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Abstract

Clendenen, Raluca Ioana Pop Ph.D. The University of Memphis. May, 2014.
Wentzell Boundary Conditions with General Weights and Asymptotic Parabolicity
for Strongly Damped Waves. Co-Major Professors: Jerome Goldstein, Ph.D. and
Gisele Goldstein, Ph.D.

In using dynamic or Wentzell boundary conditions in parabolic and hyperbolic

problems in partial differential equations, a positive function β on the boundary

of the underlying domain arises naturally. The relevant space of functions on the

boundary is L2 (∂Ω, dS/β) . In all previous studies, β was positive, continuous, and

both β and 1/β were bounded. In this Thesis, β is merely positive and Lebesgue

measurable. In particular, both β and 1/β can be essentially unbounded. The

construction of the appropriate selfadjoint operator on the L2 space involving both

Ω and its boundary is based on quadratic form methods. This allows for more gen-

eral coeffi cients in the basic elliptic operators. This leads to new wellposedness re-

sults which are applied to give significant extensions of recent asymptotic parabolic-

ity results for strongly damped wave equations.
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1 EXISTENCE OF WEAK SOLUTIONS

1.1 INTRODUCTION

We begin with a bit of recent history. A systematic study of the problem

∂u

∂t
= ∆u, x ∈ Ω ⊂⊂ RN , t ∈ [0,∞) , (1.1)

u (x, 0) = f (x) , x ∈ Ω, (1.2)

∆u+ β
∂u

∂n
+ γu− q∆LBu = 0, x ∈ ∂Ω, t ∈ [0,∞) , (1.3)

was begun by Favini, Goldstein, Goldstein and Romanelli in [8] in 2002. If (1.1)

holds in Ω × [0,∞) , then the Wentzell boundary condition (1.3) becomes a dy-

namic boundary condition when in it we replace ∆u by ∂u
∂t
. As will be explained in

detail shortly, the problem (1.1)− (1.3) can be rewritten, for U = (u|Ω, tr (u)) in

H = L2 (Ω, dx)⊕ L2 (∂Ω, dS/β) ,

as
dU

dt
+ AU = 0, U (0) = F,

where

H = L2 (Ω, dx)⊕ L2 (∂Ω, dS/β) ,

A =

 −∆ 0

β d
dn

γ − q∆LB


1



with A having a suitable domain. Then the Laplacian ∆ and the Laplace-Beltrami

operator ∆LB can be replaced by more general second order symmetric operators.

In [7] (see also [6]), Ω was taken to be a smooth enough bounded domain with

0 < β ∈ C (∂Ω) , q ∈ [0,∞) . Now we comment on the term "suitable domain"

for A.

Let K be the operator A having domain the C2 functions v on Ω in H for

which Av is in H, and v satisfies the boundary condition (1.3) . It was shown in

[7], [6] that the closure of K is a selfadjoint operator on H, bounded below, and

that (1.1) − (1.3) is governed by a (C0) quasicontractive positive semigroup of op-

erators on H. In other words, the provisional domain of A is a core for the selfad-

joint version of A, which is the closure of the original operator. Using the closure

(or core) idea specifies the "suitable" domain of A precisely, but this is an abstract

characterization and it does not explain it in "everyday objects" such as Sobolev

spaces. However, in the bounded domain case in which the boundary ∂Ω and all

the coeffi cients (including β and γ) are of class C∞, then Coclite, Favini, Goldstein,

Goldstein and Romanelli in [5] proved that the domain which makes A seldadjoint

is

H2 (Ω) if q = 0, and

H2
∗ (Ω) = {u ∈ H2 (Ω) : tr (u) ∈ H2 (dΩ)} if q > 0.

In this Thesis we allow β to be a positive Lebesgue measurable function on dΩ,

and both β and 1
β
can be unbounded. This is a serious complication which seems

to prevent the use of the "core" approach used in [7]. Instead we must use the

quadratic form approach to construct the desired selfadjoint operator. Use of the

2



Lax-Milgram Lemma gives an abstract specification of the domain of the selfad-

joint version of A on H, but there does not seem to be a way to characterize it

concretely, in terms of Sobolev spaces. The extension to allow such a general func-

tion β is the main abstract result of the thesis. This permits us to extend signifi-

cantly the recent results on asymptotic parabolicity of dissipative wave equations to

a much more general context.

Let Ω be a proper domain in RN , that is Ω is an open connected set Ω ⊂ RN ,

where Ω 6= ∅, Ω 6= RN and with a suffi ciently regular boundary ∂Ω. We assume

that the boundary ∂Ω is a disjoint union of suffi ciently smooth N − 1 dimensional

surfaces. We let β be a positive function on ∂Ω. We assume β is Borel measurable,

but it need not be continuous. Thus 0 < β (x) < ∞ for all x ∈ ∂Ω, but both β and

1
β
can be unbounded.

We start with the Hilbert space triple,

V ↪→ H ↪→ V ∗, (1.4)

where

H = L2 (Ω, dx)⊕ L2 (∂Ω, dS/β) , (1.5)

and where

V = H1 (Ω, dx)⊕ L2 (∂Ω, dS/β) . (1.6)

Here we use standard Sobolev space notation.

Recall that u ∈ H1 (Ω) implies u has a trace, tr (u) ∈ L2
loc (∂Ω, dS) . If ∂Ω

bounded then tr(u) ∈ L2 (∂Ω, dS) .

3



The arrow ↪→ indicates that the injection is dense and continuous. If u ∈ Hs (Ω) ,

then u has a trace tr (u) in H
s− 1

2
loc (∂Ω) , and we are only interested in the case 1

2
<

s ≤ 3. Moreover, u −→ tr (u) is continous from Hs
loc (Ω) to H

s− 1
2

loc (∂Ω) , and from

Hs (Ω) to Hs− 1
2 (∂Ω) if ∂Ω is bounded.

Note that u|∂Ω ∈ C2 (∂Ω) implies w = ∆LBu ∈ C (∂Ω) , where ∆LB = ∇τ · ∇τ is

the Laplace-Beltrami operator and ∇τ is the tangential gradient on ∂Ω. It may or

may not be true that w ∈ L2 (∂Ω, dS/β) .

We denote

H = L2 (Ω, dx)⊕ L2 (∂Ω, dS/β) by L2
(
Ω, dµ

)
, (1.7)

where dx denotes the Lebesgue measure on Ω and dS denotes the natural induced

surface measure on the boundary ∂Ω. Thus dS/β is the natural surface measure

with weight 1
β(x)

, x ∈ ∂Ω. Also, by definition, dµ|Ω = dx|Ω ⊗ dS
β
|∂Ω (product mea-

sure).

Define

Vq :=

U =

 u1

u2

 ∈ H1 (Ω, dx)⊕H1
q (∂Ω, dS/β) : u2 = tr(u1)

 (1.8)

where

H1
q (∂Ω, dS/β) = L2 (∂Ω, dS/β) if q = 0, (1.9)

and for q > 0,

H1
q (∂Ω, dS/β) = H1 (∂Ω, dS/β) , (1.10)

4



with norm

‖w‖H1
q

=

∫
∂Ω

|w (x)|2 dS (x)

β (x)
+

∫
∂Ω

q |∇τw (x)|2 dS

 1
2

(1.11)

for q ≥ 0. Here ∇τ is the tangential gradient, and this gradient is not present when

q = 0.

We assume 0 < β (x) < ∞ for almost every x ∈ ∂Ω relative to surface measure

dS.

If we had assumed ∫
∂Ω

X{x∈∂Ω: β(x)=0} (y) dSy > 0,

then letting

Γ0 := {x ∈ ∂Ω : β (x) = 0} , dS/β=∞ on Γ0.

Thus any U ∈ H must satisfy u2 = 0 on Γ0, which implies that U satisfies the

Dirichlet boundary condition on Γ0, and Γ0 is a nonnull subset of ∂Ω.

Similarly, if

Γ∞ = {x ∈ ∂Ω : β (x) =∞}

had positive surface measure, then dS/β=0 on Γ∞, so any two choices of u2 : Γ∞ →

C are equal a.e., and thus Γ∞ is irrelevant to our boundary value problem. Thus

our desire to impose a Wentzell boundary condition on all of ∂Ω implies that Γ0 ∪

Γ∞ must be a null set relative to the surface measure dS.

Thus u ∈ H1
q (∂Ω, dS/β) if and only if u ∈ L2 (∂Ω, dS/β) and q∇τu ∈ L2 (∂Ω, dS) ,

5



and

〈v, w〉Vq := 〈v, w〉H1(Ω) + 〈v, w〉L2(∂Ω,dS/β) +

∫
∂Ω

q (∇τv) · (∇τw) dS. (1.12)

These spaces are all complex Hilbert spaces.

We want to be certain that L2 (∂Ω, dS/β) contain enough functions, so that for

instance,

L2 (∂Ω, dS/β) ∩ L2 (∂Ω, dS)

is dense in both L2 (∂Ω, dS/β) and L2 (∂Ω, dS) . For this is suffi cient to assume



δ̃ = β or 1
β
is equal a.e. [dS] to

a function δ : ∂Ω −→ C such that

δ ∈ L2
loc (∂Ω\K) where

K = K and
∫
∂Ω
χK (x) dS (x) = 0.


(1.13)

Next let

Lu = ∇ · (A (x)∇u) (1.14)

define an operator L on functions u ∈ H2 (Ω) , where we assume, for each x ∈ Ω,

α0I ≤ A (x) = A (x)∗ = (aij (x)) ≤ α1I,

A ∈C1
(
Ω,MatN×N

)
,

A (x) is a real Hermitian N ×N matrix, (1.15)

0 < α0 ≤ α1 <∞.

6



We define the Wentzell Boundary Condition to be

Lu+ β∂Aν u+ γu− qβ∆LBu = 0 a.e. on ∂Ω. (1.16)

Here ν is the unit outer normal on ∂Ω,

∂Aν u = (A∇u) · ν

is the conormal derivative with respect to A, and γ is a real function in L∞ (∂Ω) .

More generally, we may replace ∆LB by the operator defined by

L∂u = ∇τ · (B (x)∇τu) , x ∈ ∂Ω,

where ∇τ is the tangential gradient on ∂Ω, and where we assume, for each x ∈ ∂Ω,

α0I ≤ B (x) = (bij (x)) ≤ α1I,

B (x) is a real Hermitian (N − 1)× (N − 1) matrix. (1.17)

Here α0, α1 are as before.

We temporarily assume A, B are suffi ciently smooth as functions of x, and also

that ∂Ω is suffi ciently smooth.

With L we associate the general Wentzell Boundary Condition

Lu+ β∂Aν u+ γu− qβL∂u = 0 a.e. on ∂Ω. (1.18)

7



Because tr (u) ∈ L2 (∂Ω, dS/β) , it follows that γ tr (u) ∈ L2 (∂Ω, dS/β) when

γ ∈ L∞ (∂Ω) .

Hypothesis 1.1. Let each component aij of the real symmetric N × N ma-

trix A be in L∞ (Ω) . Similarly assume each component bij of the real symmetric

(N − 1)× (N − 1) matrix B is in L∞ (∂Ω) . Let 0 < α0 ≤ α1 <∞ satisfy

α0I ≤ B (x) ≤ α1I,

α0I ≤ A (y) ≤ α1I,

for all x ∈ ∂Ω, y ∈ Ω.

Let Z consist of all u ∈ C2
(
Ω
)
∩H satisfying the boundary condition (1.18) , and

by identifying u with U ∈ H above we view Z as a subspace of H, considering H as

L2
(
Ω, µ

)
as in (1.7) . We view A0 as the operator −L on H satisfying the Wentzell

boundary condition (1.18) . That is D (A0) = Z. Then for u, v ∈ Z, identified with

U, V ∈ H,

〈A0U, V 〉H =

〈 −L 0

0 tr (−L)

U, V

〉
= 〈−Lu, v〉L2(Ω) + 〈tr (−Lu) , v〉L2(∂Ω, dS

β )

=

∫
Ω

(A∇u) · ∇vdx+

∫
∂Ω

(
−Lu− β∂Aν u

)
v
dS

β

by the divergence theorem

=

∫
Ω

(A∇u) · ∇vdx+

∫
∂Ω

γuv
dS

β
−
∫
∂Ω

q (L∂u) vdS

8



by the boundary condition (1.18)

=

∫
Ω

(A∇u) · ∇vdx+

∫
∂Ω

γ

β
uvdS +

∫
∂Ω

q (B∇τu) · ∇τvdS (1.19)

by Stokes’theorem on the boundary.

Several conclusions follow now. By Hermitian symmetry of the equality (1.19) in

u and v, A0 is symmetric on H. Moreover, A0 can be represented by the operator

matrix

A0 =

 −L 0

β∂Aν γ − qβL∂

 .

For λ ∈ R,

Aλ := A0 + λI

defines the sesquilinear form

Bλ (U, V ) :=

∫
Ω

(A∇u) · ∇vdx+

∫
Ω

λuvdx

+

∫
∂Ω

[
(γ + λ)

β
uv + q (B∇τu) · ∇τv

]
dS (1.20)

on Z × Z, which agrees with (1.19) when λ = 0 and which extends uniquely by

continuity to a map Bλ : Vq × Vq −→ C (see (1.8)).

9



Then the sesquilinear form Bλ satisfies, for all U, V ∈ Vq,

Bλ (U, V ) = Bλ (V, U). (1.21)

1.2 THE MAIN EXISTENCE THEOREM IN HILBERT SPACE

Note that A0 in Section 1.1 is bounded below. The symmetric operator G con-

structed in Theorem 1.1 is bounded above.

We begin this section by stating our main theorem.

Theorem 1.1. Let Ω be a proper domain in RN with a suffi ciently smooth

nonempty boundary ∂Ω. Assume Hypothesis 1.1. Let Bλ be as in (1.20) . Then

B = B0 defines a Hermitian sesquilinear form on Vq⊕Vq which uniquely determines

a selfadjoint operator G on the Hilbert space H. [For U =

 u1

u2

 , formally

GU = V where v1 = ∇ · A∇u1; and

G =

 L 0

β∂Aν γ − qβL∂


with suitable domain]. The selfadjoint operator G on the Hilbert space H is bounded

above, and G generates an analytic (C0) positive quasicontractive semigroup.

In Theorem 1.1, the domain of G is D(G) = D(Aλ), which is specified by the

last sentence of the statement of the Lax-Milgram Lemma on the next page.

10



We remark that if in Theorem 1.1, Ω is bounded, 0 < β ∈ C (δΩ) and all the

coeffi cients are smooth enough, then the basic calculation which includes (1.18) can

be done in reverse order. Thus if u is the (generalized) solution of the parabolic

problem constructed in Theorem 1.1, and if (using obvious notation) u ∈ C2(Ω) ∩

BC, then u(t) is in the core discussed at the beginning of this section for all t ≥ 0,

and u is a strong solution.

Proof. We consider a Hilbert space triple

W0 ↪→ H0 ↪→ W ∗
0 (1.22)

where the injections are continuous and dense, and W ∗
0 is the (variational) dual

space of W0 with respect to H0.

Now we recall the following well known result.

Lax-Milgram Lemma. Let B0 : W0 × W0 → K (= R or C) be sesquilinear.

Suppose λ ∈ I0 := (λ0,∞) or [λ0,∞) , for some λ0 ∈ R, and let

Bλ (u, v) = B0 (u, v) + λ 〈u, v〉H0 .

Assume that for all λ ∈ I0, there exists positive constants C1, C2 (which depend

on λ) such that, for all u, v ∈ W0,

1) Bλ (u, v) = Bλ (v, u),

2) |Bλ (u, v)| ≤ C1 ‖u‖W0
‖v‖W0

for all u, v ∈ W0

3) Re (Bλ (u, u)) ≥ C2 ‖u‖2
W0

for all u ∈ W0.

11



Then for each f ∈ H0 there is a unique u ∈ W0 such that

Bλ (u, v) = 〈f, v〉H0 for all v ∈ W0 and for any fixed λ ∈ I0.

Furthermore there exists a selfadjoint operator Aλ = A∗λ mapping D (Aλ) ⊂ W0

to H0, with w ∈ D (Aλ) if and only if w ∈ W0 and Aλw ∈ H0, in which case

〈Aλw, v〉H0 = Bλ (w, v) for each v ∈ W0.

The operators Aλ1 − λ1I and Aλ2 − λ2I coincide for all λ1, λ2 ∈ I0. Thus we can

define A = Aλ − λI for λ ∈ I0. Then D (A) = D (Aλ) and A = A∗ on H0. Fur-

thermore, I0 ⊂ ρ (A) . There is a more general version of the Lax-Milgram Lemma

in which B0 need not be Hermitian.

We want to solve the elliptic problem with the general Wentzell boundary condi-

tions using the Lax-Milgram Lemma.

That is, we want to solve

λu1 − Lu1 = f1 in Ω

β∂Aν u1 + (λ+ γ)u2 − qβL∂u2 = f2 on ∂Ω
(1.23)

in a suitable generalized sense. If u and f are smooth enough, then the basic cal-

culation on page 7 says that Lu = λu + f in Ω and the boundary condition (1.16)

holds, then the divergence theorem applies to show Bλ (U, V ) = 〈U, F 〉H . Con-

versely, if this holds and if u, f are smooth enough, then the steps in this argument

can be done in reverse order. The last equation (for all V ) is what we mean by say-

ing that u is a generalized solution of the original problem. But at the level of gen-

erality of Theorem 1.1, the generalized solution need not be a strong solution, and

we do not expect u to belong to H2 (Ω) .

12



We emphasize that we are assuming no regularity on A, B, γ, β except Lebesgue

measurability, plus (1.13) , (1.16) , (1.17) , γ ∈ L∞ (∂Ω,R) and 0 < β (x) < ∞ for

a.e. x ∈ ∂Ω. In this case, u is a solution of (1.23) means U =

 u

tr (u)

 maps

[0,∞) into Vq and satisfies

Bλ (U, V ) = 〈F, V 〉H for all v ∈ Vq

when F =

 f1

f2

 ∈ H. (In fact, this makes sense in the more general case when

F ∈ V ∗q .) This is our definition of generalized weak solution. The Lax-Milgram

lemma supplies us with existence and uniqueness of weak (or generalized) solutions.

Our derivation of (1.19) shows that the Hypothesis 1) of the Lax-Milgram Lemma

is satisfied by Bλ; see (1.20).

Now we check Hypotheses 2) and 3). Then it will follow that there exists a unique

weak solution u1 ∈ H1 (Ω, dx)⊕H1
q (∂Ω, dS/β) of problem (1.23) for λ real and large

enough. We have

Bλ (U, V ) =

∫
Ω

(A∇u) · ∇vdx+

∫
∂Ω

(λ+ γ)uvdS/β

+

∫
Ω

λuvdx+

∫
∂Ω

q (B∇τu) · ∇τvdS .

By the Cauchy-Schwarz inequality we have

|Bλ (U, V )| ≤ max {α1, |λ|} ‖u‖H1(Ω) ‖v‖H1(Ω)

13



+ (|λ|+ (ess sup γ)) · ‖u‖L2(∂Ω,dS/β) ‖v‖L2(∂Ω,dS/β)

+q ‖∇τu‖L2(∂Ω,dS) ‖∇τv‖L2(∂Ω,dS)

≤ C1 ‖u‖W ‖v‖W (for all u, v ∈ W ) .

Thus Hypothesis 2) holds.

Next, for λ real, Bλ (U,U) is real and

Bλ (U,U) =

∫
Ω

(A∇u) · ∇udx+

∫
∂Ω

(λ+ γ)uudS/β

+

∫
Ω

λuudx+

∫
∂Ω

q (B∇τu) · ∇τudS .

Furthermore,

Bλ (U,U) ≥ α0 ‖∇u‖2
L2(Ω) + λ ‖u‖2

L2(∂Ω,dS/β) +

∫
∂Ω

γ |u|2 dS/β

+λ ‖u‖2
L2(Ω) + α0 ‖

√
q∇τu‖2

L2(∂Ω,dS)

≥ min (α, λ) ‖u‖2
H1(Ω)

+λ ‖u‖2
L2(Ω) +

(
λ+

(
ess inf
∂Ω

γ
))
‖u‖2

L2(∂Ω,dS/β)

14



+ ‖√q∇τu‖2
L2(∂Ω,dS) ≥ C2 ‖u‖2

W0
,

and C2 > 0 if λ > 0 and λ > ess inf
∂Ω

γ . Thus we may take I0 =
(

0 ∨
(
ess inf
∂Ω

γ
)
,∞
)
.

Then Hypothesis 3) holds.

The G in Theorem 1.1 is the negative of A constructed above, using the Lax-

Milgram Lemma.

This completes the proof of Theorem 1.1. �
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2 PARABOLIC APPROXIMATION OF THE TELEGRAPH

EQUATION

Let Ω, H, A, B, L, L∂, β, γ, q be as before. We now specify Ω to be an un-

bounded domain in RN , with a suffi ciently regular boundary ∂Ω 6= ∅. We assume

that the boundary ∂Ω of Ω consists of a number of suffi ciently smooth N − 1 di-

mensional surfaces. We let β be a positive a.e. Borel function on ∂Ω. We assume β

is measurable and (1.13) , but it need not be continuous.

Formally, Lλu = ∇ · A∇− λI, by (1.14),where λ ≥ 0. Here L = L0.

Define, on Vq × Vq,

Bλ (U, V ) :=

∫
Ω

(A∇u) · ∇vdx+

∫
Ω

λuvdx

+

∫
∂Ω

(γ + λ)uvdS/β +

∫
∂Ω

q (B∇τu) · ∇τvdS ,

Vqλ :=

{
U =

(
u

tr (u)

)
: u ∈ H1 (Ω) ,

tr (u) ∈ L1 (∂Ω) , q tr (u) ∈ H1 (∂Ω)
}
,

with inner product which depends on λ
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〈w, z〉Vqλ : =

∫
Ω

(A (x)∇w · ∇z + λwz) dx

+

∫
∂Ω

(γ + λ)wzdS/β +

∫
∂Ω

q∇τw · ∇τzdS .

Then, by Theorem 1.1, for λ >
∥∥γ−∥∥∞ , there exists a positive invertible selfad-

joint operator Aλ on H such that

Bλ (u, v) = 〈Aλu, v〉 for all v ∈ Vqλ , u ∈ D (Aλ) .

We can extend Aλ to Âλ, where Âλ : Vqλ → V ∗qλ is bounded. Here A = Aλ − λI =

A0 (and G = Gλ + λI = − Aλ + λI = −A). In fact, B = B0 is Hermitian

since B (u, v) = B (v, u) if and only if A = A∗. A is bounded below by −
∥∥γ−∥∥∞ .

Thus A = A∗ ≥ 0 if γ ≥ 0 on ∂Ω. Here let Ãλ be the restriction of Âλ defined by

D
(
Ãλ

)
= {u ∈ Vqλ : Âλu ∈ H}. Then Ãλ = Aλ. Similarly for A = A0, and Aµ is a

selfadjoint operator on H for all µ ∈ R.

The telegraph and heat equations we consider are, with a a positive constant,

∂2u

∂t2
+ 2a

∂u

∂t
− Lu = 0 in R+ × Ω

Lu+ β∂Aν u+ γu− qβL∂u = 0 on R+ × ∂Ω (2.1)

u (0, x) = f1 (x) ,
∂u

∂t
(0, x) = f2 (x) , x ∈ Ω

17



where R+ = [0,∞) and

2a
∂v

∂t
− Lv = 0 in R+ × Ω

Lv + β∂Aν v + γv − qβL∂v = 0 on R+ × ∂Ω (2.2)

v (0, x) = h (x) , x ∈ Ω.

Here L is as in (1.14).

Consider the abstract telegraph equation (or dissipative wave equation) with ini-

tial conditions

u′′(t) + 2au′ (t) + Au (t) = 0, t ∈ R+, (2.1’)

u(0) = f1, u′(0) = f2.

It is wellposed for a > 0. This can be shown using the spectral theorem and its

associated functional calculus in the space L2 (Ω, dx)⊕ L2 (∂Ω, dS/β) =: H.

The corresponding heat equation problem

2av′ (t) + Av (t) = 0, t ∈ R+, (2.2’)

v (0) = h

is also wellposed for a > 0, again by the spectral theorem.

We want to show that, under suitable hypotheses, given f1, f2 there is an h =
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h (a, f1, f2) such that the solution u of (2.1′) and the solution v of (2.2′) satisfy

u (t) = v (t) (1 + o(1))

as t→∞, i.e.,

‖u (t)− v (t)‖H = ‖v (t)‖H (o (1))

as t→∞. This condition requires that h 6= 0.

Hypothesis 2.1. Let Ω be a proper unbounded domain in RN containing arbi-

trarily large balls, i.e. given R > 0 there is an xR ∈ Ω such that the ball

B (xR, R) :=
{
y ∈ RN : |y − xR| < R

}
is in Ω.

Hypothesis 2.2. Consider, as before, formally

Lu = ∇ · A∇u in Ω,

Lu+ β∂Aν u+ γu− qβL∂u = 0 on ∂Ω.

Suppose A, B are as before but with L∞ entries in the matrices. Then Theorem

1.1 defines a selfadjoint operator A = A∗ ≥ 0 in this context on H = L2
(
Ω, µ

)
,

provided γ ≥ 0.

Hypotheses 2.1 and 2.2 imply, by Theorem 1.1, that this determines a selfadjoint

operator A = A∗ ≥ 0 on H = L2
(
Ω, µ

)
.
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Hypothesis 2.3. Suppose 0 ∈ σ (A) and A is injective, a2I − A is injective, i.e.

a2 is not an eigenvalue of A, where 2a is the friction coeffi cient. Let

Kδ = X[δ,a2−δ] (A) + X[a2,∞] (A)

for δ > 0 and let

K =
⋃
δ>0

Range (Kδ) .

Assume

f2 + af1 ∈ Range
((
a2I − A

) 1
2

)
∩ K

and define

h := X(0,a2) (A)

[
f2

2
+
(
a2I − A

)− 1
2

(
f2 + af1

2

)]
6= 0. (2.3)

Note that K is dense in H, as is the set of h1 defined by the version of (2.3) ob-

tained by deleting X(0,a2) (A) .

Theorem 2.1. Let Hypotheses 2.1, 2.2 and 2.3 hold. Let u solve (2.1′) and v

solve (2.2′) and we view u, v : R+ −→ H.

Then

u (t) = v (t) (1 + o (1))

with h given by (2.3) and h 6= 0.

That is, both u (t) −→ 0, v (t) −→ 0 and

‖u (t)− v (t)‖
‖v (t)‖ −→ 0

as t→∞.
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Proof. We show that A is injective and inf σ (A) = 0.

Assume AU = 0. Then

∇ · (A∇u) = 0 in Ω,

∇ · (A∇u) + β∂Aν u+ γu− qβL∂u = 0 on ∂Ω.

Taking the inner product 〈AU,U〉H = 0 yields

−
∫
Ω

(A∇u) · ∇udx−
∫
Ω

|u|2 dx−
∫
∂Ω

γ |u|2 dS
β
− q

∫
∂Ω

∣∣∣B 1
2∇τu

∣∣∣2 dS = 0.

Since γ ≥ 0 we conclude that u coincides with a constant on Ω. Since u|∂Ω =

trace (u|Ω) , u is a constant on Ω. In addition, since u ∈ L2 (Ω) and
∫

Ω
dx = ∞

by Hypothesis 2.1, it follows that u ≡ 0. Thus A is injective.

Let R > 0 be given. Choose xR ∈ Ω so that the ball B (xR, R) ⊂ Ω. Assume

further, without loss of generality, that B (xR, R) is compactly contained in Ω.

Any function supported in B (xR, R) will satisfy the boundary condition

∇ · (A∇u) + β∂Aν u+ γu− qβL∂u = 0 on ∂Ω,

since the function vanishes on and near ∂Ω. Let

ψ1 (x) = e−
1
x for x > 0,

ψ1 (x) = 0 for x ≤ 0.

Then ψ1 ∈ C∞ (R) . In RN , let r = |x| and let ψ̃2 (x) = ψ2 (r) = ψ1 (r)ψ1 (1− r) .

Then ψ2 ∈ C∞c (R) , ψ2 > 0 inside B (0, 1) and ψ2 (r) = 0 for r ≥ 1. Given
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R > 1, let r = |x| and

ψ̃R (x) =



ψ2 (r) for 0 < r < 1
2

ψ2

(
1
2

)
for 1

2
≤ r < R− 1

2

ψ2 (R− r) for R− 1
2
≤ r < R

0 for r ≥ R.

Finally, let

φ (x) = ψ̃R (x− xR) ,

which is defined on RN , be viewed as a function on Ω. Let ωN =
∫
∂B(0,1)

dS be the

surface area of the unit sphere in RN . Then

〈φ, φ〉H = ωN

∫ 1
2

0

[ψ2 (r)]2 rN−1dr + ωN

∫ R− 1
2

1
2

[
ψ2

(
1

2

)]2

rN−1dr

+ωN

∫ R

R− 1
2

[ψ2 (R− r)]2 rN−1dr.

It is easily seen that there are positive constants k1, k2, such that

k1

(
R− 1

2

)N
≤ 〈φ, φ〉H ≤ k2R

N . (2.4)
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Next,

0 < 〈Aφ, φ〉H =

∫
Ω

(A∇φ) · ∇φdx

≤ α1

∫
Ω

|∇φ|2 dx

= α1ωN

∫ R

0

∣∣∣∣ ∂∂r ψ̃R (x)

∣∣∣∣2 rN−1dr

= α1ωN

[∫ 1
2

0

∣∣∣ψ′2 (r)
∣∣∣2 rN−1dr +

∫ R

R− 1
2

∣∣∣ψ′2 (R− r)
∣∣∣2 rN−1dr

]

≤ α1ωN

∥∥∥ψ′2∥∥∥∞
[(

RN −
(
R− 1

2

)N
N

)
+

2−N

N

]
.

By Taylor’s formula,

RN −
(
R− 1

2

)N
=
N

2
ξN−1 ≤ N

2
RN−1

for some ξ ∈
(
R− 1

2
, R
)
.

Thus

0 < 〈Aφ, φ〉H ≤ α1ωN

∥∥∥ψ′2∥∥∥∞
(
RN−1 + 2−N

2

)
. (2.5)

Combining (2.4) and (2.5) yields

0 <
〈Aφ, φ〉H
〈φ, φ〉H

≤
α1ωN

∥∥∥ψ′2∥∥∥∞ (RN−1+2−N

2

)
k1

(
R− 1

2

)N → 0

as R→∞.

In the multiplicative representation of A, A = U−1
0 MmU0 for a

∑
−measurable

function m : Λ→ R+, where U0 is unitary from H to L2 (Λ,Σ, λ) . Rewriting φ as
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φR, we have, for φ̂R = U0φR,

0 <
〈AφR, φR〉H
〈φR, φR〉H

=

∫
Λ
m
∣∣∣φ̂R∣∣∣2 dλ∫

Λ

∣∣∣φ̂R∣∣∣2 dλ → 0

as R →∞. Thus m must take arbitrarily small positive values on a set of positive

λ−measure, since λ ({ω ∈ Λ : m (ω) = 0}) = 0 since A is injective. But taking into

account that essRange (m) = σ (A) , it follows that inf σ (A) = 0.

Recall the theorem of Clarke, Eckstein and Goldstein [1].

Theorem 2.2. (CEG) Let A = A∗ ≥ 0 on H,

0 = inf σ (A) , 0, a2 /∈ σρ (A) . (2.6)

Let a > 0, and let u, v satisfy

u′′ + 2au′ + Au = 0, t ≥ 0,

u(0) = f1, u′(0) = f2,

2av′ + Av = 0, t ≥ 0, (2.2’)

v (0) = h

when f1 ∈ D (A) , f2 ∈ D
(
A

1
2

)
and h is as in (2.3) and h 6= 0. Then

u (t) = v (t) (1 + o (1))

as t→∞.
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Theorem 2.1 now follows from Theorem 2.2 and the above argument which proved

(2.6) . �
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3 THE STRONGLY DAMPED WAVE EQUATION

3.1 INTRODUCTION

After I proved Theorem 2.1, I generalized it to Theorem 4.1 below which replaces

the damping term −2au′ (t) by a more general damping term −2Bu′ (t) where B

is a positive selfadjoint operator, not necessarily a multiple of the identity.

The corresponding theorem was recently published by G. Fragnelli, G.R. Gold-

stein, J.A. Goldstein and S. Romanelli [9], and our extension allows for the case of

general β, γ and only L∞ regularity of A and B.

Let S be an injective nonnegative selfadjoint operator on a complex Hilbert space

H. That is S = S∗ ≥ 0, 0 /∈ σρ (S) . Consider the damped wave equation

u′′ (t) + 2Bu′ (t) + S2u (t) = 0, t ≥ 0, (3.1)

with initial conditions

u (0) = f, u′ (0) = g; (3.2)

here ′ = d
dt
. When B = 0, (3.1) reduces to the wave equation. When B 6= 0 the

corresponding heat equation is

2Bv′ (t) + S2v (t) = 0.

We take B = F (S) to be a positive selfadjoint operator which commutes with S
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and is smaller than S in some sense. More precisely, we assume that

0 = inf σ (S) /∈ σρ (S) , (3.3)

i.e., 0 is in the spectrum of S = S∗ ≥ 0, but is not an eigenvalue, F is a contin-

uous function from (0,+∞) to (0,+∞) , and F satisfies: there exists γ0 > 0 such

that 

F (x) > x for 0 < x < γ0,

F (γ0) = γ0,

F (x) < x for x > γ0,

lim supx−→0+ F (x) < +∞,

lim infx−→+∞ ((1− δ)x− F (x)) ≥ 0, for some δ > 0.

(3.4)

The operator B represents a general friction coeffi cient. The most common case

is the telegraph equation in which case

B = aI

where a is a positive constant. In this case (1.4) holds with γ0 = a. An important

case is

B = aSα

where the constants a, α satisfy

a > 0, α ∈ [0, 1) .

In this case, γ0 = a
1

1−α in (3.4) . The only interesting case is when S is unbounded,

which is the case here when α is positive, B is an unbounded operator. The strongly
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damped wave equation refers to the case when B is also unbounded. B is always

assumed to be injective.

Let S, B = F (S) be as before and suppose f, g are such that (3.1) , (3.2) has

a unique solution u. Consider the corresponding first order equation, obtained by

erasing u′′ (t) in (3.1) and replacing u by v :

2Bv′ (t) + S2v (t) = 0, t ≥ 0, (3.5)

with initial condition

v (0) = h. (3.6)

This vector h is given by

h =
1

2
χ(0,γ0) (S)

{(
F (S)2 − S2

) 1
2 (F (S) f + g) + f

}
,

a generalization of the formula we wrote before, and we need f, g are such that h 6=

0. Note that (3.5) reduces to (2.3) when f = f1, g = f2, and B = F (S) = αI. We

will show that

l (t) :=
‖u (t)− v (t)‖
‖v (t)‖ −→ 0, (3.7)

as t −→ 0, and we will find closed subspaces En of H such that En ⊂ En+1,

∞⋃
n=1

En is dense in H,

and

l (t) ≤ Cne
−εnt

for f, g ∈ En where Cn, εn are positive constants.
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The point of the theorem is that, for large times the solution of the "hyperbolic

equation" (3.1) looks like the solution of the "parabolic equation" (3.5) . In the

telegraph equation case when B = F (S) = aI, (3.5) becomes

2av′ (t) + S2v (t) = 0,

which, with (3.6) , is solved by

v (t) = e−
t
2a
S2h.

In the case of strong damping, the solution of the limiting parabolic problem is

v (t) = e−
t
2
B−1S2h.

Think of S = (−∆)
1
2 on L2

(
RN
)
and

B = aSα = a (−∆)
α
2 ,

0 < α < 1. Then B−1S2 = 1
a

(−∆)1−α
2 with domain

D
(
B−1S2

)
= H2−α (RN) ,

while

D
(
S2
)

= H2
(
RN
)
.

The solution of the heat equation

2B
dv

dt
+ S2v (t) = 0, v (0) = h is
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v (t) = e−
t
2
B−1S2h.

Here we use the standard Sobolev space notation. Thus B−1S2 is a pseudodifferen-

tial operator of lower order 2 − α than that of the Laplacian, unless α = 0 in which

case we have the telegraph equation.

3.2 SELFADJOINT AND NORMAL OPERATORS

Let S be a selfadjoint operator on H with spectrum σ (S) . By the Spectral Theo-

rem there exists an L2 space L2 (Λ,Σ, ν) , and a unitary operator

W : H −→ L2 (Λ,Σ, ν)

such that S is unitarily equivalent, via W, to the maximally defined operator of

multiplication by a Σ−measurable function

m : Λ −→ σ (S) ⊂ R,

i.e.,

Sf = W−1MmWf,

for

f ∈ D (S) =
{
W−1g ∈ H : mg ∈ L2 (Λ,Σ, ν)

}
and

(Mmg) (x) = m (x) g (x) ,
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for x ∈ Λ, g ∈ L2 (Λ,Σ, ν) .

Two selfadjoint operators S1, S2 commute if and only if the bounded operators

(λ1I − S1)−1 , (λ2I − S2)−1

commute for all λ1, λ2 ∈ C\R if and only if

eitS1 , eisS2

commute for all t, s ∈ R. Similarly, two normal operators N1, N2 with

sup Reσ (Nj) < +∞, j = 1, 2

commute if and only if etN1 and esN2 commute for all t, s ≥ 0; here N is normal

means N = S1 + iS2, where S1, S2 are commuting selfadjoint operators.

The functional calculus for S selfadjoint says that for every Borel measurable

function F from σ (S) ⊂ R to C, F (S) defined by

F (S) = W−1MF (m)W

is normal, and any two of this operators commute. Moreover,

F −→ F (S)

is linear and is an algebra homomorphism, thus

F1 (S)F2 (S) = (F1F2) (S) ,
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etc. Also, F (S) is bounded on H if and only if F is bounded on σ (S) , and F (S)

is selfadjoint if and only if F is real valued. And for S = S∗, F (S) is semibounded

(above or below) if and only if F (σ (S)) is semibounded in R.

In particular, for Γ a Borel set in [0,+∞) , PΓ = χΓ (S) is the orthogonal projec-

tion of H onto χΓ (S) (H) ; and

PΓF (S) = F (S)PΓ = PΓF (SPΓ)

is the part of F (S) in Γ, and its spectrum is contained in Γ.

If F1, F2 are complex Borel functions on σ (S) that are bounded above, it follows

that Fj (S) and
n∑
k=1

Fk (S) generate (C0) semigroups on H and

et
∑n
k=1 Fk(S) =

n∏
k=1

etFk(S), (3.8)

and the product can be taken in any order. Finally, if L = F (S) = L∗ ≥ 0, then

[L]
1
2 denotes the unique nonnegative square root of L.

3.3 THE FrGGR THEOREM

Consider the problem (3.1) , (3.2) , which we rewrite as

u′′ + 2Bu′ + S2u = 0, t ≥ 0, (3.9)
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u (0) = f, u′ (0) = g, (3.10)

where S = S∗ ≥ 0 on H,

inf σ (S) = 0 /∈ σρ (S) , (3.11)

B = F (S) where F is a continuous function from (0,+∞) to (0,+∞) which is

bounded near zero and strictly less than the identity function near infinity, in the

sense that for some δ > 0,

lim
x−→+∞

inf ((1− δ)x− F (x)) ≥ 0. (3.12)

We also assume there exists γ0 > 0 such that (3.4) holds, namely



F (x) > x for 0 < x < γ0,

F (γ0) = γ0,

F (x) < x for x > γ0,

lim supx−→0+ F (x) < +∞.

(3.13)

Let Γ be the open interval (0, γ0) and let

PΓ = χΓ (S) . (3.14)

We explain our notation for square roots of selfadjoint operators. If m : Ω → R

satisfies m (ω) = 1 for all ω ∈ Ω, then

I = Mm
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is the identity on L2 (Ω,Σ, µ) . Let Γ ∈ Σ be arbitrary and let Γc = Ωr Γ,

sΓ (ω) = χΓ (ω)− χΓc (ω) .

Note that sΓ1 = sΓ2 a.e. if and only if

µ (Γ1 r Γ2) + µ (Γ2 r Γ1) = 0.

Since s2
Γ = m for all Γ, I has many selfadjoint square roots. But it only has one

positive selfadjoint square root.

If T = T ∗ ≥ 0 on H, let [T ]
1
2 be the unique nonnegative selfadjoint square root

of T. If T = T ∗, write

T = T+ − T−

where

T+ = χΓ (T )T,

T− = −χΓc (T )T

and

Γ = [0,∞) .

Define

[T ]
1
2 = χΓ (T ) [T+]

1
2 + iχΓc (T ) [T−]

1
2 .

This is the uniquely defined square root T that we will use. Note that the general

solution of

ω′′ + Tω = 0
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is given by

ω (t) = et[T ]
1
2 f1 + e−t[T ]

1
2 f2

for f1, f2 ∈ D
(

[T ]
1
2

)
.

Theorem 3.1.(FrGGR) Consider the damped wave equation with initial condi-

tions which we rewrite as

u′′ + 2Bu′ + S2u = 0, t ≥ 0,

u (0) = f, u′ (0) = g,

where S = S∗ ≥ 0 on H,

inf σ (S) = 0 /∈ σρ (S) , γ0 /∈ σρ (S) ,

Let v be a solution of the corresponding heat equation

2Bv′ + S2v = 0,

obtained by deleting the second derivative term. Let v satisfy

v (0) = h :=
1

2
χ(0,γ0)

(
S2
) (
f +

[(
B2 − S2

)
χ(0,γ0)

(
S2
)] 1

2 (Bf + g)
)
.

Then, for u the solution of (3.9) , (3.10) ,

u (t) = v (t) (1 + o (t)) (3.17)

holds as t −→ +∞, provided h 6= 0. Moreover, if Γn =
[

1
n
, γ0 − 1

n

]
and if 0 6= h ∈
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PΓn (H) for some n ∈ N then

u (t) = v (t)
(
1 + o

(
e−εnt

))
(3.18)

for some εn > 0.

Remark 3.2. Note that

PΓn (H) ⊂ PΓn+1 (H) ,

and
⋃∞
n=1 PΓn (H) is dense in PΓ (H) .

Proof. Recall that the square root of (B2 − S2)PΓ refers to the nonnegative

square root. We first show that the problem (3.9) and (3.10) is wellposed by show-

ing that it is governed by a (C0) contraction semigroup.

We first treat the case of B = 0 in (3.9) .

Rewrite (3.9) , (3.10) as, for U =

 Su

u′

 ,

U ′ =

 Su′

u′′

 =

 0 S

−S 0


 Su

u′

 = GU, (3.19)

U (0) = L =

 Sf

g

 .

Let K be the completion of D (S)⊕D (S) in the norm

∥∥∥∥∥∥∥
 m

n


∥∥∥∥∥∥∥
K

=
(
‖m‖2 + ‖n‖2) 12 ,
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where ‖·‖ is the norm on H. Then G defined by (3.19) is skewadjoint on K and

thus generates a (C0) unitary group by Stone’s Theorem. We consider this as a

semigroup since we are only concerned with times t ≥ 0. Next, (3.9) can be written

in K as

U ′ = (G+ P )U

where

P =

 0 0

0 −2B

 .

Since B = B∗ ≥ 0,

∥∥∥∥∥∥∥P
 m

n


∥∥∥∥∥∥∥
K

= ‖2Bn‖ ≤ (1− ε) ‖Sn‖+ Cε ‖n‖

≤ (1− ε)

∥∥∥∥∥∥∥P
 m

n


∥∥∥∥∥∥∥
K

+ Cε

∥∥∥∥∥∥∥
 m

n


∥∥∥∥∥∥∥
K

for some ε > 0 and a corresponding Cε > 0, for all n ∈ D (S) ⊂ D (B) , thanks to

(3.12) and the last line in (3.13) . Namely, write B = B1+B2 := BP(0,M)+BP[M,∞),

where M is such that

x ≥ F (x) + δx,

i.e.

F (x) ≤ (1− δ)x

for x ≥M and F (x) is bounded in [0,M ] . Thus B1 is bounded, B2 = B∗2 ≥ 0 and

‖B2n‖ ≤ (1− δ) ‖Sn‖+ ‖B2‖ ‖n‖
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for all n ∈ D (S) . Thus for N =

 m

n

 ,

‖PN‖K ≤ (1− δ) ‖GN‖K +M ‖N‖K

where δ > 0 and M = ‖B2‖ . It follows that G + P is m−dissipative and generates

a (C0) contraction semigroup on K, since P is obviously dissipative. Then (3.9) ,

(3.10) has a unique strongly C2 solution (resp. mild solution) if f ∈ D (S2) , g ∈

D (S) (resp. f ∈ D (S) , g ∈ H).

We shall express the unique solution using d’Alembert’s formula. We seek a so-

lution of the form

u (t) = etCh

where C is a Borel function of S. By (3.9) , C must satisfy

C2 + 2BC + S2 = 0.

Formally,

C = C± = −B ±
(
B2 − S2

) 1
2 .

Selfadjoint operators have many square roots, but nonnegative selfadjoint operators

have unique nonnegative square roots. Thus we uniquely define C± by

C± = −B ± (Q0 + iQ) (3.20)

where

Q0 =
[(
B2 − S2

)
χ(0,γ0) (S)

] 1
2 , Q =

[(
S2 −B2

)
χ[γ0,+∞) (S)

] 1
2 . (3.21)
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Thus the solution u of (3.9) , (3.10) can be written as

u (t) = etC+h+ + etC−h−,

where C± are defined by (3.20) , (3.21) . There are strong C2 solutions (resp. mild

solutions) if and only if h± ∈ D (S2) (resp. h± ∈ D (S)).

Given f = u(0), g = u′(0), we obtain h± by inverting the 2× 2 system

f = h+ + h−

g = C+h+ + C−h−.

An elementary calculation gives

h− =
1

2

(
f − (Q0 + iQ)−1 (Bf + g)

)
(3.22)

h+ =
1

2

(
f + (Q0 + iQ)−1 (Bf + g)

)
. (3.23)

Write

u = u1 + u2 + u3

where

u1 (t) = etC+P(0,γ0)h+,

u2 (t) = etC+P[γ0,+∞)h+,

u3 (t) = etC−h−.

First,

‖u3 (t)‖ =
∥∥e−itQe−tQ0e−tBh−∥∥ ≤ ∥∥e−tBh−∥∥
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since e−itQ is unitary and
∥∥e−tQ0∥∥ ≤ 1. Next,

‖u2 (t)‖ =
∥∥eitQe−tBP[γ0,+∞)h+

∥∥ ≤ ∥∥e−tBh+

∥∥ .
The next estimate is the key one.

For

h := P(0,γ0) (h+) , (3.24)

‖u1 (t)‖ =
∥∥et(−B+Q0)h+

∥∥ .

We know that h ∈ P(0,γ0) (H) : assume

0 6= h ∈ P[δ,γ0−δ] (H) =: Hδ (3.25)

for some δ > 0. Let

Q0δ = Q0P[δ,γ−δ].

Then, since F (x) > x on [δ, γ0 − δ] , F (x) − x ≥ ε on [δ, γ0 − δ] for some ε > 0.

Thus

Q0δ ≥ εI.

Consequently

‖u1 (t)‖ ≥ eεt
∥∥e−tBh∥∥ .

It follows that for some constant C0,

‖u2 (t)‖+ ‖u3 (t)‖ ≤ C0e
−εt ‖u1 (t)‖ .
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Thus

u (t) = u1 (t)
(
1 +O

(
e−εt

))
. (3.26)

We must show that this holds with u1 replaced by v.

The unique solution of (3.15) is

v (t) = e−
t
2
B−1S2h.

Note that h as defined by (3.16) is PΓh+ where h+ is as in (3.23) . To compare u1

with v, we need Taylor’s formula with integral remainder, which for g ∈ C3 [0, l] for

some l > 0 says that

g (x) = g (0) + g′ (0)x+
g′′ (0)

2
x2 +

1

2

∫ x

0

(x− y)2 g′′′ (y) dy.

Applying this to

g (x) = 1− (1− x)
1
2 , 0 < x < 1, (3.27)

yields

g (L) f =
1

2
Lf +

1

8
L2f +Rf (3.28)

where R is a bounded operator commuting with L and satisfying

R = R∗ ≥ 0.
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Consequently

‖u1 (t)− v (t)‖ =
∥∥∥e−tB(−I+B−1Q0)h− e− t2B−1S2h

∥∥∥
=

∥∥∥∥∥e−tB
[
I−(B−2Q20)

1
2

]
h− e− t2B−1S2h

∥∥∥∥∥
=
∥∥∥e− t2B−1S2 {e− t8L2e−tR − I}h∥∥∥ (3.29)

by (3.27) , (3.28) with L = B−2 (B2 − S2)P(0,γ0) = (I −B−2S2)P(0,γ0).

We have

ζ1I ≤ R ≤ ζ2I

on Hδ for some constants 0 < ζ1 < ζ2 < +∞. Furthermore, we also have

ζ3I ≤ L ≤ ζ4I

on Hδ for some positive constants ζ3, ζ4. It now follows from (3.28) that

‖u1 (t)− v (t)‖ =
∥∥∥e− t2B−1S2 (I − e− t8Le−tRh)∥∥∥

and ∥∥∥e− t8Le−tRh∥∥∥ ≤ e−tζ5 ‖h‖

where

ζ5 =
ζ3

8
+ ζ1 > 0.

Consequently

‖u (t)− v (t)‖ ≤ ‖v (t)‖O
(
e−tζ5

)
.
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Combining this inequality with (3.26) yields the desired asymptotic relation

‖u (t)− v (t)‖
‖v (t)‖ = o

(
e−tεδ

)
for some εδ > 0.

Now let 0 6= h ∈ P(0,γ0) (H) . We must show that

‖u (t)− v (t)‖
‖v (t)‖ −→ 0, and t −→ +∞. (3.30)

We proceed by contradiction. Suppose (3.30) fails to hold for some h 6= 0 in

P(0,γ0) (H) . Then, there exists ε1 > 0 and tn −→ +∞ such that

‖u (tn)− v (tn)‖
‖v (tn)‖ ≥ ε1 (3.31)

for all n ∈ N. Choose δ > 0 and h̃ ∈ Hδ = P[δ,γ0−δ] (H) (depending on ε1) such that

∥∥∥h− h̃∥∥∥ < ε1
4

and let f̃ , g̃ be the corresponding initial data. Note that

P[γ0,+∞)l = P[γ0,+∞)l̃

for l = f, g, and f and g are modified only on the subspace PΛ (H)

Λ := [δ − δ1, δ + δ1] ∪ [γ0 − δ − δ1, γ0 − δ + δ1] ,

for some δ1 > 0 which can be chosen to be arbitrarily small. In particular, given
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ε2 > 0 we may choose f̃ , g̃ as above and additionally satisfying

∥∥∥f − f̃∥∥∥+ ‖g − g̃‖ < ε2,

∥∥∥h̃∥∥∥
‖h‖ ∈ [1− ε2, 1 + ε2] .

It follows that

‖u (t)− ũ (t)‖ , ‖v (t)− ṽ (t)‖ < ε1
4

for all t > 0. Consequently

‖u (t)− v (t)‖
‖v (t)‖ ≤ ‖ũ (t)− ṽ (t)‖

‖ṽ (t)‖

(
1 + ε2
1− ε2

)
+
ε1
4

≤ τ 0e
−ε3t

(
1 + ε2
1− ε2

)
+
ε1
4
−→ ε1

4
, (3.32)

as t −→ +∞, since 0 6= h̃ ∈ Hδ, and τ 0, ε3 are positive constants depending on δ.

But (3.32) contradicts (3.31) for t = tn with n large enough. It follows that (3.30)

holds. This completes the proof of Theorem 3.1. �

Example 3.1 We recall the "Wentzell Laplacian" of Chapter 1. Let Ω be an

unbounded domain in RN with nonempty boundary ∂Ω, such that for every R > 0

there exists a ball B (xR, R) in Ω. Let A (x) be an N × N matrix for x ∈ Ω such

that A (x) is real, Hermitian and

α0 |ξ|2 ≤ A (x) ξ · ξ ≤ α1 |ξ|2 (3.33)
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for all x ∈ Ω, ξ ∈ RN , where

0 < α0 ≤ α1 <∞

are constants. Similarly let B (x) for x ∈ ∂Ω be a real Hermitian (N − 1)× (N − 1)

matrix satisfying (3.33) for all x ∈ ∂Ω with the same α0, α1. Because of Theorem

1.1, we need not make the usual smoothness assumptions on A, B, γ, and β. De-

fine distributional differential operators on Ω (resp. ∂Ω) by

Lu1 = ∇ · (A (x)∇u1) ,

L∂u2 = ∇τ · (B (x)∇τu2)

for u1 (resp. u2) defined on Ω (resp. ∂Ω). Here ∇τ is the tangential gradient on

∂Ω. The damped wave equation we consider is

utt + 2But = Lu in Ω, (3.34)

Lu+ β∂Aν u+ γu− qβL∂u = 0 on ∂Ω. (3.35)

Here the conormal derivative term is

∂Aν u = (A∇u) · ν

at x ∈ ∂Ω, where ν is the unit outer normal to ∂Ω at x; β > 0, γ ≥ 0, γ is

bounded, and q ∈ [0,+∞) .
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The problem (3.34) , (3.35) can be rewritten as

u′′ + 2F (S)u′ + S2u = 0

u (0) = f, u′ (0) = g

where the Hilbert space is

H = L2 (Ω, dx)⊕ L2 (∂Ω, dS/β) .

The operator S2 has the matrix representation

S2 =

 −L 0

β∂Aν γ − qβL∂

 .

It was shown earlier that S = [S2]
1
2 , with a suitable domain, satisfies

S = S∗ ≥ 0, 0 = inf σ (S) , 0 6= σρ (S) .

Furthermore, for all u ∈ D (S) , we have u =

 u1

u2

 , where u2 = tr (u1) , the

trace of u1. Then Theorem 3.1 applies to

u′′ + 2aS
αk
2 u′ + S2ku = 0, (3.36)

u (0) = f, u′ (0) = g, k ∈ N.

If S is a pseudodifferential operator of order r, then Sδ is a pseudodifferential
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operator of order rδ. It can be a partial differential operator if rδ ∈ N0.

Thus (3.36) can be a partial differential equation only when αk
2
∈ N. If k = 3

and α = 2
3
, the corresponding parabolic problem is

v′ +
1

2a
S4v = 0, v (0) = h.

The boundary conditions associated with (3.36) are

Lw + β∂Aν w + γw − qβL∂w = 0 on ∂Ω

for w = S2ju, j = 0, 1, ..., k − 1.

The solution to a sixth order wave equation is asymptotically equal to the solu-

tion of a fourth order heat equation.

What is new here is that β, γ, A, B can be ”very bad”relative to the previous

known results.

Example 3.2 The simplest examples of unidirectional waves in one dimension

are described by the equation (for t, x ∈ R)

ut = cux + buxxx =: Mu, (3.37)

where (b, c) ∈ R2\ {(0, 0)} . The most common case is c 6= 0, b = 0, in which case

the corresponding equation for bidirectional waves is

(
∂

∂t
−M

)(
∂

∂t
+M

)
u = utt − c2uxx = 0.

The case of b 6= 0 is the Airy equation, and (3.37) is the linearization of the KdV
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equation

ut = cux + buxxx + c1uux.

For c = 0 6= b, the bidirectional version of (3.37) is

(
∂

∂t
−M

)(
∂

∂t
+M

)
u = utt − b2uxxxxxx = 0.

Now, let H = L2 (R) , D = d
dx
and T = −D2 = T ∗ ≥ 0. Let

S2 = T 3 + a0T
2 + a1T,

where a0, a1 ∈ [0,+∞) . Consider

utt − 2auxxt − uxxxxxx + a0uxxxx − a1uxx = 0,

u (x, 0) = f (x) , ut (x, 0) = g (x) .

In this case,

B = aT = F (S) = F
((
T 3 + a0T

2 + a1T
) 1
2

)
.

For x > 0, we want to consider the function

G (x) =
1

a

(
x3 + a0x

2 + a1x
)
,

so that G (x)−x is negative in (0, γ0) and positive on (γ0,∞) for some γ0 > 0. But

d

dx

(
G (x)− x

x

)
=

d

dx

(
1

a

(
x2 + a0x+ (a1 − a)

))
=

1

a
(2x+ a0) > 0,
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and G (x) = x for x 6= 0 if and only if

x =
1

2

(
−a0 ±

√
a2

0 − 4 (a1 − a)

)
.

Thus we get exactly one positive root if and only if

a > a1 +
a2

0

4
,

which we assume. It is now elementary to check that B = F (S) and F satisfies

the assumptions of Theorem 3.1. In this case

γ =
1

2

(
−a0 ±

√
a2

0 − 4 (a1 − a)

)
.
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4 ASYMPTOTIC PARABOLICITY OF WAVES WITH TIME

DEPENDENT DAMPING

4.1 THE SETUP

Let B, S be commuting nonnegative selfadjoint operators on a complex Hilbert

space H. Assume D (S) ⊃ D (B) and inf σ (S) = 0, 0 /∈ σρ (S) . This implies

that S is injective but S−1 is unbounded. Additional restrictions will be placed on

B, S. The interesting cases are when S is unbounded. It was shown in [9] that,

under additional hypotheses, the unique mild solution u of the strongly damped

wave equation
d2u

dt2
+ 2B

du

dt
+ S2u = 0, t ≥ 0, (4.1)

u (0) = f, u′ (0) = g, (4.2)

is asymptotically equal to the unique mild solution v of the corresponding "heat

equation"  2B dv
dt

+ S2v = 0, t ≥ 0,

v (0) = h,
(4.3)

for a suitable h (depending on f, g, B, S) in the sense that

u (t) = v (t) (1 + o (1))

as t→∞; that is

‖u (t)− v (t)‖ ≤ ε (t) ‖v (t)‖
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where ε (t) → 0 as t → ∞, provided that h 6= 0. This is the idea of asymptotic

parabolicity.

In this chapter we establish an analogous result for

u′′ (t) + 2 (B + C (t))u′ (t) + S2u (t) = 0, t ≥ 0 (4.4)

with initial conditions (4.2) , where each C (t) is selfadjoint, all the operators com-

mute, and C (t)→ 0 as t→∞ in a suitable sense.

In case each C (t) is bounded and

∫ ∞
0

‖C (t)‖ dt <∞,

and C (·) is continuously differentiable as a function of time, at least in some sense,

then asymptotic parabolicity holds, i.e.

u (t) = v (t) (1 + o (1))

where v satisfies (4.3) with an h depending on f, g, B, S and C (·) , again assuming

h 6= 0.

The presence of C (·) makes the construction of h much more complicated. The

mutually commuting hypothesis makes the construction of h possible; the noncom-

muting case is much harder. The main theorem of the final chapter of my thesis

is the first result of this kind, using time dependent friction. We treat the case of

unbounded C (t) .

Hypothesis 4.1. Let {S,B, C (t) : t ≥ 0} be a family of commuting selfad-
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joint operators on H, with

0 = inf σ (S) , 0 /∈ σρ (S) ,

supσ (S) =∞,

and there exists a unique γ0 > 0 such that γ0 /∈ σρ (S) and

Bχ(0,γ0) (S) ≥ Sχ(0,γ0) (S) ,

Bχ(γ0,∞) (S) ≤ Sχ(γ0,∞) (S) .

The last condition holds if B = F (S) where F ∈ C (R+, (0,∞)) ,

F (x) > x for 0 < x < γ0,

F (γ0) = γ0,

F (x) < x if x > γ0;

and

(1− δ1)x > F (x) (4.5)

for some δ1 > 0 and all suffi ciently large x.

An important example we have in mind is

B = aSα

where a > 0, 0 ≤ α < 1 are constants. The telegraph equation corresponds to

α = 0 and 0 < α < 1 is the usual strongly damped wave equation.
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In this case,

γ0 = a
1

1−α .

More generally we can take

B =
m∑
j=1

ajS
αj ,

aj > 0, 0 ≤ αj < 1, m ∈ N.

For C (t) we can take

C (t) =
n∑
j=1

cj (t)Sβj + C0 (t) := C1 (t) + C0 (t) ,

0 ≤ βj < 1, 0 ≤ cj ∈ C0 ∩ L1 (R+) , C0 ∈ (C0 ∩ L1) (R+,L (H)) , and C0 (t) need

not be nonnegative. This will all be made precise in Hypothesis 4.2 in Section 4.2

below.

4.2 SOLUTION OF THE DAMPED WAVE EQUATION

We recall the spectral theorem and the associated functional calculus. Given

S = S∗ on H, then exists an L2 space L2 (Ω,Σ, µ) and a unitary operator

U0 : H → L2 (Ω,Σ, µ)

such that S is unitarily equivalent to a multiplication operator on L2 = L2 (Ω,Σ, µ) ,

S = U−1
0 MmU0,

53



where

m : Ω→ σ (S) ⊂ R,

(Mmg) (ω) = m (ω) g (ω) , ω ∈ Ω,

and g ∈ D (Mm) if and only if both g and mg are in L2. Thus Mm is the opera-

tor of multiplication by m with maximal domain. Thus f ∈ D (S) if and only if

U0f ∈ D (Mm) , and furthermore

B = U−1
0 MF (m)U0,

C (t) = U−1
0 MGt(m)U0

for real valued Borel functions F, Gt on σ (S) ⊂ R.

The usual approach to (4.4) is to write it as a first order equation for

U (t) =

 Su (t)

u′ (t)

 , t ≥ 0.

We have

U ′ =

 Su′

u′′


=

 0 S

−S 0

U +

 0 0

0 −B̃ (t)

U

when B̃ (t) = B + C (t) . We rewrite this as

U ′ = A1U + A2 (t)U
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on H ⊕H, with

A1 = S

 0 1

−1 0

 = −A1;

A2 (t) = −B̃ (t)

 0 0

0 I

 = A2 (t)∗

and [
S, B̃ (t)

]
= 0.

But

[A1, A2 (t)] 6= 0

since  0 1

−1 0


 0 0

0 1

 =

 0 1

0 0

 ,

 0 0

0 1


 0 1

−1 0

 =

 0 0

−1 0

 ,

and  0 1

0 0

 6=
 0 0

−1 0

 .

Also, if E1, E2 are commuting semigroup generators then

et(E1+E2) = etE1etE2 ;

this fails when [E1, E2] 6= 0. We avoid this noncommutativity issue by working

directly with (4.4) in H.
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We first consider (4.4) with

B̃ (t) = B + C (t)

being independent of t. This reduces to

u′′ + 2B̃ (0)u′ + S2u = 0, (4.6)

which is (3.1) with different notation, as in Section 3.1.

The general solution of (4.6) is given by the d’Alembert formula

u (t) = etΛ+f+ + etΛ−f−,

where f± are suitable vectors in D (S) and

Λ± = −B̃ (0)±
[
B̃ (0)2 − S2

] 1
2
, (4.7)

and we use the convention for square roots described in Section 3.3.

Similarly, we define

Λ± (s) = −B̃ (s)±
[
B̃ (s)2 − S2

] 1
2
, for s ≥ 0. (4.8)

By the spectral theorem and the functional calculus, the general solution of (4.4)

is easily shown to be given by the generalized d’Alembert formula

u (t) = e
∫ t
0 Λ+(s)dsf+ + e

∫ t
0 Λ−(s)dsf− (4.9)
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for f± ∈ D (S) . This u is a strong (C2 in time) solution if f± ∈ D (S2) and a mild

solution otherwise. Note that u is not a sum of semigroup orbits; rather it is a sum

of evolution operator orbits.

We pause to discuss the integrals of the form

e
∫ b
a R(s)ds (4.10)

where each R (s) is selfadjoint and these operators all commute. Thus there is a

selfadjoint (or normal) operator T on H such that

R (s) = g (s, T ) (4.11)

for some Borel function

g : (a, b)× Ω1 → R (or C)

where

T = U−1
1 Mm1U1,

U1 is unitary from H to L2 = L2 (Ω1,Σ1, µ1) ,

m1 : Ω1 → R

is Σ1−measurable, and for s ∈ (a, b) ,

R (s) = U−1
1 Mg(s,m1)U1.

This explains (4.11) .

We need T ≥ 0, T is injective, and R (s) has smooth enough dependence on s so
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that

d2

dt2
e
∫ t
a R(s)dsf =

d

dt

(
R (t) e

∫ t
a R(s)dsf

)
=

(
R′ (t) +R (t)2) e∫ ta R(s)dsf.

Thus

û (t) = e
∫ t
0 R(s)dsf

is a C2 solution of

û′′ + R̂ (t) û′

=
(
R′ (t) +R (t)2 + R̂ (t)R (t)

)
û,

u (0) = f, u′ (0) = R (0) f

for f in a common core of

{T, {R (s) : a < s < b}} .

For instance, we may assume

⋂
a<s<b

D (R (s)) ⊃ D (Tα)

for some α < 1. For example, let

R (s) = R0 (s) +

ν∑
j=1

β̂j (s)T α̂j
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where 0 ≤ α̂j < 1 and β̂j ∈ C2 (a, b) for each j and

R0 ∈ C2 ([a, b] ,L (H))

with

R0 (s) = R0 (s)∗

for each s ∈ [a, b] .

If a ∈ R and b =∞, we also assume

β̂j ∈ C2 [a,∞] ,

β̂j (∞) = 0, R0 (∞) = 0,

and ∫ ∞
0

(
ν∑
j=0

β̂j (s) + ‖R0 (s)‖
)
ds <∞.

We write

Λ± (s) = U−1
0 Mλ±(s)U0,

where

λ± (s) := − (F (m) +Gs (m))±
[
(F (m) +Gjs (m))2 −m2

] 1
2

are functions on m. For x ∈ R,

[x]
1
2 =

{√
x ≥ 0 if x ≥ 0,

i
√
x if x < 0.

Let

λ0
± (0) := −F (m)±

[
F (m)2 −m2

] 1
2 .
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Write

u (t) = e
∫ t
0 Λ+(s)dsf+ + e

∫ t
0 Λ−(s)dsf−

= etΛ
0
+P+ (t) f+ + etΛ

0
−P− (t) f−

where

Λ0
± = U−1

0 Mλ0±(0)U0,

P± (t) = e−
∫ t
0 C(s)ds±

∫ t
0 Q(s)ds,

Q (t) =
[
(B + C (t))2 − S2

] 1
2 −

[
B2 − S2

] 1
2

We assume

Hypothesis 4.2. Let C (t) = C1 (t) + C0 (t) ; for each j, t,

Cj (t) = Gj (t, S)

for a jointly continuous function (t, x) → Gj (t, x) on R+ × R+ which is C2 in t;

C0 (·) , C ′0 (·) ∈ (C0 ∩ L1) (R+,L (H)) , 0 ≤ C1 (t) , |C ′1 (t)| ≤ K0

(
I + S1−δ2

)
for

some δ2 > 0; and for each f ∈ D
(
S1−δ2

)
, t ≥ 0,

‖C ′1 (t) f‖+ ‖C1 (t) f‖ ≤ a (t)
(
‖f‖+

∥∥S1−δ2f
∥∥) ,

where a ∈ C0 ∩ L1 (R+) .

Theorem 4.1. Let Hypothesis 4.1 and Hypothesis 4.2 hold. Let u be the unique

solution of (4.4) , (4.2) . Then there is a dense set D0 ⊂ H ⊕ H such that for
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(f, g) ∈ D0, there is a canonically defined

h = h (f, g, S,B,C (·))

such that, for the unique solution v of

2B
dv

dt
+ S2v = 0, t ≥ 0

v (0) = h,

u satisfies

u (t) = v (t) (1 + o (1))

as t→∞, provided h 6= 0.

Proof. Let u solve (4.4) , (4.2) and let w be the unique solution of (4.6) with

initial data

w (0) = f̂ , w′ (0) = ĝ.

Our goal is to show that

u (t) = w (t) (1 + o (1))

as t → ∞, provided f̂ and ĝ are chosen appropriately. Then the conclusion of

Theorem 4.1 follows from Theorem 3.1, provided h is appropriately chosen (as a

function of f̂ , ĝ) and h 6= 0.

By the calculation prior to the statement of Theorem 4.1, we know that

u (t) = etΛ
0
+P+ (t) f+ + etΛ

0
−P− (t) f−,
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and

w (t) = etΛ
0
+g+ + etΛ

0
−g−

for suitable g±. The idea is to show that

lim
t→∞

P± (t) f±

exists (and we call it g±), and so (4.12) follows from that since
{
etΛ

0
+ : t ∈ R+

}
is a (C0) contraction semigroup. Note that {P± (t) : t ∈ R+} are bounded opera-

tors, but

lim
t→∞
‖P± (t)‖ =∞

can happen. Thus f, g must be restricted in order that

lim
t→∞

P± (t) f±

exists.

Recall that

P± (t) = e−
∫ t
0 C(s)dse±

∫ t
0 Q(s)ds, (4.13)

Q (t) =
[
(B + C (t))2 − S2

] 1
2 −

[
B2 − S2

] 1
2 . (4.14)

By our assumptions, there exists γ0 > 0 such that

Bχ(0,γ0) (S) ≥ Sχ(0,γ0) (S) ,

Bχ(γ0,∞) (S) ≤ Sχ(γ0,∞) (S) .
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By Hypothesis 4.2, since a (t)→ 0 as t→∞, we have

(B + C (t))2 χ(γ1,∞) (S) ≥ Sχ(γ1,∞) (S)

for some γ1 ∈ [γ0,∞) . Fix this γ1. Define

H+ = χ(γ1,∞) (S) (H) ,

H− = H1
+ = χ(0,γ1] (S) (H) .

Let R± be the orthogonal projection onto H±. We summarize some properties

of P±, Q± : Q± (t)R+ is skew adjoint for each t > τ 1 for some τ 1 = τ 1 (s, γ1) >

0;

0 ≤ e−
∫ t
0 C(s)ds ≤ e−

∫ t
0 C0(s)ds,

0 ≤ e−
∫∞
0 C(s)ds ≤ e−

∫∞
0 C0(s)ds,

and e−
∫∞
0 C(s)ds is positive, selfadjoint and bounded;

e
±
∫ t
τ1
Q(s)ds → e

±
∫∞
τ1
Q(s)ds (4.15)

is unitary;

T± := e±
∫ τ1
0 Q(s)ds

is a normal operator commuting with S, T± is injective, and for a constant K >

0,

0 ≤ ReT± ≤ eτ1Keτ1KS

by Hypothesis 4.2.
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All this follow easily, except for the convergence in (4.15) . We treat this now.

(B + C (t))2 − S2 = B2 − S2 + 2BC (t) + C (t)2 ,

2BC (t) + C (t)2 = 2C0 (t)B + 2BC1 (t) + C (t)2 ,

hence

−2 (C0 (t))B ≤ 2BC (t) + C (t)2

≤ a2 (t)
(
S2−δ3 + I

)
for some constant δ3 > 0 and a2 ∈ C0 ∩ L1 (R+) .

For t > 0,

(B + C (t))2 − S2 ≤ B2 − S2 + a2 (t)
(
S2−δ3 + I

)
≤ 0

on χ(γ3,∞) (S) (H) for some γ3 > 0. Moreover,

B2 − S2 + a2 (t)
(
S2−δ3 + I

)
≤ 0

for t ≥ τ 2 = τ 2 (δ3, S) . Using the functional calculus associated with the spectral

theorem, [
(B + C (t))2 − S2

] 1
2 f →

[
B2 − S2

] 1
2 f

as t → ∞ for all f ∈ D (S) , the latter set being a core for all of the operators

under construction.
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It only remains to identify the limit

lim
t→∞

P± (t) f±

and to see precisely how this restricts f± (or, equivalently, f and g) .

e−
∫ t
0 C(s)dsh→ e−

∫∞
0 C(s)dsh

as t → ∞ for all h ∈ H and e−
∫∞
0 C(s)ds is positive selfadjoint and bounded.

Next consider

W± (t) := e±
∫ t
0 Q(s)ds

on H− and on H+. W± (t) is unitary on H+ for all t ≥ 0 and it is unitary on

all of H for all t > τ 1. Let 0 ≤ t ≤ τ 1.

∫ τ1

0

Q (s) ds =

∫ τ1

0

ReQ (s) ds+ i

∫ τ

0

ImQ (s) ds,

W± = Ŵ± = e±
∫ τ1
0 ReQ(s)ds

where Ŵ± is unitary on H. Also,

± |ReQ (s)| ≤ K3

(
I + S1−δ3

)
for suitable positive constants K3, δ3.

Thus for all h in the dense set D
(
eτ1S

1−δ3
)
,

e±
∫ τ1
0 ReQ(s)dsh → T̃±h
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and T̃± is a positive selfadjoint operator and

∥∥∥T̃±h∥∥∥ ≤ K3τ 1

(∥∥∥etS1−δ3h∥∥∥+ ‖h‖
)
.

Thus

lim
t→±∞

P± (t) f± = Z±T̃±f±

where T̃± is positive and selfadjoint, while

Z± = e−
∫∞
0 C(s)dsW±,

this first factor being positive selfadjoint operator and the second factor being uni-

tary, and all of them operators commute.

Thus for Theorem 4.1, {f, g} must be restricted to a smaller domain which is

a common core for all the operators we consider. By imposing rather insignificant

additional hypotheses, we can arrange so that T̃± = 0, but we prefer to have the

theorem valid in full generality. �

Remark: The construction of h follows from the above proof. We summarize

this now.

We have

u (t) = etΛ
0
+P+ (t) f+ + etΛ

0
−P− (t) f−,

where

P± (t) = exp

(
−
∫ t

0

(C (s)±Q (s)) ds

)
,

Q (s) =
[
(B + C (s))2 − S2

] 1
2 −

[
B2 − S2

] 1
2 .
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The limit

g± := P± (∞) f± (4.16)

exist, and f± are constructed from

u (0) = f, u′ (0) = g

by notifying that

u (0) = f = P+ (0) f+ + P− (0) f−,

u′ (0) = g =
(
Λ0

+P+ (0) + P ′+ (0)
)
f+ +

(
Λ0
−P− (0) + P ′− (0)

)
f−,

and it is elementary to show these two equations for f± in terms of f, g.

Next,

w (t) := etΛ
0
+g+ + etΛ

0
−g− (4.17)

(with g± given by (4.16)) satisfies a damped wave equation of the form

w′′ + 2B̂w′ + Ŝ2w = 0,

and

w (0) , w′ (0)

are obtained from g± using (4.17) . Moreover,

w (t) = u (t) (1 + o (t))

follows by the calculation in this chapter.

By our previous results, we can construct h in terms of w (0) , w′ (0) so that the
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solution v of

2B̂v′ + Ŝ2v = 0, v (0) = h

satisfies

v (t) = w (t) (1 + o (1)) ,

provided h 6= 0, for this case

v (t) = u (t) (1 + o (1)) ,

and this completes our (complicated) explanation of how h is "cannonically" con-

structed.
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