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ABSTRACT 

Bledsoe, Matthew Joseph.  MS.  The University of Memphis.  May 2014.  
Application of an Alternating Minimization Algorithm to Experimental DIC Microscopy 
Data for the Quantitative Determination of Sample Optical Properties.  Major Professor: 
Dr. Chrysanthe Preza. 

Differential Interference Contrast (DIC) is commonly chosen for imaging 

unstained transparent samples.  One limitation of DIC microscopy is the qualitative 

results it provides.  This must be post-processed to extract meaningful information.  The 

Alternating Minimization (AM) algorithm studied in this thesis is an iterative approach to 

recover a quantitative estimate of a sample’s complex-valued transmittance function.  

The AM algorithm is validated using simulated data.  Additionally, the bias retardation 

and shear distance, two characteristic features of the DIC system, must be measured to 

insure the system model is accurate. This is accomplished by introducing a calibrated 

liquid crystal device to the system.  Algorithm performance is verified using an 

experimental test object before finally being applied to biological samples.  Overall 

results demonstrate the accuracy of this algorithm’s object estimation results.  These are 

verified through comparison to similar data processing techniques. 
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CHAPTER 1 

INTRODUCTION 

There are a wide range of microscopy modalities utilized in the scientific 

community.  The selection of a specific modality is heavily predicated by the object or 

material being imaged and the desired information to be obtained during the imaging 

process.  When performing biological research, there are many factors to consider in 

choosing how to image a given sample.  Fluorescence techniques are useful when 

imaging thin samples with weak absorption properties; however the introduction of dyes 

and markers can be detrimental to the functioning of the sample.  In these situations 

phase imaging techniques are useful as they do not require strong illumination sources or 

dyes to be utilized.  Differential Interference Contrast (DIC) microscopy is one modality 

that produces an image of a sample’s phase.  DIC creates this phase image by utilizing 

interference imaging techniques to create a contrast image.  The specifics of this modality 

are discussed in greater depth in Section 2. 

1.1 Computational Imaging for Quantitative Phase Imaging 

Phase imaging techniques produce qualitative representations of the underlying 

object being imaged.  They can provide details about the general structure and 

composition of the sample, but this only allows inference of the true nature of the sample.  

DIC imaging in particular suffers from two major shortcomings: it is an amplitude 

encoding of the output of a complex-valued system and this encoding represents a 

unidirectional gradient of the object being imaged resulting in information loss for any 

detail that resides along that direction. As a result, significant post-processing is required 

to reach a quantitative representation of the sample to determine its true phase properties.  
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Many techniques have been investigated to recover this phase information.  Those 

discussed in this thesis are spiral phase integration (SPI),1, 2 rotational diversity (RD-

DIC),3 and an approach based on an alternating minimization algorithm (AMA).4-8   

These are discussed in more detail in Section 2. 

The principle goal of computational imaging research is to create and refine 

mathematical models that represent an imaging system.  There are many models required 

to fully simulate a given system as shown in Figure 1.  Every aspect of the process, from 

the object being viewed to the optical properties of the microscope, must be given a 

mathematical representation.  These are all tied together into one algorithm representative 

of the overall functioning of the hardware.  This model must be verified by collecting 

experimental data and comparing it to simulated data generated by the algorithm.  Any 

discrepancies must be resolved, the model updated, and new results created for further 

refinement.  Once an acceptable model is created it can be used to assist in research for 

improvements to the system itself.  This can either take the form of developing 

algorithms to post-process experimental data to correct for some defect or aberration 

present in the raw data or to simulate adjustments and additions of hardware to alleviate 

those issues before the data is gathered.  
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Figure 1. Flowchart detailing the development of system models in computational 
imaging and the relationship between experimental and simulated data collection.  Figure 
courtesy of Dr. Preza. 

 

 Other groups are conducting quantitative phase imaging based on DIC 

microscopy for a wide variety of applications.  Arnison and King developed a 

quantitative phase imaging technique called the Spiral Phase Integration (SPI) method 

utilizing phase shifting, rotational diversity, and a Fourier domain integration to recover a 

linear isotropic phase mask.1, 2  While this approach does correct for the non-linearity 

issue in DIC imaging, it does not recover the magnitude portion of the complex-valued 

object function and also, it is based on simplified imaging model.  The method in this 

thesis uses a full diffraction effect model. Using an expanded version of the imaging 

models utilized for this thesis, Sierra et al. have conducted work on recovering phase data 
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from 3-D DIC image sets.9-12  Additionally, through the use of optical quadrature 

microscopy to create a morphological map of the sample, Sierra was able to create a 

refractive index map of the sample for a specific application, demonstrating the benefit of 

quantitative phase information.  This approach utilizes DIC to only to find information on 

object morphology and moves the quantitative object estimation to another modality.  

Another body of research by Shribak et al., which contributed to the development of an 

orientation independent DIC implementation, is focused on recovering phase information 

for the sample as well as an understanding of the sample anisotropic, or birefringent, 

properties.13-15  While similar in its utilization of multiple shear directions for 

reconstruction, this application focuses on analyzing birefringent samples to determine 

their anisotropic structures. 

1.2 Alternating Minimization Algorithm 

Recovery of a sample’s phase information from a DIC image faces many 

challenges.  The largest obstacle lies in the amplitude encoding of a complex system 

response.  This results in an ill-posed inverse system with intractably many solutions.  

The RD-DIC algorithm handles this situation by assuming the specimen to be transparent 

and thus fully transmissive.  This results in a relaxed problem that only involves 

estimating the objects phase.  This AM algorithm extends the use of rotationally diverse 

datasets from semi-transparent objects by allowing the estimation of both magnitude and 

phase.  The key tenant of the approach is a variational extension of the minimization 

objective function to include the complex valued object function as well as an additional  
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term representing the unrecorded phase of the measured data.  This approach is well 

known and has applications in other forms of imaging research16, 17 and other fields of 

research such as machine learning18, 19 and statistics.20   

1.3 Contribution of This Thesis to the AM Algorithm 

Early publications on the AM algorithm covered the development of the 

algorithm itself and its application to simulated data.  They covered the use of both 

noiseless and noisy simulations, a regularization function to mitigate the effects of noise, 

and the computation of various parameters necessary to the algorithm itself.  

Additionally, some initial work was done to apply the AM algorithm to experimental data 

of a yeast cell.  This thesis continues the work completed for the above mentioned efforts.  

Some replication of previous results was conducted to ensure proper understanding of the 

algorithm and the optical system it is intended to simulate.  The main objective is 

improvement of the algorithm’s performance when applied to experimentally gathered 

data.   

A large contribution to achieving this outcome is the introduction of a calibrated 

liquid crystal bias cell.  This cell is used to introduce a known amount of phase bias to the 

DIC imaging system.  It can also be used to accurately measure the shear distance created 

by the Nomarski prism which is used to create the DIC system.  Additional work was 

done to improve the implementation of various portions of the simulation.  Areas of work 

included the DIC point spread function (PSF) model implementation, AMA-specific 

parameter computations, registration of experimentally collected data, and some minor 

optimizations to improve computation times when working with larger datasets. 
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1.4 Thesis Organization 

This thesis is broken down in four main portions.  Some discussion of DIC 

microscopy in general is provided in Section 2.  This chapter also contains a brief 

introduction to the SPI algorithm along with an introduction to the RD-DIC algorithm 

and its extension to the AM algorithm.  Section 3 covers DIC PSF computations, the 

selection of simulated datasets, and executing the algorithm on these simulated datasets.  

Some previous investigations are also repeated to help validate new parameter selection 

equations.  Section 4 explains calibration of the liquid crystal bias cell, using this 

calibration to determine the shear distance of the system, and using both of these 

advancements to improve the application of AMA to experimental datasets.  New 

experimental data of a polystyrene bead is collected and analyzed and compared to 

simulated reproductions.  The previously collected yeast data is also re-examined and 

these results are compared to the output of the SPI algorithm.  Section 5 contains a 

summary of all work performed, some conclusions drawn, and Section 6 discusses future 

work to be done with this AM algorithm. 
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CHAPTER 2 

BACKGROUND 

2.1 DIC Image Formation 

DIC microscopy is an optical illumination modality used to enhance contrast in 

unstained, transmissive samples.  It works by using principles of interferometry to encode 

the difference in optical path length (OPL) of a sample.  This is achieved through the use 

of coherent pairs of orthogonally polarized light separated by a known and consistent 

spacing.  These pairs of light waves interact with portion of the sample separated by a 

small distance, called the shear distance, which is generally slightly below the sampling 

resolution of the objective lens being utilized to form the image.  These two waves 

experience differing levels of phase shifting due to a combination of variations of 

thickness and refractive index across the sample.  When recombined into a single light 

wave this shift serves to introduce constructive and destructive interference which gives 

rise to variations in intensity at the imaging plane and yields a qualitative representation 

of the phase gradient of the object along the axis of shear.  A diagram of this system is 

shown in Figure 2.  
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Figure 2.  Diagram of microscope system setup for Nomarski DIC imaging.  Light is 
polarized by the bottom filter at 45 degrees.  The condenser Nomarski prism shears this 
light into two coherent waves of equal intensity polarized at 0 degrees and 90 degrees.  
These waves pass through adjacent portions of the specimen and each experiences a 
different OPL.    The objective focuses the waves into the objective Nomarski prism 
which recombines each wave pair back into a single wave polarized at 135 degrees.  Due 
to the variation in OPL each wave experienced they have different phase components 
which causes interference and leads to a change in intensity.  This intensity variation is 
captured by the sensor and results in a contrast image of the object being viewed.   Image 
courtesy of Olympus Microscopy. 
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Unpolarized light is introduced to the system and passed through a polarization 

filter before reaching the condenser side Nomarski prism.  This polarization is introduced 

in such a way that the vibration direction is 45 degrees off from the optical axis of the 

first wedge in the condenser Nomarski prism and 90 degrees off from the vibration 

direction of the analyzer filter.  This orientation is important.  Polarizing the light at 45 

degrees relative to the optical axis of the first wedge of the Nomarski prism causes it to 

be split into two coherent waves of equal intensity, orthogonal polarizations, and 

separated by a small lateral distance.  The condenser lens directs the light onto the 

sample.  The orthogonal polarization allows each plane wave to only be influenced by the 

optical properties of the sample itself, no interference occurs between the two.21 

After passing through the sample, the light is focused by the objective lens into 

the analyzer side Nomarski prism.  Again, the optical axis of this prism is aligned in such 

a way that the two plane waves strike at 45 degree offsets.  Where the condenser prism 

split them into two equivalent orthogonal wave fronts, the analyzer prism recombines 

them into a single wave front.  The lateral distance between each coherent wave pair 

results in two waves that passed through different portions of the specimen to be 

recombined into a single wave.  Any difference in phase between the two components 

results in interference which is manifested as increased or decreased intensity of the 

image. The final result is an encoding of variations of OPL across the specimen along the 

direction of shear.  One simplification of this model is to consider it as a superposition of 

two laterally shifted bright field images with differing phase components which results in 

an interference image when they are recombined. 
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The crucial component of this system is the use of Nomarski prisms, a modified 

version of Wollaston prisms.  Both prisms are made by cementing together two wedges 

of a birefringent material as shown in Figure 3.  In a Wollaston prism these two wedges 

have perpendicular optical axes which give rise to its shearing abilities.  The key 

difference in Nomarski’s approach was altering the way in which the second wedge is cut 

and attached.  Rather than utilizing perpendicular optical axes, one of the wedges is cut 

so that its optical axis is oblique to the face of the prism.  Selection of this angle allows 

for the interference plane of the sheared light waves to be focused outside of the prism.  

This allows it to be placed inside the focal plane of the objective lens. 

 

 

Figure 3. Comparison of the light shearing properties of Wollaston and Nomarski prisms.  
Both prisms introduce shear through their birefringent properties, however the Nomarski 
prism uses an oblique optical axis to allow focusing of these beams at a point on a plane 
external to the prism itself. 

 

2.2 DIC PSF Model 

The DIC PSF model utilized is an extension of previous work by Cogswell and 

Sheppard22 to utilize theory proposed by Born and Wolf23 regarding image formation 
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under partially coherent illumination.  This work was completed by Preza, Snyder, and 

Conchello.24  Image formation is the result of combining two phase shifted intensity 

images as outlined in Section 2.1.  This phase shift can also be influenced by the 

intentional introduction of a known amount of a uniform phase shift, known as the bias 

retardation, to one of the two orthogonally polarized wave fronts.  The complex 

amplitude difference in these waves can be given by 

 ℎ(𝑥, 𝑦) = (1 − 𝑅)𝑒−𝑗∆𝜃𝑘(𝑥 − ∆𝑥, 𝑦) − 𝑅𝑒−𝑗∆𝜃𝑘(𝑥 + ∆𝑥,𝑦), (1) 

where 2∆𝜃 is the bias retardation in radians, 2∆𝑥 is the shear distance in length (typically 

µm), k(x, y) is the amplitude PSF from transmissive optics, and R is the amplitude ratio of 

the two polarized wavefronts.3  An example PSF is shown in Figure 4. 
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Figure 4. Images of a DIC PSF at the best focus plane: a) real and b) imaginary 
components generated using the model outlined in Sec 2.1, Eq. (1) for a 63x, 1.4 NA 
objective lens, 540nm illumination, shear 0.17 µm, bias π/4 radians, and a sampling 
distance between pixels of 0.1 µm. 
 

The shear distance is set by the Nomarski prisms and objective lens used during 

imaging.  Accurate determination of this distance is vital to proper modeling of the 

system and a method for determining that value is explored in Section 4.2.  Introduction 

of a phase bias can be accomplished in one of three ways:  laterally shifting the analyzer 

Nomarski prism, introducing a quarter wave plate to the system and rotating the analyzer 

(de Senarmont configuration), or more recently through the use of liquid crystal (LC) bias 

cells as explored as a portion of this thesis.  The use of LC bias cells is preferred as it is 

the most accurate, flexible, and quantifiable of the methods.  A technique for calibrating 

the LC bias cells for this purpose is covered in Sec 4.1. Lastly, the amplitude ratio R is 

determined by the relative alignment of the polarizer and analyzer.  When imaging phase 

objects it is typically 0.5 which represents orthogonal polarization and is indicative of 

equal strength illumination for both polarized wave fronts.   
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It is helpful to view this model in the Fourier domain as well.  This simplifies the 

implementation of the PSF model (discussed later in Section 3.1) as well as allowing 

some insight to the performance of the AM algorithm when analyzing its output in the 

Fourier domain.  The PSF model outlined in Eq. (1) can be rewritten as its Fourier 

transform: 

 𝐻(𝑓,𝑔) =  −𝑗 sin(2𝜋𝑓∆𝑥 + ∆𝜃)𝐾(𝑓,𝑔), (2) 

where K(f,g) is the coherent transfer function.  This transfer function is the Fourier 

transform of a clear circular aperture which defines the frequency support of the system.  

The cutoff frequencies for H(f, g) are fc = gc = NA/λ where NA is the numerical aperture 

of the objective lens and λ is the wavelength of the illuminating light source.3  The PSF 

shown in Figure 4 is recreated here showing its Fourier equivalent. 
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Figure 5. Imaginary component of Fourier domain representation of the DIC PSF shown 
in Figure 4.  Model contains no real component. 

 

2.3 Existing Algorithms for Object Reconstruction from DIC Images 

There are numerous techniques for quantitative phase image with DIC 

microscopy25 each with their own advantages and limitations.  The selection is of course 

influenced heavily by which technique suits the application and end result desired for a 

given situation.  As this thesis is focused on the Alternating Minimization Algorithm 

proposed by Preza and O’Sullivan, only two algorithms, SPI and RD-DIC, most relevant 

to that approach will be given any considerable attention.  Preza’s work on RD-DIC is of 

particular importance as it is the precursor to AMA and laid the groundwork for the 

system model being utilized.  SPI is noteworthy as it also works based on a rotationally 

diverse data collection strategy and generates an isotropic linear phase estimation of the 

underlying specimen.  This provides a good reference to assist in validating the results 

obtained with AMA when estimating phase objects. 
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2.4 Forward Imaging Model 

The DIC PSF model given by Eq. (1) forms the basis for the forward imaging 

model used for the development of the AM algorithm.  Defining a complex function 

𝑓(𝒙)  to represent the transmittance of the object being imaged allows a simplified 

imaging system to be modeled by the equations:24 

 𝑓(𝒙) =  |𝑓(𝒙)|𝑒−𝑗𝜋𝜃(𝒙)   (3) 

 

𝑖𝑘(𝒙) = 𝑎𝑘 �� ℎ𝑘(𝒙 − 𝒙𝒐)𝑓(𝒙𝒐)𝑑𝒙𝟎
∞

−∞
�
2

 (4) 

where 𝒙 is a collection of points representing a finite domain over which the image is 

defined,  𝑎𝑘 gives the intensity of the illumination source, ℎ𝑘(x)  is the DIC PSF for a 

given shear direction, 𝑓(𝒙)  is the complex-valued object transmittance function, and 

𝑖𝑘(𝒙)  is the resulting intensity image, and k is an index indicating the shear direction. 

Additionally, we define 𝑑𝑘(𝒙) to represent the measured intensity images which can be 

either experimentally collected images or in the case of simulation a forward model 

intensity image based on the true numerical object. 

 The forward model is limited by the definition of the DIC PSF utilized.  The 

Fourier transform of the PSF is limited entirely of lower frequency content defined by the 

circular support as can be seen in Figure 5.  This gives rise to a null space in the forward 

imaging operator and prevents a direct inversion of the imaging process.  Since high 

frequency components in the object transmittance function do not contribute to the final 

intensity image, it becomes necessary to account for this when computing an estimation 

of the object function.  To achieve this, a roughness penalty, discussed in Section 2.5, is 

introduced to restrict differences between adjacent values within the object estimations to 
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acceptable ranges as defined by the strength of the penalty.  This also has the added 

benefit of working to mitigate the influence that noise corruption of the measured data 

has on the final object estimations. 

The imaging model, as described in Eq. (4), is defined over a finite support.  It is 

important to also restrict the estimated object (i.e. a solution to the inverse imaging 

problem) to exist only within this support as well.  This poses a challenge from a signal 

processing viewpoint when dealing with the boundary of the region over which the 

objects are defined.  The boundary introduces a sharp edge where the object space 

transitions from an object surrounded by constant background intensity to an undefined 

space.  This creates a sharp edge in the imaging space, which introduces undesirable 

artifacts when applying the forward model and trying to compute the solution to the 

inverse problem.  To alleviate this issue two approaches are used:8  1) introducing a guard 

band around the image to mitigate edge artifacts that are unavoidable during the 

estimation process; and 2) subtracting the background intensity of the image that gets 

convolved with the PSF in order to reduce the discontinuity that it creates, and thus 

alleviating in this manner the majority of the artifact before it becomes a problem.  The 

guard band implementation is simply a matter of operating on a smaller support when 

computing various steps of the algorithm.  Shifting the intensity background is slightly 

more complicated and is accomplished by introducing new terms 𝑓0, a known 

background constant in the object , and 𝐻𝑘0, the sum of intensities in the DIC PSF,  in the 

forward model and expanding Eq. (4) to become 
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𝑖𝑘(𝒙) = 𝑎𝑘 � 𝑓0 � ℎ𝑘(𝒙 − 𝒙𝒐)𝑑𝒙𝟎 + � ℎ𝑘(𝒙 − 𝒙𝒐)

∞

−∞
(𝑓(𝒙𝒐) − 𝑓0)] 𝑑𝒙𝟎 
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−∞
�
2

 

              = 𝑎𝑘 � 𝑓0𝐻𝑘0 + � ℎ𝑘(𝒙 − 𝒙𝒐)(𝑓(𝒙𝒐) − 𝑓0)] 𝑑𝒙𝟎 
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−∞
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(5) 

 

2.5 Solution to the Inverse Imaging Problem Using the AM Algorithm 

The goal of the AM algorithm is to determine the complex valued object 

transmission function 𝑓(𝑥) that minimizes the objective function:8 

 
min
𝑓(𝒙)

�� ��𝑑𝑘(𝒙) −�𝑖𝑘(𝒙)�
2
𝑑𝒙.

𝑥

2

𝑘=1

 (6) 

As established before, 𝑑𝑘(𝒙) denotes the measured intensity of the experimentally 

collected data.  Let 𝑖𝑘(𝒙) denote the result of applying the forward model from Eq. (5) to 

the current estimate of the complex valued object that we seek to determine given the 

measured data.  In this representation 𝑑𝑘(𝒙) is a static real valued function that cannot be 

altered leaving only 𝑖𝑘(𝒙), a complex valued function, available to be altered so that the 

objective function is minimized.  This results in an intractably large search space with a 

weak heuristic to inform the selection of reasonable object function estimations to satisfy 

the objective function in Eq. (6). 

 One common solution for difficult minimization problems is to derive a new 

representation of the objective function that is easier to minimize.  This typically involves 

the introduction of a new variable or equation that allows the objective function to be 

rewritten.  In this AM algorithm the use of the unmeasured phase of the data 𝑑𝑘(𝒙), 

defined as 𝜓𝑘(𝒙),  is introduced to add an additional degree of flexibility.  Since the 

values within 𝑑𝑘(𝒙) are strictly real-valued while the values in 𝑖𝑘(𝒙) are complex-valued, 
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it is impossible to make an informed choice on updates to the object.  By adding this new 

unmeasured phase term it is possible to make informed decisions on object updates as 

both terms are now complex-valued.   The objective function given in Eq. (6) is thus 

rewritten to become 

min
𝑓(𝒙)

min
𝜓𝑘(𝒙)

�� ��𝑑𝑘(𝒙)𝑒𝑗𝜓𝑘(𝒙) −�𝑎𝑘 �ℎ𝑘(𝒙 − 𝒙𝒐)𝑓(𝒙𝒐)𝑑𝒙𝟎�
2
𝑑𝒙,

𝑥

2

𝑘=1

 (7) 

and includes an expansion of 𝑖𝑘(𝒙) to its form defined in Eq. (4).  The derivation and 

validation of this altered representation can be found in previous publications4 on the AM 

algorithm development.   

 The inclusion of a roughness penalty to Eq. (7) is an important aspect of this 

algorithm.  Due to the ill posed nature of the inverse imaging problem, stemming from 

the limited frequency support of the PSF, it is possible for small changes in the imaged 

data to lead to large changes in the estimated complex object function.  These large 

changes are contrary to the AM model because they represent high frequency information 

that is not transferred through the system in the forward model.  This can lead to 

situations where the algorithm suggestions solutions of the objective function that are 

nonsensical.  The penalty function, along with a constraining of estimation magnitudes, 

serves to regularize estimations explored by the algorithm.  Placing a limit on the 

absolute value of the complex object data at each point along with limiting the maximum 

difference between neighboring pixels, reduces the search space and ensures the solutions 

tested are admissible. 

There are many penalties suitable for this task.  The main characteristic desired is 

a quadratic response for small changes and a linear response to larger changes.  Penalties 
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that take this form approximate the Huber, or robust least squares, penalty.26  For this 

algorithm a penalty based on a log cosh function was chosen, which roughly 

approximates the behavior of the Huber penalty, defined by 

 𝜌(𝑥) = 𝛿 ln cosh �𝑥
𝛿
�. (8) 

This penalty is applied to neighboring pixels resulting in the extended definition 

 𝛲�𝑓(𝑥)� =  �𝜌(|𝑓(𝑘, 𝑙) − 𝑓(𝑘 + 1, 𝑙)|) +  𝜌(|𝑓(𝑘, 𝑙) − 𝑓(𝑘, 𝑙 + 1)|)
𝑘,𝑙

 , (9) 

which has the undesired consequence of introducing a dependency between neighboring 

pixel values.  A workaround to decouple neighboring pixel values, thus allowing the 

algorithm to update individual sample points, is outlined in literature7, 8 and results in a 

new representation of the penalty function in terms of its derivative: 

𝜕
𝜕𝑓

𝛲�𝑓(𝑚+1)� = �𝛿 tanh�
�2𝑓(𝑚+1,𝑖)(𝑘, 𝑙) − 𝑓(𝑚)(𝑘, 𝑙) − 𝑓(𝑚)�𝑆(𝑘, 𝑙)��

𝛿
�

𝑆

  

                          ×  𝑒𝑥𝑝(−𝑗 ∗ 𝑎𝑟𝑔��2𝑓(𝑚+1,𝑖)(𝑘, 𝑙) − 𝑓(𝑚)(𝑘, 𝑙) − 𝑓(𝑚)�𝑆(𝑘, 𝑙)���) 

(10) 

where m is the current algorithm iteration, i is a sub iteration allowing multiple 

applications of the penalty, and S is the set of adjacent pixels (above, below, left, and 

right) to the pixel being processed for the penalty.  A guard band around the outside edge 

of the imaging space is utilized in the implementation of this equation to ensure the 

sampling of neighboring pixels is always done within a region that contains information 

relevant to the current estimation. 

 Explanation of the algorithm requires first defining a few variables and sets to 

simplify expressions.  As the algorithm works on a discretized representation of the 

image and object spaces, let n be the data points in the imaging space and i be the data 
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points in the object space.  Additionally, domains Γ and Ω are utilized and represent the 

complete object space and the sub region after removal of a guard band respectively.  

Algorithm convergence parameters α(n) and γ(i) are precomputed per techniques outlined 

and compared in Section 3.4.  All subscripts k denote the rotationally diverse datasets and 

take values 1 or 2, while superscripts m denote iteration number.  Finally an initial guess 

for the unobserved phase data 𝜓𝑘
(0)(𝐧) and the complex object function 𝑓(0)(𝐢) are 

made.  With these values defined, the AMA operates by solving the following iterative 

algorithm: 

 

which serves to minimize the objective function in Eq. (7).  It begins with 

defining 𝑠𝑘(𝑚)(𝒏), the complex valued data based on the measured DIC image using an 

estimation of the unobserved phase component of that data.  This is shifted to remove the 

background component in the same manner as outlined in Eq. (5).  The forward model is 

then applied to the current object estimate and the result is removed from 𝑔𝑘(𝒏).  This 

difference is again put through the forward model, using the conjugate of the PSF (the 

computation of the adjoint operator), resulting in 𝑒1(𝐢) a guess of the update required for 
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the estimate solution of the object.  Next the penalty is applied to the current object 

function and yields 𝑒2(𝐢).  These are added to the current object function estimate to 

produce an updated object function.  The magnitude constraint is enforced on the new 

estimation of the complex valued object function.   

Up to this point in the process the estimate of the unobserved phase data has been 

held constant and an attempt to minimize the object function has been computed.  To 

compute the other side of the alternating minimization, the object function is now held 

constant and an attempt to estimate the unobserved phase data is now computed.  By 

applying the forward model to the new estimated object function and adding 𝑠𝑘(𝑚)(𝒏), 

the previous combination of true observed data and estimated phase, we obtain a new 

estimation of the unobserved phase mask based on the new object estimation.  Repeating 

these steps yields a converging estimation of the true object function by continually 

finding the error in a previous estimation, either of the complex valued object function or 

of the unobserved phase, and adjusting for it then iterating again until convergence. 
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CHAPTER 3 

APPLICATION OF AMA TO SIMULATED DIC DATA 

Applying the algorithm to simulated data is an important step in the development 

of the computational model.  It allows the removal of many of the difficulties faced when 

working with experimental data such as noise, data registration, determining physical 

system properties from the process.  Instead focus can be placed on validating the system 

model, numerical object specification, and in ensuring the algorithm behaves as intended 

and can reproduce simulated inputs accurately.  This Section focuses on using these 

advantages to improve the implementation of the algorithm.  First an improvement to the 

DIC PSF model is demonstrated in Section 3.1 followed by the use of this improvement 

to generate simulated bead objects that accurately reflect experimental data.  Next, a new 

set of algorithm parameters is discussed in Section 3.3. The Section concludes with the 

use of the new parameters and the roughness penalty to determine appropriate penalty 

weights to use under varying levels of noise. 

3.1 Creation of Rotationally-Diverse DIC Point Spread Functions 

The derivation of the PSF model utilized for this study is detailed in Sec 2.2 and 

results in Eqs. (1) and (2).  For purposes of generating a PSF it is easier to work with the 

Fourier domain equivalent given by Eq. (2) in addition to improving the quality of the 

end result in cases involving shear directions not along a primary axis.  The setup of each 

PSF is dependent upon the physical characteristics of the objective lens, camera sensor, 

and Nomarski prisms.  These are used to determine the frequency cutoff of the system 

which determines the size of the aperture on which the PSF is defined.  The size of 

                                                                                                    22 
 



individual pixels on the camera sensor is also vital as it determines the final sampling 

interval at which the PSF should be represented. 

Proper sampling is one of the main challenges faced in the creation of a DIC PSF 

using this model.  Representing a continuous function in a discrete manner introduces a 

chance for error due to changes in the distribution of intensity values.  This factor is 

mitigated to some degree by first computing a highly sampled version of the PSF on a 

larger grid than desired and then down sampling it to the size required for data 

processing.  This process results in a smoother approximation of the true PSF. 

 

 

Figure 6. Demonstration of the effects of sampling approaches on final result of PSF 
formation showing a) real portion of a PSF created at 0.17µm sampling on a 128x128 
grid then interpolated to effectively be sampled 0.34 µm on a 64x64 grid and b) the same 
PSF created at 0.34 µm sampling on a 64x64 grid.  Both PSFs are based on a 10x/0.3 NA 
lens, 540-nm illumination, shear 0.34 µm, and bias of π/2. 

 

Another important step in the PSF creation process is the rotation of each PSF to 

match the desired direction of shear.  Generally data will be collected so the shear aligns 

with the major axes, one collection with shear oriented horizontally and a second with 
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shear oriented vertically.  If, however, the data is collected and exhibits a shear along 

some other direction, it is necessary to create PSFs that reflect this.  Originally this was 

performed as a final step in the creation process where the PSF is simply rotated spatially.  

This approach works fine for the assumed cases above with shear along a major axis.  

When shear along an arbitrary direction is desired spatial orientation was found to 

provide a poor approximation of the desired PSF (see Figure 7). 

 

 

Figure 7. Demonstration of a) artifacts and poor resampling of DIC PSF when rotated 
spatially and b) improved qualitative appearance and symmetry in DIC PSF rotated in 
Fourier domain.  Both PSFs are indicative of a 63x/1.4 NA objective lens with bias π/4, 
shear 0.17 µm, sampling 0.1 µm, and illumination of 540 nm. 

 

Even distribution of energy in the two sheared wave fronts is important to the 

proper functioning of DIC microscopy (Eq. (1)).  This ensures the returned phase 

encoding is a proper derivative along the shear direction and does not give undue 

weighting to the object position sampled by one wave over its coherent pair.  As can be 

seen in Figure 7a the spatial rotation approach utilized does not result in an image with an 
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even distribution of energy between the two points nor does each point have the same 

uniform and quasi-symmetric shape as seen in Figure 6.  To alleviate this anomalous 

appearance, the implementation of the rotation step was moved to occur in the Fourier 

domain.  This is possible because the Fourier transform is rotationally invariant. 

As shown earlier (Eq. (2) and Figure 5), the representation of the PSF in the 

Fourier domain is entirely on a circular support and it is a sinusoidal modulation along 

the direction of shear.  These two features make it possible to perform a rotation of this 

representation of the PSF without destroying any of the underlying features or relations in 

neighboring values.  The end result is a spatial PSF rotated to the desired shear direction, 

shown in Figure 7b, and without the undesirable artifacts and asymmetry seen in Figure 

7a. 
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Figure 8. Three DIC PSFs with an off axis shear direction:  a) 10 degrees, b) 30 degrees, 
and c) 60 degrees, respectively, with respect to the horizontal axis.  Top row:  imaginary 
component of Fourier domain representation of the PSF.  Bottom row:  real component of 
DIC PSF in spatial domain. All PSFs are indicative of a 63x/1.4 NA objective lens with 
bias π/4 radians, shear distance 0.17 µm, and sampling distance between pixels 0.1 µm. 

 

3.2 Selection of Simulated Objects and DIC Data Generation 

Testing the algorithm in simulation requires the creation of simulated DIC images 

utilizing the forward model outlined in Section 2.4.  Doing this requires the creation of a 

simulated object.  A numerical “blob” object was created to serve this role.  It has a non-

uniform magnitude and phase and an irregular shape and can be seen in Figure 9.  The 

values for the phase were chosen to be representative of what could be expected from a 

real sample that would be experimentally imaged.  They are based upon the formula 

defining the optical path length experience by light propagating through the object 
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𝑂𝑃𝐿 =  𝜙(𝑥) =

2𝜋(𝑛2 − 𝑛1)𝑡
𝜆

, (11) 

with n2 being the refractive index of the object’s structure, n1 the refractive index of the 

mounting medium, t is the thickness of the sample, and λ the wavelength of the 

illuminating light.  Assuming a sample thickness of 1µm, λ=550nm, and refractive index 

mismatch of roughly 0.035 yields maximum phase values of 0.4 radians and background 

values of 0 radians.  The magnitude of the blob is defined, for simplicity, to be directly 

related to the phase by  

 |𝑓(𝑥)| = 1 −  𝑐𝜙(𝑥), (12) 

where c is a constant controlling absorption strength, yielding background values of 1 

representing no absorption of light and increasing absorption with increasing phase 

content.   
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Figure 9. Example of the simulated blob object a) magnitude, b) phase, c) forward model 
DIC image with shear direction at 0 degrees, and d) forward model DIC image with shear 
direction at 270 degrees with respect to horizontal axis.  Generated using 10x/0.3 NA 
lens, 0.34 µm shear distance, 0.34 µm sampling, and π/2 bias at 540 nm illumination. 

 

A second simulated object was created to assist in validating the algorithm for use 

with experimental data.  This object is an approximation of a 6µm in diameter fluorescent 

polystyrene ring bead typically utilized for fluorescence microscopy research.  These 

beads are solid with a spherical shell of dye embedded along the surface.  This dye shell 

extends roughly 0.5 µm to 0.6 µm down from the surface.  This causes the bead to exhibit  

an absorption profile mimicking the dyed portion while maintaining a constant, uniform 

phase component as shown in Figure 10.  The refractive index of the bead is 1.53 and the 

medium in which the bead was mounted has a refractive index of 1.56.   
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Figure 10. Example of the simulated 6µm in diameter polystyrene fluorescent bead a) 
magnitude, b) phase, c) forward model DIC image with shear direction at 135 degrees, 
and d) forward model DIC image with shear direction at 45 degrees with respect to 
horizontal axis.   Generated using a 63x/1.4 NA lens, 0.17 µm shear distance, 0.1 µm 
sampling distance, and π/4 bias at 540-nm illumination. 

 

3.3 Investigation of AMA Parameters with Simulations 

The discussion in Section 2.5 detailing the theory of the AM algorithm includes 

an approach for applying a magnitude constraint on the estimated data.  This involves the 

expansion of the algorithm to include additional terms to simplify the decoupling of the 

estimated parameters allowing a simplified imposition of this and other constraints.  This 

process introduced additional parameters defined as α, β, and γ (which are not single 

constants and thus are represented as vectors)8.  It should be noted that all three 

parameters are present only in previous versions of this algorithm.  Recent investigation 

utilizes an approach relying only upon α and γ, with β =1.  Selection of these values  
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directly influences the convergence rate of the algorithm and must be given careful 

consideration.  An iterative approach for optimizing these choices based on solving the 

system of equations 

 𝐷𝑖𝑎𝑔(𝐇𝐓𝐁𝐇𝐆𝐇𝐓𝐁𝐇) = 𝐷𝑖𝑎𝑔(𝐇𝐓𝐁𝐇) 

𝐷𝑖𝑎𝑔(𝐇𝐆𝐇𝐓𝐁𝐇𝐆𝐇𝐓) = 𝐷𝑖𝑎𝑔(𝐇𝐆𝐇𝐓) 

(13) 

(14) 

was proposed and investigated.7  In these equations H is the convolution kernel utilized 

in the forward model computation and B and G are diagonal matrices representing the β 

and γ parameters respectively.   Early results applied to noiseless simulation were 

promising as shown in Figures 11 through 14; however there are some limitations to this 

approach.   

 

 

Figure 11. Results of running AMA on simulated blob object data using α, β, and γ 
parameters computed using Eqs. (13) and (14) showing: a) true magnitude, b) true phase, 
c) estimated magnitude, and d) estimated phase after 3,000 iterations.  
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Figure 12. Error curve for object estimations in Figure 11 showing Mean Square Error 
(MSE) between true numerical object and AMA estimation for a) object magnitude and 
b) object phase. 
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Figure 13. Forward model results for simulated blob object in Figure 11: (a & b) forward 
model images for true object at orthogonal directions of shear and (c & d) forward model 
images for estimated object.  Left column shows shear direction 0 degrees and right 
column shows shear direction 270 degrees.  Forward model computed using 10x/0.3 NA 
lens, 0.34-µm shear distance, sampling distance of 0.34 µm, and bias π/2 radians at 540 
nm illumination. 
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Figure 14. Error curves for forward model images in Figure 13 showing the MSE 
between a) the difference in forward model of the true numerical object and forward 
model of the final estimated object and b) the absolute value of the difference between 
the complex valued true numerical object and final estimation.  These curves show how 
the object continues to change despite the forward model having converged showing the 
ill-posed nature of the system. 

 

The solution of Eqs. (13) and (14) involves solving an iterative minimization 

problem.  This search is computationally costly when working on datasets of any 

significant size and is not guaranteed to converge for any given convolution kernel.  A 

more stable and quickly computable approximation is desired.  Through collaboration 

with Dr. O’Sullivan (Professor of Electrical and Systems Engineering at Washington 

University in St. Louis), the following derivation was made: 
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 (𝑓∗ − 𝑓𝑛+1) =  𝐺𝐻𝑇𝐻(𝑓∗ − 𝑓𝑛) 

𝐺 =
 (𝐻𝑇𝐻)−1(𝑓∗ − 𝑓𝑛+1)

(𝑓∗ − 𝑓𝑛)  

𝐺 =
 (𝐻𝑇𝐻)−1

𝑤
 

 

 

 

(15)  

where f* is the preliminary estimation of the object function, 𝑓𝑛 and 𝑓𝑛+1 are the 

constrained estimates of the object at iterations n and n+1, H is the convolution kernel, 

and G is a matrix whose elements are the values of parameter γ.  Values for parameter α 

are set to a constant chosen through an empirical study, which showed its value did not 

have a significant effect on the outcome.  Parameter β is set to 1 to remove its influence 

in the computations.  This allows easily switching between new and old equation sets 

without requiring a reimplementation of the model.  This also simplifies algorithm 

analysis as the only parameter changing is γ.  Figures 15 through 18 show results of 

running the algorithm with the parameter set in Eq. (15) under the same simulation 

conditions as in Figures 11 through 14 which utilize Eqs. (13) and (14). 
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Figure 15. Results of running AMA on simulated blob object using α = 0.45, β = 1, and γ 
was computed using Eq. (15) showing a) true magnitude, b) true phase, c) estimated 
magnitude, and d) estimated phase after 3,000 iterations of the AM algorithm.  

 

 

 

Figure 16. Error curve for object estimations in Figure 15 showing Mean Square Error 
between true numerical object and AMA estimation for a) object magnitude and b) object 
phase. 
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Figure 17. Forward model results for simulated blob object in Figure 15 showing a-b) 
forward model images for true object and c-d) forward model images for estimated 
object.  Left column shows shear direction 0 degrees and right column shows shear 
direction 270 degrees with respect to horizontal axis.  Forward model computed using 
10x/0.3 NA lens, shear distance 0.34 µm, sampling distance of 0.34 µm, and bias of π/2 
radians at 540 nm illumination. 
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Figure 18. Error curves for forward model images in Figure 17 showing the MSE 
between a) the difference in forward model of the true numerical object and forward 
model of the final estimated object and b) the absolute value of the difference between 
the complex valued true numerical object and final estimation.  These curves show how 
the object continues to change despite the forward model having converged showing the 
ill-posed nature of the system. 

 

3.4 AMA Performance with Noisy Simulation 

Proper simulation of microscope imaging requires accounting for noise sources 

present within the system.  In order to ensure the synthetic DIC images used when 

working with simulated data properly reflect true experimental data they are corrupted 

with additive White Gaussian noise.  The standard deviation of the noise was set to be 

between 0.5% and 2% of the maximum intensity present in the original uncorrupted 

simulated image.  A Gaussian distribution was utilized due to the strong illumination 

possible with DIC imaging causing the modality to not be a photon limited system.  The 

low standard deviation is chosen to properly reflect the characteristic low noise 
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corruption present when using a high grade scientific CCD camera.7  Images of noiseless 

and noisy synthetic images are shown in Figure 19.  The level of noise is described by the 

ratio of the total intensity present in the image to the variance of the noise mask applied 

(aka as SNR) and it is expressed in decibels. 

 

 

Figure 19. Images of simulated blob object demonstrating noise corruption with different 
amounts of noise and SNR:  a) no noise, b) SNR of 45 dB (very low noise), and c) SNR 
of 35 dB (moderate noise).  Top row contains images with shear direction of 0 degrees; 
bottom row contains images with shear direction of 270 degrees.  Generated using 
10x/0.3 NA lens, shear 0.34 µm, sampling distance 0.34 µm, bias π/2 radians, and 540-
nm illumination.  

 

The existence of noise introduces features to the imaging space that are not 

characteristic of the underlying object being sampled.  This introduces potential errors in 

the object estimations being computed that lead to erroneous final results.   To mitigate 

the influence of noise on the algorithm’s estimations, a roughness penalty has been 
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proposed as detailed in Sec 2.5 and Eq. (10). A key term in the penalty is the penalty 

weight κ which governs the strength of the applied penalty.  This adjustment parameter 

serves to allow a weaker penalty to be utilized in the presence of low noise levels and a 

stronger penalty to be utilized when strong noise is present.  The penalty encourages 

results with smoother appearances which is a good trait when working on highly noisy 

data.  This can lead to washed out and over smoothed final estimations.  A tradeoff must 

be made between loss in fidelity of the object estimation and noise mitigation gained by 

the penalty’s application.   

Previous work by Preza and O’Sullivan6-8 explored appropriate penalty values to 

use in simulation when introducing varying levels of noise.  These prior works focused 

on the application of the penalty when utilizing AM algorithm convergence parameters as 

computed by the algorithm given by Eqs (13) and (14) in Section 3.3.  The transition to a 

convergence model governed by Eq. (15) necessitated reinvestigation of these parameter 

choices.  This is achieved by creating a dataset corrupted with a specified level of noise 

and running the algorithm with a broad range of κ values to determine a general range in 

which acceptable results can be achieved as measured by the MSE between the true 

object and the estimation produced by the algorithm.  A more focused search can then be 

performed to determine the specific value that provides the best noise mitigation without 

over smoothing the estimated results.  Figures 20 and 21 show the resulting object 

estimations and simulated DIC images for this investigation.   
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Figure 20. Analysis of the effects of increased penalty weighting on AMA estimations at 
45 dB SNR.  Top row shows object magnitude, second row shows object phase, and the 
bottom two rows show the forward model DIC images resulting from the object 
estimations.  The first column (a) shows the true object and noisy forward model DIC 
images, the remaining columns show the results for varied κ values b) κ = 0.004, c) κ = 
0.005, d) κ = 0.05, e) κ = 0.5, and f) κ = 1.  Lens 10x/0.3 NA, sampling 0.34 µm, shear 
0.34 µm, bias π/2, illumination 540 nm.  α = 0.45, β = 1, and γ was computed using Eq. 
(15). 
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Figure 21. Analysis of the effects of increased penalty weighting on AMA estimations at  
35 dB SNR.  Top row shows object magnitude, second row shows object phase, and the 
bottom two rows show the forward model DIC images resulting from the object 
estimations.  The first column (a) shows the true object and noisy forward model DIC 
images, the remaining columns show the results for varied κ values b) κ = 0.004, c) κ = 
0.005, d) κ = 0.05, e) κ = 0.5, and f) κ = 1.  Lens 10x/0.3 NA, sampling 0.34 µm, shear 
0.34 µm, bias π/2 radians, illumination 540 nm. α = 0.45, β = 1, and γ was computed 
using Eq. (15). 
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As can be seen, the penalty weighting has a large influence on the final estimated 

data and images.  Higher values result in over smoothed and attenuated results as evident 

in the phase estimates in Figure 20 e) & f).  Low values of the penalty do not properly 

mitigate the noise deterioration as can be seen in Figure 21 b) & c).  Selection of a proper 

weighting for a given level of noise will ensure the best results possible are achieved.  In 

order to quantify what constitutes a ‘proper weighting’ a study involving combinations of 

many weightings with simulated images corrupted by increasing noise levels was 

performed.  This involved the creation of simulated images at 30, 35, 40, 45, 50 dB of 

noise, some of which are shown in Figure 19.  These were run through the AM algorithm 

using κ values at each order of magnitude from 1e-5 to 10.  Working with simulated 

objects allows for a direct comparison of the current estimate to the true object function.  

To evaluate performance of each penalty weighting at a given noise level, the MSE 

between the true and estimated object phase was computed along with the MSE between 

the true and estimated object magnitude.  The best results from that set, judged using the 

computed MSE, were obtained for κ = 0.01.  At κ = 0.001 the algorithm failed to 

converge and at κ = 0.1 the estimated images and object function were noticeably over 

smoothed. This trial study provided lower and upper bounds for values to be investigated 

further.  A second trial was executed for κ values equal to 0.003, 0.007, 0.01, and 0.03, 

respectively, which further narrowed the search space to fall within the range of values 

0.003 and 0.007.  A final trial was computed sweeping κ from 0.001 to 0.01 in 

increments of 0.001 to ensure no possibilities were missed. 

Shown below in Figure 22 are the results of this analysis using the MSE of the 

final iteration as a metric for determining the best weighting for a given noise level.  
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Results for 35 dB and 45 dB are shown.  The final κ selections for each noise level are 

given in Figure 23.  It is apparent from these results that the penalty weight is fairly 

constant for low levels of noise, roughly κ = 0.005, and only needs to be increased when 

the noise reaches moderately high levels. 
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Figure 22. Results of penalty weight analysis under varying levels of noise for 35 dB and 
45 dB SNR simulated datasets.  Graphs show the final MSE for a given κ value for a) 
magnitude of object function at 35 dB SNR, b) phase of object function at 35 dB SNR, c) 
magnitude of object function at 45 dB SNR, and d) phase of object function at 45 dB 
SNR. 
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Figure 23. Final selection curve for the penalty weight κ at various SNR levels.    
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CHAPTER 4 

APPLICATION OF AMA TO EXPERIMENTAL DATA 

Transitioning from simulated data to experimentally gathered data poses many 

challenges.  The forward model computations in the algorithm are simplified 

approximations of data acquired with the real system.  This immediately introduces a 

source of error that cannot be circumvented.  Effort must be taken to mitigate these 

discrepancies between the model being used and the actual system used to collect the 

data.  The use of a calibrated liquid crystal bias cell is one step introduced to help 

increase the accuracy of the model used in the algorithm and is discussed in Sections 4.1 

to 4.3.  Using traditional DIC imaging setups, bias retardation is adjusted by sliding the 

objective Nomarski prism laterally within the light path.  This is done manually and 

causes the exact bias retardation to be unknown.  The devices are not calibrated and the 

exact slider position is difficult to reproduce.    Knowing the exact amount of bias 

introduced by the system, made possible through the use of liquid crystal devices, along 

with the shear distance (determined experimentally as described in Section 4.3) created 

by the Nomarski prisms is vital to achieving the best results possible. These system 

additions are utilized to gather new experimental bead data as covered in Section 4.4.  

New preprocessing techniques are applied to this data (Section 4.5) and then the data is 

processed using both the AM algorithm and Spiral Phase Integration. 

4.1 Description of Liquid Crystal Bias Cell Operation 

The bias cell itself is composed to two sheets of optical grade glass with a thin 

layer of liquid crystal material between them and electrodes attached to the sides as 

shown in Figure 24.  The crystals do not form one solid structure; instead they are a 
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collection of smaller crystalline lattices.  These individual lattices arrange themselves into 

their lowest energy state.  When a voltage is applied across the electrodes, the low energy 

state changes and the crystalline structures reorient in response.  This response is non-

linear and necessitates calibration of the device which is covered in Section 4.2.  The 

refractive index experienced by a light wave is dependent upon both the polarity of the 

light and the current alignment of the crystalline lattices.  Changes in alignment alter the 

effective refractive index experienced by the light waves.21  This effect, shown in Figure 

25, is the phenomenon that creates bias retardation within the system. 

  

 

 

Figure 24. Image of the liquid crystal bias cell.  It is composed of two sheets of optical 
grade glass coated with a conductive layer of gallium tin oxide.  The electrodes are 
connected to these conductive layers, one per layer.  The liquid crystal material is 
sandwiched between these two layers.  Applying a voltage to the device creates an 
electric field between the electrode layers which alters the arrangement of the liquid 
crystal structure.  
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Figure 25. Diagram visualizing the operation of the liquid crystal bias cell showing a top 
down view (along optical path) and a side view of the device.  Introduction of an electric 
field changes the lowest energy state of the crystalline structure and causes a 
reorientation of the crystals.  This alters the effective surface area of the crystal that is 
projected into the path of the light waves.  By altering this, the refractive index 
experienced by the separate polarizations is changed.  As a result the optical path length 
for the two polarizations is changed and a phase bias between them is introduced. 
 

4.2 Calibration of Liquid Crystal Bias Cell 

Using an extension of the model of the DIC PSF allows for a simple technique to 

calibrate the bias retardation introduced by the liquid crystal bias cells.  The intensity in 

the background of an image, acquired without a sample or in a region of the image away 

from the sample, is determined entirely by the bias retardation of the system.  The 

background phase is very nearly constant because no interference is introduced by the 

specimen being imaged.  Regions of constant background within the model defined in 

Section 2.4 can be described by letting 𝑓(𝑥, 𝑦) = 1 which gives an equation for the 

intensity of any point in the background3  
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𝑖𝑏𝑔(𝑥,𝑦) = 𝑎 ��𝑘(𝑥,𝑦)𝑑𝑥𝑑𝑦
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𝑠𝑖𝑛2(𝛥𝜃) 

= 𝑎 𝑠𝑖𝑛2(𝛥𝜃). 

(16) 

This equation is a simplification of the DIC imaging model given in Section 2.4 where 

the PSF model is split into the two constituent components used to define it in Eq. (1).  

These two components are the transmissive optics amplitude PSF 𝑘(𝑥,𝑦) and the 

complex amplitude difference generated by the shear of the system which has been 

simplified into terms of 𝑠𝑖𝑛2(𝛥𝜃) through Euler’s formula from complex analysis.   

A relationship between image intensity and the bias retardation can be extracted 

from Eq. (16).  By setting up the microscope for DIC imaging and collecting numerous 

images that only differ in the bias applied a correlation between that bias and the intensity 

can be established.  Adjusting the bias is achieved by varying the applied voltage as 

detailed in Section 4.1.  Since the device is not yet calibrated it is unknown what bias 

retardation is introduced for each collection, instead the result is a relation between 

intensity and the applied voltage.  When intensity is plotted as a function of voltage, the 

resulting curve takes on a sinusoidal shape.  This curve can then be fit to a sin2 function, 

as predicted by Eq.(16), to determine the relation between voltage and bias for the 

collected data.   

A traditional DIC imaging configuration, as seen in Figure 2, was setup.  The 

liquid crystal bias cell is introduced between the polarizer and the condenser Nomarski 

prism.  Initially a sample is placed in the system to aid in adjusting the focus of the 

microscope, however it was removed before any data was collected to simplify 

processing of the data.  The object would need to be cropped from the final data since 

                                                                                                    49 
 



only the background region is of interest.  The final step before gathering data is running 

through all possible amount of bias retardation to ensure the illumination intensity and 

exposure times are properly adjusted to avoid camera sensor saturation issues. 

Control of the device is done through a digital control board.  A 2 kHz square 

wave signal is applied across the device.  The magnitude of the voltage applied 

determines the orientation of the liquid crystals in the device.  This orientation in turn 

determines the effective refractive index of the device.  As it is a birefringent material, 

this RI is only experienced by light polarized parallel to the crystals.  Light polarized 

orthogonal to the crystal alignment experiences a constant RI (see description in Section 

4.1 and Figure 25).  With this setup was complete, images were collected across the full 

range of bias values possible with the liquid crystal device.  The captured images were 

chosen by slowly adjusting the applied voltage until a slight change in intensity occurred 

with consideration given that the changes would be more gradual as the intensity 

approached its minimum and maximum.  All images gathered were saved as grayscale 8-

bit TIFF images. 

When there is no sample in the field of view, the entire image is representative of 

the background and should have near constant intensity.  Small perturbations are possible 

due to non-uniform illumination intensity, small inconsistencies in the bias cell, light 

scattering out of the imaging path, and light entering the system from the surrounding 

environment.  To mitigate these factors the intensity in each gathered image is averaged 

to yield one representative value for each collection point.  In Figure 26 these values are 

plotted and fit to a sin2 equation on [0, 3π/2], the full range of bias values possible with 

this particular liquid crystal cell.  The Curve Fitting Toolbox in MATLAB was utilized to 
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determine the parameters of the fit curve for the data.  The end result is an equation that 

relates a bias value to the background intensity values.  Additionally, we know what 

voltage was applied to create each image.  Combining these two pieces of information 

yields a calibration curve showing the bias introduced at each applied voltage. 

 

 

Figure 26. Plot of average image intensity for collected images to be used for calibrating 
the liquid crystal bias cell.  Index indicates which of the 32 collected images is being 
displayed.  Mapping these intensity values to a curve fit to Eq. (16) gives a relationship 
between background intensity and bias retardation.  Further knowledge of which applied 
voltage generated a given intensity allows determination of the shear created at that 
voltage point. 
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Figure 27. Final calibration curve for the liquid crystal bias cell derived from data fitting 
done in Figure 26.  Relates applied voltage to the resulting bias retardation produced and 
shows non-linear response of device. 
 

4.3 Measuring the DIC Shear of the Imaging System 

Another crucial parameter of the DIC imaging model is the amount of shear 

distance between the coherent light waves after they are split by the Nomarski prism.  

One method for determining this distance is based on imaging a sub-resolved bead and 

measuring the distance between the high and low intensity peaks in the resulting image.27  

This technique is suboptimal as it provides an estimation of the shear that is influenced 

by factors other than the physical properties of the Nomarski prism itself.  An improved 

approach based on imaging of the back focal plane (BFP) of the objective lens was 

investigated by Mehta and Sheppard.28  Their approach is an investigation of the period 

of the interference fringes present relative to the size of the BFP. 

The Nomarski prisms introduce a small variation in OPL between the two sheared 

light waves.  In addition to shearing the light the prisms also introduce a small variation 
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in OPL.  This variation is different for the two beams of light as they experience different 

refractive indices during the shearing process.  This variation is ignored in DIC imaging 

models since any variation introduced by one prism is compensated for by the other.  By 

removing one prism from the system this compensation is lost which results in a linearly 

varying OPL across the BFP of the objective lens resulting in a sinusoidal fringe profile 

defined by 

 𝑃𝐷𝐼𝐶(𝜉, 𝜂) = 𝑗𝑃𝐵𝐹(𝜉, 𝜂)sin (2𝜋𝜉Δ − 𝜙) 

| 𝑃𝐷𝐼𝐶(𝜉, 𝜂)|2 = |𝑃𝐵𝐹𝑃(𝜉, 𝜂)|2sin (2𝜋𝜉Δ − 𝜙)2, 

 

(17) 

where ξ and η are coordinates in the BFP (units of NAobj/λ), 2Δ is the shear distance, and 

𝜙 is the bias retardation.  PDIC is the resulting DIC image and PBF is the bright field 

image.  The coordinate system for each aperture is normalized to be on [-1, 1] giving the 

aperture a radius of 1 when express in normalized units of NAOBJ/λ.  The initial form of 

Eq. (17) is another representation of the Fourier transform of the DIC PSF given in Eq. 

(2). 

This setup requires sample less image acquisitions resulting in a DIC image of 

constant background intensity (the same approach utilized in Section 4.2 to calibrate the 

liquid crystal bias cells).  There are two important changes for this experiment.  First the 

objective Nomarski prism is taken out in order to remove the bias compensation effect 

described above.  Second, the imaging path is altered to change the focal plane imaged by 

the camera sensor.  Rather than the object’s imaging plane being projected on to the 

camera sensor, the back focal plane is projected on to the sensor.   This, results in an 

image of the Fourier transform of the optical system being captured.  It takes on the 
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appearance of a constant value modulated by a sinusoidal signal, a fringe pattern, and is a 

physical manifestation of the DIC PSF model developed in Section 2.2. 

 Since the shear distance is a constant, unchanging value determined by the 

physical characteristics of the Nomarski prisms, the bias retardation is the only alterable 

parameter of the system.  The work in Section 4.2 to calibrate the bias cells allows this 

parameter to be adjusted in an accurate and systematic fashion.  As the bias is increased 

the fringe pattern shifts across the field of view as shown in Figure 28.  Capturing these 

patterns and combining them into one continuous allows for the frequency of the 

sinusoidal pattern to be computed.  The end result is an accurate measurement of the 

shear distance of the DIC system. 

 

 

Figure 28. Demonstration of the shift in fringe patterns in images of the back focal plane 
of the objective lens that result from changing the bias retardation of the imaging system.  
Shown are fringe patterns for bias retardations of a) 3π/16, b) 3π/8, and c) 3π/4, 
respectively, imaged using a 10x/0.3NA objective lens with 540 nm illumination. 

 

The collection of data for this analysis is straightforward.  First the bias must be 

swept across all values to be introduced during the collection process and careful 

attention paid to the minimum and maximum intensity created.  The intensity of the 

images will vary with change in bias and it is crucial that the illumination strength and 
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exposure time be adjusted to properly capture the dimmest images and to avoid saturation 

on the brightest images.  This is the same precaution taken when calibrating the bias cell 

as described in Section 4.2.  Bias retardations from 0 to 3π/2 radians in increments of 

π/12 were applied and an image collected of each resulting fringe profile.   

The images acquired in this manner require some processing before a final 

determination of the shear distance can be made.  Due to the alignment of the polarizer, 

analyzer, and Nomarski prisms in our microscope, the shear directions are along a 

diagonal axis at a 45 degree with respect to the horizontal axis.  Additionally, the region 

of interest does not fill the entire field of view of the camera sensor.   To simplify 

extraction of a profile, the images are first rotated to align the shear with the horizontal 

axis. They cropped to remove all background information introduced due to the fringe 

profile occupying a small region of the camera field of view.  Non-uniform illumination 

also causes the fringe profiles to exhibit slight variations along the axis orthogonal to the 

shear direction.  To mitigate this anomaly, profiles are created by computing an average 

of the central region of the fringe pattern rather than just plotting intensity along a single 

line through the center.  Some example corrected images can be seen in Figure 28 and the 

resulting profiles are shown below in Figure 29.  The profiles are normalized as a group 

to have intensity values in [0, 1] to simplify the curve fitting process in later steps.  

Additionally, the coordinate system of each profile is normalized such that the entire 

aperture is defined on a support of [-1, 1]. 

                                                                                                    55 
 



 

Figure 29. Central profiles through the fringe patterns shown in Figure 28 at bias 
retardations of a) 3π/16, b) 3π/8, and c) 3π/4 imaged using a 10x/0.3 NA objective lens. 

 

After extracting profiles through each fringe pattern, they must be stitched 

together to create one continuous representation that can be fit to Eq. (17). This process 

involves manual alignment of the individual fringe profiles to best create the overall 

sinusoidal pattern of the modulation.  While creating a longer fringe pattern results in a 

more accurate determination of the shear than would be possible using a single profile, 

the process of combining the series of data does introduce a potential source of error.  

The is because the profiles do not align perfectly as shown in Figure 30; however the 

final result after combining the profiles produces a reasonable approximation of a 

sinusoid as shown in Figure 30.  Computing a curve fit, an example of which is shown in 

Figure 31, of Eq. (17) to this data yields a final determination of the shear for a given 

lens.   
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Figure 30. Fringe profile data collected to determine shear of Nomarski prisms when 
using a 63x/1.4NA lens.  Data was collected for bias values from 0 to 3π/2 radians in 
increments of π/12 radians.  Each line segment represents a fringe profile for a different 
bias retardations’ fringe profile.  The coordinate system for each profile (individual line 
segment) has been normalized to [-1, 1] as described previously.  The final stitched 
profile extends beyond the aperture in order to capture the shifting phenomenon resulting 
in a large coordinate system for the final profile.  
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Figure 31. Fringe profiles from Figure 30 averaged together to form a single profile.  
Fitting Eq. (17) to this profile yields the shear distance of the system.   

 

Processing data for the 63x/1.4 NA lens in this fashion yielded a shear distance 

measurement of 0.17 µm.  The shear distance for the 10x/0.3 NA lens was determined to 

be 0.257 µm.  The Rayleigh criterion sets a theoretical upper bound on the shear distance 

of 2Δ < 0.61λ/NAOBJ.  For the 63x/1.4 NA lens this equation yields a maximum shear 

distance of 0.2353 µm, and for the 10x/0.3NA lens a maximum shear of 1.098 µm.  The 

final determined shear values are well within these bounds. 

4.4 Experimental Data Acquisition 

Proper microscope setup for DIC imaging is a straightforward process and can be 

achieve with very little modification to most bright field microscopes.  This is one of the 

reasons DIC has become a popular imaging modality for phase imaging.  A diagram of 

the system is shown in Figure 2 laying out the components needed and their positioning 

in the microscope.  After the initial installation and calibration of the polarizers and 
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Nomarski prisms, it is trivial to modify the microscope to change between imaging 

modalities.  The main components of our microscope are shown in Figure 32.  Not 

explicitly labeled in this image are the condenser prism and the DIC bias cell.  The 

condenser housing contains a rotating tray which allows for the selection of various 

optical components designed to fit inside the tray’s compartments.  The condenser prism 

is located inside one of these trays and can be moved into and out of the system easily.  

The bias cell rests on the frame holding the polarizer at the bottom. 
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Figure 32. Overview of the main components of the Zeiss AxioImager Z2 utilized in the 
Computational Imaging Research Laboratory.  

 

Once the hardware is configured for DIC imaging, some further adjustments are 

necessary to ensure the quality of the images gathered is acceptable.  A narrowband light 

filter with mean wavelength 540 nm is used.  This is done to match the imaging model 

utilized for this algorithm which was developed with the assumption that monochromatic 

illumination is used.    The primary system adjustment involves getting the object in good 

focus and changing the illumination intensity and camera exposure settings to create a 

strong, low noise signal while also avoiding saturation of the sensor.  This step is done 
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with the bias cell in place and adjusted such that the image contains a desired level of 

contrast.  There may be some iterative adjustments between these parameters as altering 

one can affect the others and a balance must be achieved. 

 Collection of just DIC data at this point is very straight forward once the above 

setup and adjustments are completed.  Our methodology only requires two collections to 

be made at orthogonal shear directions.  This is accomplished by rotating the sample 

stage by 90 degree between collections.  Before collecting either image it is important to 

rotate the stage to ensure the sample stays within the field of view and does not end up 

too close to the edge of the image.  One additional step to this process was recently 

included to assist in the registration of the two rotated images.  This registration process 

involves the use of bright field images gathered at each sample rotation.  Since bright 

field is not a rotationally sensitive image methodology, it greatly reduces the 

complications of performing images registration.  Obtaining all the required data simply 

involves taking a DIC image, removing the Nomarski prisms from the system, taking a 

bright field image, rotating the stage, taking a second bright field image at the new 

orientation, replacing the prisms, and collecting the final DIC image.  Performing the 

collections in this order minimize the opportunities for disturbing the sample and altering 

the focus or moving the object.  The floating optical table on which the microscope is 

mounted also serves to reduce these disturbances. 
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4.5 Preprocessing Experimental Data 

Proper registration of rotationally diverse images is vital for the performance of 

the AM algorithm.  The underlying object properties being estimated at a given point are 

based upon conflicting information if the images are not properly registered.  In image 

regions that are largely uniform this is not an issue, but for portions showing fine object 

detail the impact can be significant.  It is easiest to demonstrate this issue using simulated 

data where complete control of the process is possible.  Doing so allows for a comparison 

of the estimations when using perfectly registered images to those of varying amounts of 

error in registration while being able to reference this all back to the known true 

numerical object function as seen in Figure 33.   

 

Figure 33. Study of the effects of poor registration on the performance of the AM 
algorithm completed using a simulated numerical blob object, no noise, and no roughness 
penalty.  Top row shows object magnitude, bottom row shows object phase.  Columns 
represent a) the true simulated numerical object, b) estimations performed with perfectly 
registered data, c) estimations performed with data misregistered by a shift of one pixel 
horizontally and one pixel vertically, and d) estimations performed with data 
misregistered by a shift of three pixels vertically.  Generated using 10x/0.3 NA lens, 
shear 0.34 µm, sampling 0.34 µm, bias π/2, and 540-nm illumination.  
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Achieving perfect registration of experimentally collected data is a major 

challenge.  One technique that assists in registration of images is the use of fiducial 

marks; however they suffer from the same issues as using the object data itself: when 

viewed under differing shear directions the object takes on a different appearance.  Even 

symmetrical objects like the simulated and experimental bead objects are difficult to 

register.  While they look the same, the alignment and shape of the shadowing contrast in 

the images have no easily and directly correlated features.  Additional data collection is 

required to circumvent this problem as outlined in Section 4.3 which describes the 

microscope setup and data collection procedures.  The bright field images gathered at 

each rotation is used for the following phase registration technique. 

Since the data gathered during bright field microscopy is not rotationally 

dependent it can be used for registration purposes.  Any shift required to align the bright 

field images can then be applied to the DIC images resulting in proper registration.  The 

use of fiducial marks for registering these images is difficult because they have to be both 

in the field of view of the object being imaged and at the same depth as the image to 

ensure they are in good focus.  Instead and approach based on analysis of the Fourier 

transforms of the two images has been implemented.  It takes advantage of the Fourier 

transform property that any spatial translation of an object results in an equal amount of 

phase shift in its frequency domain representation.   

This approach works by computing the Fourier transform of both images and 

extracting the phase information for each.  One phase mask is subtracted from the other 

resulting in a map of the differences in phase content.  This phase difference is used to 

create a complex valued phase mask.  Finally this phase mask is Inverse Fourier 
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transformed resulting in a collection of impulse values that can be interpreted as a 

correlation map between the two images.  The location with the strongest correlation, 

indicated by the highest value in the result, indicates the amount of shift between the two 

images.  When tested with simulated images of a simple shape this technique provides 

accurate results with no ambiguity on the shift amount needed as can be seen in Figure 

34.  When used on experimental data, which suffers from low signal content due to the 

weak absorption properties of the sample, the results can be more difficult to interpret as 

seen in Figure 35. 

  

 

Figure 34. Example of phase registration results on a simulated image to validate 
approach before trying with experimental data.  Images shown are a) original test object, 
b) test object shifted along both axes, and c) resulting correlation map from the phase 
registration technique.  The pixel location of the single impulse indicates the amount of 
shift between the two images. 
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Figure 35. Phase registration results applied to experimental bright field images of 
polystyrene beads.  Shown are a-b) cropped portion of experimental bead images for both 
shear directions, c) correlation map from phase registration technique, d) first image in 
same location, e) second bead image cropped again with region of interest shifted by 
amount dictated by the correlation map in c).  Compared to Figure 34, the correlation 
map for this data set has a range of potential shift amounts demonstrating the difficulty of 
applying this approach to images with low signal content. 
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The second preprocessing step serves to correct the intensity levels of the forward 

model DIC images used to evaluate the estimation performance.  The development of the 

forward imaging model in Eq. (4) includes an attenuation parameter a to adjust for 

illumination intensity.  An ideal system, which exists only in simulation, will experience 

full strength illumination at every step of the image formation process.  In real 

application, however, some light is lost resulting in a reduction of intensity.  This loss 

occurs do to adjustments to the condenser aperture size necessary to increase illumination 

coherence, attenuation caused by the polarizer and analyzer, light scattering at various 

stages of the system, and inefficiencies in the camera sensor.  As a result of this, the 

forward model applied to a given numerical object will produce higher intensity synthetic 

images than a real object with exactly equivalent optical properties. 

An attenuation constant must be computed to correct for this discrepancy.  This is 

mostly easily done by analyzing the background region of an image.  This area is of 

constant magnitude making it easy to work with and additionally it can be represented by 

a numerical object value of 1 as seen previously in the development of the bias 

calibration methodology discussed in Section 4.2.  The goal is to find a constant scale 

factor to adjust the background intensity of the forward model data to that of the 

experimental data.  Given that there are slight variations across the image it is necessary 

to find a value that best corrects these values across the background region as a whole.  

This is done through computing the inner product of the experimental and forward model 

data and dividing by the norm of the forward model data.  This requires that the  
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algorithm first be run with the parameter 𝑎𝑘 set to 1 in order to generate the data 

necessary to determine a proper value.  These results can be seen in Figure 36 and Figure 

37. 
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Figure 36. Effect of proper selection of attenuation constant a from Eq. (5) on 
performance of AM algorithm’s final forward model image results.  Each row shows a 
separate shear direction, top is sheared along 315 degrees, bottom sheared along 45 
degrees.  Columns show a) experimentally gathered DIC images of 6 µm ring beads, b) 
forward model applied to final object estimation when 𝑎0 = 𝑎1 = 1, and c) forward model 
applied to final object estimation when 𝑎0 = 0.9078 and 𝑎1= 0.8849.  Generated using 
63x/1.4 NA lens, 0.17 µm shear, 0.1 µm sampling, and π/4 bias at 540 nm illumination 
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Figure 37. Error curves for results shown in Figure 36. 

 

4.6 Results from Applying AMA to Experimental Data 

One of the primary goals of the research done for this thesis was applying the AM 

algorithm to experimentally gathered data and validating the accuracy of these results.  

This is accomplished in two ways.  First, we used a simple physical object, polystyrene 

fluorescence beads, and imaged them experimentally.  This data, along with knowledge 

about the physical composition of the object, was then used to inform the creation of a 

numerical simulation of the beads as developed in Section 3.2.  Doing so allows a 

validation of the results from experiment, where we do not know the true object, with 

those from simulation.  Lastly, we can compare the algorithm’s output to that of another 

established quantitative phase imaging technique.  In this case we utilized images of yeast 

cells and the results of applying the Spiral Phase Integration technique to the results 

obtained with our algorithm. 
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Looking first at the bead data, it is necessary to first validate the numerical object 

model and forward imaging results.  While the simulation results will never perfectly 

mirror experimental results due to the simplified nature of our model, a reasonably close 

approximation is important.  As can be seen in Figure 38, the forward model comes close 

to the experimental data.  The edges of the bead along the shear directions both take on a 

crescent shaped intensity profile demarcating the edge of the bead.  The images also both 

have a bas-relief appearance. 

 

 

 

Figure 38. Comparison of a) numerical bead object passed through forward model in Eq. 
(5) and b) experimental ring bead images.  Top row shows images with shear direction of 
135 degrees, bottom row shear direction of 45 degrees.  Forward model computed using 
DIC PSF representing 63x/1.4 NA lens at 0.17 µm shear, 0.1 µm sampling, bias of π/4, 
and illumination of 540 nm.  Experimental data collected using lens and system with 
same parameters. 
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After establishing an acceptable numerical object to simulate the bead, it is 

possible to compare the estimations returned by the AM algorithm for each.  Since the 

experimental data is subject to a small level of noise, it is important to utilize the noise 

study from Section 3.4 to determine an appropriate penalty value.  The simulated dataset 

must also be corrupted by an equivalent noise level to ensure both datasets match as well 

as possible.  The standard deviation of background intensity was chosen as a metric for 

comparing the noise corruption in each image.  The standard deviation of the 

experimental images was determined to be 0.0065. A new simulated bead dataset was 

created and a Gaussian noise mask with standard deviation 0.0065 was applied.  The 

reported SNR for this data was 42.8 dB and based on the penalty study done in Section 

3.4 a penalty weight of κ = 0.005 was chosen. The only metric available to quantify 

performance of the algorithm on experimental data is the MSE between the experimental 

DIC images and the forward model synthetic images based on the object estimations as 

shown in Figure 40.   

. 
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Figure 39. AM algorithm object estimations for 6 µm polystyrene bead data:  a) true 
numerical simulated object, b) AM estimation of object from simulated forward model 
images at 30 dB SNR, and c) AM estimation of object from experimental data.  Top row 
shows magnitude of complex valued object function, bottom row shows phase.  Forward 
model computed using DIC PSF representing 63x/1.4 NA lens at 0.17 µm shear, 0.1 µm 
sampling, bias of π/4, and illumination of 540 nm.  Experimental data collected using 
lens and system with same parameters.  Results shown for 5,000 iterations and using 
parameters α = 0.45, β = 1, and γ computed using Eq. (15) and κ = 0.005. 
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Figure 40. MSE between experimental DIC images of 6 µm polystyrene ring bead and 
synthetic forward model DIC images based on AM algorithm object estimation. 

 

The next step is processing experimental yeast data.  The setup is exactly the 

same as processing the experimental bead data.  Given that the image is degraded by 

noise, we again compute the standard deviation of the background intensity to help with 

the selection of a value of κ.  For this image set the background intensity standard 

deviation was found to be 0.0095.  This time a simulated blob dataset was generated as it 

is a better approximation of the yeast cells than the bead would be.  This produced a SNR 

of 39.6 dB which still suggests κ = 0.005.  Results of running AM with this κ value are 

shown in Figures 41 and 42.  The results show significant artifacts and demonstrate 

another important property of the roughness penalty:  removing the influence of the null 

space on the inverse system model.  This helps reduce the artifacts and noise introduced 

when invalid updates are created in the estimation process.  By increasing κ to 0.25 the 
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artifacts are significantly reduced at the expense of a slightly smoother object resulting in 

a final forward model image that is also smoothed as seen in Figure 43 and Figure 44.  

The error curves for these two runs are shown in Figure 45 and demonstrate an 

improvement to the final image estimate justifying the tradeoff between noise mitigation 

and object over smoothing. 

 

 

Figure 41. Results showing a) experimental yeast data and b) forward model of final 
object estimates from AM algorithm computed suing κ = 0.005. Top row shows images 
with shear direction of 0 degrees, bottom row shear direction of 270 degrees.  Forward 
model computed using DIC PSF representing 63x/1.4 NA lens at 0.24 µm shear, 0.12 µm 
sampling, bias of 3π/2, and illumination of 540 nm. 
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Figure 42. Object function estimation from AM algorithm based on experimental data in 
Figure 41-a which result in the forward model images in Figure 41-b showing a) object 
magnitude and b) object phase.  Presence of strong artifacting in magnitude estimation 
indicates improper roughness parameter selection.  Use of too weak of a parameter allows 
undesired, and detrimental, high frequency content to be included in inverse imaging 
model.  Generated using DIC PSF representing 63x/1.4 NA lens at 0.24 µm shear, 0.12 
µm sampling, bias of 3π/2, and illumination of 540 nm.  AMA was run for 5,000 
iterations using α = 0.45, β = 1, and γ computed using Eq. (15). 
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Figure 43. Adjusting value of κ to 0.25 results in improved performance over estimations 
using κ = 0.005 shown in Figure 44.  The stronger roughness penalty discourages the 
high frequency content of the estimations which resulted in the previously seen 
artifacting. Comparison of a) experimental yeast data and b) forward model of final 
object estimates from AM algorithm. Top row shows images with shear direction of 0 
degrees, bottom row shear direction of 270 degrees.  Forward model computed using DIC 
PSF representing 63x/1.4 NA lens at 0.24 µm shear, 0.12 µm sampling, bias of 3π/2, and 
illumination of 540 nm. 
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Figure 44. Object function estimation from AM algorithm based on experimental data in 
Figure 43-a which result in the forward model images in Figure 43-b showing a) object 
magnitude and b) object phase. Not improved qualitative appearance of magnitude 
estimation. Generated using DIC PSF representing 63x/1.4 NA lens at 0.24 µm shear, 
0.12 µm sampling, bias of 3π/2, and illumination of 540 nm. AMA was run for 5,000 
iterations using α = 0.45, β = 1, and γ computed using Eq. (15). 

 

 

Figure 45. MSE between experimental image and forward model image of the object 
estimated from the yeast data using the AMA and two difference values of κ:  κ = 0.005 
and κ = 0.25 associated with the data in Figure 41 and Figure 43. 
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4.7 Comparison of AMA and SPI Results  

The lack of simulated results to verify the yeast estimations is problematic.  

Trusting the results is made possible through the validation done using the bead object; 

however a comparison to another quantitative phase imaging approach is desired.  Spiral 

Phase Integration1, 2 is another technique that can fulfill this need.  SPI provides 

information only about the phase of the object, but this is sufficient for validating the 

phase estimation results of the AM algorithm.  It is also important to note that SPI does 

not return an exact value for the phase mask, but rather it turns a set of non-linear 

anisotropic phase contrast images into a linear isotropic mapping of phase values.2   

SPI functions by taking eight phase-shifted DIC images of an object.  Images are 

collected along two orthogonal shear directions and at four bias retardations, 0, π/2, π, 

and 3π/2.  The four images for each shear direction are phase shifted to yield a phase 

gradient for that collection29 and then combined using a spiral phase integration technique 

to yield a final isotropic linear phase mask for the object.  A comparison of SPI to AM 

utilizing experimental bead data is included in Figure 46 for the sake of thoroughness.  

Results of applying SPI to the yeast data set are shown in Figure 47. 
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Figure 46. Comparison of bead phase estimations computed with the SPI (c) and AM (d) 
algorithm.  Shown:  rows a & b) phase shifted images along shear direction of 45 degrees 
and 135 degrees, respectively, and from left to right: bias retardations of 0, π, π/2, 3π/2, 
c) SPI results showing linear isotropic estimation of phase (unit less), and d) AMA results 
showing phase mask in radians.  Note inversion of dark and light regions between 1st and 
3rd as well as 2nd and 4th images in (a & b).  This is a result of the bias retardation shifting 
the wave fronts by half a cycle causing locations of constructive and destructive 
interference to swap. 
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Figure 47. Phase estimation results of a) AM algorithm (shown in radians) and b) SPI 
algorithm (unit less measurement) on yeast cell data showing similarity of final results.  
Both show linear isotropic phase of underlying object, however according to theory SPI 
is skewed by some additional unknown linear mapping. 

 

The results of processing the bead data support the existence of some linear 

transformation between the SPI results and those generated by the AM algorithm.  It is 

known that the bead has a near uniform phase function shifted relative to some uniform 

background.  This is mirrored by the SPI result which appears to be more blurred than the 

AM result.  The results for the yeast data show similar structure between the phase 

estimations, but contain a few differences.  Most notably the SPI results have less 

structure and fine detail and appear as a smoothed version of the AM results.  There is 

also a difference in the relative distribution of values between the two.  AM yields a 

background relatively close to zero with both positive and negative phase estimates for 

differing regions of the object.  In SPI, the background is again zero, however the phase 

function provided is entirely negative valued.   
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CHAPTER 5 

SUMMARY AND FUTURE WORK 

5.1 PSF Model Implementation 

Proper computation of the DIC PSF is a key to achieving the best results when 

working with any computational imaging research.  The PSF forms the basis from which 

the rest of the model is built.  The DIC PSF model has been developed and validated 

through numerous other publications (Section 2.2). This thesis has presented two key 

improvements, better sampling and rotation, for the implementation of that model within 

the computational framework utilized for this algorithm.  This was accomplished by 

moving the resampling and rotation of the PSF data from the spatial domain into the 

Fourier domain (Section 3.1).   

This can best be viewed through the final forward model output when estimating 

the object function of experimental polystyrene bead images. Since the bead images were 

created using the true physical PSF of the microscope system they are well suited for 

verifying the model being utilized.  Additionally, since the beads are simple structures, 

any deviations from the expected results are easy to identify.  Figure 48 demonstrates the 

effects this can have on final results.  The algorithm was run twice with the exact same 

parameters while changing the PSFs utilized to be those shown in Figure 7.  Using the 

poorly rotated version produced streaking and wave-like artifacts in the forward model 

estimations.  This causes the underlying object estimates to become equally distorted due 

to the updates for each iteration being based upon substandard model outputs. 

                                                                                                    81 
 



 

Figure 48. Comparison of forward model synthetic DIC images using different PSF 
model implementations as shown in Figure 7.  Shown are a) results using the previous 
implementation with inferior rotational approximations and b) an improved approach that 
yields properly sampled PSFs when rotated.  Both PSFs represent a 63x/1.4 NA objective 
lens with bias π/4, shear 0.17 µm, sampling 0.1 µm, and illumination of 540 nm 

 

5.2 Estimations of Simulated Data 

The use of simulated data plays a key role in the development of any 

computational imaging model.  Having full system knowledge simplifies the testing of 

models and allows a greater level of insight to issues that arise and potential changes that 

can be made to remediate them.  The creation of a numerical bead object (Section 3.2) to 

assist with validation of experimental results was completed and showed promising 

estimation values as shown in Figure 39. 

The algorithm utilized a set of parameters to govern the behavior of the object 

estimation updates.  Selection of these parameters has a large influence on the quality of 

the final result.  In looking at the performance of the algorithm using two alternative sets 

of parameters on noiseless data, the newly derived equations were determined to 
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outperform the previous implementation.  This can be seen when looking at results from 

a noiseless simulated blob estimation and is verified through a reduction in the MSE of 

both the magnitude and phase of the estimated object. 

 

Figure 49. Estimation of numerical blob object using two sets of parameter equations, 
shown are: a) true object function, b) original iterative computation of parameters and b) 
new simplified analytic equations for algorithm parameters.  Top row:  object function 
magnitude.  Bottom row:  object function phase.  Generated using 10x/0.3 NA lens, shear 
0.34 µm, sampling 0.34 µm, bias π/2, and 540 nm illumination using α = 0.45, β = 1, and 
γ computed using Eq. (15). 
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Figure 50. Error curves for Figure 49 showing MSE computed between estimated and 
true object function: a) magnitude and b) phase. 

 

5.3 Expanding Algorithm to Experimental Data 

Introduction of bias retardation to the DIC system previously relied on two 

suboptimal approaches.  The first is introducing a quarter wave plate and rotating the 

analyzer.2  The second involves laterally shifting the objective Nomarski prism through 

the imaging path.  Neither of these approaches produces accurate, repeatable results nor 

is it possible to easily determine the bias introduced in this manner.  Another parameter, 

the shear distance, is also difficult to quantify using traditional Nomarski DIC hardware.  

Methods utilizing images of sub-resolution samples have been applied with limited 

success, but have drawbacks that make them undesirable when accuracy is paramount.  

The development of techniques using liquid crystal devices has helped overcome these  

                                                                                                    84 
 



hurdles.  It is now possible to finely control the bias retardation used when imaging a 

sample and to apply the same bias to future experiments.  These devices also enabled the 

accurate measuring the shear distance. 

The use of new data processing techniques has also contributed to the quality of 

estimations possible with this algorithm.  A method for registering rotationally diverse 

DIC images using phase correlation of bright field images was explored.  The effects of 

misregistration are significant on the final outcome of the AM algorithm as shown in 

Figure 33.  The experimental bead data in Figure 39c shows this to be true even on a 

simple object with virtually no features.  Other artifacts, as seen in Figure 41, are 

manifestations of the ill-posed nature of the system.  The use of a roughness penalty in 

the AMA, as well as removing the background shift in the image, helps to mitigate some 

of these effects as demonstrated in Figure 43.  The outcome of this AM algorithm on 

experimental data has been validated through the use of simulated approximations of the 

experimental data as well as processing of the data using a secondary quantitative phase 

imaging algorithm. 

5.4 Future Work 

Further expansion of this work would be best focused on improving the 

determination of model parameter, α, β, and γ, related to minimizing the objective 

function.  These have continually proven to be a source of problems.  As the algorithm 

has grown in complexity the determination of these parameters has grown right along 

with it.  Originally developed to be simple analytical quantities based upon the 

convolution kernel derived from the PSF, they quickly turned into an iterative 

minimization algorithm of their own (Eqs. (13) and (14)).  Computation of parameters 
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using these equations proved problematic and extremely costly even for the smallest 

datasets.  Rough approximations were derived to mitigate some of the issue in using 

them, but this required too many adjustable parameters.  While most any values 

calculated using the approximation will function, they converge to unacceptably 

attenuated and smoothed results.  The development of the parameter model defined in Eq. 

(15) was a major turning point in this thesis without which most of the results shown 

would not have been possible.   

A second body of work that is in need of investigation is the implementation of 

the algorithm itself.  Much of the original research into this approach to quantitative 

phase imaging was focused on the convergence properties of the algorithm.  This was 

accomplished by representing the system in linear algebra form with the PSF converted 

into a convolution kernel.  Rather than convolving an NxN image with an NxN PSF, 

instead an N2xN2
 matrix and an Nx1 vector are multiplied.  This results in an algorithm 

with exponentially growing memory and computational cost.  Now that this particular 

implementation requirement no longer exists, and the algorithms efficacy has been 

validated, a rewriting of the codebase to a more sensible implementation is advisable. 

Lastly, the registration of the rotationally diverse data can use improvement.  The 

SPI algorithm utilizes the phase shifted images for a given shear to determine a phase 

gradient for that shear direction.  This gradient is easier to use in registration than the raw 

DIC images. AMA’s current utilization of bright field images for the registration step 

aims to achieve the same end result.  Unfortunately the bright field images have low 

signal content due to the weak absorption properties of the sample.  This poses a 

challenge for the phase correlation as the noise patterns are dominant over the portions of  
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the image of interest.  The use of image segmentation approaches, thresholding, and 

boundary detection are all possible candidates for either augmenting or replacing phase 

correlation for image registration. 
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