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Abstract 

Samei, Borhan. MS. The University of Memphis. December 2014. Automated Speech 

Act Classification in Tutorial Dialogue. Major Professor: Dr. Vasile Rus. 

  

Speech act classification is the task of detecting speakers’ intentions in discourse. 

Speech acts are based on the language as action theory according to which when we 

say something we do something. Speech act classification has various application in 

natural language processing and dialogue-based intelligent systems. In this thesis, we 

propose machine learning models for speech act classification that account for both 

content of the current utterance and context (previous utterances) of dialogue and we 

present this work on two domains: human-human tutoring sessions and multi-party 

chat based intelligent tutoring systems. The proposed speech act classification models 

were trained and tested on chat utterances extracted from the tutoring sessions and 

based on the domain specific properties of the datasets were designed to work with hi-

erarchical and granular speech act taxonomies.  
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1 Introduction 

     In natural language interactions, a sentence or utterance usually represents an indirect 

intention or function. For example, the utterance “What is your name?” is about asking 

someone’s name; the speech act and its function is asking a question while the direct 

semantic meaning is specifically asking what someone’s name is. Speech act has theo-

retical roots in linguistics and philosophy of language. 

     For years, philosophers assumed that a ‘statement’, for example, was only to ‘de-

scribe’ some state of affairs or facts while grammarians had pointed out that besides 

statement, one may express a command or wish (Austin, 1962). Philosophers, presented 

the theoretical roots of speech acts (language as action theory) as the intentions behind 

an utterance (e.g. sentence) which in turn determines the function of a discourse unit in 

dialog (Austin, 1962; Searle, 1969). 

     Austin (1962) proposed three levels of language: locutionary, illocutionary, and 

prelocutionary. The locutionary act is the performance of an utterance, more precisely, 

the locutionary act of an utterance is the actual utterance and its ostensible meaning, 

comprising phonetic, phatic and rhetic acts corresponding to the verbal, syntactic and 

semantic aspects.  

     An illocutionary act is the actual meaning and intent of the utterance and in some 

cases an utterance also has a perlocutionary act, i.e., the effect of the utterance on its 

audience. For example, the utterance “Do not push the red button!” is a locutionary act 

with certain semantic and phonetic features as well as the illocutionary act of warning 

someone not to push the red button and the prelocutionary act of persuading someone 

not to push the red button.  

     Speech act (Searle, 1969) or dialog act (Austin, 1962) is equivalent to a conversa-

tional game move (Power, 1979) and has also been referred to as adjacency pair part 
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(Schegloff, 1967). Speech acts play an important role in language and discourse pro-

cessing specifically in applied natural language processing where the general goal is 

either to understand the intentions of natural language utterances or to generate lan-

guage by artificially intelligent agents and modeling the dialog interactions.  

     Examples of such systems are Intelligent Tutoring Systems (ITS; Rus, D’Mello, Hu, 

& Graesser, 2013) where an intelligent agent is playing the role of student, tutor, or 

both with the usual goal of maximizing learning gains. These systems require an inter-

action mean between human and intelligent agents and one form interaction is dialogue.  

Within the framework of dialogue-based ITS (Rus et al., 2013), the intelligent agent is 

required to respond to humans which in turn implies the need for natural language pro-

cessing. For example, the intelligent agent needs to determine if it is being asked a 

question or given a command in order to take proper action, e.g. give a more informa-

tive hint or just answer a question or say Hello! in case the student was greeting.  

     Based on several application of speech acts, researchers have presented machine 

learning and statistical modeling approaches to automatically identify the speech acts 

to help design and improve natural language processing models in artificially intelligent 

systems. In our work, we applied machine learning techniques to data sets of dialog-

based tutoring sessions which were extracted from an intelligent tutoring system and 

an online human-human tutoring service with the ultimate goal of modeling the dialog 

in tutoring sessions.  

1.1 Taxonomy 

     In order to represent the speech act of an utterance, a set of speech act categories is 

defined. The set of categories is also known as the speech act taxonomy. Based on the 

application and domain, different taxonomies may be defined to represent the most 

important acts that one is interested in identifying.  Also, as the cost of tagging speech 
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acts by human experts increases with large data sets, researchers have become more 

interested in approaches to automatically detect the speech acts using machine learn-

ing techniques, i.e., speech act classification, which emphasize the importance of hav-

ing a proper taxonomy to be able to capture the acts that are more important in a par-

ticular domain. 

     As mentioned, speech act classification is based on the “language as action” theory 

which defines speech acts based on the illocutionary force of an utterance. Austin 

(1962) proposed a taxonomy of five speech act categories which are based on per-

formative verbs (Table 1). 

Table 1. Speech Act Taxonomy of Austin. 

Category Definition Example 

Vertictives 
The delivering of a finding upon evi-

dence. 
describe, estimate 

Exercitives  The giving of a decision. order, command 

Commissives  
To commit the speaker to a certain ac-

tion. 
nominate, declare 

Expositives  
The expounding of views, arguments, 

and usages and references. 
illustrate, accept 

Behabitives  
The notion of reaction to other people’s 

behavior. 
apologize, thank  

   

     Austin’s taxonomy suggests using verbs to identify speech acts. It is important to 

note that not all the verbs are illocutionary verbs and particular verbs may overlap in 

some categories which leads to confusion between verbs and acts and implies the 

need to explore more sensible taxonomies (Searle, 1969, 1976). 

     Searle (1969, 1976) proposed a taxonomy on the basis of illocutionary and gram-

matical indicators which included five categories: representatives, directives, commis-

sives, expressives, and declarations.  While the first three categories of Searle’s taxon-
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omy are equivalent to Austin’s, they added the “expressives” category and distin-

guished declaration from other categories which expanded the taxonomy beyond 

verbs (Table 2). 

Table 2. Speech Act Taxonomy of Searle.  

Category Definition Example 

Representatives 
Committing the speaker to 

something’s being the case 
Boast, conclude 

Directives  
To get the hearer to do 

something 
Command, order 

Commissives  
To commit the speaker to 

some future action 

This has been suggested to 

me by Julian Boyd. 

Expressives  
To express the psychologi-

cal state 

I congratulate you on win-

ning the race. 

Declarations  
Successful performance of 

action 

I declare: my position is 

hereby terminated. 

 

     D’Andrade and Wish (1985) proposed seven categories of speech act: assertions, 

questions, requests and directives, reactions, expressive evaluations, commitment, and 

declaration. They extended Austin and Searle’s taxonomies by defining categories 

such as requests and questions as separate speech acts (D’Andrade & Wish, 1985). 

     Domain specific taxonomies are used in certain application. In an intelligent tutor-

ing system, for instance, the speech act classification can be used to understand the 

student utterances which in turn is needed to produce a proper response from the intel-

ligent agents. One of the main categories of speech acts in tutoring systems is ‘ques-

tion’ which needs to be answered either by the student or tutor AI agents.  

Graesser and Person (1994) proposed 18 categories for questions asked in tutoring 

and their question categories were applied in intelligent tutoring systems (Graesser & 

Person, 1994). 

     Forsyth and Martell (2007) developed a speech taxonomy for online chat corpus, 

including statement, system, greet, emotion, wh-question, yes/no question, continuer, 
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accept, reject, bye, yes answer, no answer, emphasis, other, and clarify. Researchers 

have proposed several taxonomies to clearly articulate different situations and most of 

the taxonomy sets are based on a domain and application of the speech act classifica-

tion (Forsyth & Martell, 2007). 

     Along with theoretically designed taxonomies, researchers have also proposed un-

supervised approaches to detect the speech act categories based on data-driven tech-

niques. Rus, Moldovan, Niraula, and Graesser (2012) applied unsupervised clustering 

methods using the leading tokens of each utterance as features to find the speech acts 

using the data sets from online chat interactions. The resulting clusters of utterances 

were labeled by experts and formed seven main speech act categories: Expressive 

Evaluation, Greeting, Metastatement, Question, Reaction, Request, and Statement 

(Rus, et al., 2012).  

Table 3. Data Driven Speech Act Taxonomy. 

 

Speech act category Example from dataset 

Expressive Evaluation Your stakeholders will be grateful! 

Greeting Hello! 

MetaStatements Oh yeah, last thing. 

Statement A physical representation of data. 

Question What should we do? 

Reaction Thank you 

Request Please check your inbox 

 

     The previous work on speech act classification were mostly based on general 

speech act categories which in turn improved the performance of classification mod-
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els. In our work, we first use a general taxonomy on a data set of multi-party chat dia-

logues (Chapter 3) and next we define and use a granular and hierarchical taxonomy 

which we use on data set of human on-to-one tutoring sessions (Chapter 4).  

1.2 Machine Learning 

     In machine learning field, classification is the task of assigning an input instance 

with a tag or category from a predefined set of categories. Detecting the speech act of 

an utterance falls into the classification problems where the goal is to tag an utterance 

with its speech act and the speech act categories are defined in the taxonomy. Within 

this framework designing a model for speech act classification often implies detecting 

features that are predictive for speech acts and choosing a proper machine learning al-

gorithm, e.g., Decision Trees, Naïve Bayes, etc. to learn from a set of annotated in-

stances (i.e., training set) (Moldovan, Rus, & Graesser, 2011; Olney et al., 2003) or in 

an unsupervised manner (Ezen-Can & Boyer, 2014). Researchers have also applied 

statistical approaches for modeling dialog and tagging speech acts (Stolke et al., 

2000). 

     Classification is equivalent to function estimation in which the function’s values 

are nominal. The learning process of a classification results in a classifier which is 

built given a set of training data. The most common approach to learning a classifier 

is supervised learning. Supervised machine learning implies learning from labeled 

training data. In supervised classification the training instances are usually tagged by 

human experts or any other means to generate a set of gold standard data. Other ma-

chine learning approaches are semi-supervised and unsupervised. In semi-supervised 

approach the model is initially learned from a set of tagged data but is then tested 

and/or retrained with untagged instances. Unsupervised learning is when no tagged 

data is provided and the model is learned based only on the observed features of the 
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data. In computational linguistics, the cost of having experts tag training instances to 

form a gold standard set is usually high which is why researchers have been interested 

in applying semi-supervised (e.g., co-training and self-training) and unsupervised ap-

proaches to particular problems, e.g., part of speech tagging (Abney, 2007). 

     In order to be able to learn from a set of training instances, the instances are repre-

sented by features (attributes). Reducing an instance to its features (i.e., feature ex-

traction) is an important step in machine learning.  

     A feature may be a nominal value, a real number, or any other type of attribute 

which represents a property of the data or observations. The number and types of fea-

tures and the learning algorithm directly affect the complexity of learning process. 

     A particularly simple supervised learning algorithm which is common in classifi-

cation is Naïve Bayes. Naïve Bayes is a probabilistic classifier and it based on the 

Bayes theorem. Naïve Bayes was first introduced by the text retrieval community 

(Russel, 2003). The Naïve Bayes model is represented by a set of conditional proba-

bilities which outputs the probability of seeing a certain instance belonging to a cate-

gory. Other popular classifier learning algorithms are decision trees and logistic re-

gression. Based on the nature of the training instances and features used, one algo-

rithm may be more appropriate for a certain problem; however, researchers usually 

compare the performance of different algorithms to come up with the final best 

model. 

     In our work, the goal is to design a classifier to tag speech acts in tutoring session 

utterances. We applied supervised machine learning techniques to two datasets: 

Multi-party chat-based ITS (Chapter 3) and transcripts from online tutoring services 

(Chapter 4). The next chapter is an overview of the related work in the field of speech 
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act classification and it is followed by a description and results of our work on two da-

tasets (Chapters 4 and 5) and future work (Chapter 6).      
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2 Related Work 

     Researchers have proposed several approaches to speech act classification, mostly 

supervised machine learning techniques. There has been a variety of work on building 

models based on features ranging from positional information of the turns in dialogue 

(Freschke, Gurevych, & Chebotar, 2012), lexical or syntactical features (Bangalore, Di 

Fabbrizio, & Stent, 2008; Stolcke et al., 2000), etc. 

     Freschke et al. (2012) developed an annotation schema based on the Wikipedia Talk 

pages where a conversation was divided into turns and each turn could consist of mul-

tiple speech acts. Their taxonomy included 17 categories and they trained binary clas-

sifiers for each category using Naïve Bayes, J48 decision trees and Support Vector Ma-

chines. Their features included uni-, bi-, and trigrams, the time distance of turns (in 

seconds) and the length of current, previous, and next turn, the position of turn within 

the discussion thread and a binary feature to represent weather a turn references or is 

referenced by other turns. They achieved an F-score of 0.82. The main property of their 

approach is training a separate classifier for each category and building a classification 

pipeline (Freschke et al., 2012). 

     A common application of speech act classification is in combination with speech 

recognition to model dialogue structure in spoken conversations, e.g., phone conversa-

tions. Stolcke et al. (2000) proposed a statistical approach to predict dialogue acts based 

on lexical, collocational, and prosodic cues. Their data set included 1155 human-human 

phone conversations and they achieved an accuracy of 0.65 on recognized speech and 

0.71 on the word transcripts (Stolcke et al., 2000). 

     Kim, Cavedon, and Baldwin (2010) proposed speech act classifiers based on fea-

tures such as bag of words along with information about dialogue structure such as the 

author of utterances and tested different models on online chat utterances extracted 
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from online-shopping customer feedback data. They found that adding the information 

about the structure of dialogue improved their models’ performance while sequential 

models (CRF) showed the best accuracy (Kim et al., 2010). In other work, Tavafi, Me-

hdad, Joty, Carenini, and Ng (2013) used the speaker of utterances as features and 

showed the effectiveness of SVM-hmm models on speech act classification. (Tavafi et 

al., 2013) 

     Ashok, Borodin, Stoyanchev, and Ramakrishnan (2014) presented a model based on 

several feature sets such as unigrams, syntactic, context-related, task-related, and pres-

ence of words. They tested the performance of multiple classifiers such as Support Vec-

tor Machine (SVM), J48 Decision Tree and Random Forest. The best performance (0.9 

precision) was achieved by Random Forest classifier (Ashok et al., 2014). 

     In addition to the mentioned approaches, researchers have also proposed models for 

speech act classification using acoustic as well as lexical information (Jurafsky, 

Shriberg, Fox, & Curl, 1998; Rangarajan Sridhar, Bangalore, & Narayanan, 2009) or 

non-verbal features such as body posture (Ha, Grafsgaard, Mitchell, Boyer, & Lester, 

2012). Rangarajan Sridhar et al. (2009) proposed modeling the sequence of acoustic-

prosodic values as n-gram features and using maximum entropy model for speech act 

classification. Their model used context in the form of lexical, syntactic, and prosodic 

cues from preceding utterances which yielded an accuracy of 0.72 (Rangarajan Sridhar 

et al., 2009). 

     Speech act classifiers are often based on supervised machine learning, however there 

has been several works on building classifiers in an unsupervised setting. Unsupervised 

clustering of utterances is an example of such work (Ritter, Cherry, & Dolan, 2010; 

Rus et al., 2012). Joty, Carenini, and Lin (2011) proposed unsupervised algorithms 

based on Hidden Markov Modeling (HMM) to classify speech acts in email and forum 
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conversations (Joty et al., 2011). Crook, Granell, and Pulman (2009) investigated ap-

plying Dirichlet Process Mixture Model for unsupervised clustering of dialogue utter-

ances (Crook, Granell, & Pulman, 2009).  

     Researchers have proposed unsupervised classification and clustering techniques 

(Ezen-Can & Boyer 2014) as well as supervised algorithms (Moldovan et al., 2011; 

Onley et al., 2003; Rasor, Olney, & D’Mello, 2011; Samei, Li, Keshtkar, Rus, & 

Graesser, 2013) to model discourse within the framework of intelligent tutoring systems 

where human interacts with artificially intelligent agents. 

     In this thesis, we applied supervised machine learning and trained and tested classi-

fiers in transcripts from online tutoring services sessions (Tutor.com) as well as multi-

party chat conversations from an intelligent tutoring system (Landscience). The models 

investigated in this thesis build upon on Rus and colleagues’ (2012) work which showed 

that general speech act categories can be predicted by using the first few tokens of ut-

terances as features. We extended the feature sets, in particular we added features that 

capture the context of the previous dialogue, and tested multiple learning algorithms. 
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3 Multi-party dialogue (Landscience) 

     In the first step towards examining speech act classification models, we designed 

models on a data set of multi-party dialogue from student-mentor chat sessions in an 

online tutoring system (Landscience). Land Science is an epistemic game-like ITS de-

signed to simulate an urban and regional planning internship experience for students 

(Shaffer & Gee, 2007). During the game students make land use decisions with the 

guidance of the mentor in order to meet the desires of virtual stakeholders. The students 

communicate with their team members and the mentor through a text-based chatting 

interface.  

     Currently, the human mentor guides the students to play the game while an artifi-

cially intelligent agent (AutoMentor) is being developed based on analysis of conver-

sations between students and human mentor,. To find out the best prediction or condi-

tions of the AutoMentor’s conversational patterns, analyses have been conducted us-

ing the features of the speech act, a state transition network between adjacent speech 

acts, an epistemic network analysis, the newness and relevance of the chat contribu-

tions in the discourse space, along with the game elements, i.e., time parameters, top-

ics, and activities at the different game stages. It is beyond the scope of this thesis, 

however, to discuss the various components and mechanism of AutoMentor. Instead, 

the immediate goal is to examine different models for speech act classification in 

mentor-student interactions.  

3.1 Dataset 

     Our training data was extracted from a dataset of mentor-student chat utterances 

from seven Land Science full sessions. A hundred high- and middle-school students 

participated in the game in three conditions: during vacation, in school, and remote with 
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one on-site meeting before they started the game. A total number of 26,148 chat utter-

ances were generated by the players and the mentor. About 55% utterances were posted 

by the 100 players. We randomly extracted chat utterances to form our training data 

and adjusted the training data to include an even distribution of 30 instances per speech 

act category. 

3.2 Approach 

     Our approach to speech act classification is a supervised machine learning approach. 

In this approach, models of the tasks are proposed as sets of features. Parameters of 

these models are learned/trained from annotated data and the performance of the 

learned models is then assessed on new, test data. The parameters of the proposed mod-

els are learned using several machine learning algorithms, i.e., decision trees and naïve 

Bayes.  

     The feature set was designed based on two principles: first, it is intuitively inferred 

and tested that human identified the speech act of an utterance as soon as they heard 

the first few words (Rus et al., 2012), namely, the first leading tokens. However, the 

context of an utterance is assumed to improve accuracy, e.g. it is more likely that after 

a question an answer follows as opposed to a greeting. Thus, the second feature set 

included the contextual information, e.g. speech act category of the more recent few 

utterances.  

     Briefly, our feature set consisted of content (non-contextual) features of the current 

utterance and contextual features (speech acts of previous utterances). The content, 

non-contextual features include the first two tokens and the last token which were rep-

resented as the actual string of characters (tokens) and the length of the utterance by 

word. The rest of the features captured contextual information with the five prior ut-

terances (the speech acts and authors of these utterances).  In this chapter, we use a 
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general taxonomy consisting of a set of seven categories which was proposed by Rus 

et al. (2012) (Table 3). 

3.3 Human Annotation  

     In order to examine the performance of our models, a set of mentor-student chat 

utterances were extracted randomly among different groups and different stages in the 

Land Science game. This data set was annotated by one human expert within the con-

text of the chats. The human expert had access to the whole dialogue and context of the 

conversation. This annotated data set is deemed as the reference annotation and includes 

30 utterances per speech act category. In order to examine the impact of the limited 

contextual information defined in our automated models (speech acts of previous five 

utterances), this data set was further annotated by another human judge in two forms, 

respectively.  

     First, the utterances were randomly ordered and the rater annotated them without 

considering the limited context. Second, each utterance was accompanied by the speech 

act category of five prior utterances and rater annotated the data considering the con-

tents of the current utterance and prior context. Table 4 presents inter-reliability data 

for the two sets of ratings (with and without context) and comparisons with the refer-

ence annotation. 

     As shown in Table 4, the inter-rater reliability between human judges improved 

significantly by adding contextual information. The agreement on Metastatement, for 

example, improves significantly by adding context. Metastatements are the utterances 

which are generated when the players try to fix a communication break or confusion 

and knowing the context of a Metastatement utterance (prior utterances) helps identi-

fying them since they often tend to refer to prior utterances to address an issue or a 

misunderstanding.  
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Table 4. Human Experts‘ Agreements. 

Categories 

Kappa 

With Context-

Without Context 

Without Context-

Reference 

annotation 

With Context-Reference 

annotation 

Greeting 0.87 0.85 0.90 

Metastatement 0.55 0.53 0.92 

Question 0.89 0.79 0.86 

Reaction 0.18 0.27 0.44 

Request 0.78 0.72 0.86 

Statement 0.32 0.18 0.58 

Expressive 

Evaluation 
0.56 0.51 0.75 

 

     Besides adding context to our feature set, we refine the taxonomy to a hierarchical 

structure with three macro-categories: Initiative, Responsive, and Other. Each of new 

categories refer to a set of sub categories from the original taxonomy: Initiative (Ques-

tion, Request, (fact) Statement), Responsive (Expressive Evaluation, Reaction), and 

Other (Metastatement, Greeting). 

     The Initiative category included speech acts corresponding to a speaker initiating a 

new dialogue segment. A fact statement, for example, can be uttered by a speaker 

who starts a conversation by simply asserting a fact. Similarly, Questions and Re-

quests are typically initiated by a speaker and do not reflect reactions to the conversa-

tional partner(s)’ moves. Responsive categories represented a response to a prior (ini-

tiative) speech act. Other category could occur in both situations. For instance, a 

greeting can be initiated or can be in response to another greeting. This new categori-

zation is a bit challenging because of this dual behavior of the speech acts in the Other 

category. It violates the typical assumption in speech act classification that the three 

categories are disjoint or that an utterance may belong to only one category. Actually, 

some utterances received multiple labels from human annotators during the annotation 
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process, e.g. statement and reaction were often confused. We had only used one of the 

labels in our experiments presented later.  

     This new structure allowed us to use different feature sets and models to maximize 

the accuracy for different speech act categories based on their nature and application. 

Using the annotated data set, we apply Decision Trees and Naïve Bayes machine 

learning models to create the automated speech act classifier. The performance of our 

models is presented in next section.  

3.4 Results and Discussion  

     As it is shown in table 4, having contextual information improves the accuracy of 

human judgments. In fact, the more we know about context the better we can make 

decisions. Moreover, having contextual information dramatically changes the decision 

made by expert for certain speech act categories such as Reaction.  

     For the automated classification, our features set consist of two types of features: a 

set of 10 features which represent the context of the utterance by looking at the speech 

act category and speaker of five prior utterances, and 4 features representing the se-

mantic information of the individual utterances including the first two tokens, last to-

ken, and the length of the utterance. The performance of proposed models is tested 

with two feature sets: 

 Semantic: the feature set contains only the semantic information of the current utter-

ance, i.e., three leading tokens, last token and the length of the utterance. 

 Contextual & Semantic: the feature set contains both contextual and semantic in-

formation.  

     Besides the feature set, as mentioned earlier, the speech act taxonomy also has a 

vital impact on the performance of machine learning models. Moreover, because some 

categories are used more frequently, a high accuracy in predicting them is crucial to the 
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performance of the conversational tutor, i.e., AutoMentor in our case. This requires a 

detailed evaluation of the models. 

     The hierarchical structure of the taxonomy enables the use of different models for 

classifying the different levels of categories. First, we need to classify the utterances 

into the three main categories: Initiative, Responsive, and Other. Next, for each such 

category a secondary classifier is trained to classify utterances inside each category. 

     For the first level of classification, we train the model on the reference annotations 

with two feature sets: semantic features only, and both semantic and contextual fea-

tures. Tables 5 and 6 show the performances of different machine learning models on 

predicting the first level categories. The Naïve Bayes approach has a better perfor-

mance for this step since the categories are generalized and using the same feature set 

the nodes in the decision tree overlap and may lead to confusion.   

Table 5. Precision (P) and Recall (R) of  First Level Models. 

 Naïve Bayes Decision Tree(J48) 

Cont. & Sem. Semantic Cont. & Sem. Semantic 

Category P R P R P R P R 

Initiative 0.75 0.75 0.70 0.86 0.60 0.78 0.59 0.77 

Responsive 0.64 0.63 0.78 0.55 0.73 0.45 0.73 0.45 

Other 0.73 0.75 0.72 0.70 0.61 0.56 0.63 0.58 

 

Table 6. Accuracy (A) and Kappa (K) of First Level Models. 

 Naïve Bayes Decision Tree(J48) 

Cont. & Sem. Semantic Cont. & Sem. Semantic 

Category A K A K A K A K 

Initiative 0.75 0.57 0.86 0.58 0.78 0.38 0.77 0.36 
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Respon-

sive 
0.63 0.49 0.55 0.53 0.45 0.43 0.45 0.43 

Other 0.75 0.64 0.70 0.59 0.56 0.43 0.58 0.46 

 

     Table 5 shows that adding context to the feature set improves the precision for Ini-

tiative category however for the Responsive category the precision is lower with con-

text information. Overall context does not improve the performance of first level cate-

gorization except for slight changes in accuracy for Responsive and Other categories, 

since the first level categories are few and very broad. It is also learned that Naïve 

Bayes algorithm is more suitable than decision tree in first level categorization. Next, 

we focused on assessing the accuracy of speech act classification models with single 

and two layer taxonomy. Using the reference annotations as our training data, we cre-

ated decision trees and Naïve Bayes learning models using WEKA (Hall et al., 2009) 

and we tested our models with 10-fold cross validation. The overall performance of 

models is evaluated with the two feature sets (semantic, context) and we also measure 

the performance of models with the 2-layer taxonomy vs. single layer flat taxonomy.   

Table 7. Accuracy (A) and Kappa (K) with 1-layer and 2-layer Taxonomy. 

Model Naïve Bayes Decision Tree 

Taxonomy 1-layer 2-layer 1-layer 2-layer 

Feature set A K A K A K A K 

Semantic 0.53 0.29 0.74 0.70 0.55 0.48 0.50 0.47 

Sem. & 

Cont. 

0.54 0.47 0.75 0.71 0.56 0.48 0.64 0.58 

 

     As seen in table 7, Naïve Bayes algorithm is more suitable than Decision Tree and 

the maximum accuracy is achieved when the 2-layer taxonomy is used. The two fea-

ture sets however show a lower impact on the overall performance. It seems that the 

positive impact of the contextual features is low. Considering the significant impact of 
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the 2-layer taxonomy on the overall performance of the models, in the next steps we 

use this multi-level taxonomy structure and evaluate the performance of the models 

on each category to examine the impact of contextual features in more detail.  

Table 8. Accuracy and Kappa of Naive Bayes Models with Different Feature Sets on 

Second Level. (I=Initiative R=Responsive) 

 Accuracy Kappa 

Feature set I R Other I R Other 

Semantic 0.71 0.78 0.76 0.56 0.56 0.53 

Contextual & Semantic 0.72 0.66 0.88 0.58 0.33 0.76 

   

   Table 8 shows the performance of Naïve Bayes model for second level categoriza-

tion by first level categories (groups of second level speech acts) to examine the gen-

eral impact of context on predicting these groups of speech acts. The accuracy and 

kappa of ‘Other’ speech acts improves by adding context to our feature set, however 

the performance on ‘Responsive’ category becomes lower. It also inferred that context 

has a low positive impact on ‘Initiative’ categories. The different impact of context 

features on first level categories suggests that different feature sets improves the per-

formance of the model on predicting certain categories while the performance de-

crease for some categories. We extend this analysis to the next level and examine the 

performance on individual second level categories (table 9). 

 

 

Table 9. The Performance of Naive Bayes Models on Second Level categories with 

and without Context Features. (P = Precision, R = Recall, A = Accuracy, K = Kappa ) 

 Semantic Contextual & Semantic 
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Categories P R A K P R A K 

Expressive 

Evaluation 

0.73 0.9 0.90 0.56 0.61 0.86 0.86 0.33 

Greeting 0.78 0.73 0.73 0.53 0.96 0.8 0.80 0.76 

Metastatement 0.75 0.8 0.96 0.76 0.82 0.96 0.96 0.76 

Question 0.89 0.56 0.56 0.58 0.8 0.53 0.53 0.5 

Reaction 0.87 0.66 0.66 0.56 0.77 0.46 0.46 0.33 

Request 0.75 0.73 0.73 0.62 0.82 0.8 0.80 0.72 

Statement 0.59 0.83 0.83 0.5 0.61 0.83 0.83 0.51 

 

     Based on the evaluations presented in Table 9, the context features have a positive 

impact on Greeting, Metastatement, Request, and Statement. The rest of the catego-

ries, on the other hand, have a better performance without contextual features. The re-

sults of the automated classification process are mixed but overall they suggest the 

use of the 2-layer taxonomy allowing us to apply different features and models for 

classification of different categories. Unlike human experts, the machine learning 

models’ accuracy decreased on certain speech acts such as Responsive categories 

when we add context to the feature set.   

3.5 Conclusion 

     Speech act classification has various applications in intelligent systems. Intelligent 

Tutoring Systems as an example can use speech act classification to identify student’s 

inquiries in natural language interactions and determine an appropriate response from 

the intelligent tutor. In this chapter, we examined the role of context and taxonomy 

structure in the performance of automated speech act classification.  
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     Based on the nature of speech act categories, we divided our taxonomy in three 

groups: Initiative, Responsive, and Other. This breaks the classification in two levels. 

In the first level classification, contextual features seem to not have a significant impact 

on the performance of models; however for the second level classification depending 

on the first level class, adding context improves the performance on certain categories 

such as Request, Greeting, and Metastatement while the performance of the model on 

some categories such as Question and Expressive evaluation is lower when we add 

context to the feature set.  

     The results presented in previous sections show that having some sort of contex-

tual information has a positive impact on the accuracy of speech act classification for 

both human and computer. The nature of speech act categories used as the taxonomy 

set, on the other hand, is another main factor in the performance of certain models. In 

next chapter, we extend the scope of our approach to a larger data set from one-on-

one tutoring sessions, use granular hierarchical taxonomy, and design models with 

similar and more features.  
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4 Online Tutoring Services (Tutor.com) 

     In previous chapter, we worked on a relatively smaller data set from multi-party chat 

dialogue sessions and used a general taxonomy with several machine learning models 

to train and test speech act classifiers. We used two kinds of feature sets and the results 

showed that adding contextual information to our feature set has a mixed impact on the 

performance. We also applied a hierarchical structure to the taxonomy which enabled 

using different kinds of features and models for different speech act categories.  

     In this chapter we extend our analysis and examine different models on a larger data 

set which is extracted from one-on-one tutoring sessions as opposed to multi-party chat. 

The taxonomy used in this chapter is more granular and based on a hierarchical struc-

ture, i.e., each speech act has a set of sub-categories (subacts). The feature sets are ex-

tended and more algorithms are tested in this chapter. 

     As mentioned earlier, in this work we used a data set of one-on-one human tutoring 

sessions which were extracted from Tutor.com algebra and physics tutoring sessions. 

The data set consisted of 1,438 sessions which included 95,526 utterances generated by 

tutors and students. The first step was to develop a taxonomy and have human experts 

tag the data set with speech acts. 

     The taxonomy used in this work was developed with the assistance of 20 subject 

matter experts (SMEs), all experienced tutors and tutor mentors working for Tu-

tor.com which resulted in a fine-grained hierarchical taxonomy including 15 main cat-

egories where each main dialog act category consists of different sub-categories 

which resulted in 133 distinct dialog acts. Table 10 shows a list of main dialog acts 

with example. 
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Table 10. Top-level Speech Acts’ Definition and Examples. 

Act Description Example 

Answer A statement made in re-

sponse to a question 

Any non-zero integer. 

Assertion A free-standing state-

ment (no prior question) 

We have to keep the equation balanced. 

Clarifica-

tion 

An statement serving to 

clarify a prior statement. 

I mean both forces acting together. 

Confirma-

tion 

A statement serving to 

confirm the truth or ac-

curacy of a prior state-

ment. 

Right. 

Correction An statement serving to 

correct a prior statement. 

Actually, -3. 

Directive An utterance in the form 

of an imperative. 

Now draw the graph. 

Explana-

tion 

An utterance in the form 

of an explanation. 

Because there are no horizontal forces act-

ing on it. 

Expressive An utterance in the form 

of an expressive. 

Oh! 

Hint An utterance designed 

elicit another utterance 

by providing partial in-

formation. 

Aren’t you forgetting something? 

Promise An utterance that com-

mits the speaker to a fu-

ture action. 

I will help you understand this. 

Prompt A utterance designed to 

elicit another utterance. 

And then…. 

Question An utterance in the form 

of a question 

What are you having trouble understand-

ing? 

Reminder An utterance in the form 

of a reminder. 

Remember you need to subtract from both 

sides…. 

Request An utterance in the form 

of request. 

Could you help me? 

Suggestion An utterance in the form 

of a suggestion. 

How about squaring both terms? 

 

     The dialog acts were defined and refined to minimize the overlap and maximize the 

coverage of distinct acts. The resulting taxonomy was described with examples and 

guidelines which were used by human annotators to tag the tutoring sessions to be used 

as training data in our models. The full taxonomy (dialog acts and their sub-acts) can 
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be found in the appendix. A group of 20 experienced tutoring experts were consulted 

in the development of taxonomy and trained to tag the data set. The human tagging 

process included 4 major phases: development of taxonomy, 1st round tagging, relia-

bility check, 2nd round tagging, reliability check, and final tagging phase.   

     The experts were divided into two groups: Taggers and Verifiers. In the first 2 tag-

ging phases, each tagger was given a session transcript and asked to annotate the utter-

ances. The resulting tagged session was then assigned to a verifier who went through 

the annotations, reviewed the tags and made necessary changes. In the reliability check 

steps, experts tagged each transcripts independently and in the final tagging phase, 5 

experts went through all the tagged sessions and repeated the verification process to 

form a solid training set with the best quality of human tags. 

Table 11. Agreements of Taggers (T) and Verifiers (V) on Top-level Speech Act 

(Act) and Sub-categories (SubAct). 

 % Agreement Kappa 

Phase # Sessions Act SubAct Act SubAct 

 1st round 738 98 88 0.91 0.87 

Reliability 39 79 63 0.75 0.62 

2nd round 700 94 90 0.93 0.90 

Reliability 36 81 66 0.77 0.64 

 

     Table 11 shows the agreement of experts on annotations prior to the final tagging 

round. The agreement of Taggers and Verifiers was approximately 90% with a slightly 

higher agreement on the second round which shows to what extent the verifiers made 

changes to the initial annotations.  This results suggest a high agreement between ex-

perts’ annotation while it is important to note that most of the disagreement was in the 
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second level categories (subacts). Table 12 shows the distribution of speech act catego-

ries in the training data. It is observed that the highest frequent categories are Assertion 

and Expressive while other categories such as Hint and Promise have lowest frequency. 

Table 12. Distribution of Speech Acts in the Training Data. 

Act Count %  

Answer 1130 1.2 

Assertion  29890 32.3 

Clarification 609 0.6 

Confirmation 6620 7.1 

Correction 2065 2.2 

Directive 2006 2.1 

Explanation 1941 2.0 

Expressive 22198 24.0 

Hint 341 0.3 

Promise 303 0.3 

Prompt 6186 6.6 

Question 2553 2.7 

Reminder 337 0.3 

Request 14243 15.4 

Suggestion 2028 2.1 

 

4.1 Models 

     In supervised machine learning, the features used to represent the data play an im-

portant role in learning and the performance of the learned models. In previous studies, 

different kinds of features have been used ranging from the content, context, and do-

main specific properties of the dialogue sessions. In order to build the speech act clas-

sifier, we applied the following 3 kinds of featuresets. 

- Simple features  

     Based on previous research (Rus et al., 2012), 3 leading tokens of an utterance were 

shown to be good predictors for speech act. Thus, we extracted the following features 

of each utterance: 1st token, 2nd token, 3rd token, last token, and length of utterance 

(i.e., number of tokens). 
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- Extended features 

     Using the Correlation Feature Selection (CFS) measure, we found that 1st and last 

token are the most predictive features and in order to add contextual information (fea-

tures of prior utterances) we extended the simple features by adding the 1st and last 

token of three previous utterances to our feature set. CFS evaluates subsets of features 

with the assumption that the feature subsets which contain features that are highly cor-

related with the human classification are better than others. 

- Conditional Random Fields features 

     One of learning algorithms that we applied was Conditional Random Fields (CRF) 

models on training data. Based on the nature of the CRF algorithm, we attempted to use 

more tokens as features and tried to cover the full content of utterances. In addition to 

the above features, to further investigate the CRF models we extracted the distribution 

of utterances length and found out the average length of the utterance is 12 tokens. 

Hence, another feature set that we used specifically for CRF models is the 20 first to-

kens of the utterance plus a context window of three previous utterances. Note that this 

size of 20 tokens covers most of the utterances (i.e., utterances that had 20 or less to-

kens) in full content while some had more tokens. If an utterance has less than 20 tokens 

then the respective features are set to a default value which represents blank tokens. 

This was an attempt to improve CRF models and since it increases our feature space 

dramatically it could not be efficiently applied in other algorithms. 

     The mentioned feature sets were used to create different models with multiple learn-

ing algorithms. One common property of the above feature sets is that they all represent 

the content of utterances by tokens. This enabled the models to capture specific prop-

erties of “chat” interactions where tokens are representative of certain functions 

whereas in spoken language it’s the words and acoustic features that play this role.  
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4.2 Algorithms 

     In order to learn the classification models from the training data, several learning 

algorithms can be applied.  We applied supervised machine learning, i.e., the algorithms 

to learn a classifier from a set of tagged data. Four learning algorithms were used and 

evaluated: Naïve Bayes, Bayes Net, Logistic Regression, and Conditional Random 

Fields (CRF).  Each of the algorithms has certain properties that take into account dif-

ferent characteristics of data. 

- Naïve Bayes is the simplest learning algorithm for classification. It is based on the 

‘naïve’ assumption that the features are independent.  Based on the Bayes theorem, 

Naïve Bayes classifiers are learned by calculating a set of conditional probabilities 

which represent the probability of a class given a feature (e.g. P(C1 |f1), P(C1 |f2), etc. ). 

The output of Naïve Bayes classifiers given the input ‘I’ is the probability of ‘I’ belong-

ing to each category (in our case speech act category). The class with the highest prob-

ability is picked as the prediction. The predictions probabilities are also known as con-

fidence. Naïve Bayes is a popular baseline classification algorithm because it can be 

efficiently learned in a supervised setting on small data sets, due to the features inde-

pendence assumption. 

- Bayes Net (Bayesian Network) is a probabilistic graphical model which represents 

the dependencies between features by a directed acyclic graph (DAG).  In a Bayesian 

Networks nodes represent random variables (features) and edges represent conditional 

dependencies. Each node is associated with a probability function which given partic-

ular a set of values for the node's parent variables produces the probability of the vari-

able represented by that node. Bayesian networks are also based on Bayes theorem but 
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the difference between a Bayes Net and a Naïve Bayes model is that Bayes Nets repre-

sent the dependencies between features where as Naïve Bayes assumes that features are 

independent.  

- Logistic Regression is another probabilistic model that is used in classification. A 

logistic regression model, uses logistic functions to model the prediction based on fea-

tures. In the basic case, logistic regression is used to predict a binary class, however it 

can be modified to predict a multi-nominal variable by creating a regression function 

for each category and picking the prediction (category) based on the highest probability 

among all the functions’ values. The fact that the logistic regression creates a separate 

model for each category makes it less efficient in cases with more number of categories 

and features. In our case, the size of taxonomy is large and the training data is also big 

which makes it less efficient to apply Logistic Regression, however in order to examine 

its performance, we applied this algorithm to our top-level classification model. 

- Conditional Random Fields (CRF) is a probabilistic model designed mainly for tag-

ging sequential data (Lafferty, McCallum, & Pereira, 2001). While the ordinary classi-

fication algorithms often label a single data point without taking the context into ac-

count, CRF models are appropriate for structural prediction, i.e., they use the neighbors 

(context) to make predictions and maintain the structural and sequential relationship 

between the labels. Since based on definition, several speech act categories (e.g. An-

swer) rely on the prior context, we applied CRF to investigate its performance along 

with the other common classification algorithms. 

4.3 Results and Discussion  

     In order to examine the performance of different learning algorithms on our data 

set, three kinds of features (Simple, Extended, and CRF) were extracted from the full 
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set of training data consisting of 95,526 utterances extracted from 1,438 annotated tu-

toring sessions and models were trained and tested using each feature set. 

     We used WEKA toolkit which is a Java package containing implementation of 

popular learning algorithms (Hall et al., 2009) and the CRF++ package to train and 

test the models. The size of our training data is larger than the data presented in most 

of the previous work on speech act classification and our data is within the domain of 

human one-on-one tutoring sessions which enables further analysis of the dialogue 

models to investigate the impact of dialogue moves on learning. 

     Extracting the simple features (leading tokens of utterance) we found approxi-

mately 2,500 distinct values for each of the features (out of ~95,000 utterances). The 

running time complexity of our algorithms is directly related to the number of features 

and data points. We tested out models using 10-fold cross validation. 

     In 10-fold cross validation, the available annotated data is split in 10 “folds;” 9 of 

the folds are used for training and one for testing. This process is repeated 10 times, 

once for each of the folds. The average performance measures across all iterations are 

reported. 

     As our taxonomy represents a hierarchical structure between the speech acts, we 

divided the speech acts into two categories: top-level speech acts and subcategories. 

This structure allows us to build models on different levels of speech act classification 

and ultimately design a hierarchical classifier which first tags an utterance with the 

top-level speech act and based on the top-level predict the appropriate sub-category. 

Based on the division of taxonomy in top-level and subcategories, we first trained and 

tested the models to predict the top-level speech act. Table 13 shows the results of 10-

fold cross validation on the top-level classification models.  
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Table 13. 10-fold Cross Validation of Algorithms with Different Features for Top-

level Speech Act Classification (P = precision, R = recall, F = F-measure) 

Algorithm FeatureSet %Accuracy Kappa P R F 

Naïve Bayes Simple 72.5 0.65 0.71 0.72 0.70 

Naïve Bayes Extended 72.3 0.64 0.70 0.72 0.68 

Bayes Net Simple 72.6 0.65 0.71 0.72 0.71 

Bayes Net Extended 72.5 0.65 0.70 0.72 0.70 

Logistic Regression Simple 76.6 0.70 0.72 0.76 0.73 

Logistic Regression Extended 77.4 0.71 0.70 0.77 0.73 

CRF Simple 72.7 0.45 0.60 0.42 0.50 

CRF Extended 71.9 0.44 0.57 0.42 0.48 

CRF CRF 76.6 0.47 0.60 0.45 0.51 

 

     As seen in table 13, the best performance on top-level classification is achieved by 

Logistic Regression algorithm, however all the algorithms yield and accuracy of more 

than 70% which is the baseline accuracy.  

The kappa values represent the extent to which each algorithm is performing better 

than chance and the logistic regression with extended feature set has the highest kappa 

which signifies the agreement of this algorithm with the expert tags.  

     It is interesting to note that the extended feature set does not improve the algo-

rithms significantly which implies that adding the contextual information, i.e., prior 

utterances, is either not useful or not sufficiently representing the context. This behav-

ior of contextual features have been previously shown in speech act classification 

models on a multi-party chat based tutoring system in chapter 3 and in Samei and col-

leagues (2013). 
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     The top-level classification models provide reasonably accurate performance as the 

inter-rater agreement on top-level in the independent annotations yielded ~%70 which 

is comparable to the best models’ accuracy.  We further trained and tested models to 

classify utterances in the second level of speech act categories. The baseline models 

for the full classification (top-level and subcategories) is created by appending the 

subcategory to the top-level categories in our taxonomy. This results in a flat set of 

133 categories.  

     The size of this flat taxonomy immediately limits the performance of classification 

models. As the taxonomy size increases more training data is needed to capture differ-

ent characteristics of each category; however, the performance of models on this tax-

onomy illustrates a baseline accuracy which other models can be compared to.   

     The performance of models on the flat taxonomy are shown in the table 14. As it 

seen the accuracy of models is lower than the top-level classifiers. The drop in perfor-

mance may be attributed to at least two factors: (1) the nearly ten-fold increase in the 

number of features (from 15 main speech acts to 133 subacts), leading to sparser data; 

and (2) the greater likelihood that the subtypes will be confused by human annotators. 

Human experts’ agreements were also lower in the subcategory level which suggests 

the likelihood of confusion on that level. 

     Bayesian based algorithms (i.e., Naïve Bayes and Bayes Net) were applied to the 

flat taxonomy and the best performance was achieved by Bayes Net algorithm which 

is an extension to Naïve Bayes taking the features dependencies into account. This 

implies the importance of representing the dependencies between features to be able 

to make distinction between subcategories. The simple vs. extended features again 

doesn’t show a significant impact on the performance. 
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Table 14. Results for Combinations of Models and Feature Sets (Dialogue Act Sub-

types) (P=Precision R=Recall) 

Algorithm FeatureSet %Accuracy Kappa P. R. F-measure 

Naïve Bayes Simple 51.9 0.49 0.52 0.51 0.47 

Naïve Bayes Extended 48.5 0.45 0.49 0.48 0.42 

Bayes Net Simple 53.1 0.50 0.52 0.53 0.49 

Bayes Net Extended 51.2 0.48 0.51 0.51 0.46 

 

     Next, we attempted to create a classifier for each set of subcategories. In other 

words, for each speech act a classifier was trained to predict its corresponding subcat-

egories.  In our data set, a set of utterances tagged with each speech act category 

formed the training data for learning its subcategories (subacts). Table 15 shows the 

performance of these classifiers which were trained on 70% and tested on 30% of the 

dataset. 

Table 15. Performance of Subact Classifiers for each Speech Act Category.  

Model Accuracy Kappa Precision Recall F-meas-

ure 

Answer 52.8 0.43 0.23 0.21 0.22 

Assertion  57.67 0.42 0.47 0.35 0.4 

Clarification 40.44 0.17 0.35 0.23 0.28 

Confirma-

tion 92.65 0.77 0.48 0.41 0.44 

Correction 62.36 0.43 0.28 0.27 0.28 

Directive 61.79 0.52 0.43 0.39 0.41 

Explanation 54.47 0.25 0.21 0.19 0.2 

Expressive 76.81 0.74 0.62 0.55 0.59 

Hint 67.65 0.34 0.41 0.37 0.39 

Promise 95.6 0 0.24 0.25 0.24 

Prompt 64.28 0.3 0.51 0.42 0.46 

Question 60.7 0.49 0.33 0.28 0.3 

Reminder 47.79 0.25 0.42 0.39 0.4 

Request 56.21 0.49 0.4 0.35 0.37 

Suggestion 70.23 0.43 0.23 0.22 0.23 
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     As shown in table 15, the subact classifiers yield an average accuracy of approxi-

mately %65 and kappa of 0.4. Particular subact categories such as the subcategories 

of Expressive are predicted with better accuracy and kappa (76% and 0.74), however 

one notable result is the lower precision and recall on the subact classifiers. This is 

due to the fact that some subcategories are too rare and there is not sufficient in-

stances associated with them to let the models learn effectively.  

Table 16. Subacts Predicted with Best Precision and Recall (precision > = 0.75) 

Subact Precision Recall 

AssertionURL 0.98 0.96 

PromiseProcess 0.96 1 

ExpressiveGreeting 0.95 0.98 

ConfirmationPositive 0.95 0.97 

ExpressiveLineCheck 0.88 0.77 

QuestionAffect 0.86 0.93 

ExpressiveNeutral 0.86 0.9 

ConfirmationNegative 0.85 0.82 

ExpressiveConfusion 0.84 0.58 

DirectiveDialogControl 0.82 0.8 

ExpressiveFarewell 0.8 0.81 

ReminderProcess 0.8 0.62 

ExpressivePraise 0.79 0.67 

AnswerAffectPostive 0.77 0.95 

RequestConfirmationUnderstanding 0.77 0.73 

ExpressiveThanks 0.77 0.79 

SuggestionProcess 0.76 0.83 

CorrectionTypo 0.75 0.82 

 

Table 17. Performance of Multi-layer Classifications. 

Accuracy (%) 39.36 

Kappa 0.36 

Precision 0.19 

Recall 0.15 
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     To take a closer look at these classifiers, table 16 shows the subacts that were pre-

dicted with best precision and recall.  Finally, we tested the final models, by first ap-

plying the speech act (top-level) classifier to the test set and based on the predicted 

speech act applied one of the subcategory models (presented in table 15) to predict the 

subact. Table 17 shows the results of this multi-layer classification. 

     As seen in table 17, the overall performance of the multi-layer classification mod-

els is significantly low. This is due to the fact the errors from top-level (speech act) 

are cascaded in the second level (subacts) besides the size of the taxonomy and lack 

of instances in some subact categories. The results imply the need to further investi-

gate the design of the taxonomy as well as learning algorithms. However the perfor-

mance of the models presented in this chapter are reasonable when applied separately 

and not in a multi-level approach. 

4.4 Conclusion 

     The results of the different models and algorithms showed that the top-level speech 

acts can be predicted with a reasonable accuracy, however to be able to tag utterances 

with both top-level and subcategories a multi-level classification needs to be applied. 

In this work, we applied common classification algorithm such as, Naïve Bayes, 

Bayesian Networks, Logistic Regression, and Conditional Random Fields (CRF). 

Each of the mentioned algorithms has their particular properties that make them suita-

ble for certain problems.  

     Naïve Bayes is the simplest classifier which is based on the Bayes theorem and 

works with conditional probabilities to learn the relation between each feature and the 

prediction. The naïve assumption in the Naïve Bayes algorithm is the independence of 

features. The Bayesian Network algorithm extends Naïve Bayes by taking into ac-

count the dependencies between features and while both Naïve Bayes and Bayesian 
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Networks are based on probabilistic modeling and Bayes theorem, the difference in 

the features dependency assumption makes them suitable for different problems.  

     We also applied CRF algorithm which is suitable for sequential classification. 

Adding the contextual information to the models didn’t show a significant impact thus 

by applying an algorithm which is designed for sequential context-based classification 

(CRF) we further investigated the context-based design of speech act classification, 

however CRF models did not perform better than other algorithms such as Logistic 

Regression.  

     Another algorithm that we applied was Logistic Regression. Logistic Regression 

when adopted for multi-nominal classification creates a separate classifier for each 

class (category). In our experiments, Logistic Regression achieved the best perfor-

mance on the top-level classification. This implies that the models will perform better 

if each category of speech act is learned separately which means to some extent re-

solves the confusion between different categories. This finding supports the hierar-

chical structure of the taxonomy which in a way forces the classification model to 

learn each class separately. 

     The hierarchical and granular taxonomy enables modeling the dialogue in a more 

precise way, i.e., identifying patterns and strategies used in tutoring sessions. Creating 

speech act classifiers becomes handy when the cost of human annotation is high. In 

our case, the data set that was annotated by human experts, and represents a small 

portion of a larger data set of available transcripts of tutoring sessions. The ultimate 

goal of this work is to build a model to be applied to a set of not-seen and untagged 

data and use the speech acts as means of modeling the discourse. 

     Learning a model on a set of tagged data and then applying it to a larger set of un-

tagged instances is a known problem often approached as semi-supervised learning. 
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The semi-supervised framework enables the models to be updated and retrained as 

more untagged data get tagged. The proposed models in this chapter can be used as 

initial models for a semi-supervised classifier to which ultimately will identify speech 

acts in real time. 
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5 Future Work 

     In the thesis, we investigated speech act classification models on two datasets and 

with different taxonomies. The certain properties of a dataset and taxonomy have an 

impact on the performance of the models. While the baseline performance of the pro-

posed models is reasonable, there are several directions for future work to improve the 

models. 

     All in all, the future directions to the proposed approach is to design a framework 

specifically appropriate for speech act classification models from the taxonomy struc-

ture to the learning process that can be tested in separate settings. The algorithms and 

models presented in this thesis are general classification algorithms which are de-

signed to work in the generic framework of classification problems. In chapter 4 we 

used a hierarchical taxonomy and investigated models to predict the top-level speech 

acts as well as subacts while in chapter 3 we also modified the taxonomy to multi lay-

ers.  

     In order to develop classifiers with the hierarchical structure of taxonomy, we will 

investigate modifications to the algorithms to learn in a hierarchical way while avoid-

ing cascaded errors in the second level.  One approach can be Classifier Ensemble in 

which a set of classifiers will be applied to an instance and the set of predictions will 

be generated based on which we can examine an algorithm to identify the final predic-

tion.  

     Another direction for future work is to examine the taxonomies and take a bottom-

up data-driven approach to find the best structure for the taxonomy. We can apply un-

supervised clustering techniques to form a set of speech acts and within each set find 

subcategories.  
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Moving the analysis in both top-down and bottom-up approach to find a common 

ground where the models do their best is another direction to take for future work. 

     Since the cost of human tagging is high, we will investigate more models with un-

supervised and semi-supervised techniques such as self-training and co-training. In a 

semi-supervised approach we initially train classifiers on tagged data and then apply 

the learned models to a set of untagged instances and the predictions with high confi-

dence are added to the training set and update the models. The models proposed in 

previous chapters can be used as initial classifiers and updated with more data in a 

semi-supervised approach.   

     The work presented in this thesis will be used as baseline approach to future analy-

sis. With different general approaches to classification problems we will attempt to 

create a specific classification algorithm to take advantage of taxonomy structure and 

nature of speech act classification which is a base component of intelligent systems 

with natural language processing and language understanding.  
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Appendix: Speech Act Taxonomy 

 
Top-level  Sub-Category 

Answer  

 Approach 

 Affect:Postive 

 Affect:Negative 

 Affect:Neutral 

 Calculation 

 Concept 

 InstructionalContext 

 Metacognition 

 Process 

 PriorKnowledge 

 PriorKnowledge:Negative 

 PriorKnowledge:Positive 

 ProblemStatement 

 Understanding 

 Understanding:Negative 

 Understanding:Positive 

 Unspecified 

Assertion  

 Affect 

 Approach 

 Calculation 

 Concept 

 InstructionalContext 

 Metacognition 

 Process 

 ProblemStatement 

 Prior Knowledge:Positive 

 Prior Knowledge:Negative 

 Understanding:Positive 

 Understanding:Negative 

 URL 

 Unspecified 

Correction 

 Approach 

 Calculation 

 Concept 

 ProblemStatement 

 Process 

 Typo 

 Unspecified 
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Clarification 

 Approach 

 Calculation 

 Concept 

 InstructionalContext 

 Metacognition 

 Process 

 ProblemStatement 

 Unspecified 

Confirmation 

 Positive 

 Neutral 

 Negative 

 Unspecified 

Continuation 

 Continuation 

Directive  

 Approach 

 Attention 

 Calculation 

 Concept 

 DialogControl 

 InstructionalContext 

 Metacognition 

 Process 

 Unspecified 

Expressive 

 Acknowledgment 

 Apology 

 Confirmation:Positive 

 Confirmation:Negative 

 Confusion 

 Celebration 

 Farewell 

 Greeting 

 InstructionalContext 

 Laugh/Smile 

 LineCheck 

 Metacognition 

 Mistake 

 Negative 

 Neutral 

 Praise 

 Positive 

 Thanks 
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 Understanding 

 Unspecified 

Explanation 

 Approach 

 Calculation 

 Concept 

 InstructionalContext 

 Metacognition 

 Process 

 ProblemStatement 

 Unspecified 

Hint  

 Approach 

 Calculation 

 Concept 

 Unspecified 

Promise  

 Calculation 

 InstructionalContext 

 Metacognition 

 Process 

 Unspecified 

Prompt  

 Approach 

 Calculation 

 Concept 

 Process 

 Unspecified 

Question  

 Affect 

 Approach 

 Calculation 

 Concept 

 InstructionalContext 

 Metacognition 

 Process 

 Prior Knowledge 

 ProblemStatement 

 Understanding 

 Unspecified 

Reminder 

 Approach 

 Calculation 

 Concept 

 InstructionalContext 
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 Metacognition 

 Process 

 Unspecified 

Request  

 Confirmation 

 Confirmation:PriorKnowledge 

 Confirmation:Approach 

 Confirmation:Calculation 

 Confirmation:Process 

 Confirmation:ProblemStatement 

 Confirmation:InstructionalContext 

 Confirmation:Metacognition 

 Confirmation:Concept 

 Confirmation:Understanding 

 Clarification 

 DialogControl 

 Explanation 

 Process 

 Unspecified 

Suggestion 

 Approach 

 Attention 

 Calculation 

 Concept 

 InstructionalContext 

 Metacognition 

 Process 

 Unspecified 

Unspecified 
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