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ABSTRACT

Winter, Bryan Ross. Ph.D. The University of Memphis. May, 2014. Design, Search
and Implementation of Improved Large Order Multiple Recursive Generators and
Matrix Congruential Generators. Major Professor: Dr. Lih-Yuan Deng.

Large order, maximum period multiple recursive generators (MRGs) with few

nonzero terms (e.g., DX-k-s generators) have become popular in the area of computer

simulation. They are efficient, portable, have a long period, and have the nice property

of high-dimensional equi-distribution. The latter two properties become more

advantageous as k increases. The performance on the spectral test, a theoretical test

that provides some measure of uniformity in dimensions beyond the MRG’s order k,

could be improved by choosing multipliers that yield a better spectral test value. We

propose a new method to compute the spectral test which is simple, intuitive, and

efficient for some special classes of large order MRGs. Using this procedure, we list

“better” FMRG-k and DX-k-s generators with respect to performance on the spectral

test.

Even so, MRGs with few nonzero terms do not perform as well with respect to the

spectral test as MRGs with many nonzero terms. However, MRGs with many nonzero

terms can be inefficient or lack a feasible parallelization method, i.e., a method of

producing substreams of (pseudo) random numbers that appear independent. To

implement these MRGs efficiently and in parallel, we can use an equivalent recursion

from another type of generator, the matrix congruential generator (MCG), a

k-dimensional generalization of a first order linear recursion where the multipliers are

embedded in a k ×k matrix. When MRGs are used to construct MCGs and the recursion

of the MCG is implemented k at a time for a k-dimensional vector sequence, then the

MCG mimics k copies of a MRG in parallel with different starting seeds. Therefore, we

propose a method for efficiently finding MRGs with many nonzero terms from an MRG

with few nonzero terms and then give an efficient and parallel MCG implementation of

these MRGs with many nonzero terms. This method works best for moderate order k.
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For large order MRGs with many nonzero terms, we propose a special class called

DW-k. This special class has a characteristic polynomial that yields many nonzero

terms and corresponds to an efficient and parallel MCG implementation.
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Chapter 1

Introduction

Good pseudo random number generators must be efficient, have sufficiently long

periods, and have high-dimensional uniformity, that is, when taking t successive

numbers at a time, these t-dimensional subsequences approximate a uniform

distribution in a t-dimensional space. They must also have satisfactory empirical

performance and a strong mathematical support. Furthermore, today’s computing

environment demands a good pseudo random number generator also have a method

of parallelization, i.e., a method of producing substreams of pseudo random numbers

that appear independent.

For a long time, the maximum period multiple recursive generator (MRG) has been

thought to have many of the qualities of a good RNG except for efficiency and a feasible

method of parallelization. The MRG generates pseudo random numbers sequentially

with a k-th order linear recurrence under a prime modulus p. These generators have a

strong statistical justification and excellent empirical performance. Furthermore,

maximum-period MRGs have two very desirable properties: a huge period of pk −1

and the nice equi-distribution property over high dimensional spaces (up to order k).

For a given modulus p, as order k increases, the large period and equi-distribution

properties become more advantageous.
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However, finding a maximum-period MRG can be very time consuming for large

order k and prime modulus p. Furthermore, even for moderate order k, efficiently

implementing maximum period MRGs with many non-zero coefficients or

implementing them in parallel is non-trivial. Most research in this area has tried to

side-step these difficulties by searching and implementing MRGs with some special

structure such that the linear recurrence can be implemented by an MRG with few

non-zero terms. Fewer non-zero terms requires fewer costly multiplications when

generating the recursion.

Therefore, large order, maximum period MRGs with few nonzero terms (e.g.,

DX-k-s generators) have become popular in the area of computer simulation. However,

the performance on the spectral test, a theoretical test that provides some measure of

uniformity in dimensions beyond the MRG’s order k, could be improved by choosing

multipliers that yield a better spectral test value. We propose a new method to compute

the spectral test which is simple, intuitive, and efficient for some special classes of large

order MRGs. Using this procedure, we list “better” FMRG-k and DX-k-s generators with

respect to performance on the spectral test.

Even so, MRGs with few nonzero terms do not perform as well with respect to the

spectral test as MRGs with many nonzero terms. However, MRGs with many nonzero

terms can be inefficient or lack a feasible parallelization method. To implement these

MRGs efficiently and in parallel, we can use an equivalent recursion from another type

of generator, the matrix congruential generator (MCG), a k-dimensional generalization

of a first order linear recursion where the multipliers are embedded in a k ×k matrix.

When MRGs are used to construct MCGs and the recursion of the MCG is implemented
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k at a time for a k-dimensional vector sequence, then the MCG mimics k copies of a

MRG in parallel with different starting seeds. Therefore, we propose a method for

efficiently finding MRGs with many nonzero terms from an MRG with few nonzero

terms and then give an efficient and parallel MCG implementation of these MRGs with

many nonzero terms. This method works best for moderate order k.

For large order MRGs with many nonzero terms, we propose a special class called

DW-k. This special class has a characteristic polynomial that yields many nonzero

terms and corresponds to an efficient and parallel MCG implementation.
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Chapter 2

Literature Review

In this chapter, we will cover several developments in the research of the class of

maximum period k-th order MRGs with prime modulus p, which this chapter denotes

as MRG(k, p). Section 2.1 describes notation that will be used throughout the chapter.

Section 2.2 will briefly discuss qualities of a “good” pseudo random number generator.

Section 2.3 briefly defines the multiple recursive generator (MRG) and some of its

important characteristics. Section 2.4 discusses the equi-distribution property and its

relationship to the spectral test. Section 2.5 includes a brief summary of how to search

for generators in MRG(k, p). Included in this section are several references for

generators in MRG(k, p) already found. Section 2.6 details some generators in

MRG(k, p) with few nonzero terms or generators in MRG(k, p) whose linear recurrence

can be implemented with a higher-order maximum period MRG with few nonzero

terms. Section 2.7 lays out how generators in MRG(k, p) can be implemented for

parallel simulation. Finally, Section 2.8 describes two connections between generators

in MRG(k, p) and another kind of random number generator called the matrix

congruential generator (MCG). These connections explain how generators in

MRG(k, p) can be implemented with MCGs.
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2.1 Notation

Throughout this chapter, p is a large prime number and Zp = {
0,1,2, . . . , p −1

}
denotes

the finite field of p elements under the usual modulus operations of addition and

multiplication. Zk
p and Zk×k

p denotes the set of k-dimensional vectors and the set of

k ×k matrices, respectively, with elements in Zp . As already stated, MRG(k, p) denotes

the class of maximum period k-th order MRGs with prime modulus p. The function

φ(x) denotes the Euler totient function, which gives the number of integers between 1

and x that are relatively prime to x.

2.2 Good Random Number Generators

Several computer applications require a sequence of numbers that at least appear

random. The examples are numerous: randomly sampling from a population,

randomly assigning treatment(s) to subjects within a scientific experiment, simulating

a probability distribution, and various statistical methods (for example, Monte Carlo

methods or re-sampling methods). The majority of computers use some deterministic

function to generate sequences of integers that appear as if they were from a sample of

identically and independently distributed uniform random variables. Usually, these

integers range from 0 to some integer p −1 and are later transformed to integers

between 0 and 1 so that the sequence appears to mimic a sample of random variables

from the uniform U (0,1) distribution.

Since the numbers are generated from a deterministic function, they are neither

5



truly random nor truly independent and are therefore called pseudo random numbers

and the generating functions are called pseudo random number generators. For the

remainder of this dissertation, we will leave off the word "pseudo," and simply call the

generating functions random number generators (RNGs), which we will do from this

point forward. Most RNGs are periodic in that they can only generate so many

numbers in successive sequence before the sequence repeats. The length of this

sequence prior to repeating is called the period length of the RNG.

Not all RNGs are created equal (see, e.g., Hellekalek, 1998). Good RNGs must be

efficient, have sufficiently long periods, and have high-dimensional uniformity, that is,

when taking t successive numbers at a time, these t-dimensional subsequences

approximate a uniform distribution in a t-dimensional space. They must also have

satisfactory empirical performance. Furthermore, today’s computing environment

demands a good RNG also have a method of parallelization, that is, a method to

generate substreams of random numbers that appear independent.

Several decades have been invested in searching for the “best” RNGs. Early on, the

system of linear congruential generators (LCGs) proposed by Lehmer (1951) was

established as the RNG of choice. This first order linear recurrence is indeed one of the

most efficient RNGs to date. The search for the “best” RNG (inevitably) led to the

“minimal standard” LCG published in the widely cited paper Random Number

Generators: Good Ones are Hard to Find by Park and Miller (1988). However, as a class,

LCGs have poor empirical performance, short periods (by today’s standards), and

inadequate uniformity in higher dimensions. These properties and others have earned

the LCG a reputation as an unsuitable generator for modern simulation. Though there
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has been some movement away from using the LCG as the default generator, it

nonetheless remains firmly established in many software programs.

For a long time, the multiple recursive generator (MRG) has been thought by many

as the great contender for replacing the entrenched LCG. The MRG generates pseudo

random numbers sequentially with a k-th order linear recurrence under a prime

modulus p. Maximum-period MRGs have two very desirable mathematical properties:

an extremely long period of pk −1 and the nice equi-distribution property up to order

k. MRGs also has a strong statistical justification (Deng & George, 1990; Deng et al.,

1997) and excellent empirical performance (Deng, 2005; Deng et al., 2012a, 2012b;

L’Ecuyer & Simard, 2007). Indeed, concerning the search for maximum period MRGs,

Knuth (1998) said “all known evidence indicates that the result will be a very

satisfactory source of random numbers.”

In the next section, we will discuss the development of maximum period MRGs.

2.3 Development of Multiple Recursive Generators

The k-th order linear recurrence for a MRG can be defined as

Xi =α1Xi−1 +α2Xi−2 +·· ·+αk Xi−k mod p, i ≥ k, (2.1)

where α1,α2, . . . ,αk are integers in Zp , αk 6= 0, and we can choose any k non-zero values

as starting seeds, X0 = (X0, X1, · · · , Xk−1) 6= (0,0, · · · ,0). We remark that when the order

7



k = 1, the MRG reduces to a LCG:

Xi = B Xi−1 mod p, i ≥ 0. (2.2)

As suggested in Deng and Xu (2003), the generated output Xi can be transformed to Ui

in the interval (0,1) by performing the additional operation Ui = (Xi +0.5)/p.

Checking whether a MRG defined in (2.1) has the maximum period pk −1 is

equivalent to checking whether its characteristic polynomial

f (x) = xk −α1xk−1 −α2xk−2 −·· ·−αk (2.3)

is a k-th degree primitive polynomial over Zp (see, e.g., L’Ecuyer, 1990). Alanen and

Knuth (1964) and Knuth (1998) gave necessary and sufficient conditions for

determining whether f (x) is primitive or not. Section 2.5 will briefly describe how to

search for generators in MRG(k, p).

As stated in the previous section, generators in MRG(k, p) have strong statistical

justification and excellent empirical performance. Over their extremely long period

pk −1, generators in MRG(k, p) also have the equi-distribution property up to order k.

In the next section, we will formerly define the equi-distribution property and will

discuss its implications as it relates to the spectral test, an important theoretical test

that provides some measure of uniformity in dimensions beyond the MRGs order k. In

fact, when testing the quality of a random number generator with at linear recurrence,

Knuth (1998) said that the spectral test “is by far the most powerful test known.”
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2.4 Equi-distribution Property and the Spectral Test

Generators in MRG(k, p) have the equi-distribution property up to order k, that is, over

its entire period of pk −1, every t-tuple (1 ≤ t ≤ k) of integers in Zt
p appears exactly the

same number of times (pk−t ), with the exception of the all-zero tuple which appears

one time less (see, e.g., Lidl & Niederreiter, 1994, Theorem 7.43). We would expect a

true t-dimensional multivariate uniform distribution to produce all p t t-tuples in Zt
p

with equal frequency for any dimension t . Therefore, as k increases, the period length

and equi-distribution property become more advantageous. In fact, for t ≤ k,

large-order generators in MRG(k, p) are pretty close to an “ideal” generator: only the

all-zero tuple is generated one less time than the other t-tuples.

Consider the successive sequences of output from a generator in MRG(k, p),

Sn = (Xn , Xn+1, Xn+2, . . . , Xn+t−1) for n = 0,1, · · · ,ρ−1 where ρ = pk −1 (the period

length). Sn is state of the MRG at step n and t is the number of variates generated

beyond step n. Let I be a set of fixed, nonnegative integers. The set of integers

I = {0,1,2,3, . . . , t −1} could be thought of as the indices selected from the state to create

all the possible t-tuples over all steps n in the period of the MRG. Note that the number

of elements in each tuple is t , because the number of indices in I are equal to t .

This index I does not necessarily have to be successive integers. More generally, we

can consider any set of nonnegative integers I = {
j1, j2, . . . , jr

}
where j1 < j2 < ·· · < jr , r

is the number indices in set I , and t = ( jr − j1 +1) is the number of variates generated

beyond step n. Note that choosing numbers according to index set I generates
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r -tuples. To select the r -tuples, t numbers are generated beyond each step n of the

MRG state Sn . Of these t numbers at each step, r numbers are selected according to

index set I , that is, some numbers in Sn are selected and some are skipped.

Now consider the following set of all possible r -tuples that a maximum period MRG

can generate from some general index I = {
j1, j2, . . . , jr

}

Lr (I ) = {
(Xn+ j1 , Xn+ j2 , · · · , Xn+ jr )|n = 0,1, · · · ,ρ−1

}
. (2.4)

According to the equi-distribution property, for any choice of I where jr − j1 < k, or

equivalently, t = ( jr − j1 +1) ≤ k, every nonzero r -tuple will appear the same number of

times in the lattice Lr (I ). However, when jr − j1 ≥ k, that is, t = ( jr − j1 +1) > k, the

equi-distribution property is impossible to achieve. Again, ideally, we would want to

generate all p t possible t-tuples in Zt
p with equal frequency over the period of the MRG

and only choose r elements from those t-tuples according the index set I . However,

generating all t-tuples is impossible, because the MRG can only generate pk −1

numbers before the sequence repeats. Therefore, there will be many t-tuples, or

subsequences, that the MRG can never generate and consequently, many r -tuples that

can never be selected.

Geometrically, these t-tuples can be thought of as t-dimensional points or vectors

such that Lt (I ) forms a lattice of points in a t-dimensional space. LetΛt (I ) be the

scaling (by dividing element-wise by p) of each t-tuple in Lt (I ) to a lattice of points in

10



[0,1)t , that is, let

Λt (I ) =
{(

Xn+ j1

p
,

Xn+ j2

p
, · · · ,

Xn+ jr

p

)
|n = 0,1, · · · ,ρ−1

}
. (2.5)

Like the well-known problem for the LCG (Marsaglia, 1968), when t > k, these

t-dimensional points form a lattice in a t-dimensional hypercube where we can find

several families of equidistant parallel (t −1)-dimensional hyperplanes to cover all the

points in the lattice. The space between parallel hyperplanes represent all the t-tuples

that the MRG could never produce.

The spectral test computes the largest distance between adjacent parallel

hyperplanes among families of parallel hyperplanes that cover all the points (see, e.g.,

Knuth, 1998; L’Ecuyer, 1997). We will call this largest distance the spectral distance and

denote it as dt (k), since the spectral distance is influenced by dimension t and order k.

The spectral distance is a measure of uniform spread of the t-tuples across a

t-dimensional space. A small spectral distance implies a more uniform spread of the

t-tuples, or t-dimensional points, across the t-dimensional space. Therefore, a large

dt (k) is considered “bad,” because a relative small number of parallel

(t −1)-dimensional hyperplanes can cover all the t-dimensional points. Consequently,

the MRG is said to have a “bad” lattice structure in dimension t . Clearly, if the

dimension t is much larger than k, the spectral distance dt (k) becomes so large that no

MRG (of fixed order k) can be considered “good.”

In Chapter 3, we will consider the problem of computing the spectral test for an

MRG of order k, which we also call computing the spectral distance dt (k) for t > k.

11



Traditionally, the spectral distance dt (k) is computed using a index set

I = {0,1,2,3, . . . , t −1} of successive indices (see, e.g., Knuth, 1998). However, the

spectral test can also be computed for more general index sets I = {
j1, j2, . . . , jr

}
(see,

e.g., L’Ecuyer, 1997). We remark that one can easily find a set of indices J such that the

equi-distribution property cannot be achieved for an MRG.

For example, for the sake of generating efficiency, it is common to consider a MRG

with few, say s, non-zero terms. Consider the following set of indices

J = {k − i |αi 6= 0, i = 1,2, · · · ,k}∪ {k} . (2.6)

The set J will always contain r = s +1 indices where j1 = 0 and jr = k such that

t = ( jr − j1 +1) = k +1. The other indices are merely k minus the index of the remaining

nonzero multipliers αi . This set J was considered in L’Ecuyer and Touzin (2004),

L’Ecuyer and Simard (2014), and Tang and Kao (2002). Generating (s +1)-tuples

according to this sequence requires generating k +1 variates at each step n of the MRG

state and then only choosing s +1 of the variates according the indices in J . Notice that

this nonsuccessive or lacunary sequence is purposefully chosen to exploit the structure

of the few nonzero terms. Furthermore, selecting the (s +1)-tuples according to index

set J essentially requires generating all possible (k +1)-tuples of which only s +1

elements are chosen. As explained above, under these conditions, the equi-distribution

clearly cannot hold.

In the next section, we will consider how to search for maximum period MRGs.
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2.5 Search for MRG(k, p)

As previously stated, checking whether a MRG defined in (2.1) belongs to the class

MRG(k, p) is equivalent to checking whether its characteristic polynomial f (x) in (2.3)

is a k-th degree primitive polynomial over Zp . There are exactly φ(pk −1)/k primitive

polynomials of degree k (see, e.g., Knuth, 1998). Therefore, φ(pk −1)/k is also the

number of generators in MRG(k, p). Section 2.7 states a theorem that explains how to

find every generator in MRG(k, p) from just one generator in MRG(k, p).

A set of necessary and sufficient conditions under which f (x) is a primitive

polynomial has been given in Alanen and Knuth (1964) and Knuth (1998). In order to

apply these conditions, we need to find the complete factorization of

R(k, p) = (pk −1)/(p −1) which can be hard when k or p is large. There are two

common approaches to by-pass the difficulty of the factorization: (a) one can consider

a prime order k and then find prime p such that R(k, p) is also a prime number, or (b)

for a given p, say p = 231 −1, one can find k such that R(k, p) is (relatively) easy to

factor, usually because R(k, p) has only one huge prime factor and the rest are

(relatively) small prime factors.

For examples of the first approach, see L’Ecuyer, et al. (1993) for k ≤ 7, L’Ecuyer

(1999) for k ≤ 13, Deng (2004) for several k ≤ 1511, Deng (2008) for several k ≤ 10007,

and Deng et al. (2012a) for several k ≤ 25013. The largest period of the MRG found with

this method is approximately 10233361 with the property of equi-distribution up to

25013 dimensions. For examples of the second approach, see Deng and Xu (2003) for
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k ∈ {102,120}, Deng (2005) for k ∈ {47,643,1597}, and Deng et al. (2012b) for

k ∈ {7499,20897}. The largest period of the MRG found using this method is

approximately 10195009 with the property of equi-distribution up to 20897 dimensions.

2.6 Efficiently Implementing Generators in MRG(k, p)

with Few Nonzero Terms

For even a moderate sized k, a generator in MRG(k, p) can be inefficient because it may

require k multiplications to compute the next variate. Research in finding efficient

generators in MRG(k, p) has generally involved finding those MRGs whose

implementation only requires a small number of nonzero terms and thus, a small

number of multiplications. Either the recursion in (2.1) is restricted to few nonzero

terms or many terms are allowed but the structure is simple enough such that there

exists an equivalent higher-order recurrence with only a few number of nonzero terms.

If the former, then the MRG is implemented directly; if the latter, then the MRG is

implemented via an equivalent higher-order MRG with few nonzero terms. In this

section, we describe both of these special classes of generators in MRG(k, p).

Efficient MRGs with Only a Few Nonzero Terms

To increase efficiency, several authors have suggested restricting the number of

coefficients to a small number of nonzero terms (usually, two). For examples, see

Grube (1973), Kao and Tang (1997a, 1997b), L’Ecuyer and Blouin (1988), L’Ecuyer
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(1990), L’Ecuyer et al. (1993). To further increase the generating efficiency, several

special forms of the MRG recurrence requiring at most one multiplication per iteration

were proposed. See Deng (2004), Deng (2005), Deng and Lin (2000), and Deng and Xu

(2003). Specifically, Deng and Xu (2003) proposed the FMRG-k and DX-k-s generators:

• FMRG-k (αt = 1,αk = B):

Xi = Xi−1 +B Xi−k mod p, i ≥ k. (2.7)

• DX-k-2 (αt =αk = B):

Xi = B(Xi−1 +Xi−k ) mod p, i ≥ k. (2.8)

• DX-k-3 (αt =αdk/2e =αk = B):

Xi = B(Xi−1 +Xi−dk/2e+Xi−k ) mod p, i ≥ k. (2.9)

• DX-k-4 (αt =αdk/3e =αd2k/3e =αk = B):

Xi = B(Xi−1 +Xi−dk/3e+Xi−d2k/3e+Xi−k ) mod p, i ≥ k, (2.10)

where dxe is the ceiling function denoting the smallest integer ≥ x. Some will note that

FMRG-k has been previously denoted as DX-k-1. However, as noted in Deng and Xu

(2003), FMRG-k does not formerly belong to the DX-k-s class and was only referred to

as DX-k-1 for convenience. Technically, the class of DX-k-s generators should have s

nonzero terms where each term shares the same multiplier B . As can be seen in (2.7),

FMRG-k strays from this design and as such the performance of FRMG-k does not
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necessarily generalize to the DX-k-s class. For the remainder of this dissertation,

DX-k-s will refer only to those generators given in (2.8), (2.9), and (2.10). FMRG-k will

refer specifically to (2.7).

Generators in MRG(k, p) with few nonzero terms in the generating equation can be

very efficient. And several have performed very well when subjected to stringent

empirical tests (Deng, 2008; Deng et al., 2012a, 2012b; L’Ecuyer & Simard, 2007).

However, the spectral distance dk+1(k) is worse than what would be expected from a

MRG with many nonzero terms (Kao & Tang, 1997a). In Chapter 3, we discuss

computing the spectral test for DX-k-s generators and observe a special property

concerning the spectral test for this class.

MRGs with Many Nonzero Terms Efficiently Implemented with a Higher-

Order Recurrence

According to L’Ecuyer (1997), generators in MRG(k, p) with small spectral distances

dt (k) will necessarily have multipliers α1,α2, . . . ,αk in (2.1) such that their sum of

squares
∑k

i=1α
2
i is large. Therefore, Deng, Li, Shiau, and Tsai (2008) and Deng, Shiau,

and Tsai (2009b) proposed special classes of generators in MRG(k, p) with many

nonzero multipliers: DL-k-t , DS-k-t , and DT-k. A direct implementation of these

special classes is inefficient, because several costly multiplications are required.

Instead, these special classes have a simple structure across the multipliers such that

an equivalent higher-order recurrence of a maximum period MRG with few nonzero

terms can be utilized for an efficient implementation.
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• DL-k-t (αi = B for i = 1,2, . . . ,k), 1 ≤ t < k):

Xi = B(Xi−t +Xi−t−1 +·· ·+Xi−k ) mod p, i ≥ k (2.11)

efficiently implemented by

Xi = Xi−1 +B(Xi−t −Xi−k−1) mod p, i ≥ k +1. (2.12)

• DS-k-t (αt = 0, αi = B for i = 1,2, . . . , t −1, t +1, . . . ,k), 1 ≤ t < k:

Xi = B
k∑

j=1, j 6=t
Xi− j mod p (2.13)

efficiently implemented by

Xi = Xi−1 +B(Xi−1 −Xi−t +Xi−t−1 −Xi−k−1) mod p, i ≥ k +1. (2.14)

• DT-k (αi = B k+1−i for i = 1,2, . . . ,k):

Xi = (B k Xi−1 +B k−1Xi−2 +·· ·+B Xi−k ) mod p, i ≥ k (2.15)

efficiently implemented by

Xi = ((B−1 +B k )Xi−1 −Xi−k−1) mod p, i ≥ k +1 (2.16)

where D ≡ (B−1 +B k ) mod p can be pre-computed.

For the above generators, X0 = (X0, X1, . . . , Xk−1) is the initial seed. Since the

higher-order recursions additionally require Xk before initialization, Xk is computed

from the recursion in (2.11) for DL-k-t , from the recursion in (2.13) for DS-k-t , and

from the recursion in (2.15) for DT-k. According to Kao and Tang (1997a), these

17



generators should have larger spectral distances in dimension k +2 than would be

expected from a MRG with many nonzero terms, since the recursion corresponds to a

(k +1)-th order MRG with few nonzero terms.

2.7 Running MRG(k, p) in Parallel

To generate streams of random numbers that appear independent, there are currently

two ways of running MRGs in parallel: (a) change the starting seeds or (b) change the

multipliers (Deng et al., 2009a). The former uses only one generator in MRG(k, p) to

generate each stream of random numbers; the goal of this method is to skip sufficiently

far enough ahead in the large period of the MRG so that there is no overlap in the

streams of random numbers. Thus, each starting seed is assigned to a different central

processing unit (CPU), but the same generator in MRG(k, p) is used across CPUs. The

latter allows each stream to come from a different MRG with the same order k and

prime modulus p. Thus, each CPU receives its own unique maximum-period MRG.

Philosophically speaking, parallelization using one generator in MRG(k, p) with

different starting seeds is a good strategy if the generator at hand is known to have

excellent empirical performance and strong mathematical justification. For example, a

general MRG without any special structure would be suitable for such a parallelization

strategy. However, for a generator in MRG(k, p) with some special structure, a flaw may

exist that is not yet been discovered; if so, the entire parallel simulation could be

compromised. In contrast, if each parallel CPU is given its own generator in MRG(k, p),

then only a part of the parallel simulation would suffer if one of the MRGs were found
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to have some flaw. When choosing a parallelization strategy, these concepts should be

kept in mind.

Parallelization by Changing Starting Seeds for One MRG via Jump-Ahead

For any generator in MRG(k, p), the characteristic polynomial f (x) in (2.3) always has a

corresponding k ×k companion matrix M f defined as

M f =



0 1 0 . . . 0

0 0 1 . . . 0

...
...

...
. . .

...

0 0 0 . . . 1

αk αk−1 αk−2 . . . α1


. (2.17)

Thus, f (x) can be rewritten as

f (x) = det(xI−M f ) mod p. (2.18)

Using this companion matrix, we can compute seeds that are sufficiently far apart

within the period of the generator in MRG(k, p). As explained in Deng et al. (2009a), to

compute a new seed vector, Xnew0, that is “m-apart” from the initial seed vector,

Xol d0 = (X0, X1, . . . , Xk−1), we can calculate

Xnew0 = Mm
f Xol d0 mod p. (2.19)
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Several seeds can be pre-computed and saved for later use. L’Ecuyer et al. (2002) use

this jump-ahead technique in their set of software utilities. Clearly, this method

becomes increasingly difficult for larger orders of k. This method is also not scalable; it

requires the simulation scientist to pre-determine how many streams are needed for

her parallel simulation. The more streams that are needed, the shorter each stream

sequence must be. This limitation will be problematic for parallel simulations

requiring many (or some unknown amount of) parallel CPUs where each CPU

demands a very long sequence of random numbers.

Parallelization by Creating Different MRGs On-demand via AGM

Starting with a base generator in MRG(k, p), Deng (2004) proposed the Automatic

Generation Method (AGM) to quickly find numerous generators in MRG(k, p) with the

same number of nonzero multipliers as the base MRG. Therefore, if the base generator

has few nonzero terms, then all the MRGs spawned from AGM will also have few

nonzero terms. However, the spawned MRGs will (most likely) not share a multiplier

even if the base generator does, which is the case when using a base generator from the

DX-k-s class. Thus, spawned MRGs can be slightly less efficient than their base

generator.

Deng (2004) showed that for any k-th degree primitive polynomial f (x) in (2.3) with

modulus p such that (pk −1)/(p −1) is prime, a transformation of f (x) could be made

such that the transformed polynomial is also a k-th degree primitive polynomial with

the same number of nonzero coefficients. For any nonzero integer z ∈Zp , the
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transformation of f (x) is

G(x) = z−k f (zx) mod p (2.20)

= xk −G1xk−1 −G2xk−2 −·· ·−Gk mod p,

where

G j = z− jα j mod p, j = 1,2, . . . ,k,

and G(x) is a k-th degree primitive polynomial only if Gk = z−kαk is a primitive root

modulo p. Since we know how many primitive roots exist, we also know that AGM can

produce φ(p −1) generators in MRG(k, p) from one base generator in MRG(k, p). Note

also that the number of nonzero terms in the base generator is preserved in the

spawned generators, because G j will be nonzero only when α j is nonzero.

Deng (2005) extended AGM to base generators in MRG(k, p) where R(k, p) was not

necessarily prime. Deng et al. (2009a) improved AGM by adding conditions so that z

was chosen distinctly and randomly while still ensuring that z−kαk is a primitive root

modulo p. Deng et al. (2009b) showed how AGM could be applied to DL-k-t and DT-k

generators.

With this method, each CPU can be assigned its own, unique generator in

MRG(k, p). Thus, the entire period of each MRG is available to its corresponding CPU.

Since each CPU has a different generator in MRG(k, p), each CPU can have its own seed

or the same seed can be given to all (or some subset of) the CPUs. Furthermore, this

method is scalable. The simulation scientist does not need to know a priori the number
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CPUs needed for the simulation. As the simulation demands a new CPU, AGM can

quickly find a new generator in MRG(k, p) which can be assigned to the new CPU. If the

base generator in MRG(k, p) has few nonzero terms sharing the same multiplier, then

the spawned MRGs will have the same number of nonzero terms but will not share the

same multiplier. Thus, the spawned MRGs require a few more multiplications and will

be slightly less efficient than the base MRG.

Parallelization by Finding All MRGs for Fixed k, p

If we are not concerned about the number of nonzero coefficients, then we can quickly

find all φ(pk −1)/k generators in MRG(k, p) without having to check the

time-consuming conditions mentioned in Section 2.5. Since finding a k-th degree

primitive polynomial modulo p is equivalent to finding a generator in MRG(k, p), the

following theorem shows how to find all the generators in MRG(k, p) from one

generator in MRG(k, p).

Theorem 1. Let f (x) in (2.3) be a k-th degree primitive polynomial with companion

matrix M f as in (2.17). Define

fr (x) = det(xI−Mr
f ) mod p. (2.21)

1. fr (x) is a primitive polynomial if and only if r is relatively prime to pk −1.

2. For any k-th degree primitive polynomial h(x), there exists r relatively prime to

pk −1 such that h(x) = fr (x) = det(xI−Mr
f ) mod p.
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3. If q, r are relative prime to pk −1, then the following conditions are equivalent:

(a) fr (x) = fq (x).

(b) r = qp i mod (pk −1), for some integer i ≥ 0.

Theorem 1 follows easily using arguments similar to those by Golomb (1967,

Theorem 2, p. 78) and by Zierler (1959, Theorem 11).

The first part of this theorem shows once any primitive polynomial f (x) is found, a

second one fr (x) can be found by taking the companion matrix M f of the first, raising it

to a power r coprime to pk −1, and finding det(xI−Mr
f ) mod p. The next part of the

theorem states that, in fact, each of the φ(pk −1)/k possible k-th degree primitive

polynomials can found by using the companion matrix M f from just one primitive

polynomial f (x). The last part of the theorem instructs that although all φ(pk −1)/k

possible k-th degree primitive polynomials can found using one companion matrix

M f , there are some integers q and r coprime to pk −1 that produce duplicate primitive

polynomials (thus duplicate coefficients: α1,α2, . . . ,αk ), and these duplicate primitive

polynomials will occur whenever r = qp i mod (pk −1), for some integer i ≥ 0.

The fact that all primitive polynomials can be generated from one primitive

polynomial has been known for a long time. And it is perhaps self-evident that each of

these unique MRGs could be assigned to a different CPU for a parallelization of

independent sources of random numbers. However, we cannot control the number of

nonzero coefficients that will result from Theorem 1. As k increases, the spawned

MRGs become increasingly inefficient to implement directly, because a direct

implementation may often require many multiplications.
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Nonetheless, this important theorem will be drawn upon in Chapter 4 to produce

an abundant source of general maximum period MRGs with many nonzero terms.

2.8 Some Connections between MRGs and Matrix

Congruential Generators (MCGs)

Grothe (1987) showed that the matrix congruential generator (MCG), a k-dimensional

generalization of the first order linear recurrence where the multipliers are embedded

in a k ×k matrix, can be constructed from a generator in MRG(k, p). Then, using the

Cayley-Hamilton theorem, Grothe (1987) showed that the MCG can be used to

implement this maximum period MRG in parallel. We describe both of these

connections next.

The MCG is a natural k-dimensional extension of the LCG:

Xi = BXi−1 mod p, i ≥ 1 (2.22)

where Xi is a k-dimensional vector in Zk
p and the multiplier matrix B is a k ×k matrix in

Zk×k
p . The characteristic polynomial of a MCG is defined as

fB(x) = det(xI−B) mod p. (2.23)
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An integer matrix B ∈Zk×k
p has order n if

n = min
j>0

{
j : B j mod p = I

}
.

As a vector sequence (Xi )i≥0, a MCG has the maximum period of pk −1 if and only if

the matrix B has the order of pk −1. It is well known that B has the order of pk −1 if and

only if its corresponding characteristic polynomial fB(x) defined in (2.23) is a primitive

polynomial.

As shown in Section 2.7, the primitive characteristic polynomial f (x) of a generator

in MRG(k, p) can be rewritten as f (x) = det(xI−M f ), where M f is the companion

matrix defined in (2.17). This implies every companion matrix M f of a generator in

MRG(k, p) has order pk −1. Knowing this, Grothe (1987) proposed a class of MCGs with

B = TM f T−1, where T is an invertible k ×k matrix over Zk×k
p and M f is the companion

matrix to a generator in MRG(k, p). Hence, our first connection between MCGs and

MRGs is that MCGs can be constructed from the companion matrix M f of a generator

in MRG(k, p). Since fB(x) = det(xI−TM f T−1) = det(xI−M f ) = f (x) over Zp , then the

MCG shares the same characteristic polynomial as the generator in MRG(k, p).

Using the Cayley-Hamilton Theorem, Grothe (1987) gave a parallel MCG

implementation of a generator in MRG(k, p) that shared the same primitive

characteristic polynomial as the MCG. He showed that, when taken as a k-dimensional

vector sequence (Xi )i≥0, the MCG satisfies the following recursion

Xi =α1Xi−1 +α2Xi−2 +·· ·+αk Xi−k mod p, i ≥ k. (2.24)
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Therefore, each of the k sequences taken from each of the k rows in (2.24) can be

viewed as k copies of the same MRG with different starting seeds. In other words, as a

vector sequence, maximum period MCGs can be viewed as running k copies of a

generator in MRG(k, p). This is our second connection.

Due to the equi-distribution property, every k-tuple of integers in Zk
p (except the

all-zero tuple) appears exactly once. Hence, these k MRG sequences (with different

starting seeds) are simply shifts within the same MRG cycle. Clearly, different choices of

T will result in different shifts. Typically, due to the huge period length for MRG(k, p), a

“random” choice of T tends to yield k sequences that are far apart in the MRG cycle. It

can be shown that, on average, each of the k sequences will be about O((pk −1)/k2)

numbers apart. With this in mind, we can consider a MCG as a parallel implementation

of k copies of the same MRG with some “random” jump-ahead scheme.

From this parallel MCG implementation, it is important to choose matrix T such

that the MCG’s generating recursion is efficient. The matrix B = TM f T−1 has O(k2)

nonzero terms which requires at most k2 multiplications to produce a single

k-dimensional vector. On average, the number of multiplications needed per

computed value is of the order O(k). This is clearly not efficient.

If we choose T to be the identity matrix, then the MCG with multiplier matrix

B = M f requires only k multiplications to produce a single k-dimensional vector.

However, as a vector sequence, the first k −1 rows in (2.24) are simple one-step shifts of

each other, which is clearly unsuitable for parallel simulation. The last row, with all the

k multiplications, is no more efficient than implementing the MRG directly.

In Chapter 4, we show how to dramatically increase the efficiency of the parallel
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MCG implementation. In Chapter 5, we give an efficient and parallel MCG

implementation of a special class of large order maximum period MRGs with many

nonzero terms.
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Chapter 3

Spectral Tests For Some Large Order

Multiple Recursive Generators

3.1 Introduction

Large order, maximum period multiple recursive generators (MRGs) (with few nonzero

terms) have become popular in the area of computer simulation. They are efficient,

portable, have a long period, and have the nice property of high-dimensional

equi-distribution. Recently, several large order MRGs have been proposed in the

literature. Of these specified generators, the performance on the spectral test, a

theoretical test that provides some measure of uniformity in dimensions beyond the

MRG’s order k, could be improved by choosing multipliers that yield a better spectral

test value. While there has been some published work on the problem of computing

the spectral test, the procedure can be quite tedious and inefficient for large order

MRGs. In this chapter, we propose a new method which is simple, intuitive, and

efficient for some special classes of large order MRGs including the FMRG-k and

DX-k-s generators. Using this procedure, we propose a list of “better” FMRG-k and

DX-k-s generators with respect to performance on the spectral test.
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In Section 3.2, we will give an intuitive, geometric method for computing the

spectral test, an important theoretical test explained in Section 2.4. For computing the

spectral test of an maximum period MRG in (2.1) for one dimension beyond k, a simple

algorithm is given. However, computing the spectral test for several dimensions

beyond k requires a more sophisticated algorithm, which we give in Section 3.3. Using

this algorithm to study FMRG-k and DX-k-s generators, we observed in Section 3.4 that

these special classes of MRG have a property that we term the consistency property,

where some generators in this class maintain the same spectral test value for many

dimensions beyond k. In Section 3.5, we tabulate several generators in FMRG-k and

DX-k-s with spectral test values below a pre-specified cutoff and each possessing the

consistency property.

Notation

Throughout this chapter, p is a large prime number and Zp = {
0,1,2, · · · , p −1

}
denotes

the finite field of p elements under the usual modulus operations of addition and

multiplication. Zk
p denotes the set of k-dimensional vectors with elements in Zp . For

any integer x, we define

[x]p =


(x mod p), if (x mod p) < p/2

(x mod p)−p, otherwise.

(3.1)

Therefore, [x]p denotes the symmetric representation with respect to modulus p such

that −p/2 < [x]p < p/2. For a t-dimensional integer vector x = (x1, x2, · · · , xt ), we define
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[x]p = ([x1]p , [x2]p , · · · , [xt ]p ) and ||x||2 =∑t
i=1 x2

i . All MRGs considered in this chapter

are maximum period MRGs, that is, generators in MRG(k,p), where MRG(k,p) is the

class of all maximum period MRGs of order k and modulus p.

3.2 Spectral Tests for Multiple Recursive Generators

In this section, we consider the problem of computing the spectral test for an MRG of

order k. As explained in Section 2.4, the spectral distance dt (k) is traditionally

computed using successive indices in an index set I = {0,1,2,3, . . . , t −1} (see, e.g.,

Knuth, 1998). However, the spectral test can also be computed for nonsuccessive index

set I = {
j1, j2, . . . , jr

}
(see, e.g., L’Ecuyer, 1997). For the remainder of this chapter, we will

only refer to the traditional spectral test or spectral distance dt (k).

Throughout this chapter, we will need to apply the symmetric modulo function [x]p

to some integers x for some minimization problems, and we will apply the regular

modulo function for the computation of the next number Xi (i ≥ k) in the sequence for

a MRG. Without loss of generality, for some “constant multiplier” c and for the MRG

multipliers α1,α2, . . . ,αk , we will assume that they are expressed in

“symmetric-modulus” format with their absolute value less than p/2.

In the next section, we will propose a simple, intuitive, and geometric interpretation

of the spectral test as a minimization problem of finding a “normal vector” with the

shortest length. Then in Section 3.3, we will outline a new method for computing the

spectral test.

30



Computing the Spectral Test for LCGs

To motivate our method of computing the spectral test for MRGs of order k, we will first

start with computing the spectral distance d2(1) for a LCG in (2.2), which is the same as

a MRG of order k = 1. The maximum period of a LCG is ρ = p −1. LetΛ2(I ) in (2.5) be

the set of all successive (overlapping) pairs (Xn/p, Xn+1/p) for n = 0,1,2, · · · ,ρ−1.

Clearly, the ordered pairs inΛ2(I ) can be covered by several parallel lines of B x − y = r ,

where x corresponds to Xn/p, y corresponds to Xn+1/p, and r is the integer multiple of

p such that B Xn −Xn+1 = r p. The “normal vector” to these parallel lines is V = [B ,−1]′.

The distance between two adjacent parallel lines is 1
||V|| =

1p
1+B 2

. Shorter ||V|| imply a

larger distance between some pair of adjacent parallel lines.

For an integer c, every generated output pair in L2(I ) will also satisfy the equation

c Xi = [cB ]p Xi−1 mod p.

Hence, the points in latticeΛ2(I ) can also be covered by several parallel lines of

[cB ]p x − c y = r with the corresponding “normal vector” Nc = [cV]p = [[cB ]p ,−c]. The

distance between two adjacent parallel lines is 1/||Nc || = 1√
c2+[cB ]2

p

. It is easy to see that

||[−cV]p || = ||[cV]p ||. Hence, we can restrict the range of c to 0 < c < p/2. Each c in this

range will define a (not necessarily unique) family of parallel lines that cover all the

points inΛ2(I ). For each of these families, we can compute the distance between

adjacent parallel lines 1/||Nc || = 1√
c2+[cB ]2

p

use that family’s “normal vector” Nc .

To compute the spectral distance dt (k), we must find the value of c such that
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1/||Nc || = 1√
c2+[cB ]2

p

is the largest among all the families of parallel lines that cover all the

points inΛ2(I ). Equivalently, we can search for the value of c for such that ||Nc || is the

smallest among all the families of parallel lines.

Simple Example for LCG

For the purpose of illustration, in Figure 1 we plot the successive, overlapping pairs

from a LCG with multiplier B = 3 and modulus p = 31, which we denote as LCG(3,31).

Each subfigure in Figure 1 represents a unique family of parallel lines that cover all the

points inΛ2(I ). Each subcaption gives the “normal vector” Nc = [cV]p (and integer c)

corresponding to that family. The family corresponding to integer c = 1 in Figure 1a is

the same for 1 ≤ c ≤ 5; therefore, we only include the plot for c = 1. Families

corresponding to −p/2 < c < 0 are also duplicates of the families already shown in

Figure 1. Clearly, the family corresponding to c = 1 is the one with the largest spectral

distance between adjacent, parallel lines. Consequently, it is also the family with the

shortest “normal vector” N1 = [1V]p = (3,−1).

Computing the Spectral Test for MRGs

Spectral test for t = k +1

Naturally, we can extend the above procedure for computing the spectral test (for

dimension t = k +1) to a MRG of order k defined in (2.1). First, consider Lk+1(I ) in (2.4)
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(a) N1 = [1V]p = (3,−1)
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(b) N6 = [6V]p = (−13,−6)
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(c) N7 = [7V]p = (−10,−7)
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(d) N8 = [8V]p = (−7,−8)
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(e) N9 = [9V]p = (−4,−9)
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(f) N10 = [10V]p = (−1,−10)
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(g) N11 = [11V]p = (2,−11)
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(h) N12 = [12V]p = (5,−12)
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(i) N13 = [13V]p = (8,−13)
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(j) N14 = [14V]p = (11,−14)
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(k) N15 = [15V]p = (14,−15)

Figure 1: Families of parallel lines covering successive, overlapping pairs from LCG(3,31)

where every (k +1)-tuple in Lk+1(I ) in generated from a k-th ordered MRG. Next, note

that the points inΛk+1(I ) form a (k +1)-dimensional lattice over [0,1)k+1 where all
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these points can be covered by several parallel k-dimensional hyperplanes whose

“normal vector” is

V = [αk ,αk−1, · · · ,α1,−1]′.

Clearly, for many integers c, every (k +1)-tuple in Lk+1(I ) will also satisfy the

equation

c Xi = ([cα1]p Xi−1 +·· ·+ [cαk ]p Xi−k ) mod p, i ≥ k.

Hence, several families of parallel k-dimensional hyperplanes (associated with chosen

c) can cover all the points inΛk+1(I ). For each family, the corresponding “normal

vector” is [cV]p . We can find the shortest “normal vector” [cV]p , by computing

v2
k+1(k) = min

c 6=0
||[cV]p ||2 = min

0<c<p/2

(
k∑

i=1
[cαi ]2

p + c2

)
. (3.2)

Because of the symmetric property, we can limit our search space for c by half to

0 < c < p/2. A similar result is given in L’Ecuyer and Simard (2014), but the authors only

applied it to MRGs with few nonzero terms and were only concerned with lacunary

sequences dictated by the index set J in (2.6). However, this minimization problem is

true for MRGs in general and can be applied even to spectral tests of successive

sequences.

Once v2
k+1(k) is computed, the spectral distance for dimension k +1 is given by

dk+1(k) = 1

vk+1(k)
.
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For any dimension t , a large vt (k) corresponds to a small dt (k), which implies more

uniform coverage of the t-tuples. Therefore, for a given MRG of order k, we desire vt (k)

to be as large as possible.

Since computing the spectral test is primarily concerned with finding the “normal

vector” with the shortest squared length, v2
t (k), for the rest of this chapter, we will focus

on v2
t (k) as the value representing the spectral test, where a larger v2

t (k) is better. We

will simply call v2
t (k) the spectral test value.

To compute spectral test value v2
k+1(k) for a MRG of order k, the following algorithm

is straightforward.

Algorithm to compute the spectral test value v2
k+1(k) for a MRG of order k

1. Initially, set v2
min = 1+∑k

i=1α
2
i with c = 1.

2. For c = 2,3, · · · , do

(a) compute v2
c = c2 +∑k

i=1[cαi ]2
p

(b) if v2
min > v2

c , then reset v2
min = v2

c .

(c) if v2
min ≤ (c +1)2, then break; else continue with next c;

3. Deliver v2
k+1(k) = v2

min.

This algorithm is simple to implement when calculating v2
k+1(k) for a MRG of order k.

However, as we will see next, it is not easy to generalize for dimensions larger than k +1.
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Spectral test for t > k

In the previous section, the method for computing the spectral test value was to find

the “normal vector” then set up the minimization problem which is simple enough to

solve with a straightforward algorithm. We can extend this method to computing the

spectral test in dimension t = k +d for some integer d , where d stands for dimensions

added to k and not the spectral distance dt (k). However, as we will see, we will need a

more sophisticated algorithm to solve the minimization problem.

First, we need to define d “normal” vectors of dimension t :

V1 = [αk ,αk−1, · · · ,α1,−1,0,0, . . . ,0]′,

V2 = [0,αk ,αk−1, · · · ,α1,−1,0, . . . ,0]′,

... (3.3)

Vd = [0,0, . . . ,0,αk ,αk−1, · · · ,α1,−1]′,

where Vi+1 is merely a simple rotation of Vi for i = 1,2, . . . ,d −1. We then solve the

following minimization problem

v2
t=k+d (k) = min

(c1,c2,...,cd )6=(0,0,...,0)

(
||

d∑
i=1

[ci Vi ]p ||2
)

. (3.4)

The actual value of the minimization, v2
t (k), depends on the choices of the MRG’s

multipliers α1,α2, . . . ,αk . Clearly, v2
k+1(k) ≥ v2

k+2(k) ≥ ·· · ≥ v2
k+d (k), that is, as we

calculate spectral test values v2
t (k) for dimensions t that are farther and farther away
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from k, we expect the number of possible t-tuples that the MRG can produce to either

stay the same or to get smaller. Solving this minimization problem becomes

increasingly difficult for MRGs of larger order k or for large values of d . Even more

difficult is searching for the “best” multipliers (αi ’s) such that v2
t (k) is largest for a given

order k and modulus p.

Computing the spectral test for MRGs can be thought of as equivalent to solving the

above minimization problem. In the next section, using a basis reduction algorithm, we

will give a new method for computing the spectral test. As we will explain, this method

is easier to implement than the one currently used.

3.3 Using Basis Reduction to Compute the Spectral Test

for t > k

To solve the minimization problem of finding v2
t (k) for some dimension t = k +d , we

first create a matrix whose rows correspond to a lattice basis of “normal vectors”. From

this basis of “normal vectors”, we can find another one whose basis vectors are

relatively short and nearly “orthogonal.” This process is called lattice basis reduction

(see, e.g., Cohen, 1993). The vector with the shortest squared length will give the

spectral value v2
t (k).

To perform this lattice basis reduction, we can use the help of the popular LLL

Algorithm which was proposed by Lenstra, Lenstra and Lovász (1982). Essentially, the

LLL Algorithm is an integer lattice version of Gram-Schmidt orthogonalization. Several
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LLL implementations are available in many software packages such as MAPLE, NTL

and Sage. Entacher et al. (2002) used the LLL algorithm to compute the spectral test for

the LCG. However, others (see, e.g., L’Ecuyer et al., 1993; L’Ecuyer & Couture, 1997) have

used the Fincke-Pohst algorithm (Fincke & Pohst, 1985) to compute the spectral test.

For discussion on differences between these two algorithms see Entacher et al. (2002)

and the references cited there. Our below algorithm for finding v2
t=k+d (k) can be used

with either basis-reduction algorithm. In Section 3.3, we will discuss how our method

for creating a matrix of basis (row) vectors differs from the current method in the

preceding references.

Algorithm for finding v2
t=k+d (k)

1. [Create the initial d normal vectors] Let V1 = [αk ,αk−1, . . . ,α1,−1,0, . . . ,0]′, where

its last d −1 entries are all zero. Compute the remaining d −1 normal vectors,

Vi = Ri−1(V1), for i = 2,3, . . . ,d , where Ri−1(V1) denotes i −1 simple rotations of V1

as shown in (3.3).

2. [Creation of initial matrix.] Let M0 be an initial d × t matrix whose d rows are

V′
1,V′

2, · · ·V′
d .

3. [Remove columns of zeros.] Remove any columns of zeros from the initial matrix

M0. Call the new matrix M1 whose dimensions will be d × t∗, where t∗ is the

number columns left in the matrix. If there are no columns of only zeros in M0,

then t∗ = t and M1 = M0.

4. [Create final matrix for basis reduction.] Let M be a t∗× t∗ matrix whose first
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(t∗−d) rows are pei (t∗), where p is the modulus, ei (t∗) is the i -th unit vector of

dimension t∗, and i corresponds to the row number i = 1,2, . . . , (t∗−d). Let the

remaining d rows correspond to the rows in M1.

5. [Basis reduction.] Apply the LLL algorithm (or some other basis reduction

procedure) to matrix M which yields a reduced matrix M∗ = LLL(M). The spectral

test value v2
t (k) is squared length of the shortest row vector in M∗.

Together, Steps 1 and 2 create our initial d × t matrix of “normal vectors” which are

merely rotations of V1. If any columns of zeros are present in M0, then we remove them

in Step 3, because the zero columns do not contribute to solving the minimization

problem. Step 4 adds the necessary number of unit vectors (times p) such that M is a

basis of “normal vectors.” Finally, Step 5 uses LLL (or preferred algorithm) to reduce the

basis M to M∗ such that the shortest row vector in M∗ yields the v2
t (k).

Simple example for MRG

To illustrate this algorithm, consider computing the spectral test for three dimensions

beyond k = 5 for the following small order MRG.

Xi =α1Xi−1 +α2Xi−2 +α3Xi−3 +α4Xi−4 +α5Xi−5 mod p, i ≥ 5. (3.5)

The first corresponding “normal vector” will be

V1 = [α5,α4,α3,α2,α1,−1,0,0]′ (3.6)
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V2 and V3 can be easily found by rotating the elements in V1 once and twice,

respectively. Then we will have

M0 =


α5 α4 α3 α2 α1 −1 0 0

0 α5 α4 α3 α2 α1 −1 0

0 0 α5 α4 α3 α2 α1 −1



Since M0 has no columns of all zeros to remove, then M1 = M0. The final matrix to

submit to LLL will be

M =



p 0 0 0 0 0 0 0

0 p 0 0 0 0 0 0

0 0 p 0 0 0 0 0

0 0 0 p 0 0 0 0

0 0 0 0 p 0 0 0

α5 α4 α3 α2 α1 −1 0 0

0 α5 α4 α3 α2 α1 −1 0

0 0 α5 α4 α3 α2 α1 −1



This example showcases the simplicity of the above algorithm. For larger order

MRGs (with many nonzero terms), a large matrix of basis vectors will need to be

created. The above algorithm can create this rather efficiently. In contrast, creating a

large matrix of basis vectors using the current method is very tedious as we will see in

the next section.
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Comparison with Current Method

Kao and Tang (1997a), Knuth (1981, 1998), L’Ecuyer (1997), and L’Ecuyer and

Couture(1997) all use a similar method for computing the spectral test. Currently, the

method for computing t-dimensional spectral tests for MRGs requires finding a dual

basis of the lattice basis for Lt (I ) (see, e.g., L’Ecuyer & Couture, 1997).

First, let A equal the transpose of the MRG’s companion matrix in (2.17)

A =



0 0 . . . 0 αk

1 0 . . . 0 αk−1

0 1 . . . 0 αk−2

...
...

. . .
...

...

0 0 . . . 1 α1


,

and let [A]i j denote the i j th element of matrix A. Next, for t = k +d , we define (t × t )

matrix V whose rows are t-dimensional basis vectors of Lt (I )+pZt , which is the

periodic continuation of Lt (I ) in (2.4) with period p. Here, Zt denotes the

t-dimensional vector whose elements are any integer in set of all integers Z. The matrix

V is defined as

V =



1 0 · · · 0 αk [A2]1k mod p · · · [Ad ]1k mod p

0 1 · · · 0 αk−1 [A2]2k mod p · · · [Ad ]2k mod p
...

...
. . .

...
...

...
. . .

...

0 0 · · · 1 α1 [A2]kk mod p · · · [Ad ]kk mod p

0 0 · · · 0 p 0 · · · 0

0 0 · · · 0 0 p · · · 0
...

...
. . .

...
...

...
. . .

...

0 0 · · · 0 0 0 · · · p



.

From basis matrix V construct dual basis matrix W such that

41



V′
i W j = p ∗Kroenecker’s δi j

W =



p 0 · · · 0 0 0 · · · 0

0 p · · · 0 0 0 · · · 0
...

...
. . .

...
...

...
. . .

...

0 0 · · · p 0 0 · · · 0

αk αk−1 · · · α1 −1 0 · · · 0

[A2]1k mod p [A2]2k mod p · · · [A2]kk mod p 0 −1 · · · 0
...

...
. . .

...
...

...
. . .

...

[Ad ]1k mod p [Ad ]2k mod p · · · [Ad ]kk mod p 0 0 · · · −1



.

Finally, solve the following minimization problem

v2
k+d (k) = min

(z1,z2,...,zd )6=(0,0,...,0)

(
||

d∑
i=1

zi Wi (mod p)||2
)

,

where zi ∈
{−(p −1), . . . , (p −1)

}
and

W1 = [αk ,αk−1, . . . ,α1,−1,0,0, . . . ,0]′,

W2 = [[A2]1k , [A2]2k , . . . , [A2]kk ,0,−1, . . . ,0]′ (mod p),

...

Wd = [[Ad ]1k , [Ad ]2k , . . . , [Ad ]kk ,0,0, . . . ,−1]′ (mod p).

When t = k +1, the proposed method solves a similar minimization problem as the

current method. For t > k +1, the current procedure requires raising a k ×k matrix to a

some power. When k is large, this procedure will be difficult to implement.

Furthermore, the current method lacks an intuitive explanation for what is being

minimized and how the minimization problem relates to the spectral test. Overall, our

approach is similar, except we propose a simpler way to find the dual basis to the lattice
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points Lt (I ) in (2.4). Lastly, as we will see in the next section, for some special classes of

large order MRGs with few nonzero terms, the proposed method can be substantially

more efficient.

3.4 Spectral test for DX-k-s Generators

As discussed in Chapter 2.6, FMRG-k was proposed by Deng and Lin (2000) and Deng

and Xu (2003) proposed DX-k-s generators as two classes of portable, efficient, and

maximum-period MRGs. For the DX-k-s class, s is the number of terms sharing the

multiplier B .

Spectral test for DX-k-s when t = k +1

When computing the spectral test value v2
k+1(k) for FMRG-k, the “normal vector” V will

consist of one entry of 1, one entry of B, and the rest zeros except the last entry which

will be −1. For DX-k-s the “normal vector” V will consist of s entries of B and the rest

zeros except for the final entry which will be −1.

Thus, the minimization problem in (3.2) can be further reduced. For FMRG-k, we

have

v2
k+1(k) = min

0<c<p/2

(
[cB ]2

p +2c2
)

and for DX-k-s, we have

v2
k+1(k) = min

0<c<p/2

(
s[cB ]2

p + c2
)

. (3.7)
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For convenience, we will mainly discuss the minimization problem for DX-k-s in (3.7).

However, the results in this section that apply to DX-k-s generators will also apply to

FMRG-k generators. Note that v2
k+1(k) in (3.7) depends only on the parameters B and s,

not on the order k.

Note also that for LCG in (2.2), we have a very similar form:

v2
2 = min

0<c<p/2

(
[cB ]2

p + c2
)

.

The lattice structure for LCG has been studied extensively in the literature (see, e.g.,

Entacher et al., 2005; Sezgin 1996, 2004, 2006). From this extensive study, we know that

the LCG with multiplier B tends to have a bad (small) v2
2 whenever B is close to the

value of pN /D with small numerator N (see, e.g., Sezgin, 2004). The study of “bad”

lattice structures for LCGs can also be useful to avoid choosing a bad multipliers B for

FMRG-k and DX-k-s generators. We remark that for higher values of t = k +d , the

lattice structure for a LCG is getting worse whereas the lattice structure for FMRG-k and

DX-k-s generators remains steady as will be shown in Section 3.4. But first, we will

need to show how to compute the (k +2)-dimensional spectral test value for DX-k-s

generators which is similar for FMRG-k generators.

Spectral test for DX-k-s when t = k +2

For DX-k-s generators, the minimization problem in (3.4) for t = k+2 can be reduced to

v2
k+2(k) = min

(c1,c2)6=(0,0)

(
(s[c1B ]2

p + c2
1)+ (s[c2B ]2

p + c2
2)−2c1[c2B ]p

)
.
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Similar to the case for finding v2
k+1(k), it is pretty straight forward to solve this

minimization problem. However, we can also compute v2
k+2(k) using the algorithm

given in Section 3.3.

Simple Example for DX-k-2

For example, consider a DX-k-2 generator for some k. The normal vectors will be

V1 = [B ,0,0, . . . ,0,B ,−1,0]′

V2 = [0,B ,0,0, . . . ,0,B ,−1]′

where there are many zeros between B ’s. Therefore, there will be many zero columns in

M0 that we can remove resulting in

M1 =

B 0 B −1 0

0 B 0 B −1



whose number of columns have been drastically reduced from the initial matrix M0,

especially if k was large. Next, to compute v2
k+2(k), we simply apply LLL to the much

smaller matrix

M =



p 0 0 0 0

0 p 0 0 0

0 0 p 0 0

B 0 B −1 0

0 B 0 B −1


.
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Thus, the special structure of DX-k-s generators allows us to compute the spectral test

efficiently for even large orders of k. As we will show next, this special structure also

allows for another special property.

Consistency property for DX-k-s

As noted earlier, v2
k+1(k) ≥ v2

k+2(k) for any MRG of order k. For many (but not all)

DX-k-s generators with multiplier B and k not too small, we have observed that

v2
k+1(k) = v2

k+2(k).

We will call this property the consistency of the spectral test value for the DX generators.

As a simple experiment, we randomly selected 5000 B ’s as possible multipliers for the

DX-k-s generators. For s = 2, 82.92% of the DX-k-2 generators had the consistency

property. For DX-k-3, 96.24% of the generators had this property. For DX-k-4

generators, all 5000 generators had the consistency property. Since there are (rare)

exceptions, it is impossible to have a general theory. However, we can provide some

intuitive explanations for these observations:

1. For DX-k-s generators, two vectors [c1V1]p and [c2V2]p are “nearly” linearly

“orthogonal” to each other because there is only one common entry with both

nonzero values. The inner product between these two vectors [c1V1]p and [c2V2]p

is −2c1[c2B ]p .

2. The value of v2
k+2(k) can be further reduced if we can choose c1 and c2 so that
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−2c1[c2B ]p is a small enough negative number so that 2c1[c2B ]p > s[c1B ]2
p + [c1]2

p

or 2c1[c2B ]p > s[c2B ]2
p + [c2]2

p . As s changes from 2 to 3 or 4, the “chance” of

finding such c1 and c2 is greatly reduced. This is consistent with our empirical

finding above where the percentage of DX-k-s with v2
k+2(k) < v2

k+1(k) decreased

as s increased, i.e, the percentage DX-k-s where v2
k+2(k) < v2

k+1(k) was 17.08% for

s = 2, 3.76% for s = 3, and 0% for s = 4. Clearly, the actual percentages could vary

if we performed the above simple experiment with a different sample of

multipliers B .

3. Geometrically speaking, for any two vectors, V and W, ||V+W||2 can be smaller

than ||V||2 and ||W||2 only when the “angle” between two vectors is larger than 90

degrees. Since the two vectors [c1V1]p and [c2V2]p are almost “orthogonal” for DX

generators, it is harder to find c1 and c2 such that ||[c1V1]p + [c2V2]p ||2 is shorter

than ||[c1V1]p ||2 or ||[c2V2]p ||2, where v2
k+2(k) corresponds to minimizing

||[c1V1]p + [c2V2]p ||2 with respect to some (c1,c2) and v2
k+1(k) is the same as

minimizing ||[c1V1]p ||2 with respect to c1 or, equivalently, the same as minimizing

||[c2V2]p ||2 with respect to c2.

We remark that some FMRG-k generators also exhibit the consistency property, and

this can be seen by using similar arguments listed above. When computing the spectral

test value v2
k+3(k) for MRGs of order k, we would expect the following decreasing

property for the spectral values:

v2
k+1(k) ≥ v2

k+2(k) ≥ v2
k+3(k).
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Using the same geometric arguments, however, the consistency property extends to

v2
k+3(k) for DX-k-s generators. Indeed, among the 5000 B ’s tested, there is 100%

“consistency” between the values of v2
k+2(k) and v2

k+3(k) for all DX-k-s generators. In

fact, the consistency property is expected to hold for v2
k+d (k) for several dimensions

beyond k until there is a change in relative relationship on the “angles”

(inner-products) among these vectors of V1,V2, . . . ,Vd .

For several dimensions beyond k, MRGs with the consistency property will have the

exact same spectral value. Therefore, MRGs with the consistency property are easier to

rank for a given order k (and modulus p). If a set of MRGs all have the consistency

property, then the one with the best spectral test value in dimension k +1 will be the

best for several dimensions beyond k. This is not true for MRGs in general where an

MRG with the best spectral test value in dimension k +1 can have a worse spectral

value in dimension k +2 (see, e.g., Knuth, 1998).

In the next section, we search for “better” FMRG-k and DX-k-s generators by

screening for multipliers B such that the generator has a spectral test value smaller

than a pre-specified cutoff and possesses the consistency property.

3.5 List of better FMRG-k and DX-k-s generators

We use the proposed algorithm in Section 3.3 to search for “better” FMRG-k and

DX-k-s generators. Recently, Deng et al. (2012a, 2012b) found several FMRG-k and

DX-k-s generators of large orders. While these generators have the equi-distribution

property up to dimension k, several of these generators have poor spectral test values
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for dimensions t beyond k. Using the algorithm in Section 3.3, we searched for a new

set of FMRG-k and DX-k-s generators with reasonably good spectral distances dk+1(k).

We remark that computing the spectral distance is much easier than finding a

generator with the maximum period. Therefore, we first screened potential multipliers

for a spectral distance dk+1(k) below a pre-specified bound (say, 3e-05 or 2e-05) and

verified that the generator possessed the consistency property. After passing these two

checks, then we proceeded to check whether the generator had the maximum period

using methods described in Deng et al. (2012a, 2012b). Table 1 through Table 4 list

“better” FMRG-k and DX-k-s generators.
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3.6 Discussion

Concerning testing the quality of a random number generators with a linear

recurrence, Knuth (1998) said that the spectral test “is by far the most powerful test

known.” In this chapter, we give an intuitive, geometric explanation of how to compute

the t-dimensional spectral test using “normal vectors” that are perpendicular to

families of equidistant, parallel (t −1)-dimensional hyperplanes that cover all the

t-dimensional lattice points, which are created by taking successive subsequences of

output from the MRG. An algorithm is given in Section 3.3 for computing the spectral

test for MRGs. This algorithm is easy to implement and (for some special classes of

large order MRGs with few nonzero terms) can be more efficient than the current

method for computing the spectral test. Using this algorithm we observe that FMRG-k

and DX-k-s generators have a consistency property where the spectral test value

remains the same for several dimensions beyond k. We list “better” FMRG-k and

DX-k-s generators that have the consistency property and relatively small spectral test

values for their respective class and order k.
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Chapter 4

Efficient and Parallel Implementation of

General Multiple Recursive Generators

with Many Nonzero Terms

4.1 Introduction

As explained in Section 2.2, maximum period MRGs are thought to be good random

number generators. They have great empirical performance, strong statistical

justification, long periods, and the equi-distribution up to order k. However, maximum

period MRGs can be inefficient and difficult to implement in parallel. A direct

implementation of the recursion could require up to k multiplications to produce one

number. The general parallelization method in (2.19) can be difficult for large k as it

requires raising a k ×k matrix to some power. If the recursion requires up to k

multiplications, then the AGM parallelization method in (2.20) will require the same.

As we saw in Section 2.6, most research in this area has tried to side-step these

difficulties by searching and implementing MRGs with some special structure such that

the linear recurrence can be implemented by an MRG with few non-zero terms. Fewer
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non-zero terms requires fewer costly multiplications when generating the recursion.

However, as Kao and Tang (1997) point out, MRGs with few nonzero have spectral

distances dk+1(k) that are worse than what is expected from MRGs with many nonzero

terms. To have small spectral distances dt (k) for dimension t > k, L’Ecuyer (1997) gave

the necessary but not sufficient condition that the sum of squares of the MRG

multipliers α1,α2, . . . ,αk in (2.1) must be large.

By Theorem 1 in Section 2.7, we can find numerous maximum period MRGs with

many nonzero terms from the companion matrix M f of one maximum period MRG,

even if the starting MRG has few nonzero terms. However, without an efficient

implementation of these MRGs, this fecund theorem has not frequently been drawn

upon to find new general MRGs with many nonzero terms. As explained in Section 2.8,

maximum period MCGs can be constructed from the companion matrix M f of a

maximum period MRG. Generating numbers k at a time from the recursion of a MCG

contructed this way will yield a parallel implementation of the MRG. However, this

parallel MCG implementation can be very inefficient (see Section 2.8). In this chapter,

we will describe a procedure to find numerous maximum period MRGs with many

nonzero terms and give an efficient and parallel MCG implementation for these MRGs.

Some Notation

Throughout this chapter, we let p be a large prime number and Zp = {
0,1,2, · · · , p −1

}
be the finite field of p elements under the usual modulus operations of addition and

multiplication. We will use Zk
p and Zk×k

p to denote the set of k-dimensional vectors and
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the set of k ×k matrices, respectively, with elements in Zp . We let MRG(k, p) denote the

class of maximum period k-th order MRGs with prime modulus p. We use φ(x) to

denote the Euler totient function, which gives number of integers between 1 and x that

are relatively prime to x.

4.2 Finding Numerous MRGs with Many Nonzero Terms

To use Theorem 1 in Section 2.7, we need to start with a generator in MRG(k, p).

Section 2.6 lists many references to generators in MRG(k, p) with few nonzero terms

whose primitive polynomials are already given. Starting with one of these primitive

polynomials f (x), we can raise its corresponding companion matrix M f to some power

r with r coprime to pk −1, and find fr (x) = det(xI−Mr
f ). According to Theorem 1, fr (x)

is a primitive polynomial. The primitive polynomial fr (x) will define a new generator in

MRG(k, p). The resulting maximum period MRG is very likely to have many nonzero

terms. Let MRG-k denote the class of generators in MRG(k, p) with many nonzero

terms that are found using Theorem 1.

Now we need an efficient and parallel MCG implementation of MRG-k. In the next

section, we will give such an implementation.
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4.3 Efficient and Parallel MCG Implementation of

MRG(k, p)

In this section, we will modify the parallel MCG implementation given in Section 2.8.

The method requires constructing a MCG from a MRG-k such that the parallel MCG

implementation is very efficient. Consider the companion matrix M f corresponding to

some generator in MRG(k, p) regardless of the number of nonzero terms. It is

interesting to note that M f and its transpose M′
f have the same characteristic

polynomial, since det(xI−M f ) = det(xI−M′
f ), where

M′
f =



0 0 . . . 0 αk

1 0 . . . 0 αk−1

0 1 . . . 0 αk−2

...
...

. . .
...

...

0 0 . . . 1 α1


.

If we choose the invertible matrix T with the following form

T =



t1 0 0 . . . 0

0 t2 0 . . . 0

0 0 t3 . . . 0
...

...
...

. . .
...

0 0 0 . . . tk


(4.1)
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and consider the multiplier matrix

B = TM′
f T−1 =



0 0 . . . t1/tk αk

t2/t1 0 . . . t2/tk αk−1

0 t3/t2 . . . t3/tk αk−2

...
...

. . .
...

0 0 tk /tk−1 α1


=



0 . . . 0 α∗
k

γ1 . . . 0 α∗
k−1

0 γ2 0 α∗
k−2

...
. . .

...
...

0 . . . γk−1 α∗
1


(4.2)

where

α∗
1 =α1, α∗

i+1 = (tk−i /tk )αi+1, γi = ti+1/ti , i = 1,2, . . . , (k −1),

then the MCG recursion equation in (2.22) can be rewritten as



Xi ,1

Xi ,2

...

Xi ,k


=



α∗
k Xi−1,k

γ1Xi−1,1 +α∗
k−1Xi−1,k

...

γk−1Xi−1,k−1 +α∗
1 Xi−1,k


mod p, i ≥ 1. (4.3)

Each row in (4.3) requires at most two multiplications. However, if there were k

multipliers in M f , a direct implementation of MRG-k would have require k

multiplications. Clearly, this implementation is dramatically more efficient. We call this

an efficient and parallel MCG implementation of a MRG-k. This implementation

requires only 2k −1 multiplications to produce k numbers whereas a direct

implementation with k multipliers would requires k2 multiplications.

Since the k-dimensional vectors must be taken as a sequence (Xi )i≥0, we must

generate k numbers at a time and assign each number in sequence to one of k parallel

processors, which is equivalent to assigning each of the k rows in (2.24) to a different
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CPU. However, we recommend always skipping the first element in (4.3) and only

assigning the remaining k −1 elements to one of k −1 processors. The reason being

that Xi ,1 for i ≥ 1 is simply a multiplication of the previous number just computed.

With this efficient and parallel MCG implementation, the k copies of the MRG will

mimic some "random" jump-ahead scheme.

Suggestion for Choices of T

When choosing invertible matrix T = Diag(t1, t2, . . . , tk ) in (4.1), there are many

selections that can be had by randomly choosing nonzero ti for i = 1,2, · · · ,k. If one

wants to create a program to choose the ti “randomly”, perhaps, the following could be

helpful. If we let g be a primitive root over Zp , then for any nonzero ti in Zp , we can

find an integer si such that ti = g si mod p. Therefore, we can rewrite

α∗
1 =α1, α∗

i+1 = (tk−i /tk )αi+1 = (g sk−i−sk )αi+1 mod p,

γi = ti+1/ti = g si+1−si mod p, i = 1,2, . . . , (k −1).

For the modulus p = 231 −1, g = 7 is the smallest primitive root, and g = 75 = 16807 is

the best known primitive root. If using a different modulus, then, of course, a different

primitive root g could easily be found.
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4.4 Procedure to find and implement a general MRG with

many nonzero terms

The following procedure summarizes the previous two sections. Steps 1 and 2 show

how to find MRG-k with many nonzero terms. Step 3 and 4 show how to implement

MRG-k efficiently and in parallel.

1. Start with the primitive characteristic polynomial f (x) of a generator in

MRG(k, p). Several references are given in Sections 2.5 and 2.6.

2. Find the primitive polynomial fr (x) = det(xI−Mr
f ), where M f is the companion

matrix to f (x) and r is coprime to pk −1. If fr (x) has many nonzero terms, then

let it be the corresponding characteristic polynomial to MRG-k. If not, then find

fr (x) for a new r coprime to pk −1 until it does have many nonzero terms.

3. Using companion matrix M fr corresponding to fr (x), construct the MCG whose

multiplier matrix is given in (4.2) and implement its efficient recursion



Xi ,1

Xi ,2

...

Xi ,k


=



α∗
k Xi−1,k

γ1Xi−1,1 +α∗
k−1Xi−1,k

...

γk−1Xi−1,k−1 +α∗
1 Xi−1,k


mod p, i ≥ 1,

where α∗
1 =α1, α∗

i+1 = (tk−i /tk )αi+1, γi = ti+1/ti , for i = 1,2, . . . , (k −1) and

t1, t2, . . . , tk are diagonal elements of the invertible matrix T in (4.1).
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4. Generate k numbers at a time, skip the first number, and assign the remaining

k −1 numbers to one of k −1 processors.

4.5 Spectral Test for MRG-k

For this section, we only find MRG-k for small order k. Finding MRGs with larger order

k requires raising a large k ×k matrix, M f , to some power r , then finding

fr (x) = det(xI−Mr
f ). Finally, the efficient and parallel MCG implementation requires

that the 2k −1 multipliers be stored in a computer program. Finding MRG-k generators

for larger order k is achievable, but computationally and programmatically

cumbersome.

The traditional spectral test with successive indices (see Section 2.4) has often been

used to compare several generators in MRG(k, p) for a given order k and modulus p

(see, e.g., Kao & Tang, 1997a; L’Ecuyer et al., 1993). However, we do not attempt to find

the “best” generator in MRG(k, p), because it is not yet clear how to rank which

generators in MRG(k, p) are better than others for a given k and p. This is especially

true for generators in MRG(k, p) with orders k ≥ 8. Nonetheless, we welcome more

research in this area. For this chapter, we simply report spectral distances dt (k). Recall

from Section 2.4, that smaller spectral distances dt (k) for a given dimension t and

order k are better.

Since we need a starting primitive polynomial to find several MRG-kgenerators for

a given order k, we first found a generator in DX-k-2 for orders k = 5,6, . . . ,24 and

modulus p = 231 −1 using methods described in Deng (2005). From these primitive

62



polynomials, we found fr (x) = det(xI−Mr
DX−k−2) for several r and each order k, where

MDX−k−2 is the companion matrix to each corresponding DX-k-2 generator for each

order k. From methods described in Chapter 3, we then calculated dt (k) for dimensions

t = k +1 and t = k +10 for each DX-k-2 generator and each MRG-kgenerator.

Table 5 tabulates the ranges of dk+1(k) and dk+10(k) for the MRG-k. For reference,

the multiplier of each DX-k-2 is included along with its corresponding dk+1(k). As

explained in Chapter 3, we remark that dk+1(k) = dk+10(k) for each specified generator

in classes DX-10-2 through DX-24-2. For each order k, Figures 2 and 3 use box plots to

depict the spread of dk+1(k) and dk+10(k), respectively, on a log10 scale for the MRG-k.

Thus, the minimum and maximum dk+1(k) for each order k in Table 5 are graphically

represented in Figure 2 (on a log10 scale). The same goes for dk+10(k) and Figure 3.

First, note from Table 5 that all the spectral distances dk+1(k) for all generators in

DX-k-2 were O(1e-05). Figures 2 confirms the results of Kao and Tang (1997), that is, for

every order k in the figure, DX-k-2 (with few nonzero terms) has much larger spectral

distances dk+1(k) than MRG-k (with many nonzero terms).

Second, from the table and figures, we see a general trend: MRG-k for larger k tend

to have smaller and more closely clustered dt>k (k), especially when you consider the

log10 scaling. Although not shown here, this trend persisted across dk+2(k), . . . ,dk+9(k).

For a given order k, there are many MRG-k with small dt>k (k). Therefore, MRG-k (for a

given k) tend to perform about the same on the spectral test.
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Table 5: Range of dt (k) for DX-k-2 vs. MRG-k

k
DX-k-2 MRG-k

B dk+1(k) mindk+1(k) maxdk+1(k) mindk+10(k) maxdk+10(k)

24 1011139 2.0169e-05 5.4681e-10 1.1147e-09 4.2325e-08 1.1493e-07
23 1010738 8.5545e-05 6.5150e-10 1.1357e-09 7.9450e-08 1.5698e-07
22 1010598 1.9042e-05 5.4479e-10 1.3708e-09 9.8564e-08 1.9183e-07
21 1010675 6.8704e-05 7.0677e-10 1.1904e-09 1.3134e-07 2.6068e-07
20 1011093 3.6123e-05 7.0100e-10 1.4115e-09 1.4896e-07 3.3066e-07
19 1011385 2.1093e-05 7.8290e-10 1.4744e-09 2.5707e-07 4.7395e-07
18 1010715 2.9729e-05 8.8826e-10 1.5527e-09 3.0252e-07 6.4520e-07
17 1010547 2.8752e-05 9.2199e-10 2.1985e-09 4.6684e-07 9.0989e-07
16 1011236 3.1188e-05 1.0428e-09 2.1323e-09 6.8931e-07 1.2099e-06
15 1010677 4.3985e-05 1.2033e-09 2.0694e-09 9.1564e-07 1.7059e-06
14 1010568 2.6494e-05 1.3987e-09 2.9181e-09 1.6032e-06 2.7158e-06
13 1010667 4.2776e-05 1.6456e-09 2.8490e-09 2.4466e-06 4.6174e-06
12 1010866 9.3999e-05 1.7686e-09 3.2046e-09 4.1708e-06 6.2978e-06
11 1010397 2.6414e-05 2.3066e-09 3.4175e-09 6.5306e-06 1.4636e-05
10 1010571 3.4786e-05 3.0760e-09 5.8136e-09 1.1926e-05 1.9623e-05

9 1010274 2.0613e-05 3.6131e-09 8.2099e-09 2.3410e-05 3.4665e-05
8 1010661 3.9999e-05 4.5075e-09 8.1566e-09 4.5410e-05 9.0088e-05
7 1010167 1.9872e-05 6.1129e-09 1.2974e-08 8.7102e-05 0.00017899
6 1010233 1.7798e-05 1.0093e-08 2.0482e-08 0.00022300 0.00033965
5 1010152 3.3185e-05 1.6960e-08 3.7570e-08 0.00049972 0.00087323
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Figure 2: Box plots of dk+1(k) for different MRG-k
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Figure 3: Box plots of dk+10(k) for different MRG-k
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4.6 Discussion

The general maximum period MRG with many nonzero terms has all the qualities of a

good random number generator except that its direct implementation is inefficient and

parallel implementation grows increasingly difficult as the order k increases. Current

maximum period MRGs utilize some simple structure in the multipliers to gain a

significant increase in their efficiency. However, there is a trade off. These MRGs with

few nonzero terms will have larger spectral distances than expected from a MRG with

many nonzero terms.

Using a well known theorem (Theorem 1, Section 2.7), this chapter shows how to

find numerous general MRGs from one with a simple structure. This abundance source

of general MRGs has remained untapped without an efficient and parallel

implementation. To solve this problem, we give an efficient and parallel MCG

implementation of MRGs with many nonzero terms.

As discussed in Section 4.5, this implementation requires raising a k ×k matrix to

some power and then finding the determinant of another k ×k matrix. The efficient

and parallel MCG implementation then requires that 2k −1 multipliers be stored in a

computer program. For large order k, this method will certainly be time-consuming

and computer intensive. Perhaps, this can be seen as a limitation to the method.

However, the reward for all this work is a general maximum period MRG with an

extremely long period and equi-distribution property up to large order k—a very

desirable random number generator indeed!
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General maximum period MRGs have long been hailed as the ideal random number

generator if only they could be implemented efficiently and in parallel. This chapter

outlines such an implementation.
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Chapter 5

Design and Efficicent, Parallel

Implementation of a Special Class of

Large Order Multiple Recursive

Generators with Many Nonzero Terms

5.1 Introduction

In the previous chapter, we proposed implementing maximum period MRGs with

many nonzero terms efficiently and in parallel by using a MCG constructed from the

MRG. However, the method in Chapter 4 demands raising a k ×k matrix to a power of r

coprime to pk −1, then finding the determinant of a k ×k matrix to obtain up to 2k −1

coefficients that will have to then be stored in a program. When k is large, this method

is achievable but computationally and programmatically cumbersome. Therefore,

there is a need for a special class of large order MRGs with many nonzero terms that

also have an efficient and parallel implementation. In this chapter, we propose a such a

class.
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Notation

Throughout this chapter, we let p be a large prime number and Zp = {
0,1,2, · · · , p −1

}
be the finite field of p elements under the usual modulus operations of addition and

multiplication. Also, all MRGs discussed in this chapter are of maximum period pk −1

for given order k and modulus p. Where appropriate, we will from time to time

reemphasize that the MRG being discussed has maximum period.

5.2 Design of DW-k: a new class of large order general

MRGs

In this chapter, we consider a special class of large order MRGs with many nonzero

terms defined by the following characteristic polynomial

f (x) = (x −B)(x −C )k−1 − AB xk−2 mod p (5.1)

where A, B , and C are suitably chosen nonzero integers over Zp such that f (x) is a k-th

degree primitive polynomial modulo p. By expanding this polynomial using the

binomial theorem, we obtain many nonzero multipliers α1,α2, . . . ,αk , each of which

70



will be a function of the order k and the parameters A, B , or C over Zp :

αi =



((k −1)C +B) mod p, for i = 1

(
AB − (k−1

2

)
C 2 − (k −1)BC

)
mod p, for i = 2

(
(−1)i−1(

(k−1
i

)
C i + (k−1

i−1

)
BC i−1)

)
mod p, for i = 3,4, . . . ,k −1

(−1)k−1BC k−1 mod p, for i = k

. (5.2)

We refer to this special class of large order MRGs with many nonzero terms defined by

the characteristic polynomial f (x) in (5.1) as DW-k generators. Since the multipliers

α1,α2, . . . ,αk are fully specified by the order k and the parameters A, B , C , we denote

DW-k as DW(k; A,B ,C ; p) when specifying the order k, parameters A,B ,C , and prime

modulus p. To avoid confusion, we refer to A,B ,C as the parameters of the α1,α2, . . . ,αk

multipliers.

The characteristic polynomial of DW-k in (5.1) has three special features. First, it

yields many nonzero multipliers α1,α2, . . . ,αk for the MRG recursion in (2.1). Second,

there is an efficient MCG that shares the same characteristic polynomial of DW-k. In

Section 5.3, we will define this MCG and will show that its characteristic polynomial is

the same as DW-k. In Section 5.4, we will give this MCG’s efficient implementation and

will explain how to use it for an efficient and parallel implementation of DW-k. Lastly,

only the multiplier α2 in (5.2) is a function of A. In Section 5.5, we capitalize on this

feature to simplify the search for maximum period DW-k, and we list several DW-k for

many orders k and moduli p. Section 5.6 describes how to quickly find a new DW-k

from one listed in Section 5.5. Finally, in Section 5.7, we evaluate DW-k in terms of

71



timing, empirical, and theoretical performance. We also offer some evidence that the

MCG used to implement DW-k may have merits as a standalone generator.

5.3 MCG Sharing Same Characteristic Polynomial as

DW-k

In this section we will define the MCG that shares the same characteristic polynomial

as DW-k. Consider a MCG with the following multiplier matrix

B =



B 0 0 . . . 0 A

B C 0 . . . 0 0

B C C . . . 0 0
...

...
...

. . .
...

...

B C C . . . C 0

B C C . . . C C


(5.3)

whose recursion is given in (2.22) and whose characteristic polynomial is defined by

fB(x) = det(xI−B) mod p in (2.23).

Next, we will prove that the MCG used with multiplier matrix B in (5.3) has the same

corresponding characteristic polynomial fB(x) as the one that defines DW-k in (5.1).

Before showing this, we first give the characteristic polynomial fM(x) of a more general

matrix M of which B is a special case.
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Lemma 2. For a given matrix M of the form

M =



M1 0 0 · · · 0 A

M1 M2 0 · · · 0 0

M1 M2 M3 · · · 0 0
...

...
...

. . .
...

...

M1 M2 M3 · · · Mk−1 0

M1 M2 M3 · · · Mk−1 Mk


(5.4)

where A and Mi (for i = 1, . . . ,k) are integers, the corresponding characteristic

polynomial fM(x) = det(xI−M) is

fM(x) = (x −M1)(x −M2) · · · (x −Mk )− AM1xk−2.

Proof. Let fM(x) = det(xI−M), then after expanding the first row,

fM(x) = (x −M1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x −M2 0 0 · · · 0

−M2 x −M3 0 · · · 0

−M2 x −M3 x −M4 · · · 0
...

...
...

. . .
...

−M2 −M3 −M4 · · · x −Mk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(k−1)×(k−1)

+ (−1)k+1(−A)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−M1 x −M2 0 · · · 0

−M1 −M2 x −M3 · · · 0
...

...
...

. . .
...

−M1 −M2 −M3 · · · x −Mk−1

−M1 −M2 −M3 · · · −Mk−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(k−1)×(k−1)
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The determinant of the first (lower triangular) matrix is simply the product of the

diagonals. The second matrix can be transformed into an upper triangular matrix via

row operations: Ri −Ri−1 → Ri for i = 2, . . . ,k −1. Hence,

fM(x) = (x −M1)(x −M2) · · · (x −Mk )

+ (−1)k+1(−A)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−M1 x −M2 0 . . . 0

0 −x x −M3 . . . 0
...

...
...

. . .
...

0 0 0 . . . x −Mk−1

0 0 0 . . . −x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(k−1)×(k−1)

= (x −M1)(x −M2) · · · (x −Mk )− AM1xk−2.

Theorem 2. Given the matrix B defined in (5.3), the corresponding characteristic

polynomial fB(x) = det(xI−B) is

fB(x) = (x −B)(x −C )k−1 − AB xk−2.

Proof. The multiplier matrix B is a special case of M in (5.4) where M1 = B and Mi =C

for i = 2, . . . , Mk . Therefore, by Lemma 2, the result follows.
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5.4 Efficient and Parallel MCG Implementation of DW-k

Now that we have proved that MCG defined by multiplier matrix B in (5.3) shares the

same characteristic polynomial as the one that defines DW-k in (5.1), we will show in

this section that DW-k can be implemented efficiently and in parallel using this MCG.

Given the multiplier matrix B in (5.3), the linear recursion in (2.22) can be rewritten as



Xi ,1

Xi ,2

Xi ,3

...

Xi ,k


=



B Xi−1,1 + AXi−1,k

B Xi−1,1 +C Xi−1,2

B Xi−1,1 +C Xi−1,2 +C Xi−1,3

...

B Xi−1,1 +C Xi−1,2 + . . .+C Xi−1,k


mod p, i ≥ 1 (5.5)

and efficiently implemented as



Xi ,1

Xi ,2

Xi ,3

...

Xi ,k


=



B Xi−1,1 + AXi−1,k

B Xi−1,1 +C Xi−1,2

Xi ,2 +C Xi−1,3

...

Xi ,k−1 +C Xi−1,k


mod p, i ≥ 1. (5.6)

Notice in (5.6) that the generated output Xi ,1 and Xi ,2 are solely generated from

numbers in the previously generated output vector Xi−1. However, Xi , j for j = 3,4, . . . ,k

is the sum of the previous number just generated in the current output vector Xi and a

multiple of a number in the previous output vector Xi−1. Hence, the recursion in (5.6)

does not require as many multiplications and additions as the one in (5.5). Also, we
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note that additional efficiency on some compilers might be gained if we let C be a

power of 2, that is, we can let C = 2e for some positive integer e. If this approach is

taken, it appears from empirical testing (not shown) that 2e for e ≤ 4 should be avoided,

which also implies that C in general should not be too small for given A, B , and order k.

As explained in Section 2.8, since the MCG defined by B in (5.3) and DW-k share the

same characteristic polynomial, then the generated vector sequence (Xi )i≥0 from this

MCG satisfies the recurrence for DW-k

Xi =α1Xi−1 +α2Xi−2 +·· ·+αk Xi−k mod p, i ≥ k, (5.7)

where the multipliers α1,α2, . . . ,αk are defined in (5.2). Therefore, each of the k

sequences taken from each of the k rows in (5.7) can be viewed as k copies of the same

DW-k with different starting seeds. Therefore, we recommend generating k numbers at

a time from the efficient recursion in (5.6) and assigning each number to one of k

processors. As we will see in the Section 5.7, empirical performance suggests that the

MCG defined by B in (5.3) has its own merits as a standalone generator where numbers

can be generated one number at a time.

In the next section, we turn our attention to finding A,B ,C such that f (x) is a

primitive polynomial over Zp .
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5.5 Search for DW-k

As explained in Section 2.5, Alanen and Knuth (1964) and Knuth (1998) gave necessary

and sufficient conditions for determining whether f (x) is primitive or not. The main

difficulty is finding the complete factorization of R(k, p) = (pk −1)/(p −1) when k or p

is large. There are two common approaches to by-pass the difficulty of the

factorization: (a) for a given p one can find k such that R(k, p) is (relatively) easy to

factor, usually because R(k, p) has only one huge prime factor and the rest are

(relatively) small prime factors or (b) one can consider a prime order k and then find

prime p such that R(k, p) is also a prime number.

Once we know the complete factorization of R(k, p) = (pk −1)/(p −1) for a given

order k and modulus p, then we need only search for multipliers α1,α2, . . . ,αk such that

the rest of the necessary and sufficient conditions of a primitive polynomial are met.

For DW-k this process can be simplified. First, only multiplier α2 is a function of order

k and parameters A, B , and C over Zp . The rest are completely specified by order k and

only parameters B and C . Therefore, for a given order k and modulus p, once we know

αk = (−1)k−1BC k−1 is a primitive root modulo p, we can fix multipliers α1,α3, . . . ,αk

and search for α2 until the characteristic polynomial of DW-k is primitive. Equivalently,

once we we find B and C such that (−1)k−1BC k−1 is a primitive root modulo p, we can

fix B and C and just search for A until f (x) in (5.1) is a primitive polynomial.

Deng (2005) and Deng et al. (2012b) found k-th degree primitive polynomials for

k ∈ {47,643,1597,7499,20897} and modulus p = 231 −1 such that R(k, p) is (relatively)
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easy to factor. This modulus is a popular choice, because the modulus operation can be

replaced with more efficient logical operations. Furthermore, it is also the largest

(signed) integer that can be stored in a 32-bit computer word. The largest period length

for this modulus is approximately 10195009.3 with equi-distribution up to 20897

dimensions. Following the methods described in these references, for order k, prime

modulus p = 231 −1, C in the form of 2e for 5 ≤ e ≤ 9 (for additional efficiency), and four

values of B , we search for A such that DW(k; A,B ,C ; p) achieves the maximum-period.

Table 6 tabulates 100 DW(k; A,B ,C ; p = 231 −1): 5 values of k, 4 values of B , and 5 values

of C .

Deng (2004, 2008) and Deng et al. (2012a) found different k ranging from 101 to

25013 and moduli of the form p = 231 −w , where w is a positive integer, such that

R(k, p) is also a prime. The largest period length, pk −1, found so far has reached

approximately 10233361 with equi-distribution up to 25013 dimensions. Again, following

the methods in these references, we search for DW(k; A,B ,C ; p) with the more flexible

form modulus, p = 231 −w . For order k, prime modulus p, C in the form of 2e for

5 ≤ e ≤ 9, and one value of B , we search for A such that DW(k; A,B ,C ; p) achieves the

maximum period. Tables 7, 8, and 9 tabulate 265 DW(k; A,B ,C ; p = 231 −w): 53 values

of k and 5 values of C .
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Table 6: List of A for DW(k; A,B ,C = 2e ; p = 231 −1)

k B 32 64 128 56 512

47 5005 65536 65524 65516 65490 65499

47 10001 65460 65434 65447 65461 65533

47 15090 65455 65519 65472 65505 65468

47 20006 65479 65457 65523 65445 65428

643 5005 65495 63564 64444 63932 62930

643 10001 65326 64001 64562 64797 65510

643 15090 65386 65480 64825 65406 64380

643 20006 63411 65239 64072 63090 64505

1597 5005 64577 65235 64934 65508 63884

1597 10001 63954 63471 64674 63495 65486

1597 15090 63832 65074 63227 65239 64294

1597 20006 65518 65014 64296 61968 65152

7499 5005 64797 59943 63816 61707 61396

7499 10001 58921 49795 52984 55685 60937

7499 15090 56680 53060 64547 64620 53885

7499 20006 62277 59547 58067 59030 50003

20897 5005 21951 59691 49564 33494 62280

20897 10001 27020 53061 35759 29904 37956

20897 15090 34619 36325 58692 49618 31093

20897 20006 47762 44292 57165 13979 62931
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Table 7: List of A for DW(k; A,B ,C = 2e ; p = 231 −w); k ≤ 2003

k w B 32 64 128 256 512

101 82845 20000 20028 20066 20093 20050 20217

211 841329 20001 20227 20606 20052 20205 20067

307 52545 20001 20077 20053 20809 20303 20317

401 57189 20000 20184 20266 21862 20106 20131

503 174489 20001 21144 22448 20179 20286 20089

601 1327485 20000 20142 20937 20746 21791 20870

701 220665 20002 20074 21035 20579 20433 20172

809 2010789 20000 20744 21516 20558 20820 20129

907 4400889 20004 22482 20986 20139 20727 20295

1009 2368869 20000 20734 20258 22517 21765 20255

1103 7316361 20002 20637 20813 21623 20535 20201

1201 1113705 20005 21289 22405 21161 20762 20793

1301 1070901 20000 22028 21108 21694 20618 20511

1409 4320189 20000 21545 22719 22407 20942 23501

1511 2771205 20000 21718 20724 22864 21286 21147

1601 368961 20001 20877 21155 22095 22037 20485

1709 1032441 20001 21518 20501 20504 20552 26690

1801 5789241 20002 21325 21222 20049 20892 21539

1901 267321 20002 20336 20779 21070 20050 22125

2003 44961 20001 20499 20606 29363 27302 22033
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Table 8: List of A for DW(k; A,B ,C = 2e ; p = 231 −w); 2111 ≤ k ≤ 4001

k w B 32 64 128 256 512

2111 3536385 20005 20326 21705 23674 20213 23241

2203 6043089 20002 23370 24475 25871 24984 21072

2309 340185 20003 22094 20623 20372 26437 22412

2411 9256449 20006 20975 21355 22754 25674 20429

2503 13539249 20001 21325 20477 22106 21521 25097

2609 8811681 20001 20761 22499 23285 21895 20796

2707 1113585 20004 20521 20016 20403 20994 24184

2801 1095609 20002 20363 25844 20090 20993 25253

2903 14055825 20003 20159 20246 23773 20718 23791

3001 3058401 20001 28132 20617 21599 21230 23706

3109 6741129 20002 20692 22733 23316 21300 25581

3203 4718889 20001 22833 25436 38018 21850 21251

3301 14881185 20002 28598 26152 20943 22581 20220

3407 6243009 20001 20904 29014 31949 22005 20327

3511 1412961 20001 21747 25713 20470 26032 23604

3607 1026585 20003 20773 22329 20577 28986 29789

3701 11576625 20002 21346 22672 29143 27596 21854

3803 32058129 20002 21522 21082 20997 21753 27771

3907 17381649 20001 23800 20442 24531 24191 20518

4001 4412481 20001 24549 20465 24707 22823 20072

81



Table 9: List of A for DW(k; A,B ,C = 2e ; p = 231 −w); k ≥ 5003

k w B 32 64 128 256 512

5003 1259289 20001 27764 20766 20859 24425 21082

6007 9984705 20001 20113 24411 30649 21365 26515

7001 610089 20003 23538 30769 31220 20721 24699

8009 5156745 20001 24596 30764 29030 28750 26236

9001 7236249 20002 34768 24425 22364 32772 24052

10007 431745 20003 20258 63815 33089 47201 28169

11003 1276425 20001 45421 51250 25568 21659 23189

12007 37532781 20000 37739 27242 30994 34999 22036

13001 71128005 20003 52978 21790 24522 38227 28803

14009 626301 20000 63410 26334 29856 77138 27117

15013 8996265 20003 72834 22198 38433 37498 20490

20011 26131941 20000 43502 37043 31430 69099 24899

25013 11538909 20000 25118 24538 57529 87512 66488

5.6 Finding new DW-k via AGM

Utilizing Deng’s (2004) Automatic Generation Method (AGM) described in Section 2.7,

once we know the parameters A, B , C for one DW-k, we can quickly find another DW-k

of the same order k and modulus p. Recall that, starting with a k-th degree primitive

polynomial, AGM quickly finds numerous k-th degree primitive polynomials with the

same number of nonzero multipliers as the base primitive polynomial.

To use AGM to find new DW-k, first, choose the desired order k and modulus p and

corresponding parameters A,B ,C , from Tables 6 through 9. A defining feature of DW-k

is that its primitive characteristic polynomial f (x) in (5.1) is equal to fB(x) = det(xI−B)
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where B is defined by (5.3). For any nonzero integer z in Zp , define

GB(x) = zk fB(z−1x) mod p

= zk det(z−1xI−B) mod p

= det(xI− zB) mod p

= (x − zB)(x − zC )k−1 − (z A)(zB)xk−2 (by Theorem 2 for zB).

Letting A′ = z A, B ′ = zB , and C ′ = zC , then α1,α2, . . . ,αk are given in (5.2). Specifically,

if αk = (−1)k−1zk BC k−1 mod p is a primitive root modulo p, then GB(x) is the

primitive characteristic polynomial of a new DW-k whose multipliers α1,α2, . . . ,αk are

defined by A′,B ′,C ′ (Deng, 2004, Theorem 4). By the Cayley-Hamilton theorem, the

new DW-k can be implemented efficiently and in parallel by generating numbers k at a

time from the recursion in (5.6). Since we know how many primitive roots exist, then

for each modulus p and order k, we know that AGM can produce φ(p −1) new DW-k

from one base DW-k, where φ(x) denotes the Euler totient function, which gives

number of integers between 1 and x that are relatively prime to x.

One advantage of applying AGM to DW-k is that, for a given order k and modulus p,

it gives the user the liberty to find a new DW-k if for some reason she needs more

parameters in addition to those in Tables 6 through 9.
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5.7 Evaluation of DW-k

Timing

DW-k is very efficient. When the modulus is the largest 32-bit signed integer word,

p = 231 −1, this class of generators can be employed even faster by replacing the

modulus operation with logical operations (see, e.g., Deng & Xu, 2003). We compared

the DW(20897;62931,20006,512;231 −1) against the Mersenne-Twister (MT19937;

Matsumoto & Nishmura, 1998) and L’Ecuyer’s (1999) combined MRG (MRG32k3a).

Table 10 tabulates the average of 100 timings (in seconds) to generate 100 million

numbers for each generator. The starred version of DW(20897;62931,20006,512;231−1)

replaces the modulus operation with logical operations. The timings program was

compiled using gcc and the -O3 optimizer flag on a 64-bit AMD Opteron 6274 16 core

processor with clock speed of 2.2 GHz. When using the modulus operation, DW-k is

approximately as fast as MT19937 and more than 3 times faster than MRG32k3a.

However, when replacing the modulus operation with logical operations (for

p = 231 −1), DW-k is twice as fast as MT19937 and more than 6 times faster than

MRG32k3a.

Empirical Testing

Efficiently implementing DW-k in parallel across k CPUs requires generating k

numbers at a time from the recursion in (5.6) and assigning each of these numbers to

one of the k CPUs. It is widely known that maximum period MRGs have excellent
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Table 10: Average of 100 timings (in seconds) to generate 100 million numbers

Random Number Generator C (-O3 flag)

DW(20897;62931,20006,512;231 −1) 0.97

DW(20897;62931,20006,512;231 −1)* 0.52

MT19937 0.93

MRG32k3a 3.24

* indicates modulus operations were replaced with logical operations

empirical performance when the generated output are taken in successive sequence.

Indeed, these MRGs are one of a few kinds or random number generators that are able

to pass all the empirical tests implemented in the TestU01 package (L’Ecuyer & Simard,

2007). Concerning output from general maximum period MRGs, Knuth (1998) noted

that “all known evidence indicates that the result will be a very satisfactory source of

random numbers.” Therefore, the k sequences of DW-k has excellent empirical

performance.

We note here that empirical performance is also satisfactory when generating

numbers one at a time from the MCG recursion in (5.6). For each combination of order

k, modulus p and parameters A, B , C , listed in Table 6 through Table 9, we generated

the numbers one at a time and subjected the sequential output to the Crush battery of

stringent empirical tests in the TestU01. For each generator tested, the battery

produced 144 p-values from 144 statistical tests performed. Small p-values indicate

that the generator fails that particular test. On the other hand, p-values is too close to 1

are considered “too good to be truly random” (L’Ecuyer & Simard, 2007). At the end of

each test, those 144 p-values produced outside the range of [10−3,1−10−3] are
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Table 11: Percentages of p-values (in specified ranges) of Crush tests on
DW(k; A,B ,C ;231 −1) listed in Table 6

k < 10−7 < 10−5 < 10−4 < 10−3 > 1−10−3 > 1−10−4 > 1−10−5 > 1−10−7

47 0.00000 0.00007 0.00014 0.00125 0.00083 0.00014 0.00014 0.00014

643 0.00000 0.00000 0.00000 0.00014 0.00014 0.00000 0.00000 0.00000

1597 0.00000 0.00000 0.00007 0.00035 0.00021 0.00000 0.00000 0.00000

7499 0.00000 0.00000 0.00007 0.00090 0.00104 0.00007 0.00000 0.00000

20897 0.00000 0.00000 0.00021 0.00139 0.00111 0.00014 0.00014 0.00014

reported.

For the prime modulus of p = 231 −1, the total number of runs for for the 100

generators in Table 6 is 500: each of the 100 generators was tested with 5 different

starting seeds. The total number of p-values produced for generators in Table 6 is

72000 = 100×5×144 and the percentages of these p-values in the specified ranges are

summarized in Table 11. Similarly, for the prime modulus of p = 231 −w with

(pk −1)/(p −1) also a prime, the total number of runs for generators in Tables 7, 8, and

9 is 1325: each of the 265 generators was tested with 5 different starting seeds. The total

number of p-values produced for generators in Tables 7, 8, and 9 is

190800 = 265×5×144 and the percentages of these p-values in the specified ranges are

summarized in Table 12.

From these tables, we have strong empirical evidence that even generating

numbers one at a time from the MCG recursion in (5.6) yields a satisfactory source of

uniform random numbers. However, to implement DW-k, numbers must be generated

k at a time. Therefore, we recommend only generating numbers k at a time.
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Table 12: Percentages of p-values (in specified ranges) of Crush tests on
DW(k; A,B ,C ;231 −w) listed in Tables 7 through 9

C < 10−7 < 10−5 < 10−4 < 10−3 > 1−10−3 > 1−10−4 > 1−10−5 > 1−10−7

32 0.00000 0.00000 0.00021 0.00144 0.00077 0.00010 0.00005 0.00005

64 0.00000 0.00005 0.00026 0.00136 0.00100 0.00013 0.00008 0.00008

128 0.00000 0.00000 0.00008 0.00141 0.00116 0.00021 0.00008 0.00008

256 0.00000 0.00000 0.00008 0.00095 0.00095 0.00026 0.00013 0.00013

512 0.00000 0.00003 0.00008 0.00116 0.00080 0.00021 0.00010 0.00010

Theoretical Testing

The spectral test for a MRG as described in Section 2.4 is a theoretical test that gives

some measure of uniformity in dimensions beyond order k. For dimensions t < k, the

equi-distribution property for maximum period MRGs guarantees very good

uniformity. As described in Chapter 3, current methods for computing the spectral test

in dimension t = k +d can be very inefficient when order k is as large as many of those

in Tables 6 through 9. Furthermore, since DW-k has many nonzero terms, it is unlikely

that the proposed method in Chapter 3 will be any more efficient. Therefore,

computing the spectral test for large order MRGs with many nonzero terms is

computationally intensive.

For maximum period MRGs with good spectral test performance in dimensions

beyond k, L’Ecuyer (1997) stated a necessary but not sufficient condition that the sum

of the squares of the multipliers,
∑k

i=1α
2
i , should be large. Given that DW-k has many

nonzero multipliers, then it is likely to have excellent spectral test performance.
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Furthermore, we remark that since there is no simple relationship among these

nonzero multipliers and since k copies of DW-k are implemented in parallel, it appears

very difficult to find a lacunary index set (see Section 2.4) such that the k copies

perform poorly on the spectral test.

5.8 Discussion

This chapter defines DW-k, a special class of large order MRGs with many nonzero

terms whose recurrence can be efficiently implemented in parallel via a k-th order

MCG sharing the same characteristic polynomial. The implementation requires

generating k numbers at a time from the MCG recurrence in (5.6) and assigning each

number to one of k CPUs. For DW-k with modulus p = 231 −1, the implementation is

twice as fast as MT19937 and six times as fast as MRG32K3A; for other DW-k the

implementation is about as fast as MT19937 and three times faster than MRG32k3a. Of

the DW-k given, DW-25013 has the longest period length of 10233361 with

equi-distribution up to 25013 dimensions. Furthermore, new DW-k can be quickly

found by applying Deng’s (2004) Automatic Generation Method (AGM) to a base DW-k.
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Chapter 6

Conclusion

The general maximum period MRG with many nonzero terms has all the qualities of a

good random number generator except that its direct implementation is inefficient and

parallel implementation grows increasingly difficult as the order k increases. To

significantly increase efficiency, current maximum period MRGs usually have few

nonzero terms or can be implemented by a higher order maximum period MRG with

few nonzero terms. However, the spectral test performance of these MRGs with few

nonzero terms is poorer than would be expected from a MRG with many nonzero

terms.

The current method for computing the spectral test requires raising a k ×k matrix

to some power, and it is unclear how this method relates to the spectral distance. In

Chapter 3, we offer a geometric, intuitive, and easier method for calculating the

spectral test. Using this procedure, we list “better” FMRG-k and DX-k-s generators

with respect to performance on the spectral test.

Chapter 4 illustrates that k-th ordered MRGs with few nonzero terms indeed have

larger spectral distances than those of k-th ordered MRGs with many nonzero terms.

Furthermore, a method is provided (a) for finding numerous MRGs with many nonzero

terms from one with few nonzero terms and (b) for implementing these MRGs
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efficiently and in parallel using a MCG.

This implementation requires raising a k ×k matrix to some power and then finding

the determinant of another k ×k matrix. Finally, 2k −1 multipliers must be stored in a

computer program. For large order k, this method will certainly be time-consuming

and computer intensive for large order k. This method works well for small or

moderate order k. When k is large, this method is still achievable but computationally

and programmatically cumbersome.

To extend efficient and parallel MCG implementation to large order, maximum

period MRGs with many nonzero terms, Chapter 5 proposes a new class of MRGs called

DW-k. This class of MRGs has a unique characteristic polynomial that yield many

nonzero terms and directly corresponds to an efficient and parallel MCG

implementation.

In the past, computing spectral test for large order MRGs was tedious and

non-intuitive. Also, maximum period MRGs with many nonzero terms were thought to

be good random number generators if only they could be implemented efficiently and

in parallel. For the former, the dissertation describe an easier, more intuitive way to

compute spectral tests of MRGs. For the latter, this dissertation proposes a solution: the

efficient and parallel MCG implementation of a maximum period MRG with many

nonzero terms for small to large order k.
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