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ABSTRACT 

        Hajeer, Mustafa Hussein. M.S. The University of Memphis. August 2013. 
Distributed Multi-objective Evolutionary Algorithm for Dynamic Multi-
Characteristic Social Networks Clustering.  Major Professor: Dipankar Dasgupta 

In this information era, social media and online social networks have 

become a huge data source. The social network perspective provides a clear 

way of analyzing the structure of whole social entities. These social media and 

online social networks are a virtual representation of real life as they represent 

real life relations between social actors (people). The primary focus of this study 

is to propose an algorithm and its implementation for clustering of multi-

characteristic dynamic graphs in general, and multi-characteristic dynamic online 

social networks in specific. Social networks are typically stored as graph data 

(edges lists mostly), and dynamically changes with time either by expanding or 

shrinking. The topology of the graph data also changes along with the values for 

the relationships between nodes. Several algorithms were proposed for 

clustering, but only few of them deals with multi-characteristic and dynamic 

networks. Most of the proposed algorithms work for static networks or small 

networks and a very small number of algorithms work for huge and dynamic 

networks. In this study a practical algorithm is proposed which uses a 

combination of multi-objective evolutionary algorithms, distributed file systems 

and nested hybrid-indexing techniques to cluster the multi-characteristic dynamic 

huge social networks. The results of this work show a fast clustering system that 

is adaptive to dynamic interactions in social networks also provides a reliable 

distributed framework for BIG data analysis
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1. INTRODUCTION 

1.1 Statement of problem 

 Social media and online social networks have become a huge data source 

and virtual representation of physical life and physical relations between people. 

These social media and online social networks contains very important 

information, which helps in studies such as social behavior, online marketing and 

studies about web characteristics. Recently they have attracted much attention 

among the research field and research groups. 

 Communities can be defined as a group of individuals who interact within 

a group with each other more frequently than with those outside the group. 

Studies on these communities cannot only help in study of the above mentioned 

areas, but also in areas concerned with security issues. Understanding how 

these groups are formed and how it changes over the time, by classifying nodes 

in a network, based on some characteristics, can help in applying theories and 

techniques to improve these fields. The social networks and online dataset are a 

combination of interconnected distinct groups. These distinct groups, needed to 

be extracted from this one single large group of network. The study of inferring 

these groups is called network clustering; which can show the real clusters 

(groups) within any dataset, such as social network data. Social networks are 

dynamic in nature, which means it changes overtime. In an online social network 

world scenario, groups are changing dynamically, therefore the new direction of 
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network and graphs clustering are directed as multi-characteristic dynamic 

networks clustering. 

Graph or network clustering has proved to be NP-complete problem, [1] 

which means there is no known efficient way to locate a solution, also the time 

required to solve this problem increases very fast with the input (network). The 

time required to solve even moderately sized versions of this problems can easily 

reach into the thousands of hours. But social networks grows really fast and it is 

huge in size, in addition to that it is dynamic in nature; which means with the time 

needed to cluster the network, the network has already changed, and the new 

formed network may be totally different than the recentlyclustered network.  

 In addition to the above explanation, social networks are multi-

characteristic in its nature. There are multiple ways in which two nodes can be 

connected, for example in case of Facebook(a major social networking site), a 

node(a person/page) can add another node as a friend which is a connection, 

however a node can also send a message to another node, and all of this is 

different type of connection, and it can be combined together to form links with 

values for each characteristic.  

 All of the above different types of connections with multiple characteristics 

result a huge and complex datasets, which is impossible for clustering algorithms 

to cluster and produce results in reasonable time. 
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1.2 Indices for Network Clustering 

In this work we referred to graph G(V,E), as an undirected graph. Let 

|V|=m, |E|=n and C = (C1, C2, C3,…, Cj) as a partition of V as a disjoint sets. We 

call C a clustering of G containing j clusters. The number of clusters j has a 

minimum of j=1, when C contains only one subset C1 = V, and a maximum of j=m 

when every cluster Ck contains only one vertex. We identify the cluster Ck as a 

subgraph of G. The graph G[Ck]:=(Ck,E(Ck)), where E(Ck)={{V,W}   E:V,W   Ck}. 

Then E(C) = ⋃    
 
   k) is the set of intra-cluster edges and E\E(C) is the set of 

inter-cluster edges. The number of intra-cluster edges denoted by m(C) and  ̅(C) 

is the number of inter-cluster edges. 

As an input the social network assumed as a set of graphs 

SNG=(G1,G2,G3,….,GZ), and the set of graphs-clustering SGC=(CG1,CG2,…,CGZ) 

where each graph Gi has its own clustering CGi  and satisfies all the conditions 

mentioned for G and C respectively, where Z is the number of characteristics of 

the network’s dataset, graphs (G1,G2,G3,….,GZ) have the same set of V but 

different set of E. each CGI is an objective to achieve in this work. 

The goal is to find SGC using multi-objective optimization and to combine 

them into one clustering SNC =(SNC1, SNC2, SNC3,…..,SNCX), where 

SNC:=⋃   
   GL. The set of clustering for social network SNC is not necessarily 

disjoint, but it is a union of sets where each set is a group of disjoint subsets. 

Social networks representation with all of its characteristics can lead to a 

dataset of a huge graph, however, we represented the social network as a set of 

graphs rather than one graph, each graph represents one characteristic. The set 
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of graphs have the same set of vertices, but different number of edges. The 

proposed algorithm takes the social network as a multi-characteristic dataset, 

then partitions it into set of graphs SGC, where each graph contains edges for 

only one characteristic. Then each graph GI is clustered individually by an edge 

removal algorithm to produce disconnected graph represented by clustering CGI, 

then by measuring the strength of these clusters. After clustering each graph GI, 

we combine elements of each clustering in SGC into one clustering SNC, to 

produce an overlapped clustering where clusters SNC1 to SNCX are not 

necessarily disjoint. 

For the clustering process of each graph, an evolutionary algorithm has 

been used because of the huge search space for all graphs. On the other hand, 

Hadoop distributed file system has been used to provide performance and speed 

by partitioning the large datasets into smaller blocks.  

1.3 Literature Review 

 Several algorithms were proposed as a solution for clustering problem, the 

most popular algorithms and frameworks were gathered and classified based on 

their positive and practical aspect, as well as their drawbacks. In our algorithm, 

we gathered all of the drawbacks of existing solutions and overcame them with a 

collection of techniques, which are mentioned in the next sections as we continue 

explain our approach. 

The list below shows different clustering and data mining techniques along 

with their advantages and drawbacks. 
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 In “basic concept of data mining, clustering and genetic algorithm” [24], 

Tsai-Yang Jea reviewed a basic evolutionary algorithms, whose concept have 

been analyzed with the following results: 

Advantages: Fast results as a clustering algorithm, since it doesn’t search the 

whole space of solutions. 

Drawbacks: Final clusters don’t show global optimization, the chromosomes 

represent the whole space each time, and need parameters as inputs, like 

number of clusters to start. Also the search for node’s similarities itself is time 

consuming process, and it has to be done in C*N2 time, where N is number of 

nodes and C number of chromosomes. The amount of time taken to produce the 

result makes it inapplicable for huge datasets. 

 Petra Kudová developed (CGA) an evolutionary algorithm for clustering in 

his paper “Genetic algorithm clustering”[20], published from Academy of Sciences 

of the Czech Republic, ETID, on 2007. After a deep analysis the advantages and 

drawbacks for his research have been summarized as follows: 

Advantages: faster than regular search approach, and looks for global 

optimization.   

Drawbacks: Similar to Tsai-Yang Jea [4], the search for node’s similarities itself is 

time consuming process, and it has to be done in C*N2 time, where N is number 

of nodes and C number of chromosomes. Also each chromosome copies the 

whole search space as a list, and that is C*S where S is the search space size 

(billions of nodes and connections in real life). That makes the execution time 

and space for this algorithm impossible for huge datasets processing. 
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1.4 General Literature 

There are many other related works (listed below) which demonstrate 

different advantages of clustering algorithms; nevertheless, these approaches 

have almost similar drawbacks as discussed in reference to the algorithms 

mentioned in above section. The major drawback was that these approaches 

needed some parameters to feed, for example, number of clusters, size of 

clusters or number of generations that are needed by evolutionary approaches. It 

is suggested that these parameters should be found from the dataset, not given 

as an input parameters. Also these inputs aren’t available; hence, it changes the 

solutions and can result false solutions. 

Some other drawbacks which are critical is that these approaches copy 

the search space many times, thus result in demanding huge space for 

processing which is an impractical approach in real life. On the other hand, the 

results are produced slowly and by the time needed for processing the whole 

network, the network has already changed because of its dynamic behavior. 

Below is another list of papers that share the same disadvantages: 

 Evolutionary Clustering and Analysis of Bibliographic Networks [15] 

 Multi-objective Evolutionary Algorithms for Dynamic Social Network 

Clustering [13] 

 A Multi-objective Hybrid Evolutionary Algorithm for Clustering in Social 

Networks [6] 

 A framework for analysis of dynamic social networks. [23] 
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 An algorithm for clustering relational data with applications to social 

network analysis and comparison with multidimensional scaling. [21] 

 Genetic algorithm and graph partitioning. [22] 

 Multiobjective evolutionary clustering of web user sessions. [18] 

 Dynamic algorithm for graph clustering using minimum cut tree. [15] 

 Community detection in complex networks using genetic algorithm. [2] 

 A new graph-based evolutionary approach to sequence clustering. [16] 

Table1 on the next page summarizes the evaluation of previous work 

along with its characteristics and compares it with our approach.
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Table 1: Clustering Algorithms Evaluation 

Method Reference  Search 

overhead 

Practical 

dataset size 

Multi-

characteristic 

Dynamic 

networks 

Evolutionary 

based 

Extra parameters 

needed 

Clustering and Genetic Algorithms [24] Yes ~1000  No No Yes Yes 

Genetic algorithm clustering [20] Yes ~900 No No Yes Yes 

Evolutionary Clustering and Analysis of 

Bibliographic Networks [15] 

Yes ~700 No No Yes Yes 

Multi-objective Evolutionary Algorithms for 

Dynamic Social Network Clustering [13] 

Yes ~600 Yes Yes Yes No 

A Multi-objective Hybrid Evolutionary 

Algorithm for Clustering Social Networks [6] 

Yes 500 to 700 Yes No Yes Yes 

Multiobjective evolutionary clustering of 

web user sessions [18] 

Yes ~700 No No No No 

Proposed approach No ~10000 on 

each 

reducer 

Yes Yes Yes No 
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None of the previous works show interest in distributed or parallel 

approach, thus resulting in clustering and search overhead. The approach in this 

study uses Hadoop distributed file system and a combination of hybrid hashing 

and evolutionary algorithms; hence, resulting in a fast, robust and practical 

solution according to the dataset size. 

1.5 Distributed Evolutionary Clustering 

 Many metrics have been used in traditional social network analysis as a 

measurement to determine the strength of each group in the network. Some of 

these metrics have been used in the algorithm itself to find groups (clusters), 

such as max-clique, k-clique, modularity, k-club etc., where Lei Tang and Huan 

Liu, Morgan & Claypool explains these metrics in his work “Community Detection 

and Mining in Social Media”[10] discussed in section 1.6 below. 

1.6 Metrics of Measurements  

1.6.1 The Maximum Clique 

Cliques are the complete graphs where every node is connected to all 

other nodes in the graph. These are the measurements of how strong the groups 

are. This technique tries to find the maximum sub graphs that are cliques in 

nature. The problem itself has been proved to be NP hard as Lei Tang and Huan 

Liu, Morgan & Claypool discussed in “Community Detection and Mining in Social 

Media”[10]. 
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Figure 1 below illustrates synthetic network to define the maximum clique. 

In this figure Nodes 1,2,3 and 4 form a clique, also any three nodes combination 

of 1,2,3 and 4. 

Nodes 1, 2, 3 and 4 form the maximum clique, node 5 or node 6 can’t be 

added since the group loses its definition. Smaller cliques can be found like 1, 2 

and 3; however, the maximum number of nodes, which forms a clique in this 

network, is 4. 

Clustering solutions can be measured based on how many groups of 

maximum cliques the solutions have. The more number of groups the solution 

has, the stronger the solution is, which is also known as “maximization problem”. 

Figure 1: Clique Definition 
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1.6.2 K-clique and K-club 

As per definition, clique of size k is the graph where each node maintains 

degree >= k-1, similarly k-clique is defined as the maximal sub graph, where the 

longest distance between any pair of nodes <= k. The k-club is defined as a 

substructure of diameter <= k. For the network illustrated in figure 1, it can be 

said that: 

• 2-clique contains nodes {1, 2, 3, 4, 5 and 6}. 

• 2-clubs contains nodes: {1, 2, 3, 4 and 5} or {1, 2, 3, 4 and 6}. 

To achieve stronger clustering with stronger groups, the objective is to 

minimize k for the sub graphs and maximize the size of the group at the same 

time. The overall objective is to combine this relation for all groups in one value, 

and compare it with other solutions. 

1.6.3 Modularity  

Lei Tang and Huan Liu, Morgan and Claypool define modularity in 

“Community Detection and Mining in Social Media”[10] as the strength of a 

community partition by taking into account the degree of distribution which can 

be calculated as follows: 

The strength of community can be calculated by formula: 

  ∑ (    
    

  
)       ,  

Where, 
    

  
 = expected number of edges between nodes i and j with the 

degree                      for node j. 

 Aij is the number of real edges between node i and node j, and m is the 

number of edges in the network. 
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The following formula is used to calculate the modularity, and maximize 

the strength of the communities’ structure in the network: 

      ∑                   

 

   

 

Where, Q = modularity measure and k = number of communities.  

By maximizing the objective Q a better communities structures achieved 

as a solution. 

1.7 The Motivation  

 The major problem in the traditional combine and test, for the search 

algorithms (the sub problem of clustering), is that the search space is too huge 

and for large networks it is impossible to apply. It was observed that the previous 

works including evolutionary clustering algorithms, need to search for 

connections, and this process takes place several times for each node in the 

network either for the clustering process or for the evaluation process. On the 

other hand, traversing the network at each node and looking for all neighbors in a 

huge dataset is an overhead itself. 

 For the above reasons, a new distributed evolutionary algorithm and a 

hybrid HashMap technique was developed for a very fast search. 

1.7.1 The Evolutionary Clustering 

Since the problem have a huge search space, and the clustering problem 

is proved to be NP-Complete problem, as per Jiri Sima and Satu Elisa Schaeffer   

proved in their work “On the NP-Completeness of Some Graph Cluster 

Measures”. We chose evolutionary algorithms to find approximation or close to 
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the optimal solution and because of the dynamic nature of the social networks, it 

was decided to develop an evolutionary algorithm that clusters the network in a 

fast way and uses the metrics above as a fitness function and evaluation for 

solutions. Since social networks are full of noise in terms of data, the 

chromosome encoding developed as a list of weak and noisy edges to be 

removed, “edge removal and cut based algorithm”. 

Most of traditional evolutionary algorithms were developed in a way that 

the user should provide some parameters about the network, and the algorithms 

were processing the data based on these parameters. In this study, it is believed 

that the user shouldn’t provide these parameters, but it should be extracted for 

the network itself. Hence an algorithm is developed in such a way that the 

network –edges list and its characteristics- has to be the only input, and that no 

interfering or noisy data were read from the user. During the execution of the 

algorithm, it receives the changes in the network and reflects it on the algorithm 

inputs-the edges list- then the algorithm produce results and create output 

solutions based on the most recent network inputs. 

Jmetal 4.3 is a powerful object-oriented Java-based framework aimed at 

multi-objective optimization by using metaheuristics. jMetal provides a rich set of 

classes which can be used as the building blocks of multi-objective techniques.as 

per Antonio J. Nebro, Juan J. Durillo “jMetal 4.3 User Manual” [18]  In this study 

jMetal is used to develop the evolutionary algorithm. 
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1.7.2 The Job Distribution and Parallelism  

The clustering problem is an overhead itself, and during the process there 

is a lot of search jobs. To make the process faster and less memory demanding, 

a parallel distributed evolutionary algorithm is developed. Such algorithms need 

synchronization mechanism so the solutions can be produced, In this study, the 

algorithm is synchronized on a population level (discussed in architecture 

section):each population will move to the next one after complete evaluation only.  

Evolutionary algorithms made the adopted approach work faster and 

distributed evolutionary computing made it possible to process even faster; 

hence, resulting in less clustering overhead and practical to cluster huge dynamic 

datasets. 

Hadoop distributed file system HDFS provided a robust platform for our 

algorithm, where dataset is distributed among multiple computers, each 

computer works on the data it has, based on the job it receive from the master 

computer. The master computer is responsible for receiving results from other 

DaraNodes and combines them into one population, also receiving the next 

population from client and then submitting jobs to TaskTrackers again. 

The master computer is denoted by NameNode or task tracker. 

Computers in the network denoted by DataNode or job tracker. To make it less 

confusing in the next sections, the network of computers running HDFS will be 

referred as “Cluster” and the communities in the dataset will be referred as 

“Groups”.  
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Figure 2 illustrates a diagram of (HDFS) Hadoop distributed file system 

structure.  

 

1.7.3 Hybrid Hashmap 

The main overhead in clustering problem is the search in huge datasets, 

in the process of finding connections, and during the evaluation process. With 

undirected graphs or network, the problem arises where each connection can be 

directed in both sides, and the search problem takes double the time of the 

Figure 2: Hadoop Network 
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regular directed graphs search. The dynamic nature of social networks made 

faster search impractical for sorting process. 

In our approach, a hybrid Hashmap technique is developed which 

converts the edges list of the network to a hashmap matrix that represents it. 

Each node was given an ID as a search index, where the search value is a small 

Hashmap representing all connected nodes with characteristics values as a 

string. This Hybrid Hashmap made it possible to group distinct nodes in a single 

group and at the same time evaluate the group strength in one cumulative step. 

A faster way to do depth first search is to traverse the disconnected groups in 

one network and to evaluate in a very fast time for huge networks. When the 

search process starts, the next node to add to the group can be found in less 

than one millisecond rather than taking a long time to search the dataset. The 

search is an overhead itself taking around 2N2 for each solution to cluster and 

evaluate. 

Table 2 below shows a snapshot of a synthetic dataset which contains 

distinct groups after removing noise connections with the values of 

characteristics of the network. 
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Table 2: synthetic dataset edges list 

Node A  Node B  Number of 

emails 

Number of 

posts  

Number of 

comments  

1  2  4  4  4  

1  3  3  3  3  

1  4  4  4  4  

1  5  4  5  5  

5  4  3  4  4  

5  3  4  3  3  

2  3  3  3  3  

2  4  3  3  3  

6  7  5  4  3  

6  8  3  5  4  

6  9  4  4  4  

7  8  4  3  5  

7  9  3  4  4  

8  9  4  5  5  

 

 Figure 3 shows its hybrid Hashmap representation of the same dataset 

where we converted the edges list to make it fast for search and merge process. 
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Figure 3: Hybrid Hashmap representation of table 2 

1.8 Chapter 1 Summary  

The problem statement has been discussed in this chapter and the 

motivation for the proposed solution. It was shown that it is better to represent 

the multidimensional space of social networks by multiple graphs, each represent 

one characteristic, so the solution space becomes smaller to search. It was 

shown also that the optimization and approximation are good techniques for such 

problem with large search space, also the distribution of such algorithms reduce 

the overhead of searching and clustering process.    
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2. Evolutionary Algorithms 

Evolutionary algorithms are a collection of problem solving techniques that 

provide a very suitable way to search for solutions in large space problems. The 

idea came from natural selection in biology, where the implementation in 

computer science is that the good solutions in the search space stays and 

produce better solutions, and bad solutions fades. The steps of evolutionary 

algorithm is explained as: 

1. The solution of the problem is encoded in a Geno representation called 

chromosome. 

2. Multiple solutions are generated and the group of solutions called 

population. 

3. The best solutions “called parents” is selected and crossover is done to 

produce child solutions searching for better solutions. 

4. Mutation is done for the generated solutions to make the algorithm 

expand in the search space and look for diversity in the population. 

5. New population is generated from the child solutions  

6. Step 3 is repeated until criteria are met. 

7. Best solution is extracted in the last population. 

The evolutionary algorithms were found to solve problems with close to 

optimal solutions, usually for NP hard problem or NP complete problems, and the 

result solution is an approximation.  

For our clustering problem in this study, Jmetal framework is used 

because it provides a robust and reliable collection of algorithms. Jmetal is an 
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easy to use, extensible, and flexible. A problem class and encoding class is 

created, and then the algorithm class is overridden to match the needs of 

providing a new distributed way to evaluate the solutions. It is further explained in 

the architecture section. 

 To provide an overview of Jmetal, the framework entities and connections 

between these entities are represented in figure 4 as per Antonio J. Nebro, Juan 

J. Durillo, jMetal 4.3 User Manual [4].  

 

Figure 4: Jmetal architecture diagram 
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3. Hadoop Distributed File System (HDFS) 

3.1 HDFS Architecture  

 Hadoop distributed file system (HDFS) is an open source file system. It is 

a file system that can combine multiple computers and show them as one 

system. Also it allows the user to query and process large datasets in short time. 

The capabilities of the system increases with the number of computers added to 

HDFS cluster. It can work with unstructured data as well as collection of 

structured data. The main idea behind this file system is to split large datasets 

into smaller ones and spread them over the HDFS cluster, with some 

redundancy mechanism to provide a strong reliability in the cluster. 

 HDFS cluster provides a collection of services. The primary service 

among all is the MapReduce, where any process (also called job) can be 

submitted to the master computer (called the master node), and the master 

computer by its turn spread the job into tasks for each computer in the HDFS 

cluster (called data nodes). Each computer performs mapping and reducing for 

the task assigned to it on the data it have. After mapping and reducing, the result 

is returned to the master node, and the master node returns result to the 

submitting user as files. 

 For better understanding, figure 5 illustrates a simplified HDFS cluster 

architecture with the names of its components. 
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HDFS has two main components: 

o The core as the master node: 

 NameNode: Maintains mapping of file names, blocks and data 

nodes. 

 Job tracker: Tracks resources and schedules jobs across task 

tracker nodes. 

o Nodes: 

 DataNodes: contains the files blocks and continuously sends 

heartbeat to the master node to confirm its status. 

 Task tracker: Runs tasks (work units) within a job. 

Figure 5: HDFS Architecture  
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3.2 MapReduce 

 MapReduce is the main service that runs on Hadoop distributed file 

system HDFS. MapReduce can be used to query from serial files distributed on 

HDFS cluster. This process made it easier to query huge datasets (petabytes of 

data) in a faster way than normal indexed databases. 

Before initializing any MapReduce process, data have to be ready in the 

HDFS cluster. To upload the data into the HDFS cluster, the command “put” can 

be used along with the file name and the destination directory in HDFS file 

system. When the “put” command is called, a copy of the data file is moved to 

the HDFS cluster, then the file is divided into blocks across the DataNodes in the 

cluster. The hadoop file system provides redundancy mechanism to provide 

reliability and availability in hardware failure situations and data blocks 

information saved in the cluster. Each DataNode sends heartbeat periodically to 

the NameNode to confirm the status of the DataNode. 

After the file is uploaded, it becomes ready to use. MapReduce operations 

can occur based on RPC (remote procedure calls) for the user to the Job 

Tracker. The user defines a MapReduce functions and passes them to the Job 

Tracker. Then the Job Tracker spreads the map function as tasks to Task 

Tracker. Each Task Tracker works only on the data blocks it have on its 

DataNode. The map function reads the data and maps it to pair of <Key, value> 

and passes it to the reducer function. Before the reducer function performs the 

reduce operation, shuffle operation exchanges the pairs between TaskTracker, 

where each reducer takes one Key or more to work on. The reducer then starts 
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reducing the collection of <key, value> pairs that came from the map function into 

a new single pair of <NewKey, NewValue>. The reduce operation is user defined 

which writes these results into files and saves it in the HDFS. 

Figure 6 illustrates the previous explanation of MapReduce operation on 

Hadoop distributed file system –HDFS- cluster. 

Figure 6: MapReduce operation 
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Based on figure 6, the pseudo code steps below explain flow of any 

general MapReduce function call. In the architecture section, it is demonstrated 

how these steps are mapped to approach adopted in this study by creating new 

object writer for values. 

3.3 MapReduce Steps 

o Map and Reduce jobs are received from user program by the 

JobTraker in the master node of HDFS. 

o The JobTraker spreads the MapReduce Tasks to the TaskTracker in 

all Nodes in HDFS. 

o Each TaskTracker reads file blocks contained in its DataNode. 

o For each data line read from DataNode, mapper converts it into pair of 

<Kye, Value> based on user program definition, and writes it into 

intermediate file. 

o <Key, Value> pairs are shuffled and exchanged between Reducers, so 

each group of the same Key is collected into the same Reducer. 

o The Reducer reduces the array of values for each key into one value 

based on reducer definition from the user program, by emitting the 

value from the intermediate file and combining it to the NewValue. 

o The <NewKey, Newvalue> pairs are written into result files, and saved 

on HDFS. After this the user can pull it out of the cluster when the user 

program receives a trigger that the MapReduce operation is 

completed. 
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The more nodes in the HDFS cluster, the MapReduce operation can be 

processed with more speed and efficiency.   

3.4 Chapter 3 Summary 

 Hadoop distributed file system (HDFS) was discussed in details along with 

its MapReduce process. It was shown that such file systems provide a robust 

platform for distributed jobs on huge datasets. HDFS provides fast solutions for 

algorithms distribution with an advantages of handling large processes in a small 

period of time, which makes it a very suitable file system for clustering 

algorithms, especially with datasets that have a strong relations between it’s 

components. 

 The huge amount of queries on the social networks datasets by clustering 

algorithms made HDFS a very suitable platform that can provide solutions in a 

practical period of time and without discarding the dynamic nature of social 

networks.  
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4. THE Proposed Architecture  

4.1 Implementation Details 

The proposed framework consists primarily of two main components, the 

evolutionary component, and the distributed file system. The two components 

overlaps on each other to provide one framework that takes dynamically 

changing dataset as an input and splits it into blocks over the distributed file 

system. The evolutionary part creates chromosomes and is responsible for 

extracting the parameters, create clustering and evaluating jobs, sending jobs to 

HDFS cluster, getting the result back to generate new solutions and create new 

jobs again. 

Figure 7 below illustrates the proposed framework architecture on a very 

high level. The components with its purpose listed after the figure. The rest 

chapter 4 describes these components in details. 
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The framework composed of two main components: 

1. Client Module: 

a. Inputs Preprocessor: process the social network dataset and 

transform it into multi-dimensional dataset ready for 

uploading into HDFS. 

b. Output Module: getting evaluation results and sends it to 

evolutionary module and saves the most recent clusters as 

clustering results. 

Figure 7: The Proposed framework 
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c. Evolutionary Module: process and execute the evolutionary 

algorithm and its operator to find best clustering solutions, it 

also create clustering and evaluating jobs for HDFS.   

2. HDFS module: 

a. Inputs Distribution Module: receives the processed dataset 

and distributes it over HDFS DataNodes. 

b. Job Manager: receives jobs from evolutionary module and 

transform it into tasks of Map and Reduce. 

c. Tasks Distribution module: distribute Map and Reduce tasks 

to TaskTrackers. 

d. Results Warehouse Module: saves clustering results of 

solutions and its evaluations to be read by output manager 

module on client module. 

Any distributed system needs synchronization. The approach adopted in 

this study, especially the evolutionary algorithm component, needs 

synchronization because no solutions can be generated if previous 

solutions(parents)  aren’t evaluated. To reduce the overhead in job generation 

and submission and on HDFS calls, the synchronization is generalized to the 

simplest level. 

 



 30 

The simplest level to which synchronization can be generalized is new 

population level. The approach can be preceded with the population itself but 

cannot be moved before evaluating solutions, so the algorithm class in Jmetal is 

modified to evaluate the population at once rather than solutions level. Each 

group of solutions is send at once as a clustering and evaluating job to HDFS. 

The next generation of solutions can only be created after the previous one is 

already clustered and evaluated. Figure 8 shows a general view of proposed 

approach and illustrates the synchronization level.  

 

Figure 8: General View of Population-based approach and Synchronization Level 
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Figure 8 illustrates the pseudo code of the general steps of the algorithm 

after the file is uploaded in the HDFS and the changes are continuously being 

uploaded in parallel with the execution of the algorithm.  It can be further 

described as: 

1. The problem class generates the inputs for the evolutionary algorithm. 

2. User program runs the algorithm by issuing the command execute for 

the modified algorithm class, and send the problem object with its 

values to the algorithm object by the execute method. 

3. The algorithm class on HDFS client generates the first population 

chromosomes, and keeps it without fitness values ready for evaluation. 

4. The algorithm class running on HDFS client contains the unevaluated 

population into a job along with number of dataset characteristics, and 

sends the job as a MapReduce job to the JobTracker on the 

NameNode. 

5.  The JobTracker distributes the job to TaskTrakers as tasks. 

6. A map and Reduce operation carried out by TaskTrackers and writes 

the solutions as groups with its fitness’s in results files into HDFS. 

7. JobTracker triggers the HDFS client running the user program that the 

job is done and the solutions with evaluations are ready along with 

group description for each solution. 

8. The HDFS client pulls the results form HDFS results files, writes the 

groups of the best solution into network file as the most recent 

clustering solution, on the other hand the algorithm takes only the 
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fitnesses along with the solutions as an evaluated population, ready to 

do GA operations like crossover and mutation, to generate a new 

unevaluated population. Step 4 is repeated while the program is still 

under execution. 

While the system is running, any changes to the dataset is immediately 

uploaded and merged with the input dataset on the HDFS. In parallel to the 

running algorithm, the changes are immediately reflected in new solutions. 

4.2 The Proposed Design of Solution Space  

The primary idea of encoding scheme for the chromosome (called 

solution) is an array of integers that represent the noise edges in the network. 

We want to find and remove, to create a network of distinct groups without any 

noisy edges, and then find how strong these groups are as an evaluation for 

each solution. Each TaskTracker works only on the parts of the chromosome that 

it have in its block and mark it as removed edge. Each integer is as ID to an edge 

in the dataset, these IDs created uniquely for each edge before uploading into 

HDFS.   

Figure 9 (A) illustrates the chromosome-encoding scheme where the 

length of the chromosome is variable. Figure 9 (B) illustrates the network 

representation for solution in figure 9 (A), since the algorithm is looking for noise 

edges, its one of the objectives is to find the number of these edges. 
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(A) 

 

(B) 

 

Figure 9: (A) Chromosome encoding scheme, (B) Network representation of 

solution (A) 
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4.3 The Proposed Objective Functions 

The algorithm is configured to be parameter-less, while previous work 

required the user to enter parameters such as number of clusters, clusters size 

gap, clusters modularity etc. It is believed that these inputs should be derived 

from the dataset, to make solutions realistic. So these parameters are made as 

objective functions, and they are added to the problem class in Jmetal 

framework. The main objective function is composed of an equation, which 

contains number of groups, number of noise edges removed, and values of each 

characteristic of the edges itself. Another objective has been added to represent 

the groups strengths and use these values as multiple fitnesses to evaluate the 

solution. The formula below shows the main objective: 

    (∑
∑    

        )     

Where: 

 Fc: objective for characteristic C. 

 N: edge N. 

 Vn: value of characteristic C on edge N. 

 Gn: the group size. 

 Er: number of edges removed. 

 

N number of objective functions was created based on number of 

characteristics the network have, and each one of them reflect a different Fc and 

results different Fc value. Each one of these values are considered to have the 
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objective to maximize in the problem class in addition to the modularity objective. 

This formula is developed to remove noise edges. If any edge other than noise is 

removed, it will results in a lower fitness as a penalty, that lowers number of 

edges removed and keep the network in the same topology, it also prevents 

groups of one node to be created. 

Number of objectives differs from a network to another, based on what 

data is obtained from the dataset, especially number of characteristic, that can be 

gathered about the network.  

4.4 Task At TaskTracker Level 

Tasks on the TaskTracker level receives a copy of the solutions list 

(population),then the task is to map the data read from data block into pairs of 

<Key, Value>, by comparing the data with the solution list received. Each 

TaskTracker works only on the parts of the solution contained in its data blocks, 

and we call these parts active parts, the rest parts of the solutions called inactive 

parts. During reduce step values for each solution collected from all mappers, 

together makes each solution fully active. 

Figure 10 shows the population on TaskTracker level and represents the 

mapper step where parts of solutions are inactive. 
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 The green dashed line is the active part of the solution, and its data is 

available in the data block on DataNode where the TaskTracker runs. The red 

dashed line indicates that these data are available in another data block on 

another DataNode. The reduce step combines all available solution for one or 

more Keys, and the main Key becomes all active because of the data shuffle 

process that collect all data for each solution. After the reduce step is carried out, 

the result for each solution (NewKey) is a data structure we developed, and it is 

shown in figure 11. It’s content is the list of solutions with its distinct groups and 

final fitness ready to be written on HDFS, so that HDFS can read it and proceed 

to the next generation in the algorithm. 

Figure 10: population on TaskTracker level at mapping step 
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Each solution after this process have different number of groups based on 

the solution itself, and the fitness FIT is calculated by the previous mentioned 

formula (Fc). This data is returned to the HDFS client, and as mentioned before 

groups are parted for best solution written on most recent result file where the 

value of FIT returns to the algorithm so it can proceed to the next generation. 

General steps of map reduce need definitions of writables, an object that 

can be written into a file. Since a Key and Value of our object is being used, 

general writable didn’t fit our needs, so new definitions for writable was 

developed so it can be used as custom objects as Keys and Values. Some 

operations like equality and relational algebra operations are overridden to allow 

the TaskTrackers to shuffle Keys and Values between them. 

Figure 11: Data file written on HDFS after reduce operation 
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5. Synthetic MapReduce Job Illustration   

 In this section, a MapReduce job is illustrated on the proposed framework 

to explain exactly what is happening in each step of the Job on TaskTrackers. 

Figure 12 (A) shows a synthetic dataset as edges list file and (B) its graph 

representation before uploading on HDFS. Where N1 is node at one side of the 

edge, N2 the other node at the other side of the edge.  

 
Figure 12: (A) synthetic edge list, (B) Graph representation of list (A) 
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After uploading the file to HDFS cluster, it gets divided into data blocks 

each on DataNode, multiple blocks can be on the same DataNode. For 

illustration purposes, the file is divided into three data blocks, each on separate 

DataNode as shown in figure 13. 

Figure 13: (A) File before uploading to HDFS, (B) Data blocks after uploading to 

HDFS 
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Each TaskTracker receives a copy of the Keys-solutions- to the mapper 

as mentioned in section 4.4, and maps the data into a <Key, Value> pairs for the 

active part of the solutions. These <Key, Value> pairs are written into 

intermediate files using the custom writables we have specially designed. Figure 

14 shows the map task on a single TaskTracker on one DataNode. 

 

Figure 14: map operation on single DataNode. 
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Figure 14 shows a data block, which contains edges with IDs 1,2,3 and 4, 

and the Keys list, which is input to the mapper and consists of three solutions. 

The first one is responsible for removing noise edges 3 and 6, here edge 3 is 

considered active part since the data blocks on this DataNode (only one block 

available) and contains information about it; on the other hand, 6 is inactive since 

no information about it is in this DataNode. The mapper maps these values after 

removing the edge 3 for the first solution and writes the values shown in figure 13 

as an array list. In figure 14, nodes 1,2,3 and 4,5 are grouped after their fitness is 

calculated. Other nodes will be combined from other mappers in the reduce 

phase, and groups can be merged together when there is connections and 

fitness is recalculated. The same process is continued for solution 2 and 3. Their 

keys and values list from this mapper is then sent to the reducer. 

The reducers shuffle the files so that each Key gets assigned to one 

reducer along with collection of values as an array, making the whole key active 

at this stage. The reducer looks for connections between groups, combines 

groups where there is connection into a single group, then combines multiple 

array elements into one element and recalculates the fitness by combining 

subgroups fitness values in the same formula. Figure 15 (A) shows the result 

received by single reducer for the first solution, and (B) shows the solution after 

reducing and merging groups that have connections. 
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  In figure 15 (A) each color should be reduced into one group. The 

reducer merges these groups using the hybrid HashMap we developed and 

explained in section1.3.3. The same section using the following algorithm is 

illustrated in table 2 and figure 3: 

1. Convert the Keys and Values list to hybrid HashMap. 

2. While (HashMap is not empty) 

a. Pop the first element from the map and push into stack 

b. While stack is not empty 

i. Pop node from the stack. 

ii. Add the fitness to the group fitness using the formula 

in section4.3. and the node to result group 

Figure 15: (A) Values list for first solution from mapper collected to reducer,          

(B) groups merged after reduce process. 
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iii. Push all nodes connected to the stack. 

iv. Remove the node from the HashMap and the reverse 

of the edge from connected nodes to it. 

v. End while 

c. Write the group as finalized to the result writable 

d. End while 

3. Write the result writable to reduce output file on HDFS 

After implementing this algorithm to all reducers, all keys are finalized with 

values and written into HDFS ready to be downloaded to the HDFS client for 

most recent results files, values for the algorithm to generate the next generation 

(population cycle). 
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6. Experiments and Analysis of Results 

6.1 Synthetic Dataset Experiments 

Synthetic dataset are used as a starting point for experiment. Table 3 

below represents a dataset for small world synthetic dataset, and it consists of 

one characteristic (number of messages between nodes), 9 nodes and 11 edges. 

Figure 16 represents a graphical representation of the same network. 

Table 3: Small world synthetic dataset 

Node1 Node2 Number of messages 

1 2 5 

1 3 6 

3 2 2 

3 4 1 

4 5 10 

4 6 5 

5 6 3 

6 7 3 

8 7 6 

7 9 3 

8 9 2 
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Figure 16: Graphical representation of small world synthetic dataset 

The Algorithm was executed for the dataset above with a population size 

of 20. After the fourth MapReduce operation, the desired results provided by the 

system are kept steady. The result are as follows: three groups were generated 

after removing the noise edges 3-4 and 6-7, resulting the groups1 [1,2,3], group2 

[4,5,6] and group [7,8,9], with the highest fitness were achieved. The results were 
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compared manually by generating all possible grouping solutions, the result were 

totally optimal as expected since the dataset was very small. 

To verify the reaction of the algorithm with changes in the network, a new 

couple of nodes were added, node X and node Y. Node X was added with 

relations to nodes 2 and 3, where node Y added with only one relation to X, as 

the result immediately reflected in the network to group1 during the fifth 

generation, since the edges were not noise edges, then a new relations from y to 

nodes 4,6 and 5, after 2 generations node Y was removed from the first group 

and added to the second group. The last experiment was to join multiple groups 

together by adding new relations from node Y to nodes 2 and 3, again after two 

generations group1 and group2 were joined together in one single group. After all 

of these changes the network became 2 groups, group1 [1,2,3,4,5,6,X,Y] and 

group2 [7,8,9]. 

After the first experiment verified, the results showed that the algorithm 

successfully passed the small tests on small world dataset. 

6.2 Large Scale Real World Dataset 

The next experiments took place on a larger scale, a youtube multi-

dimensional dataset available online pulled from youtube servers using an open 

source API called youtube API. The dataset contains 15,088 nodes and 

5,574,249 edges, it also contained the following characteristics: 

 Number of shared subscribers between two users. 

 Number of shared favorite videos 
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 Number of shared friends between two users excluding the original 

nodes. 

 Number of shared subscriptions between two users. 

These datasets were merged together in on dataset and uploaded into 

HDFS of 4 nodes, three DataNode and one NameNode, and then the following 

experiments were performed. 

 The first experiment consisted of 100 edge, population size 100 

chromosomes, each generation execution time were around 6000 ms, after ~50 

generations the solutions start to take a steady groups, 17 groups were found. 

During the run of the algorithm, dataset was modified, 5 arbitrary groups were 

added totally not connected to any of previous groups, and the results were 

immediately reflected. After 3 groups were joined together with some noise 

edges, the algorithm took around 10 generations to find those edges and to 

separate the groups again and go back to the steady results which was 

expected. 

The same experiment was done with larger datasets, 200, 400, 800, 1600, 

3000 and 10000 edges; table 4 shows the results of these experiments.
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 Table 4: experimental Results (2 Nodes HDFS Cluster) 

Dataset Size Average 

Generation 

execution time 

(ms) 

Number of groups Number of 

generations for 

steady results 

100 ~6000 17 ~50 

200 ~9000 26 ~130 

400 ~12000 50 ~280 

800 ~24000 90 ~740 

1600 ~50000 236 ~2000 

3000 ~110000 479 ~3200 

10000 ~270000 4932 ~7100 

6.3 Real World Dataset Experiments Analysis  

As results are shown in table 4, there was almost a polynomial relation 

between the dataset size and the generation execution time. The time difference 

caused, because of the dataset size and the communication latency, more time 

needed for shuffling data between the cluster components extra than the 

clustering algorithm time. 

Graph 1 illustrates the average generation running time vs. dataset size 

on the same HDFS cluster.  
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The small curve at the end of the graph is caused by the difference 

between the last two datasets in size, and the light curve at the left side of the 

graph is caused by the communication latency at shuffle step between the maps 

and reduces. The algorithm doesn’t affect the number of groups found. Numbers 

of groups are totally related to the dataset.  

Groups strength –cluster coefficient – had no noticeable difference from 

previous evolutionary work such as Manish Gupta Charu, C. Aggarwal Jiawei, 

Han & Yizhou Sun, (MOEAs)[4], since same objectives were used. The main 

differences were at time and size variables; the approach performed faster and 

on a larger scale. 

Graph 1: Average generation running time Vs. dataset size 
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Another positive impact of the approach that it extract parameters like 

optimal number of groups and groups sizes, considering it as objectives where 

previous approaches consider these values as input parameters, and gave our 

approach an advantage of less number of runs to get the right inputs, which differ 

from dataset to another. 

 The relation between the number of generation and the dataset size is 

clearly more expensive than polynomial; however, the result shows that it’s less 

expensive than exponential. 
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 A deeper study and analysis of results files produced by the framework 

showed that after making changes in the dataset, the changes immediately 

reflected on the dataset of the changes do not  result in adding groups, or 

splitting groups. However if the changes add groups or split current groups into 

new groups it takes time only to cluster new changes, groups that are not 

affected do not need to be re-clustered, and that caused by the evolutionary part 

of the framework, since it keeps a copy of the best solutions and passes it to the 

next generation.  

6.4 HDFS Experiments 

The HDFS components are tested on the same YouTube dataset of 

10000 nodes. The number of DataNodes involved in the HDFS cluster are 

changed and the test was run on single node cluster, 2 Nodes HDFS cluster,  

3nodes HDFS cluster and 4 nodes HDFS cluster. 

 Table 5 illustrates the results on multiple clusters for 10000 edge dataset 

and 100 solution population size.
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Table 5: running time on different HDFS cluster size 

HDFS cluster size Average Generation 

running time (ms) 

Number of generations 

for steady results 

Stand alone one node ~320000 ~7100 

Two nodes HDFS cluster ~270000 ~7110 

Three nodes HDFS cluster ~180000 ~7120 

Four nodes HDFS cluster ~130000 ~7110 

 Table 5 shows that the HDFS cluster size had negligible effect on the 

number of generations needed for steady results to start being produced, thus 

the size of HDFS cluster affected only the running time and had no affect on the 

results of clustering the dataset. 

Graph 3 illustrates the relation between the size of the HDFS cluster vs. 

the average running time for each generation. 
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 The average running time do not decrease in polynomial form since 

increasing number of nodes in HDFS cluster reduce clustering work;on the other 

hand, the communication and shuffling latency time increases and 

communication between nodes takes more time. 

6.5 Literature Comparative Results 

For comparison between average running time on different sizes HDFS 

cluster and different dataset size, graph 4 illustrates the performance of HDFS 

cluster and its affect on clustering time. 
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Graph 4 explains the affect of the HDFS size on clustering performance 

on time variable. Results on one node HDFS cluster illustrate the execution of 

the evolutionary algorithm without distribution. By comparing results on graph 4, 

the results shows that HDFS cluster size have a big affect on the running time, 

and this effect decreases with the dataset size, on a very small dataset the HDFS 

size starts to lose it affect, since communication time between HDFS 

components and the shuffling latency takes more time than clustering on one 

node HDFS cluster. The almost steady change in average running time for 

100,200 and 400 datasets size clearly proves the analysis above. 
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Graph 5 illustrates the time performance to cluster 3000-edge network, to 

compare the difference of executing evolutionary clustering algorithm without 

distribution, with executing the algorithm on HDFS cluster of 4 nodes. 

Graph 5 illustrates the difference for evolutionary clustering without HDFS 

distribution, in comparison with four node HDFS distribution. Results show that 

there is a slight difference on small datasets; however, the distribution of the 

algorithm execution provided a noticeable difference for larger datasets. 

Distributed evolutionary clustering algorithm improved the performance by 

influencing the computation performance on time variable. The same execution 

steps with almost half the time. However on small datasets, results show that 

there is slight difference or almost no difference in execution time. Deep analysis 
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showed that communication and shuffling step on four Nodes HDFS cluster 

consumes almost the same time difference the distribution saves in map and 

reduces steps.   
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7. CONCLUDING REMARKS and Future Work 

Clustering social network and huge datasets is an NP-complete problem, 

optimization techniques proved efficiency in solving such problems in the past, 

however combining such algorithms with the new distributed systems, lead to 

noticeable improvement. 

Defining multi-Characteristics social network dataset as a collection of 

multiple layers graphs, where each have the same set of nodes but different set 

of edges based on the characteristics, improves the computation and makes less 

overhead in computation aspects. On the other hand, considering the social 

network graph as a single layer represents all links and characteristics, leads to 

more complex graph with multiple links between same end nodes thus resulting 

in higher complexity for the same algorithm.  

Social networks are full of noise, and can lead to improper assumptions. 

To be able to deal with large datasets, noise has to be eliminated. 

Distributed systems do not affect the solutions as much as the primary 

algorithm does; however, it has a big influence on the performance of the 

algorithm used, speeds up the process, and reduce work load and memory 

usage. Distributed computing opens new directions for algorithms to be 

expanded, and distributed file systems allow computing power to be able to work 

on a larger scale. 

This work showed the importance and the power of combining literature 

studies with new technologies and opens new areas of concentration where fast 

and optimized results are needed.  
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At the end distributed computing should attract more attention, since it 

allows algorithms to run on a collection of normal resources rather than acquiring 

huge expansive resources.  

As a next step we are looking for more inelegant clustering solutions that 

provide more adaptability with the dynamic changes in the social networks, and 

provide the ability of predicting future changes on clusters based on the 

heuristics of previous clustering solutions for the same social network.
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