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Abstract 

 Boyd, Wesley Adam. M.S. The University of Memphis. May 2014. Can Portable 
EEG Headsets be Used to Determine if Students are Learning? Major Professor: Philip 
Pavlik, Jr., Ph.D. 
 

This study examined EEGs recorded from a single channel, portable EEG headset 

(NeuroSky MindWave) during the study period of a paired-associate word paradigm 

which used Swahili words and their English meanings.  It was hypothesized that there 

would be a significant difference in gamma, theta, and beta band powers for when 

students recalled words correctly vs. when they did not recall correctly on a subsequent 

test.  There were 35 participants who consisted of students that volunteered at the 

University of Memphis (20 females and 15 males, 31 of which were right-handed and 4 

which were left-handed).  A paired-samples t-test suggested that there was a higher mean 

z-score for brainwave activity during the study period in the high gamma range (41 - 

49.75Hz) for when participants did not recall words correctly on a test, which was 

opposite of what previous research has found regarding encoding.  Based on the results of 

this study, the MindWave seems to capture muscle activity and/or saccadic behavior that 

is suggested by higher gamma maximums on average in the study period for word-pairs 

which resulted in failed recall.  Exploratory results may lend insight to future work using 

portable EEG devices.  This study’s main objective was to determine if portable EEG 

devices could be used to determine when students learn new information.  Further testing, 

especially using other portable EEG devices is necessary to answer this question. 
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Can Portable EEG Headsets be Used to Determine if Students are Learning? 

Introduction 

 In past research, many types of physiological measures, such as biosensors used 

to determine anxiety level, have been used to collect and integrate data into computer-

tutoring software so that programs can adapt to students and promote high levels of 

involvement while interacting with computer agents (Rani, Sarkar, & Liu, 2005).  While 

devices like biosensors may be beneficial, the practicality and use of such equipment is 

not feasible in a real-world setting where equipment needs to be relatively inexpensive, 

portable, and easy to use.  However, a few researchers (e.g., Chang, Nelson, Pant, & 

Mostow 2013; Choi, Jones, & Schwartz, 2012) have explored the use of portable 

electroencephalography (EEG) devices in real-world settings such as the workplace and 

educational settings.  Using a portable EEG device in a classroom could aid in providing 

customized, real-time feedback to the instructor via computer software and could also 

provide feedback to an intelligent tutoring system (ITS).  By researching students’ 

brainwave activity and how it might indicate certain cognitive functions, such as memory 

encoding during study, progress can be made in moving these valuable tools into the 

classroom in an attempt to enhance student learning.   

 EEG is the recording of electrical activity from the scalp, which was first recorded 

in a human by Hans Berger in 1924 (Berger, 1929).  EEG is a non-invasive technique that 

records electrical activity from wherever pairs of metal electrodes from an EEG device 

are placed on the scalp.  This electrical activity is caused by the activation of neurons 

which results in the flow of currents.  EEG measures changes in electrical potentials at 

the scalp that are caused by postsynaptic graded potentials from pyramidal cells (Teplan, 
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2002).  Generally speaking, the summation of this electrical activity of neurons firing in 

synchrony is what produces the EEG data.  Due to these currents being very weak, the 

EEG device amplifies the signal and then outputs the raw signals.  Portable EEG devices 

use a fast-fourier transform (FFT) to process the raw signals to output the frequency 

bands.   

 Brainwaves occur at different frequencies and amplitudes.  These brainwave 

frequencies are usually grouped into five different bands (Niedermeyer & Lopes da Silva, 

2004).  Each frequency range correlates with characteristic effects seen in each range 

(e.g., cognitive experiences like concentration and alertness).  The five frequencies are 

the Delta (0.1-3.5 Hz), Theta (4-7.5 Hz), Alpha (8-13 Hz), Beta (14-30 Hz), and Gamma 

frequencies (30-100Hz).  Delta waves are the highest in amplitude and are seen in deep 

sleep.  Theta waves are seen in light sleep states (including dream sleep) and have also 

been seen in states of meditation, deep relaxation, and drowsiness.  Alpha waves are seen 

in states of calmness, relaxation, and reflection.  Beta waves are seen in the normal, 

active awake state and are associated with attention, alertness, and engaging activity.  

Gamma waves are seen in higher learning, memory processing, and have been linked to 

Tibetan Buddhist monk meditation (O’Nuallain, 2009).   

 The synchronous neural firings recorded by an EEG device have been found to 

correlate highly with cognitive processing.  Brain synchrony is defined as the 

simultaneous in-phase activity of many neurons that are spread over a certain area, much 

like the well-known military cadence in which many soldiers march and sing together.  

These soldiers are in synchrony.  The more soldiers there are, the louder they march and 

sing.  Similarly, strength increases as more synchronous neuronal activity occurs.   
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 In the past, recording brainwave activity was typically performed in a lab setting 

where many electrodes were used along with a converter box and other cumbersome 

peripherals.  Also, typical EEG setups require cleaning each electrode site along with 

application of saline gel which is very time-consuming.  Now, the portable EEG headset 

creates research opportunities in real-world settings where they were previously not 

feasible (e.g., in the classroom or in a moving automobile).  If brainwave data can be 

indicative of learning, then it could be used as a type of software feedback to enhance 

learning in tutoring sessions.  For instance, previous research found that during a review 

period (before a subsequent memory recall test), a gamma band increase during encoding 

correlated with recall at a later test (Gruber, Tsivilis, Montaldi, & Muller, 2004).  

Replication of these findings using portable EEG devices would help brainwave data 

move into real-world applications.        

Literature Review   

 To understand the possible practical utility of portable EEG, we can draw upon 

the many laboratory studies over the past few decades which showed how cognitive 

processes (like memory processing) related to particular EEG frequencies.  Studies have 

been conducted looking at gamma band activity’s role in cognitive processing.  Gamma 

band activity has been shown to be associated with learning and memory processing.  For 

example, Hermann, Lenz, Junge, Busch, and Maess (2004) found that gamma activity is 

evoked by visual stimuli that match existing representations in long term memory (LTM).  

This memory comparison is said to elicit gamma activity for other stimuli as well, such as 

known objects (spoon, fork, car) vs. unknown non-objects (shapes that are not easily 

distinguishable).  Conscious access to both short term memory (STM) and LTM is said to 



 

 4 

modulate gamma activity.  More support for this claim is shown in that words evoke 

more gamma activity than pseudo-words, which is a result of these words being 

represented in our mental lexicon or LTM (Pulvermüller, Lutzenberger, Preissl, & 

Birbaumer, 1995).  Some studies have found that significant gamma power increases 

happen when certain cognitive processes are experienced.  For instance, amplitude 

increases in the gamma band have been observed when a person becomes more attentive 

(Bouyer, Montarom, Vahnee, Albert, & Rougeul, 1987).  Also, increases in frontal 

gamma activity (around 40 Hz) were found in those who selectively attended to stimuli as 

opposed to those who ignored stimuli (Tiitinen et al., 1993).  This may show that 

selectively attending to auditory, somatosensory, or visual stimuli (Chen & Herrmann, 

2001; Hoogenboom et al., 2006; Pantev, 1995) elicits gamma band activity and thus the 

EEG may aid in detecting whether or not a person is paying attention.   

 In a study where participants were instructed to attend to specific targets among 

different sets of visual stimuli, the stimulus sets were thought to undergo comparisons 

with existing representations of the target template in STM—that is to say, the 

participants were thought to be unconsciously comparing the non-target stimuli with the 

intended targets, which were already represented in their memories (Hermann, 

Mecklinger, & Pfeifer, 1999; Hermann et al., 2004).  Interestingly, what seemed to 

control the strength of the gamma band response was the similarity of features that non-

targets shared with the intended target.  These findings lend support to the idea that 

gamma band activity is induced when our brains make comparisons based on existing 

information (called memory matching), either in LTM or STM.  This may be helpful in 

learning by enhancing the ability to detect generalization and discrimination based on 
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gamma band power during a learning session.  Associations between gamma band 

activity and behavioral performance have been said to hold direct relationships with 

memory processes, where gamma band responses occur during the encoding of memories 

and predict subsequent recall (Hermann, Frund, & Lenz, 2010).  In light of these 

findings, an increase in gamma band activity during encoding could be expected if a 

person successfully encodes a memory.   

 Many other studies have shown the association between gamma band activity 

during memory encoding and subsequent memory performance.  In a study where 

epileptic patients studied wordlists during a memory paradigm, subsequent recall of those 

words was predicted by increases in gamma band power during the encoding period 

(Sederberg, Kahana, Howard, Donner, & Madsen, 2003).  Similarly, in a study where 

participants may successfully encode new words and subsequently be tested on those 

words, an increase in gamma band activity in the encoding period might be possible for 

words remembered as opposed to words that are forgotten.   

  In addition to gamma band oscillations being predictive in memory tasks, theta 

oscillations have also been shown to be associated with memory processes (Klimesch et 

al., 2001).  By using a remember/know paradigm (used to effectively separate these two 

distinct forms of awareness during retrieval), Klimesch and colleagues (2001) 

investigated the associations between the conscious experiences of remembering and 

knowing and theta band activity during these events.  Participants in this study were first 

presented with a set of words for a short duration and then were instructed to, in the next 

phase, make judgments based on their recollection of the words—that is, whether they 

remembered seeing a word in the list, knew the words were in the list, or did not recollect 
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seeing the word and therefore determined it to be a “new” word.  The EEGs of the 

participants were recorded throughout the experiment.  An increase in theta activity was 

found in all three correct judgments (remember, know, and new).  However, the duration 

and onset of each was different.  The new word judgments showed the shortest duration 

of theta increases while the remembered word judgments showed the longest duration.  

Onset of synchronous theta increases was first apparent in knowing (300-450 ms) and 

then in remembering (450-625 ms).  Klimesch and colleagues (2001) postulated that this 

was evidence of two distinct neural correlates for remembering and knowing in memory.  

In a study that found gamma and theta band oscillations to be predictive of the encoding 

and retrieval of declarative memory, Osipova et al. (2006) suggested that theta 

oscillations play a role in synaptic plasticity that facilitates memory encoding.  Osipova 

and colleagues (2006) extended upon Klimesch’s “subsequent memory effect” 

(remembering an encoded item on a test) findings by using pictorial stimuli instead of 

words.  These increases in gamma and theta power were said to occur within 0.3-1s of 

onset in the encoding period, which indicated a momentary binding of memory.  Gamma 

and theta power increases were found to be associated with memory processing for 

successful encoding and retrieval, and have also been shown to be evident in the 

maintenance of information in working memory (Jensen & Tesche, 2002).  These 

findings are consistent across researchers and have been replicated numerous times.  

Extending these findings using portable EEG could aid in answering the question as to 

whether these portable devices are capable of being used reliably in applied settings.   

Other frequency bands, such as the alpha and beta bands, have also been found to 

be associated with cognitive processing.  Further examination of these bands’ activities is 
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needed to determine their role in possible memory processing.  Let us consider some of 

the recent findings that might help to show their importance in this study.   

Changes in beta band activity have also been proposed to be associated with 

paying attention (Egner & Gruzelier, 2004).  Training in the low beta frequency range 

(15-18 Hz; called beta1 training) and the sensorimotor rhythm (12-15 Hz) was shown to 

increase reaction times in certain attention tasks and indicate a general attention-

enhancing effect.  Egner and Gruzelier (2004) postulated that this was a result of 

increased arousal in a noradrenergic alertness network of attention.  This suggests that 

training-evoked low beta activity (12-15 Hz) enhances attention and could be seen by an 

increase in power in the beta band.  Interestingly, beta band activity was also found to be 

modulated by attention, which has been found to be directly related to associative 

learning (Asaad, Ranier, & Miller, 1998; Bardouille, Picton, & Ross, 2010; Kruschke, 

2001).  If attention modulates beta activity, then it is plausible to suggest that when a 

person is paying attention in an associative learning scenario, beta power will increase if 

learning has taken place.   

Alpha band activity normally accompanies cognitive processes such as calmness 

and relaxation.  However, contrary to the classical theory in which alpha band 

frequencies represent “brain idling,” alpha band oscillations during a short term memory 

task have been found to increase with memory load during the retention period (Jensen, 

Gelfand, Kounios, & Lisman, 2002).  However, EEG effects have been thought to also 

depend on the type of task.  For example, a study that examined EEGs, specifically the 

theta and alpha activities, used an n back task.  Results of the experiment using an n-back 

task, a task in which subjects are presented with a continuous stream of items and are 
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asked to indicate whether the displayed item matches the one n positions back, showed 

that theta activity increased with memory load and alpha activity decreased (Gevins, 

Smith, McEvoy, & Yu, 1997).  Using a modified version of the Sternberg task 

(Sternberg, 1966), Jensen and colleagues were able to study the temporal and spatial 

development of alpha band activity during encoding, retention, and recognition, which 

were separated in time.  The classic Sternberg task allows for this separation naturally 

because it involves an encoding period (presentation of items to memorize), a memory 

maintenance period (retention), and finally a judgment period which presents a “probe” 

item in which the subject must judge whether or not that probe item was in their memory 

list.  EEGs were recorded during the retention and recognition intervals of the task.  

Analysis of the data showed that the alpha rhythm was the most salient frequency 

showing an increase in amplitude with memory load, an evident spectral peak, and very 

apparent oscillations.  Power spectra were calculated for each trial and then averaged.  

The average spectral peak was ~11 Hz, and the area in which alpha activity was strongest 

was over the posterior region which was said to be indicative of parietal-occipital sulcus 

(a well-known alpha source) contributions.   

 The fact that amplitude increases with load suggests that the alpha band has a 

graded quality that depends on the number of items being stored in memory.  Another 

important result that signifies a temporal relationship between working memory and 

alpha activity is that after the memory task was complete and subjects no longer needed 

to remember the items from the task, the alpha band power decreased within a few 

hundred milliseconds (Jensen et al., 2002).  Jensen and his colleagues stated that the 

difference between the Sternberg task and the n-back task that Gevins et al. (1997) used 
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might explain why the two studies found different results.  They speculated that since the 

n-back task is very demanding (includes many overlapping operations), participants may 

have employed visual strategies which may have taxed the visual system under memory 

load and thus decreased alpha activity (given that alpha activity indicates a suppression of 

processing in visual areas; Fu et al., 2001).  In the Sternberg task, operations are 

temporally separated, and using a visual strategy would be unlikely.  These findings 

suggest that alpha band activity is associated with memory tasks in that alpha power has a 

graded increase during working memory so long as the visual system is not severely 

overworked.    

Portable EEG  

 In recent years, portable EEG devices, such as the NeuroSky MindWave (MW) 

and NeuroSky Mindset (MS), have been used in research to investigate their potential as 

tools for revealing useful information about brainwave frequencies associated with 

mental states, such as attention and meditation.  These lightweight headset devices 

feature single, dry electrodes (single-channel-referenced to the ear lobe) that do not 

require the use of a saline gel like the cumbersome and more complex traditional EEG 

equipment.  The single channel measures electrical signals produced by neural activity in 

the frontal lobe region and converts those signals into useable binary data.  These devices 

are often referred to as Brain Computer Interfaces (BCI).  BCIs have been proposed to 

work well in learning environments where biofeedback could be used to enhance learning 

(Chang et al., 2013).    

 NeuroSky’s devices record raw brainwave data and outputs the powers and raw 

signals of the delta, theta, alpha (high and low), beta (high and low), and gamma (high 
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and low) frequencies(see Appendix C for ranges).  It also outputs two custom measures, 

“attention” meter values, which can indicate the level of mental focus, and “meditation” 

meter values, which can indicate the level of mental calmness.  These are referred to as 

NeuroSky’s eSense meters.  NeuroSky describes the computations to determine these 

values as trade-secrets that cannot be divulged.  Nevertheless, research has shown that 

these two measures are able to clearly and reliably differentiate between higher states of 

cognition and emotional response (Crowley, Sliney, Pitt, & Murphy, 2010). 

  Rebelledo-Mendez and De Freitas (2008) assessed the MS for reliability and 

usability.  An assessment exercise was developed that used a model of attention which 

combined the learner’s EEG inputs (MS readings) and the learner’s actions in a 

computer-based learning environment.  Furthermore, MS readings were combined with 

user-generated data to provide a more accurate representation of attention levels.  These 

user-generated data included whether questions were answered correctly or incorrectly 

and the amount of time taken to answer each question.  Rebelledo-Mendez and De 

Freitas’s (2008) model of attention not only detects attention patterns, but also gives 

feedback to the participant.  The model was deployed using a state-of-the-art AI-driven 

avatar (programmed in C#), which collects user-generated information as well as EEG 

data.  The avatar asks multiple-choice questions while collecting data (EEG and user-

generated) and transmits this data to the computer in which software communicates with 

the avatar. By using the combined data, the avatar is able to dynamically interact and 

adapt to each learner’s performance behavior.  The study ultimately showed a positive 

correlation between self-reported (questionnaire-based) and measured attention levels and 

the MS was shown to be reliable in providing accurate readings of attention.  Results 
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from analyzing the device’s usability suggest that most users do not experience any 

significant problems due to head size.  Furthermore, it was determined that when the 

device fit properly, it did provide valid and reliable data (Rebolledo-Mendez, et al., 

2009).  These findings validate the choice of using the single-channel EEG devices for 

research in an educational setting. 

 The NeuroSky MS, MW, and Myndplay (another variation of the device that 

features an elastic band) were tested against each other in an attempt to reveal the most 

reliable device when analyzing EEG data for safety improvement among industry 

professionals (Choi et al., 2012).  Two mental states, alertness and drowsiness, were 

assessed and compared using BCI2000 (an open source software) and Matlab.  

Significant differences were found between alertness and drowsiness.  The drowsy state 

showed less alpha and beta wave activity than the alert state—which suggests that being 

alert elicits more alpha and beta wave activity.  Of the three, the MW was said to have 

produced the most accurate and reliable data due to its technical and physical attributes.  

Additionally, in another recent study (Chang et al., 2013), it was determined that the 

NeuroSky MindWave, "…has the potential to detect mental states relevant to tutoring, 

such as comprehension, engagement, and learning” (p. 18).  It was also stated that 

conducting further research using this device could lead to it being used in a tutorial 

setting that could adapt and respond to an individual's mental state and thus improve 

learning in an educational setting (Chang et al., 2013).  Originally created for the gaming 

industry, these single-channel EEG devices, including the MW, have shown promising 

results in the scientific community as a reliable research tool.  Being highly affordable 

and easy to use, this device makes a great candidate to use in educational learning 
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scenarios, especially in intelligent tutoring systems that adapt to students based on the 

student’s mental state feedback.  One such ITS that could benefit from a constant stream 

of brainwave data is AutoTutor, which is an intelligent tutoring system that uses an 

animated conversational agent to interact with a student using natural language (Graesser, 

Wiemer-Hastings, K., Wiemer-Hastings, P., & Kreuz, & Tutoring Research Group, 

University of Memphis, 2000).  Since intelligent tutoring systems constantly undergo 

progressive changes, the very affordable MW could be utilized in developing an even 

more adaptable tutoring system that is tailored to each individual student. 

Hypotheses 

 Considering past research, this study will mainly focus on analyzing the gamma, 

theta, and beta bands for which we have three main hypotheses.  These frequencies have 

all been identified as being associated with memory processing.  Gamma power increases 

have been found in paired-associate learning (PAL) tasks which can predict subsequent 

recall (Hermann et al., 2010), and gamma responses have generally been found to be 

evoked by memory encoding (Sederberg et al., 2003).  It is hypothesized that there will 

be a significant difference in gamma wave power during encoding for word-pairs that are 

remembered correctly vs. word-pairs that are not remembered correctly on a subsequent 

test.  Theta power increases have also been seen in memory encoding and have been 

suggested to coincide with neural plasticity (Osipova et al., 2006).  It is hypothesized that 

there will be a significant difference in theta wave power during encoding for word-pairs 

that are remembered correctly vs. word-pairs that are not remembered correctly on a 

subsequent test.  Beta increases have been thought to be evoked by attentiveness (Egner 

& Gruzelier, 2004), and have also been found to modulate beta activity during associative 
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learning (Asaad et al., 1998; Bardouille et al., 2010; Kruschke, 2001).  Finally, it is 

hypothesized that there will be a significant difference in beta power in the encoding 

period for word-pairs that are remembered correctly vs. word-pairs that are not 

remembered correctly on a subsequent test.   

 Exploration of all frequency bands is necessary to further discover how they may 

be associated with memory processing while learning and to also help determine what 

bands may contribute to construction of an adaptive personal learner model using EEG.  

For example, alpha power increases have been seen in working memory tasks which 

show a graded quality, that is, power increase is contingent on how much information is 

being processed (Jensen et al., 2002).  In this instance, alpha band information might 

indicate a heavy processing load which could be helpful in determining when a learner is 

bogged down with too much information. However, it is unclear whether this type of 

information is meaningful, and exploration would help us drive future research using 

BCIs.    

Methods 

Materials 

 For the present experiment, the NeuroSky MindWave was chosen for its low cost, 

availability, and portability.  This non-invasive headset features a single electrode that 

touches the forehead approximately two inches above the eyebrow and records brainwave 

activity in the frontal lobe at Fp1 (according to the International 10-20 System).  This 

device does not require the use of saline gel.  The headset features an adjustable 

headband that can accommodate different head sizes and offers enough rigidity to fit over 

various hairstyles.  The MW samples at 512 Hz (512 times per second).  The recorded 
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data undergoes a Fast Fourier Transform (FFT) which averages and filters the brainwave 

data into an output of 1 Hz in an Excel file (it logs all the EEG data once per second).  

The MW connects through NeuroSky’s Thinkgear Connector driver, and a custom Java 

application that we formed using a JSON controller reads and records through this 

proprietary connection.    

Task Selection   

According to the cell assembly theory proposed by Donald Hebb (1949), learning 

is said to occur when cells assemble and fire in synchrony.  Gamma band responses have 

been found to be associated with this phenomenon, and paired-associative learning (PAL) 

paradigms have been used to test whether gamma responses are associated with cell 

assembly and associative learning (Gruber, Keil, & Müller, 2001; Marshall, Helgadóttir, 

Mölle, & Born, 2006; Miltner, Braun, Arnold, Witte, & Taub, 1999).  This type of 

learning is considered explicit and conscious learning as opposed to unconscious or 

unintentional learning.  Given the evidence that this paradigm has been used many times 

and is considered reliable, we chose to use a paired-associate word task which presents 

17 Swahili words (and three phrases—Hello, Goodbye, and Thank You) along with their 

English meanings. The word pairs were presented in a random sequence for each 

participant for both learning and testing.  Unlike some tasks (like the Sternberg task), this 

task did not involve an explicit retention period (although there is an implicit period in 

which the items are retained).  There was an encoding period in which the word pairs 

were presented, a short instructions screen that told participants what to do in the test 

(typed response), and a testing period.   
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The words were oriented in the middle of the screen, one on top of the other 

(Swahili word on top, English meaning below).  This arrangement was considered 

optimal for this experiment because after analyzing pilot data, we found that our original 

arrangement of Swahili word on the left-of-middle and English word on the right-of-

middle may have elicited a decrease in alpha band activity as a result of visual system 

taxation (Jensen et al., 2002).  Originally, we were going to use 30 Swahili words, but 

after running pilot tests we found that using 30 words resulted in poor recall along with 

impoverished data which was likely a result of participant fatigue or inattentiveness.  So, 

after deciding to decrease the number of Swahili items, the most difficult words 

(phonetically) were eliminated and 17 words remained.  The challenge of selecting how 

many items to include involved careful planning of how to acquire a balance of recalled 

items vs. non-recalled items so that we have good data to analyze that represents both 

conditions of the outcome variable (recall vs. no recall).  So, after further pilot testing 

using 17 words, we determined that this number of carefully selected items gave us this 

balance and was optimal for this particular experiment.   

Two files were created during the experiment. One file contained the EEG data, 

and the other file contained the word list which recorded the exact times of when a 

particular word was studied, when it was tested on, and whether or not it was correctly 

recalled.  These files were time-matched in that when a particular word was being 

studied, the EEG file times were synchronized with the word file times (within 50-

100ms).  This, of course, allowed us to know the exact ten second time period in which a 

word was being studied along with the exact EEG data in that ten second time period. 
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Participants 

 Thirty-five students from the University of Memphis voluntarily took part in this 

study and received monetary compensation.  Participants’ ages ranged from 18 to 72 

years, and the mean age for this study sample was 26.86 (M = 26.86, SD = 9.87).  Gender 

and handedness was recorded.  There were 20 females and 15 males in the sample (31 of 

which were right-handed, and 4 were left-handed).  Written informed consent was 

obtained from each participant, and all ethical regulations were followed according to the 

Declaration of Helsinki.   The Experimentation Protocol was submitted to and approved 

by the University of Memphis’s Institutional Review Board (IRB).  The experimenter had 

the proper training and certification to conduct experiments using human subjects.  Those 

who were familiar with the Swahili language and those with a history of neurological 

disorders were not eligible to participate in the study.  Handedness of participants was 

recorded because in EEG research, it is often thought that being left-handed may have 

inherent neurophysiological differences than being right-handed.  However, since the 

single electrode used in this experiment is close to the midline, the left-handed 

participants were included in the analyses.      

  Procedures   

To begin, the participant was given a consent form to sign and was given the 

opportunity to ask any questions before the experiment began.  Afterwards, the 

experimenter assisted the participant in putting the MindWave headset on and established 

an initial connection of the headset to the computer software.  Upon successful 

connection, the experimenter let the system stabilize for approximately 90 seconds to 

allow for internal adaptation.  After the connection was established, the participant began 
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using the Java applet in which they were presented 17 Swahili words, one word at a time 

for ten seconds each word (for a total study duration of about three minutes).  This 10 

second study period for each item could not be shortened by pressing any keys, etc.  This 

was to ensure that every study period was the same in duration.  After completing the 

study period, the participant went directly into a testing period in which they were asked 

to type the English meaning (answer) of each presented Swahili word (e.g., a random 

Swahili word that was presented in the study period was presented alone in the test 

period, one at a time, to test recall).  There was no time limit on how long they had to 

answer.  Participants were allowed to type in any response including nonsense words or 

press the enter key to move on to the next item if they felt they did not know the answer.  

No feedback was given in the testing period.  

Results 

Data Analyses 

 Upon inspection of each individual’s EEG frequency distribution, distributions 

tended to be skewed.  All duplicate values (due to hardware lag) were removed by 

rejecting any individual one second record that contained the same values as the one 

second record before it.  The problem with the MW was similar to video buffering; when 

the device could not process the EEG fast enough, it would repeat the previous recording.  

Extreme outliers were also removed by rejecting the EEG values when the sum of all 

eight frequency bands was higher than 3,000,000 (which was 2% of the total data).  

Furthermore, for the remaining data, 41% of the data was rejected due to poor signal 

quality (any poor signal value that wasn’t equal to 0 which indicated a good signal 

according to NeuroSky—see Appendix C for further explanation).  Each EEG for each 
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trial underwent a logarithm transform to normalize the distribution.  Values with poor 

signal quality were rejected   Averages and standard deviations of the logarithms for each 

participant’s entire session were calculated.  Normalization was achieved by computing 

z-scores for every participant’s individual trials (17 word-pair trials).  Finally, the average 

z-score was computed for each participant’s correct and incorrect trials for every 

frequency band.  

Using the mean z-scores (correct and incorrect) from the theta, beta, and gamma 

bands, a preliminary paired-samples t-test was conducted to assess the difference in the 

means of when participants correctly recalled word-pairs vs. when they did not in the 

theta, beta, and gamma bands.  In the high gamma range (41-49.75 Hz) there was a 

statistically significant difference in high gamma power (indicated by the mean of the 

maximum z-scores across trials) when participants answered incorrectly (M = 1.1, SD = 

.24) compared to when participants answered correctly (M = .96, SD = .30), t(33) = 2.00, 

p = .05 (two-tailed).  This was contradictory to what previous research has shown, so the 

data was visually inspected again to make sure there were not any errors or extraneous 

noise signals.     

From each 10 s trial period, 2.0 s epochs were removed from the beginning of 

each EEG trial’s records, because upon visual inspection these epochs showed artifacts 

which were likely a result of eye movement or blinking caused by the changing or 

“flickering” from one word-pair to the next (at the end of each trial, the screen 

instantaneously moved to the next word-pair).  Past research has shown that these 

“flickering” visual stimuli could cause resonance frequencies and spikes common to the 

gamma range, and removing these epochs is thought to be valid and common practice in 
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EEG data analyses (Hermann, 2001).  After removal of these epochs, this cleaned data set 

was used for all further analyses. 

Aggregate Within-Subjects Results 

 A paired-samples t-test was conducted to evaluate the difference in gamma, theta, 

and beta band frequency power when participants recalled word-pairs correctly and when 

they failed to recall word-pairs correctly.  In the high gamma range (41-49.75 Hz) there 

was a statistically significant difference in gamma power (indicated by mean z-score of 

gamma maximum values) when participants answered incorrectly (M = 1.02, SD = .24) 

compared to when participants answered correctly (M = .83, SD = .31), t(33) = 2.70,  

p = .01 (two-tailed).  The mean difference between “correct” mean z-scores of gamma 

maximums and “incorrect” mean z-scores of gamma maximums was .19 with a 95% 

confidence interval ranging from .05 to .33.  The eta squared statistic (.18) indicated a 

large effect size.  These results indicate that gamma power was higher when incorrectly 

remembered word-pairs were studied than when correctly remembered word-pairs were 

studied.  In the low gamma range, there was no significant difference between the correct 

mean z-score of gamma maximums (M = .87, SD = .41) and incorrect mean z-score of 

gamma maximums (M = .95, SD = .41), t(33) = 1.21, p = .23 (two-tailed).  A summary 

of the comparisons is shown in Table 1. 
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Table 1 
 
Comparison of Correct Mean Z-Scores vs. Incorrect Mean Z-Scores 

 
Frequency Band Correct 

Mean z-

Score 

Incorrect 

Mean z-

Score 

     SD t-value df p-value  

(2-tailed) 

Theta -.04 .03 .30 1.29 33 .21 

Low Beta .02 .03    .32 .293   33 .77 

High Beta       -.02        .03      .37      .643 33        .52 

Low Gamma .87 .95 .41 1.21 33 .23 

High Gamma .83 1.02 .40 2.70** 33 .01** 

Note. n = 34, **p=.01, two-tailed.  

 

 

 In the theta range (3.5-6.75 Hz) there was no statistically significant difference in 

theta power (indicated by mean z-score) when participants answered incorrectly (M = 

.03, SD = .22) compared to when participants answered correctly (M = -.04, SD = .21), 

t(33) = 1.29, p = .20 (two-tailed).  Our hypothesis that theta wave power would be 

significantly different for when correctly remembered word-pairs were studied vs. when 

incorrectly remembered word-pairs were studied was not supported by these results. 

 In the low beta range (13-16.75 Hz) there was no statistically significant 

difference in beta power (indicated by mean z-score) when participants answered 

incorrectly (M = .03, SD = .19) compared to when participants answered correctly (M = 

.02, SD = .18), t(33) = .293, p = .77 (two-tailed).  In the high beta range (18-29.75 Hz) 

there was no statistically significant difference in power (indicated by mean z-score) 

when participants answered incorrectly (M = .03, SD = .20) compared to when 



 

 21 

participants answered correctly (M = .02, SD = .25), t(33) = .643, p = .52 (two-tailed). 

Again, our hypothesis that beta power would be significantly different for when correctly 

remembered word-pairs were studied vs. when incorrectly remembered word-pairs were 

studied was not supported by these results.   

Exploratory Analyses 

 To further understanding of the NeuroSky MW’s capability and possible usage, 

we conducted some exploratory analyses that helped identify possible hypotheses in 

future research using the device.  First, we computed Spearman correlations in each 

frequency band for each user’s z-scores and individual trial recall (see Appendix D).   

Of these tests, 13.6 is 5% (expected by chance) of the 272 tests computed.  We found a 

total of 20 significant correlations (7 positive and 13 negative) of frequency band z-scores 

and correctly recalled word-pairs within nine different individuals (see Appendix D).  

Since multiple tests were run, we conducted an omnibus chi-square test to assess the 

significance of the difference of our observed vs. expected significant correlation count.  

The test indicated no significant difference, χ² (1, n = 272) = 3.01, p < .10 and p > .05.  

However, this seemed to indicate that there was a trend towards significance so we 

included more data to find if that trend continued.  We conducted an additional omnibus 

chi-square test at the p < .20 level for the correlations in attempt to use more of the data 

to answer the same question, but the test again indicated no significant difference, χ² (1, n 

= 272) = .238, p < .75 and p > .50.  The p-value moved away from significance 

suggesting that the trend we originally saw most likely occurred by chance due to the low 

n expectation.  These results indicate that through our investigation of individual 

differences at the trial level, this particular device is probably not capable of generating 
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usable data to construct an adaptive personal learner model for individuals at this time—

at least not based on individual frequency bands.   

 A logistic regression was also conducted and can be found in Appendix F.  The 

main goal of these exploratory analyses was to provide data and insight that will help 

drive future hypotheses in personal learner modeling using BCIs.  It is stressed that these 

exploratory results should be considered with caution and that further experimentation 

needs to be conducted in order to assess the MW’s (as well as other BCIs’) potential in 

personal learner modeling. 

Discussion 

 In the aggregate within-subjects analysis, it was discovered that there was a 

significant difference in the mean z-scores of gamma frequency power maximums (in the 

range of 41-49.75 Hz) from when participants studied correctly remembered word-pairs 

and when they studied incorrectly remembered word-pairs.  However, the results 

indicated that the direction of the obtained effect was opposite of what previous research 

has found.  Instead, these results suggest that when people remembered words 

incorrectly, their relative gamma power maximums were larger in the study period than 

in the study period when they remembered the words correctly.  In the exploratory 

analyses, we found some weak but interesting results, and our investigation may lend 

insight to future research using BCIs.   

Eye Movement  

While experts do agree that gamma band activity is correlated to cognitive 

processing, they still do not agree on specific meaning of a gamma band response.  Some 

EEG researchers are not convinced that gamma band responses are recorded accurately.  
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In fact, the most commonly reported gamma band response is thought by some to be a 

“…product of eye movements, probably of muscular origin, and not a direct measure of 

neuronal oscillations” (Yuval-Greenberg, Tomer, Keren, Nelken, & Deouell, 2008).  

Yuval-Greenberg et al. used video based eye tracking and traditional EEG concurrently 

to investigate eye movement, and they concluded that when saccadic movement was 

included in the EEG, gamma spikes (or induced-gamma band responses) were 

consistently present as opposed to when saccadic movement was not included. Yuval-

Greenberg et al. (2008) concluded the following: 

Most studies reporting induced Gamma Band Response (iGBR) present a stimulus 

following a fixation period. The appearance of a new stimulus (frequently with no 

explicit fixation point) starts the saccadic inhibition-enhancement sequence, 

involving mostly very small saccades of the microsaccade and intrusion type. 

Saccades are invariably accompanied by the spike potential, which, because of its 

short duration, translates into a relatively wide-band high-frequency activity in the 

spectral domain. (p.10) 

So, considering eye movement, it seems plausible for there to be a higher gamma band 

power maximum on average for when people studied words they did not recall in a later 

test, because it may suggest that during those trials people exhibited more eye 

movement—they may have looked around the room more or may have not explicitly 

attended to the word-pairs as when they were perhaps more fixated (while exhibiting 

some but less saccadic behavior) on the word-pairs that they did remember.   

This raises the question of whether or not these saccades are predictive of when 

someone is not attending to a stimulus or not.  If these “spike potentials” always 
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accompany saccadic behavior, then maximum gamma power values might be able to 

suggest when someone will not remember a word-pair.  These notions would make good 

research questions for future research using the MW.  These types of results might only 

be specific to the MW because of its electrode placement near the eyebrow, and may or 

may not replicate using other BCIs.  One possible reason this study did not get the same 

type of results (increase in gamma for correctly recalled items) as previous research is the 

fact that these spikes might have contaminated the data set because of the inability of the 

MW to filter these spikes out.  The MW does have a blink strength indicator which 

reports relative intensity of the most recent blink and ranges from 0 to 255.  However, we 

did not find this to be a reliable indicator of eye movement or noise contribution due to 

its high degree of variability and arbitrary unit of measurement (has no units).  Also, it 

seems that muscular activity such as head movement and other normal body movements 

contribute noise in the data.   

Personal Learner Modeling in the Future 

 Based on our results, our idea of adaptive personal learner modeling might not yet 

be feasible using the MW.  However, acquiring more participants might aid in the 

discovery of additional useful information from the MW in regards to personal learner 

modeling, and more research using the MW might help answer the question of whether 

personal learner models are achievable from its EEG data.  Alternatively, another 

experiment which uses several paired-word sets could implement several study periods 

followed by test periods in order to track individual EEG over a longer period of time.  If 

a personal signature of EEG activity does in fact exist in each user, then tracking their 

data over a long period of time (which includes replications) could help in determining 
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the practicality of personal learner modeling using the MW.  Research using other BCIs 

that have more spectral resolution (more electrodes) and provide more usable data may 

provide further information regarding possible personal EEG signatures.     

MindWave 

Considering the non-significant results regarding the theta and beta band 

hypotheses and the significant gamma results, it seems that in this study, we have 

uncovered some flaws with the MW.  Its clear limitation is the fact that it only has one 

electrode.  The placement of that electrode may not be the best since it is highly 

susceptible to muscle movements of the face, especially near the eyebrow.  Another study 

could be conducted using the MW in which participants could be positioned to stay 

fixated on the stimulus.  However, any results found would not be generalizable to any 

naturalistic situation—because in the classroom, students move normally.  This makes 

the device impractical for use in any situation in which movement is not tightly 

controlled.  We found that the MW had a tendency to lag, which resulted in poor 

resolution at times as many power values had to be filtered out for analyses.  This is a 

clear cause for concern because for every missing value the device fails to give, it reduces 

the precision and accuracy of the EEG (41% of our total dataset was rejected due to poor 

signal quality).   

In summary, the MW’s reliability and accuracy remains unknown, and further 

testing is necessary for a better determination of what practical uses the MW is capable of 

supporting.  Further research using the MW and other BCIs is definitely necessary in 

determining if these devices have the capability of indicating when students are learning.  

Based on this study’s results, this particular device is not ready to move into the 
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classroom, and more research needs to be conducted to determine its efficacy in 

pedagogy and in research. 

General Limitations 

If the MW is capable of accurate recording, another possible reason that similar 

results to previous research were not found could be the difference in task selection.  This 

study’s task only included one study followed by a simultaneous testing period.  Future 

studies may benefit from including a retention period, and an additional review of the 

word-pairs.  Since most previous research studies which found gamma relationships with 

encoding had longer training periods, it may be that we found a shorter-term gamma 

relationship that is specific to the current task and not seen in longer-term memory tasks.  

Maybe, gamma activity decreases upon initial encoding and increases later, possibly in a 

retention period.  Additional experiments could test this speculation by recording and 

tracking an individual’s gamma activity over an entire training period as opposed to an 

individual section of a task, e.g., a study period.  Additional experiments that record 

EEGs in a testing period and analyze differences and similarities in study periods and 

testing periods might be useful as well.  For example, if individuals show personal EEG 

signatures, comparing encoding periods to recall periods may provide critical insight into 

developing personal learner models.  

As mentioned earlier, recording with one only electrode decreases the EEG’s 

accuracy and precision, and it may not give enough information needed to identify 

specific cognitive processing. Some BCIs are commonly known to have a poor signal to 

noise ratio, and they are considered non-stationary because EEG signals vary over time 

and over sessions (Lotte, Congedo, Lécuyer, Lamarche, & Arnaldi, 2007).  The main 
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limitation seems to be the MW’s partiality to movements in general.  Head nodding, head 

turning, coughs, sneezes, eye blinks, etc. all produce noise in the EEG, and this has been 

shown in repeated testing that compared when people blinked and acted normally, and 

when people held their eyes open and tried to be as still as possible for a recording 

session (Larsen, 2011).  Larsen (2011) proposed that blinks could be detected more 

accurately by using a paradigm which factors in delta, theta, alpha, and gamma band 

activity.  Larsen’s study (2011) investigated the classification of EEG signals using the 

NeuroSky Mindset (has the same chipset as the MW), and suggested that blinks occurred 

when a simultaneously high boost of delta, theta, and alpha amplitudes occurred along 

with a decrease in gamma amplitude.  Taking these suggestions into consideration, future 

advancement of this particular device could be done to develop a better filtering 

technique which might help filter out noise caused by movements. If such filtering could 

be done, this experiment could be replicated to assess the validity of its results. 

Conclusion 

Although the MW is inexpensive and has been touted by NeuroSky as being a 

great research tool for detecting attention and meditation, this study suggests that the MW 

is not quite advanced enough to give reliable and accurate scientific research data for 

specific research purposes (e.g., identifying certain cognitive processes) based on its 

inability to corroborate prior, replicated results from EEG literature.  A follow-up 

experiment should be conducted and could replicate this study (using the same PAL task 

and same word-pairs) but use a different BCI to determine the validity of this study’s 

results.  Several BCI options exist, such as the esteemed Emotiv Epoc which features 14 

electrodes, but many require saline-gel and cost more than the MW.  As the world 
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advances technologically, BCIs are sure to improve significantly in design, accuracy, and 

precision, and could possibly stake their claim as an important research tool in the 

scientific community, but only after further testing and research has been carried out.  It 

could be possible that this experiment has uncovered some novel phenomenon in which a 

brief decrease occurs in the high gamma range in a very short time period, but several 

additional studies would need to replicate these findings.   

Additionally, our intent was to push for a move into the classroom to help student 

learning.  Although this particular device does not seem to be robust enough to be used 

for determining if students are learning or not as of now, it does provide some interesting 

data.  If higher z-scores of the high gamma maximum values are indicative of recall 

failure using the MW, then this raises many speculations.  The most interesting is that the 

device seems to be useful in capturing muscle movements, such as excessive eye 

movement.  Several physiological sensors try to lend evidence of when certain behaviors 

are taking place, and the MindWave seems to possess an uncanny ability to record 

saccadic behavior quite well.  In this sense, the MW is a very useful tool in determining 

when people are not focused based on the muscle movement spikes it has a tendency to 

record as a result of being right above the eyebrow.  Just as Viagra was originally used 

for treating pulmonary arterial hypertension and was fortuitously found to also treat 

erectile dysfunction, it could be that we have discovered another use for the MW.  Could 

it be used to detect muscle movements? Are muscle movements what are mainly 

recorded by the MW?  These questions could be tested by replicating this study adding 

video-based eye tracking to compare the differences in saccadic movement and non-

saccadic movement groups, e.g., one group fixates on word-pairs explicitly while another 
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group looks around the room explicitly.  Future work with portable EEG headsets 

(especially including the MW) should be conducted to uncover their potential as useful 

tools in today’s fast-growing technological world.   
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Appendix A 

Swahili-English Word-Pairs Used 

Swahili Word English Meaning 

Asante 

chakula 

Habari 

samaki 

ukuta 

tano  

leo 

manjano 

Kwaheri 

Mimi 

tembo 

mamba 

kuku 

bafu 

Babu 

viatu 

rafiki 

Thank you 

food 

Good Morning 

fish 

wall 

five 

today 

yellow 

Goodbye 

I 

elephant 

alligator 

chicken 

bathroom 

Grandfather 

shoes 

friend 
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Appendix B 

 
Comparison of Mean Z-Scores for All Frequency Bands 

 
Frequency Band Correct 

Mean z-

Score 

Incorrect 

Mean z-

Score 

     SD t-value df p-value  

(2-tailed) 

Delta -.04 .05 .35 1.47 33 .15 

Theta† -.04 .03 .30 1.29 33 .21 

Low Alpha -.01 .03 .29 .657 33 .52 

High Alpha -.02 .05 .30 1.43 33 .16 

Low Beta† .02 .03    .32 .293   33 .77 

High Beta†       -.02        .03      .37      .643 33        .52 

Low Gamma† .87 .95 .41 1.21 33 .23 

High Gamma† .83 1.02 .40 2.70** 33 .01** 

Notes. n = 34, **p=.01, two-tailed. † hypothesized bands. 
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Appendix C 

As found in the NeuroSky User Manual, below is a brief description of the MindWave’s 

output measures. 

 
 
Description of NeuroSky MindWave Frequency Band Ranges and Output Measures 

 
Delta 0.5 - 2.75Hz 

Theta 3.5 - 6.75Hz 

Low Alpha 7.5 - 9.25Hz 

High Alpha 10 - 11.75Hz 

Low Beta 13 - 16.75Hz 

High Beta 18 - 29.75Hz 

Low Gamma 31 - 39.75Hz 

High Gamma 41 - 49.75Hz 

Meditation (eSense meter) Returns the eSense Meditation integer value, 

between 0 and 100 

Attention (eSense meter) Returns the eSense Attention integer value, 

between 0 and 100 

Poor Signal Returns poor signal level, 0 is good signal, 200 

is off-head state 

Blink Strength Returns an integer value between 0-255, 

indicating the blink strength 
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Appendix D 

Spearman Correlations and p-values 

User  Delta High Alpha Low Beta High Beta Low Gamma High Gamma 

User 1 -.600, p=.014  -.512, p=.043 -.541, p=.03   

User 6    -.529, p=.029   

User 14 -.512, p=.035 -.488, p=.047  -.537, p=.026 -.488, p=.047  -.634, p=.006 

User 18    -.527, p=.03   

User 19   .537, p=.026 .561, p=.019   

User 24 -.729, p=.001      

User 29 .679, p=.003 .623, p=.008 .538, p=.026 .679, p=.003 .538, p=.026  

User30 -.504, p=.039      

User 31    -.708, p=.001   

                         Note. n=272 
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Appendix E 

Logistic Regression 

As a final exploratory analysis, a forward stepwise logistic regression was performed to 

assess the impact of several factors within every frequency band (shown in Table 2) on 

correctness of recall of the Swahili word-pairs.   

 

Table 2 
 
Description of Subject and Trial Level Variables used in Logistic Regression 

 

Trial Level Subject Level 

Log averages of each frequency band for 

each individual trial for each user 

Averages of each frequency band for all 

trials of each user 

Log average of low gamma to log average of 

theta ratio for each individual trial for each 

user 

SDs of each frequency band for all trials of 

each user 

Gender 

Log average of low beta to log average of 

delta ratio for each individual trial for each 

user 

Age 

Handedness 

 

Log average of high alpha to log average of 

beta ratio for each individual trial for each 

user  

 

Z-Scores of every frequency band for each 

individual trial for each user 

 

 

 

The forward stepwise regression’s best-fitting model contained eight independent 

variables (the standard deviations of delta, low beta, high beta, and high gamma, the high 

gamma z-scores, the high alpha z-scores, the mean high alpha, and the mean low gamma).   
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The found model containing the abovementioned eight predictors was statistically 

significant, χ² (8, N = 585) = 62, p < .001.  Since, this regression did not meet the 

proposed criterion for stable results, which suggests having at least 10 participants per 

predictor (Peduzzi, Concato, Kemper, Holford, & Feinstein, 1996), the model needed 

cross-validation.  The model was validated five times using ten-fold cross-validation in 

which 10% of the sample was randomly selected and tested using the found model ten 

times.  The results are shown below in Table 3. 

 

Table 3 

Cross Validation Results 

Model Train Test 

 Spearman r (SE) Spearman r (SE) 

BestFit .33991 (.00021) .24204 (.00196) 

Note. n = 50 

 

The model as a whole explained between 12% (Cox & Snell, 1989) and 16% 

(Nagelkerke, 1991) of the total variance in correct recall of word-pairs and correctly 

classified 64.3% of cases.  Although these percentages are low, we found them to be 

reliable and statistically significant (see Table 4 below).  Of the eight variables included 

in the model, seven made a statistically significant contribution to the model (all except 

the standard deviation of delta were significant—however, the standard deviation of delta 

had a p-value that was very close to significance, p = .08).   
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Table 4 

Forward Stepwise Logistic Regression Predicting Correctness of Recall 

 

Variable in Model 

 

Beta 

 

Wald 

 

df 

 

p 

     

SD low beta††  1.08 2.69 1 .006** 

Mean high alpha††  -3.84 -6.19 1 <.001*** 

SD high gamma†† -2.06 -5.56 1 <.001*** 

Z-score high alpha†  2.97 5.32 1 <.001*** 

SD high beta††  1.76 3.62 1 <.001*** 

SD delta††  .50 1.74 1 .08 

Z-score high gamma†  -.67 -2.82 1 .004** 

Mean low gamma††  .85 2.55 1 .01** 

Constant  4.49  <.001*** 

Notes. Standardized Coefficients. Refer to Table 2 for complete description of 

variables. † Trial level variable. †† Subject level variable. **p ≤.01. ***p < .001.  

 

 

Interpreting the standardized coefficients (see Appendix E for unstandardized 

coefficients), the strongest predictor of correct recall was the mean of high alpha, a 

subject level variable, β = -3.84.  This result suggests that as a participant’s average high 

alpha power for the entire experiment (17 trials) changed by one standard deviation, their 

recall of word-pairs would change by -3.84 standard deviations.  If this log of odds 

coefficient is converted to an odds ratio by exponentiating the inverse can be interpreted 

most easily.  This suggests that when the mean of high alpha is one standard deviation 

higher, there is a 98% decrease in odds of recalling correctly.  
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Interestingly, the second strongest predictor(s) were the z-scores of high alpha, 

which are trial level variables, β = 2.97.  This suggests that as a participant’s z-score of 

high alpha for an individual trial changed by one standard deviation, their recall of word-

pairs would change by 2.97 standard deviations.  These two predictors suggest that an 

overall increase in high alpha power for the user during the entire experiment (all 17 

trials) is predictive of lower recall, while an increase in a user’s high alpha z-score in a 

single trial is predictive of higher recall.  These peculiar results could be thought of like 

so: An overall sustained, average high alpha power is not good for recall, but a brief 

increase during a single trial is good for recall.  This might be indicative of visual system 

taxation (Fu et al., 2001).  If a user’s visual system is taxed too greatly, it might interfere 

with encoding.  There could be an optimal range for high alpha band power in regard to 

encoding new information, and future research could investigate this.   
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