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ABSTRACT 

Anderson, John Keith Anderson.  PhD. The University of Memphis. August 2013. 
Cellular Simultaneous Recurrent Networks for Image Processing. Co-major Professors: 
Khan M. Iftekharuddin and Eddie L. Jacobs. 
 

Artificial neural networks are inspired by the abilities of humans and animals to learn 

and adapt.  Feed-forward networks are both fast and powerful, and are particularly useful 

for statistical pattern recognition.  These networks are inspired by portions of the brain 

such as the visual cortex.  However, feed-forward networks have been shown inadequate 

for complex applications such as long-term optimization, reinforced learning and image 

processing.  Cellular Neural Networks (CNNs) are a type of recurrent network which 

have been used extensively for image processing.  CNNs have shown limited success 

solving problems which involve topological relationships.   Such problems include 

geometric transformations such as affine transformation and image registration.  The 

Cellular Simultaneous Recurrent Network (CSRN) has been exploited to solve the 2D 

maze traversal problem, which is a long-term optimization problem with similar 

topological relations.  From its inception, it has been speculated that the CSRN may have 

important implications in image processing. However, to date, very little work has been 

done to study CSRNs for image processing tasks.  In this work, we investigate CSRNs 

for image processing.  We propose a novel, generalized architecture for the CSRN 

suitable for generic image processing tasks.  This architecture includes the use of sub-

image processing which greatly improves the efficacy of CSRNs for image processing. 

We demonstrate the application of the CSRN with this generalized architecture across a 

variety of image processing problems including pixel level transformations, filtering, and 

geometric transformations.  Results are evaluated and compared with standard 
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MATLAB® functions.  To better understand the inner workings of the CSRN we 

investigate the use of various CSRN cores including: 1) the original Generalized Multi-

Layered Perceptron (GMLP) core used by Pang and Werbos to solve the 2D maze 

traversal problem, 2) the Elman Simultaneous Recurrent Network (ESRN), and 3) a novel 

ESRN core with multi-layered feedback. We compare the functionality of these cores in 

image processing applications.  Further, we introduce the application of the unscented 

Kalman filter (UKF) for training of the CSRN.  Results are compared with the standard 

Extended Kalman Filter (EKF) training method.  Finally, implications of current findings 

and proposed research directions are presented. 
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1 INTRODUCTION 
 

1.1 Motivation 

Artificial neural networks (ANNs) are inspired by the abilities of humans and animals 

to learn and adapt.  Feed-forward networks are both fast and powerful, and are 

particularly useful for statistical pattern recognition.  These networks are inspired by 

working principles of brain sensory processing areas such as the visual cortex.  However, 

feed-forward networks have been shown inadequate for complex applications such as 

long-term optimization, reinforced learning and image processing.  

The use of Cellular Neural Networks (CNNs) for image processing has been widely 

accepted, from both application and biologics points of view. A simple search using 

Google Scholar shows that cellular networks account for approximately 13.4% of all 

image processing publications [104]. The similarity of the cellular structure of the CNNs 

to that of the human retina and the neural structure of the visual cortex, make it 

biologically attractive. 

1.2 Literature Review 

1.2.1 Image Processing 
 

Image Processing (IP) is a broad and well studied subject.  A topic search via Google 

Scholar for ‘image processing’ yields over 2 million publications [105].  A complete 

literature review of IP techniques lies outside the scope of this work.  There are many 

excellent texts that cover general IP methods.  Jain [49] is an older text that is still 

popular today due to its treatment of IP fundamentals.  Gonzalez et al. [32]covers digital 
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image processing techniques and is a used in many undergraduate and graduate level 

courses. 

1.2.2 Cellular Neural Networks 
 

Application of feed-forward neural networks to IP is impractical do to the size of the 

networks required to handle the data in typical images.  As mentioned above, Cellular 

Neural Networks (CNNs) have been used extensively to perform IP tasks.  CNNs were 

introduced by Chua et al [13][14].  Chua and Roska [11] provide a thorough coverage of 

the fundamentals of the CNN and its application to visual computing.  Yang [101] gives 

in depth coverage of the CNN’s use for IP, including detailed templates for performing a 

multitude of specific IP tasks.   

Although CNNs have been referred to as ‘universal image processors’ they have 

shown limited success with geometric transformations such as affine transformations and 

image registration.   CNNs are capable of performing fractional and single pixel 

translation [17][26].  By extension, the CNN can approximate rotation by first 

decomposing the rotation into multiple, single-pixel translations and one, fractional-pixel 

translation, then applying the CNN to the image once for each single pixel or fractional 

translation. CNNs have not been successfully applied to image registration.   

Most CNN IP applications do not determine weight values through a learning 

process.  The weights are typically computed mathematically or experimentally, and are 

fixed based on the goals of the application.  Some recent works have been effective in 

training of CNNs for specific applications.  Takizawa et al. [85] utilize back-propagation 

to train CNNs to perform loss-less image coding. Aein et al. [1] use a modified form of 

back-propagation to train CNNs for modeling of mechanical vibration. 
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The need still exists for a general image processor capable of learning to performing 

basic IP tasks, as well as more complicated tasks posed by geometric transformations. 

1.2.3 Cellular Simultaneous Recurrent Networks 
 

A type of cellular network that is capable of both long-term optimization and learning 

is the Cellular Simultaneous Recurrent Network (CSRN).   

The CSRN was developed by Pang and Werbos in their efforts to show that neural 

networks (NNs) could be successfully applied to optimization [68][69].  To demonstrate 

this ability, they applied NNs to the maze traversal problem.  Their solution utilized 

simultaneous recurrent networks (SRNs) in a cellular structure, effectively combining 

SRNs with Cellular Neural Networks (CNNs).  They referred to the network as a Cellular 

SRN, which has been re-coined CSRN. 

Wuncsh reexamined the generalized maze problem from a mathematical perspective, 

and showed that a closed form solution exists [98].  He also obtained a worst case 

convergence time. His results were consistent with Pang et al.’s conclusion that an SRN-

based critic is necessary for the solution of the maze problem. 

To date, the CSRN has seen limited application.  This was primarily due to poor 

training times.  With the application of newer training methods, such a parameter 

estimation via extended Kalman filters [37] and particle swarm optimization (PSO)[53], 

CSRNs have recently gained traction. 

Ilin et al. applied parameter estimation via extended Kalman filter (EKF) to the 

training of CSRNs in the maze traversal application [47].  Their results indicate that the 

EKF method is superior in both speed and accuracy to the backpropagation through time 



 

  4 

(BPTT) method. They also investigated the use of CSRNs to a subset of the 

connectedness problem [45][46], which was the first application of CSRNs to an IP task. 

We demonstrated, for the first time in literature, simple registration of low-

complexity, binary and gray scale images subjected to in-plane rotation using CSRN 

[3][5]. These works are presented in detail in Chapter 6. 

Ren et al. exploited the CSRNs ability to perform time-series prediction in an 

application performing pose invariant facial recognition in image sequences [74][75][76]. 

Grant et al. applied CSRNs adapted to the identification and prediction of buss 

voltage dynamics in practical power systems [34].  That work utilized a form of PSO 

called Small Population Particle Swarm Optimization (SPPSO)[18] to train CSRNs. 

Recently, Rice et al. have explored general purpose graphical processing unit 

(GPGPU) cluster acceleration for the maze traversal application trained via Ilin et al.’s 

EKF method [77] and Ren et al.’s pose invariant facial recognition application [78].  

These works demonstrate improved training times, allowing the applications to be scaled 

for practical application.  Rice et al. also implemented a decoupled EKF training 

algorithm which resulted in improved training times over Ilin’s standard EKF method.  

1.3 Goals 

From its inception, it has been speculated that the CSRN would have important 

implications in image processing. However, to date, very little work has been done to 

adapt CSRNs to IP tasks.  In this work, we investigate CSRNs for image processing.  The 

specific goals of this work are discussed below. 
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1.3.1 Goal 1   
  
Hypothesis 1:  The generalized CSRN architecture, presented in Section 4.3, is capable 
of performing general image processing.     
 
Goal 1: To demonstrate the ability of the generalized CSRN architecture to perform 
variety of image processing tasks. 
 

We adapt the CSRN to perform a variety of tasks, taken from a range of basic 

problem groups encountered in image processing.  These include pixel level 

transformations, filtering and geometric transformations.  Specifically, these tasks include 

grey-scale to binary conversion, low-pass filtering, affine transformation and registration.   

Once again, we demonstrate the CSRN’s ability to perform these tasks on both small 

binary test images and larger, grey-scale, facial images. Convergence, training times, 

forward computation times and transformation accuracy are examined. 

1.3.2 Goal 2   
 
Hypothesis 2:  The CSRN can learn to perform affine transformations on binary and 
gray-scale images.  
 
Goal 2: To demonstrate the ability of CSRNs to perform affine transformations on 
images. 
 

In pursuit of this goal, we investigate the CSRN to perform translation, rotation and 

scaling transformations.  As proof of concept we demonstrate the CSRN’s ability to 

perform these affine transformations on small, 15x15, binary test images.  After 

introduction of a sub-image processing technique, which allows the CSRN to operate on 

larger more practical images, we examine the CSRN’s ability to perform the above 

mentioned transformations on larger, grey-scale, facial images.  Convergence, training 

times, forward computation times and transformation accuracy are examined. 
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In addition, we examine several core networks for the CSRN, such as the generalized 

multi-layered perceptron (GMLP), the Elman simultaneous recurrent network (ESRN), 

and a novel extension of the ESRN to include multi-layered feedback (ESRN/mlf).  

Comparisons are made using the affine rotation application described above.  

Convergence, transformation, training times, forward computation times and 

transformation accuracy are compared.   

1.3.3 Goal 3    
 
Hypothesis 3:  The CSRN can learn to register images under affine transformation 
without prior knowledge of transformation parameters. 
 
Goal 3: To demonstrate the ability of the CSRN to learn to register images under affine 
transformation without prior knowledge of transformation parameters. 
 

We adapt the CSRN to perform image registration on images which have been 

transformed via translation, rotation and scaling transformations.  As proof of concept we 

demonstrate the CSRN’s ability to perform registration on small, 15x15, binary test 

images.  We also demonstrate the CSRN’s ability to perform registration on larger, grey-

scale, facial images. Convergence, training times, forward computation times and 

registration accuracy are examined. 

1.3.4 Goal 4    
 
Hypothesis 4:  The CSRN can be trained via parameter estimation with an unscented 
Kalman filter (UKF).  
 
Goal 4: To demonstrate training of the CSRN via parameter estimation with an UKF and 
evaluate the efficacy of this training method. 
 

We implement a training method which uses parameter estimation via UKF.  This 

method is tested using the affine rotation application and comparisons are made with Ilin 
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et al.’s standard EKF method [47].  Convergence, training times, and transformation 

accuracy are examined.   

1.4 Organization  

Chapter 2 contains background on neural computation.  Chapter 3 introduces the 

CSRN and examines its architecture and core network.  Learning in CSRN’s is discussed, 

as are training methods and current applications.  Chapters 4 thru 8 present the 

contributions of this work. Chapter 4 discusses image processing with CSRNs.  After 

discussing the adaptation of CSRN to image processing, a sub-image processing 

technique is present which allows application of CSRN to larger more realistic images. 

Next we present a generalized architecture suitable for generic image processing tasks.  

We then demonstrate the CSRN’s ability to both learn and perform pixel-level 

transformations, filtering, and geometric transformations.  Chapter 5 investigates the 

application of CSRNs to affine transformation of images and Chapter 6 the registration of 

images subjected to the same.  In Chapter 7 we explore the internal workings of the 

CSRN. After investigating the selection of internal CSRN parameters, we examine and 

compare three core networks for the CSRN, the GMLP, ESRN, and ESRNmlf cores.  

Chapter 8 examines methods for training the CSRN.  Various methods are discussed and 

a new method based on parameter estimation via UKF is presented.  Chapter 9 provides a 

summary of results, discusses contributions and future work. 
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2 BACKGROUND 
 

2.1 Artificial Neural Networks 

Simon Haykin defines an artificial neural network as follows [38].    

A neural network is a massively parallel distributed processor made up of simple 
processing units, which has a natural propensity for storing experiential knowledge and 
making it available for use.  It resembles the brain in two respects: 

1. Knowledge is acquired by the network from its environment through a learning 
process. 

2. Interneuron connection strengths, known as synaptic weights, are used to store the 
acquired knowledge. 

 
While these “simple processing units” in Haykin’s definition can be linear or non-

linear, they have historically been implemented using the McCulloch and Pitts model of a 

neuron [58], which utilizes a non-linear activation function, thus making ANNs 

applicable to non-linear computations and further increasing their resemblance to the 

brain. As in Haykin’s text, we will refer to ANNs simply as neural networks (NNs). 

2.2 Basic Neuron Model 

Figure 2.1 shows a common depiction of a non-linear model of a McCulloch & Pitts 

neuron.  The inputs to the neuron are labeled x1 – xm.  Note that x0 is a fixed input, 

referred to as the bias input.  It is set to 1 and is used in conjunction with its 

corresponding weight to implement an external bias to the neuron.  Each input is 

multiplied by a corresponding synaptic weight, and these ‘weighted’ inputs are summed.  

The output of the summing junction, vi, is processed by the activation function, f( ),  to 

produce the neuron’s output, yi. 
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Figure 2.1: Non-linear model of a neuron.  X0 is a bias input.  X1 - Xm are external inputs.  
F(v) represents the activation function. Yi is the output. Synaptic weights are represented 
by wim, where i is the current cell and m is the input number. 
 
 

Mathematically, the model can be expressed as 

 

 (2.1) 

and 

 . (2.2) 

 
 

Table 1.1 identifies four commonly used activation functions along with their 

corresponding mathematical definitions.  In this work we use the tanh activation function 

exclusively. 
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Table 2.1: Commonly used activation functions 
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2.3 Neural Network Architectures 

NNs can be divided into two major classes:  feed-forward and recurrent.  If we view a 

NN as a signal-flow or directed graph, then recurrent networks have loops or feedback, 

while feed-forward networks do not.  In the discussion below, we present architectures 

for several types of commonly used NNs. 
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2.3.1 Feed-Forward Networks 

2.3.1.1 Single-layered Feed-forward Networks 
 

Figure 2.2 shows the architecture for a single-layered feed-forward (SLFF) network.  

The network inputs, [x1, …x3], are grouped together and are commonly referred to as the 

input layer. These nodes do not contain active neurons, but simply serve as an entry point 

for the inputs to the network.  The active neurons (shown as circles) are grouped into a 

single layer, which we refer to as the output layer.  Note that the outputs of the neurons 

do not feed back to the inputs, other neurons, or themselves. All computations occur only 

in the forward direction, thus the term “feed-forward.” 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.2: Single-layered feed-forward network with three external inputs, x1-x3, three 
active neurons in the output layer and three outputs, y1-y3.  
 
 

SLFF networks include the perceptron, one of the earliest known NNs, introduced in 

1957 by Rosenblatt [79].  The perceptron was the first computer to use NNs and to learn 

by experience.  It was capable of classifying its inputs into two classes.  The perceptron, 

and SLFFs in general, are limited to linearly separable problems, a fact that was known 

as early as McCulloch and Pitts, but was formalized by Minsky and Pappert [61].  For 

example, SLFFs cannot approximate the XOR function. 
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2.3.1.2 Multi-layered Feed-forward Networks 
 

Figure 2.3 shows the architecture for a multi-layered feed-forward (MLFF) network. 

The nodes of the network are once again grouped into layers.  In addition to the input and 

output layers, there is also one or more hidden layers.  The nodes/units within this layer 

are referred to as “hidden” because their outputs are not externally visible.  Note, once 

again, that there is no “feed-back” of the outputs, thus preserving the “feed-forward” 

nature of the network. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.3: Multi-layered feed-forward network with three external inputs, x1-x3,  three 
neurons in the hidden layer, one neuron in the output layer, and a single output, y. 
 
 

MLFFs, also known as Multi-layered Perceptrons (MLPs) have been researched 

extensively [61][62][81] and are among the most common NNs in use today.  MLPs have 

been shown to be universal function approximators for adequately smooth functions [62] 

and are capable of solving non-linearly separable problems such as the XOR function 

[58][81].   

A major difficulty faced by MLPs was the computation of the required derivatives 

[61].  These computations were prohibitive and lead to a decreased interest in the MLP.  
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In 1974 a tractable algorithm for computation of derivatives in complex feed-forward 

differentiable systems emerged, when Paul Werbos extended his concept of ordered 

derivatives to describe what he termed ‘the rule of backpropagation [95]’.  These same 

concepts were later applied directly to MLPs by Rumelhart et al [81]. 

2.3.1.3 Generalized Multi-layered Perceptron 
 

Until now we have discussed only NNs arranged in layers.  In general this need not 

be the case.  Figure 2.4 shows the architecture of a generalized multi-layered perceptron 

(GMLP) [69].  In this architecture, neurons are arranged in a single layer.  The 1st m 

nodes are input nodes, and are not active neurons.  The input nodes are followed by the 

hidden nodes, which are in turn followed by the output nodes.  The difference between 

this architecture and the SLFF or MLFF network is that the output of all active neurons is 

fed forward to all proceeding neurons.  This architecture produces results similar to that 

of the MLP and the GMLP can be applied in any application where the MLP is used.  

The parameters for the GMLP are slightly different.  The user must specify only the 

number of active neurons without having to specify the number of hidden layers as a 

parameter.  
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Figure 2.4: Generalized Multi-layered Perceptron with m inputs, Q hidden neurons and n 
output neurons. 
 
 

2.3.2 Recurrent Networks 
 

There are several architectures available for recurrent networks.  In fact, the only 

requirement of a recurrent network over a feed-forward network is the addition of at least 

one feed-back loop.  With this in mind, any of the above feed-forward architectures can 

be used to create a recurrent network, simply by feeding one or more outputs back to the 

network as inputs.  Regardless of the base architecture, the presence of feedback in the 

network has a profound effect on the learning capability and performance of the network 

[38].  Indeed, the presence of recurrency in the brain provides a biological basis for the 

use of recurrent networks [9][57].  

2.3.2.1 Time-delayed Recurrent Network 
 

Figure 2.5 shows a time-delayed recurrent network (TLRN).  The first two inputs are 

external inputs.  In addition to these, the outputs of each active neuron are feed back, thru 

a time delay element, as inputs to the network.  Note that the first neuron is a hidden 

node, because its output is only used internally.  TLRNs are used extensively for time-

series prediction. 
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Figure 2.5: Time delayed recurrent network with two external inputs, x1 and x2 , three 
recurrent inputs, one hidden neuron, two output neurons, and two outputs, y1 and y2. 
 
 

2.3.2.2 Simultaneous Recurrent Networks 
 

Figure 2.6 shows the architecture of a simultaneous recurrent network (SRN).  As in 

other recurrent networks, feedback is present in the SRN.  Any feed-forward network can 

be used as the core of the SRN.  Note the lack of any time delay elements.   SRNs are 

characterized by their use of two time scales.  The external time scale is slower and is 

used to present inputs to and read outputs from the network. The internal time scale is 

much faster and allows the system to iterate the forward computation, allowing the 

outputs to converge to their final values before they are used externally.  From the 

perspective of the external time scale, the recurrency is almost instantaneous yielding the 

‘simultaneous’ descriptor for this network.  This “settling” response is similar to that of 

any dynamic system.  The recurrency found in SRNs is very similar to that found in parts 
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of the human brain.  Neurobiologists have even proposed the presents of multiple time 

scales in the learning process [93].   

 
 
 
 
 
 
 
 
 
 
 
Figure 2.6: Architecture of a simultaneous recurrent network. In this figure, f is the feed-
forward function, W is the weight matrix, x is the network input, and z is the network 
output.   
 
 

Previous research has shown SRNs to be more powerful than MLPs [97]. In fact, 

functions randomly generated by MLPs can always be learned by SRNs, but the opposite 

is not true [15][16] [97].  SRNs are used successfully in time-series prediction and 

intelligent control applications. 

2.3.2.3 Cellular Neural Networks 
 

Another type of NN is the cellular neural network (CNN) which consists of identical 

elements, arranged in some sort of geometry.  Figure 2.7 shows the cellular structure of 

the CNN introduced by Chua [14].  Each element or cell of the network can be as simple 

as a single artificial neuron or more complex, such as a MLP.  Chua’s original CNN 

utilized a hardware implementation of a single McCulloch and Pitts neuron, realized via 

an electrical circuit.

input: x 

feedback 

Feedforward Network 
f(W,x,z) 

z 

output: z 
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Figure 2.7:  A typical 3 x 3 CNN cellular architecture.  Interactions between cells are 
depicted as connections. 
 
 

Figure 2.8 shows a neural network depiction of Chua’s cell circuit. The McCulloch 

and Pitts neuron model is immediately evident.  While Chua’s implementation uses the 

piecewise linear activation function, any of the standard activation functions from Table 

2.1 can be used.   

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.8:  A neural network depiction of a CNN cell circuit. 
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Along with a bias input, each cell has two sets of inputs. Each set of inputs are 

presented to the network as a matrix, Vu and Vy.  The Vu matrix contains the current cell’s 

external input along with the inputs of the surrounding eight neighboring cells.  The Vy 

matrix contains the output of the current cell along with the outputs of the surrounding 

eight neighboring cells. 

The cell’s weights are stored in two corresponding matrices, which Chua refers to as 

“cloning templates”.  The A matrix is referred to as the “control template” while the B 

matrix is referred to as the “feedback template”.  A defining feature of the CNN is that 

the same weights are used for all cells.  This “weight sharing” can significantly decrease 

the number of required weights, which, in turn, can significantly decrease the time 

needed to train the network.  The CNN can be configured as either a feed-forward or 

recurrent network, depending on how the weight matrix, A is used.  If the A matrix is set 

to zero, then the network is strictly a feed forward network, otherwise it is recurrent as 

shown in Fig. 2.8. 

The symmetry of CNNs is useful in solving problems that contain a similar type of 

inherent geometry.  The similarity between the CNN’s architecture and a typical image is 

immediately evident, and indeed, CNNs have been widely used in both image processing 

and pattern recognition applications [13][101].  Most CNN image processing applications 

do not determine weight values through a learning process.  The weights are typically 

computed mathematically or experimentally, and are fixed based on the goals of the 

application.  Many of the cloning templates resemble spatial windowing filters seen in 

standard image processing texts [101].  
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3 CELLULAR SIMULTANEOUS RECURRENT NETWORKS 
 

3.1 Introduction to CSRNs 

In a seminal work Pang et al. introduced CSRNs [69].  The authors showed that 

CSRN could be successfully applied to optimization problems by approximating a 

solution to the Bellman’s equation [97].  To demonstrate this ability, they applied CSRNs 

to the maze traversal problem as discussed in Section 3.5.1.  Furthermore, they showed 

that MLPs were incapable of solving such maze traversal problem [96].  To solve the 

maze traversal problem they utilized SRN networks in a cellular structure, effectively 

combining SRNs with CNNs.  They referred to the network as a Cellular SRN, which has 

been re-coined as CSRN. 

3.2 Biological Basis 

From a computational standpoint the human brain is a highly complex, nonlinear, 

parallel processing device. It is composed of billions of neurons and organizes neurons to 

perform specific functions.  The number and organization of neurons to perform a 

specific function, as well as the synaptic weights between neurons, are learned through 

experience [79].  Neuroscientists speculate that reinforced learning takes place in the 

hippocampus of the brain.  Populations of neighboring neurons form cell ensembles, 

which form the basic building block for the entire system [9].  These ensembles are 

interconnected in a cellular structure.  Neurobiologist have long understood that local 

recurrency plays a critical role in the higher part of the human brain and evidence 

indicates that the brain is highly recurrent [9][57]. Cellular simultaneous recurrent 
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networks (CSRNs) mimic both the recurrency and cellular structure of the brain.  The 

reinforced learning in the CSRN is quite similar to that of the human brain. 

3.3 Architecture 

Figure 3.1 shows the cellular structure of the CSRN.  Note the cellular structure of the 

network matches that of the underlying input pattern.  As shown in Fig. 3.1, the outputs 

of each cell can be brought together to produce an overall network output.  Each cell 

(shown as a grey box) contains an SRN core.  

 
 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 3.1:  Cellular structure of the CSRN. 
 
 

The core network is shown in Fig. 3.2 and is referred to as a generalized multi-

layered perceptron (GMLP) core. The core consists of 17 nodes, five of which are active 

neurons.  Nodes n1-n12  from the left are input nodes.  Node 1 is the bias input.  The 
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network shown here has three external inputs.  The four neighbor inputs come from the 

outputs of node 13 of the neighboring cells.  This node is referred to as the connector 

node.  The interconnections provided by these inputs form the cellular structure of the 

network. The final five inputs are self-recurrent inputs consisting of the outputs of the 

five active neurons fed back as inputs.  Note that in the GMLP architecture depicted here, 

the inputs to each active node consist of the outputs from all previous nodes. For the 

purposes of clarity, not all interconnects between nodes have been shown. The output of 

node 17 is multiplied by a scaling weight, Ws, to produce the cell’s ultimate output, Ŷ . 

CSRNs utilize weight sharing, that is, the weights for each cell are equivalent.  This 

significantly reduces the amount of memory required to store the CSRN’s weights.   

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.2: Standard GMLP core of the CSRN shown with 3 external inputs, 4 neighbor 
inputs, 5 recurrent inputs (12 total inputs) and 5 active nodes.  Each active node receives 
an input from all prior nodes.  Output is taken from final node, and scaled via a scaling 
weight. The network has a total of 17 nodes. 

 

3.4 Learning in CSRNs 

CSRNs learn by adapting their weights via supervised learning.  If the CSRN output 

is given by, Yi, and its corresponding target image is Ti, then the error between the two is 

given by, 
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 (3.1) 

 

The total error in the network output is given by, 

 

 (3.2) 

 

where c is the number of pixels in the image.  For a given training set the error is as 

follows, 

 

 (3.2) 

 

 

where N is the number of training images.  Equation (3.2) is the sum-squared error and 

represents the cost-function of the network.  The objective of the learning process is to 

adjust the network’s weights to minimize this cost function.  With this simple cost 

function, the CSRN is capable of approximating much more complicated cost functions 

[69], including those associated with a variety of image processes tasks. 

3.5 Training 

In this section, we provide a brief overview of techniques used in training of CSRNs.  

Chapter 8 presents detailed descriptions of these techniques as well as a comparative 

study.   
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3.5.1 Back-Propagation through Time 
 

The original CSRN developed by Pang et al. was trained using an extension of basic 

back-propagation known as back-propagation through time (BPTT)[69][92].  This 

method of training is fundamental to CSRNs.  Prior to BPTT, no tractable method of 

computing the required derivatives existed.  Appendix I contains a detailed study of 

BPTT including its mathematical derivation, and computational algorithms. 

3.5.2 Parameter estimation via EKF 
 

Parameter estimation with Kalman filters has been effectively applied to the training 

of NN [37].  Ilin et al. apply parameter estimation using an extended Kalman filter (EKF) 

to the training of CSRNs adapted for the solution of the maze traversal problem [47][48].  

In this method, the required Jacobian is computed via BPTT, and the weights are adapted 

via EKF.   

3.5.3 Parameter estimation via Decoupled EKF 
 

In a recent work, Rice et al. introduce a new training algorithm for CSRNs using 

parameter estimation with a decoupled EKF [77] and claim improved training times over 

those encountered with standard EKF.   

3.5.4 Small Population Particle Swarm Optimization 
 

Particle Swarm Optimization (PSO) was developed and applied to the training of NNs 

by Kennedy and Eberhart [53].  PSO is an evolutionary computation technique similar to 

the Genetic Algorithm (GA).   Grant et al. utilize a form of PSO called Small Population 

Particle Swarm Optimization (SPPSO)[18] to train a CSRN adapted to identify and 

predict bus voltage dynamics [34].   
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3.5.5 Parameter estimation via Unscented Kalman Filter 
 

In this work, we present a new training method for the CSRN based on parameter 

estimation with an Unscented Kalman Filter (UKF). This new method is compared 

against the EKF method described above. 

3.6 Applications 

3.6.1 2D Maze Traversal 
 

Since the solution of the maze traversal problem using CSRN is fundamental to 

understanding the CSRN, we discuss the basic maze traversal problem in some detail. 

The maze traversal problem was first introduced as a robot navigation problem [94].  The 

maze navigation problem can be represented as a square grid of locations which are 

considered as path ways, obstacles, or the goal.  Figure 3.3 shows a visualization of the 

problem in which the pathways are represented by blank cells, obstacles are black cells, 

and the goal is a red circle. 

 
 

 
 
 
 
 
 
 
 
 
 
 
Figure 3.3:  Sample maze. Blank cells represent an open pathway, black cells an 
obstacle, and red cell represents the target. 
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The objective is to learn the shortest distance to the goal from any cell.  This is done 

by computing the cost-to-go-function for each cell in the grid.  This objective is a long-

term optimization problem, whose solution is given by the following Bellman equation 

[103], 

 

(3.4) 

 

where i is the initial state. J*(i) is the total expected cost from state i.  The control policy, 

μ, is the mapping between states and the actions causing state transitions.  The immediate 

cost of moving from state i to state j is c(i,j) and for the 2D maze traversal problem is 

always 1.  The probability of moving from state i to j is given by pij and can only take 

values of 0 or 1.  The discount factor is γ and N is the total number of cells in the maze. 

The maze traversal problem has become a benchmark test for newer types of NNs, in 

much the same way as the XOR problem was for perceptrons. Figure 3.4 and 3.5 show 

the cellular structure and core network of the CSRN used by Pang et al. to solve the maze 

traversal problem.  The similarity between these figures and the CSRN architecture 

shown above is immediately obvious. 
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Figure 3.4: Cellular structure of the original CSRN used in solving the maze traversal 
problem. 
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Figure 3.5: Core network of the original CSRN architecture used in solving the maze 
traversal problem.  The core utilized a GMLP network. 
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The network in Figure 3.5 is a GMLP with 17 nodes; one bias node, two external 

input nodes, obstacle and goal, four input nodes from the corresponding neighboring 

cells, five self-recurrent input nodes that are fed back from the active nodes, and five 

active nodes (neurons).  The obstacle input is binary and contains a one if that cell 

contains an obstacle and a zero if it does not.  The goal input is similar.  The four 

neighbor nodes take advantage of the symmetry of the problem and tie the cells together 

in the desired cellular structure.  Note that this matches the geometric constraint of the 

problem in that the maze may not be navigated by diagonal movement.  The five 

recurrent inputs contain information from the active nodes from the previous iteration.  

The five active nodes are fully connected within their layer.  Due to this connectivity, the 

calculated value for the cell is taken from the last output node since it contains 

information from the other four active nodes.   

Computing this cost-to-go function is difficult.  Problems arise from lack of 

convergence and difficulties with local minima. Therefore, the solution provided by the 

CSRN is not always completely correct. The results do generally yield the shortest 

distance to the goal by moving to the neighboring cell with the lowest value.  An example 

of a target maze and output as computed by the CSRN above are shown in Fig. 3.6.   
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Figure 3.6:  The left figure shows cost function array for the known solution of the maze 
shown in Fig. 2.3.  The figure on the right shows the solution provided by the output of 
the CSRN depicted in Figs. 3.4 and 3.5. 
 

3.6.2 Connectedness Problem 
 

The connectedness problem was introduced by Minsky and Papert [62] and is 

described by the following question:  “Is the input pattern connected?”  Solution of the 

connectedness problem is fundamental to brain-like processing of images.  It is directly 

related to image segmentation, i.e. segmenting an image into separate objects.  Image 

segmentation is itself the primary preprocessing step in attempting higher level tasks such 

as object recognition or classification.   

Feed-forward networks have been shown incapable of solving the connectedness 

problem [8].  Indeed, knowledge of how the human eye sequentially traces the boarders 

of an image during classification, suggest the need for recurrence. Ilin et al. demonstrated 

that the CSRN is capable of solving a subset of the connectedness problem [45][46].  

This subset is described as follows:  given a square image, are the upper left and lower 

right corners connected?  The authors utilized the CSRN architecture discussed in Section 

3.2 and shown specifically in Figs. 3.1 and 3.2.   The output transformation used was also 
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a CSRN core.  The input images were 7 x 7 binary images. They further tested the ability 

of both the MLP and CSRN to classify input images as “connected” or “not connected”.  

The results showed that the MLP performed slightly better than chance while the CSRN 

correctly classified the images in the 80% - 90% range.  This work is of particular interest 

because it is the first successful application of CSRNs to image processing. 

3.6.3 Image Registration 
 

In previous works, we demonstrated simple registration of low complexity binary and 

grey-scale images subjected to in-plane rotation [3][5].  Results of those works are 

discussed in detail in Chapter 6. 

3.6.4 Facial Recognition 
 

Ren et al. exploited the state transition property of CSRNs to solve large-scale, pose 

invariant, facial recognition [74][75][76], formulating the recognition problem as a 

temporal prediction problem on image sequences.  The pose angle of the face is varied in 

a consistent manner throughout each sequence, thus encoding the pose angle as a time 

index.  Recurrent networks have been shown to be very effective for time-series 

prediction [21] and the added geometric structure of the CSRN makes it particularly 

attractive.  Figure 3.7 shows a typical image sequence.  The image dataset used by Ren et 

al. is known as VidTIMIT [82].  The dataset contains multiple pose variation sequences 

for 43 faces. 
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Figure 3.7: A typical image sequence use in Ren et al.’s pose-invariant facial recognition 
application.  Sequence taken from the VidTIMIT dataset. 
 
 

Direct application of CSRNs to facial images is computationally expensive due to the 

size of the images.  Therefore, principal component analysis (PCA) was applied to the 

extracted face sequence to produce a series of vectors representing each face in the eigen-

face feature space.  The first ten principle components are used.  Therefore, the input 

pattern takes the form of a ten element vector, instead of an [N,N] matrix.  As in the case 

of the maze traversal problem, the geometry of the CSRN mirrors that of the input 

pattern. The core of the CSRN is the same GMLP core shown in Fig. 3.2 with the 

following exceptions: 1) only one external input is used, and 2) the cellular structure is 

reduced to one dimension, and therefore only two neighbors are utilized.  Figure 3.8 

shows the basic structure of Ren et al.’s facial recognition application. To train the 

CSRN, the vectors representing an image sequence for a specific face in the face database 

are applied, in sequence, to the input of a CSRN, as shown above.  The network is, 

thereby, trained to classify that particular face.  One CSRN is trained to classify each face 

in the face database.  



 

  32 

 

Figure 3.8:  The basic structure of Ren et al.’s pose-invariant facial recognition system. 
The one-dimensional architecture of the CSRN is depicted. 
 
 

Before we discuss the role of the CSRN in this application, let us first discuss Ren et 

al.’s use of the “temporal signature”.  They describe the temporal signature as the 

Euclidian distance between two successive pattern vectors in a sequence.  This temporal 

information can be used to classify a face sequence as described below. 

When a new testing sequence is encountered, each sequence is transformed into the 

face-space of every face in the face database, thus producing an input vector sequence.  

Each input vector sequence is applied to its corresponding CSRN, thereby obtaining a set 

of output vectors.  The temporal signature of both the input sequence and output 

sequence are obtained, as discussed above. If the face in question corresponds to the face 

for which a particular CSRN has been trained, then the temporal signature of the input 

and output sequences will closely match.  This temporal information can be plotted and a 

similarity measure is used to compare the temporal line of the input sequence to that of 
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the output sequence.  If the similarity measure exceeds a given threshold, then the testing 

sequence is considered to match the face used to train the corresponding CSRN. 

Ren et al. perform pose-variant experiments using basic PCA, an Elman SRN and the 

CSRN.  He reports recognition rates of 51%, 67% and 80%, respectively.  The CSRN 

significantly out-performs the other methods.  A similar left-to-right pose-variant 

experiment was performed in the 2002 Face Recognition Vendor Test, FRVT 2002 [71].  

The best system, one using the Eyematic technique, achieved a recognition rate of only 

42%. 

3.6.5 Voltage Prediction 
 

Grant et al. apply CSRNs to the identification and prediction of buss voltage 

dynamics in practical power systems [34].  Similar to Ren et al.’s application to facial 

recognition, the geometric architecture of the CSRN is not constrained to a square, but is 

allowed to reflect the physical layout of the buss system with a single cell representing 

each individual bus.  The connections between the CSRN cells reflect the actual 

connections between neighboring busses in the system. 

Grant utilizes a standard Elman SRN as the core for each CSRN cell.  Figure 3.9 

depicts this core network.  Each network has a single external input, the bus voltage 

measured at time, t; an input for each of its neighboring buses corresponding to the output 

(predicted voltage at time t+1) of the neighboring bus’s cell; and a recurrent input from 

each of its hidden nodes.  The number of hidden nodes is fixed at three.  Each cell has a 

single output, the predicted bus voltage at time t+1.  Since the number of nodes, and 

therefore the number of weights, varies from cell to cell, weight sharing is not used. 
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Grant also implements a voltage prediction system using a single Elman SRN with an 

external input and an output for each buss in the system.  Both networks are trained using 

actual measured data from a small power system (12 busses). Simulations are performed 

for each network and comparisons between the two systems are made by examining the 

mean squared error (MSE) between the predicted voltage and the actual measured voltage 

at each buss.  A variety of load disturbances are introduced into the system and in all 

cases the MSE of the CSRN was significantly lower that that of the single Elman SRN.  

Besides being able to more accurately predict buss voltages, the CSRN offers several 

other advantages in this application.  1) Since the cell structure reflects the exact structure 

of the power system, the CSRN is easily scaled for larger systems.  2) Since only cells for 

neighboring busses are interconnected, regardless of how large the overall system 

becomes, the core networks remains small. 3) The CSRN can provide improved accuracy 

and speed of training due the small size of the core networks and the fact that the entire 

network is trained simultaneously. 
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Figure 3.9:  Standard Elman SRN core for the CSRN buss voltage prediction application.  
Core network shown with one bias, one external input, m neighbor inputs, n recurrent 
inputs, n hidden nodes and one output node. 
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4 IMAGE PROCESSING WITH CSRN 
 

4.1 Introduction 

4.1.1 Chapter Organization 
 

In this chapter we first introduce metrics for the evaluation of the CSRN’s 

performance in image processing (IP) task and discuss the experimental platform utilized 

for simulations in this work.  Next, we discuss adaptation of sub-image processing for use 

with CSRNs.  This concept is fundamental to the practical application of CSRNs to IP.   

Then, we present a generalized CSRN architecture for use in IP applications.  Examples 

of pixel operations and spatial filtering are demonstrated.   

4.1.2 Image Processing Metrics 
 

Before discussing the application of CSRNs to IP tasks, we define several metrics 

which will allow us to determine the efficacy of the CSRN for IP tasks.   

4.1.2.1 Function Approximation Metrics  
 

The following metrics are used to evaluate how well a network learns a given 

function, J, which is then used to produce a final transformed output image. 

• The JSSE of the network is simply the SSE between the target function and the 
actual network output.  This value is plotted as a function of epochs in order to 
evaluate how well the network learns and its rate of convergences.  The 
magnitude of the SSE varies with image size, therefore, quantitative 
comparisons between results can only be made for solution with the same 
image size and number of training images. 
 

• The JMSE of the network is the mean squared error between the target function 
and the actual network output.   This value is computed by normalizing the 
JSSE, by image size and the number of training images.  This eliminates the 
problem with JSSE discussed above and allows quantitative comparisons 
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between results for solution with different image sizes and number of training 
images. 
 

• The function accuracy, JACC, compares the output of each cell to the known 
function value (target) for that cell.  If the values are equal, we consider that 
cell a match.  The total number of matches normalized by the total number of 
cells yields the function accuracy in percent. 

4.1.2.2 Image Comparison Metrics 
 

The following metrics provide a quantitative method for comparison of a target image 

with the output image produced by the CSRN.  

• The IMSSE of the network is the SSE between the target image and the actual 
output image.  This metric suffers the same limitation as that of the JSSE. 
 

• The IMMSE of the network is the MSE between the target image and the actual 
output image.   This value is computed by normalizing the IMSSE, by the 
number of pixels in the image, which eliminates the problem with IMSSE and 
allows quantitative comparisons between images of differing size. 
 

• The image percent accuracy, IMACC, compares the final output image with the 
known target image, on a pixel by pixel basis.  If the corresponding pixels 
have equal values, we consider that pixel a match.  The total number of 
matches normalized by the total number of pixels yields the image accuracy  
in percent.  The IMACC is an adaptation of the percent goodness metric used 
by Ilin in his evaluation of solutions for the maze traversal problem [48].  
While this metric is reported for both binary and grey scale images, it is better 
suited for binary images due to the limitations placed on pixel values. 

 
• The correlation ratio (CR) is a common metric for comparing the similarity of 

two images [31].  We designate this metric as the IMCR, and compute its value 
using (4.1) below.  

 

(4.1) 

 

 

Here, A(i) and B(i) represent the individual pixels of image A and B, 
respectively and A  and B  the mean pixel values for image A and B, 
respectively.  The closer this ratio is to 1, the more similar the images.  This 
metric is primarily used in analysis of grey-scale images. 
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4.1.2.3 Time-Based Metrics 
 
In this section we discuss time-based metrics.  Unless otherwise, noted, all times are 
measured using MATLAB’s®  tic/toc functions. 
 

• The training time, TTR, is a measure of the time in sec required to train a given 
network. 

  
• The forward computation time, TFC, is the amount of time in msec required to 

compute one forward pass of the CSRN.  I.e., the amount of time required for 
the CSRN to compute the function for which it was trained.  The TFC is 
computed by measuring the time required to perform the forward computation 
1000 times, then normalizing the result. 

 
• The run time, TR, is the time required to run a single simulation with the 

CSRN application.  This metric is computing using MATLAB’s etime 
function. 

 
• The batch time, TB, is the total time required to run a batch of simulations with 

the CSRN application.  This metric is computing using MATLAB’s etime 
function. 

 

4.1.2.4 Convergence Metrics 
 
The following metrics are used to evaluate the convergence of the CSRN’s MSE during 
the testing process. 
 

• The convergence time is the time in epochs required for the MSE of the 
network to converge during the testing process.  TC is a computed 
approximation to the convergence time.  It is the point at which the MSE has 
remained within 2% of its initial value for 20% of the total epochs. 

 
• The settling time is the time, in epochs, required for the MSE to remain within 

5% of its final value.  TS, is also used as an approximation to the true 
convergence time. 

 
• The minimum error, EMIN, is the minimum MSE achieved during the testing 

process. 
 

• The minimum error location, TEM, is the time, in epochs, at which point the 
minimum MSE occurs. 
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4.1.2.5 Summary of Metrics 
 

 Table 4.1 summarizes the metrics utilized in this work. 

 
Table 4.1:  List of metrics used to evaluate efficacy of the CSRN for IP tasks. 
Metric Description 

JSSE SSE between the target function and network output. 

JMSE MSE between the target function and network output. 

JACC Percentage of cell outputs which exactly match known target 
function values. 

IMSSE SSE between the target image and output image. 

IMMSE MSE between the target image and output image. 

IMACC Percentage of matching pixels between the target image and the 
output image. 

IMCR Correlation ratio between the target image and the output image. 

TTR Training time (secs) – time required to train the CSRN. 

TFC Forward computation time (msecs) – time required to compute one 
forward pass of the CSRN. 

TR Run time (min) – time required to run a single simulation of a CSRN 
application. 

TB Batch time (hr) – time required to run a batch of simulation of a 
CSRN application. 

TC Convergence time (epochs) – computed approximation.  Point at 
which MSE remains within 2% of initial value for 20% of total epochs. 

TS Settling time (epochs) – computed approximation of time required 
for MSE to remain within 5% of its final value. 

EMIN Minimum error – minimum MSE achieved during testing processes. 

TEM Minimum error location (epochs) – time at which minimum error 
occurs. 
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4.1.3 Experimental platform 
 

All simulations are performed on a Dell Precision PWS690 workstation with an Intel 

Xenon® X5355 8-core CPU running @ 2.66 GHz and 3.0 GB of RAM.  The systems 

operating system is Windows© XP SP3.  Simulations are run in MATLAB© Version 7, 

(R14) SP2.  Forward and backpropagation computations for the CSRN are performed 

using custom C++ functions called from MATLAB©.  

 

4.2 Sub-image Processing 

As image size grows, so does the complexity of the CSRN.  In  practical 

implementations, a tradeoff exists between the number of training images, and the size of 

the images.  Ilin et al. limit their work to 7x7 images [45][46][47]. In [5] we extend the 

use of CSRNs to 15x15 images.  We find this image size to be the practical limit for 

CSRNs using the EKF training method, discussed in Section 8.3, with our 

hardware/software configuration discussed above.  This is due to the size of the matrices 

required for computation of the Jacobian via BPTT.   

To overcome this limitation, we utilize sub-image processing.   We divide each 

training image into smaller, 5x5 sub-images.  Next, we train a separate CSRN for each of 

the sub-images.  Once training is complete, to perform a given transformation on an 

image, the image is divided into sub-images, each of which is processed by its 

corresponding CSRN.  The outputs of each CSRN are then combined to form the final 

transformed image. 

Although we do not discuss the application of CSRNs to image registration until 

Chapter 6, we utilize some of our early registration results to demonstrate the advantages 

of sub-IP here.  In this experiment we register a simple 15x15 binary image of a cross 
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subjected to in-plane rotation using a CSRN with a GMLP core trained via the EKF 

method over the course of 100 epochs.  Figure 4.1 below shows the resulting images. 

 

            

                 (a) 

 

 

             

 

                (b) 

 

 
Figure 4.1:  Image registration results for 15x15 binary images via a CSRN with a 
GMLP core.  Part a, shows registration without sub-image processing, part b, shows 
registration with the addition of sub-image processing. 
 
 

In the first test, the CSRN is trained using 5 training images without the use of sub-

image processing.  The training images are rotated from 0° to 20° in step of 5°.  A single 

testing image, rotated by and angle of 12°, is used for testing.  Figure 4.1a shows the 

registration results.   The upper half of the test image is registered correctly, while the 

lower half is not.  This sort of local registration, with some areas of the image being 

registered better than others, appears in many early.  The best approximation to the 

registration function yields around 46% accuracy with a final image registration of 

around 96% accuracy.  The total training time for this test is approximately 400secs. 
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In the second test, sub-IP is utilized and the CSRN is trained using 11 training images 

rotated from 0° to 20° in step of 2°.  A single testing image, rotated by and angle of 16°, 

is used for testing.  Figure 4.1b shows the registration results.   In this example, we see a 

marked improvement in global registration, as indicated by a function accuracy of 64%, 

and image accuracy of 98.2%. The training time is approximately 150secs. 

Table 4.2 tabulates the results. 

 
Table 4.2:  Results for the addition of sub-image processing to binary image registration 
via CSRN. 

Test Training 
Images 

JACC 
(%) 

IMACC 
(%) 

TTR 
(sec) 

without sub-image processing 5 46 96 400 

with sub-image processing 11 64 98.2 150 

% improvement 120 18 2.2 -62.5 

 
 

The addition of sub-IP decreases the training time by 62.5%.  This time savings, 

allows the user to increase the number of training images, for improved network 

performance, or to increase image size. 

 In this experiment, the addition of sub-IP allows us to increase the number of training 

images from 5 to 11, resulting in improvements in both function accuracy and global 

registration.  
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4.3 A Generalized CSRN Architecture for Image Processing 

The cellular structure of the CSRN shown in Fig. 3.4, is easily adapted for IP as 

shown in Fig. 4.2.  Note the one-to-one correspondence between the input image, the 

CSRN and the output image. 

 

 

 

 

 

 

 

 

 
 
Figure 4.2:  The generalized architecture of the CSRN for image processing.  Grey boxes 
represent individual cells of the network. 
 
 

Early in the course of our efforts to apply CSRNs to IP tasks, we began to suspect that 

the CSRN architecture might require modification to achieve successful implementation 

of specific tasks.  As we will see later in this chapter, this suspicion holds true.  When 

using training methods which require computation of the Jacobian via BPTT, even slight 

modifications in the architecture require the equations for BPTT be re-derived and its 

algorithm recoded.  This is not a trivial task!  We experienced this first hand when 

experimenting with the alternative cores discussed in Chapter 7. The process is both 

tedious and time consuming.  As a result, we recognize the need for a  generalized 
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architecture for the CSRN that can easily be scaled to handle the majority of 

configurations required for IP. 

4.3.1 Comparison of CNNs and CSRNs 
 

A literature survey reveals that CNNs have been successfully applied to the 

translation and rotation of both binary [27] and grey-scaled images [17].  In fact, CNNs 

are used for a wide variety of IP tasks, from basic filtering to pattern recognition.  An 

examination of the CNN architecture reveals some interesting similarities, as well as 

differences, between the CNN and CSRN.  A detailed comparison follows. 

4.3.1.1 Active Neurons 
 

Let us start by examining the active neurons within each type of network.  The CNN 

has only 1 active node per cell, while the CSRN has 5 active nodes.  Theoretically, this 

should allow the CSRN to approximate more complex function.   

4.3.1.2 Inputs 
 

Next, we examine the cell inputs.  The CSRN has, in addition to the overlying pixel 

intensity, several external inputs. This gives the CSRN access to problem specific 

parameters.  The CNN has as inputs, not only its underlying pixel intensity, but the 

intensities of its 8 neighbors as well. This allows the CNN to pre-process a window of 

inputs, which is very useful when implementing many IP filters. The CSRN has inputs 

coming from the outputs of its 4-neighbors, while the CNN has inputs from the outputs of 

its 8-neighbors.  This should give the CNN a better resolution in terms of local 

computations.  Finally, both the CNN and CSRN have recurrent inputs.  However, since 

the CSRN has 5 active nodes, it has 4 additional recurrent paths. 
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The CSRN pixel inputs can be thought of as equivalent to the CNN inputs, with bij = 

1, and all the other elements of B set to zero.  The CSRN neighbor inputs can be thought 

of as the same as the CNN’s feedback inputs with the weights for any element which 

does not have an i or j subscript set to zero.  The recurrency in the CNN and CSRN are 

similar, with the CNN having only one recurrent path. 

4.3.1.3 Weights 
 

In the CNN, the weights are preselected based on the type of application, and no 

training is required.  The weights are stored in two arrays, or cloning templates, the input 

or control template, B, and the feedback template, A. In the CSRN, the weights are 

“learned” during the training process and are store in a single matrix. 

4.3.1.4 Activation Functions 
 

The activation function for the active nodes in both circuits is quite similar.  The 

CSRN uses a tanh function, while the CNN, uses the piece-wise linear approximation to 

the tanh function.  The continuous nature of the tanh function has desirable effects in the 

use of BPTT to compute the derivates required in training the network. 

4.3.1.5 Outputs 
 

Each network type has a single output.  The CSRN output utilizes a scaling weight, 

not included in the CNN. 
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4.3.2 Cell Configuration of the Generalized CSRN 
 

The differences between the CNN and CSRN led us to the development of a 

generalized core configuration.  Table 4.3 summarizes these differences and highlights 

the features selected in the implementation of the generalized core configuration shown 

in Fig. 4.3.   This configuration utilizes the external inputs of the CSRN, giving the 

network access to problem specific parameters.  The inclusion of the x and y pixel 

positions as external inputs gives the CSRN an awareness of its location within the 

cellular structure which is vital to the solution of IP tasks involving topological 

relationships.   The configuration utilizes a CSRN core, which gives the network added 

computational ability due to the increased number of active neurons and increased 

recurrency. The CSRN core also allows the weights to be adapted via training.  The new 

configuration utilizes the CNN’s 8-neighbor pixel inputs, allowing the CSRN to pre-filter 

input pixels and the CNN’s 8N output connections instead of the CSRN’s standard 4N 

connections, giving it better resolution in terms of local computations.  Finally, it uses the 

scaling weight of the CSRN core to allow scaling of the final output.   

 
 
Table 4.3:  Different attributes of the CNN and CSRN.  Attributes selected for use in the 
generalized architecture are highlighted. 
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Using this configuration, the set of problems which can be solved by the CNN may be 

considered a subset of those which can be solved by the CSRN.  In essence, by proper 

selection of the CSRN parameters, the CSRN can be easily scaled down to any desired 

CNN configuration. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.3:  Cell configuration for the generalized CSRN. 
 
 

4.4 Adapting the CSRN for Image Processing 

4.4.1 Selection of Network Parameters 
 

In order to adapt the CSRN for a specific IP tasks we must select the following 

parameters. 
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• External inputs - the number and type of external inputs.  These may be 
parameters of the function to be approximated and/or location of the cell with the 
image structure. 

 
• Pixel inputs – the number of pixels from the input image (1, 4 or 8).  This can be 

the cell’s corresponding input pixel, in the case of pixel operations or geometric 
transforms, or a neighboring window of inputs in the case of spatial filters. 

• Network outputs – the number and type of outputs for the network. 
 

• Core Network.  We implement the GMLP, Elman SRN (ESRN) and the Elman 
SRN with multi-layered feedback (ESRNmlf) cores. 

 
• Number of core iteration (1 to p) – the number of internal iterations used for 

making recurrency computations  
 
• Number of neighbor inputs (0, 4 or 8).  Selection of no neighbor inputs disables 

the use of feedback from neighboring cells.  Selection of 4 or 8 neighbor inputs 
allows for connectivity between 4 or 8 neighbors, respectively. 

 
• Number of self recurrent inputs (0 to n).  Selection of no self-recurrent inputs 

disables the use of self-recurrent.  Simultaneous selection of no neighbor inputs, 
no self-recurrent inputs, and 1 core iteration eliminates recurrency from the 
CSRN. 

 
• Number of active neurons (1 to n). 
 
• Training method – the method used to train the CSRN.  We implement EKF and 

UKF methods. 
 

4.4.2 CSRN Image Processing Algorithm 
 

Figure 4.4 shows a flowchart of the CSRN IP algorithm.  This algorithm is generic 

and can be used to train a CSRN to perform any IP task.  Figure 4.5 shows details of the 

training, testing, and results loops of Fig.4.4.  
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Figure 4.4:  Flowchart for the CSRN image processing algorithm. 
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Figure 4.5:  Detailed flowchart of the training, testing and results loops of the CSRN 
image processing algorithm. 
 
 

Table 4.4 shows the computation load for the IP algorithm.  To compute a baseline 

computational load we select the following parameters:   

 
• a GMLP core with 13 input nodes, 5 active nodes and 10 core iterations 
• an image size of 15 x 15 pixels using 5 x 5 sub-images processing 
• 11 training images and 11 testing image 
• 250 epochs utilizing the EKF training method.  

 
 

The computational load is given for both the full training algorithm as well 

processing of a single image once trained. 
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Table 4.4:  Computation load of the CSRN image processing algorithm.  Computed for 
GMLP core with 18 nodes, image size of 15x15, 5x5 sub-image processing, 11 training 
and testing images, and the EKF training method with 250 epochs. 

Computation Multiplications Additions 

Training Loop 

   Fwd. Comp. 2.3650E+05 2.3650E+05 

   Back. Comp. 4.8675E+05 7.2050E+05 

   EKF 1.9769E+07 1.9836E+07 

   Weight Update  8.6000E+01 

training loop sub-total 2.0492E+07 1.9836E+07 

Testing Loop 

   Fwd. Comp. 2.3650E+05 2.3650E+05 

single pass sub-total 2.0729E+07 2.1029E+07 

epoch subtotal(250 epochs) 5.1822E+09 5.2573E+09 

sub-image subtotal(9 sub-ims) 4.6639E+10 4.7316E+10 

Full Training Algorithm 4.6639E+10 4.7316E+10 

Single Image Processing 1.9350E+05 1.9350E+05 

 
 

4.5 Pixel Operations 

For the purposes of this work, we consider pixel operations to be any IP task that 

operates on a single pixel at a time.  Examples include grey-scale to binary conversion 

(G2BC), sometimes referred to as threshholding, contrast adjustment, and histograms.  

These tasks are easily solved using CNNs.  Even standard MLPs can perform these 

operations, albeit slower due to the fact that they must process each pixel separately then 

recombine the results into a final image.  These tasks require only the corresponding 

pixel input (and possibly additional function parameters).  No connections to surrounding 

cells and no recurrency are required.  Use of a CSRN for these tasks overcomplicates the 

solution, which can cause longer than necessary training times and convergence 
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problems.  However, the advantage of using the generalized CSRN architecture over the 

CNN is that the CSRN is capable of learning to perform the pixel operation rather than 

having to compute the weights a-priori. A simple example is shown below to demonstrate 

how the generalized structure described above can be scaled down to perform simple 

pixel operation. 

4.5.1 Grey-scale to Binary Conversion using CSRN 
 

In this experiment, we configure and train the CSRN to perform G2BC.   

4.5.1.1 Grey-scale to Binary Conversion 
 

When performing G2BC on an image, a threshold value is selected and each pixel is 

examined.  If the pixel value is less that the threshold, then the corresponding output 

pixel is set to a predefined value, usually zero.  If the pixel value is equal to or greater 

than the threshold value, then the corresponding output pixel is set to a different 

predefined value, usually one.  The resulting output image is a binary or black and white 

image [31].  This thresh -holding process can be described mathematically as, 

 

(4.2) 

  

 

where I1(x,y) is the NxM image to be filtered and I2(x,y) is the resulting filtered image.  

(x,y) represents the current location of the filter mask and TH is the threshold value. 
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4.5.1.2 CSRN implementation of G2BC 
 

Figure 4.6 shows a scaled down version of the generalized CSRN architecture used to 

implement the G2BC task.  The corresponding network core is shown in Fig. 4.7.  

 

 
 

 

 

 

 

 
Figure 4.6:  Cell configuration diagram for the generalized CSRN scaled down to 
implement grey-scale to binary conversion. 
 

 

 

 

 

 

 

 

 

 
Figure 4.7: The network core used for grey-scale to binary conversion.  Core network is 
a GMLP configure with 5 active neurons.  It utilizes 3 inputs which include a bias input, 
a single external input equal to the threshold parameter, θ, and a single pixel input, that of 
the cells corresponding pixel value. No neighbor or self-recurrent inputs are used, and the 
number of core iterations is set to 1.  The scaling weight is set to Ws = 1.  The network 
uses a total of 8 nodes. 
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To implement the G2BC function, we utilize a GMLP core network with 5 active 

neurons and 3 external inputs: bias input, threshold parameter, θ, and a single pixel input.  

The input image is of type double with intensity values of (0, 1).  We set the number of 

neighbor inputs, as well as, the number of recurrent inputs to zero and set the number of 

core iterations to one, thereby removing all recurrency.  With recurrency remove the core 

reduced to a feed-forward network.  We utilize five active neurons, and a hard-limiter 

activation function in the last neuron.  The scaling weight is set to, Ws = 1, and the cell 

output becomes a binary signal with values of {0, 1}. 

4.5.1.3 G2BC Results 
 

In this section we examine the results of the CSRN implementation of G2BC 

described above.  The network is trained via the unscented Kalman filter method 

described in Section 8.6.  A threshold value of θ = 0.4 is used.  Target images are 

generated using MATLAB’S® G2BC function, im2bw( ).  In the first experiment, we 

train the CSRN using 11 facial images taken from the YaleB face dataset [27].  Testing is 

done using the training set to evaluate how well the CSRN learns.  In the second 

experiment, testing is performed using an independent testing set, also consisting of 11 

images from the same dataset, to evaluate how well the CSRN generalizes.  In each case, 

a single testing image is selected as a primary test case (PTC) and is displayed in greater 

detail. 
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4.5.1.3.1 Experiment 1: Testing with Training Set   
 

Figure 4.8 shows the image results of Experiment 1.  Row a) shows the input images.  

Row b) shows the corresponding CSRN output images.  Row c) shows the target images 

produced by im2bw( ). Each column contains the results for a specific input image. The 

PTC is indicated and shown in detail in Fig. 4.9.  Table 4.5 tabulates the results of this 

experiment. 

 

 

 

 

 
 
Figure 4.8:  Results of CSRN implementation of grey-scale to binary conversion.  
Network utilizes a GMLP core with 5 active nodes, trained via UKF.  Neighbor and self-
recurrent inputs have been eliminated and all recurrency turned off.  Two external inputs 
are used, the threshold parameter, θ = 0.4 and the cell’s corresponding pixel intensity.  
Results are shown for testing with the full training set.  Row a) shows the input images.  
Row b) shows the corresponding CSRN output images.  Row c) shows the target images 
produced by im2bw( ). The primary test case (PTC) is indicated. 
 
 
  

 

 

 

 
 
Figure 4.9:  Results for primary test case in grey-scale to binary conversion Experiment 
1, testing with training set. The network achieves a final IMACC = 98.3% and an IMCR = 
96.4%. 
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Table 4.5:  Results of G2BC implementation. Data from testing with full training set 
shown. PTC is highlighted in red. 

 G2BC Experiment 1 Full Test Results 

Test Image IMMSE IMACC IMCR 

1 2.12E-02 97.9 0.952 

2 3.43E-02 96.6 0.928 

3 1.80E-02 98.2 0.963 

4 6.37E-02 93.6 0.748 

5 3.92E-02 96.1 0.912 

6 2.78E-02 97.2 0.937 

7 4.16E-02 95.8 0.863 

8 6.78E-02 93.2 0.789 

9 2.06E+03 94.4 0.830 

10 2.88E+03 98.3 0.964 

11 3.67E+03 96.3 0.908 
 
 

An inspection of Figs. 4.8 and 4.9 show that the output images produced by the 

CSRN are very similar to the baseline images produced by MATLAB’S® im2bw( ) 

function.  This is supported by the metrics in Table 4.5.  The CSRN achieves an average 

image accuracy, IMACC = 96.1% over all training images and a best case IMACC = 98.3%.  

These results indicate that the CSRN has learned to perform G2BC for the training set. 

4.5.1.3.2 Experiment 2: Testing with an Independent Test Set  
 

In this experiment we repeat Experiment 1 using an independent testing set.  Figure 

4.10 shows the image results for this experiment.  Row a) shows the input images.  Row 

b) shows the corresponding CSRN output images.  Row c) shows the target images 

produced by im2bw( ). Each column contains the results for a specific input image. The 
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PTC is indicated and shown in detail in Fig. 4.11.  Table 4.6 tabulates the results of this 

experiment. 

 
 

 

 

 

 
 
 
Figure 4.10:  Results of CSRN implementation of grey-scale to binary conversion.  
Network utilizes a GMLP core with 5 active nodes, trained via UKF.  Neighbor and self-
recurrent inputs have been eliminated and all recurrency turned off.  Two external inputs 
are used, the threshold parameter, θ = 0.4 and the cell’s corresponding pixel intensity.  
Results are shown for use of an independent testing set.  Row a) shows the input images.  
Row b) shows the corresponding CSRN output images.  Row c) shows the target images 
produced by im2bw( ). The primary test case is indicated. 
 
  

 

 

 

 
 
Figure 4.11:  Results for primary test case in grey-scale to binary conversion Experiment 
2, testing with independent test set.   The network achieves a final IMACC = 98.3% and an 
IMCR = 96.4%. 
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Table 4.6:  Results of G2BC implementation Experiment 2, testing with independent test 
set. PTC is highlighted in red. 

 G2BC Experiment 2 Full Test Results 

Test Image IMMSE IMACC IMCR 

1 6.94E-02 93.1 0.786 

2 1.06E-02 98.9 0.979 

3 5.96E-02 94.0 0.810 

4 3.51E-02 96.5 0.922 

5 7.35E-03 99.3 0.984 

6 3.10E-02 96.9 0.929 

7 4.73E-02 95.3 0.868 

8 3.67E-02 96.3 0.906 

9 6.53E-02 93.5 0.802 

10 4.98E-02 95.0 0.882 

11 6.69E-02 93.3 0.753 
 
 
 

Table 4.7 compares the results of the two experiments.  The CSRN performs well 

with the independent test set, achieving an average image accuracy, IMACC = 95.6% over 

all training images and a best case IMACC = 99.3%. In fact the best case results with the 

independent test set out-perform the best case results with the training set.  However, the 

average values are more in line with what is expected, with the training results 

performing slightly better.  The key metric here is the average IMACC.  We see that the 

results with the independent test set measure to within 0.5% of the results with the 

training set.  This indicates that the CSRN generalizes well in our G2BC application. 
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Table 4.7:  Comparison of testing results for the CSRN implementation of G2BC.  
Results for testing with training set and independent testing set are compared. 

G2BC Testing Comparison 

Metric Units  Training Testing Diff. % Diff. 

IMMSE - 
Ave 3.85E-02 4.36E-02 5.10E-03 13.2 

Best 1.71E-02 7.53E-03 -9.57E-03 -56.0 

IMACC % 
Ave 96.1 95.6 -0.50 -0.5 

Best 98.3 99.3 1.00 1.0 

IMCR - 
Ave 0.890 0.875 -0.015 -1.7 

Best 0.964 0.984 0.020 2.1 
 

4.5.1.3.3 Conversion, Training and Computation Times 
 

Figure 4.12 shows plots of the MSE as a function of epochs for testing the CSRN 

with both the training set and the testing set.  The results are those generated in the PTC 

of each experiment. 
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Figure 4.12:  Plots of training/testing MSE vs. epochs for the CSRN trained to perform 
GTB conversion.   The blue line is the error for the training set. The red line is that for the 
testing set.  Diamonds indicate the minimum error.  Plots represent the PTC for each 
experiment. 
 
 

In both cases the learning process is stable and converges in less than 15 epochs.  In 

this particular case, as discussed above, the testing error converges to a lower error than 

the training error. 

Table 4.8 lists the training, computation and run times for the CSRN implementation 

of G2BC.  For the G2BC application with 11, 35x35, training images the total training 

time is just over 7.5 min.  A normalized training time is also given.  For this metric, the 

training time is normalized for image size and number of training images.  Once trained 

the CSRN performs the G2BC transformation in just 3.69ms.  The total run time for a 
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typical simulation of the G2BC application is 52 min.  The total run time may vary 

depending on how quickly the network converges.    

 
Table 4.8:  Computation times for CSRN implementation of G2BC. 

 
CSRN G2BC Implementation 

Metric Units 

TTR(total) sec 547 

TTR(norm) msec 40.6 

TFC msec 3.69 

TR min 52 
 
 

4.5.1.3.4 Effects of Recurrency on Pixel Operations 
 

As previously discussed pixel operation require no recurrency.  When implementing 

the G2BC application we initialing tested the application with full recurrency, i.e. both 

neighbor and self-recurrency.  This over-complicates the solution causing very slow 

convergence and poor function approximation.  Figure 4.13 shows the MSE plot for the 

G2BC application implemented with a GMLP core, utilizing full recurrency, trained via 

the EKF method.  Figure 4.14 shows the corresponding results for the PTC.  Note the 

poor performance of the network in spite of having trained for 500 epochs.   This 

illustrates one advantage of a flexible IP architecture. 
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Figure 4.13:  Plots of training/testing MSE vs. epochs for the CSRN trained to perform 
GTB conversion implemented with a GMLP core, utilizing full recurrency, trained with 
the EKF algorithm set to run for 500 epochs.  The green diamond indicates the minimum 
error.  The blue asterisk represents the settling point.  Plot is for the PTC. 

 

 

 

 

 

 

Figure 4.14:  Results of the primary test case in grey-scale to binary conversion, 
implemented with a GMLP core utilizing full recurrency, trained with the EKF algorithm 
set to run for 500 epochs. The network achieves a final IMACC = 27.5% and an IMCR = 
46%. 
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4.6 Spatial Filtering 

4.6.1 Introduction 
 

Spatial filtering of images refers to filtering techniques that operate directly on the 

pixels of an image [31].  These operations usually involve the pixels in a neighborhood 

surrounding the pixel of interest.   This neighborhood is referred to as the filter window.  

To perform the filtering operation, a filter mask, the size of the filter window, is moved 

across each pixel in the image.  The coefficients of the filter mask are selected based on 

the desired characteristics of filter being implemented.  The response of the filter at a 

given pixel location is the discrete convolution of the filter mask with the underlying sub-

image.  Figure 4.15 depicts the mechanics involved.  Figure 4.15a, depicts the image to 

be filtered, I1(x,y).  Figure 4.15b, shows the resulting filtered image, I2(x,y).  The grey 

area in image I1 represents the filter window at location (x,y).  The corresponding 

response of the filter at location (x,y) in I2 is also shown in grey.  Figure 4.15c depicts the 

underlying sub-image of I1, while Fig.4.15d shows the filter mask. 
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Figure 4.15:  Mechanics of spatial filtering of images. a) input image.  b) output image.  
c) input sub-image at location (x,y).  d) filter mask. 
 
 

This filtering process is a 2-D, discrete convolution of the input image with the filter 

mask.  Mathematically it can be described as, 

 

 (4.3) 

 
 
 

where ( ) 2/1−= ma ,  ( ) 2/1−= nb , and the filter mask, ( )jiw ,  is of size m x n.  ( )jiI ,1  
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In is common in practice to simplify (4.3) to 

 

 (4.4) 

 
 
where Rx,y is the filter response at location (x,y), iw  is the ith coefficient of the filter mask, 

and ip is the intensity value of the corresponding image pixel.  The mask is of size m x n, 

resulting in a total of nm ⋅  mask coefficients. 

 
Spatial filtering requires padding to properly handle boarder pixels [33]. The amount 

of padding depends on the size of the filter’s mask and is determined by 

 

(4.5) 

  

where the mask size is [m x n], X
sizeP  is the amount of padding in the x dimension and Y

sizeP  

and is the amount of padding in the y dimension. 

4.6.2 Low-Pass Filtering using CSRN 
 

In this experiment, we configure and train the CSRN to implement a simple type of 

low-pass filter (LPF) known as an averaging filter.  
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4.6.2.1 The Averaging Filter 
 

 Figure 4.16 shows the filter mask for an averaging filter.   

 

 

 

 

 
 
 
 
 
 
Figure 4.16:  Filter mask for a 3x3 averaging filter. 
 
 
In this case, (4.4) reduces to  

 

 (4.6) 

 
 
which is simply the average pixel value of the filter window.  This is, of course, how the 

averaging filter gets its name. 

4.6.2.2 CSRN Implementation of the Averaging Filter 
 

To implement the averaging filter, we utilize a GMLP core with 5 active nodes.  The 

filter coefficient, θ = 1/9, is passed to the network as the sole external input.  The pixel 

inputs include the cells corresponding pixel value along with the pixel values of its 8-N’s.  

No neighbor inputs or self-recurrent inputs are used, and the number of core iterations is 

set to 1, eliminating all recurrency in the network.   Figures 4.17 and 4.18 show the cell 
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configuration and core network of the CSRN configured to implement the averaging 

filter. 

 

 

 

 

 

 
 
Figure 4.17:  Cell configuration diagram for the generalized CSRN scaled down to 
implement a simple averaging filter. 
 
 
 

 

 

 

 

 

 

 

 

Figure 4.18: The network core used to implement a simple averaging filter.  Core 
network is a GMLP configure with 5 active neurons.  It utilizes 10 external inputs which 
include a bias input, a filter parameter, θ = 1/9.  It includes a full set of pixel inputs, the 
cells pixel value plus those of its 8-N’s.  No neighbor or self-recurrent inputs are used, 
and the number of core iterations is set to 1.  The scaling weight is set to Ws = 1.  The 
network uses a total of 16 nodes. 
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4.6.2.3 Low-Pass Filter Results 
  

In this section, we examine the results of the CSRN implementation of the low-pass, 

averaging, filter described above.  The network is trained via the unscented Kalman filter 

method described in Section 8.6.  A fitter parameter of θ = 1/9 is used.  Target images are 

generated using MATLAB’S® image filtering function, imfilter( ).  In the first 

experiment, we train the CSRN using 11 facial images taken from the Yale Face 

Database B [27].  Testing is done using the training set to evaluate how well the CSRN 

learns.  In the second experiment, testing is performed using an independent testing set, 

also consisting of 11 images from the same dataset, to evaluate how well the CSRN 

generalizes.  In each case, a single testing image is selected as a primary test case (PTC) 

and is displayed in greater detail. 

4.6.2.3.1 Experiment 1: Testing with Training Set   
 

Figure 4.19 shows the image results of Experiment 1.  Row a) shows the input 

images.  Row b) shows the corresponding CSRN output images.  Row c) shows the target 

images produced by imfilter( ). Each column contains the results for a specific input 

image. The PTC is indicated and shown in detail in Fig. 4.20.  Table 4.9 tabulates the 

results of this experiment. 
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Figure 4.19:  Results of CSRN implementation of a LPF.  Network utilizes a GMLP core 
with 5 active nodes, trained via UKF.  Neighbor and self-recurrent inputs have been 
eliminated and all recurrency turned off.  Ten external inputs are used, the threshold 
parameter, θ = 1/9, the cell’s corresponding pixel intensity, and the pixel intensities of its 
8-Ns.  Results are shown for testing with the full training set.  Row a) shows the input 
images.  Row b) shows the corresponding CSRN output images.  Row c) shows the target 
images produced by imfilter( ). The primary test case is indicated. 
 
 
  

 

 

 

 

 
Figure 4.20:  Results for primary test case in LPF Experiment 1, testing with training set. 
The network achieves a final IMMSE = 5.0E-04 and an IMCR = 98.2%. 
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Table 4.9:  Results of LPF implementation. Data from testing with full training set 
shown. PTC is highlighted in red. 
 

 LPF Experiment 1 Full Test Results 
Test 

Image IMMSE IMCR 

1 5.00E-04 0.982 

2 1.10E-03 0.960 

3 1.30E-03 0.974 

4 9.00E-04 0.961 

5 1.50E-03 0.971 

6 9.00E-04 0.972 

7 8.00E-04 0.970 

8 7.00E-04 0.982 

9 8.00E-04 0.982 

10 2.20E-03 0.975 

11 7.00E-04 0.981 
 

 
An inspection of Figs. 4.19 and 4.20 show that the output images produced by the 

CSRN are very similar to the baseline images produced by MATLAB’S® imfilter( ) 

function.  This is supported by the metrics in Table 4.9.  The CSRN achieves an average 

image accuracy, IMCR = 97.4% over all training images and a best case IMCR = 98.2%.  

These results indicate that the CSRN has learned to perform LPF for the training set. 

4.6.2.3.2 Experiment 2: Testing with an Independent Test Set  
 

In this experiment, we repeat Experiment 1 using an independent testing set.  Figure 

4.21 shows the image results for this experiment.  Row a) shows the input images.  Row 

b) shows the corresponding CSRN output images.  Row c) shows the target images 
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produced by imfilter( ). Each column contains the results for a specific input image. The 

PTC is indicated and shown in detail in Fig. 4.22.  Table 4.10 tabulates the results of this 

experiment. 

 
 

 

 

 

 
 
 
Figure 4.21:  Results of CSRN implementation of an averaging, LPF.  Network utilizes a 
GMLP core with 5 active nodes, trained via UKF.  Neighbor and self-recurrent inputs 
have been eliminated and all recurrency turned off.  Ten external inputs are used, the 
threshold parameter, θ = 1/9, the cell’s corresponding pixel intensity, and the pixel 
intensities of its 8-Ns.  Results are shown for testing with an independent test set Row a) 
shows the input images.  Row b) shows the corresponding CSRN output images.  Row c) 
shows the target images produced by imfilter( ). The primary test case is indicated. 
 
 
 

 

 

 

 
 
Figure 4.22:  Results for primary test case in LPF Experiment 2, testing with independent 
test set.   The network achieves a final IMMSE = 7.00E-04 and an IMCR = 98.7%. 
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Table 4.10:  Results of LPF implementation Experiment 2 testing with independent test 
set.  

 LPF Experiment 2 Full Test Results 
Test 

Image IMMSE IMCR 

1 1.80E-03 0.959 

2 6.20E-03 0.954 

3 2.50E-03 0.956 

4 1.30E-03 0.962 

5 7.00E-04 0.987 

6 1.00E-03 0.968 

7 1.50E-03 0.959 

8 1.40E-03 0.959 

9 1.30E-03 0.977 

10 9.00E-04 0.978 

11 2.10E-03 0.966 
 
 
 

Table 4.11 compares the results of the two experiments.  The CSRN performs well 

with the independent test set, achieving an average correlation ratio, IMCR = 96.6% over 

all training images and a best case IMACC = 98.7%.  As expected, the CSRN tests better 

with the training set than with the independent testing set.  However, the results with the 

independent test set measure to within 1.7% of the results with the training set indicating 

that the CSRN generalizes well in our LPF application. 
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Table 4.11:  Comparison of testing results for the CSRN implementation of LPF.  
Results for testing with training set and independent testing set are compared. 

LPF Testing Comparison 

Metric Units  Training Testing Diff. % Diff. 

IMMSE - 
Ave 1.04E-03 2.07E-02 5.10E-03 13.2 

Best 5.00E-04 7.00E-04 -9.57E-03 -56.0 

IMCR - 
Ave 0.974 0.966 -0.015 -1.7 

Best 0.982 0.987 0.020 2.1 
 

4.6.2.3.3 Conversion, Training and Computation Times 
 

Figure 4.23, shows plots of the MSE as a function of epochs for testing the CSRN 

with both the training set and the testing set.  The results are those generated in the PTC 

of each experiment.  In both cases the learning processing is stable and converges in less 

than 15 epochs.   
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Figure 4.23:  Plots of training/testing MSE vs. epochs for the CSRN trained to perform 
LPF.  The blue line is the error for the training set. The red line is that for the testing set.  
Diamonds indicate the minimum error.  Plots represent the PTC for each experiment. 
 
 

Table 4.12 lists the training, computation and run times for the CSRN implementation 

of LPF.  For the LPF application with 11, 35x35, training images the total training time is 

just over 42.5 min.  A normalized training time is also given.  For this metric, the training 

time is normalized for image size and number of training images.  Once trained the 

CSRN performs the LPF transformation in just 12.0 msec.  The total run time for a 

typical simulation of the LPF application is approximately 4 hr.  The total run time may 

vary depending on how quickly the network converges.    
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Table 4.12:  Computation times for CSRN implementation of LPF. 
 

CSRN LPF Implementation 
Metric Units 

TTR(total) sec 2554 

TTR(norm) msec 189.5 

TFC msec 11.86 

TR min 149 
 
 

4.7 Geometric Transformations 

A fundamental challenge to the theory underlying NNs, posed by Rosenblatt in his 

early work on perceptrons, is the recognition of topological relations [80].  Minsky et al. 

show that perceptrons are incapable of solving this class of problems due to their 

exponential complexity [61].  They also demonstrate that multi-layered perceptrons 

(MLPs), in spite of being more powerful than perceptrons, are also unable to solve 

topological relation problems [62].  In the following two chapters we discuss two 

geometric transformations, affine transformation (linear) and image registration (non-

linear), which fall within this class of IP problems. 

4.8 Conclusion 

In this chapter, pursuant to goal 1 of this work, we present a flexible, generalized 

CSRN architecture for IP and demonstrate its efficacy in performing both pixel level 

operations and spatial filtering.  We also present metrics for measuring such efficacy in 

IP applications.  In addition we adapt standard sub-image processing techniques for use 

with the CSRN, enabling the CSRN to perform IP tasks on larger, more interesting 

images. 
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In the case of pixel operations, we implement G2BC using a CSRN.  Tests for this 

application show that CSRN performs well on the training set, indicating that the CSRN 

has indeed learned to perform G2BC.  In fact the CSRN performs to within 0.5% of the 

corresponding MATLAB baseline.  The CSRN also performs well on the independent 

testing set, indicating that generalizes well.  The learning process is stable, converging in 

less than 15 epochs.   

In the case of spatial filtering, we implement a simple averaging LPF.  Tests for this 

application show that CSRN learns to perform LPF to within 1.7% of the corresponding 

MATLAB baseline.  The CSRN also generalizes well in this application.  Similar to the 

G2BC case, the learning process for LPF is stable and converges in less than 15 epochs.  

The application of sub-image processing is fundamental to the practical application of 

CSRNs to image IP tasks.  Prior to this work, application of CSRNs to IP tasks was 

limited to an image size of 7x7 pixels.  Our best efforts, without the use of sub-image 

processing, extended this size to 15x15 pixels.  The introduction of sub-image processing 

breaks this size barrier making the application of CSRNs to IP tasks tractable.  Though 

we limit image size to 35x35 pixels in this chapter, In Chapter 5, we obtain results for 

image sizes up 125x125 pixels. 
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5 AFFINE TRANSFORMATIONS USING CSRNS 
 

5.1 Affine Transformation of Images 

Affine transformations are an important class of linear, 2-D, geometric 

transformation, which map pixel intensity values from their location in an input image to 

their new location in an output image [24].  These transformations are characterized by 

their preservation of straight lines within the image.   

Affine transformations have been well documented.  Virtually any image processing 

or computer vision text will thoroughly cover the topic.  Excellent reviews of affine 

transformation can be found in Jain [49] and Fisher et al. [24].  Affine transformations 

are primarily used in image editing and play a crucial role in many image registration 

techniques. 

5.1.1 Types of Affine Transformations  
 

Affine transformations in images consist of translation, rotation, scaling, and 

vertical/horizontal shear. Since vertical and horizontal shear are simple cases of scaling in 

a single dimension, we focus our attention on the three remaining transformations: 

translation, rotation and scaling. 

The general form of an affine transformation is that of a 2-D, linear equation. 
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where X1 is the current pixel’s location and X2 is it’s new location.  A and B are the slope 

and intercept matrices, respectively.  In the case of pure transformations, we can further 

reduce the form to  

 

 (5.3) 

 . (5.4) 

 
 
.  

where T is referred to as the transformation matrix. 

5.1.1.1 Translation 
 

The equation for translation is given by 

 

 (5.5) 

 

 

where x0 and y0 are the amount of translation in the x and y directions, respectively [31].  

By augmenting B to A in (5.1) we can achieve the form in (5.3).  
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5.1.1.2 Rotation 
 

The equation for rotation is given by 

 

 (5.7) 

 

 

where θ is the amount of rotation about the center of the image [31].   

5.1.1.3 Scaling 
 

The equation for scaling is given by 

 

 (5.8) 

 

 

where sx and sy are the scale parameters in the x and y directions, respectively [31].   

5.1.2 Image Re-sampling 
 

Image re-sampling is an important part of image transformation. Re-sampling 

includes two related topics:  mapping methods and interpolation.  Several surveys have 

been conducted on image re-sampling methods.  A thorough comparison of these 

techniques is done in [67]. 

5.1.2.1 Mapping Methods 
 

The affine functions above can be implemented by forward or inverse computation.  

In the forward method, each pixel in the image is transformed to its new location via the 

,
cossin
sincos

1

1

2

2








⋅







−

=







y
x

y
x

θθ
θθ

,
0

0

1

1

2

2








⋅







=








y
x

s
s

y
x

y

x



 

  80 

forward equations (given above).  This method produces significant error in the new 

image due to overlaps and/or holes caused by discretization and rounding [102]. In the 

inverse method, the coordinates of the new image are used along with inverse equations.  

In this way, one and only one value is calculated for each pixel position in the new 

image, thus eliminating overlaps and holes.  

5.1.2.2 Interpolation 
 

Mapping functions, whether forward or inverse, result in fractional pixel locations. 

That is, pixels in the first image, do not map directly onto pixels in the second image.  To 

complete the mapping step we must perform some type of interpolation.  Nearest 

neighbor, bilinear, bi-cubic, quadratic splines, cubic B-splines are a few of the more 

popular methods. Even though higher order methods produce increased accuracy and 

better visual results, bilinear interpolation offers possibly the best trade-off between 

accuracy and computational complexity [67]. 

Since the emphasis here is placed on the efficacy of the CSRN to perform affine 

transformations, we consistently use the nearest neighbor method for its ease of 

implementation. 

5.1.3 General Steps for Affine Transformation of Images 
 

Affine transformation can be performed using the following steps: 

1. identify the type and amount of transformation to perform 
2. select mapping and interpolation methods 
3. perform desired transformation 
4. perform interpolation 
5. repeat steps 3 and 4 for all pixels. 
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5.1.4 Affine Transformation using Neural Networks 
 

A fundamental challenge to the theory underlying NNs, posed by Rosenblatt in his 

early work on perceptrons, is the recognition of topological relations [80].  Minsky et al. 

show that perceptrons are incapable of solving this class of problems due to their 

exponential complexity [61].  They also demonstrate that multi-layered perceptrons 

(MLPs), in spite of being more powerful than perceptrons, are also unable to solve 

topological relation problems [62].  Affine transformations fall within this class of image 

processing problems.  While translation is a simple one-to-one mapping, rotation and 

scaling are more complex geometric operations.  MLPs and, in general, feed-forward 

NNs cannot perform these complex geometric transforms on images.   

CNNs are capable of performing fractional and single pixel translation [17][26].  By 

extension, the CNN can perform rotation by first decomposing the rotation into multiple, 

single-pixel translations and one, fractional-pixel translation, then applying the CNN to 

the image once for each single pixel or fractional translation. This approach does not lend 

itself to practical application.  In addition, the CNN relies on predetermined weights, 

referred to as templates [13][14][101], and therefore, does not learn to perform these 

transformations. 

5.2 Affine Transformation via CSRN 

5.2.1 Adapting the CSRN for Affine Transformations 
 

Since the CSRN was initially created to solve the maze traversal problem, we must 

adapt the network to perform image processing tasks, in this case, affine transformation. 
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5.2.1.1 Inputs/Outputs 
 

An examination of the equations for affine transformations given above, shows that 

these transformations require the following inputs: 

• Pixel location:  Px and Py are the x and y locations of the pixel within the 
image. 

• Transformation parameter:   θ, is the amount of transformation to be 
performed.  This may be the number of pixels to translate an image, the angle 
of rotation or a scaling factor.  

  
The output of the network depends on the chosen mapping method.  In the case of 

forward mapping, the output will be the pixel’s (new) location in the transformed image.  

In the case of inverse mapping, the location of the pixel within the transformed image is 

known, and the network outputs the pixel’s location in the original image. 

5.2.1.2 Cost-Function of Affine Transformation 
 

Before adapting the CSRN for any image processing application, we must 1st consider 

whether the cost-function associated with learning in the CSRN is capable of 

approximating the cost-function associated with the given application.  Let us consider 

the cost-function for affine transformation of an image.  In this work, we treat images as 

rigid bodies.  From (5.1) we see that X2 represents the output computed by the general 

equation of an affine transformation.  Let iX 2  represent the computed output, i.e. the ith 

pixel’s computed location in the transformed image. Let i
TX  represent the target (true) 

location of the pixel in the transformed image.  The error between the target and 

calculated locations is given by, 

 

 (5.9) .2
ii

Ti XXe −=
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The total error in the transformed image is given by, 

 

 (5.10) 

 

where c is the number of pixels in the image.  If we extend this error to an entire set of 

images, the error becomes, 

 

 (5.11) 

 
 
 
where N is the number of images in the set.  Equation (5.11) represents the general cost-

function for affine transformation.  Minimizing this cost function minimizes the 

Euclidean distance between the computed the pixels’ locations and their target locations.  

Note this cost-function is equivalent to (3.3), which is the cost-function for learning in 

CSRNs discussed in Section 3.3.  This suggests that the CSRN should be capable of 

learning affine transformations. 

5.2.2 Implementation Issues 

5.2.2.1 Training 
 

To train the CSRN to perform a given affine transformation, we generate a set of 

training images by transforming a test image by various degrees.  For example, in the 

case of rotation, we might use 0°, 5°, 10º, 15º, and 20º to produce a training set consisting 

of 5 images.  For each training images we construct two transformation matrices, which 

encode the transformation for the x and y dimensions, respectively.  These matrices can 
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use position or movement encoding. Transformation matrices utilizing position encoding 

contain the new position of the pixel, while those utilizing movement encoding contain 

the distance the pixel needs to be moved from its current location. In the course of our 

work, we find that the CSRN is better able to approximate movement encoded functions 

and utilize this type of encoding for results presented herein. The transformation matrices 

become the targets by which we train the CSRN. 

5.2.2.2 Network Outputs 
 

Because affine transformations in an image are separable in the x and y directions, we 

may accomplish them in two ways: 1) increase the number of network outputs to two, 

one each for the x and y locations, or 2) keep the same network configuration and apply it 

twice to the image; once for the x transformation then again for the y transformation.  The 

later method is used in order to simplify the network and eliminate costly recoding. 

5.2.2.3 Image Size 
 

As image size grows, so does the complexity of the CSRN.  In a practical 

implementation, a tradeoff exists between the number of training images, and the size of 

the images. For proof of concept we work with artificial binary images with a size of 

15x15 pixels.  This size image permits up to 11 training images, which allows for 

adequate results.  When working with grey-scale images, we utilize sub-image 

processing, discussed in Chapter 4, which allows increased image size. 

5.2.2.4 Input Image Padding 
 

There are two issue encountered when performing affine transformations with 

CSRN’s which require image padding. 
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1)  Geometric Transformations:  When performing any type of geometric 

transformation, including affine transformation or image registration (Chapters 6), it is 

necessary to pad the input images to prevent loss of information.  For example, if the 

input image is transformed in such a way that a portion of the image falls outside the 

designated image size, any transformation method, including CSRNs, will be unable to 

reconstruct the original image.  The amount of padding depends upon the geometry of the 

transform and the amount being performed.    

Consider the case of affine rotation.  Figure 5.1 shows a 25x25 face image rotated by 

an angle of 16°.  The figure clearly indicates that the corners of the facial image have 

been rotated off the image.   

 

 

 

 

 

 

Figure 5.1:  Geometry of rotation for a 25x25 facial image rotated by an angle of 16°. 
 
 

Equation (5.12) can be used to compute the minimum amount of padding required to 

prevent loss of data.   

 

(5.12) 

 

( ),sin φ⋅= Np
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where p is the pad size, N is the image size in pixels and φ  is the angle of rotation in 

degrees.  Figure 5.2a shows an early result of rotation via CSRN without image padding, 

it is clear that the output image produced by the CSRN suffers from loss of information in 

the corners of the image.  In our rotation application we limit the amount of rotation to 

20°.  For the 25x25 image shown, (5.12) becomes 

 

(5.13) 

 

Figure 5.2b shows the results of the CSRN performing the same rotation with zero 

padding of 5 pixels (on all sides) applied to the input image.  This provides a total 

padding of 10 pixels in both the x and y dims.  As can be seen the CSRN’s output image 

is dramatically improved.  In both cases the CSRN learns the rotation transformation 

relatively well, achieving similar function accuracies, 91.4% and 92.1%, respectively. 

The addition of zero padding, improves the image accuracy from only 79.7% to 94.2%, 

and improvement of 15%. 
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Figure 5.2:  A 25x25 facial image rotated by an angle of 16° by the CSRN.  A) results 
without padding. B) The results with a pad size of 5 pixels, increasing the overall image 
size to 35x35 pixels. 

 

2)  Boundary pixel errors in affine function approximation:   It is insightful to 

examine the error between the CSRN’s output and its training target.  Table 5.1 shows 

this function error, for a typical affine transformation simulation.  In this case, the 

number of training images and the number of epochs are limited in order to introduce 

additional error.  Upon examination, the majority of these errors occur at boundary 

pixels.  Zero padding the input image prevents these function approximation errors from 

affecting the final output image, thereby increasing its image accuracy.  This explains the 

discrepancy between the function and image accuracies encountered later in this chapter.  

The pad size need only be a few pixels wide, and is easily accommodated using the pad 

size required by either of the previously mentioned issues.  
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Table 5.1:  Typical function error for affine transformation (errors highlighted). 
-2 -1 -1 -1 0 0 0 0 0 0 0 0 1 1 1 
-1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 
-1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

5.2.2.5 Mapping Method 
 

Mapping methods are discussed in Section 5.1.2.1, above. We experiment with both 

forward and inverse mapping.   Figure 5.3 shows the results for two rotation simulations   

via CSRN.  In both experiments, the CSRN performs a rotation of 16° on the same 35x35 

face image.  The experiment for Fig. 5.3a employs forward mapping, while that of Fig. 

5.3b utilized inverse mapping.  Note the missing and or misplaced pixels in the forward 

mapping case.  Inverse mapping eliminates these anomalies. 
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Figure 5.3:  A 35x35 facial image rotated by an angle of 16° by the CSRN.  A) Results 
for forward mapping. B) Results for inverse mapping. 
 

As expected, the inverse method produces better results.  Therefore, we utilize this 

mapping method exclusively in this work. 

5.2.3 Transformation of Binary Images 
 

In this section we examine the use of CSRNs to perform the following affine 

transformations on binary images: translation, rotation and scaling. 

5.2.3.1 Experiment Configuration 
 

In this series of experiments we utilize a simple binary image of a cross as our test 

subject.  The CSRN is configured with a GMLP core, EKF training, movement encoding 

and inverse mapping.  Two external inputs are used for the core network: the pixel’s x 
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location, and the transformation parameter, θ.  The network is trained with eleven images 

which are zero padded as discussed in Section 5.2.2.4.  The network is tested with the full 

set of training images.  A single testing image is selected as a primary test case (PTC) and 

is displayed for greater detail. 

5.2.3.2 Translation 
 

In this experiment we train the CSRN to perform affine translation on binary images.  

Training images utilize zero padding with a width of 5 pixels.  The input images are 

translated through a range of θ’ = 0 to 10 pix and the network is trained to translate these 

images with a transformation parameter of θ = -θ’.  Figure 5.4 shows the resulting 

images.  Row a) shows the input images.  Row b) and c) show the corresponding CSRN 

output images and the results of the raw translation (5.6), respectively.  Row d) shows the 

actual target image.  Each column contains the results for a specific input image, and is 

labeled by its corresponding transformation parameter, θ’.   Note the PTC, θ’ = 10 pix, is 

highlighted in red, and is shown in detail in Fig. 5.5. 
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Figure 5.4:  Results of affine translation test for binary images.  Results are shown for 
full testing set.  Row a): input images translated through a range of θ’ =  0 to 10 pix. Row 
b): corresponding CSRN output images.  Row c): results of raw transformation by (5.6). 
Row d): target image.  Columns label with transformation parameter of the input images, 
θ’.  PTC, θ’ = 10 pix, is highlighted in red. 
 
 

 

 

 

 
 
Figure 5.5:  Results of binary affine translation test for PTC, θ’  = 10 pix.  The network 
achieves a final JACC = 100% and an IMACC = 100%. 

 

Table 5.2 tabulates the results for our translation experiment.  Results for the full 

testing set are shown.  Statistics are computed over a batch of 50 simulations. The CSRN 

achieves a function accuracy, an image accuracy and an image correlation ratio of 100%, 

indicating that it has learned to perform affine translation perfectly.   
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Table 5.2:  Binary image translation results for full test set. 
 Binary Translation Results (full test set) 

θ' JMSE JACC IMMSE IMACC IMCR 

0 0.00 100.0 0.00 100.0 1.00 

1 0.00 100.0 0.00 100.0 1.00 

2 0.00 100.0 0.00 100.0 1.00 

3 0.00 100.0 0.00 100.0 1.00 

4 0.00 100.0 0.00 100.0 1.00 

5 0.00 100.0 0.00 100.0 1.00 

6 0.00 100.0 0.00 100.0 1.00 

7 0.00 100.0 0.00 100.0 1.00 

8 0.00 100.0 0.00 100.0 1.00 

9 0.00 100.0 0.00 100.0 1.00 

10 0.00 100.0 0.00 100.0 1.00 
 

 
In this experiment, the CSRN correctly translates the cross image, achieving both a 

function accuracy and an image accuracy of 100%.  These results indicate that the CSRN 

has learned to perform affine translation perfectly.  Table 5.3 summarizes the results of 

the translation experiment for binary images. 
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Table 5.3:  Summary of binary image translation results. 

 
 Binary Translation 

Metric Units Ave +/- std dev PTC:  θ’ =10 pix 

JACC % 100 +/-  0.0 100 

JMSE - 0.00  +/-  0.00 0.0 

IMACC % 100 +/-  0.0 100 

IMMSE - 0.00  +/-  0.00 0.0 

IMCR - 1.0  +/-  0.0 1.0 

TTR(total) sec 568 +/-  0.35 567 

TTR(norm) msec 229 +/-  0.16 229 

TFC msec 1.47 +/- 0.01 1.47 

TR min 9.72 +/-  0.01 9.7 

TB hrs n/a 8.12 
 
 

5.2.3.3 Rotation 
 

Translation is local in nature; however, rotation is global, resulting in a more complex 

transformation.   In this experiment we train the CSRN to perform affine rotation on 

binary images.  Training images utilize zero padding with a width of 5 pixels.  The input 

images are translated through a range of θ’  = 0° to 20° in steps of 2° and the network is 

trained to rotate these images with a transformation parameter of θ  = -θ’.   Figure 5.6 

shows the resulting images.  Row a) shows the input images.  Row b) and c) show the 

corresponding CSRN output images and the results of the raw rotation (5.6), respectively.  

Row d) shows the actual target image.  Each column contains the results for a specific 

input image, and is labeled by its corresponding transformation parameter, θ’.   The PTC, 

θ’ = 16°, case is highlighted in red, and shown in detail in Fig. 5.7. 
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Figure 5.6:  Results of affine rotation test for binary images.  Results are shown for full 
testing set.  Row a): input images rotated through a range of θ’ = 0° to 20° in steps of 2°.  
Row b): corresponding CSRN output images.  Row c): results of raw transformation by 
(5.7). Row d): target image. Columns label with transformation parameter, θ’.  PTC, θ’ = 
16°, is highlighted in red. 
 

 

 

 

 

 
Figure 5.7:  Results of affine rotation test for PTC, θ’ = 16°. The network achieves a 
best, JACC = 82.6% and an IMACC = 94.2%. 
 
 

Table 5.4 tabulates the results for our rotation experiment.  Results for the full testing 

set are shown.  Statistics are computed over a batch of 50 simulations.  The PTC, θ’ = 

16°, case is highlighted. 

 

 

 

 



 

  95 

Table 5.4:  Binary image rotation results for full test set. 
 Binary Rotation Results (full test set) 

θ' JMSE JACC IMMSE IMACC IMCR 

0 7.30E-03 92.0 0.00E+00 100.0 1.0000 

2 5.30E-03 94.2 8.90E-03 99.1 0.9475 

4 8.90E-03 90.2 0.00E+00 100.0 1.0000 

6 9.70E-03 89.3 1.78E-02 98.2 0.8950 

8 6.90E-03 92.4 8.90E-03 99.1 0.9475 

10 4.40E-03 95.1 1.33E-02 98.7 0.9232 

12 4.00E-03 95.6 0.00E+00 100.0 1.0000 

14 5.30E-03 94.2 3.11E-02 96.9 0.8510 

16 5.30E-03 94.2 8.90E-03 99.1 0.9475 

18 6.50E-03 92.9 4.40E-03 99.6 0.9746 

20 8.10E-03 91.1 1.33E-02 98.7 0.9232 
 
 

In this experiment, the CSRN learns to rotate the binary cross image.  It achieves a 

function accuracy of 94.2%, and an image accuracy of 99.1%.  Note the lower function 

accuracy as compared to that for translation.  This indicates that the CSRN has more 

difficulty in learning the rotation transformation.  This is due to the global nature of 

rotation.  In spite of this, the CSRN is still able to achieve excellent image accuracy. 

These results indicate that the CSRN has learned to perform affine rotation.  Table 5.5 

summarizes the results of the rotation experiment for binary images. 
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Table 5.5:  Summary of binary image rotation results. 
 Binary Rotation 

Metric Units Ave +/- std dev PTC:  θ’ =16° 

JACC % 82.62 +/- 7.18 94.2 

JMSE - 0.02 +/- 0.01 0.01 

IMACC % 99.02 +/- 0.57 99.1 

IMMSE - 0.01 +/- 0.01 0.01 

IMCR - 0.94 +/- 0.03 .95 

TTR(total) sec 576.21 +/- 0.62 576 

TTR(norm) msec 232.76 +/-  0.25 232 

TFC msec 1.62 +/- 0.01 1.62 

TR min 9.87 +/- 0.01 9.86 

TB hrs n/a 8.22 
 

5.2.3.4 Scaling 
 

In this experiment we train the CSRN to perform affine scaling on binary images.  

Similar to translation, scaling is a local transformation; however, it presents its own 

challenges.  In the cases of translation and rotation, the final transformed image remains 

the same size as those of the training images, however, with scaling, the sizes of the final 

image and each individual training image are different. Our application was not coded to 

handle individual image sizes.  We resolved this issue by zero padding each training 

image to make it the same size as the target image. 

Due to the small image size, so much information is lost when scaling down the target 

image to produce the required input images, that when these images are up-scaled to 

produce the corresponding transformation matrices for network training, the raw scaling 
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function produces only blank images for scales above 2.  Therefore, we limit the input 

images to scale factors of 0.5 to 1.0 

  In order to obtain a sufficient number of training images, we limit the input image 

scales, θ’, to four scales, 0.6, 0.73, 0.87, and 1.0 and apply these scales to three different 

images, resulting in a total of 12 input images.  These images are the cross, box, and 

simulated eye patch, shown in Fig. 5.8.   

 

 

 

 

 

 
Figure 5.8: Images used for training the CSRN for up-scaling. 
 
 

In this experiment we utilize two external inputs: the pixel’s x location, and the 

transformation parameter, θ = 1/θ’.   θ takes on values of 1.0, 1.15, 1.36, and 1.67.  As 

described above, the network is trained with twelve images and tested with the full set of 

training images.  Figure 5.9 shows the resulting images.  Row a) shows the input images.  

Row b) and c) show the corresponding CSRN output images and the results of the raw 

rotation (5.6), respectively.  Row d) shows the actual target image.  Each column contains 

the results for a specific input image, and is labeled by its corresponding transformation 

parameter, θ’.   The PTC, θ’ = 0.73, is highlighted in red, and shown in detail in Fig. 5.10. 
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Figure 5.9:  Results of affine scaling test for binary images.  Results are shown for full 
testing set.  Row a): input images scaled with scaling factor θ’ = 0.6 to 1.0 in steps of 0.8.  
Row b): corresponding CSRN output images.  Row c): results of raw transformation by 
(5.7). Row d): target image. Columns label with transformation parameter, θ’.  PTC, θ’ = 
0.73, is highlighted in red. 
 
 

 

 

 

 
 
 
Figure 5.10:  Results of affine scaling test for the PTC, θ’ = 0.73. The network achieves 
a best, JACC = 81.8% and an IMCR = 100%. 
 
 

Table 5.6 contains the results for our binary scaling experiment.  Results for the full 

testing set are shown.  Statistics are computed over a batch of 50 simulations.  The PTC, 

θ’ = 0.73, shown above is highlighted. 
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Table 5.6:  Binary image scaling results for full test set. 
 Binary Rotation Results (full test set) 

θ' JMSE JACC IMMSE IMACC IMCR 

0.60 3.89E-02 53.3 6.22E-02 93.8 0.7805 

0.73 0.00E+00 100.0 0.00E+00 100.0 1.0000 

0.87 1.67E-02 80.0 0.00E+00 100.0 1.0000 

1.00 3.33E-02 60.0 0.00E+00 100.0 1.0000 

0.60 3.89E-02 53.3 6.67E-02 93.3 0.7805 

0.73 0.00E+00 100.0 0.00E+00 100.0 1.0000 

0.87 1.67E-02 80.0 0.00E+00 100.0 1.0000 

1.00 3.33E-02 60.0 0.00E+00 100.0 1.0000 

0.60 3.89E-02 53.3 1.11E-01 88.9 0.7663 

0.73 0.00E+00 100.0 1.78E-02 98.2 0.9628 

0.87 1.67E-02 80.0 8.00E-02 92.0 0.8335 

1.00 3.33E-02 60.0 5.33E-02 94.7 0.8963 
 
 

In this experiment, the CSRN is trained to perform scaling of binary images.  The 

network achieves a best case result with JACC = 100%, IMACC = 100%, and IMCR = 100%.  

The output images are properly scaled with some slight distortion in the θ = 1.67 case.  

Note the average function accuracy of 83.2%. This is primarily due to the lack of 

resolution in training scales, as discussed above. Table 5.7 summarizes the results of our 

binary scaling experiment. 
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Table 5.7:  Summary of binary image scaling results. 

 
 Binary Translation 

Metric Units Ave +/- std dev PTC:  θ’ =0.73 

JACC % 83.20 +/- 8.11 100.0 

JMSE - 0.01 +/- 0.01 0.00 

IMACC % 99.57 +/- 1.75 100.0 

IMMSE - 0.00 +/- 0.02 0.00 

IMCR - 0.98 +/- 0.08 1.00 

TTR(total) sec 688.08 +/- 0.92 688 

TTR(norm) msec 254.85 +/-  0.34 255 

TFC msec 1.49 +/- 0.01 1.49 

TR min 11.77 +/- 0.03 11.76 

TB hrs n/a 9.81 
 

5.2.4 Transformation of Grey-Scale Images 
 

In the previous section, we demonstrate the CSRN’s capability of performing affine 

transformations in small binary images.  What about more realistic images?  In this 

section, we apply CSRNs to the affine transformation of larger, more interesting images, 

specifically, grey-scale facial images.  To achieve this, we use the 25x25, facial, image 

shown in Fig 5.11.  The image is zero-padded with a 5 pixel width, resulting in a 35x35 

image.  Sub-image processing, discussed in Section 4.2, is employed with a sub-image 

size of 5x5. 
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Figure 5.11:  25x25 face image used for testing affine transformations of grey-scale 
images. 
 

5.2.4.1 Translation 
 

In this experiment we train the CSRN to perform affine translation on grey-scale 

images.  The input images are translated through a range of θ’ = 0 to 10 pix and the 

network is trained to translate these images with a transformation parameter of θ = -θ’. 

Figure 5.12 shows the resulting images.  Row a) shows the input images.  Row b) and c) 

show the corresponding CSRN output images and the results of the raw translation (5.6), 

respectively.  Row d) shows the actual target image.  Each column contains the results for 

a specific input image, and is labeled by its corresponding transformation parameter, θ’.   

The PTC, θ’ = 10 pixels, is highlighted in red, and shown in detail in Fig. 5.13. 
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Figure 5.12:  Results of affine translation test for grey-scale images.  Results are shown 
for full testing set.  Row a): input images translated through a range of θ = 0 to 10 pix. 
Row b): corresponding CSRN output images.  Row c): results of raw transformation by 
(5.6). Row d): target image.  Columns label with transformation parameter, θ’.  PTC, θ’ = 
10 pix, is highlighted in red. 
 
 
 

 

 

 

Figure 5.13:  Results of affine translation test for the PTC, θ = 10 pix.  The network 
achieves a final JACC = 100% and an IMCR = 100%. 
 

Table 5.8 tabulates the results for our translation experiment.  Results for the full 

testing set are shown.  The PTC is highlighted in red.  The CSRN achieves a function 

accuracy, an image accuracy and an image correlation ratio all equal to 100%.  
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Table 5.8:  Gray-scale image translation results for full test set. 
 Grey-scale Translation Results (full test set) 

θ' JMSE JACC IMMSE IMACC IMCR 

0 3.71E-04 99.6 0.00 100 1.00 

1 0.00 100 0.00 100 1.00 

2 0.00 100 0.00 100 1.00 

3 0.00 100 0.00 100 1.00 

4 0.00 100 0.00 100 1.00 

5 0.00 100 0.00 100 1.00 

6 0.00 100 0.00 100 1.00 

7 0.00 100 0.00 100 1.00 

8 0.00 100 0.00 100 1.00 

9 0.00 100 0.00 100 1.00 

10 0.00 100 0.00 100 1.00 
 
 

In this experiment, the CSRN correctly translates the face image, achieving a function 

accuracy of 100%, and an image correlation ratio of 100%.  These results indicate that 

the CSRN has learned to perform affine translation perfectly.  Table 5.9 summarizes the 

results of the translation experiment for grey-scale images. 
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Table 5.9:  Summary of gray-scale image translation results. 
 Grey-scale Images Under Translation 

Metric Units Primary Test Image: θ’ = 5 pixels 

JACC % 100 

JMSE - 0.0 

IMACC % 100 

IMMSE - 0.0 

IMCR - 1.0 

TTR(total) sec 835  

TTR(norm) msec 62 

TFC msec  

TR min 22 
 

5.2.4.2 Rotation 
 

In this experiment we train the CSRN to perform affine rotation.  Three external 

inputs are used: the pixel’s x and y locations, and the transformation parameter, θ.  We 

use eleven training images, rotated from θ’  = 0 to 20° in steps of 2°.  The network is 

trained to rotate these images with transformation parameter, θ = -θ’. We test the network 

using its full set of training images.    Figure 5.14 shows the resulting images.  Row a) 

shows the input images.  Row b) and c) show the corresponding CSRN output images 

and the results of the raw rotation (5.7), respectively.  Row d) shows the actual target 

image.  Each column contains the results for a specific input image, and is labeled by its 

corresponding transformation parameter, θ’.   The PTC, θ’ = 16° is highlighted in red, 

and shown in detail in Fig. 5.15.  
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Figure 5.14:  Results of affine rotation test.  Results are shown for full testing set.  Row 
a): input images rotated through a range of θ’ = 0° to 20° in steps of 2°.  Row b): 
corresponding CSRN output images.  Row c): results of raw transformation by (5.7). 
Row d): target image. Columns label with transformation parameter, θ’.  PTC, θ’ = 16°, 
is highlighted in red. 
 
 
 

 

 

 

 

Figure 5.15:  Results of affine rotation test for the PTC, θ’ = 16°. The network achieves a 
final, JACC = 96.83% and an IMCR = 100%. 

 

 The face image has clearly been rotated back to a zero degree angle.  Note that the 

output image appears slightly blurred as compared to the target image. This primarily is 

due to information loss in the rotated input image. Table 5.10 contains the results of our 

rotation test for the full testing set.  The PTC, θ’ = 16°, case is highlighted. 
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Table 5.10:  Gray-scale image rotation results for full test set. 
 Grey-scale Rotation Results (full test set) 

θ' JMSE JACC IMMSE IMACC IMCR 

0 6.46E-03 92.9 22.8 95.8 0.9987 

2 1.17E-02 87.1 24.8 95.3 0.9985 

4 1.04E-02 88.6 101.3 91.2 0.9941 

6 8.53E-03 90.6 17.2 95.8 0.9990 

8 1.09E-02 88.0 32.7 93.6 0.9981 

10 1.13E-02 87.6 54.0 91.7 0.9968 

12 8.24E-03 90.9 88.8 93.1 0.9948 

14 8.83E-03 90.3 65.0 92.2 0.9962 

16 2.89E-03 96.8 39.6 94.9 0.9977 

18 9.35E-03 89.7 78.0 91.6 0.9954 

20 1.64E-02 82.0 69.6 89.0 0.9959 
 

In this experiment, the CSRN correctly rotated the face image, achieving a function 

accuracy of 96.8%, and an image correlation ratio of 99.8%.  These results indicate that 

the CSRN has successfully learned to perform the affine rotation.  Table 5.11 summarizes 

the results of this grey-scale rotation experiment 
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Table 5.11:  Summary of gray-scale image rotation results. 
 Grey-scale Rotation 

Metric Units Primary Test Image: θ’ = 16° 

JACC % 96.8 

JMSE - 2.89E-03 

IMACC % 94.9 

IMMSE - 39.61 

IMCR - .9979 

TTR(total) sec 887 

TTR(norm) msec 66 

TFC msec  

TR min 82 
 

5.2.4.3 Scaling 
 

In this experiment we train the CSRN to perform affine scaling.  The network is 

trained using 7 images down-scaled from θ’ = 0.52 to 1.0 in steps of 0.8. The network is 

trained to up-scale these images with scaling factors of θ = 1/θ’.  Figure 5.16 shows the 

resulting images.  Row a) shows the input images.  Row b) and c) show the 

corresponding CSRN output images and the results of raw scaling (5.8), respectively.  

Row d) shows the actual target image.  Each column contains the results for a specific 

input image, and is labeled by its corresponding transformation parameter, θ’.   The PTC 

of θ’ = 0.84 is highlighted in red, and shown in detail in Fig. 5.17.  
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Figure 5.16:  Results of affine scaling test.  Results are shown for full testing set.  Row 
a): input images scaled with scaling factor θ’ = 0.52 to 1.0 in steps of 0.8.  Row b): 
corresponding CSRN output images.  Row c): results of raw transformation by (5.7). 
Row d): target image. Columns label with transformation parameter, θ’.  PTC: θ’ = 0.84. 
 
 

 

 

 

 
 
Figure 5.17:  Results of affine rotation test for the PTC, θ’ = 0.84. The network achieves 
a final, JACC = 68.3% and an IMCR = 96.8%. 

 

The image has been scaled to the target size with some loss of information.  This is 

partially due to information loss in the down-scaled input images.   Note that the resulting 

output images are increasingly distorted as the input image scale is decreased.  Note that 

this is also true for the results of the raw transformation (row C of Fig. 5.16).  This loss of 
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information explains the poor image accuracy which also decreases with input image 

scale.  In spite of this, the CSRN’s output images are still quite similar to the target image 

achieving image correlation ratios from a modest 80% to a very good 97%.   

While the output images appear to be properly scaled, the network seems to have 

more difficulty in learning the scaling transform, as indicate by a mediocre function 

accuracy, which ranges from just under 50% to 97%.  This is in part due to the difficulty 

in obtaining sufficient training images for such small images.  In this case, we train with 

only seven images vs. the eleven used for translation and rotation.  Table 5.12 contains 

the results of our scaling test for the full testing set.  The PTC of θ’ = 0.84, shown in Fig. 

5.17, is highlighted. 

 
Table 5.12:  Gray-scale image rotation results for full test set. 

 Grey-scale Rotation Results (full test set) 

θ' JMSE JACC IMMSE IMACC IMCR 

0.52 1.49E-01 48.8 1946.00 15.2 0.8024 

0.6 7.43E-02 57.6 756.80 24.5 0.8961 

0.68 3.43E-02 76.0 664.86 39.4 0.9053 

0.76 2.74E-02 80.8 571.21 48.5 0.9200 

0.84 4.57E-03 96.8 184.12 68.3 0.9734 

0.92 5.94E-02 63.2 464.69 56.8 0.9358 

1.0 1.07E-01 52.8 677.48 53.8 0.9148 
 

In this experiment, the CSRN is trained to perform scaling of grey-scale images.  The 

network achieves a best case result with JACC = 96.8%, IMACC = 68.3%, and IMCR = 

97.3%.  While the output images appear to be properly scaled, there is significant 

distortion due to information loss in the input images.  In addition, the CSRN has 
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difficulty in learning the scaling transform with the limited training set available for the 

image size used in this experiment.  Table 5.13 summarizes the results of our grey-scale 

scaling experiment. 

 
Table 5.13:  Summary of gray-scale image scaling results. 

 Grey-scale Scaling 

Metric Units Primary Test Image: θ’ = 16° 

JACC % 96.8% 

JMSE - 2.89E-03 

IMACC % 96.8 

IMMSE - 0.0 

IMCR - 68.3 

TTR(total) sec 4.57E-03 

TTR(norm) msec .9734 

TFC msec 1022 

TR min 233 
 

5.2.5 Baseline Comparison 
 

In order to evaluate any image processing technique, we must establish a “ground 

truth” as a baseline for comparison.  For affine transformation we utilize the raw 

transformations (RAW) based on (5.6), (5.7) and (5.8).  Here we wish to evaluate the 

basic transformation apart from various methods of interpolation. Therefore, we limit all 

transformations to the use of nearest-neighbor interpolation. 

To perform this experiment, the input images are passed to the desired transformation 

method (CSRN or RAW), which is required to transform the input image into the target 

image.  By performing the transformation in this manner, all resulting images should be 
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equivalent to the target image, allowing us to easily perform image comparisons.  We 

compare the function accuracy, by means of JMSE and JACC, the image accuracy, by 

means of IMMSE, IMACC and IMCR and the computation time TFC. 

5.2.6 Translation 
 

Figures 5.4 and 5.12 show the results of performing translation via CSRN and RAW 

for binary and grey-scale images, respectively.  The results of these two methods are 

shown side-by-side in rows b) and c).  Both methods can be compared to the actual target 

image shown in row d).   

Table 5.14 shows results for both the CSRN and RAW transformation methods. The 

date shown is from the binary image experiments for a single test case of θ = -10 pix, 

where θ is the transformation parameter passed as one of the external inputs to the 

CSRN.  Note that instances where the CSRN performs as well as or better than RAW are 

highlighted in red. 
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Table 5.14:   Comparison of CSRN and RAW translations. 
Translation 

Average 

Metric Units CSRN RAW Diff. % Err 

JACC % 94.7 100.0 -5.3 -5.3 

IMACC % 99.9 100.0 -0.1 -0.1 

IMCR - 0.98 1.00 -0.02 -2.0 

TFC msec 1.46 3.83  -2.37 -61.9 

Best 

JACC % 100.0 100.0 0 0.0 

IMACC % 100.0 100.0 0 0.0 

IMCR - 1.0 1.0 0 0.0 

 

A visual inspection of the images in Figs. 5.4 and 5.12 indicates the CSRN is capable 

of performing translation perfectly.  In its best case results, the CSRN’s performance 

matches that of the raw transform by which it is trained, indicating that it has fully 

learned the translation transformation.   As indicated by the computation time, TFC, the 

CSRN, once trained, performs this transformation much faster than the raw 

transformation. 

5.2.7 Rotation 
 

Figures 5.6 and 5.14 show the results of performing rotation via CSRN and RAW for 

binary and grey-scale images, respectively.  The results of these two methods are shown 
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side-by-side in rows b) and c).  Both methods can be compared to the actual target image 

shown in row d).   

Table 5.15 shows results for both methods. The date shown is from the binary image 

experiments for a single test case of θ = -16 °.  Note that instances where the CSRN 

performs as well as or better than RAW are highlighted in red. 

 
Table 5.15:  Comparison of CSRN and RAW rotations. 

Rotation 

Average 

Metric Units CSRN RAW Diff. % Err 

JACC % 82.62 100.0 -174 -17.4 

IMACC % 99.0 99.51 -0.51 -0.51 

IMCR - 0.94 0.935 .005 -5.0 

TFC msec 1.62 4.74  -3.12 -65.8 

Best   

JACC % 94.2 100.0 -5.8 -5.8 

IMACC % 99.1 100.0 -.09 -.09 

IMCR - 1.0 1.0 0.0 0.0 

 
 
 

An inspection of Figs. 5.6 and 5.14, indicates the CSRN is performs rotation well, 

achieving a best case performs slightly under that of the raw transformation.  In spite of 

its lower function accuracy, 94.2%, the CSRN still achieves an image accuracy of 99.1% 

and an IMCR of 100%, which is slightly better that that of the raw transform.    As in the 

case of translation, the CSRN performs rotation faster than the raw transformation. 
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5.2.8 Scaling 
 

Figures 5.9 and 5.16 show the results of performing rotation via CSRN and RAW for 

binary and grey-scale images, respectively.  The results of these two methods are shown 

side-by-side in rows b) and c).  Both methods can be compared to the actual target image 

shown in row d).   

Table 5.16 shows results for both methods. The date shown is from the binary image 

experiments for a single test case of θ = 0.73.  Note that instances where the CSRN 

performs as well as or better than RAW are highlighted in red. 

 
Table 5.16:  Comparison of CSRN and RAW scaling. 

Scaling 

Average 

Metric Units CSRN RAW Diff. % Err 

JACC % 83.2 100.0 -16.8 -16.8 

IMACC % 99.57 99.51 0.06 0.06 

IMCR - 0.98 0.935 .0045 4.81 

TFC msec 1.49 4.74 -3.25 -68.6 

Best 

JACC % 100.0 100.0 0 0.0 

IMACC % 100.0 99.51 0.49 0.49 

IMCR - 1.0 0.935 .065 6.95 

 

An inspection of Figs. 5.9 and 5.16, indicates the CSRN performs scaling well, 

achieving a best case performance equal to or better than that of the raw transformation. 
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As in the other cases of translation and rotation, the CSRN performs scaling faster than 

the raw transformation. 

5.3 Convergence of CSRN for Affine Transformations 

Figure 5.18, shows a plot of the CSRN’s testing MSE for the three affine 

transformations discussed in Section 5.2.3 above.   

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 5.18:  Plots of the testing MSE for the CSRN trained to perform affine 
transformation of binary images.   The green line is for translation, the red line is for 
rotation and the blue line is for scaling.  Circles indicate the calculated convergence 
points, TC.  The asterisks indicate the settling point, TS and diamonds indicate the location 
of the minimum error.  
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Table 5.17 tabulates the convergence metrics of all three experiments.   These metrics 

are computed based on batches of 50 simulations.  The data shows that the learning 

process for the translation, rotation and scaling transforms consistently converge with 

average setting times of approximately 150, 160, and 180 epochs, respectively.  The 

figure clearly indicates that the CSRN learns in all cases. 

 
Table 5.17:  Summary of binary image translation results. 

Translation 

Metric Units Ave +/- std dev PTC: θ’ = 10 pix   

TC epochs 110.78 +/- 41.53 119 

TS epochs 156.62 +/- 52.67 79 

EMIN - 0.01 +/- 0.01 0.00 

TME epochs 138.98 +/- 48.31 79 

Rotation 

TC epochs 98.6 +/- 34.4 89 

TS epochs 160 +/- 28.9 169 

EMIN - 0.20  +/- 0.06 7.15E-2 

TME epochs 195 +/- 11.4 192 

Scaling 

TC epochs 94.1 +/- 71.6 119 

TS epochs 181 +/- 17.9 170 

EMIN - 0.48 +/- 0.12 2.67E-1 

TME epochs 176 +/- 24.7 170 
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5.4 Larger Grey-scale Results 

Thus far we have limited our test to images of size 35x35 pixels.  Our generalized IP 

architecture utilizing sub-image processing is not limit to image of this size.  The only 

limitation to image size is the processing time required to run simulation for the larger 

images.  As an example we have include affine rotation results result for images of size 

75x75 pixels and 125x125pixels.  These are shown in Fig. 5.19.  Note the quality of the 

transformation improves as the image size increases. 
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Figure 5.19:  Results of affine rotation test for images of 35x35, 55x55 and 125x125 
pixels.  Results are shown for the PTC of θ’ = 16°. 
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5.5 Conclusions 

In this chapter, pursuant to goal 2 of this work, we demonstrate the CSRN’s ability to 

learn and perform basic affine transformations on binary and grey-scale images.  We 

adapt the CSRN to perform translation, rotation and scaling, discussing solutions to 

several practical implementation issues.  As proof of concept we demonstrate the 

CSRN’s ability to perform these transformations on small, 15x15, binary test images.  

Utilizing the sub-image processing technique developed in Chapter 4, we demonstrate the 

CSRN’s ability to perform the above mentioned transformations on larger, grey-scale, 

facial images.  

The CSRN achieves average function accuracies, JACC, of 95%, 83% and 83% for 

translation, rotation and scaling, respectively.  The higher accuracy for translation is due 

to its local nature and the absence of information loss that occurs in the other two 

transforms.  The CSRN achieves best case function accuracies of 100% for all three 

transformations.  These results indicate that the CSRN is capable of learning the 2-D 

functions associated with these affine transformations. 

The transformed images produced by the CSRN compare favorably to their 

corresponding target images, as indicated by the image accuracy and image correlation 

ratio metrics.  The CSRN achieves average IMACC values of 99.9%, 99.0%, and 99.6% 

and average IMCR values of 98%, 94%, and 98%, respectively.  Best case IMACC results 

of 100%, 99.1%, 100% and best case IMCR results of 100%, 95% and 100% are achieved.  

When compared to the results produced by the raw transformation equations, discussed in 

Section 5.1.1, the CSRN’s performance either meets or exceeds the performance of the 

raw transforms. 
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The CSRN’s learning process is stable, with the mean-squared testing error 

consistently converging in less than 200 epochs for all three transformations. 

The CSRN’s forward computation times are 1.46msec, 1.62msec, and 1.49msec, 

respectively.  The CSRN reduces computation times for these transforms by 62%, 66% 

and 69%, over those achieved by the raw transformations.  The faster computation times 

of the CSRN make it attractive for real-time, embedded applications. 
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6 IMAGE REGISTRATION USING CSRNS 
 

6.1 Introduction 

Image registration (IR) is the process of aligning two or more images.  These images 

encompass the same scene possibly obtained at different times, with different sensors 

and/or from different viewpoints [102].  By convention, one image (the reference image) 

is considered stationary, while the second image (the sensed image) is transformed to the 

coordinates of the reference image.  The goal of any IR technique is to find the optimal 

transformation that best aligns the structures of interest in the two images [65].  

6.1.1 Applications 
 

Registration is a fundamental image processing (IP) task.  It plays a crucial role in 

many IP applications, which include: computer vision (facial recognition, target 

localization/tracking/recognition, robot navigation, automatic quality control), remote 

sensing (environmental monitoring, land usage, cartography, astrophotography) and 

medical imaging (fusion of multimodal images such as CT, MRI or PET to gain more 

complete patient information, tumor detection and growth monitoring, treatment 

verification, development of and comparisons to anatomical atlases) [102].  

6.1.2 Literature Review 
 

Due to its fundament role in so many IP applications, IR has been the topic of much 

research over the past three decades.  Zitova et al. [102] report that according to the 

Institute of Scientific Information’s database (now known as the Thomson Reuter’s Web 

of Knowledge) that in the 10 years prior to 2002, over 1000 papers were published on the 

topic of image registration.  A similar search using Google Scholar for the 10 years since, 
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2002 to 2012, reveals that approximately 664,000 articles on this topic have been 

published [106]. 

Considering the enormous volume of research, a complete literature review of IR is a 

daunting task which lies outside the scope of this work.  Fortunately, several in-depth 

surveys as well as several excellent tutorials exist in literature.  A brief overview of these 

works is presented here, in hopes of providing the reader with a body of information from 

which to build a foundational understanding of the topic. 

There are several surveys that approach IP from a general purpose perspective.  

Ghaffery [28] presents the historical ‘first’ paper on this topic in 1983.  Brown [7] 

provides an exhaustive review in 1992, while Zitova et al.’s [102], work documents 

methods established after 1992, and includes those methods prior to 1992 that had 

become classic and/or introduced key concepts which were still in use as of 2003.  

Wyawahare et al. [100] provide an exhaustive survey in 2009. Perhaps the latest survey 

to date is present in Deshmukh et al. [19] in 2011.  Their work provides a very practical 

overview including results and comparisons using a variety of real world examples. 

In additional to those described above, there are multiple surveys that have been done 

within given application areas.  [28][29][30][42][54][56] provide exhaustive surveys for 

IR in medical imaging.  [25][36][63] provide surveys from the area of remote sensing. 

Several excellent tutorials for IR exist, including [2][40][66] [84][89][99]. 

6.1.3 Classification of Image Registration Techniques 
 

With the wealth of IR techniques available, several authors attempt classification of 

IR techniques.  Perhaps the earliest attempt at classification is Elsen, et al. [22], followed 



 

  123 

by a more comprehensive classification by Maintz [56].  Chmielewski et al. [10] 

summarize several earlier classifications based on the following 10 criteria: 

1. dimensionality:  Dimension of the images, 2D/2D, 2D/3D, 3D/3D. 
2. domain of transformation:  Local or global depending on whether the entire 

image or a sub-image is used.  
3. type of transformation:  Rigid, affine, projective or non-linear. 
4. tightness of feature coupling:  Exact or approximate transfer of features. 
5. method of parameter determination: Parameters may be estimated directly or via 

search methods. 
6. subject of registration:  inter or intra subject registration. 
7. type of data:  Raw data or extracted features. 
8. source of features:  features explicitly present in the data, intrinsic, or those 

externally introduced, extrinsic. 
9. automation level:  automatic, semiautomatic or manual, depending upon the users 

level of intervention. 
10. measure of registration quality:  Metrics used to quantify the quality of 

registration. 
 

6.1.4 General Steps for Image Registration 
 

Regardless of the methods used for implementation, IR can be broken down into the 

following 4 steps [102]: 

1. feature detection 
2. feature matching 
3. transform model parameter estimation 
4. transformation and re-sampling.  

 

6.1.5 Problems with Existing IR methods 
 

Each of the four steps above presents a non-trivial problem in the implementation of 

any IR technique.  If we consider step 4 as the actual IR transformation, then steps 1 – 3 

can be viewed as pre-processing steps, each step serving as the input to the proceeding 

step.  Errors in any step are propagated forward and affect the final registration quality.   

Each of these steps are complex and require significant time to perform and therefore 
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limit the application of the given IR technique in any real-time or near real-time 

applications such as target tracking and robot navigation.   

Consider the following simple experiment performed early in this work. I ask my 

daughter (4 years old at the time) to perform the following task.  I sat her down at a table, 

and placed a picture of my wife’s face on the table.  I rotated the picture about 30 

degrees, then showed my daughter how to “straighten” the picture.  With this minimal 

“training” she was able to “straighten” (read that “register”) the image from that point 

forward, regardless of  the initial angle at which the image was placed.  Further, I could 

then place pictures of other objects (cars, toys, furniture) under various angles of rotation, 

and she could register those images as well. 

The human brain, unlike existing IR methods, learns to perform these registration 

steps and once learned performs them quickly and easily without conscience effort on our 

part.  To achieve similar results we must turn to biologically based system, such as NNs.    

6.1.6 Neural Networks for Image Registration 
 

In the past decade, NNs have been applied to image registration.  Ramirez et al. [73] 

provide a review of existing NN techniques available for IR.  However, most applications 

apply NNs to perform one of the above pre-processing steps.  Several examples follow. 

Shang et al. and He et al. use NNs to perform feature extraction (step 1). Shang et al. 

[83] use PCA NNs to compute the 1st principal direction for both the reference and 

sensed images. This feature is then used to compute the parameters of a rigid body model 

(rotation and translation).  He et al. [41] use pulse-coupled NNs (a type of feed-forward 

network) to extract foveation points that are then matched and used to compute model 

parameters.  Elhanany et al. [20], first extract features using the discrete cosine transform 
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(DCT), then use these features to train an MLP network to compute the parameters of an 

affine based model (step 3).  Mostofa et al. [64] use a MLP to perform surface 

interpolation in fusing standard 2D satellite images with range data for development of 

3D geographical models, thus performing the re-sampling portion of step 4. 

6.2 Image Registration via CSRN 

We limit the scope of our investigation of CSRNs for IR to the use of the rigid body 

model.  The transformations involved will, therefore, be limited to those of translation 

and rotation. 

6.2.1 Adapting the CSRN for Image Registration 
 

As in the case of affine transformations, we must adapt the CSRN to perform IR. 

6.2.1.1 Cost-Function of Image Registration 
 

We first consider whether the cost-function associated with learning in the CSRN is 

capable of approximating the cost-function associated with image registration.  

Mathematically, IR can be expressed as 

 

 (6.1) 

 

where, D is the distance measure, T is the transformation, IR is the reference or stationary 

image, and IS is the sensed or moveable image [65].  In the rigid body case, D becomes 

the Euclidean distance between corresponding pixels, and T the translation and/or 

rotation transformations.  Let i
RX  represent the location of the ith pixel in the reference 

( )[ ],,min SRT ITID
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image and i
SX  its corresponding pixel in the sensed image.  The distance between the 

reference and sensed locations is given by 

 

 (6.2) 

 

We can view this distance as the error in pixel location, ei.   

 

 (6.3) 

 

The total error in the transformed image is given by 

 

 (6.4) 

 

where c is the number of pixels in the image.  If we extend this error to an entire set of 

images, the error becomes 

 

 (6.5) 

 
 
 
where N is the number of images in the set.  Equation (6.5) represents the cost-function 

for image registration of rigid bodies.  Minimizing this cost function minimizes the 

Euclidean distance between the location of pixels in the reference and sensed images.  

Note that (6.5) is equivalent to (3.3), which is the cost-functions for learning in CSRNs.  

This suggests that the CSRN should be capable of learning to perform IR. 
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6.2.1.2 Inputs/Outputs 
 

In the case of IR, the transformation parameter, θ, is not known a-priori and thus 

cannot be used as an input to the network.  Therefore, we utilize pixel location and 

intensity as external inputs for IR. 

The output of the network for IR is the same as that for affine transformation, 

discussed in Section 5.2.1.1. 

6.2.2 Implementation Issues 
 

IR involves the same implementation issues as affine transformation.  Refer to 

Section 5.2.2 for a discussion of these issues. 

6.2.3 Registration of Binary Images 
 

In this section we examine the use of CSRNs to perform image registration of binary 

images.  In keeping with the rigid body assumption, we restrict transformations to 

translation and rotation. 

6.2.3.1 Experiment Configuration 
 

In this series of experiments we utilize a simple binary image of a cross as our test 

subject.  The CSRN is configured with a GMLP core, EKF training, movement encoding 

and inverse mapping.  Three external inputs are used: the pixel’s location (x and y), and 

intensity.  The network is trained with eleven images which are zero padded as discussed 

in Section 5.2.2.4.  The network is tested with the full set of training images.   As in the 

case of affine translations, a primary test case (PTC) is selected for display in detail. 
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6.2.3.2 Translation 
 

In this experiment we train the CSRN to perform image registration of binary images 

under affine translation.  Training images utilize zero padding with a width of 5 pixels.  

The input images are translated through a range of θ’ = 0 to 10 pixels.  Figure 6.1 shows 

the resulting images.  Row a) shows the input images.  Row b) shows the corresponding 

CSRN output images.  Row c) shows the results of the baseline registration method, 

discussed below in Section 6.2.5.  Row d) shows the actual target image.  Each column 

contains the results for a specific input image, and is labeled by its corresponding 

transformation parameter, θ’.   Note the results for the PTC, θ’ = 5 pixels, are highlighted 

in red and shown in detail in Fig. 6.2. 

 

 

 

 

 

 

 

 
Figure 6.1:  Results of registering binary images under affine translation.  Results are 
shown for full testing set.  Row a): input images translated through a range of θ’ = 0 to 10 
pix. Row b): corresponding CSRN output images.  Row c): results of baseline registration 
method. Row d): target image.  Columns label with transformation parameter of the input 
images, θ’.  PTC: θ’ = 5 pix.   
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Figure 6.2:  Results of IR of binary image under affine translation.  PTC: θ’ = 5 pix.  The 
network achieves a final JACC = 100% and an IMACC = 100%. 

 

Table 6.1 tabulates the results for this registration experiment.  Results for the full 

testing set are shown.  The PTC, θ’ = 5 pixels, is highlighted. 

 
Table 6.1:  Registration results of binary images under affine translation. Data for full 
test set shown.  The PTC, θ’ = 5 pixels, is highlighted. 

 Binary Images Under Translation (full test set) 

θ' JMSE JACC IMMSE IMACC IMCR 

0 2.27E+00 0 4.00E-02 96.0 0.0 

1 1.45E+00 0 3.56E-02 96.4 0.3273 

2 8.18E-01 0 3.11E-02 96.9 0.4639 

3 3.64E-01 0 4.44E-02 95.6 0.3553 

4 9.09E-02 0 4.00E-02 96.0 0.4507 

5 0.00E+00 100 0.00E+00 100.0 1.0000 

6 9.09E-02 0 4.44E-02 95.6 0.4213 

7 3.64E-01 0 5.33E-02 94.7 0.3056 

8 8.18E-01 0 6.22E-02 93.8 0.1898 

9 1.45E+00 0 7.11E-02 92.9 0.0741 

10 2.27E+0 0.0 8.00E-02 92.0 -0.0417 
 
 

Inspection of Fig. 6.1 reveals that the CSRN is unable to generalize over all its 

training images.  Without the transformation parameter, available in the affine 



 

  130 

transformation application, as an additional input, the CSRN is unable to sufficiently 

distinguish between input images and produces the same output for all images.  Table 6.2 

shows this output.  Note that this output calls for every image to be translated 5 pixels to 

the left.  While this table may seem trivial at first, much insight can be gained from 

understanding how the CSRN came to produce this output. 

 

 

Table 6.2:  CSRN’s output for registration of 15x15, binary images under 
affine translation. 

5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 

 

Consider the IR cost-function given by (6.5), repeated here for convenience, 

 

 (6.5) 

 

.
2
1

1 1

2∑ ∑
= =









=

N

n

c

i
iEE



 

  131 

In this case, we train with 11 images translated from 0 to 10 pixels, respectively.  The 

image position which minimizes the error over the entire training set is the mid-point of 

the translation range, or 5 pixels.  Examination of Fig. 6.1 row b), shows that the CSRN 

has moved each image 5 pixels to the left.  As a result, the PTC, θ’ = 5 pix, is the only 

image that is correctly registered. 

Table 6.3 summarizes the results of the translation experiment for binary images.  

Statistics are computed over a batch of 50 simulations. 

 
Table 6.3:  Summary of image registration results for binary images under affine 
translation. PTC: θ’ = 5 pixels.   

 Binary Images Under Translation 

Metric Units Ave +/- std dev PTC:  θ’ = 5 pix 

JACC % 0.00 +/- 0.00 100.0 

JMSE - 2.27 +/- 0.01 0.0 

IMACC % 92.00 +/- 0.00 100.0 

IMMSE - 0.08 +/- 0.00 0.0 

IMCR - -0.04 +/- 0.00 1.0 

TTR(total) sec 559.70 +/- 0.41 559.09 

TTR(norm) msec 226 +/-  0.17 225.9 

TFC msec 1.48 +/- 0.01 1.48 

TR min 9.58 +/- 0.01 9.60 

TB hrs n/a 7.99 
 
 

6.2.3.3 Rotation 
 

In this experiment we train the CSRN to perform IR for binary images under affine 

rotation.  Training images utilize zero padding with a width of 2 pixels.  The input images 

are translated through a range of θ’ = 0° to 20° in steps of 2°.   The network is tested with 
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the full set of training images.  Figure 6.3 shows the resulting images.  Row a) shows the 

input images.  Row b) and c) show the corresponding CSRN and baseline output images, 

respectively.  Row d) shows the actual target image.  Each column contains the results for 

a specific input image, and is labeled by its corresponding transformation parameter, θ’.   

Note the results for case θ’ = 10° are highlighted in red and shown in detail in Fig. 6.4. 

 
 

 

 

 

 

 

 
Figure 6.3:  Results of registration of binary images under affine rotation.  Results are 
shown for full testing set.  Row a): input images rotated through a range of θ’ = 0° to 20° 
in steps of 2°.  Row b): corresponding CSRN output images.  Row c): results of baseline 
registration method. Row d): target image. Columns label with transformation parameter, 
θ’. 
 

 

 

 

 

 
Figure 6.4:  Results of image registration for case θ’ =10°. The network achieves a best, 
JACC = 94.7% and an IMACC = 100.0%. 
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Table 6.4 tabulates the results of this IR experiment.  Results for the full testing set 

are shown.  The PTC, θ’ = 10°, is highlighted in red. 

 

 Table 6.4:  Registration results of binary images under affine rotation. Data for full test 
set shown. 

 Binary Images Under Rotation (full test set) 

θ' JMSE JACC IMMSE IMACC IMCR 

0 5.74E-02 38.2 5.33E-02 94.7 0.685 

2 5.74E-02 38.2 5.33E-02 94.7 0.685 

4 5.41E-02 40.4 5.33E-02 94.7 0.685 

6 2.26E-02 75.1 3.56E-02 96.4 0.790 

8 1.05E-02 88.4 1.78E-02 98.2 0.895 

10 4.80E-03 94.7 0.00E+00 100.0 1.000 

12 9.70E-03 89.3 0.00E+00 100.0 1.000 

14 2.59E-02 71.6 2.67E-02 97.3 0.869 

16 3.72E-02 59.1 1.78E-02 98.2 0.895 

18 4.93E-02 47.1 4.44E-02 95.6 0.749 

20 6.79E-02 40.0 3.56E-02 96.4 0.790 
 
 
 

These results indicate that the CSRN exhibits the same generalization problem for 

registering rotated images, as seen when registering translated images.  In this case, the 

CSRN registers all images back to the mid-point of the rotation range, i.e.10° and, once 

again, the PTC is the only image correctly registered.  Table 6.5 summarizes the results 

of the rotation experiment for binary images.  Statistics are computed over a batch of 50 

simulations.   
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Table 6.5:  Summary of image registration results for binary images under affine 
rotation. 

 Binary Images Under Rotation 

Metric Units Ave +/- std dev PTC:  θ’ = 10° 

JACC % 55.26 +/- 1.91 94.7 

JMSE - 0.04 +/- 0.00 4.85E-3 

IMACC % 99.02 +/- 0.57 100.0 

IMMSE - 0.03 +/- 0.01 0.02 

IMCR - 0.82 +/- 0.04 1.0 

TTR(total) sec 568.72 +/- 0.40 569 

TTR(norm) msec 229.78 +/- 0.16 230 

TFC msec 1.46+/- 0.01 1.46 

TR min 9.75 +/- 0.01 9.75 

TB hrs n/a 8.12 
 

6.2.4 Registration of Grey-scale Images 
 

In this section we examine the use of CSRNs to perform IR of grey-scale images.  In 

keeping with the rigid body assumption, we restrict transformations to translation and 

rotation. 

6.2.4.1 Experiment Configuration 
 

In this series of experiments we utilize the grey-scale facial image, shown in Fig. 

5.11, as our test subject.  The CSRN is configured with a GMLP core, EKF training, 

movement encoding and inverse mapping.  Three external inputs are used: the pixel’s 

location (x and y), and intensity.  The network is trained with eleven images which are 

zero padded as discussed in Section 5.2.2.4.  The network is tested with the full set of 

training images.  As before, we select a PTC for detailed display. 
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6.2.4.2 Translation 
 

In this experiment we train the CSRN to perform image registration of grey-scale 

images under affine translation.  Training images utilize zero padding with a width of 5 

pixels.  The input images are translated through a range of θ’ = 0 to 10 pixels.  Figure 6.5 

shows the resulting images.  Row a) shows the input images.  Row b) shows the 

corresponding CSRN output images.  Row c) shows the results of the baseline 

registration method.  Row d) shows the actual target image.  Each column contains the 

results for a specific input image, and is labeled by its corresponding transformation 

parameter, θ’.   The PTC, θ’ = 5 pixels, is highlighted in red and shown in detail in Fig. 

6.6. 

 

 

 

 

 

 

 

 
Figure 6.5:  Results of registering grey-scale images under affine translation.  Results are 
shown for full testing set.  Row a): input images translated through a range of θ’ = 0 to 10 
pixels. Row b): corresponding CSRN output images.  Row c): results of baseline 
registration method. Row d): target image.  Columns label with transformation parameter 
of the input images, θ’.  PTC: θ’ = 5 pixels, highlighted in red. 
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Figure 6.6:  Results of IR of grey-scale image under affine translation.  PTC: θ’ = 5 
pixels.  The network achieves a final JACC = 100% and an IMCR = 1.0. 
 
 

Table 6.6 tabulates the results for this registration experiment.  Results for the full 

testing set are shown.  .  The PTC, θ’ = 5 pixels is highlighted. 

 
Table 6.6:  Registration results of grey-scale images under affine translation. Data for 
full test set shown. 

 Grey-scale Images Under Translation (full test set) 

θ' JMSE JACC IMMSE IMACC IMCR 

0 2.27E+00 0.0 4.61E+03 49.3 0.739 

1 1.45E+00 0.0 3.62E+03 49.3 0.794 

2 8.18E-01 0.0 2.59E+03 49.6 0.852 

3 3.64E-01 0.0 1.54E+03 49.6 0.911 

4 9.09E-02 0.0 3.69E+02 50.3 0.978 

5 0.00E+00 100.0 0.00E+00 100.0 1.000 

6 9.09E-02 0.0 3.48E+02 50.3 0.980 

7 3.64E-01 0.0 1.23E+03 49.6 0.929 

8 8.18E-01 0.0 2.06E+03 49.6 0.883 

9 1.45E+00 0.0 2.88E+03 49.3 0.837 

10 2.27E+00 0.0 3.67E+03 49.3 0.793 
 
 

Again, we see the same generalization problem exhibited when registering binary 

images and the results are similar to those obtained in the binary registration case. 
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Table 6.7 summarizes the results of the translation experiment for binary images.  

Statistics are computed over a batch of 50 simulations 

 
Table 6.7:  Summary of image registration results for grey-scale images under affine 
translation. 

 Grey-scale Images Under Translation 

Metric Units PTC: θ’ = 5 pixels 

JACC % 100.0 

JMSE - 0.0 

IMACC % 100 

IMMSE - 0.0 

IMCR - 1.0 

TTR(total) sec 752 

TTR(norm) msec 56 

TR min 142 
 
 

6.2.4.3 Rotation 
 

In this experiment we train the CSRN to perform IR for grey-scale images under 

affine rotation.  Training images utilize zero padding with a width of 2 pixels.  The input 

images are translated through a range of θ’ = 0° to 20° in steps of 2°.   The network is 

tested with the full set of training images.  Figure 6.7 shows the resulting images.  Row a) 

shows the input images.  Row b) and c) show the corresponding CSRN output and 

baseline images, respectively.  Row d) shows the actual target image.  Each column 

contains the results for a specific input image, and is labeled by its corresponding 

transformation parameter, θ’.   The PTC is highlighted in red and shown in detail in Fig. 

6.8. 
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Figure 6.7:  Results of registration of grey-scale images under affine rotation.  Results 
are shown for full testing set.  Row a): input images rotated through a range of θ’ = 0° to 
20° in steps of 2°.  Row b): corresponding CSRN output images.  Row c): results of 
baseline registration method. Row d): target image. Columns label with transformation 
parameter, θ’.  PTC: θ’ = 10° highlighted in red. 
 

 

 

 

 

 
Figure 6.8:  Results of image registration for PTC, θ’ =10°. The network achieves a best, 
JACC = 88.7% and an IMCR = 1.0. 
 
 

Table 6.8 tabulates the results of this IR experiment.  Results for the full testing set 

are shown.  The PTC, θ’ = 10°, is highlighted. 
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 Table 6.8:  Registration results of grey-scale images under affine rotation. Data for full 
test set shown. 

 Grey-scale Images Under Rotation (full test set) 

θ' JMSE JACC IMMSE IMACC IMCR 

0 2.97E-01 16.1 4.14E+02 61.1 0.976 

2 2.24E-01 16.1 4.14E+02 61.1 0.976 

4 1.19E-01 24.7 2.29E+02 67.1 0.987 

6 6.03E-02 40.0 1.88E+02 76.6 0.989 

8 3.17E-02 65.1 9.45E+01 86.4 0.995 

10 1.03E-02 88.7 3.77E+01 93.2 0.998 

12 2.66E-02 70.7 1.13E+02 88.8 0.993 

14 5.75E-02 43.1 2.20E+02 76.9 0.987 

16 1.15E-01 29.3 2.89E+02 69.6 0.983 

18 1.91E-01 21.7 4.62E+02 63.9 0.973 

20 2.90E-01 17.7 5.71E+02 61.1 0.967 
 

As in the previous registration cases, the CSRN exhibits the same generalization 

problem previously discussed.  Table 6.9 summarizes the results of registration of grey-

scale images under affine rotation.  Statistics are computed over a batch of 50 

simulations.   
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Table 6.9:  Summary of image registration results for grey-scale images under affine 
rotation. 

 Grey-scale Images Under Rotation 

Metric Units Primary Test Image: θ’ = 10° 

JACC % 88.7 

JMSE - 0.0 

IMACC % 93.2 

IMMSE - 1.03E-2 

IMCR - 1.0 

TTR(total) sec 802 

TTR(norm) msec 60 

TR min 151 
 

6.2.5 Baseline Comparison 
 

In order to establish a “ground truth” IR technique, we must specify a transformation 

model and a means for estimating the parameters of the selected model.  We have already 

established the use of the rigid body model, which utilizes the transformations based on 

(5.6) and (5.7).  For our baseline case, we assume that the parameters of the model are 

perfectly estimated, which will provide the best case registration under the rigid body 

model.  Since we wish to evaluate the CSRN’s ability to perform basic registration, apart 

from re-sampling methods, we limit both the CSRN and baseline methods to use of 

nearest-neighbor interpolation.  Baseline image results are included in row c) of all 

preceding figures which contain IR results.   

Due to the generalization problem, as previously discussed, we limit our comparisons 

to those of the PTC only. 
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6.2.6 Registration Under Translation 
 

Figures 6.1 and 6.5 shows the results of IR via CSRN and baseline methods, for 

binary and grey-scale images, respectively.  Table 6.10 shows results for both the CSRN 

and baseline registration methods. The date shown is that from the PTC, θ’ = 5 pixels, of 

the binary IR experiment.  Note that instances where the CSRN performs as well as or 

better than the baseline method are highlighted in red. 

 
Table 6.10:   Comparison of CSRN and baseline registration methods for images 
transformed by translation. 

Translation 

PTC:  θ’ = 5 pix 

Metric Units CSRN BASELINE Diff. % Diff. 

JACC % 100.0 100.0 0 0 

IMACC % 100.0 100.0 0 0 

IMCR - 1.0 1.00 0 0 

TFC msec 1.41 3.83  -2.69 -70.2 

 

A visual inspection of the images in Figs. 6.2 and 6.6, indicate the CSRN is capable 

registering an image which has undergone affine transformation.  This registration is 

subject to limited generalization as discussed above.   In the PTC, the CSRN’s 

performance matches that of the baseline method by which it is trained. As indicated by 

the computation time, TFC, the CSRN, once trained, performs this registration much faster 

than the baseline method. 
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6.2.7 Registration under Rotation 
 

Figures 6.3 and 6.7 show the results of IR via CSRN and baseline methods, for binary 

and grey-scale images, respectively.  Table 6.11 shows results for both the CSRN and 

baseline registration methods. The data shown is that from the PTC, θ’ = 10°, of the 

binary IR experiment.  Note that instances where the CSRN performs as well as or better 

than the baseline method are highlighted in red. 

 
Table 6.11:  Comparison of CSRN and baseline registration methods for images 
transformed via rotation. 

Rotation 

PTC: θ’ = 10° 
Metric Units CSRN BASELINE Diff. % Err 

JACC % 94.7 100.0 -5.3 -5.3 

IMACC % 100.0 100.0 0 0.0 

IMCR - 1.0 1.0 0 0.0 

TFC msec 1.55 4.74 -3.19 -67.3 

 
 

A visual inspection of the images in Figs. 6.4 and 6.8, indicate the CSRN is capable 

registering an image which has undergone affine transformation.  Again, this registration 

is subject to limited generalization as discussed above.   In the PTC, the CSRN’s 

registration performance matches that of the baseline method, in spite of achieving a 

slightly, lower function accuracy.  As in the case of registration under translation, the 

CSRN is much faster than the baseline method. 
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6.3 Convergence of CSRN for Image Registration 

Figure 6.9, shows a plot of the CSRN’s testing MSE for registration of images under 

both translation and rotation. 

 
 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 6.9:  Plots of the testing MSE for the CSRN trained to perform IR of binary 
images.   The red line is for translation, the blue line is for rotation.  Circles indicate the 
calculated convergence points, TC.  The asterisks indicate the settling point, TS and 
diamonds indicate the location of the minimum error.  
 
 

Table 6.12 tabulates the convergence metrics for both experiments.   These metrics 

are computed based on a batch of 50 simulations.  The data shows that the learning 

process for both cases consistently converge with average settling times of approximately 

8 and 75 epochs, respectively.  The figure clearly indicates that the CSRN is learning in 

both cases. 
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Table 6.12:  Summary of convergence data for image registration of binary images.  
PTCs for translation and rotation cases are θ’ = 5 pixels and θ’ = 10°, respectively. 
 

Translation 

Metric Units Ave +/- std dev PTC  

TC epochs 58.02 +/- 13.09 75 

TS epochs 7.72 +/- 4.95 9.0 

EMIN - 10.0 +/- 0.01 10.0 

TME epochs 83.36 +/- 35.12 35 

Rotation 

TC epochs 15.80 +/- 7.84 13.00 

TS epochs 82.98 +/- 36.40 50.00 

EMIN - 0.41  +/- 0.01 0.397 

TME epochs 174.60 +/- 24.11 199 
 

6.4 Conclusion 

In this chapter, pursuant to goal 3 of this work, we demonstrate the CSRN’s ability to 

learn and perform basic image registration on binary and grey-scale images subjected to 

rigid body transformation.  We adapt the CSRN to perform registration of images under 

both translation and rotation.  As proof of concept we demonstrate the CSRN’s ability to 

register small, 15x15, binary test images.  Utilizing the sub-image processing technique 

developed in Chapter 4, we demonstrate the CSRN’s ability to register larger, grey-scale, 

facial images.  

The CSRN exhibits an inability to generalize over all its training images.  

Approximation of the cost-function produces the same output for all images, thereby 

registering each input image to the mid-point of the transformation range.   
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The CSRN performs excellent registration for the PTC, which is equal to the mid-

point of the transformation range.  It achieves function accuracies of 100%, and 94.7%, 

for the translation and rotation cases, indicating that it is learning the geometric functions 

associated with registration.  

The registered images produced by the CSRN for the primary test case compare 

favorably with their corresponding target images, as indicated by the image accuracy and 

image correlation ratio metrics.  The CSRN achieves IMACC and IMCR values of 100%, 

for both the translation and rotation cases.  When compared to the results produced by the 

baseline registration method, discussed in Section 6.2.5, the CSRN’s performance 

matches that of the baseline method. 

The CSRN’s learning process is stable, with the mean-squared testing error 

consistently converging in less than 150 epochs for both transformations. 

The CSRN’s forward computation times are 1.41msec and 1.55msec for the 

translation and rotation cases, respectively.  The CSRN reduces computation times for 

these transforms by approximately 70% over those achieved by the baseline registration 

method.  These faster computation times make the CSRN attractive for real-time, 

embedded applications. 

In spite of its inability to generalize over its entire set of training images, the CSRN 

has demonstrated the ability to learn IR.  CSRNs could be used in an on-line learning 

configuration where a single CSRN is trained to register a single input image, as 

demonstrated by Ren et al. [75] in their facial recognition application.  The CSRN could 

also be used in a two-stage registration technique, where the first stage performs 
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parameter estimation, and the second stage performs the geometric transformation.  Plans 

for this two-stage method are examined in a discussion of future work in Chapter 9. 
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7 ALTERNATIVE CORE NETWORKS 
 

In our introduction to the CSRN in Chapter 3, we discuss the one-to-one 

correspondence of pixels in an image to cells of the network.   Figure 3.1 shows the 

cellular structure of the CSRN and depicts this one-to-one relationship.  Each “cell” in 

the structure contains an instance of the chosen core network.  This cell can contain any 

type of NN, but the use of a SRN as the core, defines the CSRN.  In this chapter, we 

investigate the use of alternative core networks. 

Inherent to the application of any NN to the solution of a given problem is the process 

of “tuning” the network.  “Tuning” a network is the process of selecting the internal 

parameters of the network in order to maximize the efficacy of the network for a selected 

application.  As part of our investigation of various cores for the CSRN, we discuss 

tuning of these cores for general purpose image processing (GPIP) applications. 

7.1 The GMLP Core 

We introduce the GMLP core in Section 3.2.  Its architecture and core network are 

shown in Figs. 3.2, and 3.3, respectively.  We have discussed several applications for 

which the GMLP core is used, including the maze traversal application, Section 3.5.1, 

affine transformation, Section 5.2.1 and image registration, Section 6.8.1.  

7.1.1 Tuning the GMLP core 
 

In this section, we discuss selection of the GMLP core’s internal parameters.  These 

parameters are listed below: 
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• number of active nodes 
• number of core iterations 
• initial scaling weight 
• number of  neighbor inputs. 
 

7.1.1.1 Number of Active Nodes 
 

Selection of the number of active nodes involves a trade-off between computational 

power and network complexity.  The more complex the network, the longer the forward 

and backward computation times resulting in longer training/testing times.  Ilin et al. 

utilize between 5 and 15 active nodes for the solution of the maze traversal problem [47].  

We find 5 active nodes to be adequate for the IP applications investigated herein.   

7.1.1.2 Number of Core Iterations 
 

The number of core iterations affects the resolution of the network outputs, 

particularly those outputs heavily time dependant.  Once again there is a trade-off 

between computational ability and complexity.  One must select a high enough number of 

iterations to allow the final output to settle, while not drastically degrading the speed of 

the network.  We find that 10 iterations are sufficient for our IP applications.   

7.1.1.3 Initial Scaling Weight 
 

The scaling weight is used to scale the core’s final output.  Selection of an initial 

value for the scaling weight is a function of the geometry of the GPIP task.  Ilin et al. 

report the use of 40 as the initial value of the scaling weight for their maze traversal 

application with 7x7 mazes [47].  Typical output values for mazes of this size range from 

1 to 8, however, they assign a value of 25 to represent a cell with an obstacle, which 
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results in a much higher required scaling weight.  In our GPIP applications, we find that 

the initial scaling weight depends on image size or range of intensity values.   

Geometric transformations depend on image size.  For these transformations, which 

include affine transformations and registration, the maximum movement of any given 

pixel in a given dimension is the size of the image in that dimension.  Therefore, the 

initial scaling weight is set equal to the size of the image.  When considering small scale 

angles of rotation (0° to 30°) with the center of  rotation at the image’s center,  the 

maximum movement in a given dimension is ½ the image size, and the initial scaling 

weight is set accordingly.   

For those IP applications which directly output a final image, the initial scaling 

weight is set equal to the upper limit of the image’s intensity range.  The output of the 

tanh activation function is -1 to 1.  We set the intensity values for binary images equal to 

{-1, 1}, and set the initial value of the scaling weight, Ws = 1.  For grey-scale images we 

represent the intensity value with a floating point variable scaled between (-1, 1) and set 

the initial value of the scaling weight, Ws = 1.  

7.1.1.4 Number of Neighbor Inputs 
 

The number of neighbor inputs is again affected by the geometry of the problem.  In 

the maze traversal problem, the maze can only be traversed by moving from the current 

cell to one of its 4-neighbors [47], thus 4 inputs are sufficient.  In Grant et al.’s voltage 

prediction application [34], the number and orientation of connections between the CSRN 

cells reflect the actual connections between neighboring busses in the system.  Pixel 

transformations, discussed in Section 4.5, do not require any neighbor connections, while 

spatial filtering, discussed in Section 4.6, requires 8-neighbor connections.   
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7.2 Elman SRN 

The Elman SRN (ESRN) core was briefly introduced in Section 3.6.5.  Figure 3.9 

depicts the ESRN core configured for a voltage prediction application.  Figure 7.1 below 

shows the ESRN core adapted for general purpose IP tasks. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 7.1:  ESRN core network configured for image processing.  Core shown with 
bias, 3 external inputs,  4 neighbor inputs, 5 self-recurrent inputs, 5 hidden nodes and one 
output node, for a total of 6 active nodes. 
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7.3 Elman SRN with Multi-layer feedback 

7.3.1 Motivation 
 

We began our investigation of CSRNs by studying Ilin et al.’s maze traversal 

application [47] which utilizes the GMLP core developed Pang et al. [69].  During these 

early simulations we noted convergence problems with the CSRN.  Personal discussions 

with the author of [69] confirmed that the network error diverges in approximately 40% 

of trials.  With the primary goal of improving the CSRN’s performance in geometric 

transformations and a secondary goal of improving the CSRN’s convergence, we set out 

to modify the CSRN’s core network. 

7.3.2 The Multi-layered Feedback Core 
 

Due to its similarity to standard MLP networks, we select the ESRN described in the 

previous section as the basic core.  In an attempt to improve the networks convergence, 

we add feed back from the output node, in addition to the feed back from the hidden 

nodes.  This is done to create an “inner” feedback loop to improve network stability, in 

much the same way an inner velocity loop is used to stabilize an outer position loop in 

control theory [52] as shown in Fig. 7.2.  Figure 7.3 shows the resulting core, which we 

refer to as an ESRN with multi-layered feedback (ESRNmlf). 

 
 

 

 
 
Figure 7.2:  Position control loop with inner velocity loop for loop stabilization. 
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Figure 7.3:  Elman SRN architecture with multi-layer feedback used for each cell in the 
CSRN network. Nodes are fully connected between layers. Network weights shown in 
blue, label with green text.  Feedback paths are shown in red. 
 

7.3.3 Core Comparisons 
 

To compare the performance of these core networks, we examine the results of all 

three cores in the affine rotation application (Sections 5.2.3 and 5.2.4).   Both binary and 

grey-scale results are presented.  Each network utilizes movement encoding with inverse 
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mapping and is trained via the EKF method.  Function and image accuracy, as well as, 

training and convergence times are compared. 

7.3.3.1 Binary Image Results 
 

Figure 7.4 shows the image results for each core trained to perform binary affine 

rotation.  Results for the full testing set are shown.  Row a) contains the input images, 

row b) shows the corresponding output images for the GMLP core, row c) shows the 

corresponding output images for the ESRN core, and row d) shows the corresponding 

output images for the ESRNmlf core.  Rows e) and f) show the results of the raw 

transformation equations and the actual target image, respectively.   A detailed view of 

the θ’ = 16° case is shown in Fig. 7.5. 
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Figure 7.4:  Results of rotating an 11x11 cross embedded in a 15x15 binary image.  Input 
images are rotated through a range of θ’ = 0° to 20° in the counter-clockwise direction.  
Results for GMLP, ESRN and ESRNmlf cores CSRN are shown. Each core utilizes 
movement encoding, inverse mapping and EKF training.  Row A): input images. Row B): 
GMLP core image results.  Row C):  ESRN core image results.  Row D): ESRNmlf core 
image results. Row E) results of raw transformation by (5.6). Row F): target image. 
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Figure 7.5:  Results of binary affine rotation test for case θ’ = 16°.  Each core utilizes 
movement encoding, inverse mapping and EKF training. A) Image results for GMLP 
core.  B)  Image results for ESRN core. C) Image results for ESRNmlf core. 
 
 

7.3.3.2 Grey-scale Image Results 
 
 Figure 7.6 shows the image results for each core trained to perform grey-scale 

affine rotation.  Results for the full testing set are shown.  Row a) contains the input 

images, row b) shows the corresponding output images for the GMLP core, row c) shows 

the corresponding output images for the ESRN core, and row d) shows the corresponding 

output images for the ESRNmlf core.  Rows e) and f) show the results of the raw 

transformation equations and the actual target image, respectively.   A detailed view of 

the θ’ = 16° test case is shown in Fig. 7.6. Table 7.1 compares the results for each core 

using data from this same test.   
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Figure 7.6:  Results of rotating an 11x11 cross embedded in a 15x15 grey-scale image.  
Input images are rotated through a range of θ’ = 0° to 20° in the counter-clockwise 
direction.  Results for GMLP, ESRN and ESRNmlf cores CSRN are shown. Each core 
utilizes movement encoding, inverse mapping and EKF training.  Row A): input images. 
Row B): GMLP core image results.  Row C):  ESRN core image results.  Row D): 
ESRNmlf core image results. Row E) results of raw transformation by (5.6). Row F): 
target image. 
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Figure 7.7:  Results of grey-scale affine rotation test for case θ’ = 16°.  Each core utilizes 
movement encoding, inverse mapping and EKF training. A) Image results for GMLP 
core.  B)  Image results for ESRN core. C)  Image results for ESRNmlf core. 
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Table7.1:  Comparison of binary rotation results for the CSRN GMLP,ESRN and 
ESRNmlf core networks.  Each core utilizes movement encoding, inverse mapping and 
EKF training. 

Metric Units  GMLP ESRN ESRNmlf 

JACC % 
Ave 83.3 57.0 65.5 

Best 95.6 82.7 83.1 

JMSE - 
Ave 2.0E-2 5.0E02 3.0E-2 

Best 3.0E--3 2.0E-2 2.0E-2 

IMACC % 
Ave 99.0 96.7 97.7 

Best 99.6 99.1 99.1 

IMMSE - 
Ave 1.0E-2 3.0E-2 2.0E-2 

Best 0.0E-2 1.0E-2 1.0E-2 

IMCR - 
Ave 0.94 0.81 0.86 

Best 0.97 0.95 0.95 
 
 
 

Visual inspection of Figs. 7.4 through 7.7 reveals that GMLP core has the best overall 

performance followed by the ESRNmlf and finally the ESRN.   The ESRN and ESRNmlf 

results show a bit more distortion in both the binary and grey-scale images, and a slight 

blurring in the grey-scale images.  This performance trend is supported by the data in 

Table 7.1 with the GMLP performing best in all metrics.    

7.3.3.3 Computation Times 
 

To compare the computation times of these core networks, we examine the following 

metrics:  forward computation time, TFC, training time, TTR, simulation run time, TR, and 

total batch time, TB.  Table 7.2 shows these metrics for all three cores.  The GMLP core is 

faster in all metrics, followed this time by the ESRN, then the ESRNmlf.  As expected, 
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the addition of the multi-layered feedback causes the ESRNmlf core to be slightly slower 

than the standard ESRN. 

 
Table 7.2: Comparison of computation times for the GMLP, ESRN and ESRNmlf core 
networks in CSRNs applied to binary rotation.  Each core utilizes movement encoding, 
inverse mapping and EKF training. Times include: forward computation time, TFC, 
training time, TTR, run time, TR, total batch time, TB.  Total batch time is given for a batch 
size of 50 simulations. 

Metric Units GMLP ESRN ESRNmlf 

TFC msec 1.56 1.72 1.84 

TTR sec 576.0 599.2 608.3 

TR min 9.86 10.26 10.42 

TB hour 8.22 8.55 8.68 
 

7.3.3.4 Core Convergence 
 

Figure 7.8, shows plots of the testing MSE for each of the CSRN cores.  These plots 

indicate that the all three cores exhibit learning.  Table 7.3 tabulates the convergence 

metrics for all three cores.   Metrics include:  calculated convergence time, TC, settling 

time, TS, minimum error, EMIN, and time of occurrence of minimum error, TME.  Statistics 

are computed based on batches of 50 simulations.  All cores are stable, consistently 

converging in slightly less than 200 epochs. The ESRN core converges faster than the 

other two cores, followed by ESRNmlf, and finally the GMLP.  However, the GMLP 

converges to a lower error, which agrees with the results from Table 7.1.  
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Figure 7.8:  Plots of the testing MSE for the GMLP, ESRN and ESRNmlf cores trained 
to perform affine rotation of binary images.   Each core utilizes movement encoding, 
inverse mapping and EKF training.  The green line represents the GMLP core.  The red 
line represents the ESRN core, and the blue line the ESRNmlf core.  Circles indicate the 
calculated convergence points, TC. Asterisks indicate settling points, TS and diamonds 
indicate locations of the minimum error.  
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Table 7.3:  Comparison of convergence of mean square testing error for GMLP, ESRN 
and ESRNmlf cores trained to perform affine rotation of binary images.   Each core 
utilizes movement encoding, inverse mapping and EKF training.  Metrics include:  
calculated convergence time, TC, settling time, TS, minimum error, EMIN, and time of 
occurrence of minimum error, TME. 

Metric Units  GMLP ESRN ESRNmlf 

TC epochs 
Ave 100.4 95.6 99.4 

Best 96 67 118 

TS epochs 
Ave 163.8 124.8 134.9 

Best 181 151 190 

EMIN - 
Ave 0.19 0.82 0.66 

Best 1.07E-1 3.42E-1 3.42E-1 

TME epochs 
Ave 195.8 154.3 169.2 

Best 199 192 196 
 
 

7.4 Conclusions 

Of the three cores tested, the GMLP core has the best overall performance in speed 

function approximation, and final image result, followed by the ESRNmlf and finally the 

standard ESRN. 

Our initial hope of improving the convergence and/or stability of the CSRN by 

creating a core with multi-layered feedback turned out to be unnecessary, as all three 

cores, including the GMLP, exhibit stability in their application to geometric 

transformations.  This stability is more a function of the application rather than the CSRN 

architecture or its core network.   The cost-function associated with the linear, 2D 

functions of geometric transformations, (see section 5.11), is much less complex and 

more closely matched to the inherent cost-function for learning in the CSRN, than that of 

the maze traversal problem, (see section 3.4).  However, the experience of creating and 
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testing a new core for the CSRN provided valuable insight into the inner workings of the 

CSRN and a thorough understanding of the BPTT learning method that made its initial 

development possible. 
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8 TRAINING METHODS FOR CSRN 
 

In this chapter, we examine methods for training the CSRN.  Existing methods are 

discussed and a new method based on parameter estimation via unscented Kalman 

filtering (UKF) is presented.  Finally, this new method is compared against the state-of-

the-art, that of parameter estimation via extended Kalman filtering (EKF), developed by 

Ilin et al. [47][48]. 

8.1 Supervised Learning 

To date, all training methods for CSRNs utilize supervised learning.  The goal of any 

training method which uses supervised learning is to minimize some error function over a 

given training set.  Recall from Section 3.3 that the sum-squared error is used in training 

of CSRNs. For each input in the training set, we apply the inputs, X[k], to the network, 

calculate the network’s output, Y[k], and then obtain the error by subtracting the known 

target T[k] from the network’s output.  The sum-squared error over the entire training set 

is given by, 

 

      . (8.1) 

 

where q is the number of outputs and N is the number of  data points in the training set. 

The classic approached to training of NNs via supervised learning is to calculate 
w
E
∂
∂  

so that we can adjust the weights via the following learning rule, 
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(8.2) 

 

where wij is the weight connected to node i from node j and  γ is the learning rate [6]. 
 

8.2 Backpropagation through Time 

 
The original CSRN developed by Pang et al. is trained using an extension of basic 

back-propagation known as back-propagation through time (BPTT) [69][92].  This 

method of training is fundamental to CSRNs.  Prior to BPTT, no tractable method of 

computing the required derivatives existed. A tutorial for the application of BPTT to 

CSRNs is included as Appendix A.  This tutorial includes mathematical derivation and 

basic algorithms, 

8.3 Parameter Estimation via Extended Kalman Filter 

Parameter estimation with Kalman filters has been applied to the training of NN in 

the past [37].  Ilin et al. apply parameter estimation using an extended Kalman filter 

(EKF) to the training of CSRNs [47].  In this method, the required Jacobian is computed 

via BPTT, and the weights are adapted via EKF. Ilin et al. apply this training method to 

CSRNs adapted for the maze traversal problem, discussed in Section 3.5.1, and compare 

the results to that of the CSRN trained via BPTT.  For training of a single maze, the 

authors report that the CSRN trained via EKF converges within 10-15 epochs while 

BPTT requires between 500 to 1000 epochs [47].  This reduction in training time is a 

breakthrough in the training of CSRNs which make them tractable in complex tasks such 

as image processing and establishes the EKF method as ‘state-of-the-art’ for training of 

CSRNs. 
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8.3.1 Extended Kalman Filter 
 

The EKF can be used for parameter estimation of non-linear systems.  This method 

applies a first-order, Taylor-series expansion to linearize the non-linear system.  Once 

this is done the standard Kalman filter is applied [87].   The state transition and 

observation equations are given as, 

 

(8.3) 

and, 

(8.4) 

 

where, Wt represents the system state (weights) at time t, and γt the process noise, Yt+1 is 

the observation at time t+1, F is the forward function of the NN, and ηt is the 

measurement noise.  This method computes a new mean and covariance for the state, 

given the existing state and a new measurement update using the equations below. 

 
(8.5) 

 
 

(8.6) 
 
 

(8.7) 

 
and 

 (8.8) 
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where W is the mean state matrix, K is the state covariance, R and Q are the covariance of 

the zero mean process noise and measurement noise, respectively.  The innovation, a, is 

the error between predicted measurement (based on the current state) and the new 

measurement.  C is the system Jacobian and G is the Kalman gain. 

8.3.2 EKF Training Method 
 

To apply the EKF method to training of the CSRN, we let the state of the system 

represent the weights of the network.  The process noise is set to 0, and the measurement 

noise is defined as a constant zero mean Gaussian.  Noise annealing may be applied to 

the measurement noise as well.   The network output is used as the measurement. The 

EKF method can be used in sequential or multi-streaming mode [23][37][47].  In the 

sequential mode, a weight correction is made for each individual training image. In the 

multi-streaming mode, a row is added to the Jacobian for each training image, and one 

update is made for all training images.  The multi-streaming mode is computational more 

efficient and we have used it exclusively with the EKF method. 
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The algorithm for using the EKF method for training of the CSRN is given below. 

 
Algorithm 8.1:  EKF training algorithm 

 

 

 

 

 

 

 

 

 

 

 

8.3.2.1 Computation of Jacobian via BPTT 

As can be seen in Appendix A, the BPTT method yields, 
W
E

∂
∂ , where E is the error 

and W the weights.  The EKF method described here requires the Jacobian, 
W
Y

∂
∂ ˆ

, where 

Ŷ  is the network output.  Therefore, we must adapt the BPTT method to produce the 

required Jacobian.  Consider the following, 

 

(8.9) 

 

 

1) Randomly select a set of initial weights, W. 

2) Compute an initial covariance matrix, K. 

3) For each epoch 

4) For each training image 

5)       Compute the output of the network. 

6)       Compute the innovation. (The error between the target output and 
network output. 

 
7)       Utilize BPTT to compute the Jacobian. 

8)       Add a row to the Jacobian. 

9) Adapt weights using the EKF equations (8.5-8.8) 
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Now the error is defined as, 

 

 

(8.10) 

and 

 

(8.11) 

 

Substituting (8.11) into (8.9) yields 

 

(8.12) 

 

By forcing 1ˆ_ =YF , we see that the BPTT computation produces the required Jacobian 

as follows, 

 

(8.13) 

 

8.4 Parameter Estimation via Decoupled EKF 

Puskorius et al. apply a decoupled EKF (DEKF) to the training of layered feed-

forward networks in [72].  In the DEKF method, the network weights are broken into g 

groups and the weight adjustment is performed for each group, individually.  This 

technique results in the inversion of a smaller tΓ  matrix, which, in turn, improves the 
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computational efficiency of the algorithm.  The equations for the DEKF algorithm are 

shown below. 

 

 
(8.14) 

 
 

(8.15) 

 
 

(8.16) 

and 

 
(8.17) 

 

where W is the mean state matrix, K is the state covariance, R and Q are the covariance of 

the zero mean process noise and measurement noise, respectively.  The innovation, a, is 

the error between predicted measurement (based on the current state) and the new 

measurement.  C is the system Jacobian and G is the Kalman gain. 

8.4.1 Training the CSRN via DEKF 
 

Rice et al. apply the DEKF to the training of CSRNs for the maze traversal problem 

in [77].  In this technique, they decouple the EKF, not around the weights, but around the 

inputs to the CSRN.  This results in the same reduction in size of the tΓ  matrix and 

therefore, the same improvement in computation efficiency.  The equations for Rice et 

al.’s version of the DEKF are given below, 
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(8.18) 

 
(8.19) 

 
(8.20) 

 
and 
 

(8.21) 

 

where, the variables are defined as in (8.14)-(8.17). 

The algorithm for using the DEKF method for training of the CSRN is given below. 

 
Algorithm 8.2:  DEKF training algorithm 
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1) Randomly select a set of initial weights, W. 

2) Compute an initial covariance matrix, K. 

3) For each epoch 

4) For each training image 

5)  Compute the output of the network. 

6)  Compute the innovation. (The error between the target output and 
network output. 

 
7)  Utilize BPTT to compute the Jacobian. 

8)  Compute adjustments to weight and covariance matrices (8.18 - 8.21) 
only computing 2nd term of (8.20). 

 
9) Adapt weights by completing (8.20). 
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Rice et al. [77] report an average improvement of 12.9 times faster in training times 

of the DEKF method over that of the standard EKF method.  They also report their final 

implementation, which includes improved methods for inversion of the tΓ  matrix, 

produces training times 480 times faster than that of the standard EKF method. 

8.5 Small Population Particle Swarm Optimization  

8.5.1 Particle Swarm Optimization 
 

Particle Swarm Optimization (PSO) was developed and applied to the training of NNs 

in 1995 by Kennedy and Eberhart [53].  PSO is an evolutionary computation technique 

similar to the Genetic Algorithm (GA).   It is a population based optimization tool based 

on models of the behavior of a flock of birds [18]. 

Let us consider the application of PSO to the training of a NN.  If a network has W 

weights, then the selection of an optimum set of weights becomes a search through a W-

dimensional weight space for a location, i.e. a set of weights, which minimizes some 

fitness criteria.  The fitness criteria are typically the SSE or MSE between known target 

outputs and actual network outputs for a given set of training inputs. In the PSO 

algorithm, we create a swarm of agents known as particles that “fly” through the weight 

space, evaluating locations as they move.  Each particle is initially given a random 

position, Xi(0), and velocity, Vi(0) within the weight space.  Each particle ‘remembers’ its 

best fitness value, Pbest., denoted as pi, and its location, Xi
p.  The particle has access to the 

best fitness value within the swarm, Gbest, and its location.  These are referred to as pg and 

Xg, respectively.  These memories represent the collective memory of the swarm.  The 

essence of the PSO algorithm is the acceleration of each particle toward Xi
p and Xg during 
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each iteration.  Equations (8.22) and (8.23) below form the essential update equations for 

velocity and position. 

 

 (8.22) 

 

and 

 . (8.23) 

 
 
 
where Xi and Vi are the position and velocity of the current particle .  Xi

p is the position of 

the current particles best fitness value, and Xg is the location of the swarm’s best fitness 

value.  W, c1, c2 are importance weights for their corresponding terms and affect search 

characteristics and conversion.  Rand1 and rand2 are two uniform functions which utilize 

a unit interval.   
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The algorithm for implementation of the PSO training method is given below. 

 
Algorithm 8.3:  PSO training algorithm 

 

 

 

 

 

 

 

 

 

 

 

8.5.2 SPPSO 
 

SPPSO utilized the same algorithm as PSO, with the addition of a regenerative 

technique.  In SPPSO the position and velocity of the particles are re-initialized every n 

iterations.  The Pbest and Gbest values are maintained.  This technique allows for fewer 

particles than that of the PSO algorithm. Gudise et al. show PSO to be a faster training 

method than standard BPTT [35].  

8.6 Parameter Estimation via UKF 

In this section, we apply the UKF to the training of CSRNs.  Use of the UKF 

eliminates the need to compute the Jacobian required by the EKF.  We first present an 

overview of the unscented transform.  Next, we present the UKF method of parameter 

1) Initialize a swarm of particles with random positions and velocities within 
the W-dim weight space.  A particles position is given by Xi and its velocity 
is denoted as Vi.  Note that Xi is a W-tuplet and Vi is an W-D vector. 
 

2) For each particle, evaluate the fitness function. 
 

3) Compare each particles fitness value, fi, with that of its best fitness value, pi.  
If the current value is better than its best value, then set pi = fi and Xi

p = Xi, 
the particles current location within the weight space. 
 

4) Compare each particles best value, pi with the swarms best value, pg.  If any 
of the pi values is better than pg then set pg = pi and capture its position in Xg. 
 

5) Compute the new velocity and position of each particle. 
 
6) Repeat from step 2 until the stopping condition is met. The stopping 

condition is generally a sufficient fitness measure or a maximum number of 
iterations. 
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estimation for training of NNs.  Following this, we discuss adaption of the UKF method 

for training of CSRNs and show results of CSRNs trained via the UKF method for the 

affine rotation application.  We compare these results with those of the CSRN trained via 

the EKF method. 

8.6.1 The Unscented Transform 
 

The unscented transform (UT) is a method for computing the statistics of a random 

variable that has undergone a nonlinear transformation [50][51].  Consider an n-

dimensional Gaussian random variable, x, with mean, μx, and covariance, Px, which is 

transformed via an arbitrary non-linear function, g, such that, 

(8.24) 

 

Instead of approximating g with a Taylor-series expansion, as in the EKF, the UT 

deterministically computes a minimal set of weighted sample points.  These samples, 

referred to as sigma points, capture the true mean and covariance of the prior, x, and 

when passed through the true nonlinear function, g, capture the mean and covariance of 

the posterior, y, with a minimum accuracy of a 2nd order Taylor-series expansion and a 3rd 

order accuracy for Gaussian priors [60].   

In order to accurately capture the statistics of the prior, we must select 12 +n  sigma 

points expressed as, ][iZ .  The sigma points are located at the mean and symmetrically 

along the main axes of covariance, two per dimension. They are computed according to 

the following: 
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(8.25) 

 

(8.26) 

 

(8.27) 

 

(8.28) 

 

where n is the number of states,  Z[i] is the ith sigma point, μx and Px are the mean and 

covariance of the current state and  α and k are scaling parameters that determine how far 

the sigma points are spread from the mean.   

Each sigma point has two weights associated with it.  These are ][i
mw and ][i

cw  and are 

respectively used for recovery of the mean and covariance of the Gaussian RV.  These 

weights are computed as follows, 

(8.29) 
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where n is the number of states, ][i
mw and ][i

cw  are the mean and covariance weights of the 

ith sigma point, and β is a parameter selected to encode prior knowledge about the 

distribution of the underlying Gaussian.   β = 2 is optimal for an exact Gaussian.   

The sigma points are now passed through the true nonlinear function, g, in affect 

probing how g changes the shape of the prior, x, as follows: 

 

 (8.32) 

 

The parameters of the posterior, y, are then extracted from the transformed sigma 

points, ][iy , using their associated weights as below, 

 

 (8.33) 

 

 (8.34) 

 

 

8.6.2 Training of NNs via UKF Parameter Estimation 
 

The UKF is a straightforward application of the UT.  In order to utilize the UKF to 

train a NN we must couch the problem as one of parameter estimation.  In this case we 

allow the weights to represent the state of the system and utilize the following system 

equations, 
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(8.35) 

 
(8.36) 

 

where (8.35) and (8.36) are the state transition and measurement equations, respectively.  

tε  represents the process noise and tδ the measurement noise.  tε  and tδ  are both 

Gaussian additive noise with zero mean and covariance Qt and Rt, respectively. )(⋅G  

represents the forward computation of the NN and ty , the observation, is the output of 

the NN. 

The UKF implements a Bayesian filter using the UT.  The current belief about the 

system state is represented by its mean, w
tµ , and covariance, w

tP .   We start with the 

previous belief, ( )w
k

w
k P 11 , −−µ , the current input to the NN, uk, and the known target output, 

Tk.  Recall that we are utilizing supervised learning.   

First, we perform the prediction step of a Bayesian filter using (8.35) which yields, 

 

(8.37) 

and 
 

(8.38) 

Then we extract the sigma points using (8.24)-(8.28) and their associated weights via 

(8.29)-(8.31) which yields, 

 

(8.39) 
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where, λγ += n .  Now we perform the measurement update step by passing the sigma 

points through the measurement equation (8.36) as follows, 

 

 (8.40) 

 

and extract the updated belief’s statistics using (8.33) and (8.34) of the UT. This yields, 

 

 (8.41) 

 

 (8.42) 

and 

 

 (8.43) 

 

Now compute the Kalman gain as, 

 

 (8.44) 

 

Finally, we perform the estimation update, 

 

 (8.45) 

and 

 (8.46) 
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8.6.3 Training the CSRN via the UKF Method 
 
The algorithm for using the UKF method for training of the CSRN is given below. 
 
 
     Algorithm 8.4:  UKF training algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

 

8.6.4 UKF Results 
 

In order to evaluate the efficacy of our new UKF based training method, we repeat 

the affine rotation experiments performed in Sections 5.2.3 and 5.2.4.   The network used 

for these experiments is the CSRN using a GMLP core with movement encoding and 

inverse mapping.  We compare these results with those of the same network trained via 

the EKF method.  Function and image accuracy, as well as, training and convergence 

times are compared. 

10) Randomly select a set of initial weights, 0w and set 01 ww
k =−µ . 

11) Compute an initial covariance matrix, wP0 and set ww
k PP 01 =− . 

12) For each epoch 

13) For each training image 

14)       Perform the predication step.  (8.37) & (8.38) 

15)       Select sigma points. (8.24)-( 8.28) 

16)       Compute sigma point weights. (8.29)-( 8.31) 

17)       Perform the measurement update, i.e. compute the forward 
computation of the CSRN. (8.40)  

 
18)       Compute the statistics for the update. (8.41)-( 8.43). 
 
19)       Compute the Kalman gain. ( 8.44) 
 
20)       Perform the estimation update. (8.45) & (8.46) 
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8.6.3.1 Binary Results 
 

Figure 8.1 shows the image results for the CSRN trained to perform affine rotation of 

binary images using both the UKF and EKF methods.  Results for the full testing set are 

shown.  Row a) contains the input images, row b) shows the corresponding CSRN output 

images trained via the UKF method, row c) shows the corresponding CSRN output 

images trained via the EKF method, row d) shows the results of the raw transformation 

equations, and row e) shows the actual target image.   A detailed view of the θ’ = 16° 

case is shown in Fig. 8.2. 
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Figure 8.1:  Results of rotating an 11x11 cross embedded in a 15x15 binary image.  Input 
images are rotated through a range of θ’ = 0° to 20° in the counter-clockwise direction.  
CSRN utilizes GMLP core, movement encoding and inverse mapping.  Row a): input 
images. Row b): CSRN output images trained via UKF method.  Row c):  CSRN output 
images trained via EKF method. Row d): results of raw transformation by (5.6). Row e): 
target image. 
 

 

 

 

 

 

 

 

 
Figure 8.2:  Results of binary affine rotation test for case θ’ = 16°.  A) Image results for 
CSRN trained via UKF.  B) Image results for CSRN trained via EKF.  CSRN utilizes 
GMLP core, movement encoding and inverse mapping. 
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Table 8.1 tabulates the results of the binary image rotation experiment for a CSRN 

trained using the UKF training method.  Results for the full testing set are shown. The θ’ 

= 16° case is highlighted.  In this case the network achieves a best case function accuracy 

of JACC = 63.6%, an image accuracy of IMACC = 98.7%.  Table 8.2 summarizes the results 

of this rotation experiment for binary images.   

 
Table 8.1:  Binary image rotation results for CSRN trained via UKF.  CSRN utilizes 
GMLP core, movement encoding and inverse mapping.  Data for full testing set. 

 Binary Rotation Results (full test set) 

θ' JMSE JACC IMMSE IMACC IMCR 

0 7.03E-02 22.7 8.00E-02 92.0 0.4864 

2 6.46E-02 28.9 7.11E-02 92.9 0.5978 

4 6.26E-02 31.1 6.22E-02 93.8 0.6482 

6 3.72E-02 59.1 5.33E-02 94.7 0.6987 

8 2.46E-02 72.9 4.89E-02 95.1 0.7305 

10 1.86E-02 79.6 2.67E-02 97.3 0.8500 

12 1.90E-02 79.1 1.78E-02 98.2 0.9075 

14 2.75E-02 69.8 3.56E-02 96.4 0.8341 

16 3.31E-02 63.6 1.33E-02 98.7 0.9232 

18 4.00E-02 58.7 3.11E-02 96.9 0.8295 

20 5.78E-02 52.4 4.44E-02 95.6 0.7374 
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Table 8.2:  Summary of binary image rotation for CSRN trained via UKF.  CSRN 
utilizes GMLP core, movement encoding and inverse mapping.  Statistics computed from 
50 simulations. 

Binary Rotation UKF Training 

Metric Units Ave +/- std dev Best 

JACC % 51.42 +/- 4.90 63.6 

JMSE - 0.05 +/- 0.01 0.03 

IMACC % 96.02 +/- 1.24 98.7 

IMMSE - 0.04 +/- 0.01 0.01 

IMCR - 0.76 +/- 0.07 0.92 

TTR(total) sec 726.88 +/- 7.35 733 

TTR(norm) msec 296.08 +/-  2.97 296 

TR min 12.21 +/- 0.12 9.86 

TB hrs n/a 10.18 
 
 

8.6.3.2 Grey-scale Results 
 

Figure 8.3 shows the image results for the CSRN trained to perform affine rotation of 

grey-scale images using both the UKF and EKF methods.  Results for the full testing set 

are shown.  Different rows in Fig. 8.3 show the following: a) the input images, row b) the 

corresponding CSRN output images trained via the UKF method, row c) the 

corresponding CSRN output images trained via the EKF method, row d) the results of the 

raw transformation equations, and row e) the actual target image.   A detailed view of the 

θ’ = 16° case is shown in Fig. 8.4. 
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Figure 8.3:  Results of rotating a 25x25 face embedded in a 35x35 grey-scale image.   
Input images are rotated through a range of θ’ = 0° to 20° in the counter-clockwise 
direction.  CSRN utilizes GMLP core, movement encoding and inverse mapping.  Row 
a): input images. Row b): CSRN output images trained via UKF method.  Row c):  CSRN 
output images trained via EKF method. Row d): results of raw transformation by (5.6). 
Row e): target image. 

 

 

 

 

 

 

 

 

 
Figure 8.4:  Results of grey-scale affine rotation test for case θ’ = 16°.  A) Image results 
for CSRN trained via UKF.  B) Image results for CSRN trained via EKF.  CSRN utilizes 
GMLP core, movement encoding and inverse mapping. 
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Table 8.3 tabulates the results of the grey-scale image rotation experiment for a 

CSRN trained using the UKF training method.  Results for the full testing set are shown. 

The θ’ = 16° case is highlighted.  In this case the network achieves a best case function 

accuracy of JACC = 48.9%, an image correlation ration of IMCR = 98.7%.  Table 8.4 

summarizes the results of this rotation experiment for grey-scale images.  

 
Table 8.3:  Grey-scale image rotation results for CSRN trained via UKF.  CSRN utilizes 
GMLP core, movement encoding and inverse mapping.  Data for full testing set. 

 Grey-scale Rotation Results (full test set) 

θ' JMSE JACC IMMSE IMACC IMCR 

0 1.49E-01 48.9 267.1 77.8 0.984 

2 1.53E-01 48.8 233.2 78.6 0.987 

4 1.08E-01 52.7 248.6 76.9 0.986 

6 7.65E-02 58.1 210.8 81.7 0.988 

8 5.25E-02 64.4 115.7 85.2 0.994 

10 2.97E-02 75.0 73.9 88.8 0.993 

12 1.80E-02 82.1 124.7 90.0 0.989 

14 9.80E-03 89.2 69.7 91.5 0.997 

16 6.38E-03 93.0 60.8 93.4 0.997 

18 1.80E-02 80.2 125.4 88.5 0.994 

20 3.39E-02 66.4 149.7 83.1 0.990 
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Table 8.4:  Summary of grey-scale image rotation results for CSRN trained via UKF.  
CSRN utilizes GMLP core, movement encoding and inverse mapping. 

Rotation UKF Training 

Metric Units CSRN w/ GMLP core 

JACC % 93.0 

JMSE - 0.01 

IMACC % 93.4 

IMMSE - 60.81 

IMCR - 1.00 

TTR(tot) sec 3400 sec 

TTR(norm) msec 252 msec 

TR min 668 min 
 

8.6.4 Comparison of UKF and EKF Training Methods 

8.6.4.1 Image Results 
 

Figures 8.1 shows the image results of performing binary rotation with a CSRN 

trained with both the UKF and EKF training methods.  Figure 8.3 shows the same results 

for the grey-scale case.  In these Figures, the results for the CSRN trained via these two 

methods are shown side-by-side in rows b) and c).  Both methods can be compared to the 

raw transformation results in row d) or the actual target image in row e).   

Table 8.5 compares the results for both methods. The date shown is that from the binary 

image experiment for a single test case of θ = -16 °.   
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Table 8.5:  Comparison of binary image results for CSRN trained via UKF and EKF.  
CSRN utilizes GMLP core, movement encoding and inverse mapping. 
 

Binary Image Rotation  

CSRN with GMLP core 

Metric Units  UKF EKF Diff. % Diff. 

JACC % 
Ave 51.4 82.6 -31.20 -37.8 

Best 63.6 94.2 -30.60 -32.5 

IMACC % 
Ave 96.02 99.0 -2.98 -3.0 

Best 98.7 99.1 -0.40 -0.4 

IMCR - 
Ave 0.76 0.94 -0.18 -19.1 

Best 0.92 0.95 -0.03 -3.2 

 

Visual inspection of Figs. 8.1 through 8.4 reveals that the image results produced by 

the CSRN trained via the UKF method are inferior to those produced by that trained via 

the EKF method.  The UKF images show more distortion, particularly in the lower ranges 

of rotation.  This is true of both binary and grey-scale results and is supported by the 

lower IMACC and IMCR values of Table 8.5.  This distortion directly correlates with the 

function accuracies achieved with the UKF method, which are significantly lower of the 

EKF method.  This indicates that the CSRN trained via the UKF method does not learn 

the rotation transformation as effectively as that trained via the EKF method.   

8.6.4.2 Computation Times 
 

To compare the speed of the UKF training method with that of the EKF, we examine 

the following metrics:  training time, TTR, simulation run time, TR, and total batch time, 
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TB.  Table 8.6 shows these metrics for both the UKF and EKF training methods.  The 

UKF method’s training time of 727 sec is 26.2% longer than that of the EKF method.  

The increased training time, causes corresponding increases in both the simulation time 

and total batch time. 

 
Table 8.6:  Comparison of timed results for CSRN trained utilizing UKF and EKF 
methods for binary affine rotation.  CSRN utilizes GMLP core, movement encoding and 
inverse mapping.  Times include: training time, TTR, run time, TR, total batch time, TB.  
Total batch time is given for a batch size of 50 simulations. 

Binary Image Rotation  

CSRN with GMLP core 

Metric Units UKF EKF Diff. % Diff. 

TTR sec 726.9 576.2 150.7 26.2 

TR min 12.21 9.87 2.34 23.7 

TB hour 10.18 8.22 1.96 23.8 

 
 

8.6.4.3 Convergence 
 

Figure 8.5, shows plots of the testing MSE for the CSRN trained via the UKF and 

EKF methods.  These plots indicate that the CSRN learns via both methods.  Table 8.7 

tabulates the convergence metrics for both cases.   Metrics include:  calculated 

convergence time, TC, settling time, TS, minimum error, EMIN, and time of occurrence of 

minimum error, TME. Statistics are computed based on batches of 50 simulations.    Both 

methods are stable, consistently converging with average setting times of approximately 

25 and 160 epochs, respectively.  The UKF method converges roughly 80% faster than 
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the EKF method.  However, the EKF method converges to a much lower final error, 

resulting in the higher function accuracies discussed above. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8.5:  Plots of the testing MSE for the CSRN trained to perform affine rotation of 
binary images.   CSRN utilizes GMLP core, movement encoding and inverse mapping.  
The blue line represents the UKF training method.  The red line represents the EKF 
training method.  Circles indicate the calculated convergence points, TC. Asterisks 
indicate settling points, TS and diamonds indicate locations of the minimum error.  
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Table 8.7:  Comparison of convergence of mean square testing error for CSRN trained 
using UKF and EKF training methods.  Metrics include:  calculated convergence time, 
TC, settling time, TS, minimum error, EMIN, and time of occurrence of minimum error, 
TME.  Network is a CSRN with GMLP core, using movement encoding and inverse 
mapping. 

Binary Image Rotation  

CSRN with GMLP core 

Metric Units  UKF EKF Diff. % Diff. 

TC epochs 
Ave 23.8 97.68 -73.88 -75.6 

Best 20.0 89 -69.00 -77.5 

TS epochs 
Ave 25.3 160.06 -134.76 -84.2 

Best 33.0 169 -136.00 -80.5 

EMIN - 
Ave 0.59 0.20 0.39 195.0 

Best 4.5E-1 7.15E-2 0.38 529.4 

TME epochs 
Ave 35.6 195.2 -159.60 -81.8 

Best 48 192 -144.00 -75.0 

 

8.6.5 Conclusions 
 

The CSRN clearly learns via the UKF training method.  The UKF method converges 

much more rapidly than the EKF method.  However, computation of the UKF is less 

efficient than that of the EKF resulting in a training time 26% longer than that of the EKF 

method.  The EKF method converges to a lower final error that the UKF method, 

resulting in improved function accuracy, and ultimately better approximation of the 

rotation transformation. 
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There are two distinct advantages of the UKF training method, arising from the fact 

that it is a derivative free optimization method.  As such, it does not require computation 

of the Jacobian, as in the EKF method.  Use of the UKF method eliminates the restriction 

on image size imposed by the multi-streaming EKF’s need for extremely large matrices 

used in computation of the Jacobian, as discussed in Section 5.2.2.2.  Elimination of the 

Jacobian eliminates the need for the BPTT computation.  As discussed in Chapter 7, even 

minor changes to the CSRN’s core network may require the equations for BPTT to be re-

derived.  Derivation of these equations is a non-trivial.  When using the UKF method, 

one need only compute the equations for forward computation of the CSRN core, making 

modifications to and or development of new core networks much easier. 
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9 CONCLUSION 
 

9.1 Summary 

From its inception, it has been speculated that the CSRN would have important 

implications in image processing (IP). However, to date, very little work has been done to 

adapt CSRNs to IP tasks.  In this work, we present a flexible, generalized architecture for 

the CSRN which is capable of performing a wide variety of  IP tasks, including pixel 

level transformations, spatial filtering, and complex geometric transformations.  These 

novel contributions are crucial for obtaining a generalized image processor using 

recurrent neural networks (NNs) such as the CSRN. 

9.2 Brief Overview of Goals 

The overall goal of this dissertation is to innovate the CSRN to perform IP.  The 

specific goals of this work are repeated here: 

 
• Goal 1:  To develop and demonstrate the ability of a generalized CSRN 

architecture to perform a variety of image processing tasks. 
 
• Goal 2:  To demonstrate the ability of CSRNs to perform affine transformations 

on images. 
 

• Goal 3:  To demonstrate the ability of the CSRN to learn to register images under 
rigid-body transformation without prior knowledge of transformation parameters. 

 
• Goal 4:  To demonstrate training of CSRNs via parameter estimation with an 

unscented Kalman filter (UKF) and to evaluate the efficacy of this training 
method. 

 

9.2.1 Goal 1:  A Generalized CSRN Architecture for IP  
 

In Chapter 4, we present a generalized CSRN architecture adapted for image 

processing.  Also in Chapter 4, we demonstrate its efficacy in performing both pixel level 
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operations and spatial filtering, by implementing a grey-scale to binary transformation 

and a low-pass (averaging filter) respectively.   

Experimental results indicate that the CSRN is able to learn and perform grey-scale to 

binary conversion and low-pass filtering.  In these applications, the CSRN generalizes 

well, and performs, very similar to MATLAB’s® im2bw( ) and imfilter( ) functions, 

respectively. The ability of the CSRN to perform complex geometric transformations is 

demonstrated by its ability to perform affine transformations and rigid-body registration 

in Chapters 5 and 6, as discussed above. 

9.2.2 Goal 2:  Affine Transformation of Images 
 

In Chapter 5, we demonstrate the CSRN’s ability to learn and perform basic affine 

transformation of both binary and grey-scale images.  We utilize the standard 

transformation equations, (5.5), (5.6) and (5.7), to implement a baseline method for 

comparison.  Experimental results indicate that the CSRN is cable of learning the 2-D 

linear functions associated with translation, rotation and scaling, and is capable of 

performing these transformations nearly as well as the baseline method.  In addition, the 

CSRN performs these transformations, on average, 65% faster than the baseline method.  

The faster computation time for performing affine transforms makes the CSRN attractive 

for real-time, embedded applications. 

9.2.3 Goal 3:  Image Registration under Rigid Body Transformation 
 

In Chapter 6, we demonstrate the CSRN’s ability to learn and perform basic image 

registration on binary and grey-scale images subjected to rigid-body transformation.  We 

utilize the standard rigid-body equations, (5.5), (5.6), and assumes perfect estimation of 
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model parameters to implement a baseline registration method for comparison.  

Experimental results indicate that the CSRN is capable of learning rigid body 

registration.  However, CSRN has difficulty in generalizing over all images in the 

training set.  Best case results for the primary test case show that the CSRN performs as 

well as the baseline registration method.  In addition, the CSRN reduces computation time 

of rigid-body registration, on average, by 70% over that achieved by the baseline method. 

9.2.4 Goal 4:  Training the CSRN via UKF 
 

In Chapter 8, we present a method of training the CSRN via parameter estimation 

using an UKF.  This UKF method converges much more rapidly than the EKF method. 

However, it is computationally less efficient than the EKF method, resulting in longer 

training times.  The UKF converges to a higher final error than the EKF method offering 

slightly reduced accuracies in function approximation. 

9.3 Discussions of Contributions 

In this section we summarize the novel contributions of this work. 

9.3.1 Development of a Generalized CSRN Architecture for IP 
 

In Chapter 4 we propose a generalized architecture for the CSRN which is capable of 

performing a wide range of IP tasks.  In Chapters 4, 5 and 6, we demonstrate the ability 

of the CSRN to perform pixel operations, filtering and geometric transformations 

utilizing this new architecture.  These novel contributions are crucial for obtaining a 

generalized image processor using recurrent NNs such as the CSRN.   To date, this 

contribution is unpublished.  However, we plan to submit this to an appropriate journal 

for publication very soon. 
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9.3.2 Implementation of sub-image processing for CSRNs 
 

In Chapter 4, we adapt standard sub-image processing techniques for use with the 

CSRN.  The application of sub-image processing is fundamental to the practical 

application of CSRNs to generalized IP.  Prior to this work, application of CSRNs to IP 

tasks was limited to an image size of 7x7 pixels.  Our best efforts, without the use of sub-

image processing, extended this size to 15x15 pixels.  The introduction of sub-image 

processing breaks this size barrier making the application of CSRNs to IP tasks tractable.  

While we have shown examples of image sizes of 125x125 pixels in this work, image 

size is limited only by the amount of run-time available for simulation and not by the 

CSRN.  Therefore, high performance computation can facilitate processing of larger 

images.  In addition, the sub-image structure utilized in this method is directly 

transferable to hardware implementations.  Making real-time or near-real-time, embedded 

application a real possibility.  This contribution has been published in a few major 

conferences [3][43][75], and will ultimately be submitted to an appropriate journal as part 

of a larger work. 

9.3.3 Application of CSRNs to Geometric Transformations 
 

A fundamental challenge to the theory underlying NNs, posed by Rosenblatt in his 

early work on perceptrons [80], is the recognition of topological relations.  Feed-forward 

networks are incapable of solving this class of problems due to their exponential 

complexity.  Geometric transformations, which include affine transformation and image 

registration (IR), fall within this class of IP problems. 

In Chapter 5, we demonstrate the ability of the CSRN to perform affine 

transformations, specifically those of translation, rotation and scaling.  The CNN is 
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capable of performing single-pixel and fractional translation, and through repeated 

application, can perform translation and rotation.  However to date, no other NN has been 

shown capable of performing all three of these affine transformations.  The results of 

Chapter 5 have been accepted for publication to the International Joint Conference on 

Neural Networks (IJCNN)[2]. 

In general, IR involves the following four steps: 1) feature detection, 2) feature 

matching, 3) transform model parameter estimation, and 4) transformation and re-

sampling.  NNs have been applied to IR.  However, most of these applications perform 

only one of the four IR steps, and none have been applied directly to the transformation 

step for IR.  In Chapter 6, we demonstrate the CSRN’s ability to perform rigid body 

registration, and it’s potential for performing all four steps of the image registration 

process.  Preliminary results of Chapter 6 have been published in a few major 

conferences [3][5][43][75] and a technical report to the National Science Foundation 

[44].  Ultimately this contribution will be submitted to an appropriate journal as part of a 

larger work. 

9.3.4 Development of a Multi-layered Elman SRN 
 

In Chapter 7, we present an extension of an Elman simultaneous recurrent network 

(ESRN) as a new type of network core for the CSRN.  This extension adds feedback from 

the ESRN’s output layer, providing feedback, for recurrency, from both the hidden and 

output layers of the network, thus the moniker ESRN with multi-layered feedback 

(ESRNmlf).  This network was developed to provide improved stability and convergence 

over that of the GMLP, demonstrated in the maze traversal application.  Since these 

convergence issues are not evident in the IP applications tested herein, the ESRNmlf’s 
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ability to provide improved convergence remains untested to date.  The ESRNmlf 

network and its preliminary application to image registration has been published in a few 

major conferences [3][5]. 

9.3.5 Implementation of a UKF Training Method for CSRNs 
 

In Chapter 8, we present a method of training the CSRN via parameter estimation 

using an UKF.  This represents the first time that the UKF has been applied to the 

training of CSRNs.  This method is a derivative free training method and, as such, does 

not require computation of the Jacobian, as is required in the EKF method.  This 

eliminates the restriction on image size imposed by the multi-streaming EKF’s need for 

extremely large matrices used in computation of the Jacobian.  Likewise, elimination of 

the Jacobian eliminates the BPTT computation, allowing users to compute only the 

equations for the forward computation of the network. This simplification makes 

modification and/or development of new core networks for the CSRN much easier and 

more tractable. To date, this contribution is unpublished.  However, we plan to submit 

this to an appropriate conference for publication very soon and ultimately to an 

appropriate journal as part of a larger work. 

9.3.6 Development of a Gentle Engineering Tutorial for BPTT 
 

In Appendix A, we develop a gentle engineering tutorial for the application of BPTT 

to the training of complex NNs such as the CSRN.  This tutorial includes mathematical 

derivation of the BPTT method and basic algorithms.  To date, this contribution is 

unpublished.  However, we plan to submit a review article for journal publication soon. 
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9.4 Future Works 

In this section, we discuss a few interesting directions in which this work may 

proceed in the future. 

9.4.1 Pattern Recognition Using the CSRN 
 

Now that we have developed a generalized CSRN architecture for implementing 

generic IP functions, a wealth of complex IP tasks can be implemented using CSRNs.   

Of particular interest is feature extraction and object detection/recognition.  Topics of 

interest may include histograms, edge detection, and Fourier transformation.  More 

complicated topics may include principle component analysis (PCA) and scale invariant 

feature transforms (SIFT).  Object detection and recognition tasks of interest may include 

direct detection of facial features, and object detection for navigation of autonomous 

robots. 

9.4.2 Improved IR Using the CSRN 
 

We propose that the limitations encountered in the application of CSRNs to rigid-

body IR, can be overcome by the two-stage registration method, depicted in Fig. 9.1 

 

 

inability of the CSRN to generalize over the entire range of its training set, can be 

overcome by the implementation to rigid-body IR   

 
Figure 9.1:  A two-staged registration method for improved rigid body image 
registration.  θ’ represents the parameters of the rigid body model. 
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Both stages of this method would be implemented using CSRNs.  The second, or 

transformation stage, has already been implemented in Chapter 5.  The architecture for 

the application of the CSRN to the parameter estimation stage is shown in Fig. 9.2. 

 

 

 

 

 

 

 

 

Figure 9.2:  CSRN architecture for parameter estimation step of rigid body IR.  θ’ 
represents the parameters of the rigid body model.  
 
 

9.4.3 Application of ESRNmlf to Maze Traversal Problem 
 

The ESRNmlf was developed to provide improved stability and convergence over 

that of the GMLP, demonstrated in the maze traversal application.  Since these 

convergence issues are not evident in the IP applications tested herein, the ESRNmlf’s 

ability to provide improved convergence remains untested to.   In order to test this 

hypothesis, we propose implementation of the maze traversal application with a CSRN 

utilizing the ESRNmlf core network. 
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9.4.4 Distributed Control of Multi-joint Robots 
 

As in any robotic application, actuation of one joint causes disturbances in the control 

of the remaining joints.  This problem is compounded by robots with a high degree of 

freedom due to a large number of joints, such as a serpentine robot.  Coordination and 

control of these types of robots can be extremely difficult.  SRNs have been successfully 

applied to control systems [97].   The CSRN has the added advantage that its cellular 

structure can be mapped to the geometric structure of the robot, utilizing one CSRN to 

control each robot joint for autonomous navigation. 
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APPENDIX A:  BACK-PROPOGATION THROUGH TIME:  A TUTORIAL FOR IT’S 
APPLICATION TO SUPERVISED LEARNING IN CELLULAR SIMULTANEOUS 
RECURRENT NETWORKS 
 
 
A.1   Introduction 
 

The original Cellular Simultaneous Recurrent Network (CSRN) developed by Pang et 

al. [69] was trained using an extension of basic back-propagation known as back-

propagation through time (BPTT) [92].  This method of training is fundamental to 

CSRNs.  Prior to BPTT, no tractable method of computing the required derivatives 

existed. 

In this tutorial we present a gentle approach to the application of BPTT to supervised 

learning in CSRNs.  After reviewing the concept of supervised learning, we introduced 

the basic mathematical concepts of the ordered system, the ordered derivative, and the 

chain rule for ordered derivatives.  Next, we derive the basic back-propagation (BP) 

equations for a simple feed-forward network known as a generalized multi-layered 

perceptron (GMLP) and provide a basic algorithm.  Finally, we extend the basic BP 

concept to handle networks with recurrency by demonstrating the use of BPTT for a 

CSRN using a GMLP core.   

A.1.1   Supervised Learning 
 

The goal of any training method that utilizes supervised learning is to minimize some 

error function over a given training set.  The sum-squared error has historically been used 

in training of CSRNs. 

For each set of training data, we apply the inputs, X[k], to the network, calculate the 

network’s output, Y[k], then obtain the error by subtracting the known target T[k] from 

the network’s output, Y[k].  The sum-squared error over the entire training set is given by 
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where q is the number of outputs and N is the number of data points in the training set. 

The classic approached to training of NNs via supervised learning is to calculate 
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so that we can adjust the weights via the following learning rule 

 

(2) 

 

where γ is the learning rate [6]. 

A.1.2   The Ordered Derivative 
 

To introduce the concept of the ordered derivative, consider the simple ordered 

calculation shown in Fig. A.1.  By “ordered” we mean that each variable is calculated in 

order of its occurrence, that is, z1, z2 then z3. 

 

 

 

 

 

   

Figure A.1:  Simple Ordered System where each node represents a computation.  
Calculations proceed in sequential order. 
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We can easily calculate equations for z2 and z3 as 

 

    (3) 

and 

    (4) 

 

Now if we take the direct partial derivatives of z3 we get 

 

      

(5) 

 

 

However, since we are making ordered calculations, z1 and z2 are known prior to 

computation of z3.  If we first substitute (3) into (4), then take the partial derivative, we 

get 

 

  (6) 

 
 

which differs from the result obtained using the direct partial.   

In his PhD. Dissertation [95], Werbos proves that in an ordered system the ordered 

derivative is the true derivative. 
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A1.3   Chain Rule for Ordered Derivatives 
 

Since the chain rule is used in the derivation of standard backpropagation equations 

for neural networks (NNs), let us examine the chain rule for ordered derivatives given by 

(7). 

 

   (7) 

 
 
 
We now apply this equation to our ordered system from Fig. A.1, which yields 

 

(8) 

 

 

 

 

 

 

 

      

As can be seen, this result agrees with that obtain in (6). 

 
A.2   Basic Backpropagation using the Chain Rule for Ordered Derivatives 
 

In basic BP, the system error is back-propagated through the system to compute the 

partial derivative of the error with respect to the weights.  The equations for 
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backpropagation are directly tied to the network architecture.  Any change in architecture, 

for example, adding inputs/outputs, changing an activation function, or adding a layer, 

results in a change to the backpropagation equations.  As a result, we must first specify 

the network architecture before we can demonstrate how to compute the backpropagation 

equations. 

A.2.1   Backpropagation for the GMLP 
 

In his body of work on CSRNs, Werbos has consistently used the generalized multi-

layered perceptron (GMLP) as the CSRN’s core network.  I questioned Dr. Werbos on 

this selection.  His answer was multi-fold.  First, he reminded me that the standard 

MLP’s, with which so many of us begin our study of NN’s, weren’t around when he 

developed backpropagation and the GMLP.  Second, since the GMLP has only 1 layer, 

he did not have to specify the number of layers.  Third, the one-layered architecture had a 

distinct coding advantage in that the backpropagation calculation could be done in a 

single backwards loop.  

Since the GMLP was developed in conjunction with the ordered derivative, and since 

it has been used, almost exclusively, to implement CSRN’s we will begin by examining 

basic BP for the GMLP. 

A.2.1.1   The GMLP 
 
Figure A.2 depicts a basic GMLP network.  Note that in this figure, the network is 

configured as a feed-forward network. 
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Figure A.2: The Generalized Multi-Layered Perceptron 

 

The neurons in the network, also referred to as nodes, are numbered sequentially.  In 

this case, there are m, input nodes, h, hidden nodes and q, output nodes.  The total # of 

nodes is N = m + h + q.  The output of each node is given by xi. The nodes are arranged 

in 3 groups, input, hidden, and output nodes.  Note that only the hidden and output nodes 

contain active neurons. The input vector, X, is copied directly to the corresponding input 

nodes, x1-xm. The outputs of the output nodes, xm+h+1-xN, are copied directly to the output 

vector Y.  

To simplify coding, it is convenient to specify two additional variables: h1 = m+1, 

which indicates the index to the first hidden node and q1 = m + h + 1 which indicates the 

index to the first output node. 

The most significant detail about the GMLP is that the input to any active node is 

given by the sum of the outputs from all the preceding nodes.   

The weights of the network are specified by wij, which represents the weight 

connecting the jth node to the ith node. 

An algorithm for the forward computation of the GMLP network is shown below. 
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Algorithm A.1:  Forward Computation for the GMLP network 
 

 

 

 

 

 

  
A.2.1.2   Derivation of Backpropagation Equations for the GMLP 
 

Recall that our goal is to calculate 
w
E
∂
∂ , so that we can adjust the weights via the 

learning rule given in (2).  Recall that E is the sum-squared error over the entire training 

set given by (1).   

Let us begin with the chain rule for ordered derivatives, repeated below 

 
 

(9) 

 
 
 

Notice that we have introduced a simpler notation developed by Pang et al. in [69].  If 

the ultimate target of the ordered derivative is Zn, then we can consider F_Zi as the 

feedback of the partial of Zn with respect to Zi. 

Now if our ultimate target, Zn represents E, then the chain-rule for ordered derivatives 

becomes 
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1) Copy the inputs from the input vector X to input nodes x1-xm. (Input nodes 
are not active neurons and their inputs are passed thru to their outputs.) 

 
2) Loop thru active nodes computing the summation of the inputs to each node 

and the nodes output. 
 

3) Copy the output of the output nodes to the output vector Y. 
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(10) 
 
 

We can now use eq. 10 to work backward to find the feedback to each point in the GMLP 

network.  Let’s start with the output, Y. 

 

(11) 

 

Since there are no neuron’s after the output, Yi , the summation above becomes zero and 

  

(12) 

 

which is simply the error between the output and the target. 

Continuing to move backward through the network, we must now calculate the feedback 

to the output of the active neurons, given by 

 

 

(13) 
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Figure A.3 shows an exploded view of neuron j.  As can be seen, the output from 

node xi is directly connected to the summation node, netj.  In this case jj netZ =  and 

jj netFZF __ =  and eq. 13 becomes   

 

(14)    

 

 

 

 

 

 

Figure A.3: Exploded view of neuron j in the GMLP network. 
  
 

Now, 

  (15) 

and 

 

(16) 

 

Substituting (16) into (14) yields 

 
(17) 
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Note that this is a general equation covering both output neurons as well as hidden 

neurons.  In the case of hidden neurons, there is no direct connection to an output, so the 

F_Yi  term is zero. In the case of the final output neuron, there are no subsequent neurons 

and the summation term is zero.  In the case of the remaining output neurons, they 

receive feedback from both an output and proceeding neurons, therefore both terms 

remain active. 

 
As we continue backward through the network, we must next compute F_neti.   Once 

again we begin with the equation for the ordered derivative. 

 

(18) 

 

Since there is no direct connection to an output, where E is computed, the 1st term 

becomes zero.  Also, since neti only has a connection to xi, there is only 1 term in the sum 

and (18) reduces to 

(19) 

 

As can be seen from Fig.A.3, 

 
 

 
 
where f is the activation function of the neuron, therefore  

 

(20) 

i

j
j

iji
i net

x
xF

net
EnetF

∂

∂
+

∂
∂

= ∑
≥

.__

i

i
ii net

xxFnetF
∂
∂

= .__

[ ] )()( ii
ii

i netfnetf
netnet

x ′=
∂
∂

=
∂
∂

),( ii netfx =



 

  217 

 

and 

(21) 

 
 

Continuing to move backward from neti, we encounter the weights connected to neti. 

The final term we need to compute is F_wij given by 

 

(22) 

 
 
 

Once again, since there is no direct connection between ijw  and an output, the 1st 

term is zero.  Now, 

(23)  

 

and 

(24) 

 

such that (22) becomes 

(25) 

 

Of course we need to sum the feedback to the weights over all training sets, such that 
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A.2.1.3   BP Algorithm for the GMLP 
 

The basic steps for the backward computation (backpropagation) through the GMLP 

are listed in Algorithm A.2 below.   

 

Algorithm A.2:  Backward Computation for the GMLP network 
 

 

 

 

 

 

 

 

 
  
 
A.3  Backpropagation through Time 
 

BPTT is an extension of the basic backpropagation technique which allows 

computation of ordered derivatives for recurrent systems.  Once again in order to 

compute the equations for BBTT we must specify a specific network.  In this section we 

will examine the CSRN using the GMLP core.  

A.3.1   CSRN with GMLP Core 
 

Figure A.4 shows the cellular structure of the CSRN.  Each cell of the CSRN consists 

of a GMLP core shown in Fig. A.5. 

 

1) Initialize the feedback vector, F_x, to 0 for the input and hidden nodes. 
 
2) Compute the feedback from outputs to the output of the active nodes, F_x. 

(1st term of eq. 17). 
 
3) Loop backwards thru the active nodes performing steps 4,5 & 6 for each 

node. 
 
4) Finish computation of the feedback to the node outputs, F_x. (2nd term 

of eq. 17) 
 
5) Compute the feedback to the summer of the node, F_net. (21) 
 
6) Compute the feedback to the  input weights coming into the node, F_w. 

(25) 
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Figure A.4. Cellular structure of a CSRN. 
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Ŷ

Ws

QN QW QS QE

external inputs(3) neighbor inputs(4) recurrent inputs(5) active neurons(5)

to
Neighboring

cells

 

Figure A.5. GMLP core of the CSRN shown with 3 external inputs, 4 neighbor inputs, 5 
recurrent inputs (12 total inputs) and 5 active nodes.  Each active node receives an input 
from all prior nodes.  Output is taken from final node, and scaled via a scaling weight. 
The network has a total of 17 nodes. 
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Recurrency in the CSRN’s core is two-fold.  First, the outputs from the connector 

nodes of the 4 neighboring cells are feed back as inputs to the current cell.  These inputs 

are referred to as the “neighbor” inputs and give the CSRN its cellular structure.  Second, 

the outputs of the active nodes in the current cell are feed back as inputs to the current 

cell.  We refer to these inputs as self-recurrent inputs.  This accounts for the term 

‘Simultaneous Recurrent’ in the CSRN name. 

One identifying feature of CSRN’s is their use of two computation rates.  An external 

or input/output rate and an internal or core rate.  Inputs are presented to the network, and 

outputs read from the network at the external rate.  The faster internal rate is used to 

compute the core computations, and to update the recurrent inputs.  This faster internal 

rate allows the network outputs to settle prior to being output on the external cycle.  

When applying BP to the CSRN not only must we back-propagate the error thru the 

network, we must also back-propagate it through time for each of the internal core 

iterations, thus, the term back-propagation through time. 

Algorithms A.3a and A.3b represent the forward computation of a CSRN using a 

GMLP core.   

 

Algorithm A.3a:  Forward Computation for the CSRN. 
 

 

 

 

 

 

1) For each core iteration perform steps 2 -7. 
2) For each cell perform steps 3 & 4. 
3)  Compute fwd calc for cell (see alg. 3b) 
4)  Store outputs of cell nodes in storage array(used in BPTT algorithm) 
5) For each cell perform steps 6 & & to update recurrent inputs for next 

iteration. 
6)  Copy output of each active node to its corresponding input(self-

recurrent inputs) 
7)  Copy connector node output to inputs of 4 neighboring cells 
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Algorithm A.3b:  Forward Computation for the GMLP core. 
 

 

 

 

 
 A.3.1.1   Derivation of BPTT Equations for the CSRN with a GMLP Core 
 

As before, we will begin our analysis at the network’s output.  In this case there is 

only one output for each cell.  The feedback to the output, YF ˆ_ , can be computed using 

(12).  

(27) 

 

 

The network output is taken from the final active neuron’s (node 17’s) output passed 

through a scaling weight, ws.  Next, compute the feedback to this scaling weight.  We can 

modify (25) to achieve this goal. 

 
(28) 

 
 

Note that we maintain a running sum for swF _  to satisfy the requirements of (26). 

Continuing back through the network, we must next compute the feedback to the 

output of the last active node (node 17) 

(29) 
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1) For each input node, copy input to output. 
2) For each active node, initialize output to zero. 
3) For each active node, perform steps 4 & 5. 
4) Sum inputs to node 
5) Pass input sum thru activation function 
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Now we must compute the feedback to the summer of node 17.  We begin by 

applying (21) 

 

(30) 

 

In this case the activation function is )tanh()( netnetf = ,  for all active nodes.   

In order to used (30), we must compute the derivative of the tanh( ) activation 

function. Let 

(31) 

 

 

Taking the derivative via the quotient rule yields 
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Next we factor out a ½ and separate the numerator into two terms 

(34) 

 

 

(35) 

 

Completing the square on the two terms in the numerator and reducing yields 

 

(36) 
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Now, substituting (40) into (30) we obtain 

 

(41) 

 

Now we must feedback these results to all weights connected to node 17, using (25). 

 

(42) 

 

for all j < 17, i.e. the weights connected to node 17 from all previous nodes. 

We note here that since the bias is included as an input node, the bias weights are 

computed as part of the network weights and we do not need to make a separate 

calculation for them here. 

Now that we have finished the required calculations for the last active node, we loop 

backward through the remaining active nodes (16 thru 13) computing 

ijii wFnetFxF _ and _,_  as a set using (17), (21), and (25), respectively.  Note that the 

1st term in (17) is zero, and the derivative in (21) will be the same as that found in (41).  

These modifications are shown below. 
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To this point, the back-propagation computation has mirrored (with minor 

modifications) the standard backpropagation algorithm.  However, because of the 

recurrency in the network, as the network performs the internal core iterations for its 

forward computation, the current outputs become inputs in the next iteration in time.  

Now in the BPTT calculation, the recurrent inputs (both neighbor inputs and self-

recurrent inputs) are connected through time to their corresponding output nodes in the 

previous iteration.  We must therefore compute the feedback to these input nodes and add 

them to their respective output nodes in the previous iteration.  We do this by applying 

(43) for all the input nodes.  Once these values have been computed, they are stored in a 

vector, F_Y for use in the previous core iteration.   

Since in the forward computation the connector node (1st active node) is connected to 

an input for each of its four neighbors, then the feedback to the connector node, cYF _ , 

consists of feedback to those four input nodes. 

 

(46) 

 

where the U,D,L,R subscripts represent direction of the corresponding neighbor.    

Likewise, the feedback to the self-recurrent inputs must be held over for their 

corresponding outputs in the previous iteration. 

 

(47) 

 

where j = 1 to n, n is the number of active nodes, and m is the number of inputs. 
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Note that these computations occur as we move backward through time for each core 

iteration. 

A.3.1.2   BPTT Algorithm for the CSRN with a GMLP Core 
 

The basic steps for BPTT for a CSRN utilizing a GMLP core are listed in A.4a and 

A.4b below.   

 

Algorithm A.4a:  BPTT Computation for the CSRN. 
 

 

 

 

 

 

1) Loop backward thru core iterations performing steps 2 – 7. 
2) For each cell  
3)  Compute backward calc. for cell (see Alg. 4b)       
4) Initialize the hold-over vector, F_Y, to zero.  
5) For each cell perform steps 5 & 6 to update feedback to recurrent inputs, 

and store for prev. iteration) 
6)  Compute feedback to connector node from 4 neighbor inputs (46) 
7)  Compute feedback to each active node from its corresponding self-

recurrent input (47) 
 



 

  227 

Algorithm A.4b:  BPTT Computation for a single cell in the GMLP core. 
 

 

 

 

  

 

 

 

 

A.4   Summary 
 

In Section A.1, we review supervised learning, and present the ordered derivative and 

the chain-rule for ordered derivatives.  In section A.2, we present a feed-forward GMLP 

network and derive its basic backpropagation equations.  In section A.3, we describe the 

architecture of the CSRN, and present the GMLP core network, and then derive the 

BPTT equations for the network.  Derivations for all computations are provided along 

with algorithms for practical implementation. 

 

 

1) Create temp. array for F_net. 
2) Initialize F_x(input nodes set to zero, active notes set to F_Y) 
3) Compute feedback to scaling weight, F_Ws. (28). 
4) Compute feedback to last active node F_x17. (29). 
5) Compute feedback to summer of last node, F_net17. (41) 
6) Compute F_W17j for all weights connected to last node. (42) 
7) Loop backward thru remaining active nodes computing steps 8-10 as a set. 
8) F_xi. (43) 
9) F_neti. (44) 
10) F_Wij. (45) 
11) Loop backward thru input nodes 
12) Loop thru all nodes after current input node 
13)  Compute feedback to input node, F_xi. (43) 
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