue) and

languages (other than English) as anaphora instances exhibit different

characteristics than in professionally written texts such as newspaper articles. The

technique proposed by Arregi et al. (2010) is such an example where authors

adapted existing anaphora solutions in English to the Basque language. Similarly,

Stent and Bangalore (2010) adapted solutions to resolve pronouns in a spoken

dialogue system by adding spoken dialogue related features to existing solutions.

Anaphora resolution in biomedical texts is another example of such adaptation

(Gasperin & Briscoe, 2008).

ITSs have some commonalities with spoken dialogue systems in that both

use dialogues in the interactions. It should be noted that we used data from ITSs

that interact with students through typed dialogue, i.e., a chatroom-like type of

interaction as opposed to spoken dialogue interaction. Furthermore, the dialogues
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are in the context of science learning while spoken dialogue systems were studied

mostly for common tasks such as airline ticket reservations. In both systems,

antecedents corresponding to anaphors belong to current or previous utterances.

However, there are differences too. First, in spoken dialogue systems, the majority

of pronouns are personal and demonstrative pronouns (Strube & Müller, 2003).

However, in tutorial dialogues, the pronouns are mostly it, they, he and she

(Niraula, Rus, & Stefanescu, 2013). Second, referents can be VP-antecedents or

NP-antecedents in spoken dialogue systems but almost all antecedents in ITSs are

NP-antecedents.

Given the above peculiarities of tutorial dialogues compared to written texts

and spoken dialogues, existing approaches to pronoun resolution should be adapted

in order to maximize accuracy. To this end, we have proposed DARE++ that

resolves anaphors in ITS dialogues using machine learning approaches.

3.3 Data

We extracted and annotated 1,000 pronoun instances from student-tutor

interaction logs collected in an experiment involving high-school students

interacting with the intelligent tutoring system DeepTutor in the domain of

conceptual Physics. We described the details of the data set creation at Niraula,

Rus, Banjade, et al. (2014). The data is freely available for public usage1.

A typical collected instance is presented in Table 3.2. Each instance has a

unique id (e.g., 3,624 in the example). The log files are records of the actual

dialogue between the computer tutor and students. Student’s current response is

designated by A (student answer) and the corresponding utterance from the tutor,

usually in the form of a guiding question from DeepTutor, is denoted by Q. Previous

student responses are denoted with A1, A2, and so on, while previous DeepTutor

turns are denoted with Q1, Q2, and so on. The goal is to resolve pronouns in A to

1http://language.memphis.edu/nobal/AR
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Table 3.2: A typical instance for anaphora resolution

INSTANCE: 3624
PROBLEM: A stuntman must drop from a helicopter onto a target on the roof of
a moving train. The plan is for the helicopter to hover over the train, matching
the train’s constant speed before the stuntman drops.
Q2: Where should the helicopter be positioned relative to the target? Please
begin by briefly answering the above question. After briefly answering the above
question, please go on to explain your answer in as much detail as you can.
A2: in front of the target due to wind resistance
Q1: Let me try again. Which principle can be applied when the motion of an ob-
ject is complex, for instance, it can be thought of as motion in two perpendicular
dimensions?
A1: decomposition
Q: What can you say about <p id = “3624 2” min = “motion”>the motion of
the stuntman </np> after he jumps?
A: <p id = “3624 2” refid = “3624 1” > it </p> will be parabolic

their referent, which could be in the same student response A, the previous tutor

turn Q, earlier in the dialogue history (and thus part of the common ground built

by the two conversation partners), or even the current problem description.

Once the set of 1,000 instances was collected, we annotated the instances

following a set of guidelines developed by linguistics experts (Niraula, Rus, Banjade,

et al., 2014) which also borrowed some ideas from the guidelines used for annotating

the data set used in the Message Understanding Conference (MUC-6 2). For

annotation, we formed five pairs of annotators and trained them to annotate the

instances. Each annotator in a pair annotated the same 100 instances independently,

resolved their differences on the first 100 instances before repeating the annotation

for another 100 instances. Average kappa statistic for the annotation was 0.84.

Once the annotated corpus was ready, we analyzed the annotated instances

to first understand pronoun usage in our tutorial dialogues (see Table 3.3). A

student answer can contain more than one pronoun and each pronoun may or may

not have a referent (due to pleonastic pronouns, elipsis, etc.). About 78% of the

2http://www.cs.nyu.edu/cs/faculty/grishman/muc6.html
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Table 3.3: Distribution of anaphors

Pronouns Count Percentage %
hasRef (e.g., it, he, she) 1003 78.11
first person personal pronouns 170 13.23
pleonastic 32 2.49
communication breakdown (Soft) 32 2.49
communication breakdown (Hard) 27 2.10
others 20 2.49

pronouns have referents, clearly demanding a method to resolve them. Students also

used first person personal pronouns (e.g., I, we, and my) in their responses. About

13% of the pronouns are pleonastic. About 2.49% of pronouns need some form of

inference to correctly identify their referents as the student answer does not

precisely refer to an explicitly mentioned referent. We call such designate such case

communication breakdowns - soft ; (Niraula, Rus, Banjade, et al., 2014)). About

2.1% of pronouns’ are found to be irrelevant to the context such that it is very hard

to find their referents even by human experts (communication breakdown - hard ’

(Niraula, Rus, Banjade, et al., 2014)).

Table 3.4 shows the most used pronouns sorted by their frequency. The

pronouns it, they and its are the three most frequent pronouns and account for

more than 70% of pronoun usage. Since it can be pleonastic, identifying and

resolving this pronoun is particularly challenging.

We further generated statistics about the locations of the referents

corresponding to the students’ pronouns and presented the top locations in Table

3.5. More than 50% of the pronouns refer entities in Q (the immediate tutor

question), about 30% of the pronouns have their referents in A ( i.e., in the student

answer as the pronoun to be resolved), and about 11% of the referents are found in

the problem descriptions (Ps). Very few pronouns refer to the entities in the

previous tutor questions in the dialogue history (Qi).
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Table 3.4: Most common pronouns

Pronoun Count Percentage(%)
it 658 53.47
they 153 11.94
its 120 9.37
i 61 4.76
you 55 4.29
her 36 2.81
she 34 2.65
them 21 1.63
he 19 1.48
their 18 1.40
his 17 1.33

3.4 Methodology

Machine learning based methods are among the most popular approaches to

the problem of coreference resolution (Stent & Bangalore, 2010). The standard

coreference pipeline for such methods include identification of mentions which are

co-referring expressions, extraction of features describing these mentions,

determining mention-pair candidates which are pairs of mentions that corefer, and

clustering mention-pairs in order to identify mentions that form a chain, i.e., refer

to the same entity.

Table 3.5: Top five locations for antecedents

Location Count Percentage(%)
Q 577 53.22
A 342 31.54
P 125 11.53
Q1 28 2.6
Q2 5 0.46

We adopted this coreference pipeline with some modifications. First of all,

we do not generate all mention-pairs as our objective is not to generate the

complete coreference chain rather just resolve the pronouns in the students answer

to the corresponding entity, typically the most recent non-anaphoric reference of the
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entity. That is, we are interested in finding the referents (if any) of only pronouns

that appear in a student answer but not necessarily finding chains of pronouns or

other types of referents to the same entity. This is sufficient for our goal of best

understanding the current student answer. This simplification significantly reduces

the search space of mention-pairs. Additionally, we do not need to cluster the

mentions as we need only one referent of a pronoun. Thus, our model generates a

limited number of mention-pairs and classifies them as either P(ositive) which

means the two mentions (typically a noun and a pronoun mention) corefer or N

(egative), otherwise. We present next the major phases in our anaphora pipeline.

3.4.1 Generation of Mention-pairs

Our mention-pair construction algorithm works as follows. We use a parser

to parse the problem text and tutor-turns and extract noun and noun phrases (we

do not consider previous student turns for mention candidates as pronouns in

student answers almost never refer to something in a previous student answer/turn).

Next, we parse student’s answer (i.e., A) and identify pronouns to be resolved.

These pronouns are then paired with nouns to get mention-pairs. We exemplify this

process for the instance shown in Table 3.2. We parse the sentences in PROBLEM,

Q2, Q1, Q, and A and get the following mention-pairs: (stuntman,it),

(helicopter,it), (target,it), (room,it), (train,it), (principle,it), (motion,it), etc.

3.4.2 Feature Selection

In order to use machine learning techniques to automatically induce a

classifier, we need to devise a set of features that are useful for classifying the

mention-pairs as P or N. This is a crucial step as the accuracy of the induced

classifiers relies significantly on these features. We used lexical, syntactic, semantic,

and dialog related features which are listed in Table 3.6.

Lexical Features: Lexical features include lengths of A, Q, A1, Q1, A2, and Q2,

pronoun (P)’s position in A (i.e., the token index), total number of pronouns in
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Table 3.6: List of features (P = pronoun, C = a referent candidate)

Type Features

Lexical
lengths (of A, Q, A1, Q1, A2, and Q2)(1-6), P’s token position in A (7)
no. of Ps in A(8), % of tokens before & after C (10-11), is C in A ? (12)
has WH-Word in A(13), has negation word in A? (14), question type (15)

Syntactic
dependency relation counts (governer & total) of P (19-20) and C (21-22),
present/absent 135 dependency relations (24-158)

Semantic
gender agrees ? (16), number agrees ? (17), person of P (18),
is C a proper noun ?(23)

Dialogue location of C in dialogue stack (9)

student’s answer, percentage of tokens before and after a referent candidate (C). We

also have boolean features to check whether the candidate referent C is in student’s

answer A, whether student’s answer contains any WH-words and simple negative

cue words. We used lists of WH-words and negative cue words, respectively, for this

purpose. Type of question is determined by checking first token in Q in this list:

(what:1, when:2, where:3, which:4, who:5, whom:6, whose:7, how:8, none of

above:-1).

Syntactic Features: To capture the grammatical functions of antecedent

candidates, we counted the number of dependency relations and the number of

relations with the candidate being a head word (governor). We also computed these

features for pronouns. Moreover, we used binary features for 135 dependency

relations each indicating true when the referent candidate is either its governor or

dependent.

Semantic Features: We created a dictionary to get the gender of pronouns and

of the characters (e.g., John) used in the problem descriptions. Values of gender

agrees feature can be 1 (matched), 0 (not matched) and 2 (not available). For the

number(s/p/na), we use simple rules using POS tags. For example, if a noun’s POS

is NN or NNP, we considered that noun a singular whereas if the POS is NNS or

NNPS we consider it as a plural(p). Similarly, a noun is deemed a proper noun if its

60



first character is capitalized (which can also be detected through the NNP or NNPS

tags).

Dialogue Features: We used one dialogue feature: the location of candidate

referent which takes value from 0 to 9 (A:0, Q:1, A1:2, Q1:3, A2:4, Q2:5, A3:6, Q3:7,

problem description:8, none of above:9).

3.4.3 Generation of Training Examples

The machine learning algorithms we experimented with require both positive

and negative instances in order to learn the target function, which in our case is a

classification function. We generated positive (P) and negative (N) examples of

mention-pairs using the annotated data set. Note that an example (training or

testing) is a vector containing values corresponding to the feature set. Positive

examples are easy to generate as pronouns and their correct referents are marked in

the annotated instances. For example, for the instance in Table 3.2, we generate the

following positive mention-pair (motion,it).

To generate negative examples, we follow an approach similar to (Soon et al.,

2001). Following this approach, we generate negative examples by using (entity,

pronoun) pairs where entity refers to any noun between the pronoun and its

annotated referent. To achieve this, we start going backwards from the pronoun to

be resolved and scan for nouns until we reach its correct referent. We form (noun,

pronoun) pairs for every identified noun in this span of dialogue. All the pairs

except (correct-referent,pronoun) are used to generate negative examples. As an

example, we generate the following negative instance of a mention-pair from the

annotated instance in Table 3.2: (stuntman,it). This mention pair is negative

because stuntman is between the pronoun “it” and its referent “motion”. If we had

other entities like stuntman in between “it” and “motion”, we would have generated

other negative examples as well.
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Table 3.7: Performance comparison

Method Acc. Pre. Rec. Fm. Kappa RME
Baseline (Niraula, Rus, & Stefanescu, 2013) 39.10 38.03 53.96 44.26 - -
Naive Bayes 82.33 66.9 78.11 72.11 0.59 0.35
SVM 87.78 84.06 71.83 77.47 0.69 0.34
Logistic Regression 88.06 81.24 76.85 79.00 0.70 0.29
Decision Trees (J48) 93.54 89.07 88.79 88.93 0.84 0.24
Multilayer Perceptron 88.82 86.96 72.67 79.17 0.71 0.31

3.4.4 Resolution of Mention-Pairs

To automatically learn how to classify a mention-pair as P or N, we used a

number of classifiers which were trained using the positive and negative examples

described in Section 3.4.3. Once induced, the classifier can be used to classify future

instances as either P or N. For instance, the referent of a new pronoun would

correspond to the referent in the mention-pair classified as P.

3.5 Experiment Setup and Results

We used the previously mentioned technique to extract the positive and

negative examples from the annotated corpus. In total, we obtained 955 positive

and 2,312 negative examples. Although our corpus has 1,000 annotated instances,

the positive examples are less because not all pronouns in the annotation corpus has

a referent (e.g., pleonastic pronouns, etc.). We considered the examples

corresponding to pronouns without any referents as negative examples as we want

our classifier to learn to reject such pairs in the future.

We used ten-fold cross-validation on the 3,267 examples for a number of

classifiers as done by Arregi et al. (2010). For comparison purpose, we used the

DARE system (Niraula, Rus, & Stefanescu, 2013) as our baseline. Results are

reported in terms of precision, recall, accuracy, F-measure and kappa statistic.

Table 3.7 shows the results for the baseline, and the best results obtained for

DARE++ using Naive Bayes, Support Vector Machine (SVM), Logistic Regression,

Decision trees and Multilayer perceptron classifiers. The results reported were

obtained after tuning various parameters of these machine learning algorithms.
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Note that all the classifiers have large performance gains over the baseline (Niraula,

Rus, & Stefanescu, 2013) in terms of accuracy, precision, recall and F-measure

scores. It is found that poor performance of the baseline system is due to its fairly

simple assumptions about the referents’ locations which do not cover all the cases.

For instance, one simple rule in the baseline algorithm stipulates that referents of

pronouns that occur in the middle of a student answer are located in the same

student answer (Niraula, Rus, & Stefanescu, 2013). While this seems right for some

cases, it is often not true.

Among all classifiers, Logistic Regression, Decision Tree (J48) and Multilayer

Perceptron are the best performing classifiers in terms of F-measure, Kappa-statistic

and the root mean squared error (RME). These classifiers have F-measures over

79%. Decision Tree using J48 has the highest accuracy, precision, F-measure and

Kappa statistics and the lowest root mean squared error.

For tutorial dialogues, false positives are very important because declaring a

noun as a referent of a pronoun, when it was actually not, leads to a different

interpretation of the student’s response. On the other hand, false negatives are less

sensitive than false positives as they do not add wrong information during the

interpretation process (e.g., suggesting a pronoun does not have a referent when it

had one is not as severe as suggesting an pronoun has a referent when it didn’t have

one). Thus, we paid attention to the false positive counts of the classifiers. We

found that the best performing classifiers also have lower false positive counts,

satisfying the conditions for tutorial dialogues.

3.5.1 Feature Analysis

We experimented with adding unigrams, bigrams, and trigrams features for

the tokens in A, Q and Qi and their part-of-speeches as done by Stent and

Bangalore (2010) for spoken dialogues. However, the performance didn’t improve.

Thus, the set of features presented in Table 3.6 is the best for tutorial dialogues.
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We further studied the features in order to understand which ones are the

most informative in tutorial dialogues. We used information gain and gain ratio to

rank the features. The most informative features turned out to be: the location of

referent, prep about (dependency relation), % of tokens after candidate, number

agrees?, gender agrees?, det (dependency relation), governor relation counts for

candidate, is candidate a proper noun, person of pronoun, prep of (dependency

relation).

It is not surprising to see that the gender, number, and person features are

crucial while determining the referents of pronouns in general. Interestingly, the

location of referent is one of the most informative features for anaphora resolution in

tutorial dialogues, which is different compared to the role of this feature in anaphora

resolution for written texts. As suggested by the Table 3.5, more than 80% of the

antecedents are located in Q and A alone. governor relation counts for candidate is

another informative feature in tutorial dialogues. This is the case because words

with many governor relations are more likely to be the focus of the tutor question

which is typically referred by students in their answers. The dependency relations

such as prep about and prep of are found to be other useful features for tutorial

dialogues. The tutors typically ask students the following type of questions: What

can you say about XX of the YY ? Student may reply with: It equals ZZ. In such

examples, the pronoun it in the student answer refers to XX in tutor’s question

which is involved in a prep about relation. Due to the relative high frequency of such

tutor question - student answer pattern the prep about relation becomes salient.

3.6 Discussions and Conclusions

In this chapter, we presented a solution to the problem of pronoun resolution

in tutorial dialogues obtained from dialogue-based ITSs. Although pronoun

resolution for written texts and spoken dialogues is well studied, it is not explored
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much for tutorial dialogues. Our experiments show that DARE++ can achieve a

F-measure of 88.93%, showing its robustness in resolving pronouns.

Although the performance of DARE++ is impressive, it can be improved

further. Demonstrative pronouns, ellipsis, soft, and hard communication

breakdowns (see Table 3.3) are the major factors limiting its performance. Next

important factor is having pronouns without antecedents (e.g., pleonastic pronoun).

In addition, we have not considered cataphora currently. They are less frequent in

tutorial dialogues but should be handled to make the system more robust. Finally,

we would like to explore other models that use a reduced set of features based on

the feature analysis we presented here or future feature analyses.
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Chapter 4

Assessment of Student Responses

In this chapter, we seek to find automatic and effective methods for assessing

students’ responses. Such methods play a crucial role in automatic dialog generation

since the type of feedback to students depends on the effectiveness of the methods.

Since the students’ responses and corresponding answers are typically short

sentences, the concentration should be on exploring the efficient methods for finding

semantic similarity between two short texts. Nevertheless, assessing how

semantically similar two short texts is very challenging.

4.1 Semantic Textual Similarity

Semantic Textual Similarity (STS) is the task of measuring the degree of

semantic equivalence for a given pair of texts. The problem is a central topic in

Natural Language Processing (NLP) as it plays a crucial role in many NLP

applications such as providing evidence for the correctness of answers in Question

Answering (Ibrahim, Katz, & Lin, 2003), increasing diversity of generated text in

Natural Language Generation (Iordanskaja, Kittredge, & Polguere, 1991), assessing

the correctness of student responses in Intelligent Tutoring Systems (Graesser et al.,

2005), and identifying duplicate bug reports in Software Testing (Rus, Nan, Shiva,

& Chen, 2009). More specifically, the task of semantic similarity involves making a

judgment with respect to how semantically similar two texts are. The judgment can

be quantitative, e.g., a normalized score, or qualitative, e.g., one text is (or not) a

paraphrase of the other.

For instance, in a conversational Intelligent Tutoring System, it is important

to understand students’ natural language inputs in order to assess their level of

understanding of the target topic to be learned and, consequently, provide

appropriate feedback (Rus et al., 2013). One frequently used approach to address

this student input assessment problem is to compute how similar the student

66



response is to a benchmark response such as an expert-articulated response

(Graesser et al., 2005; Rus & Graesser, 2006). That is, student response assessment

task is modeled as a text-to-text similarity problem. Here is an example of a real

student response from an ITS and corresponding benchmark answer authored by an

expert:

Student Response: An object that has a zero force acting on it will have zero

acceleration.

Expert Answer: If an object moves with a constant velocity, the net force on

the object is zero.

The student response above is deemed correct as it is semantically similar to

the expert answer. A student response is deemed incorrect if it is not similar to the

expert response. It should be noted that this type of binary modeling, which we

adopt in this work, has been extensively used in previously proposed semantic

similarity tasks such as the Recognizing Textual Entailment task (Dagan, Glickman,

& Magnini, 2006), the paraphrase identification task (Dolan, Quirk, & Brockett,

2004), or the student input assessment task (McCarthy & McNamara, 2008; Rus &

Graesser, 2006). More nuanced categorizations are possible, e.g., a student response

can be partially correct.

4.1.1 Relatedness and Similarity Measures

Basically, two types of measures are used to find the semantic relations

between texts: similarity and relatedness measures. Although they are related,

there are subtle differences between them. For instance, chicken and egg are related

as they often appear together, but they are not similar (living vs non-living). Thus,

similarity focused measures quantify the meaning shared by two words and

relatedness focused methods quantify the associations between the words.
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4.1.2 Vector Algebra for Semantic Similarity

When a word or a text is represented as a vector in semantic space, vector

algebra can be applied to compute semantic similarity among them. For example, to

compute the semantic similarity between word Wi and word Wj, we use the cosine

similarity between word vectors as :

Sim(Wi,Wj) =

∑K
n=1 Vi[n] ∗ Vj[n]

|Vi| ∗ |Vj|
where, Vi and Vj are the vectors corresponding to word Wi and Wj

respectively, and K is the dimension of vector Vi (or Vj).

Another advantage of representing a word as a vector is that we can compute

the semantic representation of a longer text (e.g., a sentence) by simply summing up

the individual word vectors of the text. That is equivalent to finding the resultant

vector of individual vectors. Once the representation of a text is obtained, we can

again compute the cosine similarity to compute its similarity with a given word or

text.

4.1.3 Sentence-level Semantic Similarity using Word-to-Word Similarity

The task of semantic similarity can be formulated at different levels of

granularity, ranging from word-to-word similarity, to sentence-to-sentence similarity,

to document-to-document similarity, or a combination of these, such as

word-to-sentence or sentence-to-document similarity.

Two categories of measures are popular in the literature to compute

sentence-level semantic similarity: those that compute similarity more globally and

those that rely on word-to-word similarity measures. The global approach derives a

semantic representation of entire text/sentence at once, without composing one

from word representations or from word-to-word semantic similarity measures. The

representations for sentences are then used to compute the semantic similarity

among them. For instance, semantic similarity between two sentences can be
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computed by computing the cosine similarity between the corresponding semantic

representation vectors.

The later approach computes sentence-to-sentence semantic similarity by

exploiting word-to-word similarity measures. One simple approach is first to

generate sentence representation by summing up the individual word representations

and then compute the cosine similarity between two sentences by using the

representations. Other approach computes semantic similarity by combining the

word-to-word similarities using some greedy or optimal matching method.

Greedy Matching : In the greedy approach words from one sentence (usually the

shorter sentence) are greedily matched, one by one, starting from the beginning of

the sentence, with the most similar word from the other sentence. The matching

between two words is quantified by various word-to-word similarity measures. In

case of duplicates, the order of the words in the two sentences is important such that

the first occurrence is matched with the first occurrence and so on. To be consistent

across all methods presented here and for fairness of comparison across these

methods, we require that words must be part of at most one pair. It should be noted

that others, e.g., Corley and Mihalcea (2005), did not impose such a requirement

and therefore, some words could be selected to be part of more than one pair.

The greedy method has the advantage, over the other methods, of being

simple and fast, while also effectively using the natural order of words within the

sentence. The obvious drawback of the greedy method is that it does not aim for a

globally maximum similarity score. The optimal method described next solves this

issue.

Optimal Matching : The optimal method aims at finding the best overall

word-to-word match. This is a well-known combinatorial optimization problem

called the assignment problem. The assignment problem consists of finding a

maximum weight matching in a weighted bipartite graph. Its instantiation to a job
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assignment context is most famous. Given a complete bipartite graph, G = (T1, T2,

E), with n worker vertices (T1), n job vertices (T2), and each edge es∈T1,t∈T2 ∈ E

having a non-negative weight w(t1, t2) indicating how qualified a worker is for a

certain job, the task is to find a matching M from workers (T1) to jobs (T2) with

maximum weight. In case of different numbers of workers or jobs, dummy vertices

could be used.

The assignment problem can be formulated as finding a permutation for

which SOPT =
n∑
i=1

w(t1i, t2π(i)) is maximum. Such an assignment is called optimum

assignment. An algorithm, the Kuhn-Munkres method, has been proposed that can

find a solution in polynomial time (Kuhn, 1955).

4.2 Literature Review

We will review two major research areas that are most related to our work:

research on word-to-word similarity measures and research on text-to-text similarity

measures with a focus on sentence level similarity.

The literature for computing word-to-word similarity and relatedness is very

rich. Broadly, these methods can be categorized into three groups depending on the

type of resources they use: Knowledge-based, Corpus-based and Web-based.

Knowledge-based methods rely on some form of ontology. WordNet (Miller, 1995) is

a well-known knowledge source that has been widely used to compute the semantic

similarity and relatedness between words. It is a large lexical database of English

consisting of nouns, verbs, adjectives and adverbs that are grouped into concepts

i.e., synsets (synonym sets). The concepts are then linked through lexico-semantic

relations such as hypernymy (is-a type of relation). The graph of lexicons has been

exploited in different ways resulting in several similarity measures (Banerjee &

Pedersen, 2003; Hirst & St-Onge, 1998; Lin, 1998; Wu & Palmer, 1994).

Corpus-based measures compute word similarity / relatedness scores based

on the words’ representations obtained from a given corpus. LDA, LSA and Explicit
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Semantic Analysis (ESA) (Gabrilovich & Markovitch, 2007) are some of the most

popular approaches for inferring word representations based on which a number of

approaches have been devised (Rus, Lintean, Banjade, Niraula, & Stefanescu, 2013).

Most recently, neural models have been proposed to derive word representations

from a corpus (Mikolov, Sutskever, Chen, Corrado, & Dean, 2013; Turian, Ratinov,

& Bengio, 2010). These measures have diverse assumptions and range from

algebraic to probabilistic methods. Since we are going to combine these methods,

we will give a more detailed account of these approaches in the next chapter.

The third category of measures use the Web as a source of information.

Some people consider this method as a corpus-based method by considering the

Web as a corpus. Measures in this category rely on web-search results such as page

count statistics and text snippets to compute the similarity of words. In other

words, these methods use search engines as proxies to gather word co-occurrence

statistics. The major advantage is the sheer size of the documents that commercial

search engines use which supposedly makes the co-occurrence statistics more

reliable. For example, if two words W1 and W2 co-occur within the same web

documents then a web search query such as W1 AND W2 will return many

documents. The PMI-IR measure used by Turney (2002) and Bollegala, Matsuo,

and Ishizuka (2007) are the examples in this category. PMI-IR is an unsupervised

measure proposed by Turney (2002). The core concept of PMI-based techniques is

that the similarity between words can be captured by using their statistical

dependence. Web-based approaches are preferable over ontology-based approaches,

such as the WordNet-based approaches, especially when the semantic similarity

between words can change over time and across domains. However, offline similarity

computation can be a challenge with such approaches.
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4.2.1 LSA-based Semantic Similarity

LSA is a fully automated method that computes semantic vector

representations for words from a given corpus (Landauer et al., 2013). It starts with

a term-document matrix that represents the distribution of words in documents and

the distribution of documents over the words. The word vectors (as well as the

document vectors) in the original term-document matrix are mapped using the

mathematical procedure of Singular Value Decomposition into a reduced

dimensionality space. The dimension of the space is typically from 300 to 500.

Words are represented as vectors in this LSA semantic space whose dimensions form

latent semantic concepts. Documents are also represented as vectors in the reduced

space. Similarity of individual words and texts are then computed based on vector

algebra.

Lintean, Moldovan, Rus, and McNamara (2010) looked at the role of LSA in

solving the paraphrase identification task. They used LSA as a way to compute

semantic similarity in two different ways. First, they used LSA to compute a

word-to-word similarity measure which they combined with a greedy-matching

method to obtain a sentence level similarity score. For instance, each word in one

sentence was greedily paired with one word in the other sentence. An average of

these word-to-word similarities was then assigned as the semantic similarity score of

the two sentences. Second, LSA was used to directly compute the similarity of the

two sentences by applying the cosine (normalized dot product) of the corresponding

LSA vectors of the two sentences. The LSA vector of a sentence was computed by

simply adding individual word vectors corresponding to all the words in the

sentence. They have not compared their results with any other unsupervised

method such as LDA.
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4.2.2 WordNet-based Semantic Similarity

As mentioned before, WordNet has been used to compute semantic

orientation between two concepts. The semantic orientation can be semantic

similarity or semantic relatedness. The former measures the similarity scores based

solely on the is-a hierarchy of the synsets containing the concepts. A popular

measure of this category is the LIN measure (Lin, 1998) which computes the

semantic similarity between concept X and concept Y by using the information

content of the least common sumsumer of X and Y. Specifically, it computes the

commonality and differences between X and Y using information content. It then

defines the similarity between X and Y as the ratio of commonality over differences.

Since semantic similarities use is-a relations, they are defined only for

concepts belonging to a hierarchy e.g., for nouns. However, two concepts which are

not connected with is-a relations can also be related. For example, hand and body

are related through a-part-of relation. Such semantic orientation can be captured

through semantic relatedness which is, therefore, not as strict as semantic similarity.

LESK measure is an example of this category (Banerjee & Pedersen, 2003). This

measure computes semantic relatedness based on the number of overlapped words in

the word senses and glosses of the concepts in WordNet.

4.3 Short Text Semantic Similarity using LDA

Latent Dirichlet Allocation (LDA) belongs to the broader category of

methods called topic models (Blei, Ng, & Jordan, 2003). Topic models are based on

the assumption that a relatively small set of latent topics underlie natural language

texts. The topics are groups of semantically related words. A word ranks differently

in multiple topics. If one interprets each topic as being a concept then LDA directly

models polysemy which LSA does not. By contrast, each word in LSA has a unique

vector representation. That is, multiple senses of the same word are mapped to the

same representation in the reduced LSA space. In fact LDA was proposed to
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address several limitations of Probabilistic Latent Semantic Indexing (pLSI) model

(Hofmann, 1999) and LSA (Blei et al., 2003). This theoretical advantage of LDA

over LSA, when it comes to modeling word meanings, motivates us to identify which

one is better at tasks in which word meanings play a role such as sentence-level

text-to-text similarity.

4.3.1 Latent Dirichlet Allocation

LDA is a generative probabilistic model for collections of discrete items, i.e.,

words in our case. The only observables in an LDA model are the words in the

documents. All else are latent variables. LDA derives the parameters of the latent

variables using the observed words in the corpus. We say that LDA captures

significant intra-document statistical structure via mixing distributions.

We will use the notation as in Blei et al. (2003) to explain the basic LDA

model. A word, denoted w, is a discrete unit entry in a vocabulary V whose

elements are indexed {1,...,V }. A document is a sequence of N words denoted

w =< w1, w2, ..., wN >, where wi is the ith word in the document. A corpus D is a

collection of documents D = {w1,w2, ...,wM}.

Documents are regarded as random mixtures of topics and a topic is a

distribution over words in the vocabulary. LDA follows the following generative

process for a document w.

1. Choose a topic distribution θ v Dir(α); the dimensionality k (number of

topics) of the Dirichlet distribution is given;

2. For each of the N words wi in w:

i. Select a topic zi based on θ

ii. Choose a word wi using p(wi|zi, β)

LDA has two Dirichlet priors: α for document-topic distributions and β for

topic-word distributions. These two priors, α and β, are also known as
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hyper-parameters for the document-topic and topic-word Dirichlet distributions.

Although they can be vector valued, many LDA implementations use α and β as

scalars to simplify and get symmetric Dirichlet priors. Furthermore, most LDA

users choose symmetric Dirichlet priors using some heuristics. One such heuristics is

mentioned by Griffiths and Steyvers (2004): although the values of these priors

depend on vocabulary size and the number of topics, setting α = 50/k and β = 0.01

worked well for many different text collections. We followed this recommendation in

our work.

LDA estimation includes learning the various distributions, e.g., the topic

distributions over words. Estimation of the LDA parameters directly and exactly

maximizing the likelihood of the whole data collection is intractable. Approximate

estimation methods are used to solve the problem. Three popular methods are

reported in the literature: variational methods (Blei et al., 2003), expectation

propagation (Griffiths & Steyvers, 2004), and Gibbs sampling (Griffiths & Steyvers,

2004). We used an implementation based on Gibbs sampling (Phan, Nguyen, &

Horiguchi, 2008).

Number of Topics

The standard LDA model requires the specification of the number of latent

topics in advance. That is, the number of topics is set by the user. Choosing the

right number of topics is important as they determine the quality of the LDA

model. Choosing the right value for the number of topics is more art than science.

Nonparametric Bayesian models such as an Hierarchical Dirichlet process

were also proposed to automatically estimate the number of topics (Teh, Jordan,

Beal, & Blei, 2006). The nonparametric models are not computationally efficient

though (Wallach, Mimno, & McCallum, 2009).
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4.3.2 LDA-based Similarity Measures

LDA itself was occasionally used for computing the semantic similarity of

texts. The closest use of LDA for a semantic similarity task was by Celikyilmaz,

Hakkani-Tur, and Tur (2010) for ranking candidate answers to questions in

Question Answering (QA). Given a question, they ranked candidate answers based

on how similar these answers were to the target question. That is, for each

question-answer pair they generated an LDA model which they then used to

compute a degree of similarity (DES) that consists of the product of two measures:

sim1 and sim2. sim1 captures the word-level similarities of the topics present in an

answer and the question. sim2 measures the similarities between the topic

distributions in an answer and the question. The LDA model was generated based

solely on each question and its candidate answers. As opposed to our task, in which

we compute the similarity between two sentences, the candidate answers by

Celikyilmaz et al. (2010) are longer, consisting of more than one sentence. This

particular difference is important when it comes to computing semantic similarity

based on LDA as the shorter the texts the sparser the distributions, in particular

the distribution over topics, based on which the similarity is computed. We will

elaborate on this major point later.

As we already mentioned, LDA is a probabilistic generative model in which

documents are viewed as distributions over a set of topics and each word in a

document is generated based on a distribution over words that is specific to each

topic. Therefore, two types of semantic similarity measures can be computed: using

distributions over words and using distribution over topics.

The first semantic similarity measure, between two words, would then be

defined as a dot-product between the corresponding vectors representing the

contributions of each word to a topic, which could be generated based on the

distributions over words for each topic. The basic idea here is that the more two
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words contribute to same topics, the more similar they must be. It should be noted

that the contributions of each word to the topics do not constitute a distribution,

i.e., the sum of contributions does not add up to 1. Assuming the number of topics

T, a simple word-to-word measure is defined by the formula in Equation 4.1 where

we denote by φ distributions over words for a topic t. We normalize the score so

that the similarity score will be between 0 and 1.

LDA− w2w(w, v) =
T∑
i=1

φt(w) φt(v) (4.1)

More global similarity measures, between two texts as opposed to two words, could

be defined in several ways. Because a document is a distribution over topics, the

similarity of two texts needs to be computed in terms of similarity of distributions.

The Kullback-Leibler (KL) divergence defines a distance, or how dissimilar, two

distributions p and q are as in the formula below.

KL(p, q) =
T∑
i=1

pi log
pi
qi

(4.2)

If we replace p with θc (document c’s distribution over topics) and q with θd

(document d’s distribution over topics) we obtain the KL distance between two

documents (documents c and d in our example).

The KL distance has two major problems. In case qi is zero KL is not

defined. Furthermore, KL is not symmetric which does not fit well with semantic

similarity measures which in general are symmetric. That is, if text A is a

paraphrase of text B that it is safe to say that text B is a paraphrase of text A. The
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Information Radius (IR) measure solves these problems by considering the average

of pi and qi as below.

IR(p, q) =
T∑
i=1

pi log
2 ∗ pi
pi + qi

+
T∑
i=1

qi log
2 ∗ qi
pi + qi

(4.3)

The IR can be transformed into a similarity measure using the following equation

(Dagan, Lee, & Pereira, 1997):

SIM(p, q) = 10−δ IR(p,q) (4.4)

The Hellinger distance between two distributions is another option that allows

avoiding the shortcomings of the KL distance.

HD(p, q) =
1√
2

√√√√ T∑
i=1

(
√
pi −
√
qi)2 (4.5)

The Hellinger distance varies from 0 to 1 and is defined for all values of pi and qi. A

value of 1 means the distance is maximum and thus the distributions are very

different. A value of 0 means the distributions are very similar. We can transform

the Hellinger distance into a similarity measure by subtracting it from 1 such that a

zero distance means a large similarity score and vice versa.

Lastly, we used the Manhattan distance between distributions p and q as

defined below.
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MD(p, q) =
T∑
i=1

|pi − qi| (4.6)

MD is symmetric, defined for any values of p and q, and ranges between 0 and 2.

We can divide MD by 2 and subtract from 1 to transform it into a normalized

similarity measure.

We further refined the above proposals for computing the similarity of two

documents. Besides using the similarity of distributions over topics we can also

account for distributions for similarity of topics. To compute the distance between

two topics using their distributions over words (φt1 and φt2 ) we can apply the same

methods discussed above.

All the results reported in this paper for LDA similarity measures between

two documents c and d are computed by multiplying the similarities between the

corresponding distribution over topics (θd and θc) and distribution over words (φt1

and φt2).

4.3.3 Experiments and Results

We present results with the proposed LDA-based measures and also, for

comparison purposes, results obtained with LSA and the WordNet measures. The

results were obtained using the ULPC and MSRP data sets. We followed a

training-testing methodology according to which we first trained to learn some

parameters of the proposed models after which we used the models on testing data.

In our case, we learned a threshold for the text-to-text similarity score above which

a pair of sentences is deemed a paraphrase and any score below the threshold means

the sentences are not paraphrases. We report performance of the various methods

using accuracy (percentage of correct predictions), F-measure (harmonic mean of
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precision and recall), and kappa statistics (a measure of agreement between our

method outputs and experts’ labels while accounting for chance agreement).

Data Sets

The MSRP corpus consists of 5,801 sentence pairs collected from newswire

articles, 3,900 of which were labeled as paraphrases by human annotators. The

whole set is divided into a training subset (4,076 sentences of which 2,753, or 67.5%,

are true paraphrases), and a test subset (1,725 pairs of which 1,147, or 66.5%, are

true paraphrases). A simple baseline for the MSRP corpus, the majority baseline

when all instances are classified as positive, gives an accuracy and precision of

66.5% and perfect recall. The average number of words per sentence is 17.

The ULPC corpus contains pairs of target-sentence and student response

texts. These pairs have been evaluated by expert human raters along 10 dimensions

of paraphrase characteristics. We used the Semantic Completeness dimension that

measures the semantic equivalence between the target-sentence and the student

response on a binary scale, similar to the scale used in the MSRP corpus. From a

total of 1,998 pairs, 1,436 (71%) were classified by experts as being paraphrases.

The data set is divided into three subsets: training (1,012 instances, 708-304 split of

TRUE-FALSE paraphrases), validation (649 instances, 454-195 split), and testing

(337 instances, 228-109 split). In the ULPC corpus, the average number of words

per sentence is 15.

Generating LSA and LDA Models

An important step in the process of obtaining the LSA vectorial

representation is the derivation of the semantic space, i.e., discovering the latent

dimensions or concepts, from a large enough corpus. In our work, we experimented

with an LSA space of 300 dimensions computed from the TASA corpus (compiled

by Touchstone Applied Science Associates), a balanced collection of representative

texts from various genres (science, language arts, health, economics, social studies,
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business, and others). The TASA corpus contains 10,937,986 words with a

vocabulary size of 91,897 after removing stop words.

LDA models are also generated from the TASA corpus. We removed stop

words and used default values for the LDA hyper-parameters as described in Section

4.3.1. The models are generated using JGibbLDA1, a Java implementation of LDA

using Gibbs sampling.

Results

We generated a number of LDA models from the TASA corpus. As

mentioned earlier, a LDA model assumes the existence of latent topics underlying

texts where each topic is a distribution over words. We illustrate three sample topics

from one of our LDA models in 4.1. Each topic has a list of words ranked by a

probability score. Alternatively, each word has a certain contribution towards each

topic and the table presents the top contributing words towards the corresponding

topic. In Topic 2, words related to business appear at the top of the list whereas

words related to politics appear at the top of Topic 8. Sometimes topics are hard to

interpret by humans. Topic 7 is an example of such a topic where, unlike Topic 2

and Topic 8, it is hard to interpret what semantic information the topic captures.

After LDA models were generated, we applied them to infer the topic

proportions in the sentences from the paraphrase corpus. To better illustrate this

approach, we use the example below, which is instance #23 in the MSRP test data.

Text A: Senator Clinton should be ashamed of herself for playing politics with

the important issue of homeland security funding, he said.

Text B: She should be ashamed of herself for playing politics with this

important issue, said state budget division spokesman Andrew Rush.

Table 4.2 shows topic assignment for each of the non-stop words in the two

sentences from instance #23 in the MSRP test data when using one of our LDA

1http://jgibblda.sourceforge.net/
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Table 4.1: Examples of topics and distributions overs words in three topics (top 10
words are shown for each topic).

Topic 2 Topic 7 Topic 8

Word Prob Word Prob Word Prob
number 0.014 day 0.029 states 0.020
money 0.012 good 0.021 world 0.019
system 0.010 thought 0.0194 united 0.015
business 0.009 school 0.017 government 0.013
information 0.009 home 0.017 american 0.012
special 0.009 children 0.015 state 0.012
set 0.009 father 0.014 war 0.011
job 0.009 knew 0.013 power 0.009
amount 0.009 told 0.0131 president 0.008
general 0.008 hard 0.011 groups 0.007

models. Each word in the sentence is sampled from a topic. For instance, the words

senator, issue, homeland, and funding are sampled from topic 8.

Table 4.2: Topic assignment for instance #23 in MSRP test data.

Word Topic Word Topic

senator 8 ashamed 1
Clinton 3 playing 7
ashamed 1 politics 8
playing 7 important 10
politics 8 issue 8
important 9 state 8
issue 8 budget 2
homeland 8 division 11
security 2 spokesman 1
funding 8 Andrew 3

Rush 5

Word-to-Word Similarities

Having LSA and LDA models ready, we computed and compared the

semantic similarities between 41,037 word pairs using WordNet, LSA, and LDA.

The word pairs are generated from the MSRP data set. Equation 4.1 is used to

compute the LDA based word-to-word similarity. To have a reasonable comparison,

we used the LDA-model with 300 topics and the LSA model with 300 semantic
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dimensions while computing the word similarities. For WordNet, we used two

semantic similarity measures: LIN for nouns and verbs (Lin, 1998), and LESK for

adjectives and adverbs (Banerjee & Pedersen, 2003).

We present results for 10 word pairs in Table 4.3. Based on the analysis of

results, we would like to make a number of interesting observations. First of all,

LDA- and LSA-based measures were able to compute similarities between two words

with different parts-of-speech. Moreover, LDA and LSA measures were able to

compute the semantic similarities between words even if the words were not in the

dictionary. The reason behind these benefits is because LDA and LSA measures

exploit the statistical properties of the words rather than a predefined hierarchy.

Moreover, it was found that a single method was not superior enough to

compute the similarity scores for all word pairs. Alternatively, WordNet based

methods were good for some words pairs while the LDA based method was good for

other pairs and so was the case for the LSA based method. For example, the

similarity between panel-board word pair was appropriately computed by WordNet

and LDA measures but not by the LSA measure. For the kidney-dialysis pair, LSA

performed better than WordNet and LDA. Thus, a very interesting future work

Table 4.3: Word-to-word similarity scores for ten pairs of words using WordNet,
LSA and LDA

w1 w2 WordNet LSA LDA

panel board 1.0000 0.1534 0.9277
man inventor 0.2283 0.0008 0.8136
revenue attorney 0.0000 0.0899 0.0002
financial due 0.0000 0.0000 0.3635
kidney dialysis 0.0000 0.4282 0.0070
say move 0.7072 0.0000 0.0000
percent figure 0.3712 0.0767 1.0000
dog animal 0.7597 0.0491 0.3725
trade market 0.6828 0.0619 0.6966
refund payment 0.8588 0.2242 0.9036
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would be to combine all the three methods in some ways to compute the

word-to-word similarity scores.

Paraphrase Detection

The objective of paraphrase detection is to test whether two short sentences

are semantically equivalent in meaning or not. In this experiment, we applied the

previously proposed methods to compute similarity scores between short sentences

and use the scores to predict whether they are paraphrases or not.

Table 4.4: Results on the MSRP test data

Method Accuracy Precision Recall F-Measure Kappa

Baseline 66.55 66.53 100 79.90 0.22
LSA 73.56 75.34 89.53 81.83 34.61
LSA Greedy 72.86 75.50 87.61 81.11 33.89
LSA Optimal 73.04 76.72 85.35 80.80 35.95
LDA-IR 66.49 66.55 99.73 79.83 0.34
LDA-Hellinger 65.73 66.64 97.03 79.02 0.86
LDA-Manhattan 66.66 66.60 100 79.95 0.68
LDA-Greedy 71.71 76.21 83.52 79.70 33.36
LDA-Optimal 72.98 76.74 85.17 80.74 35.90
WordNet-Greedy 73.56 76.23 87.53 81.49 36.00
WordNet-Optimal 73.56 75.76 88.57 81.67 35.28

We started by using an LSA model with 300 dimensions and an LDA model

with 300 topics. As before, for WordNet, we chose LIN (Lin, 1998) for nouns and

verbs, and LESK (Banerjee & Pedersen, 2003) for adjectives and adverbs.

A summary of result for MSRP data set is presented in the Table 4.4. These

are results on MSRP test data obtained using a threshold for similarity that

corresponds to the threshold learned from training data that led to the best

accuracy. The threshold varied from method to method. The results obtained using

the word-to-word similarity measures are labeled Greedy and Optimal in Table 4.4.

The row labeled LSA shows results obtained when text-level LSA vectors were used,

as explained earlier. Similarly, rows with labels WordNet-Greedy and

WordNet-Optimal represent the results corresponding to the WordNet-based
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Table 4.5: Results on the ULPC test data

Method Accuracy Precision Recall F-Measure Kappa

Baseline 67.65 67.65 100 80.70 0
LSA 77.74 77.03 95.6 85.32 41.43
LSA Greedy 76.85 75.68 96.92 85 37.54
LSA Optimal 75.07 77.90 88.15 82.71 38.63
LDA-IR 67.65 67.65 100 80.70 0
LDA-Hellinger 67.65 67.65 100 80.70 0
LDA-Manhattan 67.65 67.65 100 80.70 0
LDA-Greedy 76.85 75.86 96.49 84.94 37.89
LDA-Optimal 75.96 74.09 99.12 84.80 32.66
WordNet-Greedy 76.55 77.49 92.10 84.16 40.28
WordNet-Optimal 77.44 77.53 93.85 84.92 41.78

measures. The Baseline method indicates performance when labeling all instances

with the dominant label of a true paraphrase. The rest of the rows in the table show

results when the text-to-text similarity measures based on various distribution

distances were used: IR (Information Radius), Hellinger, and Manhattan.

The LDA-Optimal yielded competitive results on MSRP data set. It

provided the best precision score. As noted from Table 4.4, the text-to-text

similarity measures based on distribution distances performed close to chance. The

problem seemed to be rooted in the relative size of texts compared to the number of

the topics in the LDA model. As mentioned, we used 300 topics LDA model in this

setting. The average sentence size in MSRP (after removing stopwords) is 10.3 for

training data and 10.4 for testing data. That means that in a typical sentence most

of the 300 topics would not be assigned to any word leading to very similar topic

distributions over the entire set of 300 topics. Even if the probability for topics that

were not assigned to a word in a sentence was set to 0, the distance between two

values of 0 was 0 which meant the distributions were quite similar.

Next, we compared the performances of the methods in the ULPC corpus.

The summary of the results are shown in Table 4.5. Here also, among the
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LDA-based measures, LDA-Optimal and LDA-Greedy yielded competitive results

with that of LSA- and WordNet-based measures. LDA’s distribution distance based

measures perform poorly on the ULPC corpus as well. As described above, the

problem is due to the sparseness of topics assigned to the words in the short

sentences.

4.4 Short Text Similarity using Regression

The importance of semantic similarity in NLP is highlighted by the diversity

of data sets and shared task evaluation campaigns over the last decade (Agirre, Cer,

Diab, Gonzalez-Agirre, & Guo, 2013; Agirre et al., 2014; Agirre, Diab, Cer, &

Gonzalez-Agirre, 2012; Dolan et al., 2004; Rus, Banjade, & Lintean, 2014) and by

many uses such as in text summarization (Aliguliyev, 2009) and student answer

assessment (Niraula, Banjade, Ştefănescu, & Rus, 2013; Rus & Lintean, 2012).

The plethora of measures available in the literature for measuring short texts

semantic similarity suggests that no single method is capable of adequately

quantifying the semantic similarity between the texts. Therefore, we hypothesize

that combining diverse approaches provide a better result. With this hypothesis in

mind, we propose a regression-based method to predict a semantic similarity score

between two short texts.

Features for the regression include different sentence-to-sentence similarity

scores, presence of negation cues, lexical overlap measures etc. The

sentence-to-sentence similarity scores were calculated using word-to-word similarity

methods and optimal word and chunk alignments. We describe these methods

below.

4.4.1 Word-to-Word Similarity

We used knowledge based, corpus based, and hybrid methods to compute

word-to-word similarity. From the knowledge based category, we used WordNet

(Miller, 1995) based similarity methods from SEMILAR Toolkit (Rus, Lintean,
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Banjade, Niraula, & Stefanescu, 2013) which include Lin (Lin, 1998), Lesk

(Banerjee & Pedersen, 2003), Hso (Hirst & St-Onge, 1998), Jcn (Jiang & Conrath,

1997), Res (Resnik, 1995), Path, Lch (Leacock & Chodorow, 1998), and Wup (Wu

& Palmer, 1994).

In corpus based category, we used LSA models2 generated from the whole

Wikipedia articles as described in Stefanescu et al. (2014a). We also used

pre-trained Mikolov word representations (Mikolov et al., 2013)3 and GloVe word

vectors (Pennington, Socher, & Manning, 2014)4. In these cases, each word was

represented as a vector encoding and the similarity between words were computed

as cosine similarity between corresponding vectors. We exploited the lexical

relations between words, i.e., synonymy and antonymy, from WordNet 3.0. As such

we computed similarity scores between two words a and b as:

sim(a, b) =



1, if a and b are synonyms

0, if a and b are antonyms

A.B

|A||B|
, otherwise

where A and B are vector representations of words a and b respectively.

In hybrid approach, we developed a new word-to-word similarity measure

(hereafter referred as Combined-Word-Measure) by combining the WordNet-based

similarity methods with corpus based methods (using Mikolov’s word embeddings

and GloVe vectors) by applying Support Vector Regression(SVR). We did

experiments with the recently published word similarity dataset called Simlex-999

(Hill et al., 2014) and achieved correlation (r) of 0.601 with human judgment

(Banjade, Maharjan, Niraula, Rus, & Gautam, 2015).

2Models available at http://semanticsimilarity.org
3Downloaded from http://code.google.com/p/word2vec/
4Downloaded from http://nlp.stanford.edu/projects/glove/
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4.4.2 Sentence-to-Sentence Similarity

We applied three different approaches to compute sentence-to-sentence

similarity.

Optimal Word Alignment Method

We first computed the similarity of word pairs (all possible combinations)

using all similarity methods described in Section 4.4.1. The similarity score less

than 0.3 (empirically set threshold), was reset to 0 in order to avoid noisy

alignments. Then the words were aligned as discussed in Section 4.1.3 so that the

overall alignment score between the full sentences was maximum. Once the words

were aligned optimally, we calculated the sentence similarity score as the sum of the

word alignment scores normalized by the average length of the sentence pair.

Optimal Chunk Alignment Method

We created chunks and aligned them to calculate sentence similarity as in

Stefanescu, Banjade, and Rus (2014b) and applied optimal alignment twice. First,

we applied optimal alignment of words in two chunks to measure the similarity of

the chunks. As before, word similarity threshold was set to 0.3. We then normalized

chunk similarity by the number of tokens in the shorter chunk such that it assigned

higher scores to pairs of chunks such as physician and general physician. Second, we

applied optimal alignment at chunk level in order to calculate the sentence level

similarity. We used chunk-to-chunk similarity threshold 0.4 to prevent noisy

alignments. In this case, however, the similarity score was normalized by the

average number of chunks in the given texts pair. All threshold values were set

empirically based on the performance on the training set.

Resultant Vector Based Method

In this approach, we combined vector based word representations to obtain

sentence level representations through vector algebra. We added the vectors

corresponding to content words in each sentence to create a resultant vector for each
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sentence and the cosine similarity was calculated between the resultant vectors. We

used word vector representations from Wiki LSA, Mikolov and GloVe models.

For a missing word, we used vector representation of one of its synonyms

obtained from the WordNet. To compute the synonym list, we considered all senses

of the missing word given its POS category.

4.4.3 Features for Regression

1. Similarity scores using optimal alignment of words where word-to-word

similarity was calculated using vector based methods using word

representations from Mikolov, GloVe, LSA Wiki models and

Combined-Word-Measure which combines knowledge based methods and

corpus based methods.

2. Similarity score using optimal alignment of chunks where word-to-word

similarity scores were calculated using Mikolov’s word representations.

3. Similarity scores based on the resultant vector method using word

representations from Mikolov, GloVe, and LSA Wiki models.

4. Noun-Noun, Adjective-Adjective, Adverb-Adverb, and Verb-Verb similarity

scores and similarity score for other words using optimal word alignment and

Mikolov’s word representations.

5. Multiplication of noun-noun similarity score and verb-verb similarity score

(scores calculated as described in 4).

6. Whether there was any antonym pair present.

7.
|Ci1 − Ci2|
Ci1 + Ci2

where Ci1 and Ci2 are the counts of i ∈ {all tokens, adjectives,

adverbs, nouns, and verbs} for sentence 1 and 2 respectively.

8. Presence of adjectives and adverbs in first sentence, and in the second

sentence.
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Table 4.6: Summary of training data

Data set Count Release time
SMTnews 351 STS2012-Test
Headlines 1500 STS2013-Test
Deft-forum 423 STS2014-Test
Deft-news 299 STS2014-Test
Images 749 STS2014-Test

9. Unigram overlap with synonym check, bigram overlap and BLEU score

(Papineni, Roukos, Ward, & Zhu, 2002).

10. Presence of negation cue (e.g., no, not, never) in either of sentences.

11. Whether one sentence was a question while the other was not.

12. Total number of words in each sentence. Similarly, the number of adjectives,

nouns, verbs, adverbs, and others, in each sentence.

4.4.4 Experiments and Results

We trained and evaluated the proposed regression-based method by using

data provided by SemEval shared task on semantic textual similarity focused on

English STS(Agirre et al., 2015). The English STS subtask was about assigning a

similarity score between 0 and 5 to pairs of sentences; a score of 0 meaning the

sentences are unrelated and 5 indicating they are equivalent.

Data: For training, we used data released in previous shared tasks (summarized in

Table 4.6). We selected data sets that include texts from different genres. However,

some others were not included in the training set. For instance, Tweet-news were

not included as they were quite different from most of other texts and special

treatment might be needed. Being more biased towards overlapping text, such as

MSRPar (Rus, Banjade, & Lintean, 2014), was also a concern.

The test set included data (sentence pairs) from Answers-forums (375),

Answers-students (750), Belief (375), Headlines (750), and Images (750).
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Preprocessing: We removed stop words, labeled each word with Part-of-Speech

(POS) tag and lemmatized them using Stanford CoreNLP Toolkit (Manning et al.,

2014). Some text pairs (most notably in student answers and forum data) had many

commonly used words (many of them would be treated as stop words). So, we

revised the stopword list by removing some words, we thought more informative,

such as same form the list. We did spelling corrections in student answers and

forum data as the possibility of spelling errors is comparatively high in these texts.

We used Jazzy tool (Idzelis, 2005) with WordNet dictionary for spelling correction.

Moreover, in student answers data, we found that the symbol A (such as in bulb A

and node A) typed in lowercase was incorrectly labeled as a determiner ’a’ by the

POS tagger. So, we applied a rule to correct it. If the token after ’a’ is not an

adjective, adverb, or noun, or the token is the last token in the sentence, we

changed its type to noun (NN). Additionally, we removed comma from the numbers.

We then created chunks as described by Stefanescu et al. (2014b).

Regression: We generated various features as described in Section 4.4.3 and

applied regression methods in three different settings. In the first run (R1), all

features were used in SVM Regression with Radial Basis Function kernel. The

second run (R2) was same as R1 except that the features in R2 did not include the

count features (i.e., features in 12). In the third run (R3), we used features same as

R2 but applied linear regression instead.

For SVR, we used LibSVM library (Chang & Lin, 2011) in Weka (Hall et al.,

2009) and for the linear regression we used Weka’s implementation. The 10-fold

cross validation results (r) of three different runs with the training data were 0.7734

(R1), 0.7662 (R2), and 0.7654 (R3).

The results on the test set have been presented in Table 4.7. Though R1 had

the highest correlation score in a 10-fold cross validation process using the training

data, the results of R2 and R3 on the test data were consistently better than the
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Table 4.7: Results of our submitted runs on test data.

Data set Baseline R1 R2 R3
Ans-forums 0.445 0.526 0.694 0.677
Ans-students 0.664 0.725 0.744 0.735
Belief 0.651 0.631 0.751 0.722
Headlines 0.531 0.813 0.807 0.812
Images 0.603 0.858 0.864 0.857
Mean 0.587 0.743 0.784 0.776

results of R1. It suggests that absolute count features used in R1 tend to overfit the

model. The weighted mean correlation of R2 was 0.784 - the best among our three

runs and ranked 10th among 74 runs submitted by 29 participating teams. The

correlation score was very close to the results of other best performing systems.

However, the correlation scores of answer-forum, answer-students, and belief data

were found to be lower than those of headlines and images data. The reason might

be the texts in the former data being not well-written as compared to the latter.

Also, more contextual information is required to fully understand them.

4.5 Interpretable Semantic Textual Similarity

As we saw, the task of semantic similarity measures the degree of semantic

equivalence between two texts in terms of a score. This is very useful for assessing

student responses but it is not sufficient since it fails to explain the reasons behind

being similar, related or unrelated. Furthermore, it does not tell the type of

semantic relations that exist among the constituents such as words or chunks. To

have a concrete idea, consider an example below showing a student’s response and

the corresponding expected answer (square brackets enclose chunks) :

Student Answer: [Newton’s laws of motion] [apply].

Expected Answer:[Newton’s third law] [is relevant] [in the collision].

Relations :

Specific: [Newton’s laws of motion] ⇔ [Newton’s third law]
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Equivalent: [applies] ⇔ [is relevant]

No Alignment: []⇔[in the collision]

In this example, chunks in the student response are aligned to the chunks in

the expected answer. The type of relations (equivalent, specific and no align) are

also provided. By doing this, we get interpretation of the alignments and similarities

which is always better to have than a single holistic score provided by semantic

textual similarity. For instance, the holistic score does not indicate that the student

is giving a vague answer (laws of motion) instead of a specific one (the third law).

Therefore, finding reasons and explicit relations among their constituents in a

paired texts (also known as Interpretable Semantic Textual Similarity; iSTS ) would

enable a meaningful interpretation of the similarity scores which can be exploited

for better follow-up question and feedback generation in ITS. For instance, in the

previous example, as student’s response is vague, we can ask this follow up question:

Can you tell the specific Newton’s law ?

There are some works in literature in this direction. Brockett (2007) and Rus

et al. (2012) produced datasets where corresponding words (or multiword

expressions) were aligned and in the later case their semantic relations were

explicitly labeled. Below, we present our iSTS system that finds the type of

relations among their constituents and the similarity scores based on our submission

for SemEval-2015 shared task (Banjade, Niraula, et al., 2015).

4.5.1 A Rule Based System for iSTS

Input to our system is a pair of sentences with their chunking information

(gold chunks). The task then is to map chunks of the first sentence to those from

the second by assigning different relations and scores based on a set of rules.The

alignment is restricted to one-to-one for simplicity. Further details about the task

including relation types and the evaluation criteria can be found at Agirre et al.

(2015).
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Type of Alignments

For each alignment we need to decide its type i.e., a semantic relation and a

similarity score (0 − unrelated, 5 − equivalent). The list of semantic relations are

listed below.

• EQUI: This relation is assigned when two chunks are semantically equivalent

in meaning in the context.

• OPPO: This relation is assigned when two chunks are in opposition to each

other in the context.

• SPE1 and SPE2: When a chunk in the first chunk is more specific than the

corresponding chunk in the second sentence, a SPE1 relation is assigned.

SPE2 is defined similarly.

• SIMI: This relation is assigned when the chunks have similar meanings but no

EQUI, OPPO, SPE1 and SPE2 relations between them.

• REL: This relation is assigned when the chunks have related meanings but no

EQUI, OPPO, SPE1, SPE2, and SIMI relations.

• ALIC: Because of one-to-one alignment restriction, a chunk may not get a

chance to pair with a chunk in the next sentence. In such case, an ALIC

relation is assigned to the chunk that couldn’t pair with the another chunk in

the pair.

• NOALI: When a chunk in a sentence has no corresponding chunks in another

sentence, NOALI relation is assigned.

Further details about the task including relation types and the evaluation

criteria can be found in Agirre et al. (2015).
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Preprocessing

The system performs stop word marking, POS tagging, lemmatization, and

named-entity recognition in the preprocessing steps. It also uses lookups for data

normalization as well as synonym, antonym and hypernym relations.

For data normalization, we manually constructed a lookup table for

commonly used words by mapping them to standard values. For instance, %,

percent, percentage all map to pc. For synonym lookup, we created a strict synonym

lookup file using WordNet. Similarly, an antonym lookup file was created by

building an antonym set for a given word from its direct antonyms and their

synsets. We further constructed another lookup file for strict hypernyms.

Rules

In this section, we describe the rules used for chunk alignments and scoring.

The scores given by each rule are highlighted.

Conditions: We define below a number of conditions for a given chunk pair that

might be checked before applying a rule.

C1: One chunk has a conjunction and other does not

C2: A content word in a chunk has an antonym in the other chunk

C3: A word in either chunk is a NUMERIC entity

C4: Both chunks have LOCATION entities

C5: Any of the chunks has a DATE/TIME entity

C6: Both chunks share at least one content word other than noun

C7: Any of the chunks has a conjunction

Next, we define a set of rules for each relation type. For aligning a chunk

pair (A,B), these rules are applied in order of precedence as NOALIC, EQUI,

OPPO, SPE, SIMI, REL, and ALIC. Once a chunk is aligned, it would not be

considered for further alignments. Moreover, there is a precedence of rules within

each relation type e.g., EQ2 is applied only if EQ1 fails and EQ3 is applied if both
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EQ1 and EQ2 fail and so on. If a chunk does not get any relation after applying all

the rules, a NOALIC relation is assigned. Note that we frequently use

sim-Mikolov(A,B) to refer to the similarity score between the chunks A and B

using Mikolov word vectors as described in Section 4.4.2.

NOALIC Rules

NO1: If a chunk to be mapped is a single token and is a punctuation, assign

NOALIC

EQUI Rules

EQUI Rules EQ1 − EQ3 are applied unconditionally. The rest rules (EQ4 − EQ5)

are applied only if none of conditions C1 - C5 are satisfied.

EQ1 - Both chunks have same tokens (5) - e.g., to compete ⇔ To Compete

EQ2 - Both chunks have same content words (5) - e.g., in Olympics ⇔ At

Olympics

EQ3 - All content words match using synonym lookup (5) - e.g., to permit

⇔ Allowed

EQ4 : All content words of a chunk match and unmatched content word(s) of the

other chunk are all of proper noun type (5) - e.g., Boeing 787 Dreamliner ⇔ on 787

Dreamliner

EQ5 : Both chunks have equal number of content words and

sim−Mikolov(A,B) > 0.6 (5) - e.g., in Indonesia boat sinking ⇔ in Indonesia

boat capsize

OPPO Rules

OPPO rules are applied only when none of C3 and C7 are satisfied.

OP1: A content word in a chunk has an antonym in the other chunk (4) - e.g., in

southern Iraq ⇔ in northern Iraq

SPE Rules

SP1: If chunk A but B has a conjunction and A contains all the content words of B
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then A is SPE of B (4) - e.g., Angelina Jolie ⇔ Angelina Jolie and the complex

truth.

SP2: If chunk A contains all content words of chunk B plus some extra content

words that are not verbs, A is a SPE of B or vice-versa. If chunk B has multiple

SPEs, then the chunk with the maximum token overlap with B is selected as the

SPE of B. (4) - e.g., Blade Runner Pistorius ⇔ Pistorius.

SP3: If chunks A and B contain only one noun each say n1 and n2 and n1 is

hypernym of n2, B is SPE of A or vice versa (4) - e.g., by a shop ⇔ outside a

bookstore.

SIMI Rules

SI1: Only the unmatched content word in each chunk is a CD type(3)-e.g., 6.9

magnitude earthquake ⇔ 5.6 magnitude earthquake

SI2: Each chunk has a token of DATE/TIME type (3)- e.g., on Friday ⇔ on

Wednesday

SI3: Each chunk has a token of LOCATION type (3) - e.g., Syria ⇔ Iraq

SI4: When both chunks share at least one noun then assign 3 if

sim-Mikolov(A,B) >= 0.4 and 2 otherwise. - e.g., Nato troops ⇔ NATO strike

SI5: This rule is applied only if C6 is not satisfied. Scores are assigned as : (i) 4 if

sim-Mikolov(A,B) ∈ [0.7, 1.0] (ii) 3 if sim-Mikolov(A,B) ∈ [0.65, 0.7) (iii) 2 if

sim-Mikolov(A,B) ∈ [0.60, 0.65)

REL Rules

RE1: If both chunks share at least one content word other than noun then assign

REL relation. Scores are assigned as follows : (i) 4 if sim-Mikolov(A,B) ∈ [0.5, 1.0]

(ii) 3 if sim-Mikolov(A,B) ∈ [0.4, 0.5) (iii) 2 otherwise. e.g., to Central African

Republic ⇔ in Central African capital

ALIC Rules

AL1: If a chunk in a sentence X (Cx) is not aligned yet but has a chunk in another
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Table 4.8: F1 scores for Images and Headlines data sets. A, T and S refer to
Alignment, Type, and Score respectively.

Run A T S T+S

H
e
a
d

li
n
e
s Baseline 0.844 0.555 0.755 0.555

R1 0.898 0.654 0.826 0.638
R2 0.897 0.655 0.826 0.640
R3 0.897 0.666 0.815 0.642

Im
a
g
e
s Baseline 0.838 0.432 0.721 0.432

R1 0.887 0.614 0.787 0.584
R2 0.880 0.585 0.781 0.561
R3 0.883 0.603 0.783 0.575

pair-sentence Y (Cy) that is already aligned and has sim-Mikolov(Cx, Cy) >= 0.6,

assign ALIC relation to Cx with a score of (0).

4.5.2 Experiments and Results

We applied above mentioned rules in the training data set provided by the

SemEval-2015 by varying thresholds for sim-Mikolov scores and selected the

thresholds that produced the best results in the training data set. Since three runs

were allowed to submit, we defined them as follows:

Run 1 (R1) : Applied full set of rules with limited stop words (375 words)

Run 2 (R2) : Same as R1 but with extended stop words (686 words).

Run 3 (R3) : Applied full set of rules with extended stop words but with one

exception: EQ4 was modified such that it would apply when unmatched content

words of the bigger chunk were of noun rather than proper noun type.

There were 16 runs submitted by 7 different teams. The results

corresponding to our three runs and that of the baseline are presented in Table 4.8.

The highlighted scores were the best scores among all the submissions from the

competing teams. In Headlines test data, at least one of our runs outperformed the

rest competing submissions in all evaluation metrics. In Images test data, R1 was

the best in alignment and type metrics. Our submissions were among the top

performing submissions for score and type+score metrics.
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R3 performed better among all runs in case of Headlines data in overall. This

was chiefly due to modified EQ4 rule which reduced the number of incorrect EQUI

alignments. We also observed that performance of our system was least affected by

size of stopword list for Headlines data as both R1 and R2 recorded similar

F1-measures for all evaluation metrics. However, R1 performed relatively better

than R2 in Images data-particularly in correctly aligning chunk relations. It could

be that images are described mostly using common words and thus were filtered by

R2 as stop words.

4.6 Discussions and Conclusions

In this chapter, we addressed the problem of computing semantic similarity

between two short texts which are typically the student responses. Specifically, we

proposed two types of LDA-based semantic similarity measures. The first measure

relied on word-to-word similarity using the dot-product between topic vectors

followed by using greedy and optimal matching methods. The second measure

computed the divergence between two distributions corresponding to the texts and

then converted them to similarity scores. Based on the evaluations on two standard

paraphrase detection corpora the MSRP and the ULPC, it was found that

word-to-word LDA-based measure was competitive with LSA and WordNet-based

measures for detecting paraphrases. However, the divergence-based similarity

measures were not effective for computing semantic similarity between short text

due to topic sparseness problem.

Next, we proposed a regression-based approach to predict more fine grain

(between 0 to 5) semantic textual semantic similarity of given sentence pairs. Our

system rivaled with top performing systems against the standard test data set

provided by SemEval-2015 shared task. The system was very competitive to the top

performing approaches in SemEval-2015 shared task.

Lastly, we presented a system for interpretable semantic textual similarity. It
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relied on a set of rules blended with similarity features in order to assign the labels

and scores for the chunk-level relations. Our system was among the top performing

systems in this subtask in SemEval-2015 shared task. Since we relied on the gold

chunks, the immediate future works is to automatically generate such chunks by

using sequence tagging techniques such as conditional random fields.
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Chapter 5

Conclusions and Future Directions

This chapter summarizes the contributions of this dissertation and presents

some potential future directions.

5.1 Conclusions

The popularity of dialog-based intelligent tutoring systems has been rising

due to their effectiveness at inducing learning gains in students. However, scaling of

such systems is a big problem as they demand significant manual efforts for dialog

generation. This dissertation addressed many challenges that hinder the scaling of

the systems.

First, we presented novel and efficient approaches to generate and rank cloze

and open-cloze questions respectively (Chapter 2). We generated cloze questions by

mining student tutor interaction logs. We proposed an active learning approach to

rank automatically generated open-cloze questions.

Second, we proposed a machine learning approach to resolve pronouns in

student responses (Chapter 3). The approach was very accurate on resolving the

pronouns in student answers.

Third, we conducted experiments to quest a better approach for computing

semantic textual similarity between two short texts (Chapter 4). We focused on

short texts because student responses were typically short in length. The problem of

computing semantic textual similarity is very crucial to dialog generation since

incorrect assessments lead to incorrect feedback which can lower confidence of a

student with a tutor and hamper the effectiveness of learning. A regression based

method was found to be efficient for this task.

Lastly, we proposed a system for interpretable semantic textual similarity

(Chapter 4) that can explain the reason behind the holistic score provided by
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semantic textual similarity methods. The system was one of the best systems in

SemEval-2015 shared task.

5.2 Future Directions

This dissertation contributed some novel research works to the literature of

automatic question generation and student answer assessment. These are the two

major sub-problems of automatic dialog generation problem in the context of

intelligent tutoring system. There are still more challenges to be addressed towards

this bigger goal. We discuss below some of the possible future directions.

• Deep Question Generation: Generating deep questions is one of the

challenging problems to be solved. Here is an example:

Sentence: Newton’s third is applicable in this context.

Relatively easier questions to generate:

(a) Which law is applicable in this context ?

(b) Which Netwon’s law is applicable in this context ?

(c) Is Netwon’s third law applicable in this context ?

Harder to generate:

(d) State a principle that can be applied in the given context.

The first three questions (a-c) are relatively easier to generate by using

systems such as Heilman and Smith (2009) and Mazidi and Nielsen (2014b).

The primary reason for calling simple is because they rely on sentence

transformation, parsing, Named-entity recognition and semantic role labeling,

which are well-studied problems in NLP. The fourth question (d) is harder to

generate compared to the rest because it needs deep semantic understanding

of the sentence. For instance, in order to generate the fourth question , we

must know that Newton’s third law is a type of ”principle”. To do this, we

must encode knowledge in some form of semantic graph and do semantic

parsing of sentence with this knowledge. Although some existing semantic
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networks such as Freebase(http://www.freebase.com) and DBPedia

(http://dbpedia.org) contain some general knowledge, their domain coverage

and depth is pretty low for question generation. Therefore, we assumed in this

dissertations that deep questions will be provided by experts. Generating such

questions automatically would further help scaling of the system, a potential

direction for future.

• Feedback and Follow-up Question Generation: We addressed the

interpretation of textual similarity in Section 4.5. As discussed in that section,

this work can further be exploited to generate feedback and follow-up question

generation.

• Dialog Management: Dialog management is a core part of a dialog system. A

dialog manager decides what a dialog system should do for a given user

response to maximize the user’s goal. In the context of ITS, given a student

answer, what feedback to give and what question to ask him next are few roles

of the dialog management. As such, our proposed solutions for automatically

assessing student responses and automatically generating questions will play

vital roles for dialog managers. A future work would therefore is to exploit

these contributions for dialog management.

• Dialog Act Classification, Natural Language Generation and Grounding:

These are the other important areas of dialog management. Although, these

are well-studied for spoken dialog systems, they are still in premature state for

intelligent tutoring systems due to the differences between the two systems.
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