University of Memphis

University of Memphis Digital Commons

Electronic Theses and Dissertations

7-16-2014

Set Based Association Testing in High Dimensional Genomic
Studies

Xueyuan Cao

Follow this and additional works at: https://digitalcommons.memphis.edu/etd

Recommended Citation

Cao, Xueyuan, "Set Based Association Testing in High Dimensional Genomic Studies" (2014). Electronic
Theses and Dissertations. 995.

https://digitalcommons.memphis.edu/etd/995

This Dissertation is brought to you for free and open access by University of Memphis Digital Commons. It has
been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of University of
Memphis Digital Commons. For more information, please contact khggerty@memphis.edu.


https://digitalcommons.memphis.edu/
https://digitalcommons.memphis.edu/etd
https://digitalcommons.memphis.edu/etd?utm_source=digitalcommons.memphis.edu%2Fetd%2F995&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.memphis.edu/etd/995?utm_source=digitalcommons.memphis.edu%2Fetd%2F995&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:khggerty@memphis.edu

SET BASED ASSOCIATION TESTING IN HIGH DIMENSIONAL

GENOMIC STUDIES

by

Xueyuan Cao

A Dissertation
Submitted in Partial Fulfillment of the
Requirements for the Degree of

Doctor of Philosophy

Major: Mathematical Sciences

The University of Memphis

August 2014



Copyright 2014 Xueyuan Cao

Partial rights reserved

il



ACKNOWLEDGMENTS

I would like to sincerely thank my advisor and mentor, Dr. E. Olusegun George, for
his wonderful guidance, supervision, support, and encouragement, during my graduate
studies at the University of Memphis.

I am also very grateful for having an outstanding doctoral committee and wish to
thank Dr. Dale B. Armstrong, Dr. Vinhthuy Phan, Dr. Stanley Pounds and Dr. Cheng
Cheng for their support, suggestions and encouragements.

I am very grateful to having Dr. Stanley Pounds as my supervisor and mentor in the
Department of Biostatistics, St. Jude Children’s Research Hospital. Under Dr. Pounds’
supervision, I am exposed to various clinical and genetic studies, which motivated me to
pursue PhD study at the University of Memphis. Dr. Pounds always fully supported my
research and PhD study. St. Jude Children’s Research Hospital is a great place to work
with a great reason ’Finding Cures and Saving Children’. The Department of Biostatistics
is especially a warm family with great colleagues from whom I have enjoyed and learned
so much. I also want to thank Dr. Rubnitz, Dr. Lamba and Dr. Downing for allowing me
to use their data.

I am especially grateful to my parents, Yingxian Cao and Jingai Liu, for raising and
teaching me, and sisters for their hearty support. This journey cannot be successful and
enjoyable without my loved ones: my wife, Mingjuan Wang, and my sons, Kevin and

Kerry. My study and life cannot be in the proper order and balance without them.

il



ABSTRACT

Cao, Xueyuan, Ph.D. The University of Memphis, August, 2014. Set Based
Association Testing in High Dimensional Genomic Studies. Major Professor: E. Olusegun
George.

The last decade has ushered in an era of high dimensional, high volume data. In
particular with the biotechnological revolution of the era, high-dimensional genomic
studies of various designs have provided investigators with the tools to study thousands or
even millions of genomic features simultaneously. These studies have shed new light on
the underlying mechanisms of complex diseases. The accumulated knowledge of these
complex relationship between genes has led scientists to formalize pathways and
graphical networks that visually and succinctly give descriptions of the geometry of these
relationships. With such knowledge, it has become possible to develop procedures for
statistical inference, not just at the individual genes level, but at the more meaningful
gene-set level. The focus of this thesis is the development of new statistical procedures for
such gene-set analysis.

After presenting an overview at the introduction, we give a comprehensive review of
the literature relevant developments in the thesis in Chapter 2. In Chapter 3, we develop a
Bayesian procedure that incorporates information contained in a gene graphical network,
viewed as a directed graph, into the construction of prior distributions and we use the
derived posterior distributions to construct statistical tests at the gene-set level. Our
procedure extends the work of Pan (2006) and Wei and Pan (2008) which did not use the
direction as information in the graphical network, but rather used undirected graphs and
assumed a mixture model for the distribution to generate the posterior distribution of the
mixing parameters via the use of a Markov random field. We demonstrate the gain in
statistical power of our procedure over Pan and Wei’s in an application to detect
differentially expressed genes, and gene-sets by analyzing a data set that compares
favorable risk and poor risk defined by cytogenetics in adults with acute myeloid leukemia

(AML).
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To enhance comprehension of the vast and complex information in
high-dimensional data from genomic studies, it is sometimes useful and desirable to have
a procedure that relates such data to specific endpoints. In this regards, association tests
are highly desirable. In Chapter 4, we propose a procedure which we label ‘Projection
onto Orthogonal Space Testing (POST)’ as a flexible method for testing association of
gene sets and pathways with specific phenotypic endpoints while adjusting for other
factors and variables as needed. In a simulation study, we demonstrate that POST has
better operating characteristics than other methods recently developed to address the same
objective. Thus we feel that POST does not only help to better understand treatment
responses, but also prioritizes pathways for further study. We expect that POST will be
especially valuable in clinical studies where cohorts with moderate to large sample sizes
have rich high-dimensional data.

Another new procedure for association testing which we label ’Locus Based
Integrated Testing(LOCIT)’ and an extension of the procedure -LOCITO- are introduced
in Chapter 5. LOCIT is designed to test association of multiple forms of genomic data
within a locus with an endpoint of interest in genomic studies. Given different forms of
genomic data such as SNP genotypes, gene expression, and methylation levels, LOCIT
performs one test per locus, taking several features at the locus into consideration. To
illustrate the efficacy of LOCIT, we apply the procedure to a set consisting of SNP
genotypes and gene profiling in an AML cohort to identify loci /genes that are associated
with clinical outcomes.

In chapter 6, we summarize our development of gene-set level association tests and

outline future directions of our research in this area.
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Chapter 1
Introduction

The pioneering “working draft” DNA sequencing of the human genome was
completed in 2000 through an international effort of the Human Genome Project (HGP,
http://www.genome.gov/). Since then, partial or whole genomic sequences of many
species of animals, such as nematode worm (Sequencing Consortium and others,
1998)[1], fruit fly (Adams et al., 2000)[2], mouse (Chinwalla et al., 2002)[3], and plants
such as Arabidopsis (Arabidopsis Genome Initiative and others, 2000)[4], rice (Goff et al.,
2002)[5] and maize have been published. Together with the efforts on sequencing of
Expression Sequence Tag (EST) these explosion of sequencing the genome of living
organisms has unlocked the door to the study of genetics and biology at the genome wide
level, and launched scientific research to a level previously unattainable.

One of the goals in the post genomic era is to decipher genetic information encoded
in the genomic sequences and use this information to formulate and test hypotheses. At
the same time, new technologies and methods have evolved to acquire and analyze data
that generate new biological and biomedical hypotheses. One such new technology is
microarray gene profiling. In a gene profiling experiment, the expression levels of
thousands of genes are measured simultaneously using micro-chip such as GeneChip by
Affymetrix (http://www.affymetrix.com/, available in dozens of models and commercial
species) and BeadArray by Illumina (http://www.illumina.com/, human and mouse).
Recently, a second-generation sequencing based technology, RNAseq, has emerged for
measuring gene expression. The RNAseq is an advancement that is considered to be more
accurate than the older methods, not only for measuring gene expression levels, but also
for detecting alternative splicing events (http://www.illumina.com/). Besides gene
expression profiling, some of these micro-chip and sequencing technologies have been

used to study micro RNA (miRNA), for the purpose of identifying activities such as single



nucleotide polymorphisms (SNPs), and epigenetic phenomenon such as DNA
methylation, in genetic samples.

In a typical GeneChip microarray profiling experiment, mRNA or total RNA
strands, isolated from experimental units (cells, tissue etc), are reversely transcribed to
single-strands of cDNA (complementary DNA) which are then synthesized to
double-stranded cDNA. Biotin-labeled cRNA strands are then transcribed from the
double-stranded cDNA, fragmented, and hybridized to a GeneChip microarray. After
undergoing washing and staining, the hybridized mircoarray is then scanned by a laser and
the scanned signals are processed by MASS5.0 (Statistical Algorithms Description
Document (2002) Affymetrix Inc.) or other robust multi-array average (RMA) methods
(Irizarry et al., 2003)[6] to obtain expression values. Statistical analysis of these
expression values across experimental units are performed in accordance to the design of
the experiment. Accompanying the development of these new technologies are ongoing
research to develop new software to process, generate data and perform statistical
inference on the high dimensional data set generated by these processes.

One of the first applications of these new technologies was to study differentially
expressed genes (DEGs) in probe-set (gene) level under different treatments (for example
between normal and disease samples). At its most rudimentary, the methods to test the
null hypothesis of no group mean difference include the two-sample ¢-test. More
sophisticated test procedures have emerged in recent years to deal with experiments
involving multiple treatments, involving thousands of genes. The statistical test at the
gene level is called individual gene analysis (IGA). When considering thousands of tests
performed simultaneously, adjustments must be made to control error rate. After the
necessary adjustment for multiple testing, a list of genes/probes are declared to be
significantly differentially expressed at certain level of false discovery rate (FDR) and
provided to investigators. Khatri and Draghici (2005)[7] provide an extensive review of

IGA approaches.



Given a long list of differentially expressed genes at a specified FDR, investigators
rely heavily on bioinformatic databases or tools to annotate the gene list in order to
prioritize the genes and formulate working hypothesis. For the purpose of prioritizing
genes and formulating hypotheses, gene set based analysis is used for formal testing and
interpreting. Geoman and Buhlmann 2007[8], Nam and Kim 2008[9] reviewed some of
the methods and recommended guidelines to be used for analyzing gene expression data at
gene-set level. This topic will be extensively studied in the next chapter.

High throughput technologies have been evolving to study different biological
mechanisms of model systems and diseases. Fundamental to biological systems and the
inception of diseases is the micro RNA (miRNA), a small non-coding RNA molecule
which functions in transcriptional and post-transcriptional levels to regulate gene
expressions. The human genome encodes over 1000 miRNA which have been estimated
to target about 60% of genes (Bentwich, et al., 2005)[10]. They are abundant in many cell
types and are involved in many biological processes and diseases. The levels of miRNA
can be measured by micro-chips or by direct sequencing. Epigenetics is a phenomenon
that attributes gene expression or occurrence of cellular phenotype to activities of other
mechanisms other than changes in the underlying DNA sequence. Such activities includes
histone modification, DNA methylation and RNA editing. Histone modifications have
been studied using ChIP-Chip method (chromatin imunoprecipitation with microarray
technology, Lieb et al., 2001)[11] and recently Chip-seq (a next-generation sequencing
based technology, Johnson et al., 2007)[12]. DNA methylation levels are measured by
micro-chip such as [llumina Infinium Methylation array, or by pyrosequencing.

In clinical trials, patient samples are extremely valuable for elucidating the
mechanisms of diseases and for evaluation of treatment outcomes. In clinical trials,
multiple types of genetic data are collected from the patient samples. In addition to
multiple presenting features, these include various treatment outcome related variables

and genetic data such as gene expression, miRNA, SNP, DNA methylation, histone



modification. In addition to relating each type of genetic data with sample phenotypes
such as presenting features, short- or long-term treatment responses or outcomes,
integrating all these rich genetic data in a unified test is challenging. However,
understanding the information encoded in theses data is of great interests to investigators.

In this dissertation, methods to incorporate prior knowledge of pathways into
genetic studies are proposed. A flexible set-based procedure is proposed to evaluate the
association of gene sets with diverse phenotypes. An integrated analysis approach based
on predefined sets is also proposed to take advantage of the rich genomic data from
multiple sources in a clinical trial setting. These methods may be adapted and extended to
address other more or less complicated applications. We discuss such potential

applications in the summary and future research section.



Chapter 2
GENE SET ANALYSIS

Since the introduction of high throughput expression profiling and genotyping, the
primary interest has been to identify differential presentation of the genomic features and
to elucidate the underlying biology. Many methods have been proposed to facilitate the
interpretation this profiling in the context of clustering genes into gene sets and
identifying gene pathways. In this chapter, we give a comprehensive review of the
bioinformatics and statistical literatures in this context.

2.1 Biological Pathways

It has long been well known that genes and proteins do not function in isolation.
Genes are organized on chromosomes, expressed, and function in a complex dependent
manner under cellular context (Figures 4.2 and 4.3). The accumulated functional
dependence can be described by graphical networks and biological pathways. Most of
these pathways are metabolic, regulatory or signal transduction pathways.

For diverse organisms and at various genetic levels, many public and commercial
databases have been developed to structure, store and characterize the dependent
relationships between genes and proteins in these pathways and sets. Among the most
widely accessed public databses is the Gene Ontology (GO). GO describes relationship
between genes in term of unified ontology using directed acyclic graph (DAG) with a
hierarchical structure (http://www.geneontology.org/; Ashburner et al., 2000[13]).
Another repository of genetic databases is NetPath. NetPath holds 20 manually curated
human signaling pathways, including 10 immune signaling pathways and 10 cancer
signaling pathways (Kandasamy et al., 2010)[14]. Another is BioCarta which represents
molecular or cellular pathways by interactive graphic models (http://www.biocarta.com/).
Others include Reactome, an online database developed by Croft ef al. 2011[15], authored
by expert biologists in collaboration with Reactome editorial staffs, and the National

Center for Biotechnology Information (NCBI) and Pathway Interaction Database (PID)



which contains 137 human pathways curated by NCI-Nature and 322 pathways imported
from BioCarta and Reactome (http://pid.nci.nih.gov/). These are a few examples and there
are many more publicly available ones.

Besides the publicly available pathway databases, there are a few commercialized
databases. For example, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
database represents current knowledge of molecular interactions and reaction networks
related to metabolism (metabolic pathways), signal transduction, cellular processes and
human diseases using graphical representation
(http://www.genome.jp/kegg/pathway.html; Kanehisa and Goto 2000[16]; Kanehisa et al.,
2006[17]). Ingenuity is another commercial web based pathway analysis tool
(http://www.ingenuity.com/). Both KEGG and Ingenuity are widely used in the literature.

According to Pathguide, there are currently 159 pathway-related databases with
more than 150K pathway entities. To alleviate the burden of using pathways across
different databases, Yu et al. (2012) proposed to integrate various pathway databases for
building a unified database. hiPathDB[18] was developed incorporating KEGG,
Reactome, PID by NCI-Nature, and BioCarta (http://hipathdb.kobic.re.kr/). Since these
databases are dynamic, it is necessary to adopt a flexible definition of gene sets in
accordance to developments in statistical methodology.

2.2 Set level analysis in gene profiling

One of these developments in statistical procedures is the construction of a single
test for the differential expression of a gene set, rather than multiplicity of tests of each
gene in the gene set. Goeman and Buhlmann 2007[8], Nam and Kim 2008[9] divided
methods for gene set analysis according to various definitions of null hypothesis and
mechanisms for permutation in the calculation of p-values. Goeman and Buhlmann noted
that these procedures can be classified into three groups. One group summarizes the
over-representation of a gene set in a differential gene list by a 2x2 contingency table.

However, this representation has a drawback, namely that it requires a strict p-value



cut-off for declaring differential expression. Another uses a statistic based on the whole
vector of p-values. A third group uses original expression data instead of p-value. Pounds
(2013) noted that these methods do not always lead to meaningful inference because they
have no information about the study design. Allison et al. 2006[19] also questioned the
validity of some these methods.

The definition of global null hypothesis for a gene set and the calculation of
p-values by permutation provide useful guide for developing statistically sound
procedures for gene set analysis. In terms of the null hypothesis, a gene set test can be
described as competitive or self-contained. A competitive test compares a gene set to a
standard defined by the complement of the gene set. A drawback of competitive test is that
it penalizes the gene set in zero-sum-game manner if the complement of that gene set has
highly differential expression (Allison et al., 2006). A self-contained test compares the
gene set to a fixed standard which does not depend on the measurement of genes outside
of the gene set. Thus a self-contained test evaluates the whole set to address the global
null of no difference in an experiment, while a competitive test does not. p-values for
these tests are usually computed by permutation of subject labeling or genes.

There are two major mechanisms for calculating permutation-based p-value: subject
sampling (random assignment of group labels) and gene sampling. In subject sampling it
is assumed that the measurements of different subjects are independent and identically
distributed, while the measurements within a subject could be correlated. In contrast, gene
sampling assumes that genes are random samples that are independently and identically
distributed, a reversal of the roles of samples and genes relative to classical statistical
setup. Subject sampling produces valid p-values and interpretation of the p-values is
straightforward (Pounds 2013).

In conducting gene set analysis, Goeman and Buhlmann (2007) recommended
testing a self-contained null hypothesis and basing the calculation of p-values on subject

sampling. Based on these criteria, Nam and Kim (2008) provided a detailed list of



methods for gene set analysis with guideline for self-contained versus competitive tests
and the use of gene versus sample randomization for computing P-values. A few
commonly used methods are selected for further study.

2.3 Some gene set analysis methods

In this section, we review several methods which have had high impact on the
analysis of gene sets. In this thesis, we extend these methods and develop new procedures
to address some of the existing shortcomings in these methods.

2.3.1 Gene set enrichment analysis (GSEA)

Gene set enrichment analysis (GSEA) was first proposed by Mootha et al.
(2003)[20] and Subramanian et al. (2005)[21] for interpreting gene expression data.
GSEA considers data from randomized experiments or observational studies with two
groups. Based on the existence of correlation between gene expression and phenotype
(evidence of association of gene expression with groups), a ranked gene list is generated.
GSEA attempts to determine whether the members of a set S defined a priori, are
randomly distributed across the ranked gene list or lie primarily on the top or bottom of
the gene list. From the ranked gene list, an enrichment score (ES) is calculated by walking
down the gene list, increasing a running-sum statistics when encountering a gene in the
gene set S and decreasing it when encountering a gene not in .S. The ES is the maximum
deviation from zero encountered in this random walk (similar to Kolmogorov-Smirnov
statistic). Subsequently, the null distribution of normalized ES (NES) is approximated by
permutations of the class labels, and p-value is calculated by using observed NES under
the null distribution. The implementation of this method provides an option of permuting
genes. This method is applied to 4 data sets and its advantages are demonstrated.

In this initial GSEA, the gene set test statistic (ES) is competitive, not
self-contained. It penalizes a gene set when genes out of the gene set are strong correlated
with the phenotype. Tian et al. (2005) [22] and Kim and Volsky (2005)[23] proposed an

extension to GSEA, in which a two-sample statistic, such as a ¢-statistic, is used instead of



enrichment score. The test statistic for a gene set is the aggregate of per gene test statistics
of its members and significance is determined by permutation. The test statistics is
self-contained.

Efron and Tibshirani (2007)[24] extended the GSEA by using an alternative
summary statistics for gene-sets and restandardization based on row randomization. They
showed that the maxmean statistic is more powerful than the original GSEA. An R
package GSA for implementing the procedure described by Efron and Tibshirani is
available on CRAN and it is more user friendly than the original GSEA.

Jiang and Gentleman (2007)[25] pursued an extension to original GSEA. In GSEA,
the definition of gene set statistics has three components: (1) per-gene statistics:
measurement of association between genes and a phenotype, (2) relationship of genes with
gene sets and (3) per-gene set summarization function. Jiang and Gentleman extended the
GSEA approach in all these three components. Besides using the two-sample ¢-statistics,
the per-gene statistic was extended to a linear model setting, adjusting for covariates as
needed. It was also extended to use posterior probability as per-gene statistics. In terms of
the per-gene set summarization function, the mean was extended to the median. To tackle
the problem of overlap between gene sets, three gene sets were constructed from two gene
sets with significant overlap. This extension helped to isolate and identify the gene set
associated with the phenotype. This extension to three components led to a number of
GSEA approaches which are self-contained and the use of permutation of subject labels
led to legitimate p-values. Jiang and Gentleman attempted to apply principal component
analysis (PCA) to gene sets to identify substructure of the sets. In a sense, the extension of
GSEA could be considered as gene set testing instead of enrichment analysis.

2.3.2 Significance analysis of functional categories (SAFE)

Barry et al. (2005)[26] proposed SAFE (significance analysis of functional

categories) procedure to test association of predefined gene sets with a phenotype. SAFE

has two statistics: local statistic (per-gene statistic measuring association of a gene with



the phenotype) and global statistic (per-gene set statistic measuring the difference between
genes within a gene set and those outside of the gene set). The local statistics is derived
from various models based on the experimental design. This flexibility of local statistics is
valuable and applicable to many experimental designs, similar to one of the extensions in
GSEA by Jiang and Gentleman (2007). The global statistic assesses how the distribution
of local statistics within a gene set differs from the local statistics outside of the gene set.
The significance of global statistics is determined by permuting subjects’ labeling with the
experimental design taken into account.

The global test statistic for SAFE treats genes within or outside of a gene set as
independent samples, which is generally not valid as genes are usually correlated within a
gene set. The null hypothesis is hard to explicitly define. The global test result of a gene
set is influenced or penalized by the genes outside of the gene set. It does not test the
global null of no association of gene expression in the experiment with the phenotype. It
does not stably test a gene set consisting of one or a few genes, either.

2.3.3 Hotellings 77 test

GSEA and its extensions, and SAFE are not multivariate analyses of predefined gene
sets, although these methods take the relationship of membership in the set into account.
Lu et al. (2005)[27] attempted to directly test association of gene sets with treatments. A
multiple forward search (MFS) algorithm was proposed to select genes in a gene set using
the maximum Hotellings 77 statistic between the two groups. A re-sampling technique
was used to obtain robust mean estimate of the Hotellings 7' statistics with lower and
upper 5% quantiles removed. The authors used the p-value from the Hotellings 77 test of
a gene set as p-value for all the selected genes in the gene set. However, this is not valid
and represents a misinterpretation of Hotellings 7" test. The p-value of Hotellings 7" test
is the probability of obtaining a statistic as extreme as the observed under global null that

all the mean expression levels of member genes in the gene set are equal between two

10



groups. This is dramatically different from p-value obtained from testing that each of the
mean expression levels of member genes in the test is different between two groups.

The MFS introduces selection bias and the re-sampling stabilization of Hotellings
T? statistics makes the test statistics intractable and hard to interpret statistically.
However, the method has been demonstrated to have the ability to predict group labeling.
This feature could be expected from the MFS algorithm. However, the prediction accuracy
should be demonstrated in an independent experiment. The test itself is for global null of
gene sets and should not be treated for individual genes selected by MFS.

Srivastava et al. (2007)[28] proposed the use of Hotellings 7™ statistic to measure
difference in mean vectors between two groups in compositional data. The significance is
determined by permuting group labeling. This permeation-based Hotellings 7 can be
applied to high dimensional genomic data with two treatments/groups. Although the
Hotellings 7% lacks power for high dimensional data, the statistic is an appropriate
measure of difference between two groups. As p-value is determined by permutation of
group labeling, the procedure might work well in this scenario.

2.3.4 MRPP test

Nettleton et al. (2008)[29] proposed a nonparametric multivariate analysis approach
to identify differentially expressed gene categories (sets) between two or more treatment
groups. MRPP (multi response permutation procedure) was proposed to test the null of
equal multivariate distribution of a gene set across treatment groups. The coherence of a
gene set in a treatment group is measured using all the Euclidean distances between pairs
of data vectors from the treatment group. The MRPP statistics is the average of the
coherence measurement across treatment groups, weighted by sample sizes of
corresponding treatment groups. The MRPP statistics can be scaled to have common
variance for each gene. The p-value is assessed by permuting sample group labels, taking
experimental design into account if needed.

MRPP test is self-contained and uses subject sampling. It produces valid p-values
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and is easily interpreted. It has power to detect gene sets that are different between/among
treatment groups in multivariate space, but not marginally. It is non-parametric and has
hence the advantage of fewer assumptions. However, it is difficult to extend to more
complex experimental design or to adjust for other covariates. It is not applicable in many
cohort studies, in which presenting features or prognostic factors need to be adjusted for.
2.3.5 Sparse canonical correlation analysis

Canonical correlation is widely used in psychology to test the association between
two sets of variables such as assessing agreement of items in instruments. The traditional
canonical correlation is hard to apply to high dimensional genetic data. Karkhomenko
et al. (2009)[30] proposed using sparse canonical correlation to test association between
two set of variables in genetic studies. To account for experimental design or other factors,
the residuals after a linear model with other factors as predictors are used as starting data.
Karkhomenko et al. proposed to use soft threshold of left and right eigenvectors to reduce
or select subset of variables in each set to maximize first-order approximation of
correlation matrix. Adaptive sparse canonical correlation was employed to select even
small set of variable with penalty similar to LASSO.

The method was demonstrated to select two manageable sets of genetic variables for
hypothesis development. The example provided was for a whole study with both
expression data and SNP genotype data. The methods are mainly for feature selection
instead of testing gene sets. The method can be extended to gene set or locus based data
for selecting subset of variables with high first-order correlation in a locus or gene set.
These selected coherent variables can then be used to test for association with phenotypes
such as outcomes and presenting features. So, the (adaptive) sparse canonical correlation
method is a potentially useful feature selection tool for an integrated analysis with two
types of genetic data in which one type regulates/influences the other. SNP and gene
profiling, methylation and gene profiling, or microRNA and gene profiling are potentially

suitable data types.
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The idea of maximization of correlation between two sets of variables can be
applied to maximization of correlation between one phenotype variable and a set of
genetic variables. The genetic features selected can be used to test for association with the
phenotype or other phenotypes if biologically warranted.

Witten et al. (2009)[31] proposed a penalized matrix decomposition (PMD) to
approximate a matrix. The approximation approach was then applied to sparse canonical
correlation setting resulting in penalized CCA (canonical correlation analysis) using
L1-constrain or fused LASSO constrain on the so-called canonical variates. The proposed
method was applied to a breast caner data to identify gene expressions that are associated
with genomic gain/loss.

2.3.6 SKAT

Sequence Kernel Association Test was first proposed to test association of SNPs in a
genomic locus or gene in case/control or with continuous variables (Wu et al. 2011[32],
Lee et al. 2012[33]). In a linear or logistic regression framework, the phenotype is
modeled with known covariates and SNPs in a set (gene or chromosomal region) as
predictors. If the SNPs coefficients follow an arbitrary distribution with mean 0 and a
variance of w;7, SKAT uses variance-component score statistic to test 7 = 0, which is
equivalent to requiring all coefficients of SNPs equal to be 0.

The variance-component score statistic of SKAT contains two parts: the deviation of
phenotype from that predicted under null and a kernel function to measure genetic
similarity among subjects. SKAT provides several options for assigning weights, based on
minor allele frequency, under different assumptions of SNPs effects. The functional form
of kernel function can be also extended to a more flexible function, allowing more
complex models.

The significance of variance-component score statistic of SKAT can be analytically

approximated by generalized chi-square distribution with available methods. The SKAT
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method was proposed for testing association SNPs with phenotypes. It can be generalized
for use with other types of data.
2.3.7 PROMISE

In genomic studies, each experimental unit or subject may have multiple phenotypes
measured. The phenotypes measured on the same subject are usually correlated. The
PROMISE procedure proposed by Pounds et al. (2009)[34] tests a predefined projection
of individual association statistics with each of the phenotypes.

The projection used is based on biological knowledge of the relationships among
the phenotype variables. The association with individual phenotype can be measured by
various models. The method handles a variety of endpoint of interests including
categorical, continuous, and time to event variable. Compared to other available methods
such as overlap approach, canonical correlation, principal component analysis, result from
PROMISE is more biologically motivated and has meaningful and easier interpretation.

A test of PROMISE was also performed on gene sets. The method was
demonstrated to have great power to detect association of predefined association pattern
with multiple related phenotypes and has been successfully applied to a few studies
(Lamba et al. 2011[35]).

2.4 Remarks

Various biological pathway databases have been developed to integrate and present
accumulated gene-gene interaction, regulation and biological processes. These pathways
can be used to formulate gene sets or biological processes of interest in an a priori
manner. Although, these databases cannot be viewed as complete and are on-going in
nature, successful applications are emerging.

It is generally agreed that a method for gene set analysis should have two features in
term of the hypotheses to be tested and the calculation of p-value: It should be

self-contained instead of competitive, and p-values calculation should be based on subject
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permutation instead of gene permutation, if permutations are needed. Some of the
available gene set analysis methods have these features, while others do not.

The above review of methods for gene set analysis shows that many of procedures
are not applicable to complex design and not malleable enough to allow for variables
adjustments. However some of these methods can be improved or modified to address
these shortcomings. This thesis addresses some of the needs for flexible general procedure

to handle various phenotypes in complex design specially in biomedical field.
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Chapter 3
APPLYING GENE NETWORK PRIOR KNOWLEDGE
IN GENOMIC TESTING
3.1 Introduction

In an organism, genes are organized on chromosomes, expressed, and function in a
complex interdependent manner. The accumulated functional dependence can be
summarized succinctly as gene networks. Several public and commercial databases have
been developed to structure and store the biological knowledge. Gene Ontology (GO)
describes the relationship of genes in term of unified ontoloy terms using directed acyclic
graph (DAG) with hierarchy structure. When the graph is cut at different levels, various
gene sets are formed. Kyoto Encyclopedia of Genes and Genomes (KEGG)[16] depicts
current knowledge of molecular interactions and reaction networks related to metabolism,
cellular processes and human diseases using graphical networks. NCBI Pathway
Integration Database (http://pid.nci.nih.gov) contains 137 human pathways curated by
NCI-Nature and 322 pathways imported from BioCarta and Reactome.

A gene network is a set of genes represented by a graph of which the nodes denote
genes and the edges represent relationships between genes. While undirected edges are
used to represent conditional dependence, directed edges often represent causal
relationships between genes. Directed acyclic graphs (DAGs) are graphs in which all the
edges are directed and the graph has no cycles. Figure 3.1 shows yeast MAP kinase
pathway derived from KEGG with DAG representation.

A number of methods have been proposed to incorporate the information of gene
networks into joint analysis of gene expression data. Based on the null hypotheses,
Goeman and Buhlmann (2007), Nam and Kim (2008) classified these methods into three
groups: self-contained, competitive and mixed. Most of these methods involve two
distinct steps: The differential expressions are tested at probe (gene) level separately, and

then the gene level testing results are extended to gene set level by assessing the
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Fig. 3.1: Yeast MAP kinase pathway derived from KEGG database.

The pointed arrows denote positive regulation or activation, while the dotted denote
negative regulation or repression. The physical interactions are shown by bi-directional
edges. Gene names are translated from the KEGG gene names to the ones used by
Affymetrix.

over-representation of differentially expressed genes in each gene set. Another family of
methods directly perform multivariate tests of differential expression for a group of genes
belonging to a gene set.

In order to incorporate the information contained in gene networks into prior
distributions for Bayesian inference, Pan (2006) [36], Wei and Pan (2008) [37] proposed
using a Markov random field of first-order dependence to model the dependence of
member genes in a pathway. They used a logistic model to represent the probability that a
gene is expressed or inhibited through latent Gaussian Markov random field variables of

the gene. Through the use of these techniques to generate prior distribution, they were
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able to demonstrate gain in gene ranking with the more interesting genes appearing at the
top of the gene list in a Yeast experiment. However, they used normal transformation of
p-values from tests of gene expression (Z-scores) as data, and their procedure lacked
dependences among genes in a pathway. Moreover, they did not take directions into
consideration.

In this thesis, we propose the use of a more informative prior that incorporates gene
network derived from pathway databases into gene level testing. By using the Markov
random field on directed graphs, the procedure improves on the method proposed by Wei
and Pan (2008). In contrast to Wei and Pan, we also use raw gene expression values,
rather the transformed p-values that are obtained from tests of differential expression.
Finally, we directly test differential expression along the directed graphs.

3.2 Model Specification

For a gene network/pathway described by a graph G = (V, E), where V
corresponds to the set of nodes with p elements and ¥ C V' x V is the set of edges, the
nodes of the graph represent the genes and the edges capture the relationship among them.
If (i, j) € E implies (j,7) ¢ E, then the edge is directed. A directed acyclic graph is a
graph with no bi-directed edges. In a directed acyclic graph, starting from a node v, there
is no way to follow a sequence of directed edges and loop back to the node v again. An
adjacency matrix can be used to represent which nodes have edges with other nodes. For
an undirected graph, the adjacency matrix is symmetric. A directed acyclic graph (DAG)
can be represented by a binary adjacency matrix A, where each entry a;; is either O or 1.
A zero entry, a;; = 0 indicates the absence of an edge between node 1 and node j; while, if
a;j = 1, there is a directed edge from node i to node j. The sum of i row and column of
adjacency matrix A denotes the number of children and parents of the node ¢,
respectively. From now on, we use adjacency matrix A to denote a gene network with a

directed graph and DAG to denote a directed acyclic graph.
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3.2.1 Model Z Scores

Assume that the data in a genomic study have been summarized to Z; for each
genomic feature 7,7 = 1, ..., p. Z; could be a statistic to measure difference of a genomic
feature between experiment conditions or groups of subjects with certain phenotypic
feature, or a probability integral transformation of the statistical significance level to reject
null hypothesis (of p-value), namely Z-score. The distribution of Z; is assumed to be a

mixture of a null component, a negative component and a positive component, that is

f(Z:) = moi fo(Zi) + mi f1(Z:) + 7o fo( Z5) (3.1)

Under normal framework, f;(Z;) are assumed to be a normal density function for

7 =20,1,2, then

f(Z:) = 10:®(Z50,08) + m1®(Zi; iy, 01) + 70 ®(Zs; o, 03) (3.2)

O(Z;; 1y, 032) is normal density with mean p; and variance 032, where j = 0,1, 2.

Assume that a directed acyclic gene network is given and represented by adjacency
matrix A. The row sum of A is the number of children for a gene and column sum of A is
the number of parents for the gene. The sum of row sum and column sum is the total
number of directed edges that a gene has in the gene network A. We assume that the
children of a gene carry less information relative to its parents in an adjacency matrix A
with 0 < w; < 1. Let m; be number of information weighted edges for i** gene, which is

number of its parents plus w; times of number of its children. Mathematically,

m; = w;Ali, |1+ VAl i] = (wAli,] + A'[,i])1 (3.3)
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A(p,i) 1 w
Given a gene network with adjacency matrix A, we assume that the prior
probability T} = (mg;, 715, T9;) of Z; coming from the j* component is related to three
latent Markov random field variables X j;, for j = 0, 1, 2, through following logistic

transformations for i** gene:

1
oi = 1 + eX1i=Xoi 4 eX2i—Xoi
1
;= 3.4
T 1+ eXoi=X1i 4 eX2i—X1 (3.4)
1
T2 = 1+ eXoi=X2i 4 eX1i—Xo
We further assume that X; = (Xj1,..., X;,)’ is distributed according to an intrinsic

Gaussian conditional auto regression model (ICAR). That is the distribution of each latent
variable X ;, conditional on X; _;y = { X,k #i},i=1,...,p;j = 0,1,2, depends

only on its first-order neighbors on the adjacency matrix A with m; defined as in equation

3.3.
1 . Car o 90

Where O'%j is a hyperparameter that controls the strength of dependence of latent variable
X on its neighbors.
Let Lg, L1, Ly be vectors of O’s or 1°s, which indicate whether Z; comes from null

fo(Z;), negative component f;(Z;) or positive component f5(7;), respectively. Given
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I1;,j = 0,1, 2, the i*" component of (Lo, Ly, L) has a multinomial distribution with
p; = (m;i,j = 0,1,2). Given L, each Z; has a normal distribution.

We use non-informative prior distributions for the parameters. The prior
distributions for the means of negative and positive components are assumed to be
truncated normal. For i gene, yo; = 0; p1; ~ N(0,02)I(a, 0), a normal distribution
between a and 0, where I(, ) is an indicator function; and p; ~ N(0,02)1(0,b). a and b
are chosen as a = min(Zy, ..., Z,) — 3std,b = max(Zy, ..., Z,) + 3std, where std is the
standard deviation of (Z1, ..., Z,). The hyperparameter o2 is set to 10° to be vague. The
variances of null, negative and positive components are assumed to have inverse gamma
distributions: (7]2-2- ~ IG(a, ) for j = 0, 1, 2, where the hyperparameters, «, (3, are chosen
to be 0.1; and a%j ~ IG(ac, Be) for j = 0,1, 2, where ac = Gc = 0.01. We further
assume w = wy, . .., w), for all genes. The overall structure of the model is as in figure 3.2.

The joint posterior

2 2 2 2 2 2
H(“l?“Qva’Oa0-170-27X07X1aX27L07L17L270c0a0—c170—c2 | ZaA X

2 2 2 2 2 2 2
f(Z7l’l’lul'l'270-070170-27X07X17X27L07L17L270c070017002 ’ A,'LU,O' ,Oé,ﬂ, amﬂcua’? b)
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In order to use Gibbs sampler to draw posterior samples for parameters of interest,
the fully conditional distributions for each set of parameters are derived from the joint
distribution of data and parameters given above. The fully conditional posterior for s, o2

are given as in the following equations:

Forj=1,2;c=a,d=0ifj=1,andc=0,d=0bif j =2

,uji|Z,~,02- 027Lji = 0 ~ N(O,szi)](c, d)

Ju

2 0'2(72
pjilZiy 0%, 0% Ly = 1 ~ N(-3Z> L)1 (c, d)

19 2 29 52 2
7 oit05; 7 05407
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Fig. 3.2: Graphic representation of the DG Markov random field model with Z score.

The nodes in boxes are constants. The nodes in ellipses are stochastic nodes with
distributions or deterministic nodes with logical function of other nodes. A solid arrow
indicates a stochastic dependence while a hollow arrow indicates a logical function.
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Forj =0,1,2

sz‘i‘Zia,U'jia Lj; =0~ IG(a, B)

2
0?Z|Zza Mg L]z =1~ ]G(Oé + g’ 2+ﬂ(Zf—,uji)2)

2 . . . 4P 2Bc;
JCJ'|XJ’ A, agj, fej ~ 1G | acj + 3, X! AL +wxAlLX,
24200 mi(Xi———— )?
) _ _27,121, (Xj'_XQ-A[,i]—i-w‘xA[i,]Xj)2
7 [t my;
in|X0;X1;X2;A;Uc-,Lz¢=1O<7sz' X 7= X e T 0
J TE;

where, 7;; are as defined in equations (3.4).
All the fully conditional distributions, except for X ;, are standard conjugate
distributions from which posterior samples could be easily drawn. The following is a

sampling scheme to draw a posterior sample for X ;. (1) Obtain X;; = x;; from the
XL AL +wx Ali)X; ﬁ

m; ’my

normal distribution N ( ); (2) Generate an independent uni form(0, 1)

random variable, v; (3) Accept z;; if v < 1+cel‘“ji , Where ¢ = e®" 4 ™ if 7 = (),
c=e" 4 e"ifj=1c=e" 4" if j = 2.
3.2.2 Two-Sample Model

In modeling the Z-scores, the raw expression data are not directly modeled and the
prior knowledge was shown to dominate the posterior result in a simulation study (see
next section). When the data of original expression values are available, the analysis could
be formulated to incorporate both prior knowledge of gene networks and the expression
data. A two-sample test with assumption of normality can be derived as follows: In an
experiment with two treatment groups or a factor with two levels, let n; be the number of
subjects in group k, k = 1,2 and let g1;; and go;; be the values of i*" genomic feature

lth

(i = 1,..., p) measured for h'" and I*" subjects respectively, where h = 1, ..., n; and

[ =1,...,n9. Let G represent all the values of expression data. Suppose that in 15
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treatment group, each expression value is normally distributed with mean fi; and variance
o2, (equation 3.6), and in 2"¢ treatment group, each expression value follows a mixture
distribution of three components: same expression level as group 1, lower expression and
higher expression level compared to group 1, as in equation 3.7. Similarly, given a gene
network represented by an adjacency matrix A, the relationship between II;, 7 = 0,1, 2,
the prior probability of group 2 coming from the j** component, with latent Gaussian

Markov random field variables is as described in equation 3.4.

f(guin) = f(guin, toi, o&) (3.6)

f(g2i1) = moifo(G2irs thoi, USZ-) + 715 f1 (g2, poi + fai, U%i) + o, fo(Gait, fhoi + i, o%i) (3.7)

As before, assume vague prior distributions for y’s: Specifically, for i gene,
poi = 0; puy; ~ N(0,0%)I(a,0), where I(,) is an indicator function and a = —maz(G), a
normal distribution between a and 0; and p19; ~ N(0,0%)I(0,b), where b = max(G). o2,
aéj forj =0,1,2, a, 8, ac, and (¢, are same as in the model of Z-scores. The overall
structure of the two-sample model is as in figure 3.3.

The joint likelihood function of data and parameters, given gene network described
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Fig. 3.3: Graphic representation of the DG Markov random field model for two-sample
problem.

The nodes and links are interpreted as in figure 3.2.
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in adjacency matrix A, parameters and hyper-parameters, is given by
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The fully conditional distributions of unknown parameters (x5 and o;;) are given in

following set of distributions:

/,L1i|02,L1i:0 ~ N(O, ) ( )

f11i182i, poi, 0%, 0%, Ly = 1 ~ N (J %2;512;11 v, n;ztfgf) 1(a,0)

10|18 13> 82i» friy 02, 00;, 00, Ly =1 ~ N (020“ 2’1‘015i:i:jjggi]§rilig(id H“), mUzafijiﬁl;ﬁiwiggi)
poilgss 81, 0%, Los = 1 ~ N ( )

10i|81i, 8ais i 0%, 00;, 05, Loy =1 ~ N (02021 %’;alj::igjggiﬁ’%i%id o), mUzagiiﬁéﬁiwgﬂgi)
,u2i|0-27L2i:0 ~ N<07 ) < )

[42i|82i, foi, 055, 02, Loy = 1 ~ N ( Enlz,;é‘f;lz i), n;;fgg) 1(0,0)
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The fully conditional distributions of L;;, X;;, and aéj for ;7 = 0, 1, 2 are same as those in
the model of Z-scores. Similarly, posterior samples could be easily drawn from these
standard fully conditional distributions and X j;; are drawn using same acception-rejection
algorithm as above.

The weight, w, was arbitrarily set to 0.5 in above two models with the assumption
that children of a gene carry less information on its expression relative to its parents. The
effect of w with various choices was further studied in the simulation studies.

3.2.3 Directed Graphs for prior distribution in the two-sample problem

In gene expression data analysis, it could be assumed that the expression of a gene

directly depends on the expression levels of their neighbors. Suppose that g, and g9;; are

the values of i"* genomic feature (i = 1, ..., p) measured for h'* and [*"

subjects
respectively, where h = 1,...,ny and [ = 1, ..., ny. Let G represent all the values of the
genomic features. Suppose that in 1% treatment group, each genomic feature is normally
distributed with mean fi; and variance o3, and in 2" treatment group, each genomic
feature follows normal distribution with p; + p14; and variance agi, where f14; 1s the mean

difference between group 1 and group 2. The distribution of each element of G is given in

following equation:

f(guin) = f1(guin, tois 05:); [ (goir) = f2(gair, poi + Hais 05;) (3.8)
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i=1,....p; j=0,d; h=1,...,n;; I=1,..., n,

Fig. 3.4: Graphic representation of the directed graphs for prior distribution in the
two-sample problem.

The nodes and links are interpreted as in figure 3.2.

Prior Distributions: Given a gene network with adjacency matrix A, the prior
distribution of g1, and p,; are given as following: The distribution of each si; 4,
conditional on pi(; ;) = {,Lb(j,k), k £ z} depends only on it first-order neighbors on an

adjacency matrix A with m; defined in equation 3.3.

1 . AN
iy i~y ~ N (g(wi * Ali, |y + piAL ), p- ) ;J=0,d (3.9

Non-informative prior distributions are used for other parameters as above. We further
assume that w; ~ uniform(0,1). The overall structure of the model is as in figure 3.4.

From the distribution of data and prior distributions of parameters, we can derive the
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joint distribution of data and parameters. Given gene network with adjacency matrix A

and hyperparameters of the priors, the fully joint distribution is given by

f(G7W7l'l’07l'l’d70-%>0570%’070%% ’ A7n17n2705757a07ﬁc)
1
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In order to use Gibbs sampler to draw posterior samples for interesting parameters,
the fully conditional distributions for parameters are given in following set of

distributions:

2 2 2
M0i|gz‘17 Gi2s Kos B, 014> O35 g, Ay wi ~
N( U%o”%i Z;Lil 911’]’"“%0”%‘ 27:21(g2il_#di)+o—%iggi(“OA[’i]+wiA[i’]“0)
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n20g+03; (g Ali]+w; Ali,]ing) ) ngoZ  +03, (g Al +wi Al nq)
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where 1M = colsum(A) + w * rowsum(A)

2
Ugi’glia Hoi, N1, O, B ~ IG (CY + %7 2+ﬁzyi1€]ij—l$0i)2)
2
Ogi’g%’ Hois Hdis T2, & 6 ~ IG <CY T %7 248 Z?:ll(gilﬁ_(NOi'i‘Mdi))Q)

3.3 Simulation Studies

To investigate the behavior of the three models proposed in above section,
simulation studies were performed. Suppose that there is a well defined pathway as
illustrated in figure 3.5. In the directed graph, there are 26 nodes and 27 edges with 2
disjoint subgraphs. Each node has minimum of 1 edge and at most 4 edges with average
around 2 edges. There is no singleton in this graph and the graph is very sparse.
3.3.1 Simulation on Z-scores

First, consider the model of Z-scores proposed in above section. The Z-scores were
randomly generated through following mechanism based on the DG in figure 3.5: (1) Start
with constant pt, each component of p; was draw from normal distribution with with mean
being weighted average of neighbors and weighted standard error in range (—maxz(Z),0),

and each component of p, was draw from normal distribution with mean being weighted
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Fig. 3.5: A directed graph represents directional relationship of 26 putative genes in two
disjoint subgraphs

average of neighbors and weighted standard error in range (0, max(Z)); the process was
repeated 20 times to introduce correlation among the genes according to the DG; (2) Start
with constant X, each component of X, X; and X5 was drawn from normal distribution
with mean being weighted average of X of neighbors and weighed standard error. The
process was repeated 50 times; (3) I were calculated according to equation 3.4; (4) A
multinomial sample 11; was drawn with parameter p, equal to i"* component of II in step
3; (5) For " gene, p1; was set to be puy; if ll;; = 1, 0if llg; = 1, or pg; if lly; = 1; (6) Z;
was drawn from a normal distribution with mean y; and a fixed variance.

Using hyperparameters as described above, and randomly generating initial values,
chain was run for 4000 burn-in. 4000 posterior samples were drawn from the posterior
distributions with thin equal to 3 (keep one out of three samples). Figure 3.6 shows the
trace plots of posterior samples for selected nodes. The first 3 nodes are from the first
disjoint subgraph in figure 3.5, last 3 nodes are from the second disjoint subgraph. The
posterior samples of p; and p, (first two rows in figure 3.6) varied in the truncated

parameter space. The trace plots of posterior I1j, II; and II; were similar among genes in
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Fig. 3.6: Trace plot of posterior samples of ¢, o, I11, IIy and II; in Model of Z-scores.

Posterior samples of first 3 nodes (the left 3 columns) and last 3 nodes (the 3 columns on
right) of the DG as shown in figure 3.5. Row 1 to 5 are trace plots for g, po, I11, 11, and
I1,, respectively

same disjoint subgraph, indicating that the fraction of Z; in a graph or subgraph came
from negative (I1;) or positive component (II3) together, but not in individual gene level.

We further summarized the posterior samples of p; for j = 1, 2. For it" gene, the
posterior samples were chosen to be from negative component if 71, was biggest, positive
component if 7o; was the biggest, or 0 component otherwise. The standard error of
posterior sample mean was computed according to Albert and Chib (1993)[38]. The
posterior samples were batched to equal size of 100 and batch means were computed. The
standard error of posterior mean was calculated as the standard deviation of the batch
means divided by the square root of number of batches. Table 3.1 showed the posterior
summarization of the 26 genes. For each gene, the simulated z-scores, the batched mean
of posterior, standard error of batched mean and range of posterior were shown.

For gene R to Z, which compose an isolated subgraph in figure 3.5, all came from 0
component with my, = 0.78, even gene Q to V had big Z-scores among the 26 genes. For
gene A to Q, which compose the first disjoint subgraph, all the 17 genes came from

positive component with mo, = 0.79. For gene L, the original Z-score is -3.15, a negative
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Table 3.1: Summary of posterior samples in the simulation study on Z-scores
Gene Zscore Mean StdErr  Min Max

-2.145 24257 1.6464 2e-04 5.6451
5.197 4.1722 1.3814 0 5.6462
-1.782 23145 1.6499 0.0012 5.6435
4.661 3.9317 1.3037 0.0028 5.6458
3.865 3.4896 1.2112 0.0039 5.6416
-1.571 23084 1.6241 0.0013 5.6452
5.314 42233 1.3786 0.0047 5.6465
5.647 4.132 1.4637 5e-04 5.6472
-1.811 2.2674 1.6375 9e-04 5.6446
-2.698 24027 1.6372 4e-04 5.6468
4271 3.6804 12916 6e-04 5.6466
-3.15 24382 1.6156 5e-04 5.645
441 3.7747 1.2919 0.0034 5.646
0.346 1.8728 1.5761 1e-04 5.6439
0.34 1.8952 1.6089 2e-04 5.6445
5.573 4.1398 1.477 5e-04 5.647
-0.025 19653 1.663 0.0023 5.6433

NKXE<LOCHIOIWOZErNAR——~IQMOmUAO®»

5.491 0 0 0 0
-0.056 0 0 0 0
-0.222 0 0 0 0
-0.073 0 0 0 0
5.151 0 0 0 0
-0.666 0 0 0 0
0.386 0 0 0 0
0.861 0 0 0 0
0.039 0 0 0 0

Zscore is the original simulated Z-scores. For each gene, summary statistics of posterior
samples are provided. For gene R to Z, the posterior Il is near 0.78, indicating the Z; for
these nine genes came from null component and summary statistics were all set to 0.
StdErr is the standard error of posterior mean
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component, the posterior mean is 2.44, a positive component. In general, the posterior
means of genes in a disjoint subgraph are regressed to the mean in the disjoint subgraph.
The prior knowledge of the DG describing the relationship among genes dominates the
posterior results as the original expression values are not modeled in the model.

3.3.2 Simulation on Two-sample model

To study the two sample model proposed as in above section, we simulated
expression values according to the following mechanism based on the DG in figure 3.5
with w set to be 0.5: (1) Start with constant g, each component of p, or pt, was drawn
from positively truncated normal distribution with mean being weighted average of
neighbors and weighed standard error, and similarly, p; was drawn from negatively
truncated normal distribution; the process was repeated 20 times to introduce correlation
among the genes according to figure 3.5; (2) For the first 17 genes corresponding to the
first disjoint subgraph, group 2 mean, fig9; 1S set to puo; + fig; fori =1,...,17
(differentially expressed); and for the rest 9 genes corresponding to the second disjoint
subgraph, group 2 mean 49, is set to pg; for ¢ = 18, ..., 26; and (3) For each gene, 10
random samples was drawn from a normal distribution with mean yio; for group 1 and /449,
for group 2 with fixed variances.

Under hyperparameters as in above section and randomly generating initial values,
the chain was run 4000 for burn-in. 4000 posterior samples were drawn from posterior
distributions with thin equal to 3 (keep one out of three samples). Figure 3.7 showed the
trace plots of posterior samples for 6 selected nodes: the first 3 nodes, from first disjoint
subgraph and last 3 nodes, from second disjoint subgraph. For the 6 nodes, the chain
converged well for g, (1% row) and o2 (7*" row), indicating that the overall mean of the
two groups could be stably estimated. For gene A, B and C, posterior distribution of p,
and o3 converged, while those of p, and o were diffused, suggesting that gene A to C of
group 2 came from a positive component relative to group 1. From the trace plots, the

convergence of posterior for each component in g, p5, o2 0% and o3 was consistent with
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Fig. 3.7: Trace plots of posterior samples of iy, ti1, po, g, [Ty, Iy, 02, 0% and o3 in the
simulation of two-sample model.

Posterior samples of first 3 nodes and last 3 nodes of the DG in figure 3.5 are shown. Row
1 to 3 are trace plots for posterior samples of pt, £, tto; row 4 to 6 are trace plots for
Iy, IT; and TI,; row 7 to 9 are for o2, o? and o3, respectively

corresponding component of the posterior distributions, such as the mean of posterior 11,
is the biggest among the three IIs for gene A to C. In contrast, gene X, Y, and Z were all
from null component (no difference between group 1 and 2) as posterior pt,, o7, pt, and
o2 were all diffused for these three genes. In fact, all the first 17 genes were from positive
component with posterior distribution of p, and o3 converged and rest 9 genes were from
0 component with i, 0%, u, and o3 in these 9 genes diffused (trace plots not shown).
This is consistent with the simulation.

The posterior samples of p; for j = 0, 1, 2 were further summarized through

following mechanism in concordance to trace plots. For i gene, if 7;;,j = 0,1, 2 is
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Table 3.2: Posterior estimates for the 26 genes in the simulation of the two-sample model.

Gene Mul Mu2 MuEstGrpl MuStdGrpl MuEstGrp2 MuStdGrp2 MuEstDiff MuStdDiff
A 70 87 7.030 0.019 8.932 0.019 1.902 0.027
B 79 85 8.018 0.012 8.658 0.014 0.64 0.021
C 7.1 77 7.026 0.014 7.742 0.012 0.715 0.021
D 74 79 7.394 0.009 7.867 0.013 0.473 0.015
E 69 85 6.839 0.013 8.620 0.022 1.782 0.026
F 7.0 9.2 6.980 0.016 9.246 0.016 2.266 0.024
G 6.8 8.7 6.922 0.020 8.636 0.014 1.713 0.026
H 63 85 6.325 0.021 8.449 0.013 2.124 0.029
I 65 82 6.486 0.010 8.281 0.017 1.796 0.02
J 72 7.6 7.301 0.026 7777 0.522 0.476 0.505
K 75 83 7.509 0.011 8.144 0.022 0.635 0.026
L 72 8.6 7.063 0.020 8.623 0.013 1.56 0.024
M 7.1 87 7.183 0.014 8.792 0.013 1.609 0.017
N 6.8 9.0 6.773 0.015 9.221 0.017 2.448 0.023
o 6.7 8.8 6.738 0.024 8.797 0.011 2.058 0.029
P 6.5 83 6.278 0.011 8.318 0.013 2.04 0.018
Q 63 838 6.119 0.014 8.840 0.014 2.721 0.024
R 63 63 6.212 0.007 6.212 0.007
S 62 6.2 6.279 0.011 6.279 0.011
T 63 63 6.351 0.009 6.351 0.009
U 6.0 6.0 6.046 0.008 6.046 0.008
\% 6.1 6.1 6.075 0.011 6.075 0.011
4 62 6.2 6.227 0.012 6.227 0.012
X 6.0 6.0 6.043 0.008 6.043 0.008
Y 58 58 5.761 0.010 5.761 0.010
Z 64 64 6.333 0.007 6.333 0.007

Mul and Mu2 are the original simulated group means. For each gene, the sample averages
and standard deviations of posterior samples of group mean are provided. MuEstDiff and
MuStdDiff are the posterior estimates of mean difference between group 2 and group 1. A
negative value indicates the group 2 has lower expression compared to group 1 and a
positive value indicates a positive component. If posterior of both negative and positive
are diffused, the mean difference is not summarized: from null component.

Table 3.3: The summary of difference between simulated (true) means with sample

averages or posterior sample averages in the simulation of the two-sample model.

Groups

Groupl Diff Mean
Group1 Diff Std
Group2 Diff Mean
Group2 Diff Std

Sample_Avg PAvg PS PAvg Pl

0.0744
0.0951
0.0752
0.0933

0.0667
0.0865
0.0778
0.0935

0.0673

0.0869

0.0844
0.104

PAvg P25 PAvg P75 PAvg l

0.0671

0.0865

0.0711
0.087

0.0688
0.0889
0.0846
0.1073

0.0697
0.0912
0.1011
0.1452

Note: The posterior sample average tends to have smaller difference and variation in

group 1, but not in group 2. PAvg: posterior average, PS5, P1, P25, P75 and 1 were
corresponding to w = 0.5,0.1,0.25,0.75, 1
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bigger than 0.99, the posterior samples of the gene come from the corresponding
component, otherwise, the chain for each component is checked for convergence (small
variation compared to range of posterior samples). If both negative and positive
component fail convergence for a gene, the gene of group 2 comes from a null component,
which means no difference between the two groups. Table 3.2 showed the summarization
of the posterior samples. The first two columns are the simulated group means. All the 17
genes in the first disjoint subgraph have over-expression in group 2. From table 3.2, all the
17 genes from positive component were correctly summarized. We also observed that the
posterior mean difference of genes between the two groups within disjoint subgraph tends
to be bigger than the mean of true mean differences. In contrast with modeling Z-score,
the direction of difference (negative or positive component) could be correctly obtained
from the posterior samples. This suggested the advantage of working with original
expression values instead of Z-scores.

As the true mean of each gene for both groups are known, sample average and
posterior summarized mean for each gene were compared to the true mean. As shown in
table 3.3 (first 3 columns), the difference of true mean with posterior averages had smaller
average difference and variation than those with sample average for group 1 and slightly
bigger in group2. In this scenario with the dependence of genes following the gene
network, the Markov random field model incorporated dependence structure into the
posterior and improved the accuracy of posterior estimates, especially for group 1. In
contrast, the simple sample average ignored the dependence structure and had a loss in
efficiency of the estimates of group means.

The Bayesian two-sample model was compared with ¢-test using the simulated raw
data. For each gene, we performed two-sample ¢-test and ordered the genes according to
the p-values. We also computed absolute value of standardized posterior mean (the
absolute value of posterior mean divided by standard deviation of the batched means).

Significant absolute value of standardized posterior mean indicates that the gene is
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differentially expressed. The genes were reversely ranked by the absolute value of
standardized posterior mean, from large to small value. The result is shown in table 3.4
(first 5 columns). In the two sample ¢-test, 16 genes had p-values less than 0.05 and 14
genes were found to be differentially expressed after Bonferroni correction of the p-value
cutoff of 0.05. The Bayesian two-sample model identified all the 17 differentially
expressed genes. Gene J was detected to be differentially expressed in the Bayesian
two-sample model, although its p-value in ¢-test was 0.22. This supports the advantage of
taking the dependency structure of gene network into the genetic testing.

Several genes were ranked differently in the two methods. Gene O was ranked # 6
in t-test and # 8 in the Bayesian model, with weight w predefined to be 0.5. We further
studied the influence of weight on the posterior samples. Using simulated data with
weight equal to 0.5, we investigated the impact of arbitrary weights 0.1, 0.25, 0.75 and 1,
where weight = 1 is equivalent to an undirected graph. Table 3.4 summarizes the results.
There were 17 genes declared to be differentially expressed in first disjoint subgraph with
weights 0.1, 0.25 and 0.5, out of which one gene was not significant in ¢-test at 0.05 level.
Weight 0.75 identified 16 genes to be differentially expressed with ranks slightly changed.
For weight = 1, equivalent to an undirected graph, 16 genes were declared to be
differential, and gene B was not. The ranks of differential expressions differed from those
for weights 0.25 and 0.5. We also compared the summarized posterior mean for each gene
with its true mean under different weights. As shown in table 3.3 the undirected graph
(weight = 1) had bigger average difference and variation in difference between posterior
means and true means, compared to weights 0.1, 0.25, 0.5, and 0.75. This indicates the
possible robustness of weight selection and advantage of known direction in gene
relationships.

The prior knowledge of pathway is usually not complete. We further studied the
robustness of the incomplete prior knowledge on posterior samples. We randomly added 3

directed edges into the first disjoint subgraph in figure 3.5. Using the simulated data as
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before, table 3.4 shows that the 16 genes were declared to be significant with slight change
in ranking and with gene J left out. This indicates a degree of robustness to the directed
graph by incorrect inclusion of extra edges. With only 27 directed edges in the original
graph, 3 edges represent 11% of the total edges. Simulating a graph in which 8 (30%)
directed edges were randomly inserted, the number of differentially expressed genes and
ranking did not change much (see column 8 and 11 in table 3.5 ).

3.3.3 Simulation on DG model for two-sample problem

Gene expression data was simulated according to following mechanism based on
the DG in figure 3.5 with w = 0.5: (1) Start with constant ; for j = 0, 1, 2, each
component of p, was drawn from positively truncated normal distribution with mean
being weighted average of neighbors and weighted standard error; similarly, g, and g,
was drawn from a negatively and positively truncated normal distribution, respectively;
the process was repeated 20 times to introduce correlation among the genes according to
figure3.5; (2) For the first 17 genes corresponding to the first disjoint subgraph, f4; was
set to puo; for i = 1,...,17, and for the rest 9 genes corresponding to the second disjoint
subgraph, 114; was set to pg; for i = 18, ..., 26; and (3) For each gene, 10 random samples
was drawn from a normal distribution with mean f; for group 1 and pi49; = pio; + pta; for
group 2 with fixed variance.

With the same hyperparameters as in section 3.2.1 and randomly generating initial
values, the chain was run 4000 for burn-in. 4000 posterior samples were drawn from
posterior distributions with thin equal to 3 (keep one out of three samples). Figure 3.8
shows the trace plots of posterior samples for 8 selected nodes: the first 4 nodes from first
disjoint subgraph in figure 3.5 and last 4 nodes from the second disjoint subgraph. For the
8 nodes, the chain converged for both g, (1°! row) and o3 (4"" row), indicating stability in
the sampling of the overall mean of the two groups. The same observation holds for both
g (2" row) and o3 (5*" row). The chain for weight, w, also converged. Out of the 8

nodes, 3 nodes converged around 1 and one converged around O, for nodes B, Y, Z, the
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Fig. 3.8: Trace plot of posterior samples of g, pt,, W, % and o3 in simulation of the DG
model.

Posterior samples of first 4 nodes (left 4 columns) and last 4 nodes (4 columns on the
right) of the DG as shown in figure 3.5. Row 1 and 2 are trace plots for posterior samples
of p, and p,; row 3 are trace plots for w; row 4 and 5 are for o7 and o2, respectively

weights were set to constant as these nodes do not have children and weight will have no
effect. The trace plots of w for the remaining 18 nodes are shown in figure 3.9.

The standard error of posterior sample mean was computed according to Albert and
Chib (1993). Table 3.6 shows the summarization of the posterior samples. The first 3
columns are the simulated group means and mean difference respectively. All the 17

genes in first disjoint subgraph have over-expression in group 2. The other 9 genes have
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Fig. 3.9: Trace plots of posterior samples of w in simulation study of the DG model.
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under-expression in group 2. As the true mean of each gene for both groups are known,
sample averages and posterior summarized means were compared to their true mean. As
shown in table 3.7 (the first 4 columns), the difference of true mean with posterior
averages had smaller average difference and variation than those with sample averages for
group 1 and slightly bigger in group2. In this scenario with the dependence of genes
following the gene network, p, and g, incorporated dependence structure into the
posterior and improved the accuracy of posterior estimates, especially for group 1. In
contrast, the simple sample average ignored the dependence structure with loss of
efficiency to estimate group means.

We also compared the DG model with two-sample ¢-test. For each gene, we
performed two-sample ¢-test and ordered the genes according to p-values. The absolute
value of standardized posterior mean was computed as the absolute value of posterior
mean divided by standard error of batched means. The genes were ordered from the
largest to the smallest according to the absolute value of standardized posterior mean. The
result is shown in table 3.8 (first 5 columns). In the two-sample ¢-test, 22 genes had
p-values less than 0.05. We also ranked the gene according to the absolute value of
simulated mean difference: p;, and compared this rank to the rank of ¢-test and rank of
DG model. The simulated mean difference had smaller rank difference from the DG
model than that from ¢-test.

We now assume that weight has a uniform(0,1) prior distribution. To study the effect
of random weight on the posterior samples, we compared the posterior samples with those
from fixed weights of 0.1, 0.25, 0.5, 0.75 and 1 using the same simulated data. As shown
in table 3.8, the rank of genes did not differ much using different fixed weights or prior
distribution of uniform(0, 1), all of which had less discrepancy from the ranks with
simulated mean difference. We also compared the summarized posterior mean for each
gene with its true mean under different weights. As shown in table 3.7 (column 5 to 8), the

DG model with random weight had smaller average and variation in difference between
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posterior means and true means, compared to models with fixed weights 0.1, 0.25, 0.5,
and 0.75 and 1. This demonstrated advantage of prior information of weight and
advantage of known direction in gene relationships.

We further studied the robustness of using noninformative prior of gene
relationships on posterior samples. We randomly added 3 or 8 directed edges into the first
disjoint subgraph in figure 3.5. Using the simulated data as before, table 3.9 shows the
summarization of the results. The rank did not change much for DG with 3 edges inserted.
The rank did differ for DG with 8 random edges inserted. As shown in table 3.10, the
mean and standard error of difference between posterior samples and simulated data did
not differ in group 1 for all the three models, but did differ for group 2 or group difference
in DG model with 8 random edges added. This indicates that the model is robust to
moderate miss-specification and may not be robust for a higher degree of
miss-specification.

3.4 Application

The Cancer Genome Atlas project has collected multiple forms of high throughput
data for various cancer types. The mRNA expression data for 172 adult Acute Myeloid
Leukemia (AML) patients is publicly available. The patients were classified into
favorable, intermediate or poor risk groups according to cytogenetics of leukemia cells.
Out of the 172 patients, 37 patients were in favorable risk group and 42 were in poor risk
group. One interesting question is which set of genes are differentially expressed between
these two groups of patients. This dataset is used to demonstrate the utility of the
proposed models in above section.

The current pathway databases, such as KEGG, use different names for a gene. To
derive a directed graph representing a pathway, human MAPK pathway in KEGG is used
as an example, where gene names were matched to Affymetrix gene names through
GeneCard (http://www.genecards.org/). The directed graph of MAPK pathway is shown

in figure 3.10. In this graph, there are 102 genes with 1 to 14 directed edges per gene
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(median 2 and mean 2.7 per gene). The two-sample ¢-test and each of the proposed
methods were applied to these 102 genes.

To apply our model with Z-scores to the AML data, one sided two-sample ¢-tests
were performed on each gene to compare mean expression levels between poor and
favorable risk adult AML, and the p-values were transformed to obtain Z-scores (range:
—4.27,4.98, mean: 0.03). The posterior of 7;, j = 0, 1, 2 indicated that all the 102 came
from null component (no differential expression was declared), which is consistent with
the distribution of Z-scores. The Bayesian two-sample model was used on the same data
set. Similar to the model with Z-score, all the 102 genes were found to come from the null
component.

In the DG model, the posterior samples of 1, were summarized as batched mean
and standard error according to Albert and Chib (1993). The genes were ordered from
large to small according to the absolute values of ratio between batched mean and its
standard error. The top 30 genes are shown in table 3.11. The key genes in MAPK
pathway are in the top of the gene list, such as CUTL1 and MAP4K3.

In the application of MAPK pathway derived from the KEGG to the AML dataset,
using Z-statistics as data (model I) and the two-sample model with raw expression value
(model IT) failed to detect differential expression in the 102 genes between favorable and
poor risk AML. The distribution of z-statistics from two-sample ¢-tests does not support
that the genes come from either positive or negative component. One possible reason is
that the MAPK pathway derived from KEGG is a prior knowledge from various sources
and tissues. Some of the relationships might not be applicable to AML. We decided to
tailor the MAPK pathway based on correlations of genes in adult AML of intermediate
risk. Two-way correlations of the 102 genes were calculated using expression values from
the 93 intermediate risk AMLs. An arbitrary p-value cutoff of 0.1 was used to indicate
potential correlation between genes. Out of the 102 genes in the MAPK pathway in figure

3.10, 37 genes were singletons after tailoring based on the correlation in AML of
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intermediate risk (genes in black and edges in grey in figure 3.10). In the rest 65 genes,
there were 57 edges left (range: 1 to 6 edges, mean: 1.8 edges; genes in red and edges in
blue in figure 3.10).

The tailored MAPK pathway with 65 genes was applied to the AML data to model
differential expression between poor and favorable risk AML using the three models. The
summary of posterior samples is given in table 3.12 for the model with z-statistics as data
for top 20 genes. Out of the 20 genes, most were from negative component (AML of poor
risk had lower expression compared to favorable risk AML). PPP2CB was on the top of
the list based on the ratio of batched mean and its standard deviation. MAP3K1 was the
number 3 and from the positive component. In the original MAPK pathway, all the 102
genes were from null component, this tailored MAPK pathway with AML of intermediate
risk detected differential expression in AML, demonstrating the advantage of tailoring
pathway using appropriate data.

The summary of posterior samples for two-sample model is shown in table 3.13 for
genes with p-values of ¢-test less than 0.1 or high posterior ratio. CUTLI is on the top of
the differentially expressed genes in both ¢-test and based on the ratio of batched mean
and standard deviation of posterior difference. PRKCA is ranked 9" in ¢-test and 2"
based on posterior. PAK1 was ranked 2"¢ in ¢-test and 31%' based on posterior, in the
middle of the list. This indicated that both original expression data and prior knowledge
captured in the tailored pathway played important role in the Bayesian two-sample model.

When the DG model was applied to the AML data using the tailored MAPK
pathways, both CUTL1 and PRKCA were on the top 2 based on posterior, similar to the
Bayesian two-sample model. A few others are also on the top of the list based on ¢-test,
posterior estimates in the DG model and in the Bayesian two-sample model. It is very

likely that CUTL1 was under expressed in favorable AML compared to poor AML.
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Fig. 3.10: Human MAPK pathway derived from KEGG database

Note: Lines with pointed arrows indicate positive regulation, lines with rounded end
indicate negative regulation or repression. Gene names are translated from the KEGG to
the ones used by Affymetrix. The genes in red and edges in blue are retained after
tailoring with intermediate risk adult AML
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3.5 Summary and Discussion

Genes and proteins regulate, interact and cross talk among each other, forming
complex networks in a cellular context. This information is captured partially in gene
network databases. In this study, we proposed incorporating prior knowledge of gene
relationships in gene networks to statistical inference by Bayesian approaches.

In the model with Z-scores, it is flexible to include most statistical testing with
p-values or testing statistics (standard normal transformation). Based on the simulation
study, the prior knowledge in the directed graph will dominate the distribution of Z-scores
and reorder the rank of genes in the posterior samples. Small and coherent directed graphs
are desirable as the genes in such graphs are coherently regulated and expressed.

In an experiment with two treatment groups or conditions, it is not hard to formulate
the Markov random field model with experimental data. In this case, the prior knowledge
will not dominate the posterior distribution and presumably the Bayesian model combines
both the prior knowledge and data. The model is robust for both weight miss-specification
and moderate directed graph miss-specification. The true weight is not known.
Furthermore, the prior knowledge of pathways represented by directed graphs is usually
incomplete and potentially has miss specification for certain experiment conditions. The
robust feature of the Bayesian model is desirable.

For gene expression data, expression values could be aligned to similar scales after
proper data transformation or manipulation. It is reasonable to assume that the expression
level of a gene depends on its regulators or partners in a pathway. In the Bayesian model
with direct dependence on a directed graph, we demonstrated the feasibility through
simulation studies. The model is robust to the selection of weights, but not to large
miss-specification of the directed graph itself. It is not contradictory to intuition as
expression levels of a gene in the model are assumed to be normally distributed with mean
being weighted average of first-order neighbors. In this case, a valid directed graph of

prior knowledge under the experiment condition is required.
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Although gene and protein relationships are captured and represented in network
databases, they are not easily transformed to adjacency matrix format directly usable to
statisticians. We derived directed graphs of yeast and huma MAPK kinase pathway from
KEGG database. We noticed the following difficulties: (1) A dozen genes in the original
MAPK kinase pathway are not represented by Affymetrix microarray chip; (2) The gene
names used in Affymetrix array are frequently different from the ones used in KEGG; (3)
Genes are represented by multiple probes. In conquering these difficulties, efforts are
demanding to put gene network relationships into statistician accessible format such as
adjacency matrix.

Another issue of gene network data is that the relationships are extracted and
integrated from diverse cellular contexts and experiment conditions. Part of the
relationships in network database might not be valid for a specific experiment condition
such as cell types, microarray platform et al. To account for this fact, it would be desirable
to derive application specific prior gene network. If supposing gene profiling data are
available in cell lines, patients, disease that are compatible to current experiment units or
conditions, the correlation structure from this data set could be roughly estimated. Based
on the correlation structure, the overall gene network represented by adjacency matrix
could be tailored. This tailored gene network contains prior knowledge of both integrated
information and specific information relevant to current experiment units or conditions.

In the application to the AML data using MAPK pathway derived from KEGG,
model with Z-scores and two-sample model failed to detect any differential expression (all
genes were from null component). The distribution of Z-scores also indicated that genes
in the MAPK pathway were not all relevant in AML. After being tailored using adult
AML with intermediate risk, several important genes were detected to be differentially
expressed across the three models. This indicates that pathways in public database indeed
need to be tailored to specific tissues and experiment conditions in order to be useful in

these Markov random field models. More efforts are needed in this area in near future.
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Table 3.6: Posterior estimates for the 26 genes in simulation of the the DG model.
Gene Mul Mu2 MuDiff MuEstGrpl MuStdGrpl MuEstGrp2 MuStdGrp2 MuEstDiff MuStdDiff

A 755 827 0.72 7.683 0.028 8512 0.013 0.829 0.036
B 745 821  0.76 7.471 0.021 8.056 0.016 0.586 0.030
C 745 822 077 7.425 0.020 8.226 0.022 0.801 0.029
D 760 853 093 7377 0.027 8.666 0.017 1.289 0.036
E 7.05 7.08 0.03 6.988 0.016 7.312 0.021 0.325 0.029
F 726 8.03 0.77 7.337 0.018 7.827 0.019 0.491 0.027
G 719 824 1.05 7.034 0.016 8.123 0.015 1.089 0.024
H 702 8.64 1.62 7.175 0.011 8.614 0.018 1.439 0.019
I 691 8.64 1.73 6.870 0.023 8.491 0.019 1.621 0.030
J 756 836  0.80 7.404 0.018 8.156 0.019 0.752 0.024
K 722 7.87 0.65 7.296 0.021 7.944 0.017 0.648 0.029
L 6.72 7.03 031 6.814 0.015 7.161 0.022 0.346 0.030
M 678 697 0.19 6.680 0.021 6.997 0.019 0.317 0.029
N 745 888 1.43 7313 0.024 8.724 0.024 1.411 0.037
O 712 850 138 7.218 0.017 8.397 0.019 1.179 0.025
P 6.90 8.53 1.63 7.035 0.009 8.651 0.021 1.616 0.022
Q 694 9.06 212 6.876 0.014 8.861 0.013 1.985 0.018
R 767 715 -052 7.531 0.014 6.969 0.015 -0.562 0.023
S 7775 7.15  -0.60 7.746 0.035 7.115 0.013 -0.632 0.040
T 6.70 536 -1.34 6.922 0.020 5.504 0.013 -1.419 0.027
Uu 704 58 -1.15 7.163 0.014 5.833 0.013 -1.330 0.020
V. 79 721 -0.69 7.900 0.038 7.273 0.015 -0.627 0.046
W 740 7.00 -0.40 7.523 0.024 6.904 0.017 -0.619 0.026
X 763 699 -0.64 7.424 0.013 7.035 0.017 -0.388 0.022
Y 723 627 -0.96 7.294 0.017 6.299 0.011 -0.995 0.021
Z 722 578 -1.44 7.220 0.019 6.017 0.018 -1.202 0.027

Mul and Mu2 are the original simulated group means. For each gene, the sample averages
and standard deviations of posterior samples of group mean are provided. MuEstDiff and
MuStdDiff are the posterior estimates of mean difference between group 2 and 1. A
negative value indicates the group 2 has negative component and a positive value indicates
a positive component. If posterior of both negative and positive diffused, the mean
difference is not summarized: from O component.

Table 3.7: Summary of difference of simulated (true) means with sample averages or with
posterior sample averages in simulation of the DG model.

Groups Sample_Avg PAvg PAvg P1 PAvg P25 PAvg P5 PAvg P75 PAvg 1
Group1 Diff Mean 0.1214 0.1027  0.1078 0.1081 0.1087 0.1092  0.1099
Groupl Diff Std 0.144 0.1233  0.124 0.125 0.127 0.1287  0.1301

Group2 Diff Mean 0.1172 0.1215  0.1237 0.1232 0.1226 0.1221 0.1217
Group2 Diff Std 0.1373 0.143  0.1465 0.1462 0.146 0.1459  0.1458
MubD Diff Mean 0.1277 0.1278  0.1306 0.1303 0.1297 0.1298  0.1306

MuD Diff Std 0.1639 0.1661  0.1665 0.1672 0.1684 0.1695  0.1705

Sample_Avg: difference between sample average and simulated mean. PAvg: difference
between posterior sample mean with random weight and simulated mean.

PAvg P1,PAvg P25, PAvg PS5, PAvg P75 and PAvg_1 are difference between simulated
mean and posterior estimates with fixed weight 0.1, 0.25, 0.5, 0.75 and 1, respectively.
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Table 3.10: Summary of difference of simulated means with sample averages or with
posterior sample averages in the DG model.

Groups Sample_Avg PAvg PAvg 3 PAvg 8 PAvg 1l
Groupl Diff Mean 0.1214 0.1027 0.1009 0.1024 0.1099
Groupl Diff Std 0.144 0.1233 0.1221 0.1248 0.1301

Group2 Diff Mean 0.1172 0.1215 0.1238 0.1234 0.1217
Group2 Diff Std 0.1373 0.143 0.1458 0.145 0.1458
MuD Diff Mean 0.1277 0.1278 0.1371 0.1465 0.1306

MuD Diff Std 0.1639 0.1661 0.1716 0.1824 0.1705

Note: Sample_Avg: difference between sample average and simulated mean. PAvg:
difference between posterior sample mean with random weight and simulated mean.
PAvg_3 and PAvg_8 are difference between simulated mean and posterior estimates with 3
and 8 random edges inserted, respectively.

Table 3.11: Summary of posterior samples of MAPK genes in adult AML in the DG
model

Gene AvgGrpl StdGrpl AvgGrp2 StdGrp2 MuEstGrpl MuStdGrpl MuEstGrp2 MuStdGrp2 MuEstDiftf MuStdDiff

CUTLI 13.32 0.42 12.72 0.64 13.282 0.008 12.784 0.009 -0.498 0.013
MAP4K3 10.49 0.45 10.89 0.67 10.495 0.007 10.875 0.008 0.380 0.010
JUND 15.22 0.62 15.69 0.57 15.248 0.011 15.660 0.008 0.412 0.013
IL1A 10.12 0.53 9.61 0.75 10.111 0.008 9.627 0.013 -0.484 0.016
TGFB1 12.2 0.98 1291 0.92 12.255 0.021 12.867 0.013 0.612 0.022
MAX 14.98 0.46 14.64 0.56 14.950 0.005 14.672 0.009 -0.278 0.010
PPP2CB 13.04 0.5 13.38 0.58 13.045 0.009 13.369 0.010 0.324 0.012
PAK2 13.15 0.36 12.83 0.47 13.114 0.007 12.875 0.007 -0.239 0.010
MAP2K4 10.99 0.3 10.84 0.41 10.989 0.004 10.841 0.007 -0.147 0.007
STMN1 12.74 0.56 12.36 0.57 12.702 0.010 12.394 0.009 -0.308 0.015
MAP4K4 12.21 0.61 11.89 0.66 12.206 0.011 11.890 0.009 -0.316 0.016
EGF 6.45 1.73 7.67 1.97 6.599 0.028 7.492 0.034 0.893 0.046
BRAF 9.61 0.48 9.31 0.66 9.585 0.008 9.356 0.010 -0.229 0.012
MST1 10.3 1.95 9.49 1.03 10.182 0.033 9.524 0.015 -0.658 0.035
GSTP1 13.57 0.64 13.85 0.66 13.570 0.011 13.845 0.010 0.275 0.015
MAP3K1 10.1 1.34 9.22 0.87 9.700 0.017 9.375 0.015 -0.324 0.018
PRKCA 11.4 0.95 10.65 1.31 11.355 0.016 10.737 0.029 -0.618 0.035
MEF2C 12.19 1.87 13.65 0.96 12.682 0.043 13.527 0.017 0.845 0.048
MOS 7.85 1.07 7.32 1.33 7.788 0.018 7.425 0.022 -0.363 0.021
PDGFA 8.49 1.06 7.91 1.29 8.463 0.023 7.945 0.018 -0.518 0.031
RPS6KAS 11.75 0.53 12.05 0.57 11.787 0.009 12.004 0.009 0.217 0.013
MAP3K13 6.55 1.08 7.32 1.33 6.707 0.019 7.129 0.018 0.422 0.026
RASGRF1 8.26 0.95 7.81 1.14 8.251 0.016 7.815 0.022 -0.436 0.027
FAS 11.74 0.57 11.44 0.66 11.695 0.009 11.488 0.008 -0.207 0.013
TP53 12 0.62 11.66 0.94 11.971 0.009 11.720 0.015 -0.251 0.016
PPP2CA 13.69 0.43 13.48 0.59 13.686 0.009 13.494 0.009 -0.192 0.013
NLK 10.55 1.12 10.96 0.89 10.602 0.021 10.924 0.013 0.322 0.022
MAP3K11 11.61 0.62 11.83 0.52 11.621 0.010 11.824 0.009 0.203 0.014
MAP3K7IP2 12.4 0.53 12.65 0.64 12.414 0.008 12.627 0.012 0.213 0.015
FGF2 6.39 1.47 5.88 1.43 6.328 0.029 5.920 0.020 -0.408 0.029

Avg and Std are the sample average and standard deviation, respectively. MuEst and
MusStd are batched mean and standard deviation of posterior samples, respectively.
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Table 3.12: Summary of posterior samples in the model with Z-scores using intermediate
AML tailored MAPK pathway

Gene Zscore Mean StdDev Min Max  MeanDstd
PPP2CB -2.796 -2.436 0.071 -3.7243 -0.0028 -34.3
MAPKI1 -1.852 -1.851 0.062 -3.7248 -5e-04 -29.9
MAP3K1 3442  3.102 0.108 0.0016 4.9835 28.7

MAP3K14 -2464 -2249 0.08 -3.7225 -de-04 -28.1

JUND -3.488 -2.684 0.096 -3.7249 -0.004 -28.0
MAP3K71IP2 -1.925 -1918 0.075 -3.7248 -0.004 -25.6
PAK?2 345 3124  0.13 0.0025  4.9829 24.0

MAP4K4 2224 2297 0.103 0.0161 4.9752 22.3
RASGRF1 1.928 2.143  0.106 8e-04  4.9826 20.2

MAPT -1.57  -1.689 0.084 -3.7239 -le-04 -20.1
RPS6KA4 1.746  1.989 0.1 0.0029  4.9797 19.9
GSTP1 -1.89  -1.887 0.095 -3.7231 -0.0066 -19.9
GRB2 1.554 1.859 0.103 0.0012 4.9821 18.0
MAP2K1IP1 -1.327 -1.538  0.09 -3.722  -1e-04 -17.1

NRAS 1.714  1.996 0.129 %9e-04 49771 15.5
MAP2K1 0.042 -1.049 0.068 -3.7235 -2e-04 -15.4

RPS6KA3 -1.23  -1.455 0.095 -3.7239 -6e-04 -15.3
MAX 2978 -1.559 0.105 -3.7236 -6e-04 -14.8
PRKCA 2915 -1.545 0.105 -3.7249 0 -14.7

HSPA1A 0.613 -1.222 0.083 -3.7237 -2e-04 -14.7

Zscore: normal transformed z from two-sample t test; Mean and StdDev are the batched
mean and standard deviation of posterior sample; MeanDstd: ratio of bached mean and
standard deviation.
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Chapter 4
POST: A FRAMEWORK FOR SET BASED ASSOCIATION ANALYSIS
IN HIGH DIMENSIONAL DATA
4.1 Introduction

Gene profiling with microarray technology has enabled investigators to
simultaneously measure gene expression levels of thousands of genes in biological
specimens. Subsequently, statistical analyses are performed to test association of
individual measurements with an endpoint of interest. As thousands of tests are performed
simultaneously, the problems posed by multiple testing should be addressed before
declaring which list of genes/features that are associated with the endpoint of interest.
Pounds and Cheng (2006)[39] reviewed methods to address the multiple testing problems
for estimating and controlling the false discovery rates (FDR). Most of these FDR
controlling methods assume that the p-values are independent or weakly dependent, an
assumption which is often violated. Benjamini and Yekutieli (2001)[40] and Storey
(2003)[41] have shown that small clumpy dependencies are usually negligible and the
procedures of Benjamini and Hochberg (1995) and Storey (2001) methods have good
properties under certain dependency structures. A gene may be represented by multiple
probes and genes in a gene network/pathway tend to be co-regulated. In widely used
Affymetrix expression array, genes are represented by 1 to more than 10 probes sets
(features). Statistical analysis of these data often leave investigators a long list of
genes/features that show significant association with an endpoint. A selection of the most
promising candidates for follow-up depends heavily on the biology.

To facilitate the selection process, one strategy is to reduce the selection pool,
namely, the list of features that are associated with an endpoint. Specifically, instead of
studying association with an endpoint of interest at individual gene/feature level, one
could focus on the association between gene set or pathways first. The benefits of doing so

are several folds: by performing association tests at gene sets or pathway level first, the
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number of tests is significantly reduced; and statistical dependence between p-values
could be reduced. These simplify the process of FDR controlling. Moreover, a shorter list
of significant association with better biological knowledge is produced. After selecting
significantly associated gene sets or pathways for follow-up, investigators could perform
second round of association testing feature by feature in the selected genes or pathways
and determine which functional forms to follow.

Recently, a few dozens gene-set procedures have been developed for testing
differential expression in gene profiling data analyses. However, these methods are
designed for differential expression and most are not suitable for association testing with
complex modeling. In association testing, the data structure could be very complex with
known variable adjustment, stratification, and multiple dependent endpoints that include
continuous, binary, ordinal, or censored variables. Goeman and Buhlmann (2007)[8] and
Nam and Kim (2008)[9] have provided an extensive review of these methods and made
recommendations on self-containedness and randomization strategy for obtaining
p-values. Gene set enrichment analysis (GSEA) can be applied to association testing using
the feature level p-values, however this procedure lacks self-containedness. Constructing
flexible self-contained association testing is challenging.

To address this challenge, we investigate the development of a procedure based on
empirical orthogonal functions (EOF) analysis or principal component analysis (PCA).
PCA has been widely used to identify spatial and temporal patterns in meteorology,
genetic patterns, and population structure in gemome wide associations (GWAS). PCA is
also widely used for dimension reduction in high dimensional datasets. Tomfohr er al.
(2005)[42] used a t-test after reducing the gene set to its first principal component, and
pointed out that PCA could be used to reduce the dimensionality of variables entered in
the Hotellings 77 statistic in two-sample multivariate testing with decent sample size.

In this chapter, we propose a new procedure, labeled Projection onto the Orthogonal

Space Testing (POST) as a flexible method for identifying gene sets or pathways that
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show association with an endpoint of interest. POST performs a hypothesis test for each
gene pathway, thus reducing the number of tests performed. In the process, this reduces
potential dependence between p-values, leading to more accurate FDR control and less
misleading follow-up study. POST is a multivariate testing procedure, and it is potentially
more powerful than competing procedures for detecting association of genes or pathways
in which genomic features are jointly related to an endpoint. Moreover, POST is flexible
enough to test association with various endpoints under several model structures. In
section 4.2, we describe the POST procedure and in section 4.3 evaluate the procedure by
simulation studies. In section 4.4, we apply POST to several real datasets. Finally, Section
4.5 provides the discussion and concluding remarks.
4.2 The POST method

Forj =1,2,...,k,let S; be a collection of pathways or gene sets based on data
from n subjects. Suppose that S; has m; genomic features. Let Y;, represent the value of
genomic feature g for subject 7, and let C; represents the value of covariate [ fro subject 7,
i =1,...,n. Denote by C,, the vector (Cy,...,C,)" and by Y, the vector
(Yig,...,Yng)'s g =1,...,m;. The objective of the method to be proposed is to explain
observed endpoints on the n subjects by the genomic features, after adjusting for the
covariates. Towards this objective, let X; be the value of an endpoint measured (observed)
on subject i. Let X = (Xi,..., X,,)". Finally,let Y ; = (Y1,...,Y,, ) be the m; x n
matrix of genomic features.

The variance-covariance matrix X; of Y';

%= El(Y; = E[Y;)(Y; — E[Y])] (4.1)

will be estimated by its sample covariance matrix

Y =(Y; - Y;)(Y;-Y;) (4.2)
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where Yj = % Z?:l Y ;, the column mean of Y';
We assume that >; is positive definite with ordered eigenvalues A, > ... > A,
and corresponding eigenvectors €y, . . ., €.
Based on the fact that the largest eigenvalues explain most of the variation among

the genomic values Y ;, let t; < m; represent an integer such that Alj > ... > )\t]. explain

1000% of the total variation in genomic variation for some predefined 0 < ¢ < 1. Let

P]: (P1J77Pt]) :ZY;QZ’C:Y/E] (43)

where E; is the matrix (ey, ..., e).

For many gene sets or pathways with a large number of genomic features, ¢; is
usually small in comparison to ;. Thus, the dimension of P is usually small,
representing a significant reduction in data without much loss of information. For a given
set of endpoints from the individual subjects, we now use this reduced genomic feature
data to explain the variation in those endpoints by regressing the endpoint variables on the
genomic features as independent variables, while adjusting for covariates C;.

This procedure is flexible enough to use linear, generalized linear regression or Cox
proportional hazard model for time to event endpoints. Let Z,., be the Z-statistics from the

model associating the endpoint variable X with P, and let

Z;= (2, Zo;,.... 2Z;,) (4.4)

We wish to determine if set .S; has significant association with observed endpoints.
Under the assumption that the projected vector with larger eigenvalues carry more
information about the association with endpoints, a reasonable choice of statistic is the

4

T;=> A7 =Z\Z, (4.5)

r=1
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where A; is the ; x t; diagonal matrix with A, ..., A;; as diagonal elements.

The POST statistic will thus be defined by equation (4.5). We expect that under
reasonable conditions, T'; will have an asymptotic null distribution which is a linear
combination of Chi-squared distributions. An argument for this conjecture may be
constructed as follow. Under null of no association between set S; with endpoint X, Z; is
a multivariate normal vector with mean O and variance-covariance matrix > Z;s
Z;~N (O, by Zj). According to Duchesne and Lafaye de Micheaux (2010)[43], let matrix
C be the Cholesky decomposition of ¥z, satisfying C'C = ¥z, and U be such that
UU’ = I,, that diagonalizes CA;C’ as UCA;C'U’ = D = diag(\y, . .., A, ). Assuming
AM>...>2A>0and Ay =... =\, =0andletting Y = UC'"'Z;,

E(Y)=E(UC"'Z;) =UC'E(Z;) =0 (4.6)
Var (Y)=UC'"'Z; (UC/_IZJ-), = UC"lsz;.(C/_l)’U’
= UC’_IEZj(C’_l)’U’ =uc'c'cc'u 4.7)
=UU =1,
Y is distributed as V (0, It].). Each component of Y'DY is a weighted standard x>
distribution, independent of the rest components as D is diagonal matrix. So, the

distribution of YDY” is a weighted sum of chi-square random variables. We can show

that Y'DY and ZA;Z; are equivalent:

Y'DY = (UC'Z;)'D (UC''Z;)
= Z,(C'~")'U'DUC'Z;
(4.8)
= Z,CT'U'UCA,C'U'UC'Z;

= 7'\, Z,;

So, the quadratic form in equation (4.5) can be expressed as a weighted sum of chi-square
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random variables:

T; = Zi\Z; = Y'DY = > A’ (4.9)

s=1
Farebrother (1984)[44] and others have derived algorithm to calculate Pr(T; > t;)
for quadratic form in equation (4.9). In practice, we do not know the correlation structure
of elements in Z; and variance-covariance matrix >1z,. One way to get an estimate of Y.z,
is by bootstrap re-sampling. We sample P; with replacement B times to get B bootstrap
samples P;-l, PJ*?, ce P;B. For each bootstrap sample P, parametric models are fit for
each component of P to obtain Z;. We get Z7 = (Z;l, Z;Q, ey Z;TB ) and the estimate of

3.z, is the variance-covariance matrix of Z;‘f.

Sz, = cov(ZY) (4.10)
and 'T'; is approximated by
T; = Z/AZ; =Y Ay (4.11)

s=1

Where, )Ts are derived as above with iz\] replacing Yz,

In a biological system, a gene could be involved in multiple biological processes. It
is very likely that gene sets defined for biological system or derived from biological
databases are not disjoint. So, POST requires a multiple testing procedure that remains
effective when the tests are dependent.

Yekutieli and Benjamni (1999)[45] proposed a resampling-based FDR control
procedure for dependent test statistics. The FDR control method has been used in several
gene set analysis methods. We also provide this method as an option to control FDR in
POST analysis. Besides the B bootstrap samples to estimate > z,, D permutations of the

subject labeling in the original genomic data are performed for resampling-based FDR
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control. Let T; denote the POST statistic in equation (4.5) computed from the ;" set. Let
T ;4 be the value of T; computed using the d"" permuted samples. We follow the
convention that permutation 1 represents the original data; thus, T'; = T';; for all
j=1,...,k.Foranyj=1,...,kandd =1,..., D, we obtain p;; by same generalized
chi-square approximation as in equation (4.11). For a given rejection region, [0, p|, the

estimate of the FDR is given:

=5 : 1 Rq(p')
FDR(p) = o> = 4.12
(p) ANy ' >=p <D 1 ; Rd(p/) + S(p,)) ( )
Where .
Ra(p') =Y I(pja <) (4.13)
j=1
and
1 D
Sap) = Ba(V) = 5 > Ra(p) (4.14)
d=2

In some applications, the sets (pathway/genes) might be disjoint or have very weak
overlap. In these cases, the resampling-based FDR controlling could be dispensable. False
discovery rate can be estimated using methods such as FDR estimates by Benjamini and
Hochberg (1995)[46] or robust FDR estimates by Pounds and Cheng (2006)[39].

The POST method consists following steps:

1. Calculate covariance matrix >, using feature level signals in set S; and perform

eigenvalue decomposition.

2. Select first few eigenvalues to explain ¢ fraction of total variance and project feature

level data to selected orthogonal space to get projected data P ;.
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3. Perform parametric modeling using projected data to get association vector Z;.
4. Define the POST statistic to be quadratic form as in equation (4.5).

5. Bootstrap to estimate covariance X/JZ\] under null as in equation (4.10).

6. Determine p-value based on generalized chi-square.

7. Perform 1 to 6 steps for each set.

8. Perform multiple testing adjustments, either resampling-based or other FDR

controlling methods.

4.3 Simulation studies

POST procedure can be applied to association analyses with various endpoints of
interest including continuous, binary, categorical, and time to event endpoints. To
compare the statistical power of POST procedure to that of other approaches, simulations
were performed in a simple setting with two treatment groups, where the other approaches
could be easily applied. Nine disjoint gene sets with sample size 20 in each of the two
treatment groups were generated as in Table 4.1

In the nine hypothetical gene sets, three sets (A to C) were small gene sets with 10
members. Members in Set B had moderate increase of mean in group 2 compared to group
1. Two members in Set C had large increase of mean in group 2, and rest 8 members had
no difference in mean expression level. Three sets (D to F) had moderate size (30
members) and set G and H had large size (100). In set H, 2 members had large mean
difference, 5 had moderate mean difference and rest 93 members had no difference in
mean expression level. Set I had a large size of 500. Variance-covariance matrix for each
gene set or subset was drawn from a Wishart distribution with Toeplitz matrix and number
of members plus 10 as the parameters. The variance-covariance with Toeplitz structure
instead of Identity matrix was used to introduce correlation structure among genes within

a gene set or subset. The variance-covariance matrixes were further scaled with diagonal
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Table 4.1: Set sizes and group means of nine gene sets in a simulation study.
Gene Set Size Sub Size Group 1 Group 2

SetA 10 10 0 0
SetB 10 10 0 1
SetC 10 2 0 3
8 0 0

SetD 30 30 0 0
SetE 30 30 0 1
SetF 30 4 0 3
8 0 0

SetG 100 100 0 0
SetH 100 2 0 3
100 5 0 1

100 93 0 0

Setl 500 500 0 0

elements around 1. For each gene set and subset, random samples were drawn from
multivariate normal distribution with mean in table 4.1 and variance-covariance generated
as above. One thousand simulated data sets were generated. The POST procedure with

0 = 0.8,0.95 and 1, SAFE (Barry et al., 2005), MRPP test (Nettleton et al. 2008) and
GSA (Efron and Tibshirani, 2007) were applied to each of the 1000 data sets. The power
and type 1 error of the four methods were summarized in table 4.2.

In the POST procedure, the choice of § is arbitrary. In the simulation study, we
choose ¢ to be 0.8 (at least 80% genetic variable is retained), 0.95 (retaining most genetic
variation), and 1 (retaining all the genetic variation). In the four gene sets without
differential expression, POST method maintained the nominal alpha level of 5% (3.3% to
5.1%); SAFE procedure also maintained the nominal alpha level of 5% (0.2% to 3%).
However, MRPP procedure was slightly loose on nominal alpha level maintenance (3.9%
to 6%), and GSA was more loose (5.2% to 7.7%). In the 5 gene sets with differential
expression, set B and E have moderate differential expression across probe sets, POST,

SAFE and MRPP test had good power to detect the differential expression with MRPP
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Table 4.2: Summary of simulation results on 9 gene sets with sample size 20 in both
groups.

GeneSet Differential POST SAFE MRPP GSA
60=08 =095 6=1
SetA 0 5.1 5 5 2.2 6 5.8
SetD 0 5.2 5.1 5.1 3 5.6 7.7
SetG 0 33 3.3 33 1.9 3.9 5.7
Setl 0 4.4 4.4 4.4 0.2 4.8 5.2
SetB 1 92.7 93.3 934 81.8 93.6 19.4
SetC 1 87.5 88.3 88.1 6.4 100 7.1
SetE 1 94 4 94.7 94.6 87.7 953 246
SetF 1 81.7 84.1 83.7 5.2 100 54
SetH 1 15.3 25.4 23.2 3.5 83.3 4.7

Notes: Differential: 0: no differential expression, 1: differential expression between the
two groups; For gene sets without differential expression, the false positive percentages
(type 1 error) are shown; For gene sets with differential expression, the true positive
percentages (power) are shown.

being 94.5%, POST (93.9%) and SAFE (84.8%). The 3 choices of ¢ for POST procedure
gave similar power in these two gene sets. For gene set C and F, in which only a small
portion genes had relatively high differential expression, SAFE method lost power to
detect differential expression (5.8%), while POST still had decent power (85.6%). In set H
(100 genes), both POST and SAFE significant lost power to detect differential expression,
although POST performed much better than SAFE (15.3% to 25.4% vs 3.5%). In this
gene set, the choice of § = 0.95 performed better than ¢ = 0.8 and slightly better than
0 = 1. It seems that 6 = 1 retained noise association and § = 0.8 lost too much genetic
information. In the three gene sets (C, F, and H), MRPP had greater power to detect
differential expression. GSA had little power to detect differential expression in all the
five gene set (4.7% to 24.6%).

From the simulation, MRPP had better power to detect gene sets with any

differential expression, especially with large difference in part of the gene set with
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reasonable maintenance of nominal alpha level. This result is consistent with the fact that
MRPP test is designed to detect any differential expression in multivariate spaces.
Unfortunately, the MRPP test is hard to extend to complicated models such as adjusting
for known factors or other types of endpoints of interest including censored time to event
variable. GSA lacked power to detect differential expression with loose nominal alpha
level control in this simulation study. GSA is an enrichment test and might not work well
on data sets with small number of genomic features. Both POST and SAFE methods
could be applied to complicated statistical modeling with various phenotypes. POST
method performed better in all the nine gene sets than SAFE (nine types of gene sets) and
the method showed robustness in choice of ¢ with large ¢. Taking statistical power,
nominal alpha level control and flexibility into account, POST method outperforms the
other three methods.
4.4 Applications

The example application used data of a combined cohort from the St. Jude AMLS3,
AMLS7, AML91 and AMLO7 clinical trials. Affymetrix U133 A microarray was used to
measure gene expression in the leukemic cells of diagnostic bone marrow samples of 105
subjects in this combined cohort (Ross et al., 2004[47]): 7 subjects were from AMLS&3, 27
subjects from AML87, 29 subjects from AMLI1 and 42 subjects from AML97. The
clinical trials, sample selection, and method for gene expression profiling were described
in Ross et al., 2004. Normalized expression signals were determined using the Affymetrix
Microarray Suite (MAS) 5.0 algorithm and log transformed to be better represented by
normality. There were several presenting features available for each subject, such as
cytogenetic karyotype, FAB subtype, race, white blood count (WBC) and age at diagnosis.
In the original paper, the primary interest of the authors was to use gene expression
profiling to discriminate the known major prognostic subtypes. Although the experiment
was not designed for testing association of gene expression with treatment outcome, we

were interested in the biological processes that are associated with treatment response or
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outcome. We were also interested in demonstrating the flexibility and utility of POST
procedure in association studies and potentially use this method for our ongoing or future
gene profiling studies in current AML trials. Several prognostic factors: core binding
factors (CBF: inv(16) and t(8;21)), age at diagnosis, other 11g23 translocation, M7
without t(1;22) and FLT3-ITD, have been explored and are associated with clinical
outcome in a more recent trial (Rubnitz et al., 2010[48]). Some of these prognostic
features need to be adjusted for in association with clinical outcome in gene profiling
analyses.

In Affymetrix U133A annotations, 1057 biological processes are represented by at
least 5 probe sets, and up to 2641 with mean 52 and median of 13 probe sets. We were
interested in the biological processes that are associated with various clinical outcomes,
such as event-free survival (EFS) and risk of relapse, or associated with presenting
features such as core binding factor (CBF) vs other. EFS was defined as the time elapsed
from enrollment to induction failure, withdrawal, relapse, secondary malignancy, or death,
with those living and event-free censored at last follow-up. From the available methods,
there are no methods able to deal with all these phenotypes using original expression data
in a gene set level.

Association with survival outcome

In the first application, we applied POST procedure to survival analysis setting. We
were interested in biological processes associated with EFS. In previous studies, CBF has
been shown to be a favorable prognostic factor. Here, we were interested in the
association adjusting for CBF and stratified by study protocols. The treatment protocols
had tremendous effect on treatment outcome, especially the combined cohort spanned two
decades. The treatment regimens and available drug were different among the trials, and
supportive care were also improved in recent trials. We could perform Cox proportional
hazard regression with feature level signals and CBF as predictors stratified by study

protocols, then perform GSEA analysis on the obtained p-values, rank the biological

69



processes and perform FDR control. Instead, we performed POST test, FDR control and
subsequent feature level testing if needed. For each of biological process,
variance-covariance of the feature-level signals was calculated and eigenvalue
decomposition were performed. ¢ was set to 0.95, ie 95% variation of feature-level signals
could be explained by selected eigenvalues. The feature-level signals were then projected
to the selected orthogonal space. EFS was then modeled with Cox proportional hazards
model with each projected vector and CBF as covariates, stratified by study protocols to
obtain z statistics for each selected projected vector. The POST test statistics was
calculated according to equation (4.5). The original projected vectors were re-sampled

B = 200 times to obtain 200 random samples, which were then fit into the same Cox
proportional hazards model to estimate the covariance of Z. The p-value was determined
by generalized chi-square using the algorithm by Farebrother (1984) implemented in R (R
package: “CompQuadForm”). The computing resource demanding was not heavy. The
whole analysis could be completed in 8 hours with one central process unit (cpu).

Figure 4.1 showed the p-values of association of biological processes with EFS
adjusting for CBF and stratified by treatment protocols. From QQ plot in the left panel, a
few processes were on the border line above the null area of no association. Another
indication from QQ plot was that the biological processes were not disjoints. Some of
these biological processes could be associated with EFS. We noticed that in one biological
process, the first projections explained at least 95% of variation. The numbers of PCAs
were from 1 to 91 with mean 17 and median 9, significantly reduced dimensionality.
There were no special patterns in p-values vs. number of PCAs used in the sets (Figure
4.1, left panel). This indicated that the POST procedure does not bias to sets with low or
high numbers of PCAs.

The biological processes defined in the AFFY annotation were not disjoint, some
probes were in multiple biological processes. So, the p-values were not independent. Most

methods for FDR control assume independence of p-values, such as Benjamin Hochberg

70



1.0

0o

@ om>
oDOD  OD0C

0 OO 0D DO0 @ QD0 QI

@ DO CI

08
|

WD O @ @

ADEOTO0 CHICHD N0 ab oD @O W0 OUl O@000
@O O@O DOD@O M ORDEMN QUD W

04
0000 OO 0000 00D

Observed -log10(p)

02
|
D oD

o o@ oo

O & Cl-]
E S o 8 @ a0
© W e & o @

oé g o%ooooo o BE

T T T T T T T T T T T T T T
00 05 10 15 20 25 30 1 2 5 10 20 50 100

Expected -log10(p) Number of PCA

POST p value
[+]
D @D D @ED @ 0000 OO0 dModdd O O O0@mOo OmD O O a0 OO0

Fig. 4.1: Association of Biological Process with EFS in AML

Panel A: QQ plot of p-values of association of Biological Process with EFS. Panel B:
POST p-values vs. number of PCAs in the tests.

Nature Reviews | Cancer

Fig. 4.2: CTNNBI-independent WNT signaling pathways.

Jamie N. Anastas & Randall T. Moon, Nature Reviews Cancer 13, 11-26 (January 2013)
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Table 4.3: Top biological processes associated with EFS in AML

Biological Process nProbe nPCA POSTStat p-value g-value
Regulation of Wnt receptor signal- 18 12 82.1 5.6e-05 0.12
ing pathway

Mitochondrial electron transport; 29 18 31.9 3.0e-04  0.16
NADH to ubiquinone

Coenzyme A biosynthesis 5 4 13.5 4.8e-04 0.19
Positive regulation of glucose im- 5 4 17.6 8.1e-04  0.23
port

Establishment and/or maintenance 56 33 127.7 1.3e-03  0.25
of chromatin architecture

Lipid catabolism 81 44 221.3 1.5e-03  0.29
Arginine catabolism 9 6 37.3 2.3e-03  0.31
Activation of JNK activity 20 14 50.7 2.5e-03  0.32
Nitric oxide mediated signal trans- 9 6 55.0 3.3e-03  0.33
duction

Regulation of heart contraction 48 30 170.5 3.7e-03  0.34
Secretory pathway 10 7 25.1 4.0e-03 0.35
Response to toxin 13 10 59.2 4.2e-03 0.36
Morphogenesis 192 69 526.3 4.2e-03  0.37
Protein import into mitochondrial 6 4 7.6 4.2e-03  0.37
matrix

Regulation of dephosphorylation 7 5 17.7 5.6e-03  0.37
Transmission of nerve impulse 5 4 27.3 6.9¢e-03  0.38
Positive regulation of gluconeogen- 6 5 18.5 7.0e-03  0.38
esis

Negative regulation of protein 18 12 429 7.0e-03  0.38
biosynthesis

Negative regulation of cytokine 5 4 7.2 7.7¢e-03  0.39
and chemokine mediated signaling

pathway

Acetylcholine receptor signaling; 8 7 30.3 7.7e-03  0.39
muscarinic pathway

Regulation of neuron differentia- 7 5 26.8 7.8e-03  0.39
tion

Very-long-chain fatty acid 6 5 36.0 8.6e-03  0.40
metabolism

Notes: Twenty-two biological processes are selected with FDR 0.4; important signal
transduction pathways are highlighted in red.
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1995. Here, the robust FDR estimation method proposed by Pounds and Cheng (2006)
was used to control FDR.

With g-value (FDR) cut off 0.4, 22 biological processes were selected to be
associated with EFS adjusting for CBF and stratified by treatment protocols (Table 4.3).
Out of the 22 biological processes, five were signaling pathways. In particular, regulation
of Wnt receptor signaling pathway was ranked as the number one among the 1057
pathways studied (p = 0.000056). Wnts are secreted glycoproteins that regulate multiple
signaling pathways through both 3-catenin (CTNNB1)-dependent and
CTNNB 1-indpendent mechanism (Figure 4.2). Wnt signaling pathway plays an important
role in normal and leukemic hematopoietic stem cells and is an important target in several
leukemogenic pathways (Mikesch et al., 2007)[49]. Wnts and WNT pathway components
are frequently over or under-expressed in different human cancers. WNT signaling
pathway is well studied and has been shown involved in many development processes, and
various types of cancer such as stomach, soft tissue pancreas, liver, ovary, kidney, and so
on (reviewed by Anastas et al., 2012[50]). It recently become one of the target pathways
to develop therapeutic drugs. JNK singling pathway is another important pathway that is
involved in apoptosis and cancer development (reviewed by Wagner and Nebreda
2009[51], Figure 4.3) and showed significant association with EFS in AML (p = 0.0025).
JNK and p38 mitogen-activated protein kinases have import roles in signaling mechanism
that regulates cellular responses to stresses, cell proliferation, survival in a cell-type
specific manner. Their expressions and activities are altered in human tumors and cancer
cells. Several phase I and II clinical trials are testing drugs directly targeting JNK in
multiple cancers. The identification of regulation of JNK activity process in association
with survival outcome further implicates the importance of JNK pathway. On the other
hand, the identification also indicates the utility of the method.

Nitric oxide mediated signal transduction was ranked number 9 among the 1057

biological processes associated with EFS in AML. Nitric oxide has mixed effect in
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Fig. 4.3: Human JNK signaling pathways.

Erwin F. Wagner & Angel R. Nebreda Nature Reviews Cancer 9, 537-549 (August 2009)
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carcinogenesis. It could both cause DNA damage and protect cells from cytotoxicity;
could inhibit and stimulate cell proliferation; and could be both pro- and anti-apoptotic
(Hussain et al., 2003[52]). The biological process of establishment and/or maintenance of
chromatin architecture was also significantly associated with EFS (ranked #5, p = 0.0013).
Chromosomal trans-location, inversions, chromosomal deletion or amplification were
frequently observed in many cancers. Nambiar et al. (2008[53]) provided an extensive
review on chromosomal translocations in AML, ALL and other more than 20 cancers.
These important cancer related pathways were picked up in the POST analysis, further
indicating the utility of POST procedure.

Association with categorical features

In the second application, we investigated the association of biological processes
with core binding factors (CBF). The subjects were classified as with CBF (1) or without
CBF (0). Using logistic regression model with study protocol as one of the covariates, we
performed POST analysis similar to EFS to explore the association between biological
processes with CBF.

With FDR 0.1, 113 biological processes were selected to be significantly associated
with CBE. Out of the 113 biological processes, 26 were related to signaling transduction
pathways or regulating a biological process (Table 4.4). These included many important
signaling transduction pathways such as: cell surface receptor linked signal transduction,
transmembrane receptor protein tyrosine kinase signaling pathway, integrin-mediated
signaling pathway, intracellular signaling cascade, cell-cell signaling, and regulation of
transcription through various mechanisms. These results suggest that AMLs with CBF
and those without CBF are dramatically distinct diseases in term of underlying disease
biology.

Association with time to events with competing events
Despite significant progress in treating patients with pediatric acute myeloid

leukemia (AML), 20%-33% of patients still experienced relapse. Here, we were interested

75



Table 4.4: Summary of signaling and regulation biological processes associated with CBF
in AML.

Biological Process nProbe nPCA POSTstat p-value g-value
Regulation of cell growth 152 60 251.9 0.0000  0.000
Androgen receptor signaling pathway 70 35 116.3 0.0000  0.000
Regulation of apoptosis 177 57 261.5 0.0000  0.000

Positive regulation of I-kappaB kinase/NF- 149 53 249.3 0.0000  0.000
kappaB cascade

Regulation of transcription 646 84 2469.1  0.0000  0.000
Negative regulation of progression through 222 67 574.7 0.0000  0.000
cell cycle
Negative regulation of transcription; DNA- 71 35 67.2 0.0000  0.000
dependent

Positive regulation of transcription from 80 36 678.5 0.0000  0.000
RNA polymerase II promoter

Regulation of transcription; DNA-dependent 2641 91 7417.5  0.0000  0.000
Regulation of transcription from RNA poly- 357 76 711.8 0.0000  0.000
merase II promoter

Regulation of translation 104 43 102.3 0.0000  0.000
Signal transduction 2347 91 6949.9  0.0000  0.000
Cell surface receptor linked signal transduc- 310 74 734.3 0.0000  0.000
tion

Transmembrane receptor protein tyrosine ki- 146 61 542.7 0.0000  0.000
nase signaling pathway

G-protein coupled receptor protein signaling 679 87 1953.6  0.0000  0.000

pathway

Integrin-mediated signaling pathway 102 49 496.8 0.0000  0.000
Intracellular signaling cascade 614 83 1540.2  0.0000 0.000
Small GTPase mediated signal transduction 318 73 621.7 0.0000  0.000
Cell-cell signaling 445 82 1797.5  0.0000  0.000
Regulation of progression through cell cycle 432 78 12429  0.0000 0.000
Positive regulation of cell proliferation 203 67 645.6 0.0000  0.000
Negative regulation of cell proliferation 284 74 727.1 0.0000  0.000
Negative regulation of lymphocyte prolifera- 6 1 9.8 0.0018  0.017
tion

Negative regulation of JNK activity 6 5 0.1 0.0023  0.023
Glutamate signaling pathway 21 17 6.7 0.0071  0.067
DNA damage response; signal transduction 8 7 0.6 0.0086  0.080

resulting in induction of apoptosis

Out of the 113 biological processes that associated with CBF, 26 are signaling andor
regulation biological processes.
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in biological processes that are associated with risk of relapse. Risk of relapse was defined
as time elapsed from enrollment to relapse with induction failure, withdrawal, secondary
malignancy and death treated as competing events, patients without any event were
censored at last follow up. For each biological process, the time to relapse was modeled
with each projected vector in the biological process, CBF, treatment protocol as
independent predictors in Fine and Grays (1999) competing risk regression model, which
is similar to EFS.

Table 4.5 showed the top 20 biological processes that were associated or risk of
relapse, with a false discovery rate of 0.45. Out of the 20 biological processes, three were
important signaling pathways: Nitric oxide mediated signal transduction (p = 0.0016),
Regulation of Wnt receptor signaling pathway (p = 0.0037), and Activation of JNK
activity (p = 0.0051). These three signal transduction pathways were also associated with
event-free survival in AML.

4.5 Discussion

POST is a general procedure designed for set-based association studies. It is very
flexible and can be adapted to many types of endpoints of interest. In the example
applications in section 4.4, we demonstrated how to perform POST test for binary
endpoint (logistic regression) and time to event endpoint (Cox proportional hazard
model). Applying POST to continuous normal endpoint is trivial (linear regression).
POST also could be applied to time to event endpoint with competing events. In this case,
Fine and Gray (1999) competing risk regression can be applied to model event of interest
with competing events after orthogonal projection. In fact, any parametric models with
z-type of statistics (standard normal under null) could be applied to the POST test. After
orthogonal projection, parametric modeling is applied to each projected vector. Certainly,
non-parametric model could also be used as long as the statistics for each projected vector
is standard normal under null. So, POST can handle most types of endpoints of interest in

practice, which makes POST procedure very attractive.
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Table 4.5: Summary of biological processes associated with risk of relapse in AML.

Biological Process nProbe nPCA POSTstat p-value qg-value
Positive regulation of glucose import 5 4 18.9 0.00053  0.35
Nitric oxide mediated signal transduc- 9 6 64.8 0.00160  0.35
tion

Mitochondrial  electron  transport; 29 18 28.4 0.00160 0.35
NADH to ubiquinone

Phagocytosis; engulfment 8 6 54.8 0.00240  0.35
Regulation of dephosphorylation 7 5 20.7 0.00250  0.35
Arginine catabolism 9 6 37.4 0.00260  0.36
Protein import into mitochondrial ma- 6 4 8.3 0.00270  0.37
trix

Positive regulation of gluconeogenesis 6 5 22.3 0.00280  0.37
Acetyl-CoA biosynthesis 5 5 11.9 0.00320  0.39
SRP-dependent cotranslational protein 6 4 26.0 0.00340 041
targeting to membrane

Regulation of Wnt receptor signaling 18 12 50.7 0.00370  0.41
pathway

Activation of JNK activity 20 14 48.6 0.00510 042
Fructose 2;6-bisphosphate metabolism 6 5 22.4 0.00510 0.44
Very-long-chain fatty acid metabolism 6 5 40.3 0.00530  0.45
Negative regulation of protein biosyn- 18 12 47.0 0.00600  0.45
thesis

Transmission of nerve impulse 5 4 28.5 0.00710  0.45
Insulin secretion 5 4 9.2 0.00770  0.45
Secretory pathway 10 7 23.0 0.00780  0.45
Lipid catabolism 81 44 208.0  0.00810  0.45
Porphyrin biosynthesis 13 8 27.8 0.00850  0.45
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Empirical orthogonal function projection or PCA projects the original data in a set
to an orthogonal subspace spanned by eigenvectors. In each projected vector, the variation
is maximized besides maintaining orthogonality. This potentially increases the power of
detecting significant association of a set with an endpoint of interest, especially in the
circumstance where feature level data in a set are weakly associated with the endpoint
marginally but jointly show strong association. Gene sets such as pathways could be
arbitrary with wide range in sizes. The dimensions are significantly reduced without much
loss of information and potentially remove noise after orthogonal projection. In the
example applications, some of the biological processes are with sizes of hundreds to 2000,
which could be reduced to the sizes of dozens to a hundred with 95% variation among
features retained. The choice of 9 is arbitrary and should be predefined before the
analysis. As shown in the simulation study, POST method is robust to the choice of 9 for
most gene sets as it is greater than 90%. The set definitions are usually derived from
available databases or prior knowledge, and should be determined before the analysis. We
do not suggest modifying set definition during analysis. Theoretically, any set can be
shown significant association after certain modification. Modifying set definitions during
analysis makes the test’s validity questionable.

POST also has other desirable attributes. POST is self-contained. POST test for one
set will not be influenced by genes in other gene sets. Geoman and Buhlmann 2007
pointed out that self-contained null hypothesis testing in gene set analysis gives advantage
of valid p-values and easy interpretability. The POST test is model based and does not
require permutation to determine p-values, although it does require resampling technique
to estimate one parameter. The POST test is still computationally efficient. In the example
application of association with EFS, the whole POST procedure took about 8 hours on a
single CPU with 105 subjects and 200 bootstraps.

POST test statistic is defined as a quadratic form with the corresponding eigenvalues

as diagonal elements. This choice of weight assumes that more variation among features
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in a set carries more information of association with an endpoint of interest. In most cases,
this is a reasonable assumption. However, this assumption need to be further investigated
in some circumstances. Alternative weighting strategy could be used and should be
determined before analysis. We do not recommend searching for optimal weighting to
extend POST in practice. We do not recommend different weighting schema for different
sets in one application either.

To derive the generalized Chi-square distribution of POST statistics, we assume that
vector z is a multivariate normal vector with mean 0 and an unknown variance-covariance
matrix under the null hypothesis of no association between the set and an endpoint of
interest. This assumption is valid in general. We need to use bootstrap resampling to
estimate the unknown variance-covariance matrix. Usually, 200 or more bootstrap
samples are desirable. As resampling technique used, we suggest applying POST
procedure to data set with decent sample size. POST is design for test association in large
clinical or biomedical studies. We do not recommend applying POST test to data set with
less than 30 subjects.

POST is motivated by analysis of gene profiling data generated by microarray chips.
However, POST is not limited to gene profiling data analysis. It also can be applied to
other high dimension data as long as the data can be assumed to be normally distributed or
after normal transformation in predefined sets. After careful data preparation, POST
procedure can be applied to RNA-seq data for gene profiling, DNA methylation data
either from next generation sequencing or from methylation array for studying epigenetic
effects. Currently, we are trying to apply POST procedure to DNA methylation data.

In summary, POST is a general, very flexible procedure for association analysis in
high dimension data. It can be easily adapted to various types of endpoints and data

generation mechanisms.
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Chapter 5
LOCIT: A FRAMEWORK FOR LOCUS-BASED INTEGRATED
ASSOCIATION TEST IN HIGH DIMENSIONAL DATA

5.1 Introduction

High throughput technologies have enabled researchers to study thousands of
genomic features of living organisms. Starting from gene expression profiling studies
using microarray technology, high throughput technologies have been developed to
understand the biological mechanisms of diseases and other biological phenomena.

Micro RNA (miRNA) is a small non-coding RNA molecule, which functions in
transcriptional and post-transcriptional regulation of gene expressions. The human
genome encodes over 1000 miRNA which may target about 60% of genes (Bentwich,
et al., 2005)[10]. miRNA are abundant in many cell types and are involved in many
biological processes. Expression levels of miRNA are measured by microchips and by
direct sequencing techniques. Epigenetic is a phenomenon in which gene expression and
other cellular phenotypes are influenced by mechanisms other than changes in the
underlying DNA sequence, such as histone modification, DNA methylation and RNA
editing. Histone modifications are studied using ChIP-Chip method (chromatin
imunoprecipitation with microarray technology, Lieb et al. 2001[11]) and, more recently,
Chip-seq (based on next-generation sequencing technology, Johnson et al., 2007[12]).
DNA methylation levels are measured by microchip such as Illumina Infinium
Methylation array, or pyrosequencing. It has been shown that DNA methylation variations
are associated with multiple complex diseases. SNP arrays and direct sequencing have
been widely used to study germline or disease polymorphisms associated with disease
predisposition or treatment outcomes.

For many diseases and other biological outcomes, a variety of data are usually
collected. For example, gene expression, DNA methylation, micro RNA, and SNP data

could be available for each subject in a study cohort. To analyze these data, traditional
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association testing could be performed to relate each data type with an endpoint of
interest. For each form of association procedure, FDR controls are usually performed to
account for multiplicity of tests, before declaring a list of genes to be significantly
associated with an endpoint of interest. Following such testings, the result for each data
type can be used by investigators to obtain an overlapping list of genes. It is not
uncommon to find that there is little overlaps between the genes on various lists. Given all
forms of data, one question that investigators tend to ask is which genes are significantly
associated with the endpoint of interest and should be followed in a future study. If there
are some overlaps between result lists, the FDR control of the multiple testing for the
significance of such overlaps is usually quite challenging. To address this challenge, an
integrated association test approach is needed.

One approach that has been widely adopted in various fields, including meteorology
to identify spatial and temporal patterns, genetic patterns analysis, and identification
population structure in GWAS, is use of empirical orthogonal functions (EOF) analysis or
principal component analysis (PCA). The important property of EOF and PCA is
dimension reduction for high dimensional data. For a gene or locus set, the dimension are
usually large. EOF and PCA are dimension reduction tools which also capture most
information of the data.

In this chapter, we propose another approach: the Locus-based Integrated Test
(LOCIT), as a flexible statistical procedure to test association of a locus with the endpoint
of interest given multiple sources of high dimensional data. In the LOCIT procedure, we
perform one hypothesis testing with multiple sources of data for a locus. This reduces
number of tests and therefore results in better FDR control. As will be shown, the LOCIT
procedure is flexible and can handle data from various endpoints to be adapted to different
model structures. In section 5.2, we describe the LOCIT procedure. Section 5.3 presents
the results from real applications and Section 5.4 presents simulation studies. Finally,

Section 5.5 provides the discussion and concluding remarks.
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5.2 Methods
5.2.1 The LOCIT method

Suppose that g = 1., ..., w,; genomic features from source ¢ = 1,...,m in the j™
locus S; for j = 1,..., k are measured for ¢ = 1, ..., n subjects. Also, suppose that data
of endpoint variables and [ = 1, ..., v covariates are available for these subjects. For
v=1,...,n,9g=1,,...,w;and c = 1, ..., m, let y;, represent the value of genomic

feature g for subject i. Let y, represent the vector (Y4, Yag, - - - Yng) of values for genomic
variable g for all subjects and let Y, represent the set of all y, for locus .S;. For
l=1,...,v,let g; represent the value of covariate [ for subject 7, and Q; be vector of
(q11, @21, - - - g1 )- Additionally, let z; represent the value of endpoint for subject ¢ and X
represent the vector (z1,...,x,).

For g = 1., ..., w.;, we perform traditional parametric testing with endpoint
variables X as dependent variables and y,, as independent variables, adjusting for
covariates QQ;. The model structure could be linear, generalized linear, or Cox proportional
hazard model when the endpoint variables are survival times. Let z, be the z-statistics
retrieved from the model measuring association between gene expression measurements

¥, and endpoint variable X, and let

/
z; = (zhj,ZQU,...,zwl].,...,zwmj) 5.1
be the vector of z-statistics measuring association of y, for g = 1.;, ..., w,; and
¢ =1,...,m with the endpoint X. The main interest is whether the locus S}, for
J =1,..., k, has significant association with the endpoint of interest (with adjustment

made for covariates). Under the assumption that all the genomic features in the locus

carrying same information of association with the endpoint, we use as a test statistic
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to measure the association between S; with X. We label this statistic as LOCIT statistic.
Next we need to determine the p-value of observing as extreme as t; under null

hypothesis where \S; is not associated with endpoint: Pr(T; > t;). Under null of no

association between set S; with endpoint X, z; is a multivariate normal vector N (0, ., )

with mean 0 and variance-covariance matrix %... According to Duchesne and Lafaye de

Micheaux (2010), let matrix C be the Cholesky decomposition of > satisfying

C'C = %, and U be such that UU’ = L, ; and that diagonalizes CIC,

UCIC'U’ = D = diag(\1, - - ., Aw,,,). Assuming Ay > ... > A, > 0 and

Ari1 = ... = Au,,, = 0andletting Y = UC'"'Z;, Y is distributed as N (0,1,,,,). The

quadratic form in equation (5.2) can be expressed as a weighted sum of chi-square random

variables:

T; =2jz; = Y'DY = > A\ (5.3)

s=1
Farebrother (1984) and others have derived algorithm to calculate Pr(T; > t;) for
quadratic form in equation (5.3). In practice, we do not know the correlation structure of
elements in z; and variance-covariance matrix %... One way to get an estimate of X is

by bootstrap re-sampling. We sample Y ; with replacement 5 times to get B bootstrap

samples Y}‘l, Y;Q, e ,YjB . For each bootstrap sample Y}, parametric models are fit for
each component of Y;‘ to obtain z;. We get Z;‘f = (zjl, sz, ey Z;B ) and the estimate of
3., is the variance-covariance matrix of Z;

SHh /

Y., = cov(Z}) (5.4)
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and T is approximated by

T; =zjz; ~ Y Ay (5.5)

s=1

Where, )Ts are derived as above with Z/; replacing ¥ .

In Biological system, genes do not function by their own, and depend on each other
to function as biological processes. So, loci could have profound dependence and LOCIT
requires a multiple testing procedure that remains effective when the tests are dependent.

Yekutieli and Benjamni (1999) proposed a resampling-based FDR control procedure
for dependent test statistics. The FDR control method has been used in several gene set
analysis methods. We also provide this method as an option to control FDR in LOCIT
analysis. Besides the B bootstrap samples to estimate 3., D) permutations of the subject
labeling are performed for resampling-based FDR control. Let T'; denote the LOCIT
statistic in equation (5.2) computed from the j** locus. Let T4 be the value of T}
computed using the d** permuted samples. We follow the convention that permutation 1
represents the original data; thus, T; = T;; forall j =1,...,k. Forany j = 1,...,k and
d=1,...,D, we obtain p;; by same generalized chi-square approximation as in equation

(5.5). For a given rejection region, [0, p|, the estimate of the FDR is given:

FDR(p) = miny sy | = i Mule) (5.6)
TEA\D - 1= Ra(p) +S(Y)
Where
k
Ra(p') =Y I(pja <) (5.7)
j=1
and
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Sa(p)) = Ri(p)) — 5—=>_ Ra(p) (5.8)

The FDR also could be controlled by Benjamini and Yekutieli (2001) method with
dependency. In applications that loci are weakly correlated, the resampling-based FDR
controlling could be dispensable. False discovery rate could be estimated using methods
such as FDR estimates by Benjamini and Hochberg (1995) or robust FDR estimates by
Pounds and Cheng (2006).

The LOCIT method is implemented by following steps:

1. Perform parametric modeling to get association vector z;.

2. Define the LOCIT statistic to be quadratic form as in equation (5.2).
3. Bootstrap to estimate covariance Z/\Z] under null as in equation (5.4).
4. Determine p-value based on generalized chi-square.

5. Perform same 1 to 4 steps for each locus.

6. Perform multiple testing adjustments, either resampling-based or other FDR

controlling methods.

5.2.2 The LOCIT extension

The LOCIT test assumes that most of the genomic features in a locus show similar
association with endpoint of interest. However, this is usually not the case. The LOCIT
test with equal weight puts high penalty on a locus where most genomic features are not
associated with the endpoint of interest. One potential strategy is to use different weights
to define the LOCIT statistics. Another strategy is to perform feature selection prior to

LOCIT test. It is also possible to combine these two strategies.
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We implement a strategy of using different weights in defining the LOCIT statistics.
As there are more than one form of genomic features for a given locus, we assume that
each form of genomic feature makes the same contribution to the overall association with
an endpoint of interest. For this purpose, the weights are simply set as 1. If there are more
than one genomic features in a given form, an orthogonal projection is performed on a
sub-orthogonal space that explains predefined fraction of total variation of the features and
the weights are assigned according to the eigenvalues. This can be regarded as an
extension of POST to multiple forms of genomic data in a locus. We label this procedure
LOCITO (LOCIT with orthogonal projection).

Given the setting described in section 5.2.1, suppose there are c = 1, ..., m forms
of genomic data. For ¢ = 1, ..., m, we perform following: For g = 1.5, ..., w.;and
we; > 1, compute a sample estimate of covariance E/JC\J using equation (5.9). Now apply an

eigenvalue decomposition to YJ.; to obtain eigenvalues: \; -y Aw,; in descending order

R
and corresponding eigenvectors: e;_, ..., €y,,. Lett.; < w,.; represent the least number
of eigenvalues explaining a predefined fraction, 0 < 0 < 1, of total variation in the
genomic variables for cj, and project Y ; to the orthogonal subspace spanned by

eigenvectors e; ., €, as given in equation (5.10). The selected eigenvalues

cjr

Ay = (A1, ..., A,,) are rescaled according to equation 5.11. If w,; = 1, P; is the

cj?*

original measurement of the genomic feature and \; = 1.

Yej = (Yej = Yej) (Yo — Yo5) (59)
P, = (P, ....,P,) = Y, (e1,,..-.€x,) (5.10)
A::j = ch/ZACj G.1D)

Let Pj = (P1j7 e ,ij), A; = (A,

s A;nj) and A’ be a diagonal matrix with

A’ as diagonal elements. We perform traditional parametric testing with endpoint variable
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X as dependent variable and each projected vector of P; as independent variable,

adjusting for covariates Q;. Let

Z; = (le7"'7zt1j7"'7ztmj) (512)

be the vector of z-statistics measuring association of each projected vector in P; with the
endpoint variable X. The statistics measuring association between ;' locus with the

endpoint variable X is defined as in equation 5.13

Tj = Z;-Aij (513)

The Pr(T; > t;) is approximated by generalized chi-square approximation as in
equation (5.5). Resampling-based FDR control procedure can be carried out according to
above section.

The LOCITO procedure is implemented by the following steps:

1. For j*" locus, perform orthogonal projection
(a) Calculate covariance matrix of ¢! form of genomic features and perform
eigenvalue decomposition.

(b) Select first few eigenvalues to explain 0 fraction of total variance and project

feature level data to the selected orthogonal space to obtain projected data.
(c) Scale the selected eigenvalues according to equation 5.11.

(d) Repeat (a) to (c) for each form of genomic features and get projected data P;

and scaled A}

2. Perform parametric modeling for each projected vector to get association vector z;.
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3. Define the LOCITO statistic to be quadratic form as in equation (5.13).
4. Bootstrap to estimate covariance Z/\Zj under null as in equation (5.4).

5. Determine p-value based on generalized chi-square.

6. Perform same 1 to 5 steps for each locus.

7. Perform multiple testing adjustments, either resampling-based or other FDR

controlling methods.

5.3 Applications

To illustrate the performance of LOCIT and LOCITO, we use a dataset of AMLO02
clinical trial (Rubnitz et al., 2010[48]). Dense SNPs were genotyped in 187 patients by
targeted genotyping in 37 genes[54, 55] and corresponding expressions of these genes
were obtained from gene profiling data measured for these subjects by U133 A microarray.
The 37 genes include genes in araC pathway (see figure 5.1) and other key genes in drug
metabolism. The prodrug araC is up-taken into cytoplasm by transporter hRENT1,
phosphorylated to active drug araCTP by three kinases sequentially; araCTP is then
transported into nucleus and incorporated to DNA/RNA during synthesis which blocks
DNA/RNA synthesis leading to apoptosis (program cell death); the active drug araCTP is
also metabolized to inactive forms by dephosphorylation and deaminase, and is competed
with dCTP. The understanding of these genes in patient responses to araC treatment will
help tailoring treatments for patients in future. From the previous analyses, several SNPs
were significantly associated with event-free survival (EFS). Here we investigate to see if
any genes were significantly associated with EFS and ranked high given SNPs and gene
expression data.

In addition to testing association of each SNP and expression probe with EFS, an
integrated LOCIT test was performed for each of the 37 genes. EFS was modeled with

Cox proportional hazards model with each SNP or gene expression as covariates, stratified
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by treatment arm to obtain z statistics. The LOCIT statistics was calculated according to
equation (5.2). The subject labels were re-sampled B=200 times to obtain 200 random
samples, which were then fit into the same Cox proportional hazards model to estimate the
covariance of z. The p-values were determined by generalized chi-square using the

algorithm by Farebrother (1984) implemented in R. The results were shown in Table 5.1

Table 5.1: Top target genes that were associated with EFS in AML

Gene N Probe LOCIT Statistics p-value
RRM2 7 19.89 0.017
SLC29A1 4 10.50 0.041

In the individual SNP association study, SNPs of RRM2 have been shown to
associated with EFS (Cao et al., 2013[55]). The LOCIT test ranked the RRM2 as top one
gene associated with EFS among the 37 genes. RRM2 is the small subunit of holoenzyme
of Ribonucleotide reductase, which is key enzyme involved in the biosynthesis of
deoxynucleotides. The second gene in the ranking was SLC29A1, a drug transporter to
transfer nucleotides into cells. The genetics of RRM?2 and SLC29A1(SNP and expression)
were associated with EFS outcome in AML patients treated with prodrug of araC. This
result is consistent with the treatment model, in which prodrugs are transported into cells
and metabolized by enzymes into active drug, eventually integrated into DNA/RNA
synthesis resulting in program cell death.

Noting that the LOCIT incurs penalty on genes with genomic features most of
which are not associated with endpoint of interest. LOCIT with orthogonal projection to
reduce dimension and put heavier weight on import features (LOCITO) was applied to
this dataset. 0 was set to 0.99 and B = 200. The result of LOCITO test is shown in Table
5.2. We find that besides RRM?2 and SLC29A1, both CDA and SOCS3 show association

with EFS in AML at 0.05 alpha level. Orthogonal projection has reduced the dimension of
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Fig. 5.1: Human araC pathway

Prodrug araC is up-taken into cyto

plasm by transporter hENT1, phosphorylated to active

drug araCTP by kinases, incorporated to DNA/RNA during synthesis which blocks
DNA/RNA synthesis and leads to apoptosis; araCTP is also metabolized to inactive forms
by dephosphorylation and deaminase, and compete with dCTP. (Courtesy by Dr. Lamba)
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CDA from 10 to 8 and left the rest 3 genes untouched. However, the projection of genomic

features in SOCS3 has increased the power to detect association of SOCS3 with EFS.

Table 5.2: Top genes associated with EFS in AML with orthogonal projection

Gene Nprobe Ndim Stat Pvalue
RRM2 6 6 7.01 0.016
SLC29A1 4 4 5.32  0.041
CDA 10 8 5.52  0.042
SOCS3 4 4 5.69 0.043
RRM2B 1 1 2.8  0.094

Similarly, LOCITO procedure was performed to test association of the 37 genes
with day 22 MRD (present or absent of minimal residual disease) and over-all survival
(OS) in this AML data set. The results with o < 0.1 are shown in Table 5.3 and 5.4,
respectively. Day 22 MRD is a measurement of early response of araC treatment in AML.
SOCS3 was on the top of the list and RRM?2 the second. DCK (deoxycytidine kinase) was
also significantly associated with day 22 MRD (p =0.035). DCK phosphorylates araC to
araCMP, an intermediate to active drug araCTP. Although DCK was not associated with
EFS, it seems to be important for early response in treatment with araC. CDA (Cytidine
Deaminase) was identified to be significantly associated with OS (p = 0.019). From these
analyses, enzymes both activating the prodrug and deactivating the drug were associated
with early response or long term outcome.

5.4 Simulation Study

LOCIT procedure can be applied to association analyses with various types of
endpoints. To compare the statistical power of LOCITO procedure to that of other
approaches, simulations were performed in a simple setting involving two treatment
groups, where the other approaches could be applied. Twenty disjoint loci were generated
as in table 5.5 with sample size 100 in each of the two treatment groups. Two types of

genomic features were simulated in each locus, both of which were assumed to be
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Table 5.3: Top genes associated with OS in AML with orthogonal projection

Gene Nprobe Ndim Stat Pvalue
SOCS3 4 4 748 0.015
RRM2 6 6 6.55 0.021

DCK 2 2 6.74  0.035
ABCBI 3 3 5778  0.05

DCTD 20 14 43 0.064
CDA 10 8 4.51 0.076
XRCC1 5 4 4.1 0.083
ABCG2 3 3 4.34 0.094

Table 5.4: Top genes associated with day 22 MRD in AML with orthogonal projection

Gene Nprobe Ndim Stat Pvalue
CDA 10 8 6.82 0.019
CMPK 7 7 475 0.071

multivariate normal. These genomic features could be gene expression and DNA
methylation. In DNA methylation, the logit transformation of the fraction of the
methylated signal over total signal(M values) can be used.

In the 20 hypothetical loci, the first six loci(A to F) were small loci with 10
members each(5 from Type A and 5 from Type B); Loc G to M had moderate size with 30
members (10 from Type A and 20 from Type B); and Loc N to T had large size with 100
members (20 from Type A and 80 from Type B). There was no difference between the two
groups in Loc A, F, G, N and T. In Loc B, 2 out of 5 members from type A had moderate
increase (1) of mean in group 2 compared to group 1 and members from type B had no
difference in mean between group 1 and 2. In Loc C, all 5 member from type A had
moderate increase (0.5) of mean in group 2; 2 members of type B had big increase of
mean (2) in group 2. Loc D to S were set up similarly with various combination of
number of differential mean within type A and/or type B. Variance and covariance for

each locus or sub-locus was drawn from Wishart distribution with toeplitz matrix and
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Table 5.5: Locus size and group means of twenty loci in a simulation study.

GeneSet Type A Type B
Size Sub Size Group 1 Group 2 Size Sub Size Group 1 Group 2
Loc A 5 5 5 5 5 5 0 0
Loc B 5 2 5 6 5 5 0 0
3 5 5
Loc C 5 5 5 5.5 5 2 0 2
3 0 0
Loc D 5 5 5 5 5 5 0 1
Loc E 5 3 5 6 5 5 0 0
2 5 5
LocF 5 5 5 5 5 5 0 0
LocG 10 10 5 5 20 20 0 0
LocH 10 10 5 4 20 20 0 1
LocI 10 2 5 7 20 5 0 -2
8 5 5 15 0 0
Loc] 10 10 5 5 20 5 0 2
15 0 0
LocK 10 3 5 7 20 20 0 0.5
7 5 5
Loc L 10 10 5 5 20 5 0 1
15 0 0
LocM 10 3 5 7 20 20 0 0
7 5 5
LocN 20 20 5 5 80 80 0 0
LocO 20 20 5 6 80 30 0 1
50 0 0
Loc P 20 5 5 7 80 40 0 1
15 5 5 40
LocQ 20 20 5 5 80 10 0 2
70 0 0
LocR 20 20 5 5 80 50 0 0.5
30 0 0
Loc S 20 20 5 6 80 80 0 0
LocT 20 20 5 5 80 80 0 0
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number of members plus 10 as parameter. The Variance and covariance with Toeplitz
structure instead of Identity matrix was used to introduce correlation structure among
features within a locus/sub-locus and a form of genomic data. The variance and
covariance matrixes were scaled with diagonal elements around 1.

For each locus and sub-locus, random samples were drawn from multivariate
normal distribution with mean in table 5.5 and variance-covariance generated as above.
One thousand random data sets were drawn. The LOCIT procedure with orthogonal
projection (LOCITO), SAFE (Barry et al., 2005), MRPP test (Nettleton et al., 2008) and
GSA (Efron and Tibshirani, 2007) were applied to each of the 1000 data sets. The power
and type 1 error of the four methods are summarized in table 5.4.

In the five loci without differential expression and methylation, LOCITO method
maintained the nominal alpha level of 5% (2.2% to 5%) for all the three selected
0 :0.8,0.9 and 1; the rest three methods also maintained the nominal alpha level of 5%
well (SAFE: 0% to 0.3%; MRPP: 3.7% to 5.3%; GSA: 0%). SAFE and GSA are too
conservative in alpha level control. In the 15 loci with differential expression and/or
methylation, both LOCITO and MRPP had high power detect difference between the two
treatment groups. SAFE had negligible power to detect difference except for Loc 1
(91.6%) and Q (36.9%). GSA lacked power to detect difference except for Loc H (78%),
Loc I (100%) and Q (97.6%). In the simulation setting, 15 out 20 loci had differential
expression and/or methylation. It demonstrated that the SAFE and GSA procedure loses
power if most of loci are differentially expressed or methylated due to the nature of the
two tests: not selfcontained. MRPP had power to detect locus with any difference,
especially with large difference in part of the loci. This result is consistent with the fact
that MRPP test is designed to detect any differential expression in multivariate spaces.
Unfortunately, the MRPP test is hard to extend to complicated models such as adjusting

for known factors. LOCITO, GSA and SAFE methods can be applied to complicated
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statistical modeling with various phenotypes. From the simulation studies, LOCITO
method performed better in most of the simulated locus settings.
5.5 Summary and Discussion

In this chapter we have shown that the LOCIT procedure for locus-based association
studies is a very flexible method that can be adapted to many types of endpoints. In the
applications to real datasets, we illustrated the implementation of the LOCIT test for
binary endpoint (logistic regression) and time to event endpoint (Cox proportional hazards
model). The application of the LOCIT to continuous normal endpoint is trivially amounts
to a linear regression. In application of the LOCIT to time to event endpoint with
competing events, the procedures Fine and Gray (1999)[56] for competing risk regression
can be applied to model event of interest with competing events. In general, LOCIT test
can be applied to any parametric and non-parametric models with asymptotically normal
test statistics. Thus the LOCIT is reasonably versatile and adaptable to most types of
endpoints of practical interest.

Moreover, LOCIT is self-contained. LOCIT test for one locus does not influence the
test on another locus. Geoman and Buhlmann 2007 pointed out that self-contained null
hypothesis testing in gene set analysis gives advantage of valid p-values and easy
interpretability. This is also true for locus-based test. The LOCIT test is model based and
does not require permutation to determine p-values, although it does require resampling
technique to estimate one parameter. The LOCIT test is still computationally efficient and
can be easily applied to genomic level association testing.

LOCIT test statistic is currently defined as a quadratic form with the corresponding
scaled eigenvalues as diagonal elements. This choice of weight assumes that the more
variation among features in each feature type in a locus carries the more information of
association with endpoint of interest.It also assumes equal contribution of feature types to

the overall association of the locus with the endpoint of interest. In most cases, these are
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Table 5.6: Summary of simulation results on twenty loci with sample size 100 in both
groups.

Loci Differential LOCITO SAFE MRPP GSA
60=08 6=095 6=1

Loc A 0 4.9 4.6 4.3 0 5 0
LocF 0 33 2.8 2.3 0 3.7 0
Loc G 0 3.8 3.5 2.2 0.3 4.4 0
Loc N 0 5 4.8 2.7 0 4.1 0
LocT 0 5 4.3 2.6 0 53 0
Loc B 1 100 100 100 0 100 0
Loc C 1 100 100 100 3.9 100 0.1
Loc D 1 100 100 100 0 100 21.3
Loc E 1 100 100 100 0 100 0
Loc H 1 100 100 100 0 100 78
LocI 1 100 100 100 91.6 100 100
Locl 1 100 100 100 2.3 100 134
Loc K 1 100 100 100 0.5 100 0.8
LocL 1 100 100 100 0 100 0
Loc M 1 99.3 99.3 99.3 0 100 0
Loc O 1 100 100 100 3.8 100 0
Loc P 1 100 100 100 1.3 100 0
Loc Q 1 100 100 100 36.9 100 97.6
LocR 1 76.3 75.3 61.9 0 94.2 0
Loc S 1 100 100 100 0 100 0

Notes: Differential: 0: no difference, 1: difference between the two groups; For loci
without difference, the false positive percentages (type 1 error) are shown; For loci with
difference between the two groups, the true positive percentages (power) are shown.
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reasonable assumptions. However, these assumptions need to be further investigated in
some circumstances.

In current implementation of LOCIT, we used orthogonal projection in each feature
type to reduce dimension. For genomic study with two types of high throughput data in
which one type regulates the other, we also could perform feature selection for large loci.
One potential strategy is to apply sparse cannocial correlation by Karkhomenko et al.
(2009), in which a subset of features are selected to maximize first-order approximation of
correlation matrix. This will be also useful to extend LOCIT to big set level association

testing in genetic studies.
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Chapter 6
SUMMARY AND FUTURE RESEARCH

New revolutionary technologies have provided scientists with tools to study
thousands of genomic features simultaneously. These studies have shed light on
mechanisms underlying the biology of complex diseases through accumulation of
knowledge of gene-gene relationships and identification of gene sets and graphical
pathways. This knowledge has provided vital information for testing global hypotheses
about gene sets and consequently interpreting results from high dimension genetic studies.
In the preceding chapters, we proposed new procedures for utilizing pathway information
in high throughput genetic data.

6.1 Pathways and applications in Bayesian framework

Using the information from graphical pathways and gene networks that capture the
gene relationships in cells, we have described a procedure for incorporating prior
knowledge of gene relationships using directed graphs into genomic testing in a Bayesian
framework. This extends the work of Pan (2006) and Wei and Pan (2008) that used
random Markov field in a mixture model by capturing the actual geometric direction of
gene relationships. The utility of our method is demonstrated by an application to a real
data set with MAPK pathway derived from KEGG in adult AML.

Many public and commercial databases have been developed to structure and store
biological knowledge at various genetic levels and in various organisms. However,
pathways defined by these databases are from multiple tissues and various resources.
Some of the relationships inferred were from high throughput experiments such as gene
profiling, proteomics, Chip-Chip experiment. However, some of these relationships in
pathways may not be applicable to specific experiment units from a different organism.
Moreover, a gene is sometimes represented by multiple names in various databases.
Matching gene names in an experimental platform to gene names in a pathway is a

non-trivial and uncertain task, especially because current pathway databases are not
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statistically or computationally friendly. There is an urgent and practical need for
pathways or gene networks to be expressed in numeric form, such as an adjacency matrix.
This will be more accessible to statistical and computational tools.

In the interest of biological interpretation, pathways or gene networks should be
tailored unambiguously to the specific organism/tissue type of interest. This will allow
researchers to use data from similar organism and tissue/cell type for correlation analysis
and to correctly (biologically) trim pathways derived from pathway databases. Combining
pathway information of relationships from similar biological entities will yield more
biologically correct prior information of genes. Efforts to incorporate such pathways, with
directed graphs, into the construction of posterior information in Bayesian analysis is one
of our future research plans.

6.2 POST in genetic studies

In the construction of POST (Projection onto Orthogonal Space Test), we designed a
test of association of gene sets with diverse types of endpoints of interest. This procedure
has several desirable features: it is flexible, self-contained and amenable to subject
permutation for parameter estimation. POST assumes that more variation among probes
in a set carries more information of association with an endpoint of interest. This is a
critical assumption for the validity of POST. In most applications, this assumption should
hold. POST captures the correlation structure among genomic features within a set, but
this is different from jointly modeling the genomic features in a statistical multivariate
analysis. As shown in a simulation study, it is less powerful than multivariate analysis
such as MRPP test (Nettleton et al. 2008).

POST procedure tests association of a set with endpoint of interest. However it is
not able to pinpoint the most important genomic features or subset of features driving the
association. Therefore, a subsequent analysis is needed to identify the features driving the
association.

POST was developed for gene profiling data. One of our future research plans will
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be to extend POST in application to other types of data such as methylation data,
microRNA, or even SNP after proper transformation. In methylation data, M values, the
logit transformation of beta values are assumed normally distributed. Probes in CpG
island/shore in promoter region tends to be hypo/hyper methylated coordinately. We plan
future research to use POST in this context based on the fact that it is biologically and
statistically feasible to perform gene set association test of methylation data with
endpoints of interest.

In addition, we will extend POST to multiple endpoints, specifically, to clinical
trials where multiple presenting features and outcome variables are collected. The
relationship of these variables are known under specific treatment model. Pounds et al.
(2009)[34] have proposed PROMISE procedure for association of gene expression with
multiple endpoints and then extended it to SNP data (2011)[57]. POST can be extended to
test for gene set association with multiple endpoints of interest under the PROMISE
framework. We plan to develop a POST-PROMISE procedure for gene set level testing
with multiple endpoints.

6.3 LOCIT in genetic studies

Along the same line of thinking, we will extend our work to extend the LOCIT and
LOCITO procedures. In genetic studies with multiple forms of high throughput data, it is
traditional to test association within high throughput data and look for overlap at certain
FDR control. LOCIT was proposed to perform integrated association test and to alleviate
the difficulties encountered due to overlap.

Since LOCIT provides one P-value for multiple data, it is especially valuable for
prioritizing gene/locus for follow-up study. The method was originally applied to small
locus such as gene with equal weights. As noted in the Chapter 5, simulation studies and
real applications indicated that the procedure incurs too much penalty on locus with
moderate to large number of noise features. As an extension, LOCITO was then

developed to overcome the difficulty by performing orthogonal projection within each
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form data. LOCITO reduces dimensionality of locus and puts equal overall weight across
data forms. We plan to apply LOCITO to small loci and big loci sets. We will exam two
forms of genetic data with one form regulating the other. We will also investigate possible
extensions for performing feature selection by sparse canonical correlation similar to

Karkhomenko et al. (2009)[30].
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