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ABSTRACT 

Hu, Wenrong. PhD. The University of Memphis. December 2013. Sample 
Size/Power Calculation for Stratified Case-Cohort Design and Generalized Stratified 
Case-Cohort Design. Major Professor: Dr. E. Olusegun George. 

 
Time to event is a commonly used endpoint in epidemiologic and disease prevention 

trials in order to study the relationship between risk factors and the endpoint. Case-cohort 

design that consists of a sub-cohort randomly sampled from full cohort, and all subjects 

with event is often applied in studies where the disease is rare and the cost of collecting 

the event information is high. With the non-rare event, a generalized case-cohort design 

is advocated in which a subset of events instead of all events is sampled. Cai and Zeng 

have proposed the general log-rank tests and the corresponding sample size/power formu-

las to compare the hazard rates between two groups under the case-cohort and the gener-

alized case-cohort designs, respectively. However, in many practical situations, the popu-

lation is not homogenous and stratification is considered. While stratification is increas-

ingly commonly used in large cohorts, the stratified log-rank tests and the sample size 

and power estimation techniques have not been available even though these issues are 

critical to the study design. This dissertation is devoted to consider these issues and fulfill 

the availability. In addition to the development of the stratified general log-rank tests and 

the sample size/power formulae for both the stratified case-cohort design and the strati-

fied generalized case-cohort design, simulation studies are to be conducted to examine 

the performance of the tests. Furthermore, optimal, proportional, and balanced sampling 

strategies are to be explored and recommendations are to be made. Two real epidemio-

logical studies are to be presented to illustrate the sample size calculation under these 

sampling strategies.     
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1 Introduction 

 

Definition of Designs 

Time to event is a commonly used endpoint for the risk factor assessment in 

epidemiologic studies and disease prevention trials. Case-cohort design (CC), originally 

proposed by Prentice (1986), has been often used in studying the time to event when the 

disease is rare and the cost of collecting the event information is expensive. A case-

cohort sample consists of a sub-cohort, which is a random sample of the full cohort, and 

all the subjects with the event. Recently, Cai and Zeng (2007) have considered a 

generalized case-cohort design (GCC), in which a random sample is selected from the 

full cohort, and then a random sample is selected from the remaining events.   

Stratified case-cohort design (SCC) based on large cohorts has been increasingly used 

in epidemiologic studies (Breslow et al., 2009). The full cohort can be stratified by a 

covariate which is available for all cohort members (Boice and Monson, 1977; Hrubec et 

al., 1989; Langholz and Jiao, 2006); the stratified case-cohort sample consists of the 

stratified sub-cohort, which is selected by stratified random sampling from the full 

cohort, and all the rest of the subjects with the event.  

In this study we introduce a generalized stratified case-cohort design (GSCC) for a 

situation when the events are not rare. Given that the information on the stratification 

factors is known for all cohort members, a stratified random sample is generated from the 

full cohort and then a stratified random sample is generated from the remaining events in 

each stratum. These two stratified random samples compose a generalized stratified case-
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cohort sample. The difference between GSCC and SCC is that only a fraction of events 

instead of all events is selected in a GSCC sample. 

 

Examples 

An example is provided to illustrate the stratified case-cohort design (Boice and 

Monson, 1977; Hrubec et al., 1989; Langholz and Jiao, 2006).  A full cohort of 1,741 

female patients who were discharged from two tuberculosis sanatoria in Massachusetts 

between 1930 and 1956 was studied to investigate the breast cancer risk and the 

treatments, one of which required radiation exposure and the other did not. The full 

cohort of 1,741 female patients was stratified by age at first exposure to treatment. 

Seventy-five breast cancer cases were observed in 1,741 patients. A stratified sub-cohort 

with a total of 100 subjects was sampled without replacement, in which the number of 

sampled subjects was proportional to the number of breast cancer cases in each stratum 

(Langholz and Jiao, 2006).  The stratified case-cohort sample contained the 100 subjects 

from the stratified sub-cohort and all 75 breast cancer cases.  

To construct a generalized stratified case-cohort sample, we assume that about 70 

breast cancer patients were remaining after the stratified sub-cohort of 100 was sampled 

from the full cohort, and select a stratified random sample of 35 from the remaining 70 

cases. The generalized stratified case-cohort sample then includes the stratified sub-

cohort of 100 and the stratified random sample of 35 from the remaining cases.   
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Literature Review 

In this section, we review the relevant literature on the statistical inference 

methodologies and design issues for CC, GCC, SCC, and GSCC designs.  

 

Statistical Inference Methodologies in Case-Cohort Design 

The CC design has been widely used in many studies (Schouten et al., 1993; Liao et 

al., 1997; Savitz et al., 2000; Beelen et al., 2008; McElrath et al., 2008; Szilagyi et al., 

2008; Anderson et al., 2009; Sinner et al., 2010; Herder et al., 2011). The statistical 

inference methodologies of this design have been developed in many publications 

(Prentice, 1986; Self and Prentice, 1988; Lin and Ying, 1993; Barlow et al., 1994; Borgan 

et al., 1995; Chen and Lo, 1999; Chen, 2001; Chen, 2001a; Chen, 2001b).  Prentice 

(1986) proposed a case-cohort design which involved covariate data only for cases 

experiencing the event and for members of a randomly selected sub-cohort. Relative risk 

estimation method was provided for case-cohort designed binary response and time to 

response data. Also proposed was a pseudo-likelihood approach where the risk set at each 

event consisted of the subjects who were at risk from the sub-cohort. A simulation study 

was presented to compare the case-cohort relative risk estimation methods to those from 

full cohort and case-control designs.  

The case-cohort design involved the selection of a random sample of the entire cohort, 

and the assembly of covariate histories only for this random sub-cohort and for all cases. 

The sub-cohort constituted the comparison set of cases occurring at a range of event 

times. The sub-cohort also provided a basis for covariate monitoring during the course of 

cohort follow-up. 
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For case-cohort design in time to response data, estimation of the relative risk 

parameter used the pseudo-likelihood function. The only difference from the full cohort 

partial likelihood function was that the ith denominator factor was a sum over subjects at 

risk in the sub-cohort rather than over subjects at risk in the entire cohort. The maximum 

pseudo-likelihood estimate was obtained by solving the equation based on the 

differentiation of the log pseudo-likelihood function. Asymptotic properties of the 

estimate were derived from those of the score statistic. The variance function for the 

score statistic was also given. The conditions for convergence to a normal distribution 

with mean zero and a covariance matrix were further addressed by Self and Prentice 

(1988).  

A small simulation study with several different cohort sizes was conducted to 

examine the performance of the estimation procedure above, comparing with that of full 

cohort and synthetic case-control estimation procedures. The standard case-control 

estimator, denoted case-control I, involved the selection of controls randomly from the 

entire risk set at each event time. The second estimator, denoted case-control II, excluded 

future cases from the control selection and allowed a given censored subject to serve as a 

control for at most one event time. Results were given at relative risk 1 (   = 0) and 2 

(   = 0.693). Type I error rate was set at 0.05 and 0.10 for testing   = 0 and 0.693, and 

Wald test was used. Results from relative risk 1(  = 0) indicated that these designs, 

except for the case-control I, had similar estimated sample means and standard errors. 

Results from relative risk 2 (  = 0.693) indicated that the case-cohort sample standard 

errors were about midway between the full cohort and the corresponding case-control I or 

II sample standard errors, both at 100 and 300 expected subjects. 
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Prentice (1986) advocated that case-cohort design could be considered for 

epidemiologic cohort studies or disease prevention trials in which raw materials for 

covariate data ascertainment had been stored for all cohort members. Such raw materials 

might include blood serum samples, tissue specimens, or occupational exposure records. 

The case-cohort approach could reduce the cost of the costly analysis of raw materials in 

the assembly of covariate histories, while still allowing the monitoring of such histories 

on an ongoing basis by means of the sub-cohort. Also it could be considered as an 

alternative to a case-control design in the presence of a population-based disease registry 

since the relative risk estimation procedures did not require a cohort roster. 

As indicated above, Prentice (1986) proposed a pseudo-likelihood approach to 

estimate the relative risk where the risk set at each event consisted of the subjects who 

were at risk in the sub-cohort. Self and Prentice (1988) modified this approach. They 

defined the risk set at each event time to consist of the subjects who were at risk in the 

sub-cohort and those who failed at that time. It involved a system for identifying the 

event times in the entire cohort, but did not require a cohort roster or even an 

enumeration of the entire cohort. Because the event rate was assumed to be absolutely 

continuous and at most one event would be from the cases at any time, an individual’s 

contribution to the SP’s estimator was negligible and thus SP’s estimator ~was 

asymptotically equivalent to Prentice’s estimator.  They further developed the asymptotic 

distribution theories with sufficient conditions for these estimators. They established the 

asymptotic normality of the score statistic (3.1) and the relative risk estimator ~ (3.2), 

and the weak convergence of the cumulative hazard function (3.3) was presented.   
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The asymptotic efficiency relative to full cohort estimators was computed to measure 

the efficiency loss as the offset of the cost saving in case-cohort design. Asymptotic 

relative efficiency (ARE) for the case-cohort pseudo-likelihood estimator~ relative to 

the partial likelihood estimator ̂  for the full cohort was calculated for a special case 

only containing a single binary covariate and with the exponential relative risk function. 

It was observed that ARE increased slightly as the relative risk increased (i.e., ARE 

changed from 0.52 to 0.55 in the situation with the sub-cohort fraction = 0.053). However, 

it was also observed that ARE had a large increase as the sub-cohort fraction increased 

(i.e., ARE changed from 0.52 to 0.79 when the sub-cohort fraction increased from 0.053 

to 0.158).   

An important statement in Self and Prentice (1988) was that the asymptotic normality 

theory of the score function under CC design was allowed to be generalized to the 

stratified situation. According to this statement, the score statistic for the stratified case-

cohort (SCC) sample can be obtained by summing the score functions in strata, and is 

asymptotically normally distributed; the asymptotic variance can be estimated by 

summing the variances at each stratum.  

Lin and Ying (1993) proposed an estimating equation approach while considering the 

case-cohort design as a special case of the missing data problem under the Cox regression 

model. The estimating equation was constructed by approximating the conditional 

expectation in the score equation based on the partial likelihood using the data from the 

subjects who had the complete measurements on all covariate components at time t, in 

other words, from the subjects in the sub-cohort. This estimator was referred to as the 

approximate partial likelihood estimator (APLE). Also estimated was the corresponding 
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cumulative hazard function. The asymptotic normality theory was developed for the 

APLE.  

The efficiency of the APLE relative to the maximum partial likelihood estimator 

(MPLE) using only subjects with full covariate measurements (CC) was investigated in 

the simulation studies. It was observed that the proposed APLE had a small bias which 

decreased when the sample size increased. The same was observed for the variance 

estimator. Furthermore, the APLE method yielded a smaller variance estimator and a 

higher power for the Wald test, especially when the missingness and censoring were 

heavy. As compared to the complete-case analysis, the APLE approach had the minimal 

efficiency loss in large-sample approximations and was adequate for practical use. It 

tended to be more efficient than CC especially for large cohorts with infrequent events. 

Two real examples taken from clinical and epidemiologic studies were analyzed.  

Data missing completely at random (MCAR), a critical assumption to APLE and 

associated inference procedures, was satisfied in many situations where missing data was 

yielded by the design (e.g., case-cohort studies). In situations where data missing at 

random (MAR) was assumed (Rubin, 1976), the probability of missing on certain 

components of covariates depended on some completely observed variable. In this case, 

the authors suggested dividing the range of the completely observed variable into 

appropriate strata then the MCAR assumption might be reasonable within each stratum. 

The estimating function was allowed to be generalized for the stratified analysis.  

Barlow (1994) developed a simple jackknife method to estimate the variance of the 

estimated parameter, a robust variance estimation for the case-cohort design. This 

jackknife estimator of variance was obtained by evaluating the influence of the individual 
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observation on the overall score for person i at time 0t (Efron, 1982; Barlow and Prentice, 

1988), which was shown to be equivalent to the robust variance estimator proposed by 

Lin and Wei (1989) for the standard Cox model.  

A large simulation study was performed in order to investigate the properties of the 

proposed variance estimator for the case-cohort design with several sizes. The jackknife 

variance estimator was compared to the naive variance estimator using the partial 

likelihood method for the case-cohort design. The results showed that the naive standard 

deviation was underestimated, while the jackknife standard deviation and asymptotic 

standard deviation had approximately the correct test size, which was defined as the 

proportion of incorrect rejections to the null hypothesis. In addition, the results of the 

empirical power and relative efficiency suggested the jackknife method performed better 

than the naive method and was consistent with the corrected asymptotic estimates.  

Chen and Lo (1999) improved Prentice’s pseudo-likelihood estimator (Prentice, 

1986) by using the information in all case samples completely rather than partially. 

According to Chen and Lo, the pseudo-likelihood estimating equation was considered as 

a function of the conditional joint distributions of covariate and observed times for cases 

or not cases, respectively. Compared to the Prentice’s estimator, Chen and Lo’s estimator 

resulted in more accurate estimation of the conditional joint distribution of cases by its 

empirical analogue for the full cohort than by its empirical analogue for the sub-cohort 

only. The asymptotic normality of the estimator was developed and the associated 

asymptotic variance was compared to that of the Prentice’s estimator. While both 

estimators counted the randomness of observations in the full cohort and the randomness 

of the sub-cohort sampling, Chen and Lo’s estimated variance was smaller than 
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Prentice’s because the former did not include the randomness of the cases in the sub-

cohort.   

Furthermore, the asymptotic relative efficiencies of the Chen and Lo’s proposed 

estimator relative to the Prentice’s estimator were evaluated. It was observed that Chen 

and Lo’s estimator was more efficient than Prentice’s estimator.     

Chen (2001) proposed an optimal sample reuse method via local averaging approach 

towards efficient estimation and inference for the Cox’s regression model for a class of 

sampling schemes including case-cohort design as the special case. The main idea of 

sample reuse in constructing the key estimating function was to use a local average of 

observed covariates to estimate each missing covariate. Specifically, suppose the 

covariate of the j th individual was not observed, and the event time jy was in the 

specified intervals, the partial likelihood estimator for jyt   could be obtained by using 

the observed covariates information from the individuals whose event times were within 

the specified intervals. Asymptotic normality of the local average estimator was 

presented.  The asymptotic variance function of the local average estimator was 

developed.   

A large simulation study was conducted to compare the local average method with 

the Prentice (1986) and Chen and Lo (1999) approaches using the case-cohort data. The 

average of the parameter estimates, the empirical and theoretical standard deviations, and 

the relative efficiencies were calculated for the case-cohort samples with various sub-

cohort sizes and hazard ratios. Relative efficiencies were with respect to Cox’s estimator 

based on the full cohort data. These simulation results demonstrated that the proposed 

local average method was superior to the estimator of Prentice and that of Chen and Lo, 
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while Chen and Lo’s was observed to be more efficient than Prentice’s. In general, the 

improvement in efficiency was significant in the local average approach over other 

estimation methods.  

 

Sample Size and Power Estimation in Case-Cohort Design 

The issues of sample size and power estimation, considered the key elements at the 

design stage of a study, were not addressed as much as the coefficient estimation and 

inferences based on our broad literature review. Cai and Zeng (2004) proposed a log-rank 

type of test statistics for the case-cohort study with rare events, where one of the test 

statistic was equivalent to the score test based on the pseudo-partial likelihood function in 

Self and Prentice (1988). Explicit form for sample size and power calculation were 

derived based on the proposed tests.  

According to Cai and Zeng (2004), the proposed log-rank type test statistic used 

inverse sampling proportion weighting to approximate the corresponding quantities in the 

full cohort. The asymptotic variance included the variance in full cohort and variance 

resulting from the sub-cohort sampling. The variance in full cohort was approximated by 

using the CC data. Given their proposed test statistic nSP  and the variance 2ˆ
nsp , the null 

hypothesis that two groups have the equal cumulative hazard function would be rejected 

if  zSPn
nspn  22/1 ˆ , where z  is the critical value of standard normal distribution at 

the significant level of  . The power function is developed and the assumptions to derive 

the power function were addressed in the paper (Cai and Zeng, 2004).  

A number of numeric studies were conducted to evaluate the log-rank test among the 

CC, full cohort, and sub-cohort. The empirical type I error and test power were calculated 
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and compared among these designs. It was observed that the relative efficiency from CC 

design relative to full cohort was close to 1 when the event rate was low. The sample 

sizes calculated for the simple random sample and CC sample under the pre-specified 

significance level   and power   suggested that the CC design was cost-effective.  

 

Statistical Inference Methodologies in Stratified Case-Cohort Design 

For SCC studies, most of previous research work was focused on statistical inference 

for the Cox regression model. Borgan et al. (2000) presented several estimation methods 

for the analysis of such SCC samples based on the pseudo-likelihood provided by 

Prentice (1986). The bias and efficiency among these estimation methods were compared 

to each other and to the randomly sampled CC design. The simulation study results 

suggested that these estimations performed reasonably well and efficiently.  

Borgan et al. (2000) proposed a variant of the stratified case-cohort design (SCC) for 

a situation that a correlate of the exposure (or prognostic factor) of interest was available 

for all cohort members, and exposure information was to be collected for a case-cohort 

sample. In the SCC the cohort was stratified according to the correlate, and the sub-

cohort was selected by stratified random sampling. Several analysis methods for the 

stratified case-cohort samples were presented and the bias and efficiency of these 

methods were compared to each other and to the randomly sampled case-cohort design.  

Events in the cohort were assumed to occur according to Cox's (1972) proportional 

hazards model, while the regression coefficients 0  measured the effect of the covariates. 

Three pseudo-likelihood estimators of 0  were presented and compared in this paper and 

are given below: 
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(1) Estimator I was Prentice’s estimator naturally generalized to the stratified 

sampling (Prentice, 1986; Self and Prentice, 1988). The sampled risk set included the 

sub-cohort only, with the weight as the ratio of the total number of cohort members over 

the total number of sub-cohorts within the given stratum. 

(2) Estimator II was presented by Kalbfleisch and Lawless (1988). The sampled risk 

set included the sub-cohort members and all cases. For the non-events, the weight was 

considered as the ratio of the total number of non-events in cohort over the total number 

of non-events in sub-cohort at each stratum; for the cases (events), the weight was 

considered as 1.  

(3) Estimator III was proposed by the author based on the estimator I. If the case 

occurred inside the sub-cohort, the risk set and weight were the same as the estimator I; If 

the cases occurred outside the sub-cohort, the risk set included the sub-cohorts plus the 

case minus a randomly selected subject from the sub-cohort within the stratum, while the 

weight was the same regardless of whether the case was inside or outside the sub-cohort.  

The score-unbiasedness was investigated in the sense that the expectation of the 

pseudo-score was exactly equal to zero at the true parameter value. Estimator I and III 

were score-unbiased while Estimator II was score-biased. The asymptotic distributions 

for Estimators I and III were derived while that for Estimator II was not. The asymptotic 

covariance matrix can be estimated using the observed pseudo-information for Estimator 

I and the empirical covariance matrix based on the sample from stratum l. 

Average estimates of   with its empirical standard deviation were obtained based on 

repeated sampling of 1,000 cohorts each with 1,000 individuals for each of the estimators 

I, II, and III. Furthermore, estimators were provided for the full cohort, unstratified case-
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cohorts corresponding to the analysis methods I, II, and III, and nested case-control, and 

counter-matched case-control samplings (Borgan et al., 1995). It was observed that all 

three estimators I, II, and III gave similar results with the difference of little practical 

importance. All three estimates from the stratified case-cohort had the best performance 

among all the other cohorts mentioned above. 

The simulation results above indicated that if a correlate of exposure was available 

for all cohort members, it could be advantageous to stratify the sampling of the sub-

cohort to over-represent more highly exposed subjects. While the natural generalization 

of Prentice's (1986) pseudo-likelihood for simple random sampling was clearly 

inefficient for estimation of rate ratio parameters, Estimator III solved this problem while 

retaining score-unbiasedness. Another important note was that the data requirements 

were not the same for all three stratified estimators. Estimator II required the full 

covariate histories for the cases, while Estimators I and III only needed the cases' 

covariate values at their event times.  

It was concluded that all these analysis methods for the stratified case-cohort samples 

performed well and were more cost-efficient than the randomly selected sub-cohort. 

Therefore these methods were recommended for the clinical trials in which subjects 

entered the study at time zero (at diagnosis or treatment) and a correlate of a prognostic 

factor was collected for all study subjects at the time of entry of the study. 

In stratified case-cohort data analyses, it is popular to use the “robust” approach 

proposed by Barlow et al. (1994, 1999), in which the case and control observations are 

weighted by the inverse sampling probabilities for estimating the Cox regression model 

(Horvitz et al., 1952). However, this approach mainly focuses on the members in the 
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case-cohort and ignores those not sampled in the case-cohort but available in the full 

cohort. In order to use the whole cohort in the analysis of case-cohort data, Breslow et al. 

(2009) proposed a method through adjustment of the sampling weight via calibration or 

estimation to improve the precision (Deville et al., 1992; Sarndal et al., 1992). The 

Atherosclerosis Risk in Communities (ARIC) study was used as an example to illustrate 

Breslow’s approach (ARIC Investigators, 1989). The study objective was to estimate the 

hazard ratio of coronary heart disease (CHD) in relation with the levels of lipoprotein-

associated phospholipase A2 (Lp-PLA2) and C-reactive protein (Ballantyne, 2004). A 

case-cohort sample including 608 cases and 740 non-cases were stratified into 8 strata 

based on age, sex, and ethnicity (Barlow; 1994; Borgan et al., 2000). The full cohort 

included a total of 12,345 subjects. In comparison with the robust approach, Breslow re-

analyzed the data by the following four steps: 1) applied the case-cohort data to predicted 

Lp-PLA2 by using a linear regression on race, sex, low density lipoprotein cholesterol, 

high density lipoprotein cholesterol, systolic and diastolic blood pressures, and the sex X 

race interaction; 2) used the prediction equation to impute Lp-PLA2 for all cohorts; 3) 

used the full cohort data containing the imputed Lp-PLA2 variable and other known 

variables to fit the Cox model, obtained the imputed delta-beta, the estimated influence 

function contribution for each subject; and 4) used the imputed delta-beta as an auxiliary 

variable along with the case-cohort data to calibrate or estimate the Cox regression 

coefficients. The results suggested a dramatic reduction in standard error of estimated 

coefficients comparing with the Barlow’s robust approach.  
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Sample Size and Power Estimation in Generalized Case-Cohort Design 

For the situations that the incidence of disease event is not low, it may not be 

necessary to include all events in the case-cohort. Cai and Zeng (2007) advocated a GCC 

design for this situation. The difference from CC design was that only a fraction of events 

are sampled instead of including all events in the study. A GCC sample contained a sub-

cohort sampled at random from full cohort without replacement, and a sample selected at 

random from the remaining events without replacement. Similar to CC design, the log-

rank test statistic for GCC was derived in that the sampled non-events in GCC 

represented the non-events in full cohort and the events sampled from the remaining 

events represented the events in full cohort.  

Cai and Zeng (2007) showed that the general log-rank test statistic for GCC has 

asymptotic normality. The asymptotic variance included the variance from the full cohort 

and those from samplings. The estimated formula was provided in the paper. Given nW

the test statistic and 2ˆw  the estimated asymptotic variance for the test statistic, and 

assuming that the null hypothesis of two groups had equal cumulative hazard rates in the 

GCC sample, if  zWn wn  22/1 ˆ , 0H would be rejected. z was the critical value of 

the standard normal distribution at the significant level of .  

The power function based on the alternative hypothesis was also developed and the 

lower bound and upper bound were presented when the censoring distribution was 

unknown. The simulation studies were conducted to compare the testing powers between 

the GCC, CC, and full cohort designs. In addition, the theoretical power bounds from 

GCC were compared to the powers estimated from the CC and full cohort designs. It was 

observed that the GCC method (sampling fraction of events q = 0.5) achieved similar 
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power as the CC method (all events q = 1) when the disease event rate is high. The 

simulation studies also showed that the efficiency loss due to sampling only part of the 

events under the GCC design was very low when the incidence of disease was not rare.  

 

Weighted Kaplan-Meier and Renyi-Type Permutation Tests 

As indicated in the previous sections, we used the log-rank test to detect the 

difference of hazard function between two groups under the stratified case-cohort design. 

However, if the alternatives are the stochastically ordered survival, the log-rank test may 

not necessarily be sensitive (Pepe and Fleming, 1989; Fleming and Harrington, 1991; Cai 

and Shen, 2000). In this case, we have to look for the appropriate tests that may be 

sensitive to the alternatives of stochastic ordering.  

Pepe and Fleming (1989) introduced a class of statistics based on the integrated 

weighted difference in Kaplan-Meier estimators for the two-sample censored data 

problem. Because the Kaplan-Meier statistics are a natural measure of the difference in 

survival between the two groups, they are intuitive for and sensitive against the 

alternative of stochastically ordered survival, particularly if the hazard functions cross.  

However, because the Kaplan-Meier estimator can be unstable in the presence of 

heavy censoring, Pepe and Fleming (1989) proposed a weighted Kaplan-Meier or WKM 

to solve this problem while the weighted functions were constrained to be a function of 

the censoring survival functions estimators to ensure the stability of the WKM statistics. 

In practice, the geometric average of the two censoring survival function estimators in 

sample 1 and 2 or the square root of geometric average are often chosen as the weighted 

functions.   
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Furthermore, Pepe and Fleming (1989) compared the WKM against the log-rank 

statistics by conducting the small-sample simulation studies under the various stochastic 

ordering configurations including the Weibull proportional hazard alternatives, early 

hazard difference, late hazard difference, and crossing hazards alternatives. The 

simulation results suggested that the WKM statistics were more favorable than the log-

rank statistics not only under the crossing hazards alternatives but also under the 

proportional hazards alternatives in the specified simulated samples.   

Cai and Shen (2000) proposed a class of two-sample non-parametric permutation 

tests for comparing marginal survival functions with clustered failure time data. While 

the individual subjects are independent within the clusters and the two-sample 

generalized log-rank test statistic and its asymptotic variance were estimable, however, 

the log-rank test cannot be directly applied to the clustered survival data as it often led to 

an inflated type I error rate (Cai and Shen, 2000). Instead, Cai and Shen proposed the 

permutation test by using the log-rank test statistics.  

According to the permutation principle, assume N permutation samples were 

generated based on the observed data, and the log-rank statistics were calculated for each 

sample and for the observed data. The exact permutation p-value for log-rank statistics 

was obtained as the probability of log-rank statistics of each sample equal to or greater 

than that of the observed data.   

Meanwhile, Cai and Shen (2000) derived Renyi-type test based on the log-rank test 

statistics. Renyi-type test was defined as the supremum version of the log-rank test 

statistics at any time t (t≧0). Because it presented the maximal deviation at each time t, 
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Renyi-type method was considered more powerful against a wide range of non-

proportional hazards alternatives (Gill, 1980; Fleming et al., 1987;Cai and Shen, 2000).  

Renyi-type test statistic was calculated by taking the maximum value among all log-

rank statistics at any time t in the observed data. For each of N permutation samples that 

were generated based on the observed data, the Renyi-type test statistic were calculated 

similarly. The exact permutation p-value for Renyi-type statistics was obtained as the 

probability of Renyi-type statistics of each sample equal to or greater than that of the 

observed data.   

A series of simulation studies were conducted to assess the size and power of the 

proposed tests above with the configurations of alternative hypotheses including 

proportional, early, late, and middle differences of the two groups, respectively. Weight 

functions were considered and assigned for log-rank statistics and Renyi-type statistics 

appropriately. The simulation results suggested that the proposed permutation tests were 

valid and desirable comparing with the ordinary log-rank test.  

Furthermore, the permutation tests were applied to analyze the trial data from the 

Hypertension Detection and Follow-up Program (HDFP), the primary objective of which 

was to compare the survival time for the stepped care versus referred care groups. A total 

of 10,474 households were enrolled and assigned to either stepped care or referred care 

group at random. The hypertension patients within a household were considered from the 

same cluster. The permutation test was compared with the ordinary log-rank test. The p-

value was increased in the permutation method, which indicated that the correlation of 

failure times with the households (cluster) was adjusted appropriately.  
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Study Objectives 

For the stratified version of CC and GCC designs, the sample size and power 

calculation methods based on the log-rank type test have not been addressed before. 

Without knowing the sample size and power information, we may not be able to plan the 

SCC and GSCC designs for epidemiologic studies and disease prevention trials. The 

objective of this PhD study is to provide solutions to these critical issues. In this study, 

we propose the stratified log-rank statistic, derive the formula for the sample size and 

power calculation, and evaluate the performance of these formulas for the SCC and 

GSCC designs. We also address the optimal, proportional, and balanced sampling 

strategies and provide some practical guidelines. A large number of simulation studies 

are conducted to evaluate the proposed tests and the computational methods. The real 

epidemiological studies are presented to illustrate the sample size calculation under the 

optimal, proportional, and balanced sampling strategies for the SCC and GSCC designs. 
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2 Sample Size/Power Calculation for Stratified Case-Cohort Design (SCC) 

 

Introduction 

Time to event is a commonly used endpoint for risk factor assessment in 

epidemiologic studies or disease prevention trials (Kalbfleisch and Lawless, 1988; ARIC 

Investigators, 1989; Schouten et al., 1993; Liao et al., 1997; Savitz et al., 2000; 

Ballantyne, 2004). Case-cohort design (CC), originally proposed by Prentice (1986), has 

been often used in studying the time to event when the disease is rare and the cost of 

collecting the event information is expensive. A case-cohort sample consists of a sub-

cohort, which is a random sample of the full cohort, and all the subjects with the event 

(cases). Statistical analysis methods for data from CC design have been described in 

many publications (Prentice, 1986; Barlow and Prentice, 1988; Self and Prentice, 1988; 

Lin and Ying, 1993; Barlow et al., 1994; Borgan et al., 1995; Barlow et al., 1999; Chen 

and Lo, 1999; Chen, 2001; Chen, 2001a; Chen, 2001b; Kang and Cai, 2009). For the 

case-cohort study with rare events, Cai and Zeng (2004) proposed a log-rank type of test 

statistic, in which the test statistic is equivalent to the score test based on the pseudo-

partial likelihood function, as described in Self and Prentice (1988). Cai and Zeng (2004) 

gave an explicit procedure for sample size and power calculation based on the proposed 

tests.  

In most studies, study populations are not homogenous and a stratified case-cohort 

design (SCC) may be more appropriate (Boice and Monson, 1977; Hrubec et al., 1989; 

Langholz and Jiao, 2006). The stratified case-cohort sample consists of stratified sub-

cohorts selected by stratified random sampling from the full cohort and all the cases. In 
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an example provided by Langholz and Jiao (2006), a full cohort of 1,741 female patients 

who were discharged from two tuberculosis sanatoria in Massachusetts between 1930 and 

1956 was studied to investigate breast cancer risk and to compare treatments between 

treatment regimens including and not including radiation exposure. The full cohort of 

1,741 female patients was stratified by age at first exposure to treatment. Seventy-five 

breast cancer cases were observed in 1,741 patients. A stratified sub-cohort with a total of 

100 subjects was sampled by age at the first exposure strata. The stratified case-cohort 

sample thus contained the 100 subjects from the stratified sub-cohort and all 75 breast 

cancer cases (2006). 

Stratified methods for analyzing data from SCC design have been studied extensively 

(Borgan et al., 2000; Breslow et al., 2009). However, the sample size and power 

calculations of the SCC design have not been previously addressed. Without the sample 

size and power information, proper planning of clinical and other studies using a SCC 

design is impossible. This paper provides solutions to these critical issues. Specifically, 

we propose a stratified log-rank statistic, derive expressions for sample size and power 

calculations, and evaluate the performance of proposed statistics. We also address 

different sampling strategies and provide some practical guidelines. We conduct several 

simulation studies to evaluate the proposed tests and the computational methods. In 

addition, we investigate the relative efficiency and cost efficiency of the SCC design 

against the full cohort and stratified sub-cohort. 
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Stratified Log-rank Test 

 

Notation 

Assume that there are n subjects and L strata in a stratified full cohort, and nl subjects 

in stratum l (l = 1, …, L). Assume that there are two treatment groups and nlj subjects in 

group j (j = 1, 2) of stratum l. Let Tlij represent the event time and Clij the censoring time 

for subject i in group j and stratum l (i = 1, …, nlj ; j = 1, 2; l = 1, …, L), it is reasonable 

to assume the Tlijs are independent of each other. Let lijJ  be the dichotomous variable 

indicating the group status, Xlij = Tlij   Clij be the observed time, where a b denotes the 

minimum of a and b, and Δlij = I (Tlij ≤ Clij) be the failure indicator, in which Δlij = 1 

denotes observed failure and Δlij = 0 denotes censoring.  

In the SCC design, group labels are measured for all the cases and a stratified sub-

cohort sample. Specifically, we assume that ln~  subjects are randomly sampled into a sub-

cohort from ln  subjects in stratum l, and sub-cohort size is n~  = 

L

l ln
1

.~ Let lij  = 1 

denote that subject i in group j and stratum l is selected into the sub-cohort and lij  = 0 

otherwise. Let l be the proportion of subjects in group 1 and )1( l the proportion of 

subjects in group 2 in stratum l. All subjects in the sub-cohort and all events in the L 

strata make up the stratified case-cohort sample.  

 

Test Statistic 

We consider a log-rank type of test to compare the hazard rates between the two 

groups in SCC. The null hypothesis is H0: Λl1(t) = Λl2(t), l = 1, …L, t   [0,  ], where
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is the length of study period and Λlj(t) the cumulative hazard function of the event time in 

group j (j = 1, 2) in stratum l. The weighted stratified log-rank test statistic for the full 

cohort (Self and Prentice, 1988) may be expressed as

















)(

)(

)(

)(

)()(

)()()(

2

2

1

1

1
0

21

21*

tY

tNd

tY

tNd

tYtY

tYtYt
W

l

l

l

l
L

l ll

ll
n


, where )(tY lj  is the number of subjects at 

risk and )2,1)(( jtNlj  is a counting process representing the number of events at time t 

in group j and stratum l, and ω(t) is a weight function. The formula above can also be 

expressed as  
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For the full cohort, the log-rank test statistic is known to be the same as the score 

function of the Cox partial likelihood function (Cai and Zeng, 2004; Self and Prentice, 

1988). In the stratified case-cohort sample, covariate information is only available for 

subjects in the sub-cohort and the cases. Under this situation, we can use the sub-cohort 

data to approximate )(tY lj  by llj ptY )(
~

, where )(
~

tYlj is the number of subjects at risk for 

group j and stratum l in the sub-cohort, and lp  is the sampling fraction of the sub-cohort 

in stratum l. Hence, we use these approximations and obtain the stratified case-cohort test 

statistic  
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where ,)()(
~ ~

1
 ljn

i lijlj tXItY and ljn~ is the number of subjects in group j and stratum l in 

sub-cohort. Since all the quantities in the summation only contribute to the summation if 

Δli1 = 1 or Δli2 = 1, the above referenced nW  can be obtained based on the observed data. 
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This test statistic is the score function of the stratified version of the pseudo partial 

likelihood function and formula (2) can be shown to have an asymptotic normal 

distribution (Self and Prentice, 1988). 

 

Asymptotic Variance 

The asymptotic variance of nW  is the summation of the asymptotic variance of nlW  

from all the strata. The traditional case-cohort design is considered as a special case of 

SCC with the number of strata L = 1 (Borgan et al., 1995 and 2000; Self and Prentice, 

1988). Given the proportion of subjects in group 1 l  = ll nn 1 , l    (0, 1), and assuming 

that  ll nn~ converges to lp  in stratum l and nnv ll  converges a constant as n goes to ∞ 

( lll nnp /~lim ), under H0 and some regularity conditions, nWn 2/1  has an asymptotic 

normal distribution: ),,0( 22/1   NWn Dn where 2 
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where 2
l and l  correspond  to the asymptotic variance of the log-rank test based on 

stratum l in the full cohort and the variation resulting from sampling stratum l into the 

sub-cohort. Under the null hypothesis H0: Λl1(t) = Λl2(t) = Λl(t), l = 1, …L, t   [0,  ], let
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 with ba  denoting the maximum of a and b. 
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The estimator for the asymptotic variance for nW , 2ˆ
nW , can be derived based on the 

similar arguments as in Cai and Zeng (2004). Specifically, 2ˆ
nW is given by 2ˆ

nW
2̂ ̂ , 

where 

̂ =  
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where lp̂ = ll nn~ is the estimate of lp , and 2̂ is the estimate of 2 given by 
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Since all the quantities expressed above contribute to 2̂ and ̂ only when 1li = 1 or 

2li = 1, 2ˆ
nW can be obtained from the observed data. The derivations are given in 

Appendix A. 
 
  

To test the equality of the cumulative hazard function of the event time between the 

two groups in SCC, i.e., to test the null hypothesis H0: Λl1(t) = Λl2(t), l = 1, …L, t   [0, 

 ] vs. the alternative hypothesis HA: Λl1(t) ≠ Λl2(t) (two-sided), l = 1, …L, t   [0,  ] at 

the significance level  , we reject H0 if 2/1
22/1 ˆ  

  zWn
nWn  

, where z  is the  100 th 

percentile of the standard normal distribution.  

 

Sample Size and Power Estimation 

The sample size and power estimation formula is derived and simplified based on the 

alternative hypothesis HA: Λl1(t) = e Λl2(t) where )/1( nO . Assume the following 
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conditions in the observed data: (i) the censoring distributions are the same in the two 

groups; (ii) the number of events is very small in the full cohort but much larger than one; 

and (iii) there are no ties of event times, i.e. all the observed event times are different.  

For the sample size and power calculation, we consider the test statistic with ω(t)  = 1. 

Under the alternative hypothesis HA, the asymptotic expectation of nWn 2/1  is the same as 

the asymptotic expectation of the usual log-rank test statistic for the full cohort under HA 

and can be approximated by )]()([
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approximation and algebra as Cai and Zeng (2004) for each stratum. To simplifŷ , we 

assume that failures are very few, and approximate  ,2/by  )(
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proportion in stratum l and lv is the proportion of stratum l in the full cohort ( lv = nnl / ). 

Hence, the power function is    
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where n is the number of subjects in L strata in the stratified full cohort,   the log hazard 

ratio,  the significance level, Dlp  the failure proportion in stratum l, lv  the proportion of 

stratum l, l the proportion of subjects in group 1 and )1( l the proportion of subjects in 

group 2 in stratum l, lp  the sub-cohort sampling fraction in stratum l, l = 1, …L.

 

By 

dropping 2/Dlp , the formula (4) can be further simplified as 
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When L = 1, the above function can be further simplified as
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the case-cohort design in Cai and Zeng’s paper (2004). When lp = 1, the power of the 

stratified log-rank test for full cohort is 
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Proportional, Balanced, and Optimal Designs 

We consider the power issues for the proportional and balanced two commonly used 

designs in this section. We also consider an allocation strategy which maximizes the 

power.  

 

Proportional Design 

Proportional design is commonly used in stratified studies. Under proportional 

design, the number of subjects in the sub-cohort at each stratum is proportional to the size 

of the stratum in the population. For example, consider the full cohort size n = 2,000, and 

there are 4 strata with the strata proportion of 0.1, 0.2, 0.3 and 0.4, respectively. Or, 

equivalently, there are 200, 400, 600, and 800 subjects in the 4 strata, respectively. The 

sub-cohort consists of 200 subjects. With the proportional sampling method, the numbers 

of samples in each stratum are 20, 40, 60, and 80, respectively. Under such a design, the 

sub-cohort sampling proportions are the same for all strata, i.e., ppl  for l = 1, …, L. 

To detect a log hazard ratio of  with power   and significance level , the required 

total sub-cohort size is 
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number of subjects in stratum l’  
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The total SCC sample size 
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Note that the denominator in (6) needs to be positive. This condition can be re-written 

as  
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  the log-hazard ratio that 

can be detected with the entire cohort. This condition implies that the case-cohort design 

will not be able to detect a hazard ratio smaller than the one that can be detected by using 

the entire cohort.  

 

Balanced Design 

Another popular design for stratified samples is balanced design. To apply this idea to 

SCC, we allow the number of subjects in the sub-cohort be the same across the strata. For 

example, the full cohort size n is 2,000 with 4 strata. If we require a total of 200 subjects 

for the sub-cohort, with the balanced sampling method, each stratum would contain 50 

sampled subjects. Under the balanced sampling ,/~/~ and/~~
lllll LnvnnnpLnn  where 
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L is the number of strata. To detect a log hazard ratio  with power   and significance 

level , the required total sub-cohort size n~  is at least
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 with the balanced method. The number of 

subjects in each stratum of the sub-cohort is 
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The total SCC size is 
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In order to apply the balanced sampling method, the smallest stratum in the full 

cohort needs to be larger than the required number of subjects in the sub-cohort for each 

stratum. For instance, if a full cohort has 100, 500, 700, and 1,000 subjects in 4 strata, 

and a total of 500 subjects needs to be sampled into the sub-cohort. By the balanced 

method, 125 subjects need to be selected from each stratum. However, the number of 125 

exceeds the total number of subjects (i.e., 100) in the first stratum. Consequently, the 

balanced method is not applicable in this situation.  

 

Optimal Design 

In many studies, the number of subjects that can be included in sub-studies is limited 

because of financial and resource constraints. In these studies, we are given the total 

number of subjects to be included in the sub-cohort. The distribution of the number of 

subjects to each of the stratum needs to be determined. We consider an optimal design 
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strategy which provides the highest power under such situation. Specifically, we propose 

an optimal design with a set of pl (l = 1, 2, …,L) which provides the highest power for a 

given n~ . This optimization problem can be solved by using Lagrange multipliers method.  

Maximizing the power function for a given n~ in formula (4) is equivalent to 

minimizing the denominator
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By solving the above two equations, we obtain the optimal sub-cohort sampling 

proportion 
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Hence, the optimal power for a given n~ can be calculated as   
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To achieve power   with a significance level based on the optimal design, the 

required total sub-cohort size is given by
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From formula (8), we observe that when l is the same over strata, and Dlp is 

homogeneous over strata, then the optimal lp  is nn /~ which is same across strata. The sub-

cohort size at stratum l is proportional to the size of stratum l. On another note, when l is 

the same over strata, i.e., there are L equally partitioned strata, and the event rate Dlp is 

very small (disease is rare), then the optimal lp  is proportional to the event rate Dlp . The 

following section addresses the homogeneous event rate situation in greater detail.  

 

Relative Efficiency and Cost Efficiency 

Because the SCC contains less information than the full cohort data, the log-rank test 

from SCC is less efficient than the test from the full cohort if the full cohort data is 

available. To evaluate the efficiency of SCC, we compare the asymptotic variances 

between the SCC and the full cohort. The relative efficiency of SCC compared to the full 
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cohort ( ) is defined as the ratio of the asymptotic variances of the full cohort ( 2 ) over 

that of the SCC design (  2 ). By applying the estimation formula for 2̂ and̂ , we 

obtained an estimator 
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It is also of interest to examine the cost saved by SCC compared to random samples. 

We assume that the cost for collecting the data for each individual is the same regardless 

of the design. The cost efficiency is then calculated as the ratio of the required sample 

sizes for the stratified random sample and SCC to achieve the same power.  

The required number of subjects to achieve power  with significance level  for the 

stratified random sample design SRSn  can be obtained based on formula (5), i.e., 
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 . With a stratified case-cohort design, the number of subjects 

needed for evaluating exposure status is equal to the size of the sub-cohort plus the 
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additional failures at each stratum for all strata, which is .)/~)1(~(
1
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Hence, the cost efficiency R is obtained by 
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(11) 

where SCCn is dependent on the design strategy. SCCn  for the proportional, balanced, or 

optimal design are given in the previous sections. If SRSn > SCCn , R > 1, fewer subjects are 

needed in the SCC design than in the stratified random sample design. In other words,  

R > 1 represents cost savings for SCC design. Larger R is associated with more savings.  

 

Numeric Results 

 

Theoretical Power 

Based on the power formula derived in the previous sections, Table 1 shows the 

theoretical power of SCC, as well as the power based on the full cohort and the sub-

cohort. The power function (4) is used to calculate SCCP , the power of SCC, while 

formula (5) is used to calculate FullP , the power of full cohort. The sub-cohort power SubP

is obtained by substituting n with n~ in the full cohort power function, where n~  is the 

sub-cohort size, n~ =  


L

l ll
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111

~ . The power FullP , SCCP , and SubP are 

calculated for different combinations of the full cohort size n , event proportion Dlp , 

group 1 proportion l , log-hazard ratio , and sub-cohort sampling fraction lp in stratum 

l.  The significant level is set at 05.0  and the number of strata is L = 4. The event 

proportion Dp in the table is an average proportion over strata.  Specifically, at the level of 
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10%, Dlp over the strata are set to 9%, 8%, 11%, and 10% for each stratum. Similarly, 

4%, 5%, 4.5%, and 6% are set for Dp = 5%; 0.8%, 1%, 1.2%, and 0.9% are set for Dp = 

1%. In the example where the full cohort size n = 2,000, the event proportion Dp = 5%, 

the group 1 proportion l = 0.3, and the log-hazard ratio  = 0.5, the SCC with the 10% 

sub-cohort sampling yields the power of 0.479 against the full cohort power of 0.643 and 

that of the stratified random sample 0.110. In another example where the full cohort size

n = 10,000, the event proportion Dp = 1%, the group 1 proportion l = 0.3, and the log-

hazard ratio  = 0.5, the SCC sample with the 1% sub-cohort sampling yields the power 

of 0.365 while the powers for the full cohort and for the stratified random sample are 

0.630 and 0.042, respectively. The results from the theoretical power comparisons in 

Table 1 suggest that the SCC design is efficient and an attractive solution in situations 

with low event proportions and small sub-cohort sampling fractions.  
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Table 1. Theoretical Power of Stratified Case-Cohort Design 

n   Dp   l             lp  FullP  SCCP  SubP  

2,000 10% 0.3 0.5 10% 0.894 0.634 0.172 
    20% 0.894 0.769 0.300 
   1.0 10% 1.000 0.996 0.527 
    20% 1.000 1.000 0.818 
  0.5 0.5 10% 0.938 0.710 0.197 
    20% 0.938 0.836 0.347 
   1.0 10% 1.000 0.999 0.600 
    20% 1.000 1.000 0.879 
 5% 0.3 0.5 10% 0.643 0.479 0.110 
    20% 0.643 0.559 0.179 
   1.0 10% 0.996 0.968 0.312 
    20% 0.996 0.988 0.548 
  0.5 0.5 10% 0.718 0.548 0.124 
    20% 0.718 0.633 0.205 
   1.0 10% 0.999 0.986 0.361 
    20% 0.999 0.996 0.621 
4,000 5% 0.3 0.5 1% 0.908 0.256 0.051 
    2% 0.908 0.406 0.067 
   1.0 1% 1.000 0.742 0.096 
    2% 1.000 0.931 0.152 
  0.5 0.5 1% 0.948 0.296 0.055 
    2% 0.948 0.468 0.073 
   1.0 1% 1.000 0.813 0.107 
    2% 1.000 0.964 0.172 
 1% 0.3 0.5 1% 0.305 0.174 0.035 
    2% 0.305 0.218 0.040 
   1.0 1% 0.826 0.533 0.047 
    2% 0.826 0.657 0.061 
  0.5 0.5 1% 0.352 0.199 0.036 
    2% 0.352 0.251 0.041 
   1.0 1% 0.885 0.606 0.050 
    2% 0.885 0.732 0.065 

(Continued)
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Table 1. (continued) 

n   Dp   l             lp  FullP  SCCP  SubP  

10,000 5% 0.3 0.5 1% 0.999 0.541 0.075 
    2% 0.999 0.777 0.110 
   1.0 1% 1.000 0.985 0.179 
    2% 1.000 1.000 0.312 
  0.5 0.5 1% 1.000 0.615 0.082 
    2% 1.000 0.844 0.124 
   1.0 1% 1.000 0.995 0.205 
    2% 1.000 1.000 0.361 
 1% 0.3 0.5 1% 0.630 0.365 0.042 
    2% 0.630 0.464 0.051 
   1.0 1% 0.996 0.898 0.067 
    2% 0.996 0.962 0.095 
  0.5 0.5 1% 0.705 0.421 0.044 
    2% 0.705 0.532 0.054 
   1.0 1% 0.999 0.941 0.072 
    2% 0.999 0.983 0.105 
Note. n = full cohort size, Dp = average event proportion, l = group 1 proportion, = log-

hazard ratio, lp = sub-cohort sampling fraction in stratum l. SCCP = theoretical power of 

SCC, FullP = theoretical power of full cohort, and SubP = theoretical power of sub-cohort.  

Significant level 05.0 . 
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Empirical Type I Error and Power of Stratified Log-rank Test 

Simulation studies are conducted to evaluate the empirical type I error and empirical 

power for the stratified log-rank test using the SCC, full cohort, and sub-cohort data.  

Table 2 shows the empirical type I error for the stratified log-rank test using the SCC 

( SCCT ), full cohort ( FullT ), and sub-cohort data ( SubT ). The significance level is set at 

0.05 and the number of strata L = 4. Various values are considered for the full cohort size

n , stratum proportion lv , average event proportion Dp , group 1 proportion l , and sub-

cohort sampling fraction lp in stratum l. The following procedures/parameters are set up 

for the simulation:  

 There are 4 strata in the full cohort with size n = 2,000, 4,000, or 10,000, with the 

stratum proportions of 0.1, 0.2, 0.3, and 0.4;  

 All subjects are assigned to one of the two groups and the group 1 proportion l  

(0.3 or 0.5) is the same over 4 strata;  

 The average event proportion Dp (1%, 5%, or 10%) and sub-cohort sampling 

proportion lp  (0.1, 0.2, 0.01, or 0.02) are the same over 4 strata;  

 The event time is generated from the exponential distribution with 1l = 2l at each 

stratum with the values of 0.1, 0.2, 0.3, and 0.5 for stratum 1, 2, 3, and 4, 

respectively;  

 The censoring time is generated from a uniform distribution between [0, ], 

where  is varied with different censoring proportions in strata based on the given 

event proportions;  
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 The proposed stratified log-rank test for SCC is programmed in SAS. SAS 

procedure PROC LIFETEST for the stratified log-rank test is used for the full 

cohort and the sub-cohort data analysis; and  

 Each simulation is repeated 2,000 times.  

For n = 2,000, we considered the situation with the average event proportion Dp to be 

5% or 10%. From the results in the first block of Table 2, we note that the empirical type 

I error rates in SCC are fairly close to the nominal 0.05 level. For n = 4,000, we 

considered the smaller average event proportion Dp (1% or 5%). In a couple of cases 

with small sub-cohort sampling proportion (1%), the empirical type I error rates are much 

higher than the nominal level. For example, the average event proportion Dp = 5%, the 

group 1 proportion l = 0.3, and sub-cohort sampling fraction lp = 1% in all strata and 

shows that the empirical type I error rates for SCC SCCT = 0.107 meanwhile for full cohort 

FullT  = 0.049 and for sub-cohort SubT = 0.039. The results occur in these cases because 

some simulated SCC samples may contain no event in at least one of the strata. The 

numbers of such cases are large when the full cohort size is small, and the event rate and 

sampling fraction are low. However, the empirical type I error rate for SCC SCCT  is 

improved to 0.067 after the sample fraction is increased to 2% from 1%.  Also the 

empirical type I error rate for SCC SCCT  is improved to 0.067 when the full cohort size is 

increased from 4,000 to 10,000.   

When n is increased to 10,000, the empirical type I error rates are fairly close to the 

nominal level, especially with the 2% sampling rate. In some situations with low event 

rates (1%) and small sub-cohort sampling proportions (1% or 2%), a simulated stratified 
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sub-cohort sample could contain no events in all strata. Under this situation, the stratified 

log-rank test cannot be conducted for the sub-cohort. We excluded these cases when 

reporting the results for the sub-cohort. This is not an issue for the SCC sample, since by 

design all events in each stratum are included. In addition, we observed that the empirical 

type I error is nearly always slightly higher than the nominal level of 0.05 for SCC. This 

could be due to the small number of events in the setups considered in the simulations. 

We note that with the same disease proportions, as the sample size increases, the 

empirical error is closer to the nominal level.     

Table 3 presents the empirical power for log-rank tests in SCC, full cohort, and sub-

cohort. In addition, the theoretical power SCCP is presented in comparison with the 

empirical power in SCC.  The simulated samples are generated similarly to Table 2, with 

the exception that the event time is generated from the exponential distribution with 1l = 

1.5 2l at each stratum which gives the values of 0.15, 0.3, 0.45, and 0.75 for stratum 1, 2, 

3, and 4, respectively, while the 2l remains the same. A number of SCC samples are 

generated with different combinations of the full cohort size, event rate, and sub-cohort 

sampling rate in order to explore the efficiency of SCC power relative to the full cohort. 

The results in Table 3 indicate that the test based on the SCC design is more powerful 

than using the sub-cohort sample only and the power based on the full cohort provides an 

upper bound. In real studies, the full cohort is not available. In many cases in Table 3, 

using only a small fraction of the subjects, the power based on the SCC design is over 

50% of the power with the full cohort, where SCCn  is calculated as

.))1((
1
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As expected, when the sampling rate lp  increases, the 
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power for SCC increases. Overall, the empirical power SCCT  is very close to the 

theoretical powers SCCP . 
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Table 2. Empirical Type I Error of Stratified Case-Cohort Design 

n  l  Dp  lp  FullT  SCCT  SubT  

2,000 0.3 10% 10% 0.058 0.057 0.049 
   20% 0.058 0.054 0.046 
  5% 10% 0.059 0.051 0.045 
   20% 0.059 0.050 0.052 
 0.5 10% 10% 0.059 0.059 0.056 
   20% 0.059 0.043 0.045 
  5% 10% 0.049 0.055 0.049 
   20% 0.049 0.048 0.054 
4,000 0.3 5% 1% 0.049 0.107 0.039 
   2% 0.049 0.069 0.045 
  1% 1% 0.056 0.069 0.040 
   2% 0.056 0.050 0.044 
 0.5 5% 1% 0.050 0.103 0.035 
   2% 0.050 0.064 0.036 
  1% 1% 0.051 0.070 0.018 
   2% 0.051 0.051 0.009 
10,000 0.3 5% 1% 0.053 0.067 0.043 
   2% 0.053 0.062 0.049 
  1% 1% 0.051 0.050 0.036 
   2% 0.051 0.050 0.043 
 0.5 5% 1% 0.057 0.068 0.040 
   2% 0.057 0.059 0.048 
  1% 1% 0.050 0.049 0.005 
   2% 0.050 0.055 0.018 
Note: n = full cohort size, Dp = average event proportion, l = group 1 proportion, lp = 

sub-cohort sampling fraction in stratum l. TSCC = empirical type I error of SCC, TFull = 
empirical type I error of full cohort, and TSub = empirical type I error of sub-cohort.  
Significant level 05.0 . 
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          Table 3. Simulated Testing Power of Stratified Case-Cohort Design 

n  l  Dp  lp  FullT  SCCT  SubT  SCCP  
Full

SCC

T

T
 

n

nSCC
 

2,000 0.3 10% 10% 0.804 0.441 0.160 0.469 0.55 19.0% 

   20% 0.804 0.579 0.265 0.597 0.72 28.0% 

  5% 10% 0.514 0.312 0.112 0.336 0.61 14.5% 

   20% 0.514 0.366 0.158 0.395 0.71 24.0% 

 0.5 10% 10% 0.861 0.484 0.147 0.538 0.56 19.0% 

   20% 0.861 0.647 0.276 0.672 0.75 28.0% 

  5% 10% 0.557 0.350 0.083 0.389 0.63 14.5% 

   20% 0.557 0.439 0.154 0.455 0.79 24.0% 

4,000 0.3 5% 1% 0.771 0.250 0.065 0.186 0.32 6.0% 

   2% 0.788 0.296 0.081 0.288 0.38 6.9% 

  1% 1% 0.257 0.145 0.048 0.130 0.56 2.0% 

   2% 0.257 0.142 0.051 0.159 0.55 3.0% 

 0.5 5% 1% 0.796 0.238 0.021 0.213 0.30 6.0% 

   2% 0.851 0.303 0.058 0.333 0.36 6.9% 

  1% 1% 0.269 0.143 0.016 0.146 0.53 2.0% 

   2% 0.269 0.155 0.014 0.181 0.58 3.0% 

10,000 0.3 5% 1% 0.991 0.384 0.089 0.392 0.39 6.0% 

   2% 0.990 0.555 0.090 0.601 0.56 6.9% 

  1% 1% 0.504 0.233 0.062 0.260 0.46 2.0% 

   2% 0.504 0.301 0.071 0.330 0.60 3.0% 

  0.5% 1% 0.260 0.152 0.046 0.188 0.58 1.5% 

   2% 0.260 0.162 0.053 0.216 0.62 2.5% 

 0.5 5% 1% 0.994 0.379 0.063 0.452 0.38 6.0% 

   2% 0.994 0.571 0.093 0.677 0.57 6.9% 

  1% 1% 0.549 0.251 0.014 0.300 0.46 2.0% 

      2% 0.549 0.352 0.021 0.382 0.64 3.0% 

  0.5% 1% 0.279 0.180 0.009 0.215 0.65 1.5% 

   2% 0.279 0.214 0.006 0.249 0.77 2.5% 

Note: n = full cohort size, Dp = average event proportion, l = group 1 proportion, lp = 

sub-cohort sampling fraction in stratum l. SCCT = simulated testing power of SCC, FullT = 

simulated testing power of full cohort, and SubT = simulated testing power of sub-cohort, 
SCCP = theoretical power of SCC, SCCn = SCC sample size,  Significant level 05.0 . 
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Sample Size and Power of Proportional, Balanced, and Optimal Designs 

We compare the proportional, balanced, and optimal sampling methods in order to 

investigate which one is more efficient in the SCC design. Two situations where the 

event rates are relatively homogeneous or heterogeneous over the strata are considered 

for comparison. In the situation where the event rates are homogeneous, the event 

proportion Dlp at each stratum is relatively similar to each other. In the situation where 

the event rates are heterogeneous, the event proportions Dlp over the strata have a wide 

range. The corresponding analysis results in both homogeneous and heterogeneous 

situations are presented in Table 4.  

In SCC with homogeneous event rates, a theoretical power based on proportional, 

balanced, and optimal sampling for SCC with various combinations of the full cohort size

n , the event proportion Dlp , the group 1 proportion l , the log hazard ratio , and the 

sub-cohort size n~ is presented. The number of strata is L = 4 with the stratum proportions 

( lv ) of 0.1, 0.2, 0.3, and 0.4, respectively. The event proportion Dp in the table is an 

average value over all strata. Specifically, at the level of 10%, Dlp over the strata are set 

to 9%,8%, 11%, and 10% for each stratum. Similarly, 4%, 5%, 4.5%, and 6% are set for 

Dp = 5%; 0.8%, 1%, 1.2%, and 0.9% are set for Dp = 1%. The sub-cohort sampling 

fractions lp in stratum l for the proportional, balanced, and optimal designs are calculated 

by ,/~ ,/~
lLnvnnn and the formula (8), respectively. The total SCC sizes sccn (prop), sccn

(bal), and sccn (opt) are then calculated using the formula .))1((
1 
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theoretical powers propP , BalP , and optP are calculated using the power formula (4). The 

power ratio ( BalP  vs. propP ) is presented in percent (%).    

Table 4 indicates that the total SCC sample sizes from the three methods are similar 

in general under homogeneous circumstances. For instance, where the full cohort size n = 

2,000, the event proportion Dp = 10%, the group 1 proportion l = 0.3, the log hazard ratio

 = 0.5, and the stratified sub-cohort size = 200, the total SCC sample sizes are 376, 377, 

and 376 for proportional, balanced, and optimal samplings, respectively. The results 

show that the power from proportional method propP  is at least equal to or larger than BalP   

in all the situations and the power ratio ( BalP  vs. propP ) has a range from 83% to 100%. 

These results suggest that the proportional sampling is more efficient than the balanced 

sampling when the event rates are homogeneous over the strata. Furthermore, we observe 

that the powers from the proportional method and the optimal design remain close, which 

indicates that the proportional method is close to the optimal sampling strategy when the 

event rates are homogeneous and the treatment group 1 proportion l   is the same over 

strata. 

Table 4 also provides results for situations with heterogeneous event rates over strata. 

The set-up of the SCC samples is similar to the homogeneous situation, except that the 

event rates are set to a wide range over strata. We consider three sets of combination of 

Dlp (l = 1, 2, 3, and 4). Set 1 gives the values of Dlp to 9%, 30%, 5%, and 20% for the 4 

strata; Set 2 gives the values of Dlp to 4%, 25%, 10%, and 6%; and Set 3 to 0.8%, 10%, 

2%, and 30% for the 4 strata, respectively. Table 4 indicates that for the given set up and 

given n~ , the total SCC sample sizes from the proportional and balanced methods are 
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similar in heterogeneous situation. The power for these two methods is similar with 

slightly more power for the balanced method in most of the situation considered in Set1 

and Set2. In the situations where the sub-cohort sampling fraction lp is small (1% or 2%) 

and the event rates exhibit a wide range (Set3), the proportional method results in more 

power.  As expected, the optimal design yields the highest theoretical power ( optP ) with 

the smallest total SCC sample size among all three methods. For instance, where the full 

cohort size n = 2,000, the event proportion Dlp as in Set1, the group 1 proportion l = 0.3, 

the log hazard ratio = 0.5, and the stratified sub-cohort size = 200, the powers ( sccn ) are 

0.637 (495), 0.590 (496), and 0.731 (485) for the proportional, balanced, and optimal 

samplings, respectively. Thus, the optimal design indeed is the best in comparison with 

the proportional and balanced sampling strategies under the heterogeneous event rate 

situation.                
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Table 4. Proportional, Balanced, and Optimal Sampling in SCC Samples 
with Homogeneous Event Rates 

n  Dp  l    n~
 

Proportional Balanced

prop

Bal

P

P

 

 

Optimal

lp
 sccn

 propP
sccn BalP sccn OptP  

2,000 10% 0.3 0.5 200 10% 376 0.634 377 0.581 92% 376 0.637 

400 20% 557 0.769 558 0.732 96% 556 0.770 

1 200 10% 376 0.996 377 0.991 100% 376 0.996 

400 20% 557 1.000 558 0.999 100% 556 1.000 

0.5 0.5 200 10% 376 0.710 377 0.656 93% 376 0.713 

400 20% 557 0.836 558 0.804 96% 556 0.838 

1 200 10% 376 0.999 377 0.997 100% 376 0.999 

400 20% 557 1.000 558 1.000 100% 556 1.000 

5% 0.3 0.5 200 10% 293 0.479 293 0.442 92% 292 0.482 

400 20% 482 0.559 484 0.533 95% 482 0.561 

1 200 10% 293 0.968 293 0.952 98% 292 0.969 

400 20% 482 0.988 484 0.983 100% 482 0.988 

0.5 0.5 200 10% 293 0.548 293 0.507 93% 292 0.551 

400 20% 482 0.633 484 0.606 96% 482 0.635 

1 200 10% 293 0.986 293 0.977 99% 292 0.987 

400 20% 482 0.996 484 0.994 100% 482 0.996 

4,000 5% 0.3 0.5 40 1% 244 0.256 244 0.214 84% 244 0.260 

80 2% 282 0.406 282 0.345 85% 282 0.411 

1 40 1% 244 0.742 244 0.646 87% 244 0.750 

80 2% 282 0.931 282 0.877 95% 282 0.935 

0.5 0.5 40 1% 244 0.296 244 0.246 83% 244 0.300 

80 2% 282 0.468 282 0.399 85% 282 0.474 

1 40 1% 244 0.813 244 0.722 89% 244 0.820 

80 2% 282 0.964 282 0.926 96% 282 0.966 

1% 0.3 0.5 40 1% 80 0.174 80 0.162 93% 80 0.175 

80 2% 119 0.218 119 0.207 95% 119 0.220 

1 40 1% 80 0.533 80 0.494 93% 80 0.537 

80 2% 119 0.657 119 0.629 96% 119 0.660 

0.5 0.5 40 1% 80 0.199 80 0.184 93% 80 0.200 

80 2% 119 0.251 119 0.238 95% 119 0.253 

1 40 1% 80 0.606 80 0.565 93% 80 0.610 

        80 2% 119 0.732 119 0.704 96% 119 0.735 
(continued) 
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Table 4. (continued) 
with Heterogeneous Event Rates

n   Dp
 l      n~

 

Proportional Balanced

prop

Bal

P

P
 

Optimal

lp sccn propP  sccn BalP  
sccn   OptP  

2,000 Set1 0.3 0.5 200 10% 495 0.637 496 0.590 93% 485 0.731 
 400 20% 662 0.837 664 0.803 96% 641 0.894 
 1 200 10% 495 0.996 496 0.992 100% 485 0.999 
 400 20% 662 1.000 664 1.000 100% 641 1.000 
 0.5 0.5 200 10% 495 0.712 496 0.665 93% 485 0.802 
 400 20% 662 0.894 664 0.867 97% 641 0.938 
 1 200 10% 495 0.999 496 0.998 100% 485 1.000 
 400 20% 662 1.000 664 1.000 100% 641 1.000 

Set2 0.3 0.5 200 10% 394 0.553 393 0.574 104% 384 0.663 
 400 20% 573 0.732 571 0.748 102% 553 0.809 
 1 200 10% 394 0.987 393 0.990 100% 384 0.997 
 400 20% 573 0.999 571 1.000 100% 553 1.000 
 0.5 0.5 200 10% 394 0.627 393 0.649 104% 384 0.739 
 400 20% 573 0.803 571 0.818 102% 553 0.871 
 1 200 10% 394 0.995 393 0.997 100% 384 0.999 
 400 20% 573 1.000 571 1.000 100% 553 1.000 

4,000 Set2 0.3 0.5 40 1% 468 0.197 467 0.209 106% 466 0.269 
 80 2% 503 0.334 503 0.355 106% 499 0.452 
 1 40 1% 468 0.600 467 0.632 105% 466 0.766 
 80 2% 503 0.865 503 0.888 103% 499 0.957 
 0.5 0.5 40 1% 468 0.226 467 0.240 106% 466 0.310 
 80 2% 503 0.387 503 0.410 106% 499 0.519 
 1 40 1% 468 0.676 467 0.708 105% 466 0.834 
 80 2% 503 0.917 503 0.934 102% 499 0.980 

Set3 0.3 0.5 40 1% 621 0.168 623 0.123 73% 617 0.262 
 80 2% 655 0.285 659 0.202 71% 646 0.450 
 1 40 1% 621 0.513 623 0.360 70% 617 0.754 
 80 2% 655 0.796 659 0.613 77% 646 0.956 
 0.5 0.5 40 1% 621 0.191 623 0.139 72% 617 0.303 
 80 2% 655 0.330 659 0.232 70% 646 0.517 
 1 40 1% 621 0.585 623 0.416 71% 617 0.823 

       80 2% 655 0.860 659 0.689 80% 646 0.980 

Note. Dp = average event proportion, l = group 1 proportion, = log-hazard ratio, n
~ = sub-cohort 

size, SCCn = SCC sample size, lp = sub-cohort sampling rate in stratum l.
 propP ( BalP ,

OptP ) = 

proportional (balanced, optimal) power. Set1 (Set2; Set3): event proportion = 9%, 30%, 5%, and 
20% (4%, 25%, 10%, and 6%; 0.8%, 10%, 2%, and 30%) for strata 1-4. 
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Relative Efficiency 

Figure 1 displays the relative efficiencies of SCC vs. full cohort over the sub-cohort 

sampling fractions lp  changing from 0 to 1. The event proportions Dlp  of 0.01, 0.05, 0.1, 

and 0.2 and full cohort size of 1,000 are considered for analysis. The other parameters are 

set up similarly to Table 1. The formula (10) is used to calculate the relative efficiencies. 

It is observed that the relative efficiency becomes larger while the event proportion is 

smaller. The relative efficiency is near 1 once the event proportion is at 0.05.   

 

 

  

Figure 1 Relative Efficiency of Stratified Case-Cohort vs. Full Cohort 
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Theoretical Power Ratio 

Figure 2 provide a set of theoretical power ratios between the SCC and full cohort 

with sampling proportions changing from 0 to 1. The power ratios are examined with the 

full cohort size n = 1,000, 2,000, or 10,000,   (theta) = 0.5 or 1, l  = 0.5, and Dlp  (pd) = 

0.1 or 0.2.  The other parameters are set up similarly to Figure 1. The figures show that 

the power ratio is close to 1 in most of the situations even though the event rate is low, 

and the sampling proportion is as small as 0.1. These plots indicate that the SCC with the 

small sampling proportion yields similar powers as the full cohort. When the event 

proportion Dlp or the log-hazard ratio   increases, the power ratio increases, which 

implies the SCC yields a higher power close to the full cohort.      
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Figure 2 Power of Stratified Case-Cohort vs. Full Cohort  
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Figure 2 Power of Stratified Case-Cohort vs. Full Cohort 
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Cost Efficiency 

Figure 3 provides the cost efficiencies vs. sampling proportion changing from 0 to 1 

in different SCC samples with event rates of 0.01, 0.05, 0.1 and 0.2. The other parameters 

are set up similarly to Figure 1. Formula (11) is used for calculation. The first plot of 

Figure 3 shows that the lower event rate is associated with higher efficiency for SCC. 

When the sampling proportion is small (< 0.2), the SCC design is much more efficient 

than the stratified simple random sample. When the sampling proportion is large ( >= 

0.6), the cost of the two designs are similar.  

The second plot of Figure 3 shows the efficiency region of SCC, in which the area 

below the line represents the region that the total sample size for SCC is smaller than the 

stratified random sample to achieve the same power. We note that the most cost saving 

occurs when the event rate is lower than 0.3 and the sampling fraction rate is smaller than 

0.2.  
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Figure 3 Cost Efficiency of Stratified Case-Cohort Design 
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Illustration of Sample Size Calculation 

In this section, we consider the MORGAM (MONICA, Risk, Genetics, Archiving, 

and Monograph) study (Kulathinal et al., 2007) as another example to illustrate the 

stratified sub-cohort sample size calculation. The MORGAM study is a multinational 

collaborative cohort study prospectively followed for the development of CHD and 

stroke events in order to investigate the relationship between their genetic risk factor and 

CHD incidence. A total of 4,559 subjects including 2,282 males and 2,277 females were 

assessed at the baseline visit in 1997 and followed. Ninety-six CHD events were 

observed in males and 24 in females by 2003. Since the CHD incidence rate which differs 

by gender was low and genotyping was expensive, we consider the stratified case-cohort 

design to examine the relationship between genetic risk factors and CHD incidence. We 

design the study with 80% power and 0.05 significance level. We assume the genetic risk 

factor frequency was about 0.2 for both male and female strata. Gender was considered a 

stratification factor.  

Assume that a hazard ratio of 2 is to be detected. This hazard ratio is checked against 

the minimal detectable hazard ratio. The minimal hazard ratio has a value of 1.9 which is 

calculated by using the formula in the previous section. The hazard ratio of 2 is 

appropriate as it is greater than the minimal detectable value.   

Table 5 presented the sample size calculation using the proportional, balanced, and 

optimal sampling methods. Under the optimal design (proportional) design, a total of 153 

(209) subjects is required for the sub-cohort, one hundred and twenty-three (105) of 

which from the male stratum and 30 (104) from the female stratum; the total SCC sample 

size is 269 (325). , The balanced design requires the similar sample size as the 



56 
 

proportional method. It is because 2,282 subjects in the male stratum and 2,277 in the 

female stratum which results to the similar strata proportion lv for the male and female 

coincidently ( 5.021  vv ).  The proportional (balanced) method requires 20% more sub-

cohort size comparing to the optimal design.  

It is also observed that under the optimal design, the sub-cohort size at stratum l is 

proportional to the number of the events at stratum l vs. all events, that is n
D

D
n l

l
~~  . For 

instance, in the male stratum, there are 96 events, 80% of 124 the total number of events 

in the full cohort. The required sub-cohort size at the male stratum is 153, presenting 80% 

of 153 the overall sub-cohort size.   

The non-event vs. event ratio has been examined for all three sampling methods. All 

methods yield a ratio greater than 1 to ensure the good precision of testing. The optimal 

method has the smallest overall non-event vs. event ratio of 1.2 among all methods, 

supporting the conclusion that the optimal method is the most efficient among others.   
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Discussion and Conclusion 

We have introduced the stratified log-rank type test statistic for the SCC design and 

derived the power calculation formula. We considered proportional, balanced, and 

optimal sampling methods, and derived the corresponding sample size calculation 

formulas. The optimal method is derived by using Lagrange multiplier method. Our 

simulation studies show that the proposed stratified log-rank type test statistic is valid for 

data from SCC design in finite samples. The simulations also show that the power of 

SCC can be fairly high compared to the power of the full cohort when the event rate is 

low. The empirical power is similar to the theoretical power.   

Simulation studies are also conducted to compare the proportional, balanced, and 

optimal samplings methods. The results show that when the event rates are relatively 

homogeneous across strata, the proportional method is superior to the balanced method 

and is close to the optimal method. However, in the situation that the event rates are 

heterogeneous over the strata, either the proportional or balanced method can possibly 

yield higher power than the other. The optimal method yields the highest power with the 

smallest required sample size among all three methods.   

Sample size calculation has been illustrated by using two real studies ARIC and 

MORGAM projects. The sample sizes from three sampling designs have been generated 

and compared. It is observed that the sample size from the optimal design is desirable in 

overall. In addition, the relative efficiency and cost efficiency analyses have been 

performed and the results suggest that the SCC design is efficient in finite SCC samples.     
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3 Sample Size/Power Calculation for Generalized Stratified Case-Cohort Design 

(GSCC) 

 

Introduction  

Time to event is a commonly used endpoint for the risk factor assessment in 

epidemiologic studies or disease prevention trials (Kalbfleisch and Lawless, 1988; ARIC 

Investigators, 1989; Schouten et al., 1993; Liao et al., 1997; Savitz et al., 2000; 

Ballantyne, 2004). Case-cohort design (CC) has been often used in studying this endpoint 

when the disease is rare (Prentice, 1986; Barlow and Prentice, 1988; Self. and Prentice, 

1988; Lin and Ying, 1993; Barlow et al., 1994; Borgan et al., 1995; Barlow et al., 1999; 

Chen and Lo, 1999; Chen, 2001; Chen, 2001a; Chen, 2001b; Cai and Zeng, 2004). A 

typical case-cohort sample consists of a simple random sample (sub-cohort) from the full 

cohort and all events in the full cohort. However, when disease incidence is not low, it 

may not be necessary to include all events in the case-cohort. Cai and Zeng (2007) 

advocated a generalized case-cohort design (GCC) for this situation. A GCC sample 

contains a sub-cohort from the full cohort and a random sample from the remaining 

events without replacement. Cai and Zeng (2007) proposed a general log-rank type of test 

for the GCC design. The authors also addressed the asymptotic normality property of the 

test statistics and provided the explicit form for the power calculation. The simulation 

studies in the paper indicated that the asymptotic approximation performs well in finite 

samples, and the GCC design was cost-effective and desirable under the non-rare events 

situation.  
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In many situations, the study population is not homogenous so that stratification is 

needed (Boice and Monson, 1977; Hrubec et al., 1989; Borgan et al., 2000; Langholz and 

Jiao, 2006; Breslow et al., 2009). However, the sample size/power calculation issues for 

the stratified version of the GCC design have not been addressed before.  In this section, 

we consider a generalized stratified case-cohort design (GSCC) and propose a general 

log-rank type of test. We discuss the asymptotic normality property of the test statistic 

and the sample size/power estimation methods, and address the practical proportional and 

balanced sampling techniques. Simulation studies are conducted to examine the 

performance of the proposed test and the sample size/power formulas in finite samples. 

The ARIC study is presented to illustrate the sample size calculation in the proportional 

and balanced methods under the GSCC design. Recommendations are made in the 

discussion and conclusion section.   

 

Generalized Stratified Case-Cohort Design 

As mentioned in the previous chapter, the following procedures are taken to assemble 

a GSCC sample: in each stratum, first generate a random sample without replacement 

from all subjects in the stratum; secondly, generate another random sample without 

replacement from the remaining events in the stratum; all subjects from two random 

samples in all strata consist of a GSCC sample.  
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Stratified Log-rank Test 

 

Notation 

Let n denote the number of subjects in the entire cohort. Assume that there are 2 

groups and L strata, and there are nlj subjects in group j (j = 1, 2) and stratum l (l = 1,..., 

L). Let Tlij and Clij denote the potential event and censoring time for subject i in group j 

and stratum l (i = 1,…, nlj) and they are assumed to be independent. Let Xlij = Tlij   Clij 

denote the observed time, where a  b denotes the minimum of a and b, and Δlij = I (Tlij ≤ 

Clij) the event indicator variable. Assume that the full cohort size is n = 


L

l
ln

1

where nl = 

nl1 + nl2 is the summation of number of subjects in group1 and group 2 in stratum l; and 

the sub-cohort size is n~ =


L

l
ln

1

~ , in which ln~ is the sub-cohort size in stratum l. Denote l

as the proportion of subjects in group 1 and )1( l the proportion of subjects in group 2 

in stratum l. Let Dlp be the observed failure rate after censoring in stratum l. Let lij  be 

the indicator that subject i of group j and stratum l is sampled into the sub-cohort and lp  

be the sub-cohort sampling probability in stratum l. Let lij  
be the indicator that subject i 

of group j and stratum l is selected into the random sample from the remaining events and 

lq  be the corresponding sampling probability. The mean number of subjects in sub-

cohort in stratum l is ll pn ; and the mean number of sampled additional events in stratum l 

is lDlll qppn )1(  . Let ln


 be the total number of events not selected into the sub-cohort in 

stratum l. All subjects in the sub-cohort and random sample from the remaining events 

make up the generalized stratified case-cohort sample. 



62 
 

Test Statistic 

We consider a log-rank type of test to compare the hazard rates between the two 

groups based on data from a GSCC study. The null hypothesis is H0: Λl1(t) = Λl2(t), t   

[0,  ], where  is the length of study period and Λlj(t) the cumulative hazard function of 

the event time in group j in stratum l.  

Consider the stratified log-rank test statistic nT :   
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where ω(t) is a weight function, )(
~

tYlj is the approximated risk set of the full cohort in 

group j by using the sampled subjects in stratum l, and )(
~

tNlj is the approximated 

counting process of the full cohort in group j by using the sampled cases in stratum l. 
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The formula above indicates that only the subjects selected into the GSCC sample 

contributed to the calculation; the subjects not selected into the GSCC have a value of 

zero for lij and lij  thus do not contribute to the summation. Therefore nT is computable 

based on the GSCC sample. Essentially inverse sampling probability weighting is used to 

approximate the at risk and counting process. Plugging in the expression for )(
~

tNlj into 

equation (12), we obtain the test statistic nT  in a form  
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Asymptotic Variance 

Following similar arguments as in Cai and Zeng (2007), it can be shown that nTn 2/1

has an asymptotically normal distribution with the asymptotic variance equal to  
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),(ˆ JXul and ),(ˆ JXl  uniformly converge to ),( JXul and ),( JXl . ),(ˆ JXul and ),(ˆ JXl  

can be expressed in the following equivalent summation form:  
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Hence, the asymptotic variance of nTn 2/1 can be estimated by using the following 

equation:  
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Given the test statistic and asymptotic variance in the sections above, we construct the 

stratified log-rank test for GSCC as below:  

To test the equality of the cumulative hazard function of the event time between the 

two groups in GSCC, i.e. to test the null hypothesis H0: Λl1(t) = Λl2(t), t   [0,  ] vs. the 
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alternative hypothesis HA :  Λl1(t) ≠ Λl2(t) (two-sided), or Λl1(t) = e Λl2(t),= the log-

hazard ratio for two groups, we reject H0 at the significant level of if

,ˆ 2/1
22/1

 
  zTn

nTn where z is the  th100 percentile of standard normal distribution.  

 

Power Calculation 

Under the alternative hypothesis HA: Λl1(t) = e Λl2(t), where )( 2/1 nO , t   [0,  ], 

we consider )(t = 1. Using similar arguments for the GCC in Cai and Zeng (2007), we 

can show that nTn 2/1 can be approximated by 
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Let )()1|( tSJtCP cll   indicate the survival function for the censoring random 

variable in group 1, and )1|()2|(  JtCPJtCP lll   in stratum l, in which l  

means that the subjects in group 2 are l -times as likely to be censored as in group 1. 

The event proportion of group 1 is )),1(/( llll   and for group 2 is

))1(/())1(( lllll   . Based on the arguments for the GCC in Cai and Zeng 

(2007), we obtain 2
T the asymptotic variance of nTn 2/1

 

 


 

















L

l
l

t
cl

l

ll

lll

llll
T tdetS

q

qpv
l

1
0

)(2 )()(}
)1)(1(

1{
)1(

)1(


  

         


 



















L

l
l

t
lcl

l

ll

l

l

lll

llll tdettS
q

qp

p

pv
l

1
0

)( )()()(}
)1)(1(1

{
)1(

)1(2




 



66 
 

         


 




















L

l
l

t
lcl

l

ll

l

l

lll

llll tdettS
q

qp

p

pv
l

1
0

)(2 )()()(}
)1)(1(1

{
)1(

)1(




. 

We order the failures from the smallest to the largest and assume no two failures are 

tied to each other, then ll DtdN 


0
)( , the total failures in stratum l, and

 
  




l

l ll l

D

k kk k

t

l
l

l

n
tdN

sY

sdN

1
0 0

1
)(

)(

)(
, where 

lkn represents the risk set size for the kth failure in 
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 The derivation is shown in Appendix B.  

We obtain nTn 2/1
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alternative hypothesis, the power is calculated from the proposed test statistic

22/1 ˆ
nTnTn  . The power function is given as   
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can be approximated by   2)1log()1( DlDlDll pppn  . The 

derivation is shown in Appendix C.  

 

Sample Size Calculation of Proportional and Balanced Designs 

We consider two commonly used allocation strategies across strata. One is to select 

the number of subjects in each stratum proportional to the stratum size in the population 

(proportional design) and the other is to select the same number of subjects in each 

stratum (balanced design). We consider the power issues for the proportional and 

balanced designs. The expected number of subjects with non-event (NE) and the expected 

number with event (E) in stratum l are stratum  )1( Dllll ppnNE  and

),)1(( lllDlll qpppnE  respectively. The expected total number of subjects in 

stratum l in GSCC sample ),1()1(~ 1
DllllllGl ppnMENEn   where .: lll ENEM 

The total number of subjects in GSCC sample 



L

l
GlGSCC nn

1

~   .)1()1(
1

1


 
L

l
Dllll ppnM

,}
1

1{
1

 and ,
))1((

)1(
Let 2

1
2 lDl

D

k kk kllll

llll
l Bp

nn

n
A

l

l ll l





  
  



 

  .)1log()1( where 2
DlDll ppB  The power function (16) is transformed to the 
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In the next sub-sections, we will derive the formulas for the sample size calculation in 

the proportional and balanced designs, respectively.                                      

  

Proportional Design 

Under the proportional design, . and , qqpp ll  Denote D the total number of cases 

in full cohort, and Dp the overall event proportion across strata, then ),( DnpNE   

qpDDpE )1(  , and pqDqDnpnGSCC  . Let ,: MENE  the ratio of non-events 

and events in the case-cohort sample and assume it is pre-specified. Then
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3221221 GBFFFFbFFFa   

.)1( 3221 FFFFc   The meaningful p shall be 1. 0  p  If both 2,1p are between 0 to 

1, the smaller one shall be chosen. We further obtain q and GSCCn from the expression 

above. The total number of subjects in each stratum is ),)1((~ qpppnn DllGl  includ-

ing the sub-cohort size pnl and the size from the remaining events qppn Dll )1(  in each 

stratum. 
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Balanced Design 

Under the balanced design, the GSCC sample size is equally distributed to each stra-

tum in L strata. The sample size at stratum l Gln~  has
L

n
n GSCC
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GSCC

DllllGl M
L

n
ppnMn in which  ,)1()1(~ 1    can be pre-specified. After 

transformation, we have  ,
)1)(1( 1

Dlll

GSCC
l pMLn

n
p


 

and 












 1
)1(

1 Dll

Dl

l

l
l pM

p

p

p
q . An 

appropriate lM shall be
Dl

Dl
l p

p
M

)1( 
 to ensure .0lq The meaningful lq shall be the 

minimum of 












1
)1(

1 Dll

Dl

l

l

pM

p

p

p
and 1. Furthermore, let  ,1 Dlll pAF   

, ,1
)1(

 ),1)(1( 43
1

2 lll
Dll

Dl
lDllll BAF

pM

p
FpMLnF 


   from these expressions and 

the Equation (17), we obtain 2 solutions ,
2

42
2,1

a

acbb
nGSCC


 in which 

 ,
1 1 32

4

1 32

1

2

4

1 2

1  
 


L

l

L

l ll

l
L

l ll

l

l

l
L

l l

l

FF

F

FF

F

F

F

F

F
a and ,22

1

2

3

4

1 3

1 



L

l
G

l

l
L

l l

l B
F

F

F

F
b  

.
1 1

442
1 3

21  
 


L

l

L

l
lll

L

l l

ll FFF
F

FF
c The meaningful GSCCn shall be greater than 0. If both 

are greater than 0, the smaller one shall be chosen. We further obtain ll qp  and using the 

expressions above. 

The GSCC optimal design is not addressed because there are 2 sets of variables (

ll qp  and ) under GSCC design while there is only 1 set of variables ( lp ) in SCC design. 

Because of the two sets of the freely varying variables, there are too many assumptions 
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that need to be made in order to derive an optimal design. Because of the many imposed 

constrains, such design will be too restrictive to be of general use. Therefore we do not 

pursue an optimal allocation plan under the GSCC design. 

 

Numeric Results 

We conduct the simulation studies to evaluate the empirical type 1 error and empiri-

cal power for the finite GSCC samples. We also calculate the theoretical power to com-

pare with the simulated empirical power. Both the homogeneous and heterogeneous 

GSCC samples are generated with different overall event proportion rate (0.2 and 0.4), 

hazard ratio (1, 1.5, and 2), drop-out rate (0 and 0.2), and sub-cohort sampling proportion 

(0.1 and 0.2). We present the proportional and balanced designs in each sample. In each 

GSCC sample for power analysis, the total sample size GSCCn , the size of sub-cohort, the 

size of the remaining event sample, the total number of non-event vs. event and its ratio 

are provided. Furthermore, the ARIC study is presented as an example to illustrate the 

sample size calculation under the GSCC design with both the proportional and balanced 

sampling methods. 

 

Simulation Studies 

Simulation studies are conducted to evaluate the empirical type 1 error and empirical 

power for the stratified log-rank test in finite GSCC samples ( GSCCT ). The empirical 

power in full cohort )( FullT is provided for reference.  The formula (13) is used to calculate 

the GSCC test statistic and the formula (14) for the GSCC asymptotic variance. FullT is 

calculated using the SAS procedure PROC LIFETEST for stratified log-rank test. 
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Furthermore, we present the theoretical power of GSCC ( GSCCP  ) and of full cohort ( FullP ) 

for each set up. GSCCP is calculated based on the simulated full cohort using the power 

formula (16). FullP  is calculated using the formula 
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l
lDlll vpnz

1

2/1
2/ ))1(((  . 

Various values are considered for the full cohort size n , stratum proportion lv , event 

proportion Dlp , group 1 proportion l , sub-cohort sampling fraction lp , pre-mature 

dropout rate lcp , and event sampling fraction lq in stratum l. The follow 

procedures/parameters are set up for the simulation:   

 The significant level is set at 0.05 and the number of strata L = 4. The full cohort 

size n = 1,000, with stratum proportions of 0.1, 0.2, 0.3, and 0.4. n = 10,000 is 

used for the empirical type 1 error samples for higher precision.  

 Samples with both homogeneous and heterogeneous event rates are generated. In 

the homogeneous GSCC samples, the event rates across strata are similar. For the 

set up where the overall event proportion, Dp , is 21% (41%), the event 

proportions ( Dlp ) are 0.15, 0.2, 0.25, and 0.2 (0.35, 0.4, 0.45, and 0.4) in stratum 

1-4, respectively. In the heterogeneous GSCC samples, the event rates across 

strata are different. For the set up where the overall event proportion Dp is 21% 

(41%), the event proportions ( Dlp ) are 0.15, 0.2, 0.35, and 0.125 (0.2, 0.4, 0.45, 

and 0.44) in stratum 1-4, respectively.   

 Both proportional and balanced sampling methods are examined. Under the 

proportional method, the sub-cohort sampling proportion p (0.1 or 0.2) is the 

same over 4 strata. The event sampling fraction q  is set to 0.3 (0.1) for the GSCC 
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samples with Dp  = 21% (41%) to ensure the non-event vs. event ratio M is around 

1 or larger. Under the balanced method, the same total sample size as in the 

proportional method is equally distributed to each stratum; lp and lq are set 

appropriately so that the overall M is comparable to the proportional design. The 

combination of lp and lq is indicated as Set1-4 for the balanced design, the values 

of which are presented in Table 6.   

 All subjects are assigned to one of the two groups. The group 1 proportion l  (0.3) 

is the same over 4 strata. Assume the two groups have the same censoring time (

l  = 1). The event time is generated from the exponential distribution with the 

values of 
e (or hazard ratio (HR) = 1, 1.5, or 2.0).  

 The censoring time is from a mixture distribution with probability lcp  being 

generated from uniform distribution in [0, ] and probability (1 - lcp ) =  . lcp = 0 

indicates no pre-mature dropout occurs and lcp = 0.2 means the 20% pre-mature 

dropout in study. 

 Each simulation is repeated 1,000 times.  

Table 6 displays the sample size and p and q combination associated with the set up 

above. The numbers of sample size are rounded up to the integer as appropriate. The 

empirical type 1 error and empirical and theoretical power of the proportional and 

balanced designs in the homogeneous and heterogeneous GSCC samples are reported in 

Table 7 and Table 8, respectively.     

Table 7 shows the empirical type I error for the stratified log-rank test using the 

GSCC ( GSCCT ) and full cohort ( FullT ) data. It is observed that both GSCCT and FullT  are close 
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to 0.05 for both the proportional and balanced designs. For instance, in Sample No. 1, 

where the full cohort size n = 10,000, the event proportion Dp = 0.21, the sub-cohort 

sampling proportion p = 0.2, the event sampling proportion q = 0.3, the pre-mature 

dropout rate lcp = 0, and the hazard ratio  = 1, we obtain the empirical type 1 error for 

GSCC GSCCT = 0.054 (0.051) for the proportional (balanced) design and for full cohort 

FullT = 0.046. The theoretical power for GSCC PGSCC and full cohort FullP = 0.050. The 

results from these finite samples indicate that the stratified log rank test for GSCC works 

well in finite samples.   

Table 8 shows the empirical power and theoretical power under the alternative 

hypothesis HR ( ) = 1.5 and 2. For instance, in Sample No. 23 , where the full cohort 

size n = 1,000, the event proportion Dp = 0.21, the sub-cohort sampling proportion p = 0.2, 

the event sampling proportion q = 0.3, the pre-mature dropout rate lcp = 0, and the hazard 

ratio  = 2, we obtain empirical power GSCCT  = 0.611 (0.544) and theoretical power PGSCC 

= 0.681 (0.624) for the proportional (balanced) design for the GSCC sample and FullT = 

0.983 and FullP = 0.996 for the full cohort. In overall, the simulated empirical power is in 

align with the theoretical power within either the proportional or the balanced design.  

 

Proportional and balanced design comparison 

The proportional and balanced designs are compared for the homogeneous and 

heterogeneous GSCC samples, respectively.  The results from Table 8 suggest that the 

proportional method yields slightly higher power than the balanced method in majority of 

GSCC samples. The balanced design has the disadvantage in some GSCC samples. Some 
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strata may not achieve the required event size so that the desired non-event vs. event ratio 

is not satisfied. One may combine the strata as appropriate to ensure the adequate events 

in the combined strata.  
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Table 6: GSCC Samples Set up of Proportional and Balanced Designs 

  n pD p q nGSCC  
Sub-
cohort 

Event 
Sample 

Non-
event Event  

    M 
(NE/E) 

Proportional Design with Homogeneous and Heterogeneous Event Rates 

1,000 0.21 0.1 0.3 157 100 57 79 78 1.0 
0.21 0.2 0.3 250 200 50 158 92 1.7 
0.41 0.1 0.1 137 100 37 59 78 0.8 
0.41 0.2 0.1 233 200 33 118 115 1.0 

Balanced Design with Homogeneous Event Rates 

1,000 0.21 Set1 157 104 53 83 74 1.1 
0.21 Set2 250 176 74 142 109 1.3 

0.41 Set3 137 114 22 68 68 1.0 
0.41 Set4 233 195 38 116 116 1.0 

Balanced Design with Heterogeneous Event Rates 

1,000 0.21 Set1 157 105 51 83 74 1.1 
0.21 Set2 250 179 71 142 109 1.3 
0.41 Set3 137 111 25 68 68 1.0 

    0.41 Set4 233 201 32 126 107 1.2 
                                                                                                                  (Continued)
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Table 6: (continued) 

pl and ql Combination in Balanced Design 

Homogeneous  pl ql    Heterogeneous pl   ql 

Set1 0.28 1.00     Set1 0.28 1.00 
0.12 0.42 0.12 0.42 
0.09 0.19 0.10 0.10 
0.06 0.20 0.06 0.36 

Overall  0.10 0.28   Overall  0.11 0.27 

Set2 0.56 1.00   Set2 0.56 1.00 
0.20 0.73 0.20 0.73 
0.14 0.32 0.16 0.16 
0.10 0.33 0.09 0.59 

Overall  0.18 0.56   Overall  0.18 0.41 

Set3 0.26 0.31   Set3 0.21 0.82 
0.14 0.08 0.14 0.08 
0.10 0.03 0.10 0.03 
0.07 0.04 0.08 0.02 

Overall  0.11 0.06   Overall  0.11 0.06 

Set4 0.45 0.69   Set4 0.48 1.00 
0.24 0.16 0.24 0.16 
0.18 0.05 0.18 0.05 
0.12 0.07 0.13 0.04 

Overall  0.19 0.11   Overall  0.20 0.08 

Note. n = full cohort size, Dp = average event proportion, lp = sub-cohort sampling fraction 

in stratum l, p = overall sub-cohort sampling fraction, lq = sampling proportion from 

remaining events in stratum l, q = overall sampling proportion from remaining events, GSCCn
= GSCC sample size, Sub-cohort = sub-cohort size, Event sample = number of subjects 
sampled from remaining events, Non-event = number of subjects with non-event in GSCC,  
Event = number of subjects with event in GSCC, M (NE/E) = ratio of Non-event vs. Event.
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Table 7: Empirical Type I Error of Proportional and Balanced Designs in GSCC Samples 
   Proportional Design Balanced Design   

Sample No. pD   plc  p q    TGSCC    PGSCC p, q TGSCC  PGSCC Tfull  Pfull 
With Homogeneous Events 

1   0.21   0 0.1 0.3 0.054 0.050 Set1 0.051 0.050 0.046 0.050 
2   0.21   0.2 0.1 0.3 0.051 0.050 Set1 0.043 0.050 0.055 0.050 
3   0.21   0 0.2 0.3 0.055 0.050 Set2 0.050 0.050 0.046 0.050 
4   0.21   0.2 0.2 0.3 0.059 0.050 Set2 0.068 0.050 0.055 0.050 
5   0.41   0 0.1 0.1 0.054 0.050 Set3 0.058 0.050 0.051 0.050 
6   0.41   0.2 0.1 0.1 0.062 0.050 Set3 0.072 0.050 0.050 0.050 
7   0.41   0 0.2 0.1 0.061 0.050 Set4 0.048 0.050 0.051 0.050 
8   0.41   0.2 0.2 0.1 0.061 0.050 Set4 0.040 0.050 0.050 0.050 
With Heterogeneous Events 

9 0.21   0 0.1 0.3 0.049 0.050 Set1 0.065 0.050 0.047 0.050 

10 0.21   0.2 0.1 0.3 0.055 0.050 Set1 0.051 0.050 0.064 0.050 

11 0.21   0 0.2 0.3 0.057 0.050 Set2 0.050 0.050 0.047 0.050 

12 0.21   0.2 0.2 0.3 0.052 0.050 Set2 0.067 0.050 0.064 0.050 

13    0.41   0 0.1 0.1 0.057 0.050 Set3 0.055 0.050 0.048 0.050 

14 0.41   0.2 0.1 0.1 0.054 0.050 Set3 0.075 0.050 0.050 0.050 

15 0.41   0 0.2 0.1 0.055 0.050 Set4 0.055 0.050 0.048 0.050 

16 0.41   0.2 0.2 0.1 0.052 0.050 Set4 0.065 0.050 0.050 0.050 

Note. n = full cohort size, Dp = average event proportion, lcp = pre-mature dropout rate in study,
 

p = overall sub-cohort sampling 

fraction, q = overall sampling proportion from remaining events, GSCCT = empirical Type I error of GSCC, FullT
 = empirical Type I error 

of full cohort, SubT = empirical Type I error of sub-cohort, GSCCP = theoretical power of GSCC, FullP = theoretical power of full cohort.  

Significant level 05.0 . 
  



78 
 

Table 8: Empirical and Theoretical Power of Proportional and Balanced Designs in GSCC Samples 
Sample   Proportional Design Balanced Design   

No. pD   HR      plc  p q    TGSCC   PGSCC p, q TGSCC  PGSCC Tfull  Pfull 
With Homogeneous Events 

1 0.21 1.5     0 0.1 0.3 0.231 0.239 Set1 0.201 0.200 0.720 0.768 
2 0.21 1.5  0.2 0.1 0.3 0.193 0.211 Set1 0.160 0.177 0.618 0.673 
3 0.21 1.5     0 0.2 0.3 0.281 0.311 Set2 0.294 0.299 0.720 0.768 
4 0.21 1.5  0.2 0.2 0.3 0.233 0.264 Set2 0.242 0.261 0.626 0.673 
5 0.21 2     0 0.1 0.3 0.518 0.571 Set1 0.431 0.485 0.987 0.996 
6 0.21 2  0.2 0.1 0.3 0.410 0.507 Set1 0.366 0.425 0.959 0.985 
7 0.21 2     0 0.2 0.3 0.605 0.707 Set2 0.643 0.689 0.987 0.996 
8 0.21 2  0.2 0.2 0.3 0.522 0.622 Set2 0.563 0.619 0.959 0.985 
9 0.41 1.5     0 0.1 0.1 0.253 0.228 Set3 0.188 0.147 0.958 0.964 
10 0.41 1.5  0.2 0.1 0.1 0.211 0.192 Set3 0.199 0.123 0.907 0.920 
11 0.41 1.5     0 0.2 0.1 0.285 0.294 Set4 0.268 0.232 0.958 0.964 
12 0.41 1.5  0.2 0.2 0.1 0.261 0.238 Set4 0.212 0.187 0.907 0.920 
13 0.41 2     0 0.1 0.1 0.531 0.546 Set3 0.342 0.343 1.000 1.000 
14 0.41 2  0.2 0.1 0.1 0.435 0.462 Set3 0.300 0.278 1.000 1.000 
15 0.41 2     0 0.2 0.1 0.618 0.679 Set4 0.502 0.554 1.000 1.000 
16   0.41 2  0.2 0.2 0.1 0.494 0.568 Set4 0.418 0.449 1.000 1.000 

                                                                                                                                                                 (continued) 
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Table 8: (continued) 

Sample   Proportional design Balanced design   

No. pD 
     
HR  plc  p q    TGSCC     PGSCC p, q    TGSCC  PGSCC Tfull Pfull 

With Heterogeneous Events 

17 0.21 1.5  0 0.1 0.3 0.223 0.225 Set1 0.195 0.180 0.716 0.771 

18 0.21 1.5  0.2 0.1 0.3 0.197 0.200 Set1 0.158 0.155 0.630 0.676 

19 0.21 1.5  0 0.2 0.3 0.264 0.298 Set2 0.222 0.264 0.716 0.771 

20 0.21 1.5  0.2 0.2 0.3 0.237 0.254 Set2 0.192 0.225 0.630 0.676 

21 0.21 2  0 0.1 0.3 0.517 0.541 Set1 0.379 0.431 0.983 0.996 

22 0.21 2  0.2 0.1 0.3 0.425 0.481 Set1 0.323 0.367 0.960 0.985 
23     0.21 2  0 0.2 0.3 0.611 0.681 Set2 0.544 0.624 0.983 0.996 

24 0.21 2  0.2 0.2 0.3 0.518 0.603 Set2 0.451 0.540 0.960 0.985 

25 0.41 1.5  0 0.1 0.1 0.244 0.227 Set3 0.207 0.117 0.953 0.964 

26 0.41 1.5  0.2 0.1 0.1 0.235 0.181 Set3 0.229 0.101 0.893 0.920 

27 0.41 1.5  0 0.2 0.1 0.314 0.293 Set4 0.211 0.190 0.953 0.964 

28 0.41 1.5  0.2 0.2 0.1 0.257 0.237 Set4 0.198 0.154 0.893 0.920 

29 0.41 2  0 0.1 0.1 0.515 0.543 Set3 0.323 0.259 1.000 1.000 

30 0.41 2  0.2 0.1 0.1 0.439 0.460 Set3 0.295 0.214 0.999 1.000 

31 0.41 2  0 0.2 0.1 0.628 0.678 Set4 0.400 0.457 1.000 1.000 

32   0.41 2  0.2 0.2 0.1 0.506 0.566 Set4 0.344 0.361 0.999 1.000 

Note. n = full cohort size, Dp = average event proportion, lcp = pre-mature dropout rate in study, HR = hazard ratio, p = overall sub-

cohort sampling fraction, q = overall sampling proportion from remaining events, GSCCT = empirical testing power of GSCC, FullT = em-

pirical testing power of full cohort, SubT = empirical testing power of sub-cohort, GSCCP = theoretical power of GSCC, FullP = theoretical 

power of full cohort. Significant level 05.0 . 
 



80 
 

Illustration of GSCC Sample Size Calculation and Comparison with SCC 

In this section, we provide an example for the Atherosclerosis Risk in Communities 

Study (ARIC) to illustrate the sample size calculation under the GSCC design using the 

proportional and balanced methods, respectively.  In addition, we provide the SCC 

sample size calculation under the optimal, proportional, and balanced designs for 

comparison.  

The ARIC study, sponsored by the National Heart, Lung and Blood Institute 

(NHLBI), is a prospective epidemiologic study conducted in four U.S. communities to 

investigate the etiology and natural history of atherosclerosis and the etiology of clinical 

atherosclerotic diseases (ARIC Investors, 1989). A total of 15,972 participants completed 

a home interview and clinic examinations and were prospectively followed for the 

development of coronary heart disease (CHD) and other vascular events. It was of 

interest to examine the relationship between platelet PIA2 allele, a potential genetic risk 

factor, and CHD incidence. After some exclusion criteria, the total number of participants 

is 14,239 (full cohort n). The combination of gender (male and female), age group ( <= 

54-yrs and >= 55-yrs), and carotid artery intima-media thickness (IMT) (thin IMT or not 

thin IMT) were considered as the stratification factor and all subjects in the full cohort 

were stratified into 8 strata with the stratum proportion lv  of 0.19, 0.06, 0.17, 0.15, 0.19, 

0.02, 0.17, and 0.05, respectively. The strata information is presented in Table 9. The 

numbers of subjects in each stratum ln were 2,703, 830, 2,487, 2,066, 2,690, 295, 2,386, 

and 782, respectively. The CHD event rates Dlp over the strata were 0.037, 0.068, 0.114, 

0.073, 0.051, 0.029, 0.142, and 0.083. Based on the results of Batalla et al. (2004), we use 

the prevalence of PIA2 allele carriers l  to be 25% across strata.   
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Based on the sample size formulas in the previous sections, we calculate the required 

sample sizes under the proportional and balanced designs. We set the power at 80%, the 

significant level at 0.05, and the minimum detected hazard ratio at 1.6 ( = 0.47). The 

required sample sizes are presented in Table 9. The numbers are rounded up to the 

integers.   

Under the proportional design a total of GSCCn = 497 subjects comprising 71, 28, 103, 

69, 78, 8, 112, and 28 subjects in 8 strata, respectively. The overall sampling proportion 

of 0.017 is required in order to generate 270 subjects from the sub-cohort of which 51, 

16, 47, 39, 51, 6, 45, and 15 are required from each of strata 1-8. The event sampling 

proportion of 0.2 will provide a total of 227 subjects to be sampled from the remaining 

events, of which 20, 12, 56, 30, 27, 2, 67, and 13 subjects will be from strata 1-8, 

respectively. The overall ratio of non-event vs. event = 1 (249:248).  

Under the balanced design 96 subjects including 48 events would be required in each 

stratum. However, there are only 9 subjects in Stratum 6. We combined Stratum 6 with 

Stratum 5. The overall sampling proportion of 0.026 is required in order to generate 365 

subjects from the sub-cohort of which 50, 51, 54, 52, 50, 56, and 52 are required from 

each of strata 1-7. The overall event sampling proportion of 0.277 will provide a total of 

307 subjects to be sampled from the remaining events, of which 46, 45, 42, 44, 46, 40, 

and 44 subjects will be from strata 1-7, respectively. The overall ratio of non-event vs. 

event = 1.0 (336:336). As a result, the proportional design requires approximate 1/4 less 

subjects than the balanced design so is more cost-effective.     
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In order to compare the GSCC with SCC design, we perform the sample size calcula-

tion for the ARIC study using the SCC design under the same , , ,  and other specifi-

cations. The optimal, proportional, and balanced sampling methods are used and the 

sample sizes are displayed in Table 9. In the proportional design, the sub-cohort sampling 

proportion from GSCC is comparable with that from SCC (0.019 vs. 0.02), however, the 

event sampling proportion is quite different between GSCC and SCC (0.2 vs. 1, consider-

ing 1 is the special case of GSCC by including all events outside of sub-cohort). It indi-

cates that the GSCC design saves 80% of events outside of sub-cohort than the SCC de-

sign. In the balanced design, the similar sub-cohort sampling proportion is observed in 

GSCC and SCC (0.029 vs. 0.026) while approximately 70% of events outside of sub-

cohort are saved in GSCC compared with SCC. The sample size required for the optimal 

design is larger than either of the GSCC design. As a result, the GSCC design saves the 

sample size comparing with SCC design in the ARIC study.   
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Table 9. ARIC Study Sample Size Calculation: GSCC and SCC Designs 

Full Cohort and Strata Information 

n  
Stratum  
l Strata Description ln  Dlp  lv  l  

14,239 1 female, age >= 55-yrs, not thin IMT 2,703 0.037 0.19 0.25
  2 female, age >= 55-yrs, thin IMT 830 0.068 0.06 0.25
  3 female, age =< 54-yrs, not thin IMT 2,487 0.114 0.17 0.25
  4 female, age =< 54-yrs, thin IMT 2,066 0.073 0.15 0.25
  5 male, age >= 55-yrs, not thin IMT 2,690 0.051 0.19 0.25
  6 male, age >= 55-yrs, thin IMT 295 0.029 0.02 0.25
  7 male, age =< 54-yrs, not thin IMT 2,386 0.142 0.17 0.25
  8 male, age =< 54-yrs, thin IMT 782 0.083 0.05 0.25
Sample Size Calculation: Proportional Design 

  l      pl       ql nGSCC  

Sub- 
cohort 

Event  
sample Non-event Event  

Ratio 
(NE/E) 

0.47 1 0.019 0.2 71 51 20 49 22 2.2 

2 0.019 0.2 28 16 12 15 13 1.2 

3 0.019 0.2 103 47 56 42 61 0.7 

4 0.019 0.2 69 39 30 36 33 1.1 

5 0.019 0.2 78 51 27 48 30 1.6 

6 0.019 0.2 8 6 2 6 2 3.0 

7 0.019 0.2 112 45 67 39 73 0.5 

8 0.019 0.2 28 15 13 14 14 1.0 

Overall 0.019 0.2 497 270 227 249 248 1.0 

        Sample Size Calculation: Balanced Design 

  l      pl     ql nGSCC  

Sub- 
cohort 

Event  
sample Non-event Event  

Ratio  
(NE/E) 

0.47 1 0.018 0.465 96 50 46 48 48 1.0 

2 0.061 0.836 96 51 45 48 48 1.0 

3 0.022 0.149 96 54 42 48 48 1.0 

4 0.025 0.300 96 52 44 48 48 1.0 

5,6 0.017 0.316 96 50 46 48 48 1.0 

7 0.023 0.120 96 56 40 48 48 1.0 

8 0.066 0.710 96 52 44 48 48 1.0 

Overall 0.026 0.313 672 365 307 336 336 1.0 
                                                                                                          (continued) 
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Table 9. (continued) 

Sample Size Calculation: SCC Design 

   Optimal Proportional Balanced 

  l  nl
 Sub-cohort pl Sub-cohort pl  Sub-cohort  pl

0.47 1 2,703 20 0.007 55 0.02 47 0.017
  2 830 12 0.014 17 0.02 47 0.057
  3 2,487 57 0.023 51 0.02 47 0.019
  4 2,066 32 0.015 42 0.02 47 0.023
  5 2,690 28 0.010 55 0.02 47 0.017
  6 295 2 0.007 6 0.02 47 0.159
  7 2,386 72 0.030 49 0.02 47 0.020
  8 782 12 0.015 16 0.02 47 0.060

Overall    14,239 235 0.017 291 0.02 376 0.026

nSCC
     1,351   1,407   1,484   

Note. n = full cohort size, ln = size of stratum l in full cohort, lv = proportion of stratum l,

Dlp = event proportion in stratum l, l = group 1 proportion, = log-hazard ratio, lp = sub-

cohort sampling fraction in stratum l, SCCn = SCC sample size, Sub-cohort = sub-cohort size 

at stratum l, Non-event = number of subjects with non-event in stratum l,  Event = number of 
subjects with event in stratum l, NE:E = Non-event : Event, Event sample = number of 
subjects sampled from remaining events in stratum l, lq = sampling proportion from 

remaining events in stratum l, GSCCn = GSCC sample size in stratum l, Significant level

05.0 . Power = 80%. The sample size is rounded up to the nearest integer as 
appropriate. 
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Discussion and Conclusion 

We considered the GSCC design for the situation where the event is not-rare. We 

proposed the general stratified log-rank type test for the GSCC design and derived the 

power function. Our simulation studies show that the proposed stratified log-rank type 

test is valid in finite GSCC samples. The proportional design has a slightly higher power 

than the balanced design in both the homogeneous and heterogeneous situation. However, 

the balanced design has the disadvantage that some strata may not have adequate events 

for sampling so that it requires to be combined with other strata. The ARIC study is used 

to illustrate the sample size calculation from the proportional and balanced designs. It is 

observed that the proportional design saves about 1/4 sample size compared with the 

balanced design.  

The GSCC design is compared with the SCC design in the sample size calculation for 

the ARIC study. The GSCC design requires smaller sample size by including only a 

portion of subjects with events in the ARIC study instead of including all the events as in 

the SCC design.  

  



86 
 

4 Future Research Plans 

 

Introduction 

In previous chapters, we used the log-rank test to detect the difference of hazard func-

tion between two groups in the stratified case-cohort data. In this chapter, we are interest-

ed in other tests which may be more sensitive against the alternatives under different con-

figurations. To simplify the problem, we only consider the case-cohort data without strat-

ification. Assume the survival in two groups is stochastically ordered, the alternative hy-

pothesis of interest is )()( 21 tStS  for all t (t   [0, ]), (.),(.) 21 SS   in which )(1 tS and

)(2 tS are the survival functions at time t in group 1 and 2, respectively. Because the log-

rank test is sensitive to alternatives of ordered hazard functions however not necessarily 

to ordered survival functions, we consider the Weighted Kaplan-Meier test (WKM) 

which is directly based on the estimated survival functions (Kaplan and Meier, 1958; 

Gill, 1980; Breslow et al., 1984; Fleming et al., 1987; Pepe and Fleming, 1989; Fleming 

and Harrington, 1991). Because the variance of the WKM test statistic is unknown, we 

will use the permutation test. The Renyi-type test based on the supremum versions of 

WKM test statistics will be considered as well (Gill, 1980; Fleming et al., 1987; Cai and 

Shen, 2000). We will also present the permutation tests for log-rank and its associated 

Renyi-type test statistics in comparison with WKM test statistics. Four configurations of 

the alternative hypotheses, survival difference between two groups in proportional and in 

early, middle or late stage of study, are investigated by using WKM and log-rank tests. 

Simulation studies will be conducted. Empirical type I error and empirical testing power 

resulting from these permutation tests will be compared among WKM, log-rank, and their 
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Renyi-type tests. Recommendation of preferred test with regards to each configuration 

will be made.   

 

Notation 

Assume that there are n subjects in a full cohort. Assume that there are 2 groups and 

nj subjects in group j (j = 1, 2) with n = n1 + n2. Let Tij represent the event time and Cij the 

censoring time for subject i in group j (i = 1,…, nj), and they are independent of each 

other. Let ijJ  be the dichotomous variable indicating the exposure status, Xij = Tij  Cij 

be the observed time, and Δij = I (Tij  ≤ Cij) be the failure indicator, in which Δij = 1 

denotes failure and Δij = 0 denotes censoring. Assume n~  subjects are randomly sampled 

into a sub-cohort from n subjects without replacement. Let ij  = 1 denote that subject i 

in group j is selected into the sub-cohort and ij  = 0 otherwise. Denote by the proportion 

of group 1 and )1(  the proportion of group 2. All subjects in the sub-cohort and all 

events in the full cohort consist of the case-cohort sample. The observed data in the case-

cohort is 

,2,1;,...,1),,),)1(((  jniXJ jijijijijijij   

where ))1(( ijijij    = 1 indicates that ijJ  is observable and ))1(( ijijij    =  0 

otherwise.  

 

Case-Cohort Weighted Kaplan-Meier Test Statistics 

Kaplan-Meier estimator (KM) of survival is considered as a natural statistic to meas-

ure the difference in stochastically ordered survival between two groups (Kaplan and 
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Meier, 1958). However, it is known that the KM estimator can be unstable for t close to t0 

in the heavy censoring data; and the appropriate weight function was recommended to 

ensure the statistic stability (Pepe and Fleming, 1989). The Weighted Kaplan-Meier test 

statistics (WKM) can be defined as 

 ,)](ˆ)(ˆ)[(ˆ
0 21 
t

dssSsSsWKM 
 

in which )(ˆ s is the weight function, )(ˆ
1 sS and )(ˆ

2 sS are the KM estimator of the survival 

function for the treatment group 1 and 2 at time s, respectively, by using the case-cohort 

data.  

It is known that given a full cohort data, the KM estimator of survival function can be 

obtained by 












ts sY

sNd
tS

)(

)(
1)(ˆ , where )(sY  is the number of subjects at risk at time s 

(s < t) and )(sN  the counting process for the event before time s (s < t) in the full cohort 

(Kaplan and Meier, 1958). However, in a case-cohort sample which includes all events 

and a sub-cohort, )(sN is known, and )(sY can be estimated by psY )(
~

, where )(
~

sY is the 

number of subjects at risk at time s in sub-cohort and p is the sampling proportion of sub-

cohort (Prentice, 1986; Self and Prentice, 1988; Samuelsen, 2010). Thus the case-cohort 

KM estimator of survival function can be obtained as 
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We consider 4 common configurations of alternative hypotheses, proportional, early, 

middle, and late differences in survival functions between two groups (Cai and Shen, 

2000). Four weight functions are considered accordingly in the following:  

1. 1)(ˆ1 t for proportional difference; 

2. )(ˆ)(ˆ 2 tSt  for early difference; 

3. ))(ˆ1)((ˆ)(ˆ3 tStSt  for middle difference; 

4. ))(ˆ1()(ˆ4 tSt  for late difference. 

In addition, we investigate the Renyi-type test based on the supremum of WKM sta-

tistics, in a format of WKMWKMR t 0sup  . The Renyi-type test considers the maximal 

deviation at each time t and may be more powerful against a variety of configurations of 

alternative hypotheses (Gill, 1980; Fleming et al., 1987; Cai and Shen, 2000).  

 

Case-Cohort Log-rank Test Statistics 

Cai and Zeng (2004) proposed a log-rank type of test statistic for the case-cohort 

study, of which the test statistic was equivalent to the score test based on the pseudo-

partial likelihood function in Self and Prentice (1988). The test statistics was given as 

,
)(

~
)(

)(
~

)(

)(
~

)(
~

)(
~

)(
~

)(ˆ

2

2
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1
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21

21
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in which )(ˆ s , )(sN and )(
~

sY are defined as in the previous section. 

Similarly, the Renyi-type test based on the supremum of log-rank test statistics SP 

will be conducted as SPSPR t 0sup  in order to compare with WKM.  
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Permutation Tests 

Denote by 0WKM the permutation WKM test statistics at t =  , 0WKMR the permuta-

tion WKM-associated Renyi-type test statistics, 0SP the permutation log-rank (SP) test 

statistics at t =  , and 0SPR the permutation SP-associated Renyi-type test statistics us-

ing the observed case-cohort data. Let C denote the number of permutation samples (c = 

1, 2,….C). In each sample the event time and the censoring indicator will remain the 

same while the treatment will be assigned at random. Each sample shares the equal prob-

ability of 1/C in the permutation distribution. Denote cWKM , cWKMR , cSP and cSPR the 

test statistics obtained from the cth permutation sample generated from the observed data, 

then the p-values of WKM, SP, and its Renyi-type permutation tests will be calculated as  

 



C

c
c CWKMWKMIP

1
0 /ˆ , or  




C

c
c CWKMRWKMRIP

1
0 /ˆ  

 



C

c
c CSPSPIP

1
0 /ˆ , or  




C

c
c CSPRSPRIP

1
0 /ˆ . 

 

Simulation Studies 

 

Simulation Procedures 

A series of simulation studies will be conducted to evaluate the performance of WKM 

and log-rank permutation tests.  The empirical size and power of the permutation tests 

will be compared. The case-cohort samples will be generated by using the following pro-

cedures/parameters:  
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1) Various full cohort sizes (1,000 or 4,000), event proportions (1%, 5%, or 10%), 

and sub-cohort sampling fractions (0.1 or 0.2) will be considered. All subjects 

will be assigned to one of the two groups (denote Z = 1 for group 1, and Z = 0 for 

group 2). The proportion of group 1 will be set to 0.5. The significant level  will 

be set at 0.05.  

2) The failure time will be generated from the piecewise exponential distribution by 

using the following procedures:  

a. For each of 4 configurations, assign appropriate V1 < V2…< VH, of which 

Vh’s (h = 1, 2, …H) are the cut points for the time interval associated with 

the piecewise exponential distribution with V1≡0 and VH+1≡∞. Assign 

�ppropriate  for each treatment group and   (log-hazard ratio) in each 

time internal. To examine the empirical size, data will be generated with 

no difference between two groups so that two groups will have the same 

  and   = 0 in each time interval.  

b. Generate an independent uniform (0, 1) variant u. 

c. Calculate failure time 
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and I(A) is the indicator function for A.   

3) The censoring time is generated from a uniform distribution between [0, ], 

where  is varied with different censoring proportions based on the given event 

proportions.  

4) Each simulation will be repeated 2,000 times.  
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5) Empirical type I error will be calculated for WKM and log-rank permutation tests 

and corresponding Renyi-type tests under no difference set up. 

6) Empirical testing power will be calculated for WKM and log-rank permutation 

tests and corresponding Renyi-type tests under the proportional, early, middle, 

and late difference situations. 

7) SAS Version 9.2 and/or above will be used for programming. 

 

Simulation Results 

The simulation results will be compared in order to evaluate the performance of 

WKM and log-rank permutation tests. It will be observed if the empirical type I error 

results from WKM test, log-rank test, and their Renyi-type tests are comparable to the 

level of significance. The empirical testing power from WKM and log-rank tests will be 

compared to show which one yields a higher power than the others under the situation 

that the survival in two treatment groups is stochastically ordered. Furthermore, WKM 

tests with different weight functions ),(ˆ ),(ˆ ),(ˆ 321 ttt  and )(ˆ 4 t will be evaluated to 

examine which one has higher empirical testing power than the others for the 

configurations with proportional, early, middle, and late differences. Finally, the Renyi-

type tests will be compared against their counterparts for each simulation sample.  

 

Conclusion and Discussion 

If the results from the empirical type I error are observed to be close to the level of 

significance , it can be concluded that the corresponding tests, WKM test, log-rank test, 

and/or their Renyi-type tests, are valid for the case-cohort study in testing the null 
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hypothesis of no difference in survival between two treatment groups. Moreover, the 

closeness to the   will reflect the sensitivity of a test in testing the null hypothesis.  

The higher empirical testing power from WKM test or log-rank test will support the 

conclusion that the corresponding test is more powerful and efficient than the other in 

testing the stochastically ordered survivals in two treatment groups. Furthermore, if the 

WKM test associated with the weight function of ),(ˆ ),(ˆ ),(ˆ 321 ttt  or )(ˆ 4 t appears to 

have a higher power than the others for a specific configuration of alternative hypothesis, 

this WKM test associated with the choice of weight function is recommended for testing 

the alternative hypothesis with the specific configuration. For instance, if it is observed 

that the empirical testing power from WKM test with weight function of )(ˆ 4 t has the 

highest power among all other tests with different weight functions in testing the 

difference in survival between two groups, in which the difference appears to be a late 

difference, WKM test with weight function of )(ˆ 4 t would be recommended to test the 

late difference configuration situation.  

The Renyi-type tests will be compared against their counterparts for each situation 

discussed above. In testing the null hypothesis of no difference in survival between two 

groups, whether the Renyi-type tests are more sensitive than their counterparts WKM 

and/or log-rank tests will be revealed by their empirical type I error if it is closer to   

than the others. In testing the alternative hypothesis with different configuration 

situations, Renyi-type tests will be recommended if they are more powerful than their 

counterparts by comparing their empirical testing power results in each specific situation.  
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Appendices  

 

A.    SCC Asymptotic Variance Derivation 

From the expression of l  in the previous sections and note that  ,
)(

)(
)(

tS

tdS
td

l

l
l 

,~
)(

~
)()()-(1 and  ,~

)(
~

)()(  ,
)(

~
)(

~
)()(

)( 2
2

1
10

21

21

l

l
lll

l

l
lll

ll

ll
ll n

tY
tSt

n

tY
tSt

tYtY

tNdtNd
pt 




 


 

can be approximated by  











 
 )(

~
)(

~
)(

~
)(

~
)(

~
)(

~
)(

~
)(

~

)(
~

)(
~

)()(
~

)ˆ1(ˆ1
ˆ

21

122211

211 wYwY

wtYwYtYwtYwYtY

tYtY

wt

n

pp
n

n ll

llllll

lll

ll
L

l
l

  

        











)(

~
)(

~
)()(

)(
~

)(
~

)()(

21

21

21

21

tYtY

tNdtNd

wYwY

wNdwNd

ll

ll

ll

ll  

      
 

















L

l

t

ll

ll

ll
l

ll

l wNdwNd
wYwY

wtYwYw
tY

tYtY

t
p

n 1
0 212

21

21
12

21

])()([
))(

~
)(

~
(

)(
~

)(
~

)(
)(

~

))(
~

)(
~

(

)(
)ˆ1(

1 
 

        















  )]()([)]()([
))(

~
)(

~
(

)(
~

)(
~

)(
)(

~
210 212

21

12
2 tNdtNdwNdwNd

wYwY

wtYwYw
tY ll

t

ll

ll

ll
l

        

       
 

















L

l

t

ll

ll

ll

ll

l wNdwNd
wYwY

twIw
tYtY

tYtY

t
p

n 1
0 21

21

212
21

])()([
)(

~
)(

~
)()(

){(
~

)(
~

2
))(

~
)(

~
(

)(
)ˆ1(

1 
 

         















 )]()([)]()(}[
)(

~
)(

~
)()(

2121

21

tNdtNdwNdwNd
wYwY

twIw
llll

ll

  

       
 

















L

l

t
n

i
li

n

i
li

llll

ll
l wdNwdN

wYwY

twIw

tYtY

tYtYt
p

n

ll

1
0

1
2

1
1

21
2

21

21 ])()([
)(

~
)(

~
)()(

))(
~

)(
~

(

)(
~

)(
~

)(
)ˆ1(2

1 21
 

         















 


)]()([)]()([
)(

~
)(

~
)()( 2121

1
2

1
1

1
2

1
1

21

tdNtdNwdNwdN
wYwY

twIw llll n

i
li

n

i
li

n

i
li

n

i
li

ll



.

 



101 
 

Since 
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B. GSCC Asymptotic Variance Derivation 

From the expression in the previous sections, the GSCC asymptotic variance of

nTn 2/1 , 2
T , consists of 3 terms, namely Term A, B, and C. Term A ( 2 ) is the 

asymptotic variance of the usual log-rank test statistic in a form of   
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After integration, we obtain the Term C as 
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Thus, the asymptotic variance of nTn 2/1 is to combine Term A, B and C in a form 
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After integration by part, we obtain
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We order the failures from the smallest to the largest and assume no two failures are 

tied to each other, then ll DtdN 
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which is the same as the equation (15).   
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C. Other Derivation 
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