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ABSTRACT

Cao, Xueyuan, Ph.D. The University of Memphis, August, 2014. Set Based
Association Testing in High Dimensional Genomic Studies. Major Professor: E. Olusegun
George.

The last decade has ushered in an era of high dimensional, high volume data. In

particular with the biotechnological revolution of the era, high-dimensional genomic

studies of various designs have provided investigators with the tools to study thousands or

even millions of genomic features simultaneously. These studies have shed new light on

the underlying mechanisms of complex diseases. The accumulated knowledge of these

complex relationship between genes has led scientists to formalize pathways and

graphical networks that visually and succinctly give descriptions of the geometry of these

relationships. With such knowledge, it has become possible to develop procedures for

statistical inference, not just at the individual genes level, but at the more meaningful

gene-set level. The focus of this thesis is the development of new statistical procedures for

such gene-set analysis.

After presenting an overview at the introduction, we give a comprehensive review of

the literature relevant developments in the thesis in Chapter 2. In Chapter 3, we develop a

Bayesian procedure that incorporates information contained in a gene graphical network,

viewed as a directed graph, into the construction of prior distributions and we use the

derived posterior distributions to construct statistical tests at the gene-set level. Our

procedure extends the work of Pan (2006) and Wei and Pan (2008) which did not use the

direction as information in the graphical network, but rather used undirected graphs and

assumed a mixture model for the distribution to generate the posterior distribution of the

mixing parameters via the use of a Markov random field. We demonstrate the gain in

statistical power of our procedure over Pan and Wei’s in an application to detect

differentially expressed genes, and gene-sets by analyzing a data set that compares

favorable risk and poor risk defined by cytogenetics in adults with acute myeloid leukemia

(AML).
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To enhance comprehension of the vast and complex information in

high-dimensional data from genomic studies, it is sometimes useful and desirable to have

a procedure that relates such data to specific endpoints. In this regards, association tests

are highly desirable. In Chapter 4, we propose a procedure which we label ‘Projection

onto Orthogonal Space Testing (POST)’ as a flexible method for testing association of

gene sets and pathways with specific phenotypic endpoints while adjusting for other

factors and variables as needed. In a simulation study, we demonstrate that POST has

better operating characteristics than other methods recently developed to address the same

objective. Thus we feel that POST does not only help to better understand treatment

responses, but also prioritizes pathways for further study. We expect that POST will be

especially valuable in clinical studies where cohorts with moderate to large sample sizes

have rich high-dimensional data.

Another new procedure for association testing which we label ’Locus Based

Integrated Testing(LOCIT)’ and an extension of the procedure -LOCITO- are introduced

in Chapter 5. LOCIT is designed to test association of multiple forms of genomic data

within a locus with an endpoint of interest in genomic studies. Given different forms of

genomic data such as SNP genotypes, gene expression, and methylation levels, LOCIT

performs one test per locus, taking several features at the locus into consideration. To

illustrate the efficacy of LOCIT, we apply the procedure to a set consisting of SNP

genotypes and gene profiling in an AML cohort to identify loci /genes that are associated

with clinical outcomes.

In chapter 6, we summarize our development of gene-set level association tests and

outline future directions of our research in this area.
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Chapter 1

Introduction

The pioneering “working draft” DNA sequencing of the human genome was

completed in 2000 through an international effort of the Human Genome Project (HGP,

http://www.genome.gov/). Since then, partial or whole genomic sequences of many

species of animals, such as nematode worm (Sequencing Consortium and others,

1998)[1], fruit fly (Adams et al., 2000)[2], mouse (Chinwalla et al., 2002)[3], and plants

such as Arabidopsis (Arabidopsis Genome Initiative and others, 2000)[4], rice (Goff et al.,

2002)[5] and maize have been published. Together with the efforts on sequencing of

Expression Sequence Tag (EST) these explosion of sequencing the genome of living

organisms has unlocked the door to the study of genetics and biology at the genome wide

level, and launched scientific research to a level previously unattainable.

One of the goals in the post genomic era is to decipher genetic information encoded

in the genomic sequences and use this information to formulate and test hypotheses. At

the same time, new technologies and methods have evolved to acquire and analyze data

that generate new biological and biomedical hypotheses. One such new technology is

microarray gene profiling. In a gene profiling experiment, the expression levels of

thousands of genes are measured simultaneously using micro-chip such as GeneChip by

Affymetrix (http://www.affymetrix.com/, available in dozens of models and commercial

species) and BeadArray by Illumina (http://www.illumina.com/, human and mouse).

Recently, a second-generation sequencing based technology, RNAseq, has emerged for

measuring gene expression. The RNAseq is an advancement that is considered to be more

accurate than the older methods, not only for measuring gene expression levels, but also

for detecting alternative splicing events (http://www.illumina.com/). Besides gene

expression profiling, some of these micro-chip and sequencing technologies have been

used to study micro RNA (miRNA), for the purpose of identifying activities such as single
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nucleotide polymorphisms (SNPs), and epigenetic phenomenon such as DNA

methylation, in genetic samples.

In a typical GeneChip microarray profiling experiment, mRNA or total RNA

strands, isolated from experimental units (cells, tissue etc), are reversely transcribed to

single-strands of cDNA (complementary DNA) which are then synthesized to

double-stranded cDNA. Biotin-labeled cRNA strands are then transcribed from the

double-stranded cDNA, fragmented, and hybridized to a GeneChip microarray. After

undergoing washing and staining, the hybridized mircoarray is then scanned by a laser and

the scanned signals are processed by MAS5.0 (Statistical Algorithms Description

Document (2002) Affymetrix Inc.) or other robust multi-array average (RMA) methods

(Irizarry et al., 2003)[6] to obtain expression values. Statistical analysis of these

expression values across experimental units are performed in accordance to the design of

the experiment. Accompanying the development of these new technologies are ongoing

research to develop new software to process, generate data and perform statistical

inference on the high dimensional data set generated by these processes.

One of the first applications of these new technologies was to study differentially

expressed genes (DEGs) in probe-set (gene) level under different treatments (for example

between normal and disease samples). At its most rudimentary, the methods to test the

null hypothesis of no group mean difference include the two-sample t-test. More

sophisticated test procedures have emerged in recent years to deal with experiments

involving multiple treatments, involving thousands of genes. The statistical test at the

gene level is called individual gene analysis (IGA). When considering thousands of tests

performed simultaneously, adjustments must be made to control error rate. After the

necessary adjustment for multiple testing, a list of genes/probes are declared to be

significantly differentially expressed at certain level of false discovery rate (FDR) and

provided to investigators. Khatri and Drăghici (2005)[7] provide an extensive review of

IGA approaches.
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Given a long list of differentially expressed genes at a specified FDR, investigators

rely heavily on bioinformatic databases or tools to annotate the gene list in order to

prioritize the genes and formulate working hypothesis. For the purpose of prioritizing

genes and formulating hypotheses, gene set based analysis is used for formal testing and

interpreting. Geoman and Buhlmann 2007[8], Nam and Kim 2008[9] reviewed some of

the methods and recommended guidelines to be used for analyzing gene expression data at

gene-set level. This topic will be extensively studied in the next chapter.

High throughput technologies have been evolving to study different biological

mechanisms of model systems and diseases. Fundamental to biological systems and the

inception of diseases is the micro RNA (miRNA), a small non-coding RNA molecule

which functions in transcriptional and post-transcriptional levels to regulate gene

expressions. The human genome encodes over 1000 miRNA which have been estimated

to target about 60% of genes (Bentwich, et al., 2005)[10]. They are abundant in many cell

types and are involved in many biological processes and diseases. The levels of miRNA

can be measured by micro-chips or by direct sequencing. Epigenetics is a phenomenon

that attributes gene expression or occurrence of cellular phenotype to activities of other

mechanisms other than changes in the underlying DNA sequence. Such activities includes

histone modification, DNA methylation and RNA editing. Histone modifications have

been studied using ChIP-Chip method (chromatin imunoprecipitation with microarray

technology, Lieb et al., 2001)[11] and recently Chip-seq (a next-generation sequencing

based technology, Johnson et al., 2007)[12]. DNA methylation levels are measured by

micro-chip such as Illumina Infinium Methylation array, or by pyrosequencing.

In clinical trials, patient samples are extremely valuable for elucidating the

mechanisms of diseases and for evaluation of treatment outcomes. In clinical trials,

multiple types of genetic data are collected from the patient samples. In addition to

multiple presenting features, these include various treatment outcome related variables

and genetic data such as gene expression, miRNA, SNP, DNA methylation, histone
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modification. In addition to relating each type of genetic data with sample phenotypes

such as presenting features, short- or long-term treatment responses or outcomes,

integrating all these rich genetic data in a unified test is challenging. However,

understanding the information encoded in theses data is of great interests to investigators.

In this dissertation, methods to incorporate prior knowledge of pathways into

genetic studies are proposed. A flexible set-based procedure is proposed to evaluate the

association of gene sets with diverse phenotypes. An integrated analysis approach based

on predefined sets is also proposed to take advantage of the rich genomic data from

multiple sources in a clinical trial setting. These methods may be adapted and extended to

address other more or less complicated applications. We discuss such potential

applications in the summary and future research section.

4



Chapter 2

GENE SET ANALYSIS

Since the introduction of high throughput expression profiling and genotyping, the

primary interest has been to identify differential presentation of the genomic features and

to elucidate the underlying biology. Many methods have been proposed to facilitate the

interpretation this profiling in the context of clustering genes into gene sets and

identifying gene pathways. In this chapter, we give a comprehensive review of the

bioinformatics and statistical literatures in this context.

2.1 Biological Pathways

It has long been well known that genes and proteins do not function in isolation.

Genes are organized on chromosomes, expressed, and function in a complex dependent

manner under cellular context (Figures 4.2 and 4.3). The accumulated functional

dependence can be described by graphical networks and biological pathways. Most of

these pathways are metabolic, regulatory or signal transduction pathways.

For diverse organisms and at various genetic levels, many public and commercial

databases have been developed to structure, store and characterize the dependent

relationships between genes and proteins in these pathways and sets. Among the most

widely accessed public databses is the Gene Ontology (GO). GO describes relationship

between genes in term of unified ontology using directed acyclic graph (DAG) with a

hierarchical structure (http://www.geneontology.org/; Ashburner et al., 2000[13]).

Another repository of genetic databases is NetPath. NetPath holds 20 manually curated

human signaling pathways, including 10 immune signaling pathways and 10 cancer

signaling pathways (Kandasamy et al., 2010)[14]. Another is BioCarta which represents

molecular or cellular pathways by interactive graphic models (http://www.biocarta.com/).

Others include Reactome, an online database developed by Croft et al. 2011[15], authored

by expert biologists in collaboration with Reactome editorial staffs, and the National

Center for Biotechnology Information (NCBI) and Pathway Interaction Database (PID)
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which contains 137 human pathways curated by NCI-Nature and 322 pathways imported

from BioCarta and Reactome (http://pid.nci.nih.gov/). These are a few examples and there

are many more publicly available ones.

Besides the publicly available pathway databases, there are a few commercialized

databases. For example, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway

database represents current knowledge of molecular interactions and reaction networks

related to metabolism (metabolic pathways), signal transduction, cellular processes and

human diseases using graphical representation

(http://www.genome.jp/kegg/pathway.html; Kanehisa and Goto 2000[16]; Kanehisa et al.,

2006[17]). Ingenuity is another commercial web based pathway analysis tool

(http://www.ingenuity.com/). Both KEGG and Ingenuity are widely used in the literature.

According to Pathguide, there are currently 159 pathway-related databases with

more than 150K pathway entities. To alleviate the burden of using pathways across

different databases, Yu et al. (2012) proposed to integrate various pathway databases for

building a unified database. hiPathDB[18] was developed incorporating KEGG,

Reactome, PID by NCI-Nature, and BioCarta (http://hipathdb.kobic.re.kr/). Since these

databases are dynamic, it is necessary to adopt a flexible definition of gene sets in

accordance to developments in statistical methodology.

2.2 Set level analysis in gene profiling

One of these developments in statistical procedures is the construction of a single

test for the differential expression of a gene set, rather than multiplicity of tests of each

gene in the gene set. Goeman and Buhlmann 2007[8], Nam and Kim 2008[9] divided

methods for gene set analysis according to various definitions of null hypothesis and

mechanisms for permutation in the calculation of p-values. Goeman and Buhlmann noted

that these procedures can be classified into three groups. One group summarizes the

over-representation of a gene set in a differential gene list by a 2x2 contingency table.

However, this representation has a drawback, namely that it requires a strict p-value
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cut-off for declaring differential expression. Another uses a statistic based on the whole

vector of p-values. A third group uses original expression data instead of p-value. Pounds

(2013) noted that these methods do not always lead to meaningful inference because they

have no information about the study design. Allison et al. 2006[19] also questioned the

validity of some these methods.

The definition of global null hypothesis for a gene set and the calculation of

p-values by permutation provide useful guide for developing statistically sound

procedures for gene set analysis. In terms of the null hypothesis, a gene set test can be

described as competitive or self-contained. A competitive test compares a gene set to a

standard defined by the complement of the gene set. A drawback of competitive test is that

it penalizes the gene set in zero-sum-game manner if the complement of that gene set has

highly differential expression (Allison et al., 2006). A self-contained test compares the

gene set to a fixed standard which does not depend on the measurement of genes outside

of the gene set. Thus a self-contained test evaluates the whole set to address the global

null of no difference in an experiment, while a competitive test does not. p-values for

these tests are usually computed by permutation of subject labeling or genes.

There are two major mechanisms for calculating permutation-based p-value: subject

sampling (random assignment of group labels) and gene sampling. In subject sampling it

is assumed that the measurements of different subjects are independent and identically

distributed, while the measurements within a subject could be correlated. In contrast, gene

sampling assumes that genes are random samples that are independently and identically

distributed, a reversal of the roles of samples and genes relative to classical statistical

setup. Subject sampling produces valid p-values and interpretation of the p-values is

straightforward (Pounds 2013).

In conducting gene set analysis, Goeman and Buhlmann (2007) recommended

testing a self-contained null hypothesis and basing the calculation of p-values on subject

sampling. Based on these criteria, Nam and Kim (2008) provided a detailed list of
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methods for gene set analysis with guideline for self-contained versus competitive tests

and the use of gene versus sample randomization for computing P-values. A few

commonly used methods are selected for further study.

2.3 Some gene set analysis methods

In this section, we review several methods which have had high impact on the

analysis of gene sets. In this thesis, we extend these methods and develop new procedures

to address some of the existing shortcomings in these methods.

2.3.1 Gene set enrichment analysis (GSEA)

Gene set enrichment analysis (GSEA) was first proposed by Mootha et al.

(2003)[20] and Subramanian et al. (2005)[21] for interpreting gene expression data.

GSEA considers data from randomized experiments or observational studies with two

groups. Based on the existence of correlation between gene expression and phenotype

(evidence of association of gene expression with groups), a ranked gene list is generated.

GSEA attempts to determine whether the members of a set S defined a priori, are

randomly distributed across the ranked gene list or lie primarily on the top or bottom of

the gene list. From the ranked gene list, an enrichment score (ES) is calculated by walking

down the gene list, increasing a running-sum statistics when encountering a gene in the

gene set S and decreasing it when encountering a gene not in S. The ES is the maximum

deviation from zero encountered in this random walk (similar to Kolmogorov-Smirnov

statistic). Subsequently, the null distribution of normalized ES (NES) is approximated by

permutations of the class labels, and p-value is calculated by using observed NES under

the null distribution. The implementation of this method provides an option of permuting

genes. This method is applied to 4 data sets and its advantages are demonstrated.

In this initial GSEA, the gene set test statistic (ES) is competitive, not

self-contained. It penalizes a gene set when genes out of the gene set are strong correlated

with the phenotype. Tian et al. (2005) [22] and Kim and Volsky (2005)[23] proposed an

extension to GSEA, in which a two-sample statistic, such as a t-statistic, is used instead of

8



enrichment score. The test statistic for a gene set is the aggregate of per gene test statistics

of its members and significance is determined by permutation. The test statistics is

self-contained.

Efron and Tibshirani (2007)[24] extended the GSEA by using an alternative

summary statistics for gene-sets and restandardization based on row randomization. They

showed that the maxmean statistic is more powerful than the original GSEA. An R

package GSA for implementing the procedure described by Efron and Tibshirani is

available on CRAN and it is more user friendly than the original GSEA.

Jiang and Gentleman (2007)[25] pursued an extension to original GSEA. In GSEA,

the definition of gene set statistics has three components: (1) per-gene statistics:

measurement of association between genes and a phenotype, (2) relationship of genes with

gene sets and (3) per-gene set summarization function. Jiang and Gentleman extended the

GSEA approach in all these three components. Besides using the two-sample t-statistics,

the per-gene statistic was extended to a linear model setting, adjusting for covariates as

needed. It was also extended to use posterior probability as per-gene statistics. In terms of

the per-gene set summarization function, the mean was extended to the median. To tackle

the problem of overlap between gene sets, three gene sets were constructed from two gene

sets with significant overlap. This extension helped to isolate and identify the gene set

associated with the phenotype. This extension to three components led to a number of

GSEA approaches which are self-contained and the use of permutation of subject labels

led to legitimate p-values. Jiang and Gentleman attempted to apply principal component

analysis (PCA) to gene sets to identify substructure of the sets. In a sense, the extension of

GSEA could be considered as gene set testing instead of enrichment analysis.

2.3.2 Significance analysis of functional categories (SAFE)

Barry et al. (2005)[26] proposed SAFE (significance analysis of functional

categories) procedure to test association of predefined gene sets with a phenotype. SAFE

has two statistics: local statistic (per-gene statistic measuring association of a gene with
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the phenotype) and global statistic (per-gene set statistic measuring the difference between

genes within a gene set and those outside of the gene set). The local statistics is derived

from various models based on the experimental design. This flexibility of local statistics is

valuable and applicable to many experimental designs, similar to one of the extensions in

GSEA by Jiang and Gentleman (2007). The global statistic assesses how the distribution

of local statistics within a gene set differs from the local statistics outside of the gene set.

The significance of global statistics is determined by permuting subjects’ labeling with the

experimental design taken into account.

The global test statistic for SAFE treats genes within or outside of a gene set as

independent samples, which is generally not valid as genes are usually correlated within a

gene set. The null hypothesis is hard to explicitly define. The global test result of a gene

set is influenced or penalized by the genes outside of the gene set. It does not test the

global null of no association of gene expression in the experiment with the phenotype. It

does not stably test a gene set consisting of one or a few genes, either.

2.3.3 Hotellings T 2 test

GSEA and its extensions, and SAFE are not multivariate analyses of predefined gene

sets, although these methods take the relationship of membership in the set into account.

Lu et al. (2005)[27] attempted to directly test association of gene sets with treatments. A

multiple forward search (MFS) algorithm was proposed to select genes in a gene set using

the maximum Hotellings T 2 statistic between the two groups. A re-sampling technique

was used to obtain robust mean estimate of the Hotellings T 2 statistics with lower and

upper 5% quantiles removed. The authors used the p-value from the Hotellings T 2 test of

a gene set as p-value for all the selected genes in the gene set. However, this is not valid

and represents a misinterpretation of Hotellings T 2 test. The p-value of Hotellings T 2 test

is the probability of obtaining a statistic as extreme as the observed under global null that

all the mean expression levels of member genes in the gene set are equal between two
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groups. This is dramatically different from p-value obtained from testing that each of the

mean expression levels of member genes in the test is different between two groups.

The MFS introduces selection bias and the re-sampling stabilization of Hotellings

T 2 statistics makes the test statistics intractable and hard to interpret statistically.

However, the method has been demonstrated to have the ability to predict group labeling.

This feature could be expected from the MFS algorithm. However, the prediction accuracy

should be demonstrated in an independent experiment. The test itself is for global null of

gene sets and should not be treated for individual genes selected by MFS.

Srivastava et al. (2007)[28] proposed the use of Hotellings T 2 statistic to measure

difference in mean vectors between two groups in compositional data. The significance is

determined by permuting group labeling. This permeation-based Hotellings T 2 can be

applied to high dimensional genomic data with two treatments/groups. Although the

Hotellings T 2 lacks power for high dimensional data, the statistic is an appropriate

measure of difference between two groups. As p-value is determined by permutation of

group labeling, the procedure might work well in this scenario.

2.3.4 MRPP test

Nettleton et al. (2008)[29] proposed a nonparametric multivariate analysis approach

to identify differentially expressed gene categories (sets) between two or more treatment

groups. MRPP (multi response permutation procedure) was proposed to test the null of

equal multivariate distribution of a gene set across treatment groups. The coherence of a

gene set in a treatment group is measured using all the Euclidean distances between pairs

of data vectors from the treatment group. The MRPP statistics is the average of the

coherence measurement across treatment groups, weighted by sample sizes of

corresponding treatment groups. The MRPP statistics can be scaled to have common

variance for each gene. The p-value is assessed by permuting sample group labels, taking

experimental design into account if needed.

MRPP test is self-contained and uses subject sampling. It produces valid p-values
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and is easily interpreted. It has power to detect gene sets that are different between/among

treatment groups in multivariate space, but not marginally. It is non-parametric and has

hence the advantage of fewer assumptions. However, it is difficult to extend to more

complex experimental design or to adjust for other covariates. It is not applicable in many

cohort studies, in which presenting features or prognostic factors need to be adjusted for.

2.3.5 Sparse canonical correlation analysis

Canonical correlation is widely used in psychology to test the association between

two sets of variables such as assessing agreement of items in instruments. The traditional

canonical correlation is hard to apply to high dimensional genetic data. Karkhomenko

et al. (2009)[30] proposed using sparse canonical correlation to test association between

two set of variables in genetic studies. To account for experimental design or other factors,

the residuals after a linear model with other factors as predictors are used as starting data.

Karkhomenko et al. proposed to use soft threshold of left and right eigenvectors to reduce

or select subset of variables in each set to maximize first-order approximation of

correlation matrix. Adaptive sparse canonical correlation was employed to select even

small set of variable with penalty similar to LASSO.

The method was demonstrated to select two manageable sets of genetic variables for

hypothesis development. The example provided was for a whole study with both

expression data and SNP genotype data. The methods are mainly for feature selection

instead of testing gene sets. The method can be extended to gene set or locus based data

for selecting subset of variables with high first-order correlation in a locus or gene set.

These selected coherent variables can then be used to test for association with phenotypes

such as outcomes and presenting features. So, the (adaptive) sparse canonical correlation

method is a potentially useful feature selection tool for an integrated analysis with two

types of genetic data in which one type regulates/influences the other. SNP and gene

profiling, methylation and gene profiling, or microRNA and gene profiling are potentially

suitable data types.
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The idea of maximization of correlation between two sets of variables can be

applied to maximization of correlation between one phenotype variable and a set of

genetic variables. The genetic features selected can be used to test for association with the

phenotype or other phenotypes if biologically warranted.

Witten et al. (2009)[31] proposed a penalized matrix decomposition (PMD) to

approximate a matrix. The approximation approach was then applied to sparse canonical

correlation setting resulting in penalized CCA (canonical correlation analysis) using

L1-constrain or fused LASSO constrain on the so-called canonical variates. The proposed

method was applied to a breast caner data to identify gene expressions that are associated

with genomic gain/loss.

2.3.6 SKAT

Sequence Kernel Association Test was first proposed to test association of SNPs in a

genomic locus or gene in case/control or with continuous variables (Wu et al. 2011[32],

Lee et al. 2012[33]). In a linear or logistic regression framework, the phenotype is

modeled with known covariates and SNPs in a set (gene or chromosomal region) as

predictors. If the SNPs coefficients follow an arbitrary distribution with mean 0 and a

variance of wjτ , SKAT uses variance-component score statistic to test τ = 0, which is

equivalent to requiring all coefficients of SNPs equal to be 0.

The variance-component score statistic of SKAT contains two parts: the deviation of

phenotype from that predicted under null and a kernel function to measure genetic

similarity among subjects. SKAT provides several options for assigning weights, based on

minor allele frequency, under different assumptions of SNPs effects. The functional form

of kernel function can be also extended to a more flexible function, allowing more

complex models.

The significance of variance-component score statistic of SKAT can be analytically

approximated by generalized chi-square distribution with available methods. The SKAT
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method was proposed for testing association SNPs with phenotypes. It can be generalized

for use with other types of data.

2.3.7 PROMISE

In genomic studies, each experimental unit or subject may have multiple phenotypes

measured. The phenotypes measured on the same subject are usually correlated. The

PROMISE procedure proposed by Pounds et al. (2009)[34] tests a predefined projection

of individual association statistics with each of the phenotypes.

The projection used is based on biological knowledge of the relationships among

the phenotype variables. The association with individual phenotype can be measured by

various models. The method handles a variety of endpoint of interests including

categorical, continuous, and time to event variable. Compared to other available methods

such as overlap approach, canonical correlation, principal component analysis, result from

PROMISE is more biologically motivated and has meaningful and easier interpretation.

A test of PROMISE was also performed on gene sets. The method was

demonstrated to have great power to detect association of predefined association pattern

with multiple related phenotypes and has been successfully applied to a few studies

(Lamba et al. 2011[35]).

2.4 Remarks

Various biological pathway databases have been developed to integrate and present

accumulated gene-gene interaction, regulation and biological processes. These pathways

can be used to formulate gene sets or biological processes of interest in an a priori

manner. Although, these databases cannot be viewed as complete and are on-going in

nature, successful applications are emerging.

It is generally agreed that a method for gene set analysis should have two features in

term of the hypotheses to be tested and the calculation of p-value: It should be

self-contained instead of competitive, and p-values calculation should be based on subject
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permutation instead of gene permutation, if permutations are needed. Some of the

available gene set analysis methods have these features, while others do not.

The above review of methods for gene set analysis shows that many of procedures

are not applicable to complex design and not malleable enough to allow for variables

adjustments. However some of these methods can be improved or modified to address

these shortcomings. This thesis addresses some of the needs for flexible general procedure

to handle various phenotypes in complex design specially in biomedical field.
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Chapter 3

APPLYING GENE NETWORK PRIOR KNOWLEDGE

IN GENOMIC TESTING

3.1 Introduction

In an organism, genes are organized on chromosomes, expressed, and function in a

complex interdependent manner. The accumulated functional dependence can be

summarized succinctly as gene networks. Several public and commercial databases have

been developed to structure and store the biological knowledge. Gene Ontology (GO)

describes the relationship of genes in term of unified ontoloy terms using directed acyclic

graph (DAG) with hierarchy structure. When the graph is cut at different levels, various

gene sets are formed. Kyoto Encyclopedia of Genes and Genomes (KEGG)[16] depicts

current knowledge of molecular interactions and reaction networks related to metabolism,

cellular processes and human diseases using graphical networks. NCBI Pathway

Integration Database (http://pid.nci.nih.gov) contains 137 human pathways curated by

NCI-Nature and 322 pathways imported from BioCarta and Reactome.

A gene network is a set of genes represented by a graph of which the nodes denote

genes and the edges represent relationships between genes. While undirected edges are

used to represent conditional dependence, directed edges often represent causal

relationships between genes. Directed acyclic graphs (DAGs) are graphs in which all the

edges are directed and the graph has no cycles. Figure 3.1 shows yeast MAP kinase

pathway derived from KEGG with DAG representation.

A number of methods have been proposed to incorporate the information of gene

networks into joint analysis of gene expression data. Based on the null hypotheses,

Goeman and Buhlmann (2007), Nam and Kim (2008) classified these methods into three

groups: self-contained, competitive and mixed. Most of these methods involve two

distinct steps: The differential expressions are tested at probe (gene) level separately, and

then the gene level testing results are extended to gene set level by assessing the
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Fig. 3.1: Yeast MAP kinase pathway derived from KEGG database.

The pointed arrows denote positive regulation or activation, while the dotted denote
negative regulation or repression. The physical interactions are shown by bi-directional
edges. Gene names are translated from the KEGG gene names to the ones used by
Affymetrix.

over-representation of differentially expressed genes in each gene set. Another family of

methods directly perform multivariate tests of differential expression for a group of genes

belonging to a gene set.

In order to incorporate the information contained in gene networks into prior

distributions for Bayesian inference, Pan (2006) [36], Wei and Pan (2008) [37] proposed

using a Markov random field of first-order dependence to model the dependence of

member genes in a pathway. They used a logistic model to represent the probability that a

gene is expressed or inhibited through latent Gaussian Markov random field variables of

the gene. Through the use of these techniques to generate prior distribution, they were
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able to demonstrate gain in gene ranking with the more interesting genes appearing at the

top of the gene list in a Yeast experiment. However, they used normal transformation of

p-values from tests of gene expression (Z-scores) as data, and their procedure lacked

dependences among genes in a pathway. Moreover, they did not take directions into

consideration.

In this thesis, we propose the use of a more informative prior that incorporates gene

network derived from pathway databases into gene level testing. By using the Markov

random field on directed graphs, the procedure improves on the method proposed by Wei

and Pan (2008). In contrast to Wei and Pan, we also use raw gene expression values,

rather the transformed p-values that are obtained from tests of differential expression.

Finally, we directly test differential expression along the directed graphs.

3.2 Model Specification

For a gene network/pathway described by a graph G = (V, E), where V

corresponds to the set of nodes with p elements and E ⊂ V × V is the set of edges, the

nodes of the graph represent the genes and the edges capture the relationship among them.

If (i, j) ∈ E implies (j, i) /∈ E, then the edge is directed. A directed acyclic graph is a

graph with no bi-directed edges. In a directed acyclic graph, starting from a node v, there

is no way to follow a sequence of directed edges and loop back to the node v again. An

adjacency matrix can be used to represent which nodes have edges with other nodes. For

an undirected graph, the adjacency matrix is symmetric. A directed acyclic graph (DAG)

can be represented by a binary adjacency matrix A, where each entry aij is either 0 or 1.

A zero entry, aij = 0 indicates the absence of an edge between node i and node j; while, if

aij = 1, there is a directed edge from node i to node j. The sum of ith row and column of

adjacency matrix A denotes the number of children and parents of the node i,

respectively. From now on, we use adjacency matrix A to denote a gene network with a

directed graph and DAG to denote a directed acyclic graph.
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3.2.1 Model Z Scores

Assume that the data in a genomic study have been summarized to Zi for each

genomic feature i, i = 1, ..., p. Zi could be a statistic to measure difference of a genomic

feature between experiment conditions or groups of subjects with certain phenotypic

feature, or a probability integral transformation of the statistical significance level to reject

null hypothesis (of p-value), namely Z-score. The distribution of Zi is assumed to be a

mixture of a null component, a negative component and a positive component, that is

f(Zi) = π0if0(Zi) + π1if1(Zi) + π2if2(Zi) (3.1)

Under normal framework, fj(Zi) are assumed to be a normal density function for

j = 0, 1, 2, then

f(Zi) = π0iΦ(Zi; 0, σ
2
0) + π1iΦ(Zi; µ1, σ

2
1) + π2iΦ(Zi; µ2, σ

2
2) (3.2)

Φ(Zi; µj, σ
2
j ) is normal density with mean µj and variance σ2

j , where j = 0, 1, 2.

Assume that a directed acyclic gene network is given and represented by adjacency

matrix A. The row sum of A is the number of children for a gene and column sum of A is

the number of parents for the gene. The sum of row sum and column sum is the total

number of directed edges that a gene has in the gene network A. We assume that the

children of a gene carry less information relative to its parents in an adjacency matrix A

with 0 < wi < 1 . Let mi be number of information weighted edges for ith gene, which is

number of its parents plus wi times of number of its children. Mathematically,

mi = wiA[i, ]1 + 1′A[, i] = (wiA[i, ] + A′[, i])1 (3.3)
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and A[i, ] = [A(i, 1), . . . ,A(p, i)]

A[, i] =


A(1, i)

...

A(p, i)

 ;1 =


1

...

1

 ; w1 =


w

...

w


Given a gene network with adjacency matrix A, we assume that the prior

probability Π′
i = (π0i, π1i, π2i) of Zi coming from the jth component is related to three

latent Markov random field variables Xji, for j = 0, 1, 2, through following logistic

transformations for ith gene:

π0i =
1

1 + eX1i−X0i + eX2i−X0i

π1i =
1

1 + eX0i−X1i + eX2i−X1i

π2i =
1

1 + eX0i−X2i + eX1i−X2i

(3.4)

We further assume that Xj = (Xj1, . . . , Xjp)
′ is distributed according to an intrinsic

Gaussian conditional auto regression model (ICAR). That is the distribution of each latent

variable Xj,i, conditional on Xj,(−i) = {Xj,k, k 6= i}, i = 1, . . . , p; j = 0, 1, 2, depends

only on its first-order neighbors on the adjacency matrix A with mi defined as in equation

3.3.

Xj,i|Xj,(−i) ∼ N

(
1

mi

(wiA[i, ]Xj + X′
jA[, i]),

σ2
Cj

mi

)
(3.5)

Where σ2
Cj

is a hyperparameter that controls the strength of dependence of latent variable

Xj,i on its neighbors.

Let L0,L1,L2 be vectors of 0’s or 1’s, which indicate whether Zi comes from null

f0(Zi), negative component f1(Zi) or positive component f2(Zi), respectively. Given
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Πj, j = 0, 1, 2, the ith component of (L0,L1,L2) has a multinomial distribution with

pi = (πji, j = 0, 1, 2). Given Lj , each Zi has a normal distribution.

We use non-informative prior distributions for the parameters. The prior

distributions for the means of negative and positive components are assumed to be

truncated normal. For ith gene, µ0i = 0; µ1i ∼ N(0, σ2)I(a, 0), a normal distribution

between a and 0, where I(, ) is an indicator function; and µ2i ∼ N(0, σ2)I(0, b). a and b

are chosen as a = min(Z1, . . . , Zp)− 3std, b = max(Z1, . . . , Zp) + 3std, where std is the

standard deviation of (Z1, . . . , Zp). The hyperparameter σ2 is set to 106 to be vague. The

variances of null, negative and positive components are assumed to have inverse gamma

distributions: σ2
ji ∼ IG(α, β) for j = 0, 1, 2, where the hyperparameters, α, β, are chosen

to be 0.1; and σ2
Cj
∼ IG(αC , βC) for j = 0, 1, 2, where αC = βC = 0.01. We further

assume w = w1, . . . , wp for all genes. The overall structure of the model is as in figure 3.2.

The joint posterior

Π(µ1, µ2, σ
2
0, σ

2
1, σ

2
2,X0,X1,X2,L0,L1,L2, σ

2
c0, σ

2
c1, σ

2
c2 | Z,A ∝

f(Z, µ1, µ2, σ
2
0, σ

2
1, σ

2
2,X0,X1,X2,L0,L1,L2, σ

2
c0, σ

2
c1, σ

2
c2 | A, w, σ2, α, β, αc, βc, a, b)
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where

f(Z, µ1, µ2, σ
2
0, σ

2
1, σ

2
2,X0,X1,X2,L0,L1,L2, σ

2
c0, σ

2
c1, σ

2
c2 | A, w, σ2, α, β, αc, βc, a, b) =

p∏
i=1

(
1√

2π×σ1i
e
− 1

2σ2
1i

(Zi−µ1i))
2
)L1i

(
1√

2π×σ0i
e
− 1

2σ2
0i

Z2
i

)L0i
(

1√
2π×σ2i

e
− 1

2σ2
2i

(Zi−µ2i)
2
)1−L1i−L0i

p∏
i=1

(
1

L0i,L1i

) (
1

1+eX2i−X1ieX0i−X1i

)L1i
(

1
1+eX1i−X0ieX2i−X0i

)L0i
(

1
1+eX1i−X2ieX0i−X2i

)1−L1i−L0i

p∏
i=1

√
mi√

2πσC1
e
− mi

2σ2
C1

„
X1i−

X′1A[,i]+w∗A[i,]X1
mi

«2
√

mi√
2πσC0

e
− mi

2σ2
C0

„
X0i−

X′0A[,i]+w∗A[i,]X0
mi

«2

p∏
i=1

√
mi√

2πσC2
e
− mi

2σ2
C2

„
X2i−

X′2A[,i]+w∗A[i,]X2
mi

«2
p∏

i=1

1√
2πσ

e−
µ2
1i

2σ2 I(a, 0) 1√
2πσ

e−
µ2
2i

2σ2 I(0, b)

p∏
i=1

1
Γ(α)βα (σ2

1i)
−α−1

e
1

βσ2
1i

1
Γ(α)βα (σ2

0i)
−α−1

e
1

βσ2
0i

1
Γ(α)βα (σ2

2i)
−α−1

e
1

βσ2
2i

p∏
i=1

(
1

Γ(αC)β
αC
C

(σ2
C1)

−αC−1
e

1

βCσ2
C1

)(
1

Γ(αC)β
αC
C

(σ2
C0)

−αC−1
e

1

βCσ2
C0

)
p∏

i=1

(
1

Γ(αC)β
αC
C

(σ2
C2)

−αC−1
e

1

βCσ2
C2

)

In order to use Gibbs sampler to draw posterior samples for parameters of interest,

the fully conditional distributions for each set of parameters are derived from the joint

distribution of data and parameters given above. The fully conditional posterior for µ, σ2

are given as in the following equations:

For j = 1, 2; c = a, d = 0 if j = 1, and c = 0, d = b if j = 2

µji|Zi, σ
2
ji, σ

2, Lji = 0 ∼ N(0, σ2
ji)I(c, d)

µji|Zi, σ
2
ji, σ

2, Lji = 1 ∼ N( σ2Zi

σ2+σ2
ji
,

σ2σ2
ji

σ2+σ2
ji
)I(c, d)
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Fig. 3.2: Graphic representation of the DG Markov random field model with Z score.

The nodes in boxes are constants. The nodes in ellipses are stochastic nodes with
distributions or deterministic nodes with logical function of other nodes. A solid arrow
indicates a stochastic dependence while a hollow arrow indicates a logical function.
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For j = 0, 1, 2

σ2
ji|Zi, µji, Lji = 0 ∼ IG(α, β)

σ2
ji|Zi, µji, Lji = 1 ∼ IG(α + p

2
, 2β

2+β(Zi−µji)2
)

σ2
Cj|Xj,A, αCj, βCj ∼ IG

(
αCj + p

2
,

2βCj

2+
Pn

i=1 mi(Xji−
X′

j
A[,i]+w×A[i,]Xj

mi
)2

)

Xji|X0,X1,X2,A, σ2
Cj, Lli = 1 ∝ πji ×

√
mi

σ2
Cj
× e

− mi
2σ2

Cj

(Xji−
X′jA[,i]+w×A[i,]Xj

mi
)2

where, πji are as defined in equations (3.4).

All the fully conditional distributions, except for Xji, are standard conjugate

distributions from which posterior samples could be easily drawn. The following is a

sampling scheme to draw a posterior sample for Xji. (1) Obtain Xji = xji from the

normal distribution N(
X′

jA[,i]+w×A[i,]Xj

mi
,

σ2
Cj

mi
); (2) Generate an independent uniform(0, 1)

random variable, ν; (3) Accept xji if ν ≤ 1

1+ce−xji
, where c = ex1i + ex2i if j = 0,

c = ex0i + ex2i if j = 1 c = ex0i + ex1i if j = 2.

3.2.2 Two-Sample Model

In modeling the Z-scores, the raw expression data are not directly modeled and the

prior knowledge was shown to dominate the posterior result in a simulation study (see

next section). When the data of original expression values are available, the analysis could

be formulated to incorporate both prior knowledge of gene networks and the expression

data. A two-sample test with assumption of normality can be derived as follows: In an

experiment with two treatment groups or a factor with two levels, let nk be the number of

subjects in group k, k = 1, 2 and let g1ih and g2il be the values of ith genomic feature

(i = 1, ..., p) measured for hth and lth subjects respectively, where h = 1, ..., n1 and

l = 1, ..., n2. Let G represent all the values of expression data. Suppose that in 1st
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treatment group, each expression value is normally distributed with mean µ0i and variance

σ2
0i (equation 3.6), and in 2nd treatment group, each expression value follows a mixture

distribution of three components: same expression level as group 1, lower expression and

higher expression level compared to group 1, as in equation 3.7. Similarly, given a gene

network represented by an adjacency matrix A, the relationship between Πj, j = 0, 1, 2,

the prior probability of group 2 coming from the jth component, with latent Gaussian

Markov random field variables is as described in equation 3.4.

f(g1ih) = f(g1ih, µ0i, σ
2
0i) (3.6)

f(g2il) = π0if0(g2il, µ0i, σ
2
0i) + π1if1(g2il, µ0i + µ1i, σ

2
1i) + π2if2(g2il, µ0i + µ2i, σ

2
2i) (3.7)

As before, assume vague prior distributions for µ’s: Specifically, for ith gene,

µ0i = 0; µ1i ∼ N(0, σ2)I(a, 0), where I(, ) is an indicator function and a = −max(G), a

normal distribution between a and 0; and µ2i ∼ N(0, σ2)I(0, b), where b = max(G). σ2,

σ2
Cj for j = 0, 1, 2, α, β, αC , and βC , are same as in the model of Z-scores. The overall

structure of the two-sample model is as in figure 3.3.

The joint likelihood function of data and parameters, given gene network described
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Fig. 3.3: Graphic representation of the DG Markov random field model for two-sample
problem.

The nodes and links are interpreted as in figure 3.2.
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in adjacency matrix A, parameters and hyper-parameters, is given by

f(G, µ0, µ1, µ2, σ
2
0, σ

2
1, σ

2
2,X0,X1,X2, L0,L1,L2, σ

2
c0, σ

2
c1, σ

2
c2 | A, w, σ2, α, β, αc, βc, a, b)

=
p∏

i=1

n1∏
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1√
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e
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×
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1
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) (
1

1+eX2i−X1ieX0i−X1i
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(

1
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1
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µ2
1i
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The fully conditional distributions of unknown parameters (µji and σji) are given in

following set of distributions:

µ1i|σ2, L1i = 0 ∼ N (0, σ2) I(a, 0)

µ1i|g2i, µ0i, σ
2
1i, σ

2, L1i = 1 ∼ N
(

σ2
Pn2

l=1(g2il−µ0i)

n2σ2+σ2
1i

,
σ2σ2

1i

n2σ2+σ2
1i

)
I(a, 0)

µ0i|g1i,g2i, µ1i, σ
2, σ2

0i, σ
2
1i, L1i = 1 ∼ N

(
σ2σ2

1i

Pn1
h=1 g1ih+σ2σ2

0i

Pn2
l=1(g2il−µ1i)

n1σ2σ2
1i+n2σ2σ2

0i+σ2
1iσ

2
0i

,
σ2σ2

1iσ
2
0i

n1σ2σ2
1i+n2σ2σ2

0i+σ2
1iσ

2
0i

)
µ0i|g1i,g2i, σ

2, L0i = 1 ∼ N

(
σ2(

Pn1
h=1 g1ih+

Pn2
l=1 g2il)

(n1+n2)σ2+σ2
0i

,
σ2σ2

0i

(n1+n2)σ2+σ2
0i

)
µ0i|g1i,g2i, µ2i, σ

2, σ2
0i, σ

2
2i, L2i = 1 ∼ N

(
σ2σ2

2i

Pn1
h=1 g1ih+σ2σ2

0i

Pn2
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2iσ

2
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)
µ2i|σ2, L2i = 0 ∼ N (0, σ2) I(0, b)

µ2i|g2i, µ0i, σ
2
2i, σ

2, L2i = 1 ∼ N
(

σ2
Pn2

l=1(g2il−µ0i)

n2σ2+σ2
2i

,
σ2σ2

2i

n2σ2+σ2
2i

)
I(0, b)
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σ1i|L1i = 0 ∼ IG (α, β)

σ1i|gi2, µ0i, µ1i, L1i = 1 ∼ IG
(
α + n1

2
, 2β

2+β
Pn1

h=1(g1ih−µ0i)
2

)
σ0i|gi1,gi2, µ0i, L0i = 0 ∼ IG

(
α + n1

2
, 2β

2+β
Pn2

l=1(g2il−(µ1i+µ0i))
2

)
σ0i|gi1,gi2, µ0i, L0i = 1 ∼ IG

(
α + n1+n2

2
, 2β

2+β(
Pn1

h=1(g1ih−µ0i)
2+

Pn2
l=1(g2il−µ0i)

2)

)
σ2i|L2i = 0 ∼ IG (α, β)

σ2i|gi2, µ0i, µ2i, L2i = 1 ∼ IG
(
α + n2

2
, 2β

2+β
Pn2

l=1(g2il−(µ0i+µ2i))
2

)

The fully conditional distributions of Lji, Xji, and σ2
Cj for j = 0, 1, 2 are same as those in

the model of Z-scores. Similarly, posterior samples could be easily drawn from these

standard fully conditional distributions and Xji are drawn using same acception-rejection

algorithm as above.

The weight, w, was arbitrarily set to 0.5 in above two models with the assumption

that children of a gene carry less information on its expression relative to its parents. The

effect of w with various choices was further studied in the simulation studies.

3.2.3 Directed Graphs for prior distribution in the two-sample problem

In gene expression data analysis, it could be assumed that the expression of a gene

directly depends on the expression levels of their neighbors. Suppose that g1ih and g2il are

the values of ith genomic feature (i = 1, ..., p) measured for hth and lth subjects

respectively, where h = 1, ..., n1 and l = 1, ..., n2. Let G represent all the values of the

genomic features. Suppose that in 1st treatment group, each genomic feature is normally

distributed with mean µ0i and variance σ2
1i, and in 2nd treatment group, each genomic

feature follows normal distribution with µ0i + µdi and variance σ2
2i, where µdi is the mean

difference between group 1 and group 2. The distribution of each element of G is given in

following equation:

f(g1ih) = f1(g1ih, µ0i, σ
2
0i); f(g2il) = f2(g2il, µ0i + µdi, σ

2
2i) (3.8)
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Fig. 3.4: Graphic representation of the directed graphs for prior distribution in the
two-sample problem.

The nodes and links are interpreted as in figure 3.2.

Prior Distributions: Given a gene network with adjacency matrix A, the prior

distribution of µ0 and µd are given as following: The distribution of each µ(j,i),

conditional on µ(j,−i) =
{
µ(j,k), k 6= i

}
, depends only on it first-order neighbors on an

adjacency matrix A with mi defined in equation 3.3.

µ(j,i)|µ(j,−i) ∼ N

(
1

mi

(wi ∗A[i, ]µj + µ′
jA[, i]),

σ2
Cj

mi

)
; j = 0, d (3.9)

Non-informative prior distributions are used for other parameters as above. We further

assume that wi ∼ uniform(0, 1). The overall structure of the model is as in figure 3.4.

From the distribution of data and prior distributions of parameters, we can derive the
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joint distribution of data and parameters. Given gene network with adjacency matrix A

and hyperparameters of the priors, the fully joint distribution is given by

f(G,w, µ0, µd, σ
2
1, σ

2
2, σ

2
C0, σ

2
Cd | A, n1, n2, α, β, αc, βc)
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In order to use Gibbs sampler to draw posterior samples for interesting parameters,

the fully conditional distributions for parameters are given in following set of

distributions:

µ0i|gi1, gi2, µ0, µd, σ
2
1i, σ

2
2i, σ

2
C0,A, wi ∼

N(
σ2
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)

µdi|gi2, µ0, µd, σ
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2
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N
(
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)
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wi|w,A, µ0, µd, σ
2
C0, σ

2
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j = 0, d

where ~m = colsum(A) + w ∗ rowsum(A)

σ2
0i|g1i, µ0i, n1, α, β ∼ IG
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3.3 Simulation Studies

To investigate the behavior of the three models proposed in above section,

simulation studies were performed. Suppose that there is a well defined pathway as

illustrated in figure 3.5. In the directed graph, there are 26 nodes and 27 edges with 2

disjoint subgraphs. Each node has minimum of 1 edge and at most 4 edges with average

around 2 edges. There is no singleton in this graph and the graph is very sparse.

3.3.1 Simulation on Z-scores

First, consider the model of Z-scores proposed in above section. The Z-scores were

randomly generated through following mechanism based on the DG in figure 3.5: (1) Start

with constant µ, each component of µ1 was draw from normal distribution with with mean

being weighted average of neighbors and weighted standard error in range (−max(Z), 0),

and each component of µ2 was draw from normal distribution with mean being weighted
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Fig. 3.5: A directed graph represents directional relationship of 26 putative genes in two
disjoint subgraphs

average of neighbors and weighted standard error in range (0, max(Z)); the process was

repeated 20 times to introduce correlation among the genes according to the DG; (2) Start

with constant X, each component of X0,X1 and X2 was drawn from normal distribution

with mean being weighted average of X of neighbors and weighed standard error. The

process was repeated 50 times; (3) Π were calculated according to equation 3.4; (4) A

multinomial sample lli was drawn with parameter pi equal to ith component of Π in step

3; (5) For ith gene, µi was set to be µ1i if ll1i = 1, 0 if ll0i = 1, or µ2i if ll2i = 1; (6) Zi

was drawn from a normal distribution with mean µi and a fixed variance.

Using hyperparameters as described above, and randomly generating initial values,

chain was run for 4000 burn-in. 4000 posterior samples were drawn from the posterior

distributions with thin equal to 3 (keep one out of three samples). Figure 3.6 shows the

trace plots of posterior samples for selected nodes. The first 3 nodes are from the first

disjoint subgraph in figure 3.5, last 3 nodes are from the second disjoint subgraph. The

posterior samples of µ1 and µ2 (first two rows in figure 3.6) varied in the truncated

parameter space. The trace plots of posterior Π0, Π1 and Π2 were similar among genes in
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Fig. 3.6: Trace plot of posterior samples of µ1, µ2, Π1, Π0 and Π2 in Model of Z-scores.

Posterior samples of first 3 nodes (the left 3 columns) and last 3 nodes (the 3 columns on
right) of the DG as shown in figure 3.5. Row 1 to 5 are trace plots for µ1, µ2, Π1, Π0, and
Π2, respectively

same disjoint subgraph, indicating that the fraction of Zi in a graph or subgraph came

from negative (Π1) or positive component (Π3) together, but not in individual gene level.

We further summarized the posterior samples of µj for j = 1, 2. For ith gene, the

posterior samples were chosen to be from negative component if π1i was biggest, positive

component if π2i was the biggest, or 0 component otherwise. The standard error of

posterior sample mean was computed according to Albert and Chib (1993)[38]. The

posterior samples were batched to equal size of 100 and batch means were computed. The

standard error of posterior mean was calculated as the standard deviation of the batch

means divided by the square root of number of batches. Table 3.1 showed the posterior

summarization of the 26 genes. For each gene, the simulated z-scores, the batched mean

of posterior, standard error of batched mean and range of posterior were shown.

For gene R to Z, which compose an isolated subgraph in figure 3.5, all came from 0

component with π0s = 0.78, even gene Q to V had big Z-scores among the 26 genes. For

gene A to Q, which compose the first disjoint subgraph, all the 17 genes came from

positive component with π2s = 0.79. For gene L, the original Z-score is -3.15, a negative
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Table 3.1: Summary of posterior samples in the simulation study on Z-scores
Gene Zscore Mean StdErr Min Max

A -2.145 2.4257 1.6464 2e-04 5.6451
B 5.197 4.1722 1.3814 0 5.6462
C -1.782 2.3145 1.6499 0.0012 5.6435
D 4.661 3.9317 1.3037 0.0028 5.6458
E 3.865 3.4896 1.2112 0.0039 5.6416
F -1.571 2.3084 1.6241 0.0013 5.6452
G 5.314 4.2233 1.3786 0.0047 5.6465
H 5.647 4.132 1.4637 5e-04 5.6472
I -1.811 2.2674 1.6375 9e-04 5.6446
J -2.698 2.4027 1.6372 4e-04 5.6468
K 4.271 3.6804 1.2916 6e-04 5.6466
L -3.15 2.4382 1.6156 5e-04 5.645
M 4.41 3.7747 1.2919 0.0034 5.646
N 0.346 1.8728 1.5761 1e-04 5.6439
O 0.34 1.8952 1.6089 2e-04 5.6445
P 5.573 4.1398 1.477 5e-04 5.647
Q -0.025 1.9653 1.663 0.0023 5.6433
R 5.491 0 0 0 0
S -0.056 0 0 0 0
T -0.222 0 0 0 0
U -0.073 0 0 0 0
V 5.151 0 0 0 0
W -0.666 0 0 0 0
X 0.386 0 0 0 0
Y 0.861 0 0 0 0
Z 0.039 0 0 0 0

Zscore is the original simulated Z-scores. For each gene, summary statistics of posterior
samples are provided. For gene R to Z, the posterior Π0 is near 0.78, indicating the Zi for
these nine genes came from null component and summary statistics were all set to 0.
StdErr is the standard error of posterior mean
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component, the posterior mean is 2.44, a positive component. In general, the posterior

means of genes in a disjoint subgraph are regressed to the mean in the disjoint subgraph.

The prior knowledge of the DG describing the relationship among genes dominates the

posterior results as the original expression values are not modeled in the model.

3.3.2 Simulation on Two-sample model

To study the two sample model proposed as in above section, we simulated

expression values according to the following mechanism based on the DG in figure 3.5

with w set to be 0.5: (1) Start with constant µ, each component of µ0 or µ2 was drawn

from positively truncated normal distribution with mean being weighted average of

neighbors and weighed standard error, and similarly, µ1 was drawn from negatively

truncated normal distribution; the process was repeated 20 times to introduce correlation

among the genes according to figure 3.5; (2) For the first 17 genes corresponding to the

first disjoint subgraph, group 2 mean, µg2i is set to µ0i + µ2i for i = 1, . . . , 17

(differentially expressed); and for the rest 9 genes corresponding to the second disjoint

subgraph, group 2 mean µg2i is set to µ0i for i = 18, . . . , 26; and (3) For each gene, 10

random samples was drawn from a normal distribution with mean µ0i for group 1 and µg2i

for group 2 with fixed variances.

Under hyperparameters as in above section and randomly generating initial values,

the chain was run 4000 for burn-in. 4000 posterior samples were drawn from posterior

distributions with thin equal to 3 (keep one out of three samples). Figure 3.7 showed the

trace plots of posterior samples for 6 selected nodes: the first 3 nodes, from first disjoint

subgraph and last 3 nodes, from second disjoint subgraph. For the 6 nodes, the chain

converged well for µ0 (1st row) and σ2
0 (7th row), indicating that the overall mean of the

two groups could be stably estimated. For gene A, B and C, posterior distribution of µ2

and σ2
2 converged, while those of µ1 and σ2

1 were diffused, suggesting that gene A to C of

group 2 came from a positive component relative to group 1. From the trace plots, the

convergence of posterior for each component in µ1, µ2, σ2
0 σ2

1 and σ2
2 was consistent with
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Fig. 3.7: Trace plots of posterior samples of µ0, µ1, µ2, Π0, Π1, Π2, σ
2
0, σ

2
1 and σ2

2 in the
simulation of two-sample model.

Posterior samples of first 3 nodes and last 3 nodes of the DG in figure 3.5 are shown. Row
1 to 3 are trace plots for posterior samples of µ0, µ1, µ2; row 4 to 6 are trace plots for
Π0, Π1 and Π2; row 7 to 9 are for σ2

0, σ
2
1 and σ2

2, respectively

corresponding component of the posterior distributions, such as the mean of posterior Π2

is the biggest among the three Πs for gene A to C. In contrast, gene X, Y, and Z were all

from null component (no difference between group 1 and 2) as posterior µ1, σ
2
1, µ2 and

σ2
2 were all diffused for these three genes. In fact, all the first 17 genes were from positive

component with posterior distribution of µ2 and σ2
2 converged and rest 9 genes were from

0 component with µ1, σ
2
1, µ2 and σ2

2 in these 9 genes diffused (trace plots not shown).

This is consistent with the simulation.

The posterior samples of µj for j = 0, 1, 2 were further summarized through

following mechanism in concordance to trace plots. For ith gene, if πji, j = 0, 1, 2 is
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Table 3.2: Posterior estimates for the 26 genes in the simulation of the two-sample model.
Gene Mu1 Mu2 MuEstGrp1 MuStdGrp1 MuEstGrp2 MuStdGrp2 MuEstDiff MuStdDiff

A 7.0 8.7 7.030 0.019 8.932 0.019 1.902 0.027
B 7.9 8.5 8.018 0.012 8.658 0.014 0.64 0.021
C 7.1 7.7 7.026 0.014 7.742 0.012 0.715 0.021
D 7.4 7.9 7.394 0.009 7.867 0.013 0.473 0.015
E 6.9 8.5 6.839 0.013 8.620 0.022 1.782 0.026
F 7.0 9.2 6.980 0.016 9.246 0.016 2.266 0.024
G 6.8 8.7 6.922 0.020 8.636 0.014 1.713 0.026
H 6.3 8.5 6.325 0.021 8.449 0.013 2.124 0.029
I 6.5 8.2 6.486 0.010 8.281 0.017 1.796 0.02
J 7.2 7.6 7.301 0.026 7.777 0.522 0.476 0.505
K 7.5 8.3 7.509 0.011 8.144 0.022 0.635 0.026
L 7.2 8.6 7.063 0.020 8.623 0.013 1.56 0.024
M 7.1 8.7 7.183 0.014 8.792 0.013 1.609 0.017
N 6.8 9.0 6.773 0.015 9.221 0.017 2.448 0.023
O 6.7 8.8 6.738 0.024 8.797 0.011 2.058 0.029
P 6.5 8.3 6.278 0.011 8.318 0.013 2.04 0.018
Q 6.3 8.8 6.119 0.014 8.840 0.014 2.721 0.024
R 6.3 6.3 6.212 0.007 6.212 0.007
S 6.2 6.2 6.279 0.011 6.279 0.011
T 6.3 6.3 6.351 0.009 6.351 0.009
U 6.0 6.0 6.046 0.008 6.046 0.008
V 6.1 6.1 6.075 0.011 6.075 0.011
W 6.2 6.2 6.227 0.012 6.227 0.012
X 6.0 6.0 6.043 0.008 6.043 0.008
Y 5.8 5.8 5.761 0.010 5.761 0.010
Z 6.4 6.4 6.333 0.007 6.333 0.007

Mu1 and Mu2 are the original simulated group means. For each gene, the sample averages
and standard deviations of posterior samples of group mean are provided. MuEstDiff and
MuStdDiff are the posterior estimates of mean difference between group 2 and group 1. A
negative value indicates the group 2 has lower expression compared to group 1 and a
positive value indicates a positive component. If posterior of both negative and positive
are diffused, the mean difference is not summarized: from null component.

Table 3.3: The summary of difference between simulated (true) means with sample
averages or posterior sample averages in the simulation of the two-sample model.
Groups Sample Avg PAvg P5 PAvg P1 PAvg P25 PAvg P75 PAvg 1
Group1 Diff Mean 0.0744 0.0667 0.0673 0.0671 0.0688 0.0697
Group1 Diff Std 0.0951 0.0865 0.0869 0.0865 0.0889 0.0912
Group2 Diff Mean 0.0752 0.0778 0.0844 0.0711 0.0846 0.1011
Group2 Diff Std 0.0933 0.0935 0.104 0.087 0.1073 0.1452

Note: The posterior sample average tends to have smaller difference and variation in
group 1, but not in group 2. PAvg: posterior average, P5, P1, P25, P75 and 1 were
corresponding to w = 0.5, 0.1, 0.25, 0.75, 1
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bigger than 0.99, the posterior samples of the gene come from the corresponding

component, otherwise, the chain for each component is checked for convergence (small

variation compared to range of posterior samples). If both negative and positive

component fail convergence for a gene, the gene of group 2 comes from a null component,

which means no difference between the two groups. Table 3.2 showed the summarization

of the posterior samples. The first two columns are the simulated group means. All the 17

genes in the first disjoint subgraph have over-expression in group 2. From table 3.2, all the

17 genes from positive component were correctly summarized. We also observed that the

posterior mean difference of genes between the two groups within disjoint subgraph tends

to be bigger than the mean of true mean differences. In contrast with modeling Z-score,

the direction of difference (negative or positive component) could be correctly obtained

from the posterior samples. This suggested the advantage of working with original

expression values instead of Z-scores.

As the true mean of each gene for both groups are known, sample average and

posterior summarized mean for each gene were compared to the true mean. As shown in

table 3.3 (first 3 columns), the difference of true mean with posterior averages had smaller

average difference and variation than those with sample average for group 1 and slightly

bigger in group2. In this scenario with the dependence of genes following the gene

network, the Markov random field model incorporated dependence structure into the

posterior and improved the accuracy of posterior estimates, especially for group 1. In

contrast, the simple sample average ignored the dependence structure and had a loss in

efficiency of the estimates of group means.

The Bayesian two-sample model was compared with t-test using the simulated raw

data. For each gene, we performed two-sample t-test and ordered the genes according to

the p-values. We also computed absolute value of standardized posterior mean (the

absolute value of posterior mean divided by standard deviation of the batched means).

Significant absolute value of standardized posterior mean indicates that the gene is
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differentially expressed. The genes were reversely ranked by the absolute value of

standardized posterior mean, from large to small value. The result is shown in table 3.4

(first 5 columns). In the two sample t-test, 16 genes had p-values less than 0.05 and 14

genes were found to be differentially expressed after Bonferroni correction of the p-value

cutoff of 0.05. The Bayesian two-sample model identified all the 17 differentially

expressed genes. Gene J was detected to be differentially expressed in the Bayesian

two-sample model, although its p-value in t-test was 0.22. This supports the advantage of

taking the dependency structure of gene network into the genetic testing.

Several genes were ranked differently in the two methods. Gene O was ranked # 6

in t-test and # 8 in the Bayesian model, with weight w predefined to be 0.5. We further

studied the influence of weight on the posterior samples. Using simulated data with

weight equal to 0.5, we investigated the impact of arbitrary weights 0.1, 0.25, 0.75 and 1,

where weight = 1 is equivalent to an undirected graph. Table 3.4 summarizes the results.

There were 17 genes declared to be differentially expressed in first disjoint subgraph with

weights 0.1, 0.25 and 0.5, out of which one gene was not significant in t-test at 0.05 level.

Weight 0.75 identified 16 genes to be differentially expressed with ranks slightly changed.

For weight = 1, equivalent to an undirected graph, 16 genes were declared to be

differential, and gene B was not. The ranks of differential expressions differed from those

for weights 0.25 and 0.5. We also compared the summarized posterior mean for each gene

with its true mean under different weights. As shown in table 3.3 the undirected graph

(weight = 1) had bigger average difference and variation in difference between posterior

means and true means, compared to weights 0.1, 0.25, 0.5, and 0.75. This indicates the

possible robustness of weight selection and advantage of known direction in gene

relationships.

The prior knowledge of pathway is usually not complete. We further studied the

robustness of the incomplete prior knowledge on posterior samples. We randomly added 3

directed edges into the first disjoint subgraph in figure 3.5. Using the simulated data as
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before, table 3.4 shows that the 16 genes were declared to be significant with slight change

in ranking and with gene J left out. This indicates a degree of robustness to the directed

graph by incorrect inclusion of extra edges. With only 27 directed edges in the original

graph, 3 edges represent 11% of the total edges. Simulating a graph in which 8 (30%)

directed edges were randomly inserted, the number of differentially expressed genes and

ranking did not change much (see column 8 and 11 in table 3.5 ).

3.3.3 Simulation on DG model for two-sample problem

Gene expression data was simulated according to following mechanism based on

the DG in figure 3.5 with w = 0.5: (1) Start with constant µj for j = 0, 1, 2, each

component of µ0 was drawn from positively truncated normal distribution with mean

being weighted average of neighbors and weighted standard error; similarly, µ1 and µ2

was drawn from a negatively and positively truncated normal distribution, respectively;

the process was repeated 20 times to introduce correlation among the genes according to

figure3.5; (2) For the first 17 genes corresponding to the first disjoint subgraph, µdi was

set to µ2i for i = 1, . . . , 17, and for the rest 9 genes corresponding to the second disjoint

subgraph, µdi was set to µ0i for i = 18, . . . , 26; and (3) For each gene, 10 random samples

was drawn from a normal distribution with mean µ0i for group 1 and µg2i = µ0i + µdi for

group 2 with fixed variance.

With the same hyperparameters as in section 3.2.1 and randomly generating initial

values, the chain was run 4000 for burn-in. 4000 posterior samples were drawn from

posterior distributions with thin equal to 3 (keep one out of three samples). Figure 3.8

shows the trace plots of posterior samples for 8 selected nodes: the first 4 nodes from first

disjoint subgraph in figure 3.5 and last 4 nodes from the second disjoint subgraph. For the

8 nodes, the chain converged for both µ0 (1st row) and σ2
0 (4th row), indicating stability in

the sampling of the overall mean of the two groups. The same observation holds for both

µd (2nd row) and σ2
2 (5th row). The chain for weight, w, also converged. Out of the 8

nodes, 3 nodes converged around 1 and one converged around 0, for nodes B, Y, Z, the
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Fig. 3.8: Trace plot of posterior samples of µ0, µd,w, σ2
1 and σ2

2 in simulation of the DG
model.

Posterior samples of first 4 nodes (left 4 columns) and last 4 nodes (4 columns on the
right) of the DG as shown in figure 3.5. Row 1 and 2 are trace plots for posterior samples
of µ0 and µd; row 3 are trace plots for w; row 4 and 5 are for σ2

1 and σ2
2, respectively

weights were set to constant as these nodes do not have children and weight will have no

effect. The trace plots of w for the remaining 18 nodes are shown in figure 3.9.

The standard error of posterior sample mean was computed according to Albert and

Chib (1993). Table 3.6 shows the summarization of the posterior samples. The first 3

columns are the simulated group means and mean difference respectively. All the 17

genes in first disjoint subgraph have over-expression in group 2. The other 9 genes have

Fig. 3.9: Trace plots of posterior samples of w in simulation study of the DG model.
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under-expression in group 2. As the true mean of each gene for both groups are known,

sample averages and posterior summarized means were compared to their true mean. As

shown in table 3.7 (the first 4 columns), the difference of true mean with posterior

averages had smaller average difference and variation than those with sample averages for

group 1 and slightly bigger in group2. In this scenario with the dependence of genes

following the gene network, µ0 and µd incorporated dependence structure into the

posterior and improved the accuracy of posterior estimates, especially for group 1. In

contrast, the simple sample average ignored the dependence structure with loss of

efficiency to estimate group means.

We also compared the DG model with two-sample t-test. For each gene, we

performed two-sample t-test and ordered the genes according to p-values. The absolute

value of standardized posterior mean was computed as the absolute value of posterior

mean divided by standard error of batched means. The genes were ordered from the

largest to the smallest according to the absolute value of standardized posterior mean. The

result is shown in table 3.8 (first 5 columns). In the two-sample t-test, 22 genes had

p-values less than 0.05. We also ranked the gene according to the absolute value of

simulated mean difference: µd, and compared this rank to the rank of t-test and rank of

DG model. The simulated mean difference had smaller rank difference from the DG

model than that from t-test.

We now assume that weight has a uniform(0,1) prior distribution. To study the effect

of random weight on the posterior samples, we compared the posterior samples with those

from fixed weights of 0.1, 0.25, 0.5, 0.75 and 1 using the same simulated data. As shown

in table 3.8, the rank of genes did not differ much using different fixed weights or prior

distribution of uniform(0, 1), all of which had less discrepancy from the ranks with

simulated mean difference. We also compared the summarized posterior mean for each

gene with its true mean under different weights. As shown in table 3.7 (column 5 to 8), the

DG model with random weight had smaller average and variation in difference between
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posterior means and true means, compared to models with fixed weights 0.1, 0.25, 0.5,

and 0.75 and 1. This demonstrated advantage of prior information of weight and

advantage of known direction in gene relationships.

We further studied the robustness of using noninformative prior of gene

relationships on posterior samples. We randomly added 3 or 8 directed edges into the first

disjoint subgraph in figure 3.5. Using the simulated data as before, table 3.9 shows the

summarization of the results. The rank did not change much for DG with 3 edges inserted.

The rank did differ for DG with 8 random edges inserted. As shown in table 3.10, the

mean and standard error of difference between posterior samples and simulated data did

not differ in group 1 for all the three models, but did differ for group 2 or group difference

in DG model with 8 random edges added. This indicates that the model is robust to

moderate miss-specification and may not be robust for a higher degree of

miss-specification.

3.4 Application

The Cancer Genome Atlas project has collected multiple forms of high throughput

data for various cancer types. The mRNA expression data for 172 adult Acute Myeloid

Leukemia (AML) patients is publicly available. The patients were classified into

favorable, intermediate or poor risk groups according to cytogenetics of leukemia cells.

Out of the 172 patients, 37 patients were in favorable risk group and 42 were in poor risk

group. One interesting question is which set of genes are differentially expressed between

these two groups of patients. This dataset is used to demonstrate the utility of the

proposed models in above section.

The current pathway databases, such as KEGG, use different names for a gene. To

derive a directed graph representing a pathway, human MAPK pathway in KEGG is used

as an example, where gene names were matched to Affymetrix gene names through

GeneCard (http://www.genecards.org/). The directed graph of MAPK pathway is shown

in figure 3.10. In this graph, there are 102 genes with 1 to 14 directed edges per gene
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(median 2 and mean 2.7 per gene). The two-sample t-test and each of the proposed

methods were applied to these 102 genes.

To apply our model with Z-scores to the AML data, one sided two-sample t-tests

were performed on each gene to compare mean expression levels between poor and

favorable risk adult AML, and the p-values were transformed to obtain Z-scores (range:

−4.27, 4.98, mean: 0.03). The posterior of πj, j = 0, 1, 2 indicated that all the 102 came

from null component (no differential expression was declared), which is consistent with

the distribution of Z-scores. The Bayesian two-sample model was used on the same data

set. Similar to the model with Z-score, all the 102 genes were found to come from the null

component.

In the DG model, the posterior samples of µd were summarized as batched mean

and standard error according to Albert and Chib (1993). The genes were ordered from

large to small according to the absolute values of ratio between batched mean and its

standard error. The top 30 genes are shown in table 3.11. The key genes in MAPK

pathway are in the top of the gene list, such as CUTL1 and MAP4K3.

In the application of MAPK pathway derived from the KEGG to the AML dataset,

using Z-statistics as data (model I) and the two-sample model with raw expression value

(model II) failed to detect differential expression in the 102 genes between favorable and

poor risk AML. The distribution of z-statistics from two-sample t-tests does not support

that the genes come from either positive or negative component. One possible reason is

that the MAPK pathway derived from KEGG is a prior knowledge from various sources

and tissues. Some of the relationships might not be applicable to AML. We decided to

tailor the MAPK pathway based on correlations of genes in adult AML of intermediate

risk. Two-way correlations of the 102 genes were calculated using expression values from

the 93 intermediate risk AMLs. An arbitrary p-value cutoff of 0.1 was used to indicate

potential correlation between genes. Out of the 102 genes in the MAPK pathway in figure

3.10, 37 genes were singletons after tailoring based on the correlation in AML of
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intermediate risk (genes in black and edges in grey in figure 3.10). In the rest 65 genes,

there were 57 edges left (range: 1 to 6 edges, mean: 1.8 edges; genes in red and edges in

blue in figure 3.10).

The tailored MAPK pathway with 65 genes was applied to the AML data to model

differential expression between poor and favorable risk AML using the three models. The

summary of posterior samples is given in table 3.12 for the model with z-statistics as data

for top 20 genes. Out of the 20 genes, most were from negative component (AML of poor

risk had lower expression compared to favorable risk AML). PPP2CB was on the top of

the list based on the ratio of batched mean and its standard deviation. MAP3K1 was the

number 3 and from the positive component. In the original MAPK pathway, all the 102

genes were from null component, this tailored MAPK pathway with AML of intermediate

risk detected differential expression in AML, demonstrating the advantage of tailoring

pathway using appropriate data.

The summary of posterior samples for two-sample model is shown in table 3.13 for

genes with p-values of t-test less than 0.1 or high posterior ratio. CUTL1 is on the top of

the differentially expressed genes in both t-test and based on the ratio of batched mean

and standard deviation of posterior difference. PRKCA is ranked 9th in t-test and 2nd

based on posterior. PAK1 was ranked 2nd in t-test and 31st based on posterior, in the

middle of the list. This indicated that both original expression data and prior knowledge

captured in the tailored pathway played important role in the Bayesian two-sample model.

When the DG model was applied to the AML data using the tailored MAPK

pathways, both CUTL1 and PRKCA were on the top 2 based on posterior, similar to the

Bayesian two-sample model. A few others are also on the top of the list based on t-test,

posterior estimates in the DG model and in the Bayesian two-sample model. It is very

likely that CUTL1 was under expressed in favorable AML compared to poor AML.
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Fig. 3.10: Human MAPK pathway derived from KEGG database

Note: Lines with pointed arrows indicate positive regulation, lines with rounded end
indicate negative regulation or repression. Gene names are translated from the KEGG to
the ones used by Affymetrix. The genes in red and edges in blue are retained after
tailoring with intermediate risk adult AML
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3.5 Summary and Discussion

Genes and proteins regulate, interact and cross talk among each other, forming

complex networks in a cellular context. This information is captured partially in gene

network databases. In this study, we proposed incorporating prior knowledge of gene

relationships in gene networks to statistical inference by Bayesian approaches.

In the model with Z-scores, it is flexible to include most statistical testing with

p-values or testing statistics (standard normal transformation). Based on the simulation

study, the prior knowledge in the directed graph will dominate the distribution of Z-scores

and reorder the rank of genes in the posterior samples. Small and coherent directed graphs

are desirable as the genes in such graphs are coherently regulated and expressed.

In an experiment with two treatment groups or conditions, it is not hard to formulate

the Markov random field model with experimental data. In this case, the prior knowledge

will not dominate the posterior distribution and presumably the Bayesian model combines

both the prior knowledge and data. The model is robust for both weight miss-specification

and moderate directed graph miss-specification. The true weight is not known.

Furthermore, the prior knowledge of pathways represented by directed graphs is usually

incomplete and potentially has miss specification for certain experiment conditions. The

robust feature of the Bayesian model is desirable.

For gene expression data, expression values could be aligned to similar scales after

proper data transformation or manipulation. It is reasonable to assume that the expression

level of a gene depends on its regulators or partners in a pathway. In the Bayesian model

with direct dependence on a directed graph, we demonstrated the feasibility through

simulation studies. The model is robust to the selection of weights, but not to large

miss-specification of the directed graph itself. It is not contradictory to intuition as

expression levels of a gene in the model are assumed to be normally distributed with mean

being weighted average of first-order neighbors. In this case, a valid directed graph of

prior knowledge under the experiment condition is required.
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Although gene and protein relationships are captured and represented in network

databases, they are not easily transformed to adjacency matrix format directly usable to

statisticians. We derived directed graphs of yeast and huma MAPK kinase pathway from

KEGG database. We noticed the following difficulties: (1) A dozen genes in the original

MAPK kinase pathway are not represented by Affymetrix microarray chip; (2) The gene

names used in Affymetrix array are frequently different from the ones used in KEGG; (3)

Genes are represented by multiple probes. In conquering these difficulties, efforts are

demanding to put gene network relationships into statistician accessible format such as

adjacency matrix.

Another issue of gene network data is that the relationships are extracted and

integrated from diverse cellular contexts and experiment conditions. Part of the

relationships in network database might not be valid for a specific experiment condition

such as cell types, microarray platform et al. To account for this fact, it would be desirable

to derive application specific prior gene network. If supposing gene profiling data are

available in cell lines, patients, disease that are compatible to current experiment units or

conditions, the correlation structure from this data set could be roughly estimated. Based

on the correlation structure, the overall gene network represented by adjacency matrix

could be tailored. This tailored gene network contains prior knowledge of both integrated

information and specific information relevant to current experiment units or conditions.

In the application to the AML data using MAPK pathway derived from KEGG,

model with Z-scores and two-sample model failed to detect any differential expression (all

genes were from null component). The distribution of Z-scores also indicated that genes

in the MAPK pathway were not all relevant in AML. After being tailored using adult

AML with intermediate risk, several important genes were detected to be differentially

expressed across the three models. This indicates that pathways in public database indeed

need to be tailored to specific tissues and experiment conditions in order to be useful in

these Markov random field models. More efforts are needed in this area in near future.
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Table 3.6: Posterior estimates for the 26 genes in simulation of the the DG model.
Gene Mu1 Mu2 MuDiff MuEstGrp1 MuStdGrp1 MuEstGrp2 MuStdGrp2 MuEstDiff MuStdDiff

A 7.55 8.27 0.72 7.683 0.028 8.512 0.013 0.829 0.036
B 7.45 8.21 0.76 7.471 0.021 8.056 0.016 0.586 0.030
C 7.45 8.22 0.77 7.425 0.020 8.226 0.022 0.801 0.029
D 7.60 8.53 0.93 7.377 0.027 8.666 0.017 1.289 0.036
E 7.05 7.08 0.03 6.988 0.016 7.312 0.021 0.325 0.029
F 7.26 8.03 0.77 7.337 0.018 7.827 0.019 0.491 0.027
G 7.19 8.24 1.05 7.034 0.016 8.123 0.015 1.089 0.024
H 7.02 8.64 1.62 7.175 0.011 8.614 0.018 1.439 0.019
I 6.91 8.64 1.73 6.870 0.023 8.491 0.019 1.621 0.030
J 7.56 8.36 0.80 7.404 0.018 8.156 0.019 0.752 0.024
K 7.22 7.87 0.65 7.296 0.021 7.944 0.017 0.648 0.029
L 6.72 7.03 0.31 6.814 0.015 7.161 0.022 0.346 0.030
M 6.78 6.97 0.19 6.680 0.021 6.997 0.019 0.317 0.029
N 7.45 8.88 1.43 7.313 0.024 8.724 0.024 1.411 0.037
O 7.12 8.50 1.38 7.218 0.017 8.397 0.019 1.179 0.025
P 6.90 8.53 1.63 7.035 0.009 8.651 0.021 1.616 0.022
Q 6.94 9.06 2.12 6.876 0.014 8.861 0.013 1.985 0.018
R 7.67 7.15 -0.52 7.531 0.014 6.969 0.015 -0.562 0.023
S 7.75 7.15 -0.60 7.746 0.035 7.115 0.013 -0.632 0.040
T 6.70 5.36 -1.34 6.922 0.020 5.504 0.013 -1.419 0.027
U 7.04 5.89 -1.15 7.163 0.014 5.833 0.013 -1.330 0.020
V 7.90 7.21 -0.69 7.900 0.038 7.273 0.015 -0.627 0.046
W 7.40 7.00 -0.40 7.523 0.024 6.904 0.017 -0.619 0.026
X 7.63 6.99 -0.64 7.424 0.013 7.035 0.017 -0.388 0.022
Y 7.23 6.27 -0.96 7.294 0.017 6.299 0.011 -0.995 0.021
Z 7.22 5.78 -1.44 7.220 0.019 6.017 0.018 -1.202 0.027

Mu1 and Mu2 are the original simulated group means. For each gene, the sample averages
and standard deviations of posterior samples of group mean are provided. MuEstDiff and
MuStdDiff are the posterior estimates of mean difference between group 2 and 1. A
negative value indicates the group 2 has negative component and a positive value indicates
a positive component. If posterior of both negative and positive diffused, the mean
difference is not summarized: from 0 component.

Table 3.7: Summary of difference of simulated (true) means with sample averages or with
posterior sample averages in simulation of the DG model.

Groups Sample Avg PAvg PAvg P1 PAvg P25 PAvg P5 PAvg P75 PAvg 1
Group1 Diff Mean 0.1214 0.1027 0.1078 0.1081 0.1087 0.1092 0.1099
Group1 Diff Std 0.144 0.1233 0.124 0.125 0.127 0.1287 0.1301

Group2 Diff Mean 0.1172 0.1215 0.1237 0.1232 0.1226 0.1221 0.1217
Group2 Diff Std 0.1373 0.143 0.1465 0.1462 0.146 0.1459 0.1458
MuD Diff Mean 0.1277 0.1278 0.1306 0.1303 0.1297 0.1298 0.1306
MuD Diff Std 0.1639 0.1661 0.1665 0.1672 0.1684 0.1695 0.1705

Sample Avg: difference between sample average and simulated mean. PAvg: difference
between posterior sample mean with random weight and simulated mean.
PAvg P1,PAvg P25, PAvg P5, PAvg P75 and PAvg 1 are difference between simulated
mean and posterior estimates with fixed weight 0.1, 0.25, 0.5, 0.75 and 1, respectively.
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Table 3.10: Summary of difference of simulated means with sample averages or with
posterior sample averages in the DG model.

Groups Sample Avg PAvg PAvg 3 PAvg 8 PAvg 1
Group1 Diff Mean 0.1214 0.1027 0.1009 0.1024 0.1099
Group1 Diff Std 0.144 0.1233 0.1221 0.1248 0.1301

Group2 Diff Mean 0.1172 0.1215 0.1238 0.1234 0.1217
Group2 Diff Std 0.1373 0.143 0.1458 0.145 0.1458
MuD Diff Mean 0.1277 0.1278 0.1371 0.1465 0.1306
MuD Diff Std 0.1639 0.1661 0.1716 0.1824 0.1705

Note: Sample Avg: difference between sample average and simulated mean. PAvg:
difference between posterior sample mean with random weight and simulated mean.
PAvg 3 and PAvg 8 are difference between simulated mean and posterior estimates with 3
and 8 random edges inserted, respectively.

Table 3.11: Summary of posterior samples of MAPK genes in adult AML in the DG
model

Gene AvgGrp1 StdGrp1 AvgGrp2 StdGrp2 MuEstGrp1 MuStdGrp1 MuEstGrp2 MuStdGrp2 MuEstDiff MuStdDiff
CUTL1 13.32 0.42 12.72 0.64 13.282 0.008 12.784 0.009 -0.498 0.013

MAP4K3 10.49 0.45 10.89 0.67 10.495 0.007 10.875 0.008 0.380 0.010
JUND 15.22 0.62 15.69 0.57 15.248 0.011 15.660 0.008 0.412 0.013
IL1A 10.12 0.53 9.61 0.75 10.111 0.008 9.627 0.013 -0.484 0.016

TGFB1 12.2 0.98 12.91 0.92 12.255 0.021 12.867 0.013 0.612 0.022
MAX 14.98 0.46 14.64 0.56 14.950 0.005 14.672 0.009 -0.278 0.010

PPP2CB 13.04 0.5 13.38 0.58 13.045 0.009 13.369 0.010 0.324 0.012
PAK2 13.15 0.36 12.83 0.47 13.114 0.007 12.875 0.007 -0.239 0.010

MAP2K4 10.99 0.3 10.84 0.41 10.989 0.004 10.841 0.007 -0.147 0.007
STMN1 12.74 0.56 12.36 0.57 12.702 0.010 12.394 0.009 -0.308 0.015

MAP4K4 12.21 0.61 11.89 0.66 12.206 0.011 11.890 0.009 -0.316 0.016
EGF 6.45 1.73 7.67 1.97 6.599 0.028 7.492 0.034 0.893 0.046

BRAF 9.61 0.48 9.31 0.66 9.585 0.008 9.356 0.010 -0.229 0.012
MST1 10.3 1.95 9.49 1.03 10.182 0.033 9.524 0.015 -0.658 0.035
GSTP1 13.57 0.64 13.85 0.66 13.570 0.011 13.845 0.010 0.275 0.015

MAP3K1 10.1 1.34 9.22 0.87 9.700 0.017 9.375 0.015 -0.324 0.018
PRKCA 11.4 0.95 10.65 1.31 11.355 0.016 10.737 0.029 -0.618 0.035
MEF2C 12.19 1.87 13.65 0.96 12.682 0.043 13.527 0.017 0.845 0.048

MOS 7.85 1.07 7.32 1.33 7.788 0.018 7.425 0.022 -0.363 0.021
PDGFA 8.49 1.06 7.91 1.29 8.463 0.023 7.945 0.018 -0.518 0.031

RPS6KA5 11.75 0.53 12.05 0.57 11.787 0.009 12.004 0.009 0.217 0.013
MAP3K13 6.55 1.08 7.32 1.33 6.707 0.019 7.129 0.018 0.422 0.026
RASGRF1 8.26 0.95 7.81 1.14 8.251 0.016 7.815 0.022 -0.436 0.027

FAS 11.74 0.57 11.44 0.66 11.695 0.009 11.488 0.008 -0.207 0.013
TP53 12 0.62 11.66 0.94 11.971 0.009 11.720 0.015 -0.251 0.016

PPP2CA 13.69 0.43 13.48 0.59 13.686 0.009 13.494 0.009 -0.192 0.013
NLK 10.55 1.12 10.96 0.89 10.602 0.021 10.924 0.013 0.322 0.022

MAP3K11 11.61 0.62 11.83 0.52 11.621 0.010 11.824 0.009 0.203 0.014
MAP3K7IP2 12.4 0.53 12.65 0.64 12.414 0.008 12.627 0.012 0.213 0.015

FGF2 6.39 1.47 5.88 1.43 6.328 0.029 5.920 0.020 -0.408 0.029

Avg and Std are the sample average and standard deviation, respectively. MuEst and
MuStd are batched mean and standard deviation of posterior samples, respectively.
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Table 3.12: Summary of posterior samples in the model with Z-scores using intermediate
AML tailored MAPK pathway

Gene Zscore Mean StdDev Min Max MeanDstd
PPP2CB -2.796 -2.436 0.071 -3.7243 -0.0028 -34.3
MAPK1 -1.852 -1.851 0.062 -3.7248 -5e-04 -29.9
MAP3K1 3.442 3.102 0.108 0.0016 4.9835 28.7
MAP3K14 -2.464 -2.249 0.08 -3.7225 -4e-04 -28.1

JUND -3.488 -2.684 0.096 -3.7249 -0.004 -28.0
MAP3K7IP2 -1.925 -1.918 0.075 -3.7248 -0.004 -25.6

PAK2 3.45 3.124 0.13 0.0025 4.9829 24.0
MAP4K4 2.224 2.297 0.103 0.0161 4.9752 22.3

RASGRF1 1.928 2.143 0.106 8e-04 4.9826 20.2
MAPT -1.57 -1.689 0.084 -3.7239 -1e-04 -20.1

RPS6KA4 1.746 1.989 0.1 0.0029 4.9797 19.9
GSTP1 -1.89 -1.887 0.095 -3.7231 -0.0066 -19.9
GRB2 1.554 1.859 0.103 0.0012 4.9821 18.0

MAP2K1IP1 -1.327 -1.538 0.09 -3.722 -1e-04 -17.1
NRAS 1.714 1.996 0.129 9e-04 4.9771 15.5

MAP2K1 0.042 -1.049 0.068 -3.7235 -2e-04 -15.4
RPS6KA3 -1.23 -1.455 0.095 -3.7239 -6e-04 -15.3

MAX 2.978 -1.559 0.105 -3.7236 -6e-04 -14.8
PRKCA 2.915 -1.545 0.105 -3.7249 0 -14.7
HSPA1A 0.613 -1.222 0.083 -3.7237 -2e-04 -14.7

Zscore: normal transformed z from two-sample t test; Mean and StdDev are the batched
mean and standard deviation of posterior sample; MeanDstd: ratio of bached mean and
standard deviation.
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Chapter 4

POST: A FRAMEWORK FOR SET BASED ASSOCIATION ANALYSIS

IN HIGH DIMENSIONAL DATA

4.1 Introduction

Gene profiling with microarray technology has enabled investigators to

simultaneously measure gene expression levels of thousands of genes in biological

specimens. Subsequently, statistical analyses are performed to test association of

individual measurements with an endpoint of interest. As thousands of tests are performed

simultaneously, the problems posed by multiple testing should be addressed before

declaring which list of genes/features that are associated with the endpoint of interest.

Pounds and Cheng (2006)[39] reviewed methods to address the multiple testing problems

for estimating and controlling the false discovery rates (FDR). Most of these FDR

controlling methods assume that the p-values are independent or weakly dependent, an

assumption which is often violated. Benjamini and Yekutieli (2001)[40] and Storey

(2003)[41] have shown that small clumpy dependencies are usually negligible and the

procedures of Benjamini and Hochberg (1995) and Storey (2001) methods have good

properties under certain dependency structures. A gene may be represented by multiple

probes and genes in a gene network/pathway tend to be co-regulated. In widely used

Affymetrix expression array, genes are represented by 1 to more than 10 probes sets

(features). Statistical analysis of these data often leave investigators a long list of

genes/features that show significant association with an endpoint. A selection of the most

promising candidates for follow-up depends heavily on the biology.

To facilitate the selection process, one strategy is to reduce the selection pool,

namely, the list of features that are associated with an endpoint. Specifically, instead of

studying association with an endpoint of interest at individual gene/feature level, one

could focus on the association between gene set or pathways first. The benefits of doing so

are several folds: by performing association tests at gene sets or pathway level first, the
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number of tests is significantly reduced; and statistical dependence between p-values

could be reduced. These simplify the process of FDR controlling. Moreover, a shorter list

of significant association with better biological knowledge is produced. After selecting

significantly associated gene sets or pathways for follow-up, investigators could perform

second round of association testing feature by feature in the selected genes or pathways

and determine which functional forms to follow.

Recently, a few dozens gene-set procedures have been developed for testing

differential expression in gene profiling data analyses. However, these methods are

designed for differential expression and most are not suitable for association testing with

complex modeling. In association testing, the data structure could be very complex with

known variable adjustment, stratification, and multiple dependent endpoints that include

continuous, binary, ordinal, or censored variables. Goeman and Buhlmann (2007)[8] and

Nam and Kim (2008)[9] have provided an extensive review of these methods and made

recommendations on self-containedness and randomization strategy for obtaining

p-values. Gene set enrichment analysis (GSEA) can be applied to association testing using

the feature level p-values, however this procedure lacks self-containedness. Constructing

flexible self-contained association testing is challenging.

To address this challenge, we investigate the development of a procedure based on

empirical orthogonal functions (EOF) analysis or principal component analysis (PCA).

PCA has been widely used to identify spatial and temporal patterns in meteorology,

genetic patterns, and population structure in gemome wide associations (GWAS). PCA is

also widely used for dimension reduction in high dimensional datasets. Tomfohr et al.

(2005)[42] used a t-test after reducing the gene set to its first principal component, and

pointed out that PCA could be used to reduce the dimensionality of variables entered in

the Hotellings T 2 statistic in two-sample multivariate testing with decent sample size.

In this chapter, we propose a new procedure, labeled Projection onto the Orthogonal

Space Testing (POST) as a flexible method for identifying gene sets or pathways that
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show association with an endpoint of interest. POST performs a hypothesis test for each

gene pathway, thus reducing the number of tests performed. In the process, this reduces

potential dependence between p-values, leading to more accurate FDR control and less

misleading follow-up study. POST is a multivariate testing procedure, and it is potentially

more powerful than competing procedures for detecting association of genes or pathways

in which genomic features are jointly related to an endpoint. Moreover, POST is flexible

enough to test association with various endpoints under several model structures. In

section 4.2, we describe the POST procedure and in section 4.3 evaluate the procedure by

simulation studies. In section 4.4, we apply POST to several real datasets. Finally, Section

4.5 provides the discussion and concluding remarks.

4.2 The POST method

For j = 1, 2, . . . , k, let Sj be a collection of pathways or gene sets based on data

from n subjects. Suppose that Sj has mj genomic features. Let Yig represent the value of

genomic feature g for subject i, and let Cil represents the value of covariate l fro subject i,

i = 1, . . . , n. Denote by Cl, the vector (C1l, . . . , Cnl)
′ and by Yg, the vector

(Y1g, . . . , Yng)
′, g = 1, . . . ,mj . The objective of the method to be proposed is to explain

observed endpoints on the n subjects by the genomic features, after adjusting for the

covariates. Towards this objective, let Xi be the value of an endpoint measured (observed)

on subject i. Let X = (X1, . . . , Xn)′. Finally, let Y j = (Y1, . . . ,Ymj
) be the mj × n

matrix of genomic features.

The variance-covariance matrix Σj of Y j

Σj = E [(Y j − E[Y j])(Y j − E[Y j])
′] (4.1)

will be estimated by its sample covariance matrix

Σ̂j = (Y j − Ȳ j)(Y j − Ȳ j)
′ (4.2)
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where Ȳ j = 1
n

∑n
i=1 Y j , the column mean of Y j

We assume that Σj is positive definite with ordered eigenvalues λ1j
≥ . . . ≥ λmj

,

and corresponding eigenvectors e1j
, . . . , emj

.

Based on the fact that the largest eigenvalues explain most of the variation among

the genomic values Y j , let tj ≤ mj represent an integer such that λ1j
≥ . . . ≥ λtj explain

100δ% of the total variation in genomic variation for some predefined 0 < δ < 1. Let

Pj =
(
P1j

, . . . , Ptj

)
=

mj∑
k=1

Y′
keik = Y ′

jEj (4.3)

where Ej is the matrix (e1j
, . . . , etj).

For many gene sets or pathways with a large number of genomic features, tj is

usually small in comparison to mj . Thus, the dimension of Pj is usually small,

representing a significant reduction in data without much loss of information. For a given

set of endpoints from the individual subjects, we now use this reduced genomic feature

data to explain the variation in those endpoints by regressing the endpoint variables on the

genomic features as independent variables, while adjusting for covariates Cl.

This procedure is flexible enough to use linear, generalized linear regression or Cox

proportional hazard model for time to event endpoints. Let Zrj
be the Z-statistics from the

model associating the endpoint variable X with Prj
and let

Zj =
(
Z1j

, Z2j
, . . . , Ztj

)′ (4.4)

We wish to determine if set Sj has significant association with observed endpoints.

Under the assumption that the projected vector with larger eigenvalues carry more

information about the association with endpoints, a reasonable choice of statistic is the

Tj =

tj∑
r=1

λrj
Z2

rj
= Z′

jΛjZj (4.5)
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where Λj is the tj × tj diagonal matrix with λ1j
, . . . , λtj as diagonal elements.

The POST statistic will thus be defined by equation (4.5). We expect that under

reasonable conditions, Tj will have an asymptotic null distribution which is a linear

combination of Chi-squared distributions. An argument for this conjecture may be

constructed as follow. Under null of no association between set Sj with endpoint X, Zj is

a multivariate normal vector with mean 0 and variance-covariance matrix ΣZj
,

Zj ∼ N
(
0, ΣZj

)
. According to Duchesne and Lafaye de Micheaux (2010)[43], let matrix

C be the Cholesky decomposition of ΣZj
satisfying C′C = ΣZj

and U be such that

UU′ = Itj that diagonalizes CΛjC
′ as UCΛjC

′U′ = D = diag(λ1, . . . , λtj). Assuming

λ1 ≥ . . . ≥ λr > 0 and λr+1 = . . . = λtj = 0 and letting Y = UC′−1Zj ,

E (Y) = E
(
UC′−1Zj

)
= UC′−1E (Zj) = 0 (4.6)

V ar (Y) = UC′−1Zj

(
UC′−1Zj

)′
= UC′−1ZjZ

′
j(C

′−1)′U′

= UC′−1ΣZj
(C′−1)′U′ = UC′−1C′CC−1U′

= UU′ = Itj

(4.7)

Y is distributed as N
(
0, Itj

)
. Each component of Y′DY is a weighted standard χ2

distribution, independent of the rest components as D is diagonal matrix. So, the

distribution of YDY′ is a weighted sum of chi-square random variables. We can show

that Y′DY and Z′
jΛjZj are equivalent:

Y′DY =
(
UC′−1Zj

)′
D
(
UC′−1Zj

)
= Z′

j(C
′−1)′U′DUC′−1Zj

= Z′
jC

−1U′UCΛjC
′U′UC′−1Zj

= Z′
jΛjZj

(4.8)

So, the quadratic form in equation (4.5) can be expressed as a weighted sum of chi-square

62



random variables:

Tj = Z′
jΛjZj = Y′DY =

r∑
s=1

λsχ
2
s (4.9)

Farebrother (1984)[44] and others have derived algorithm to calculate Pr(Tj > tj)

for quadratic form in equation (4.9). In practice, we do not know the correlation structure

of elements in Zj and variance-covariance matrix ΣZj
. One way to get an estimate of ΣZj

is by bootstrap re-sampling. We sample Pj with replacement B times to get B bootstrap

samples P∗1
j ,P∗2

j , . . . ,P∗B
j . For each bootstrap sample P∗

j , parametric models are fit for

each component of P∗
j to obtain Z∗

j . We get Z∗
j =

(
Z∗1

j ,Z∗2
j , . . . ,Z∗B

j

)
and the estimate of

ΣZj
is the variance-covariance matrix of Z∗

j .

Σ̂Zj
= cov(Z∗′

j ) (4.10)

and Tj is approximated by

Tj = Z′
jAZj ≈

r∑
s=1

λ̂sχ
2
s (4.11)

Where, λ̂s are derived as above with Σ̂Zj
replacing ΣZj

.

In a biological system, a gene could be involved in multiple biological processes. It

is very likely that gene sets defined for biological system or derived from biological

databases are not disjoint. So, POST requires a multiple testing procedure that remains

effective when the tests are dependent.

Yekutieli and Benjamni (1999)[45] proposed a resampling-based FDR control

procedure for dependent test statistics. The FDR control method has been used in several

gene set analysis methods. We also provide this method as an option to control FDR in

POST analysis. Besides the B bootstrap samples to estimate ΣZj
, D permutations of the

subject labeling in the original genomic data are performed for resampling-based FDR
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control. Let Tj denote the POST statistic in equation (4.5) computed from the jth set. Let

Tjd be the value of Tj computed using the dth permuted samples. We follow the

convention that permutation 1 represents the original data; thus, Tj = Tj1 for all

j = 1, . . . , k. For any j = 1, . . . , k and d = 1, . . . , D, we obtain pjd by same generalized

chi-square approximation as in equation (4.11). For a given rejection region, [0, p], the

estimate of the FDR is given:

F̂DR(p) = minp′,:p′≥=p

(
1

D − 1

D∑
d=2

Rd(p
′)

Rd(p′) + S(p′)

)
(4.12)

Where

Rd(p
′) =

k∑
j=1

I(pjd ≤ p′) (4.13)

and

Sd(p
′) = R1(p

′)− 1

D − 1

D∑
d=2

Rd(p
′) (4.14)

In some applications, the sets (pathway/genes) might be disjoint or have very weak

overlap. In these cases, the resampling-based FDR controlling could be dispensable. False

discovery rate can be estimated using methods such as FDR estimates by Benjamini and

Hochberg (1995)[46] or robust FDR estimates by Pounds and Cheng (2006)[39].

The POST method consists following steps:

1. Calculate covariance matrix Σ̂j using feature level signals in set Sj and perform

eigenvalue decomposition.

2. Select first few eigenvalues to explain δ fraction of total variance and project feature

level data to selected orthogonal space to get projected data Pj .
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3. Perform parametric modeling using projected data to get association vector Zj .

4. Define the POST statistic to be quadratic form as in equation (4.5).

5. Bootstrap to estimate covariance Σ̂zj under null as in equation (4.10).

6. Determine p-value based on generalized chi-square.

7. Perform 1 to 6 steps for each set.

8. Perform multiple testing adjustments, either resampling-based or other FDR

controlling methods.

4.3 Simulation studies

POST procedure can be applied to association analyses with various endpoints of

interest including continuous, binary, categorical, and time to event endpoints. To

compare the statistical power of POST procedure to that of other approaches, simulations

were performed in a simple setting with two treatment groups, where the other approaches

could be easily applied. Nine disjoint gene sets with sample size 20 in each of the two

treatment groups were generated as in Table 4.1

In the nine hypothetical gene sets, three sets (A to C) were small gene sets with 10

members. Members in Set B had moderate increase of mean in group 2 compared to group

1. Two members in Set C had large increase of mean in group 2, and rest 8 members had

no difference in mean expression level. Three sets (D to F) had moderate size (30

members) and set G and H had large size (100). In set H, 2 members had large mean

difference, 5 had moderate mean difference and rest 93 members had no difference in

mean expression level. Set I had a large size of 500. Variance-covariance matrix for each

gene set or subset was drawn from a Wishart distribution with Toeplitz matrix and number

of members plus 10 as the parameters. The variance-covariance with Toeplitz structure

instead of Identity matrix was used to introduce correlation structure among genes within

a gene set or subset. The variance-covariance matrixes were further scaled with diagonal
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Table 4.1: Set sizes and group means of nine gene sets in a simulation study.
Gene Set Size Sub Size Group 1 Group 2

SetA 10 10 0 0
SetB 10 10 0 1
SetC 10 2 0 3

8 0 0
SetD 30 30 0 0
SetE 30 30 0 1
SetF 30 4 0 3

8 0 0
SetG 100 100 0 0
SetH 100 2 0 3

100 5 0 1
100 93 0 0

SetI 500 500 0 0

elements around 1. For each gene set and subset, random samples were drawn from

multivariate normal distribution with mean in table 4.1 and variance-covariance generated

as above. One thousand simulated data sets were generated. The POST procedure with

δ = 0.8, 0.95 and 1, SAFE (Barry et al., 2005), MRPP test (Nettleton et al. 2008) and

GSA (Efron and Tibshirani, 2007) were applied to each of the 1000 data sets. The power

and type 1 error of the four methods were summarized in table 4.2.

In the POST procedure, the choice of δ is arbitrary. In the simulation study, we

choose δ to be 0.8 (at least 80% genetic variable is retained), 0.95 (retaining most genetic

variation), and 1 (retaining all the genetic variation). In the four gene sets without

differential expression, POST method maintained the nominal alpha level of 5% (3.3% to

5.1%); SAFE procedure also maintained the nominal alpha level of 5% (0.2% to 3%).

However, MRPP procedure was slightly loose on nominal alpha level maintenance (3.9%

to 6%), and GSA was more loose (5.2% to 7.7%). In the 5 gene sets with differential

expression, set B and E have moderate differential expression across probe sets, POST,

SAFE and MRPP test had good power to detect the differential expression with MRPP
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Table 4.2: Summary of simulation results on 9 gene sets with sample size 20 in both
groups.

GeneSet Differential POST SAFE MRPP GSA

δ = 0.8 δ = 0.95 δ = 1

SetA 0 5.1 5 5 2.2 6 5.8
SetD 0 5.2 5.1 5.1 3 5.6 7.7
SetG 0 3.3 3.3 3.3 1.9 3.9 5.7
SetI 0 4.4 4.4 4.4 0.2 4.8 5.2
SetB 1 92.7 93.3 93.4 81.8 93.6 19.4
SetC 1 87.5 88.3 88.1 6.4 100 7.1
SetE 1 94.4 94.7 94.6 87.7 95.3 24.6
SetF 1 81.7 84.1 83.7 5.2 100 5.4
SetH 1 15.3 25.4 23.2 3.5 83.3 4.7

Notes: Differential: 0: no differential expression, 1: differential expression between the
two groups; For gene sets without differential expression, the false positive percentages
(type 1 error) are shown; For gene sets with differential expression, the true positive
percentages (power) are shown.

being 94.5%, POST (93.9%) and SAFE (84.8%). The 3 choices of δ for POST procedure

gave similar power in these two gene sets. For gene set C and F, in which only a small

portion genes had relatively high differential expression, SAFE method lost power to

detect differential expression (5.8%), while POST still had decent power (85.6%). In set H

(100 genes), both POST and SAFE significant lost power to detect differential expression,

although POST performed much better than SAFE (15.3% to 25.4% vs 3.5%). In this

gene set, the choice of δ = 0.95 performed better than δ = 0.8 and slightly better than

δ = 1. It seems that δ = 1 retained noise association and δ = 0.8 lost too much genetic

information. In the three gene sets (C, F, and H), MRPP had greater power to detect

differential expression. GSA had little power to detect differential expression in all the

five gene set (4.7% to 24.6%).

From the simulation, MRPP had better power to detect gene sets with any

differential expression, especially with large difference in part of the gene set with
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reasonable maintenance of nominal alpha level. This result is consistent with the fact that

MRPP test is designed to detect any differential expression in multivariate spaces.

Unfortunately, the MRPP test is hard to extend to complicated models such as adjusting

for known factors or other types of endpoints of interest including censored time to event

variable. GSA lacked power to detect differential expression with loose nominal alpha

level control in this simulation study. GSA is an enrichment test and might not work well

on data sets with small number of genomic features. Both POST and SAFE methods

could be applied to complicated statistical modeling with various phenotypes. POST

method performed better in all the nine gene sets than SAFE (nine types of gene sets) and

the method showed robustness in choice of δ with large δ. Taking statistical power,

nominal alpha level control and flexibility into account, POST method outperforms the

other three methods.

4.4 Applications

The example application used data of a combined cohort from the St. Jude AML83,

AML87, AML91 and AML97 clinical trials. Affymetrix U133A microarray was used to

measure gene expression in the leukemic cells of diagnostic bone marrow samples of 105

subjects in this combined cohort (Ross et al., 2004[47]): 7 subjects were from AML83, 27

subjects from AML87, 29 subjects from AML91 and 42 subjects from AML97. The

clinical trials, sample selection, and method for gene expression profiling were described

in Ross et al., 2004. Normalized expression signals were determined using the Affymetrix

Microarray Suite (MAS) 5.0 algorithm and log transformed to be better represented by

normality. There were several presenting features available for each subject, such as

cytogenetic karyotype, FAB subtype, race, white blood count (WBC) and age at diagnosis.

In the original paper, the primary interest of the authors was to use gene expression

profiling to discriminate the known major prognostic subtypes. Although the experiment

was not designed for testing association of gene expression with treatment outcome, we

were interested in the biological processes that are associated with treatment response or
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outcome. We were also interested in demonstrating the flexibility and utility of POST

procedure in association studies and potentially use this method for our ongoing or future

gene profiling studies in current AML trials. Several prognostic factors: core binding

factors (CBF: inv(16) and t(8;21)), age at diagnosis, other 11q23 translocation, M7

without t(1;22) and FLT3-ITD, have been explored and are associated with clinical

outcome in a more recent trial (Rubnitz et al., 2010[48]). Some of these prognostic

features need to be adjusted for in association with clinical outcome in gene profiling

analyses.

In Affymetrix U133A annotations, 1057 biological processes are represented by at

least 5 probe sets, and up to 2641 with mean 52 and median of 13 probe sets. We were

interested in the biological processes that are associated with various clinical outcomes,

such as event-free survival (EFS) and risk of relapse, or associated with presenting

features such as core binding factor (CBF) vs other. EFS was defined as the time elapsed

from enrollment to induction failure, withdrawal, relapse, secondary malignancy, or death,

with those living and event-free censored at last follow-up. From the available methods,

there are no methods able to deal with all these phenotypes using original expression data

in a gene set level.

Association with survival outcome

In the first application, we applied POST procedure to survival analysis setting. We

were interested in biological processes associated with EFS. In previous studies, CBF has

been shown to be a favorable prognostic factor. Here, we were interested in the

association adjusting for CBF and stratified by study protocols. The treatment protocols

had tremendous effect on treatment outcome, especially the combined cohort spanned two

decades. The treatment regimens and available drug were different among the trials, and

supportive care were also improved in recent trials. We could perform Cox proportional

hazard regression with feature level signals and CBF as predictors stratified by study

protocols, then perform GSEA analysis on the obtained p-values, rank the biological
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processes and perform FDR control. Instead, we performed POST test, FDR control and

subsequent feature level testing if needed. For each of biological process,

variance-covariance of the feature-level signals was calculated and eigenvalue

decomposition were performed. δ was set to 0.95, ie 95% variation of feature-level signals

could be explained by selected eigenvalues. The feature-level signals were then projected

to the selected orthogonal space. EFS was then modeled with Cox proportional hazards

model with each projected vector and CBF as covariates, stratified by study protocols to

obtain z statistics for each selected projected vector. The POST test statistics was

calculated according to equation (4.5). The original projected vectors were re-sampled

B = 200 times to obtain 200 random samples, which were then fit into the same Cox

proportional hazards model to estimate the covariance of Z. The p-value was determined

by generalized chi-square using the algorithm by Farebrother (1984) implemented in R (R

package: ”CompQuadForm”). The computing resource demanding was not heavy. The

whole analysis could be completed in 8 hours with one central process unit (cpu).

Figure 4.1 showed the p-values of association of biological processes with EFS

adjusting for CBF and stratified by treatment protocols. From QQ plot in the left panel, a

few processes were on the border line above the null area of no association. Another

indication from QQ plot was that the biological processes were not disjoints. Some of

these biological processes could be associated with EFS. We noticed that in one biological

process, the first projections explained at least 95% of variation. The numbers of PCAs

were from 1 to 91 with mean 17 and median 9, significantly reduced dimensionality.

There were no special patterns in p-values vs. number of PCAs used in the sets (Figure

4.1, left panel). This indicated that the POST procedure does not bias to sets with low or

high numbers of PCAs.

The biological processes defined in the AFFY annotation were not disjoint, some

probes were in multiple biological processes. So, the p-values were not independent. Most

methods for FDR control assume independence of p-values, such as Benjamin Hochberg
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Fig. 4.1: Association of Biological Process with EFS in AML

Panel A: QQ plot of p-values of association of Biological Process with EFS. Panel B:
POST p-values vs. number of PCAs in the tests.

Fig. 4.2: CTNNB1-independent WNT signaling pathways.

Jamie N. Anastas & Randall T. Moon, Nature Reviews Cancer 13, 11-26 (January 2013)
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Table 4.3: Top biological processes associated with EFS in AML
Biological Process nProbe nPCA POSTStat p-value q-value
Regulation of Wnt receptor signal-
ing pathway

18 12 82.1 5.6e-05 0.12

Mitochondrial electron transport;
NADH to ubiquinone

29 18 31.9 3.0e-04 0.16

Coenzyme A biosynthesis 5 4 13.5 4.8e-04 0.19
Positive regulation of glucose im-
port

5 4 17.6 8.1e-04 0.23

Establishment and/or maintenance
of chromatin architecture

56 33 127.7 1.3e-03 0.25

Lipid catabolism 81 44 221.3 1.5e-03 0.29
Arginine catabolism 9 6 37.3 2.3e-03 0.31
Activation of JNK activity 20 14 50.7 2.5e-03 0.32
Nitric oxide mediated signal trans-
duction

9 6 55.0 3.3e-03 0.33

Regulation of heart contraction 48 30 170.5 3.7e-03 0.34
Secretory pathway 10 7 25.1 4.0e-03 0.35
Response to toxin 13 10 59.2 4.2e-03 0.36
Morphogenesis 192 69 526.3 4.2e-03 0.37
Protein import into mitochondrial
matrix

6 4 7.6 4.2e-03 0.37

Regulation of dephosphorylation 7 5 17.7 5.6e-03 0.37
Transmission of nerve impulse 5 4 27.3 6.9e-03 0.38
Positive regulation of gluconeogen-
esis

6 5 18.5 7.0e-03 0.38

Negative regulation of protein
biosynthesis

18 12 42.9 7.0e-03 0.38

Negative regulation of cytokine
and chemokine mediated signaling
pathway

5 4 7.2 7.7e-03 0.39

Acetylcholine receptor signaling;
muscarinic pathway

8 7 30.3 7.7e-03 0.39

Regulation of neuron differentia-
tion

7 5 26.8 7.8e-03 0.39

Very-long-chain fatty acid
metabolism

6 5 36.0 8.6e-03 0.40

Notes: Twenty-two biological processes are selected with FDR 0.4; important signal
transduction pathways are highlighted in red.
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1995. Here, the robust FDR estimation method proposed by Pounds and Cheng (2006)

was used to control FDR.

With q-value (FDR) cut off 0.4, 22 biological processes were selected to be

associated with EFS adjusting for CBF and stratified by treatment protocols (Table 4.3).

Out of the 22 biological processes, five were signaling pathways. In particular, regulation

of Wnt receptor signaling pathway was ranked as the number one among the 1057

pathways studied (p = 0.000056). Wnts are secreted glycoproteins that regulate multiple

signaling pathways through both β-catenin (CTNNB1)-dependent and

CTNNB1-indpendent mechanism (Figure 4.2). Wnt signaling pathway plays an important

role in normal and leukemic hematopoietic stem cells and is an important target in several

leukemogenic pathways (Mikesch et al., 2007)[49]. Wnts and WNT pathway components

are frequently over or under-expressed in different human cancers. WNT signaling

pathway is well studied and has been shown involved in many development processes, and

various types of cancer such as stomach, soft tissue pancreas, liver, ovary, kidney, and so

on (reviewed by Anastas et al., 2012[50]). It recently become one of the target pathways

to develop therapeutic drugs. JNK singling pathway is another important pathway that is

involved in apoptosis and cancer development (reviewed by Wagner and Nebreda

2009[51], Figure 4.3) and showed significant association with EFS in AML (p = 0.0025).

JNK and p38 mitogen-activated protein kinases have import roles in signaling mechanism

that regulates cellular responses to stresses, cell proliferation, survival in a cell-type

specific manner. Their expressions and activities are altered in human tumors and cancer

cells. Several phase I and II clinical trials are testing drugs directly targeting JNK in

multiple cancers. The identification of regulation of JNK activity process in association

with survival outcome further implicates the importance of JNK pathway. On the other

hand, the identification also indicates the utility of the method.

Nitric oxide mediated signal transduction was ranked number 9 among the 1057

biological processes associated with EFS in AML. Nitric oxide has mixed effect in

73



Fig. 4.3: Human JNK signaling pathways.

Erwin F. Wagner & Angel R. Nebreda Nature Reviews Cancer 9, 537-549 (August 2009)
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carcinogenesis. It could both cause DNA damage and protect cells from cytotoxicity;

could inhibit and stimulate cell proliferation; and could be both pro- and anti-apoptotic

(Hussain et al., 2003[52]). The biological process of establishment and/or maintenance of

chromatin architecture was also significantly associated with EFS (ranked #5, p = 0.0013).

Chromosomal trans-location, inversions, chromosomal deletion or amplification were

frequently observed in many cancers. Nambiar et al. (2008[53]) provided an extensive

review on chromosomal translocations in AML, ALL and other more than 20 cancers.

These important cancer related pathways were picked up in the POST analysis, further

indicating the utility of POST procedure.

Association with categorical features

In the second application, we investigated the association of biological processes

with core binding factors (CBF). The subjects were classified as with CBF (1) or without

CBF (0). Using logistic regression model with study protocol as one of the covariates, we

performed POST analysis similar to EFS to explore the association between biological

processes with CBF.

With FDR 0.1, 113 biological processes were selected to be significantly associated

with CBF. Out of the 113 biological processes, 26 were related to signaling transduction

pathways or regulating a biological process (Table 4.4). These included many important

signaling transduction pathways such as: cell surface receptor linked signal transduction,

transmembrane receptor protein tyrosine kinase signaling pathway, integrin-mediated

signaling pathway, intracellular signaling cascade, cell-cell signaling, and regulation of

transcription through various mechanisms. These results suggest that AMLs with CBF

and those without CBF are dramatically distinct diseases in term of underlying disease

biology.

Association with time to events with competing events

Despite significant progress in treating patients with pediatric acute myeloid

leukemia (AML), 20%-33% of patients still experienced relapse. Here, we were interested
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Table 4.4: Summary of signaling and regulation biological processes associated with CBF
in AML.

Biological Process nProbe nPCA POSTstat p-value q-value
Regulation of cell growth 152 60 251.9 0.0000 0.000
Androgen receptor signaling pathway 70 35 116.3 0.0000 0.000
Regulation of apoptosis 177 57 261.5 0.0000 0.000
Positive regulation of I-kappaB kinase/NF-
kappaB cascade

149 53 249.3 0.0000 0.000

Regulation of transcription 646 84 2469.1 0.0000 0.000
Negative regulation of progression through
cell cycle

222 67 574.7 0.0000 0.000

Negative regulation of transcription; DNA-
dependent

71 35 67.2 0.0000 0.000

Positive regulation of transcription from
RNA polymerase II promoter

80 36 678.5 0.0000 0.000

Regulation of transcription; DNA-dependent 2641 91 7417.5 0.0000 0.000
Regulation of transcription from RNA poly-
merase II promoter

357 76 711.8 0.0000 0.000

Regulation of translation 104 43 102.3 0.0000 0.000
Signal transduction 2347 91 6949.9 0.0000 0.000
Cell surface receptor linked signal transduc-
tion

310 74 734.3 0.0000 0.000

Transmembrane receptor protein tyrosine ki-
nase signaling pathway

146 61 542.7 0.0000 0.000

G-protein coupled receptor protein signaling
pathway

679 87 1953.6 0.0000 0.000

Integrin-mediated signaling pathway 102 49 496.8 0.0000 0.000
Intracellular signaling cascade 614 83 1540.2 0.0000 0.000
Small GTPase mediated signal transduction 318 73 621.7 0.0000 0.000
Cell-cell signaling 445 82 1797.5 0.0000 0.000
Regulation of progression through cell cycle 432 78 1242.9 0.0000 0.000
Positive regulation of cell proliferation 203 67 645.6 0.0000 0.000
Negative regulation of cell proliferation 284 74 727.1 0.0000 0.000
Negative regulation of lymphocyte prolifera-
tion

6 1 9.8 0.0018 0.017

Negative regulation of JNK activity 6 5 0.1 0.0023 0.023
Glutamate signaling pathway 21 17 6.7 0.0071 0.067
DNA damage response; signal transduction
resulting in induction of apoptosis

8 7 0.6 0.0086 0.080

Out of the 113 biological processes that associated with CBF, 26 are signaling andor
regulation biological processes.
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in biological processes that are associated with risk of relapse. Risk of relapse was defined

as time elapsed from enrollment to relapse with induction failure, withdrawal, secondary

malignancy and death treated as competing events, patients without any event were

censored at last follow up. For each biological process, the time to relapse was modeled

with each projected vector in the biological process, CBF, treatment protocol as

independent predictors in Fine and Grays (1999) competing risk regression model, which

is similar to EFS.

Table 4.5 showed the top 20 biological processes that were associated or risk of

relapse, with a false discovery rate of 0.45. Out of the 20 biological processes, three were

important signaling pathways: Nitric oxide mediated signal transduction (p = 0.0016),

Regulation of Wnt receptor signaling pathway (p = 0.0037), and Activation of JNK

activity (p = 0.0051). These three signal transduction pathways were also associated with

event-free survival in AML.

4.5 Discussion

POST is a general procedure designed for set-based association studies. It is very

flexible and can be adapted to many types of endpoints of interest. In the example

applications in section 4.4, we demonstrated how to perform POST test for binary

endpoint (logistic regression) and time to event endpoint (Cox proportional hazard

model). Applying POST to continuous normal endpoint is trivial (linear regression).

POST also could be applied to time to event endpoint with competing events. In this case,

Fine and Gray (1999) competing risk regression can be applied to model event of interest

with competing events after orthogonal projection. In fact, any parametric models with

z-type of statistics (standard normal under null) could be applied to the POST test. After

orthogonal projection, parametric modeling is applied to each projected vector. Certainly,

non-parametric model could also be used as long as the statistics for each projected vector

is standard normal under null. So, POST can handle most types of endpoints of interest in

practice, which makes POST procedure very attractive.
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Table 4.5: Summary of biological processes associated with risk of relapse in AML.
Biological Process nProbe nPCA POSTstat p-value q-value
Positive regulation of glucose import 5 4 18.9 0.00053 0.35
Nitric oxide mediated signal transduc-
tion

9 6 64.8 0.00160 0.35

Mitochondrial electron transport;
NADH to ubiquinone

29 18 28.4 0.00160 0.35

Phagocytosis; engulfment 8 6 54.8 0.00240 0.35
Regulation of dephosphorylation 7 5 20.7 0.00250 0.35
Arginine catabolism 9 6 37.4 0.00260 0.36
Protein import into mitochondrial ma-
trix

6 4 8.3 0.00270 0.37

Positive regulation of gluconeogenesis 6 5 22.3 0.00280 0.37
Acetyl-CoA biosynthesis 5 5 11.9 0.00320 0.39
SRP-dependent cotranslational protein
targeting to membrane

6 4 26.0 0.00340 0.41

Regulation of Wnt receptor signaling
pathway

18 12 50.7 0.00370 0.41

Activation of JNK activity 20 14 48.6 0.00510 0.42
Fructose 2;6-bisphosphate metabolism 6 5 22.4 0.00510 0.44
Very-long-chain fatty acid metabolism 6 5 40.3 0.00530 0.45
Negative regulation of protein biosyn-
thesis

18 12 47.0 0.00600 0.45

Transmission of nerve impulse 5 4 28.5 0.00710 0.45
Insulin secretion 5 4 9.2 0.00770 0.45
Secretory pathway 10 7 23.0 0.00780 0.45
Lipid catabolism 81 44 208.0 0.00810 0.45
Porphyrin biosynthesis 13 8 27.8 0.00850 0.45

78



Empirical orthogonal function projection or PCA projects the original data in a set

to an orthogonal subspace spanned by eigenvectors. In each projected vector, the variation

is maximized besides maintaining orthogonality. This potentially increases the power of

detecting significant association of a set with an endpoint of interest, especially in the

circumstance where feature level data in a set are weakly associated with the endpoint

marginally but jointly show strong association. Gene sets such as pathways could be

arbitrary with wide range in sizes. The dimensions are significantly reduced without much

loss of information and potentially remove noise after orthogonal projection. In the

example applications, some of the biological processes are with sizes of hundreds to 2000,

which could be reduced to the sizes of dozens to a hundred with 95% variation among

features retained. The choice of δ is arbitrary and should be predefined before the

analysis. As shown in the simulation study, POST method is robust to the choice of δ for

most gene sets as it is greater than 90%. The set definitions are usually derived from

available databases or prior knowledge, and should be determined before the analysis. We

do not suggest modifying set definition during analysis. Theoretically, any set can be

shown significant association after certain modification. Modifying set definitions during

analysis makes the test’s validity questionable.

POST also has other desirable attributes. POST is self-contained. POST test for one

set will not be influenced by genes in other gene sets. Geoman and Buhlmann 2007

pointed out that self-contained null hypothesis testing in gene set analysis gives advantage

of valid p-values and easy interpretability. The POST test is model based and does not

require permutation to determine p-values, although it does require resampling technique

to estimate one parameter. The POST test is still computationally efficient. In the example

application of association with EFS, the whole POST procedure took about 8 hours on a

single CPU with 105 subjects and 200 bootstraps.

POST test statistic is defined as a quadratic form with the corresponding eigenvalues

as diagonal elements. This choice of weight assumes that more variation among features
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in a set carries more information of association with an endpoint of interest. In most cases,

this is a reasonable assumption. However, this assumption need to be further investigated

in some circumstances. Alternative weighting strategy could be used and should be

determined before analysis. We do not recommend searching for optimal weighting to

extend POST in practice. We do not recommend different weighting schema for different

sets in one application either.

To derive the generalized Chi-square distribution of POST statistics, we assume that

vector z is a multivariate normal vector with mean 0 and an unknown variance-covariance

matrix under the null hypothesis of no association between the set and an endpoint of

interest. This assumption is valid in general. We need to use bootstrap resampling to

estimate the unknown variance-covariance matrix. Usually, 200 or more bootstrap

samples are desirable. As resampling technique used, we suggest applying POST

procedure to data set with decent sample size. POST is design for test association in large

clinical or biomedical studies. We do not recommend applying POST test to data set with

less than 30 subjects.

POST is motivated by analysis of gene profiling data generated by microarray chips.

However, POST is not limited to gene profiling data analysis. It also can be applied to

other high dimension data as long as the data can be assumed to be normally distributed or

after normal transformation in predefined sets. After careful data preparation, POST

procedure can be applied to RNA-seq data for gene profiling, DNA methylation data

either from next generation sequencing or from methylation array for studying epigenetic

effects. Currently, we are trying to apply POST procedure to DNA methylation data.

In summary, POST is a general, very flexible procedure for association analysis in

high dimension data. It can be easily adapted to various types of endpoints and data

generation mechanisms.
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Chapter 5

LOCIT: A FRAMEWORK FOR LOCUS-BASED INTEGRATED

ASSOCIATION TEST IN HIGH DIMENSIONAL DATA

5.1 Introduction

High throughput technologies have enabled researchers to study thousands of

genomic features of living organisms. Starting from gene expression profiling studies

using microarray technology, high throughput technologies have been developed to

understand the biological mechanisms of diseases and other biological phenomena.

Micro RNA (miRNA) is a small non-coding RNA molecule, which functions in

transcriptional and post-transcriptional regulation of gene expressions. The human

genome encodes over 1000 miRNA which may target about 60% of genes (Bentwich,

et al., 2005)[10]. miRNA are abundant in many cell types and are involved in many

biological processes. Expression levels of miRNA are measured by microchips and by

direct sequencing techniques. Epigenetic is a phenomenon in which gene expression and

other cellular phenotypes are influenced by mechanisms other than changes in the

underlying DNA sequence, such as histone modification, DNA methylation and RNA

editing. Histone modifications are studied using ChIP-Chip method (chromatin

imunoprecipitation with microarray technology, Lieb et al. 2001[11]) and, more recently,

Chip-seq (based on next-generation sequencing technology, Johnson et al., 2007[12]).

DNA methylation levels are measured by microchip such as Illumina Infinium

Methylation array, or pyrosequencing. It has been shown that DNA methylation variations

are associated with multiple complex diseases. SNP arrays and direct sequencing have

been widely used to study germline or disease polymorphisms associated with disease

predisposition or treatment outcomes.

For many diseases and other biological outcomes, a variety of data are usually

collected. For example, gene expression, DNA methylation, micro RNA, and SNP data

could be available for each subject in a study cohort. To analyze these data, traditional
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association testing could be performed to relate each data type with an endpoint of

interest. For each form of association procedure, FDR controls are usually performed to

account for multiplicity of tests, before declaring a list of genes to be significantly

associated with an endpoint of interest. Following such testings, the result for each data

type can be used by investigators to obtain an overlapping list of genes. It is not

uncommon to find that there is little overlaps between the genes on various lists. Given all

forms of data, one question that investigators tend to ask is which genes are significantly

associated with the endpoint of interest and should be followed in a future study. If there

are some overlaps between result lists, the FDR control of the multiple testing for the

significance of such overlaps is usually quite challenging. To address this challenge, an

integrated association test approach is needed.

One approach that has been widely adopted in various fields, including meteorology

to identify spatial and temporal patterns, genetic patterns analysis, and identification

population structure in GWAS, is use of empirical orthogonal functions (EOF) analysis or

principal component analysis (PCA). The important property of EOF and PCA is

dimension reduction for high dimensional data. For a gene or locus set, the dimension are

usually large. EOF and PCA are dimension reduction tools which also capture most

information of the data.

In this chapter, we propose another approach: the Locus-based Integrated Test

(LOCIT), as a flexible statistical procedure to test association of a locus with the endpoint

of interest given multiple sources of high dimensional data. In the LOCIT procedure, we

perform one hypothesis testing with multiple sources of data for a locus. This reduces

number of tests and therefore results in better FDR control. As will be shown, the LOCIT

procedure is flexible and can handle data from various endpoints to be adapted to different

model structures. In section 5.2, we describe the LOCIT procedure. Section 5.3 presents

the results from real applications and Section 5.4 presents simulation studies. Finally,

Section 5.5 provides the discussion and concluding remarks.
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5.2 Methods

5.2.1 The LOCIT method

Suppose that g = 1cj, . . . , wcj genomic features from source c = 1, . . . ,m in the jth

locus Sj for j = 1, . . . , k are measured for i = 1, . . . , n subjects. Also, suppose that data

of endpoint variables and l = 1, . . . , v covariates are available for these subjects. For

i = 1, . . . , n, g = 1cj, . . . , wcj and c = 1, . . . ,m, let yig represent the value of genomic

feature g for subject i. Let yg represent the vector (y1g, y2g, . . . yng) of values for genomic

variable g for all subjects and let Yj represent the set of all yg for locus Sj . For

l = 1, . . . , v, let qil represent the value of covariate l for subject i, and Ql be vector of

(q1l, q2l, . . . qnl). Additionally, let xi represent the value of endpoint for subject i and X

represent the vector (x1, . . . , xn).

For g = 1cj, . . . , wcj , we perform traditional parametric testing with endpoint

variables X as dependent variables and yg as independent variables, adjusting for

covariates Ql. The model structure could be linear, generalized linear, or Cox proportional

hazard model when the endpoint variables are survival times. Let zg be the z-statistics

retrieved from the model measuring association between gene expression measurements

yg and endpoint variable X, and let

zj =
(
z11j

, z21j
, . . . , zw1j

, . . . , zwmj

)′ (5.1)

be the vector of z-statistics measuring association of yg for g = 1cj, . . . , wcj and

c = 1, . . . ,m with the endpoint X. The main interest is whether the locus Sj , for

j = 1, . . . , k, has significant association with the endpoint of interest (with adjustment

made for covariates). Under the assumption that all the genomic features in the locus

carrying same information of association with the endpoint, we use as a test statistic
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Tj = z′jzj (5.2)

to measure the association between Sj with X. We label this statistic as LOCIT statistic.

Next we need to determine the p-value of observing as extreme as tj under null

hypothesis where Sj is not associated with endpoint: Pr(Tj > tj). Under null of no

association between set Sj with endpoint X, zj is a multivariate normal vector N
(
0, Σzj

)
with mean 0 and variance-covariance matrix Σzj

. According to Duchesne and Lafaye de

Micheaux (2010), let matrix C be the Cholesky decomposition of Σzj
satisfying

C′C = Σzj
and U be such that UU′ = Iwmj

and that diagonalizes CIC′,

UCIC′U′ = D = diag(λ1, . . . , λwmj
). Assuming λ1 ≥ . . . ≥ λr > 0 and

λr+1 = . . . = λwmj
= 0 and letting Y = UC′−1Zj , Y is distributed as N

(
0, Iwmj

)
. The

quadratic form in equation (5.2) can be expressed as a weighted sum of chi-square random

variables:

Tj = z′jzj = Y′DY =
r∑

s=1

λsχ
2
s (5.3)

Farebrother (1984) and others have derived algorithm to calculate Pr(Tj > tj) for

quadratic form in equation (5.3). In practice, we do not know the correlation structure of

elements in zj and variance-covariance matrix Σzj
. One way to get an estimate of Σzj

is

by bootstrap re-sampling. We sample Yj with replacement B times to get B bootstrap

samples Y∗1
j ,Y∗2

j , . . . ,Y∗B
j . For each bootstrap sample Y∗

j , parametric models are fit for

each component of Y∗
j to obtain z∗j . We get Z∗

j =
(
z∗1j , z∗2j , . . . , z∗Bj

)
and the estimate of

Σzj
is the variance-covariance matrix of Z∗

j

Σ̂zj
= cov(Z∗′

j ) (5.4)
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and Tj is approximated by

Tj = z′jzj ≈
r∑

s=1

λ̂sχ
2
s (5.5)

Where, λ̂s are derived as above with Σ̂zj
replacing Σzj

.

In Biological system, genes do not function by their own, and depend on each other

to function as biological processes. So, loci could have profound dependence and LOCIT

requires a multiple testing procedure that remains effective when the tests are dependent.

Yekutieli and Benjamni (1999) proposed a resampling-based FDR control procedure

for dependent test statistics. The FDR control method has been used in several gene set

analysis methods. We also provide this method as an option to control FDR in LOCIT

analysis. Besides the B bootstrap samples to estimate ΣZj
, D permutations of the subject

labeling are performed for resampling-based FDR control. Let Tj denote the LOCIT

statistic in equation (5.2) computed from the jth locus. Let Tjd be the value of Tj

computed using the dth permuted samples. We follow the convention that permutation 1

represents the original data; thus, Tj = Tj1 for all j = 1, . . . , k. For any j = 1, . . . , k and

d = 1, . . . , D, we obtain pjd by same generalized chi-square approximation as in equation

(5.5). For a given rejection region, [0, p], the estimate of the FDR is given:

F̂DR(p) = minp′,:p′≥p

(
1

D − 1

D∑
d=2

Rd(p
′)

Rd(p′) + S(p′)

)
(5.6)

Where

Rd(p
′) =

k∑
j=1

I(pjd ≤ p′) (5.7)

and
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Sd(p
′) = R1(p

′)− 1

D − 1

D∑
d=2

Rd(p
′) (5.8)

The FDR also could be controlled by Benjamini and Yekutieli (2001) method with

dependency. In applications that loci are weakly correlated, the resampling-based FDR

controlling could be dispensable. False discovery rate could be estimated using methods

such as FDR estimates by Benjamini and Hochberg (1995) or robust FDR estimates by

Pounds and Cheng (2006).

The LOCIT method is implemented by following steps:

1. Perform parametric modeling to get association vector zj .

2. Define the LOCIT statistic to be quadratic form as in equation (5.2).

3. Bootstrap to estimate covariance Σ̂zj under null as in equation (5.4).

4. Determine p-value based on generalized chi-square.

5. Perform same 1 to 4 steps for each locus.

6. Perform multiple testing adjustments, either resampling-based or other FDR

controlling methods.

5.2.2 The LOCIT extension

The LOCIT test assumes that most of the genomic features in a locus show similar

association with endpoint of interest. However, this is usually not the case. The LOCIT

test with equal weight puts high penalty on a locus where most genomic features are not

associated with the endpoint of interest. One potential strategy is to use different weights

to define the LOCIT statistics. Another strategy is to perform feature selection prior to

LOCIT test. It is also possible to combine these two strategies.
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We implement a strategy of using different weights in defining the LOCIT statistics.

As there are more than one form of genomic features for a given locus, we assume that

each form of genomic feature makes the same contribution to the overall association with

an endpoint of interest. For this purpose, the weights are simply set as 1. If there are more

than one genomic features in a given form, an orthogonal projection is performed on a

sub-orthogonal space that explains predefined fraction of total variation of the features and

the weights are assigned according to the eigenvalues. This can be regarded as an

extension of POST to multiple forms of genomic data in a locus. We label this procedure

LOCITO (LOCIT with orthogonal projection).

Given the setting described in section 5.2.1, suppose there are c = 1, . . . ,m forms

of genomic data. For c = 1, . . . ,m, we perform following: For g = 1cj, . . . , wcjand

wcj > 1, compute a sample estimate of covariance Σ̂cj using equation (5.9). Now apply an

eigenvalue decomposition to Σ̂cj to obtain eigenvalues: λ1cj
, . . . , λwcj

in descending order

and corresponding eigenvectors: e1cj
, . . . , ewcj

. Let tcj ≤ wcj represent the least number

of eigenvalues explaining a predefined fraction, 0 < δ ≤ 1, of total variation in the

genomic variables for cj, and project Ycj to the orthogonal subspace spanned by

eigenvectors e1cj
, . . . , etcj

as given in equation (5.10). The selected eigenvalues

Λcj = (λ1cj
, . . . , λtcj

)′ are rescaled according to equation 5.11. If wcj = 1, Pcj is the

original measurement of the genomic feature and λ′cj = 1.

Σ̂cj = (Ycj − Ȳcj)(Ycj − Ȳcj)
′ (5.9)

Pcj =
(
P1cj

, . . . , Ptcj

)
= Y′

cj

(
e1cj

, . . . , etcj

)
(5.10)

Λ′
cj = Λcj/

∑
Λcj (5.11)

Let Pj = (P1j, . . . ,Pmj), Λ′
j =

(
Λ′

1j, . . . , Λ
′
mj

)
and Λ′

j be a diagonal matrix with

Λ′
j as diagonal elements. We perform traditional parametric testing with endpoint variable
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X as dependent variable and each projected vector of Pj as independent variable,

adjusting for covariates Ql. Let

zj =
(
z1j, . . . , zt1j

, . . . , ztmj

)
(5.12)

be the vector of z-statistics measuring association of each projected vector in Pj with the

endpoint variable X. The statistics measuring association between jth locus with the

endpoint variable X is defined as in equation 5.13

Tj = z′jΛjzj (5.13)

The Pr(Tj > tj) is approximated by generalized chi-square approximation as in

equation (5.5). Resampling-based FDR control procedure can be carried out according to

above section.

The LOCITO procedure is implemented by the following steps:

1. For jth locus, perform orthogonal projection

(a) Calculate covariance matrix of cth form of genomic features and perform

eigenvalue decomposition.

(b) Select first few eigenvalues to explain δ fraction of total variance and project

feature level data to the selected orthogonal space to obtain projected data.

(c) Scale the selected eigenvalues according to equation 5.11.

(d) Repeat (a) to (c) for each form of genomic features and get projected data Pj

and scaled Λ′
j

2. Perform parametric modeling for each projected vector to get association vector zj .
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3. Define the LOCITO statistic to be quadratic form as in equation (5.13).

4. Bootstrap to estimate covariance Σ̂zj under null as in equation (5.4).

5. Determine p-value based on generalized chi-square.

6. Perform same 1 to 5 steps for each locus.

7. Perform multiple testing adjustments, either resampling-based or other FDR

controlling methods.

5.3 Applications

To illustrate the performance of LOCIT and LOCITO, we use a dataset of AML02

clinical trial (Rubnitz et al., 2010[48]). Dense SNPs were genotyped in 187 patients by

targeted genotyping in 37 genes[54, 55] and corresponding expressions of these genes

were obtained from gene profiling data measured for these subjects by U133A microarray.

The 37 genes include genes in araC pathway (see figure 5.1) and other key genes in drug

metabolism. The prodrug araC is up-taken into cytoplasm by transporter hENT1,

phosphorylated to active drug araCTP by three kinases sequentially; araCTP is then

transported into nucleus and incorporated to DNA/RNA during synthesis which blocks

DNA/RNA synthesis leading to apoptosis (program cell death); the active drug araCTP is

also metabolized to inactive forms by dephosphorylation and deaminase, and is competed

with dCTP. The understanding of these genes in patient responses to araC treatment will

help tailoring treatments for patients in future. From the previous analyses, several SNPs

were significantly associated with event-free survival (EFS). Here we investigate to see if

any genes were significantly associated with EFS and ranked high given SNPs and gene

expression data.

In addition to testing association of each SNP and expression probe with EFS, an

integrated LOCIT test was performed for each of the 37 genes. EFS was modeled with

Cox proportional hazards model with each SNP or gene expression as covariates, stratified
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by treatment arm to obtain z statistics. The LOCIT statistics was calculated according to

equation (5.2). The subject labels were re-sampled B=200 times to obtain 200 random

samples, which were then fit into the same Cox proportional hazards model to estimate the

covariance of z. The p-values were determined by generalized chi-square using the

algorithm by Farebrother (1984) implemented in R. The results were shown in Table 5.1

Table 5.1: Top target genes that were associated with EFS in AML
Gene N Probe LOCIT Statistics p-value
RRM2 7 19.89 0.017
SLC29A1 4 10.50 0.041

In the individual SNP association study, SNPs of RRM2 have been shown to

associated with EFS (Cao et al., 2013[55]). The LOCIT test ranked the RRM2 as top one

gene associated with EFS among the 37 genes. RRM2 is the small subunit of holoenzyme

of Ribonucleotide reductase, which is key enzyme involved in the biosynthesis of

deoxynucleotides. The second gene in the ranking was SLC29A1, a drug transporter to

transfer nucleotides into cells. The genetics of RRM2 and SLC29A1(SNP and expression)

were associated with EFS outcome in AML patients treated with prodrug of araC. This

result is consistent with the treatment model, in which prodrugs are transported into cells

and metabolized by enzymes into active drug, eventually integrated into DNA/RNA

synthesis resulting in program cell death.

Noting that the LOCIT incurs penalty on genes with genomic features most of

which are not associated with endpoint of interest. LOCIT with orthogonal projection to

reduce dimension and put heavier weight on import features (LOCITO) was applied to

this dataset. δ was set to 0.99 and B = 200. The result of LOCITO test is shown in Table

5.2. We find that besides RRM2 and SLC29A1, both CDA and SOCS3 show association

with EFS in AML at 0.05 alpha level. Orthogonal projection has reduced the dimension of
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Fig. 5.1: Human araC pathway

Prodrug araC is up-taken into cytoplasm by transporter hENT1, phosphorylated to active
drug araCTP by kinases, incorporated to DNA/RNA during synthesis which blocks
DNA/RNA synthesis and leads to apoptosis; araCTP is also metabolized to inactive forms
by dephosphorylation and deaminase, and compete with dCTP. (Courtesy by Dr. Lamba)
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CDA from 10 to 8 and left the rest 3 genes untouched. However, the projection of genomic

features in SOCS3 has increased the power to detect association of SOCS3 with EFS.

Table 5.2: Top genes associated with EFS in AML with orthogonal projection
Gene Nprobe Ndim Stat Pvalue
RRM2 6 6 7.01 0.016
SLC29A1 4 4 5.32 0.041
CDA 10 8 5.52 0.042
SOCS3 4 4 5.69 0.043
RRM2B 1 1 2.8 0.094

Similarly, LOCITO procedure was performed to test association of the 37 genes

with day 22 MRD (present or absent of minimal residual disease) and over-all survival

(OS) in this AML data set. The results with α ≤ 0.1 are shown in Table 5.3 and 5.4,

respectively. Day 22 MRD is a measurement of early response of araC treatment in AML.

SOCS3 was on the top of the list and RRM2 the second. DCK (deoxycytidine kinase) was

also significantly associated with day 22 MRD (p =0.035). DCK phosphorylates araC to

araCMP, an intermediate to active drug araCTP. Although DCK was not associated with

EFS, it seems to be important for early response in treatment with araC. CDA (Cytidine

Deaminase) was identified to be significantly associated with OS (p = 0.019). From these

analyses, enzymes both activating the prodrug and deactivating the drug were associated

with early response or long term outcome.

5.4 Simulation Study

LOCIT procedure can be applied to association analyses with various types of

endpoints. To compare the statistical power of LOCITO procedure to that of other

approaches, simulations were performed in a simple setting involving two treatment

groups, where the other approaches could be applied. Twenty disjoint loci were generated

as in table 5.5 with sample size 100 in each of the two treatment groups. Two types of

genomic features were simulated in each locus, both of which were assumed to be
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Table 5.3: Top genes associated with OS in AML with orthogonal projection
Gene Nprobe Ndim Stat Pvalue
SOCS3 4 4 7.48 0.015
RRM2 6 6 6.55 0.021
DCK 2 2 6.74 0.035
ABCB1 3 3 5.78 0.05
DCTD 20 14 4.3 0.064
CDA 10 8 4.51 0.076
XRCC1 5 4 4.1 0.083
ABCG2 3 3 4.34 0.094

Table 5.4: Top genes associated with day 22 MRD in AML with orthogonal projection
Gene Nprobe Ndim Stat Pvalue
CDA 10 8 6.82 0.019
CMPK 7 7 4.75 0.071

multivariate normal. These genomic features could be gene expression and DNA

methylation. In DNA methylation, the logit transformation of the fraction of the

methylated signal over total signal(M values) can be used.

In the 20 hypothetical loci, the first six loci(A to F) were small loci with 10

members each(5 from Type A and 5 from Type B); Loc G to M had moderate size with 30

members (10 from Type A and 20 from Type B); and Loc N to T had large size with 100

members (20 from Type A and 80 from Type B). There was no difference between the two

groups in Loc A, F, G, N and T. In Loc B, 2 out of 5 members from type A had moderate

increase (1) of mean in group 2 compared to group 1 and members from type B had no

difference in mean between group 1 and 2. In Loc C, all 5 member from type A had

moderate increase (0.5) of mean in group 2; 2 members of type B had big increase of

mean (2) in group 2. Loc D to S were set up similarly with various combination of

number of differential mean within type A and/or type B. Variance and covariance for

each locus or sub-locus was drawn from Wishart distribution with toeplitz matrix and
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Table 5.5: Locus size and group means of twenty loci in a simulation study.

GeneSet Type A Type B

Size Sub Size Group 1 Group 2 Size Sub Size Group 1 Group 2

Loc A 5 5 5 5 5 5 0 0
Loc B 5 2 5 6 5 5 0 0

3 5 5
Loc C 5 5 5 5.5 5 2 0 2

3 0 0
Loc D 5 5 5 5 5 5 0 1
Loc E 5 3 5 6 5 5 0 0

2 5 5
Loc F 5 5 5 5 5 5 0 0
Loc G 10 10 5 5 20 20 0 0
Loc H 10 10 5 4 20 20 0 1
Loc I 10 2 5 7 20 5 0 -2

8 5 5 15 0 0
Loc J 10 10 5 5 20 5 0 2

15 0 0
Loc K 10 3 5 7 20 20 0 0.5

7 5 5
Loc L 10 10 5 5 20 5 0 1

15 0 0
Loc M 10 3 5 7 20 20 0 0

7 5 5
Loc N 20 20 5 5 80 80 0 0
Loc O 20 20 5 6 80 30 0 1

50 0 0
Loc P 20 5 5 7 80 40 0 1

15 5 5 40
Loc Q 20 20 5 5 80 10 0 2

70 0 0
Loc R 20 20 5 5 80 50 0 0.5

30 0 0
Loc S 20 20 5 6 80 80 0 0
Loc T 20 20 5 5 80 80 0 0
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number of members plus 10 as parameter. The Variance and covariance with Toeplitz

structure instead of Identity matrix was used to introduce correlation structure among

features within a locus/sub-locus and a form of genomic data. The variance and

covariance matrixes were scaled with diagonal elements around 1.

For each locus and sub-locus, random samples were drawn from multivariate

normal distribution with mean in table 5.5 and variance-covariance generated as above.

One thousand random data sets were drawn. The LOCIT procedure with orthogonal

projection (LOCITO), SAFE (Barry et al., 2005), MRPP test (Nettleton et al., 2008) and

GSA (Efron and Tibshirani, 2007) were applied to each of the 1000 data sets. The power

and type 1 error of the four methods are summarized in table 5.4.

In the five loci without differential expression and methylation, LOCITO method

maintained the nominal alpha level of 5% (2.2% to 5%) for all the three selected

δ : 0.8, 0.9 and 1; the rest three methods also maintained the nominal alpha level of 5%

well (SAFE: 0% to 0.3%; MRPP: 3.7% to 5.3%; GSA: 0%). SAFE and GSA are too

conservative in alpha level control. In the 15 loci with differential expression and/or

methylation, both LOCITO and MRPP had high power detect difference between the two

treatment groups. SAFE had negligible power to detect difference except for Loc I

(91.6%) and Q (36.9%). GSA lacked power to detect difference except for Loc H (78%),

Loc I (100%) and Q (97.6%). In the simulation setting, 15 out 20 loci had differential

expression and/or methylation. It demonstrated that the SAFE and GSA procedure loses

power if most of loci are differentially expressed or methylated due to the nature of the

two tests: not selfcontained. MRPP had power to detect locus with any difference,

especially with large difference in part of the loci. This result is consistent with the fact

that MRPP test is designed to detect any differential expression in multivariate spaces.

Unfortunately, the MRPP test is hard to extend to complicated models such as adjusting

for known factors. LOCITO, GSA and SAFE methods can be applied to complicated
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statistical modeling with various phenotypes. From the simulation studies, LOCITO

method performed better in most of the simulated locus settings.

5.5 Summary and Discussion

In this chapter we have shown that the LOCIT procedure for locus-based association

studies is a very flexible method that can be adapted to many types of endpoints. In the

applications to real datasets, we illustrated the implementation of the LOCIT test for

binary endpoint (logistic regression) and time to event endpoint (Cox proportional hazards

model). The application of the LOCIT to continuous normal endpoint is trivially amounts

to a linear regression. In application of the LOCIT to time to event endpoint with

competing events, the procedures Fine and Gray (1999)[56] for competing risk regression

can be applied to model event of interest with competing events. In general, LOCIT test

can be applied to any parametric and non-parametric models with asymptotically normal

test statistics. Thus the LOCIT is reasonably versatile and adaptable to most types of

endpoints of practical interest.

Moreover, LOCIT is self-contained. LOCIT test for one locus does not influence the

test on another locus. Geoman and Buhlmann 2007 pointed out that self-contained null

hypothesis testing in gene set analysis gives advantage of valid p-values and easy

interpretability. This is also true for locus-based test. The LOCIT test is model based and

does not require permutation to determine p-values, although it does require resampling

technique to estimate one parameter. The LOCIT test is still computationally efficient and

can be easily applied to genomic level association testing.

LOCIT test statistic is currently defined as a quadratic form with the corresponding

scaled eigenvalues as diagonal elements. This choice of weight assumes that the more

variation among features in each feature type in a locus carries the more information of

association with endpoint of interest.It also assumes equal contribution of feature types to

the overall association of the locus with the endpoint of interest. In most cases, these are
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Table 5.6: Summary of simulation results on twenty loci with sample size 100 in both
groups.

Loci Differential LOCITO SAFE MRPP GSA

δ = 0.8 δ = 0.95 δ = 1

Loc A 0 4.9 4.6 4.3 0 5 0
Loc F 0 3.3 2.8 2.3 0 3.7 0
Loc G 0 3.8 3.5 2.2 0.3 4.4 0
Loc N 0 5 4.8 2.7 0 4.1 0
Loc T 0 5 4.3 2.6 0 5.3 0
Loc B 1 100 100 100 0 100 0
Loc C 1 100 100 100 3.9 100 0.1
Loc D 1 100 100 100 0 100 21.3
Loc E 1 100 100 100 0 100 0
Loc H 1 100 100 100 0 100 78
Loc I 1 100 100 100 91.6 100 100
Loc J 1 100 100 100 2.3 100 13.4
Loc K 1 100 100 100 0.5 100 0.8
Loc L 1 100 100 100 0 100 0
Loc M 1 99.3 99.3 99.3 0 100 0
Loc O 1 100 100 100 3.8 100 0
Loc P 1 100 100 100 1.3 100 0
Loc Q 1 100 100 100 36.9 100 97.6
Loc R 1 76.3 75.3 61.9 0 94.2 0
Loc S 1 100 100 100 0 100 0

Notes: Differential: 0: no difference, 1: difference between the two groups; For loci
without difference, the false positive percentages (type 1 error) are shown; For loci with
difference between the two groups, the true positive percentages (power) are shown.
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reasonable assumptions. However, these assumptions need to be further investigated in

some circumstances.

In current implementation of LOCIT, we used orthogonal projection in each feature

type to reduce dimension. For genomic study with two types of high throughput data in

which one type regulates the other, we also could perform feature selection for large loci.

One potential strategy is to apply sparse cannocial correlation by Karkhomenko et al.

(2009), in which a subset of features are selected to maximize first-order approximation of

correlation matrix. This will be also useful to extend LOCIT to big set level association

testing in genetic studies.
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Chapter 6

SUMMARY AND FUTURE RESEARCH

New revolutionary technologies have provided scientists with tools to study

thousands of genomic features simultaneously. These studies have shed light on

mechanisms underlying the biology of complex diseases through accumulation of

knowledge of gene-gene relationships and identification of gene sets and graphical

pathways. This knowledge has provided vital information for testing global hypotheses

about gene sets and consequently interpreting results from high dimension genetic studies.

In the preceding chapters, we proposed new procedures for utilizing pathway information

in high throughput genetic data.

6.1 Pathways and applications in Bayesian framework

Using the information from graphical pathways and gene networks that capture the

gene relationships in cells, we have described a procedure for incorporating prior

knowledge of gene relationships using directed graphs into genomic testing in a Bayesian

framework. This extends the work of Pan (2006) and Wei and Pan (2008) that used

random Markov field in a mixture model by capturing the actual geometric direction of

gene relationships. The utility of our method is demonstrated by an application to a real

data set with MAPK pathway derived from KEGG in adult AML.

Many public and commercial databases have been developed to structure and store

biological knowledge at various genetic levels and in various organisms. However,

pathways defined by these databases are from multiple tissues and various resources.

Some of the relationships inferred were from high throughput experiments such as gene

profiling, proteomics, Chip-Chip experiment. However, some of these relationships in

pathways may not be applicable to specific experiment units from a different organism.

Moreover, a gene is sometimes represented by multiple names in various databases.

Matching gene names in an experimental platform to gene names in a pathway is a

non-trivial and uncertain task, especially because current pathway databases are not
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statistically or computationally friendly. There is an urgent and practical need for

pathways or gene networks to be expressed in numeric form, such as an adjacency matrix.

This will be more accessible to statistical and computational tools.

In the interest of biological interpretation, pathways or gene networks should be

tailored unambiguously to the specific organism/tissue type of interest. This will allow

researchers to use data from similar organism and tissue/cell type for correlation analysis

and to correctly (biologically) trim pathways derived from pathway databases. Combining

pathway information of relationships from similar biological entities will yield more

biologically correct prior information of genes. Efforts to incorporate such pathways, with

directed graphs, into the construction of posterior information in Bayesian analysis is one

of our future research plans.

6.2 POST in genetic studies

In the construction of POST (Projection onto Orthogonal Space Test), we designed a

test of association of gene sets with diverse types of endpoints of interest. This procedure

has several desirable features: it is flexible, self-contained and amenable to subject

permutation for parameter estimation. POST assumes that more variation among probes

in a set carries more information of association with an endpoint of interest. This is a

critical assumption for the validity of POST. In most applications, this assumption should

hold. POST captures the correlation structure among genomic features within a set, but

this is different from jointly modeling the genomic features in a statistical multivariate

analysis. As shown in a simulation study, it is less powerful than multivariate analysis

such as MRPP test (Nettleton et al. 2008).

POST procedure tests association of a set with endpoint of interest. However it is

not able to pinpoint the most important genomic features or subset of features driving the

association. Therefore, a subsequent analysis is needed to identify the features driving the

association.

POST was developed for gene profiling data. One of our future research plans will
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be to extend POST in application to other types of data such as methylation data,

microRNA, or even SNP after proper transformation. In methylation data, M values, the

logit transformation of beta values are assumed normally distributed. Probes in CpG

island/shore in promoter region tends to be hypo/hyper methylated coordinately. We plan

future research to use POST in this context based on the fact that it is biologically and

statistically feasible to perform gene set association test of methylation data with

endpoints of interest.

In addition, we will extend POST to multiple endpoints, specifically, to clinical

trials where multiple presenting features and outcome variables are collected. The

relationship of these variables are known under specific treatment model. Pounds et al.

(2009)[34] have proposed PROMISE procedure for association of gene expression with

multiple endpoints and then extended it to SNP data (2011)[57]. POST can be extended to

test for gene set association with multiple endpoints of interest under the PROMISE

framework. We plan to develop a POST-PROMISE procedure for gene set level testing

with multiple endpoints.

6.3 LOCIT in genetic studies

Along the same line of thinking, we will extend our work to extend the LOCIT and

LOCITO procedures. In genetic studies with multiple forms of high throughput data, it is

traditional to test association within high throughput data and look for overlap at certain

FDR control. LOCIT was proposed to perform integrated association test and to alleviate

the difficulties encountered due to overlap.

Since LOCIT provides one P-value for multiple data, it is especially valuable for

prioritizing gene/locus for follow-up study. The method was originally applied to small

locus such as gene with equal weights. As noted in the Chapter 5, simulation studies and

real applications indicated that the procedure incurs too much penalty on locus with

moderate to large number of noise features. As an extension, LOCITO was then

developed to overcome the difficulty by performing orthogonal projection within each
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form data. LOCITO reduces dimensionality of locus and puts equal overall weight across

data forms. We plan to apply LOCITO to small loci and big loci sets. We will exam two

forms of genetic data with one form regulating the other. We will also investigate possible

extensions for performing feature selection by sparse canonical correlation similar to

Karkhomenko et al. (2009)[30].
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[7] Khatri, P & Drăghici, S. (2005) Ontological analysis of gene expression data:
current tools, limitations, and open problems. Bioinformatics 21, 3587–3595.
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