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Abstract 

  Fonji, Simon Foteck. Ph.D. The University of Memphis. May, 2013. Using 

Remote Sensing and GIS to assess the effects of land use/cover change and geographic 

variables on the spread of poisonous invasive Giant Hogweed in Latvia. Major Professor: 

Dr. Esra Ozdenerol. 

 

Land-use and land-cover change (LULCC), especially those caused by human 

activities, is one of the most important components of global environmental change 

(Jessen, 2005). This dissertation analyzes the effects of geographic, biophysical, and 

demographic factors on LULCC and how LULCC and geographic variables influence the 

spread of invasive Giant Hogweed in northeastern Latvia. Data sets used in this study 

include: remote sensing images (Landsat Thematic Mapper acquired in 1992 and 2007), 

global positioning system (GPS data), census data, and data from public participation 

geographic information system (PPGIS).  These data sets were processed and analyzed in 

a geographic information system (GIS). Six categories of land-cover were studied to 

determine land-cover change (LCC) and the relationship to population change between 

1992 and 2007. Classification and analysis of the 1992 and 2007 Landsat  images 

revealed that land-cover changing to forest is the most common type of change (17.1% of 

pixels) followed by changes to agriculture (8.6% of pixels) and the least was changes to 

urban/suburban (0.8% of pixels). Integration of the census data and land-cover 

classification revealed interesting patterns, for example, that population density is 

positively correlated with percent change in forest, agriculture and urban. Modeling the 

spread of Giant Hogweed was achieved using logistic regression and a novel cluster 

analysis approach. The logistic regression model was used to model the spread of Giant 

Hogweed using presence and pseudo-absence data of Giant Hogweed, while cluster 

analysis used only Giant Hogweed presence data. Both models were run using data from 
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a series of GIS layers including topographic and land-use land-cover change (LULCC) 

information. The results from logistic regression and cluster analysis show that Giant 

Hogweed is likely to grow near roads, near rivers, in proximity to urban centers and in 

low elevation areas. Habitat suitability maps produced from both models indicate where 

Giant Hogweed is more likely to spread in the future and can serve as useful tools for 

policy makers and land managers to focus their efforts to manage weed invasions, and 

identify similar habitats where Giant Hogweed may occur in the future.  
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Chapter 1 

Introduction 

PhD. Dissertation in three parts. 

Land cover and land use are often used interchangeably but the two have different 

meanings. Land cover describes the natural and anthropogenic features that can be 

observed on the Earth`s surface. Examples include deciduous forest, grassland, water and 

developed areas. Land use by contrast, describes activities, often associated with people 

that take place on the land and represent the current use of property. Examples include 

residential homes, shopping centers, row crops, tree nurseries and state parks. There are 

few landscapes remaining on Earth that have not been altered by humans. Humans have 

altered the landscape in such a way that has a profound effect on the natural environment. 

These anthropogenic influences on shifting patterns of land use are a primary component 

of many current environmental concerns as land use and land cover change is gaining 

recognition as a key driver of environmental change (Riebsame, et. al., 1994). Changes in 

land use and land cover are increasing rapidly, and can have adverse impacts and 

implications at local, regional and global scales.  

To better understand the impact of land use land cover change (LULCC) on 

terrestrial ecosystems the factors that influence LULCC must be fully understood and the 

consequences. Growing human populations have increased pressure on the landscape as 

the demand for natural resources such as food, fuel and timber increases. Socio-economic 

factors often determine how land is used locally and regionally. LULCC has become an 

important component in strategies to manage natural resources and monitor 

environmental change. These are usually accomplished using remote sensing and GIS 

technologies.  By utilizing remote sensing and implementing GIS mapping techniques, 
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LULCC of designated areas can be monitored and mapped for specific research purposes 

and analysis. 

The selection of the location for this research is based on the author’s interest in 

LULCC and how it affects the spread of invasive species. To accomplish this, first I used 

LANDSAT TM image time series with 30m resolution to map and identify land cover 

changes in the study area and also to determine the drivers of change. Secondly, I want to 

investigate if there are any associations between LULCC and the occurrence of invasive 

Giant Hogweed. It has been observed that over the past decades, as the land cover 

changes so does the spread of invasive species has increased over time. In Latvia Giant 

Hogweed was introduce in the country in small farms to feed cattle but the plant has since 

then spread to other parts of the country. The plant is a successful invader for the 

following reasons:  the plant mature to heights of 6 to 21 feet that makes it taller than any 

other herbaceous plant or grass in Latvia; purplish stalk can grow to 10 cm in diameter; 

leaves up to 1.5 meters across on lower 1/3 of stalk readily shade out competitors in the 

understory; compound umbel (flower) can reach 2 meters in diameter and produce up to 

100,000 seeds with over 90% viability rate; huge taproot serves as nitrogen storage 

device and provides tremendous regenerative potential. In Latvia open areas such as 

cleared forest and abandoned agricultural areas are more susceptible to Giant Hogweed 

invasion. 

This dissertation highlights the importance of human disturbance and geographic 

variables as factors influencing the spread of poisonous invasive Giant Hogweed in 

Latvia. Three complementary and interlinked methodologies were used to address the 

factors that promote Giant Hogweed spread taking into consideration the historical as 

well as the current distribution of the plant. In detailing how these factors influence Giant 
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Hogweed distribution and why Giant Hogweed thrive under certain conditions, this work 

aims to  depict the interrelationship between the environment, humans and the spread of 

invasive species.  

This research is divided into three parts and each part attempts to answer one of the three 

key questions: 

• What are the local demographic factors associated with land use & land cover 

change in Latvia? 

• Which land use/cover changes, geographic and socio-demographic variables are 

associated with higher occurrence of Giant Hogweed in Latvia? 

• Can cluster analysis be used to accurately predict where Giant Hogweed will 

likely grow? 

Part 1 of my dissertation examines the use of remote sensing data and Geographic 

Information Systems (GIS) in mapping land-cover change (LCC) in north eastern Latvia 

between 1992 and 2007 Unsupervised and supervised classification methods were used to 

classify LANDSAT satellite imagery, and post-classification change detection analysis 

was employed to determine changes in land cover. Subsequently demographic and 

geographic variables were used to determine the drivers of LCC in the study area. 

Part 2 of my dissertation focuses on the effectiveness of logistic regression in 

modeling the spread of poisonous invasive Giant Hogweed in Latvia using LCC data and 

geographic variables as independent variables. The logistic regression identifies 

environmental factors that contribute to the proliferation of Giant Hogweed in the study 

region based on Giant Hogweed presence and absence data. A habitat suitability map was 

created using the regression equation and validated using test data. This paper is thus an 
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attempt to begin to connect LCC and geographic variables to the occurrence of Giant 

Hogweed in Latvia. 

Part 3 focuses on the use of cluster analysis (cluster of environmental variables as 

opposed to spatial cluster) to model the existing habitats of invasive Giant Hogweed in 

Latvia. Part 2 and Part 3 of my dissertation have the same goal but the two modeling 

techniques are different and produce somewhat different outcomes. One fundamental 

difference between the two methods is that while logistic regression uses both presence 

and absence data, cluster analysis uses presence data only. Using cluster analysis, four 

main clusters were identified and a habitat suitability map was produced based on inner-

percentiles of cases within each cluster. This paper attempts to identify sites represented 

by the environmental clusters that have high or low Giant Hogweed presence based on a 

set of environmental variables.  
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Fig 1 Project summary flow chart of land use land cover change map and Habitat 

suitability modeling of Giant Hogweed. Ground control points from field data collection 

was used to geo-rectify the LANDSAT TM images while ground truth data are used to 

classify the LANDSAT TM images. Logistic regression and cluster analysis were 

performed to identify important variables associated with Giant Hogweed occurrence and 

to produce a Giant Hogweed habitat suitability map. Arrows represent processes, boxes 

are mandatory developments. 
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Chapter 2 
 

Using Satellite Data to Monitor Land use land cover Change in Northeastern 

Latvia. 

 

Introduction 

Land-use and land-cover are terms often used interchangeably but the two have 

different meanings. Land cover describes the natural and anthropogenic features that can 

be observed on the Earth's surface. Examples include deciduous forests, wetlands, 

developed/built areas, grasslands, and water. Land use, by contrast, describes activities, 

often associated with people that take place on the land and represent the current use of 

property. Examples include residential homes, shopping centers, tree nurseries, state 

parks, and reservoirs. LULCC especially those caused by human activities, is one of the 

most important components of global environmental change (Jensen 2005). According to 

Meyer and Turner (1992) LULCC is a hybrid category. Land use denotes the human 

employment of the land and is studied largely by social scientists. Land cover denotes the 

physical and biotic character of the land surface and is studied largely by natural 

scientists. Connecting the two are proximate sources of change: human activities that 

directly alter the physical environment. These activities reflect human goals that are 

shaped by underlying social driving forces.  Proximate sources change the land cover, 

with further environmental consequences that may ultimately have feedback to affect 

land use. LULCC is local and place-specific, and collectively these changes add up to 

global environmental change. These changes in turn affect other components of the earth-

atmosphere system, often with adverse consequences such as biodiversity loss, 

desertification, and climate change (Turner et al. 1990). 
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There are many ways to monitor or detect land cover change over time. In the past 

scientists used field data and aerial photographs to map LULCC. For large study areas, 

these methods can be very costly and time consuming. This is particularly true for remote 

regions, which are often inaccessible and thus not easy to obtain the needed data using 

traditional methods (Roberts et al. 2003; Cingolani et al. 2004).  Remote sensing via 

satellite imagery is an excellent tool to study LULCC because images can cover large 

geographic extents, has a high temporal coverage and affords access to remote locations. 

Remote sensing is also used to investigate historical LULCC and also provide data (e.g. 

ground truth (Shao Yang et al. 2011; Asner and Warner 2003)) in areas that are 

inaccessible. The major disadvantages of remote sensing include: the inability of many 

sensors to obtain data and information through cloud cover, distinct phenomena can be 

confused if they look the same to the sensor; the resolution of the satellite imagery may 

be too coarse for detailed mapping and for distinguishing small contrasting areas and 

very high-resolution satellite imagery are very expensive. Despite these disadvantages, 

remotely sensed satellite data have been used to identify changes in a variety of aquatic 

and terrestrial environments including coastal, agriculture, forested, and urban areas 

(Berlanga and Ruiz 2002). LULCC researchers often use remotely sensed data to provide 

information on resource inventory and land use, and to identify, monitor and quantify 

changing patterns in the landscape.  

Population change and distribution is a significant driver of land use land cover 

change in many regions of the world. With the emergence of GIS in the past two decades, 

census data have been merged with biophysical data to better understand the drivers of 

land use land cover change at local, regional and global scales. For example, the 

combination of satellite classification and census data has been used to assess quality of 
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life (Lo and Faber 1997), predict favorable wolf habitat in northern Wisconsin 

(Mladenoff et al. 1995), assess the effect of population change on forest cover in Ghana 

between 1990 and 2010 (Codjoe 2004), understand the socioeconomic drivers of change 

in the Ecuadorian Amazon (Mena, Bilsborrow, and McClain 2006), understand change in 

agricultural activities in the Brazilian Amazon (Cardille and Foley 2003), comprehend 

relationships between land-cover and housing density in Wisconsin (Radeloff et al. 

2000), and to study deforestation in the Brazilian Amazon (Wood and Skole 1998). This 

research integrates land cover change data (based on LANDSAT TM images from 1992 

and 2007) and demographic data (from the Latvian demographic censuses and inter-

census estimates based on vital statistics data for 1992 and 2007) at the level of rural 

municipalities (pagasti) and counties (rajoni) in a GIS to determine associations between 

LULCC and demographic factors (population density and population growth between 

1992 and 2007). Considering the extent of current environmental problems such as land 

degradation, erosion, desertification, pollution, and invasive species, these research 

studies show clearly that GIS is an essential tool for the process of assessing and 

monitoring the impact of human activity and settlement patterns on spatial patterns and 

ecosystem dynamics, and for manipulating and displaying the information in ways that 

can be easily understood by those involved in studying the LCC overtime. Socio-

demographic factors impact LULCC locally and regionally. The landscape of the study 

area, located in northeastern Latvia within in eastern Europe, is shaped by unique 

political, economic and socio-demographic factors influencing this region.   Eastern 

Europe experienced a period of rapid and radical changes of its political, institutional, 

demographic, and socioeconomic structures after the fall of the Iron Curtain in 1989 and 

the breakdown of the Soviet Union in 1991 which triggered widespread land use change, 
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most notably the abandonment of vast areas of cropland in Latvia and other countries in 

the region (Taff et al. 2010).  Between the Second World War and the fall of the Soviet 

Union, private land ownership was forbidden in Latvia. After Latvia gained its 

independence from the Soviet Union in 1991, the government decided to reinstate lands 

to private owners. This period also saw a change from an agriculturally dominant 

economy to a capitalist system that drove much farm abandonment in favor of work in 

other economic sectors, generally located in large cities. From 2004 up till the first half of 

2008 Latvia had the most rapidly developing economy throughout the European Union, 

with the GDP growth reaching 12.2% in 2006 (Eurostat 2010); then in 2009 the Latvian 

economy suffered a severe setback among the European Union Member States (GDP of -

18%) forcing substantial outmigration to find employment.  Land privatization and the 

increase in economic wealth during the 2000’s drove substantial changes in land-use, 

particularly agricultural abandonment (Taff et al. 2010) and the recent development of 

urban sprawl in Latvia and many East European countries (Geyer 2011).  

This research uses statistical analyses, remote sensing images, tomographic maps 

and census data to address the drivers of LCLUC. Two summer dates of LANDSAT 

Thematic Mapper images from 1992 and 2007 were processed, classified and analyzed, 

and an accuracy assessment was performed using ERDAS IMAGINE(Leica Geosystems) 

/ArcGIS (ESRI Inc.). Post-classification change detection was used to determine land 

use/cover changes between the two dates.  Census data were then analyzed in conjunction 

with the land use/cover change results to understand associations between landscape 

changes and demographic and geographic variables.  The specific research question this 

paper endeavors to answer is:  how are local geographic and demographic factors 

associated with land use/cover change in Latvia in the time frame since its independence? 



 

11 

 

Landuse change categories analyzed in this study are agricultural abandonment and 

reforestation, new agricultural development, and urban/suburban development.  While 

some research has shown that population increase rates do not always mirror 

urban/suburban development rates (Eetvelde and Antrop 2004), an increase in population 

is generally expected to accompany increases in urban and suburban development. 

Research has shown that agricultural abandonment is often, though not always, 

associated with outmigration from a region (Gellrich and Zimmermann 2007). 

Materials and Methods 

Study area 

The study is carried out in Latvia which lies on the Baltic coast, in the northern 

part of Eastern Europe. Latvia is one of the three Baltic States situated on the east side of 

the Baltic Sea, the others being Estonia (to the north) and Lithuania (to the south). Latvia 

also borders Russia and Belarus to the east (fig. 1). The total land area of Latvia is 64.6 

thousand km² and the terrain is mostly low plain, with the majority of the territory 

between 40-200 meters above sea level (Eberhards 1984). The climate is wet with 

moderate winters for this latitude. The average amount of precipitation is 600-650 mm 

annually; the vegetation period usually lasts for 180-200 days (Normunds 1993). The 

landscape is characterized by matured forests, secondary forest, meadows, farmland, 

abandoned farmlands, lakes, rivers, hills, plains, villages and dispersed rural homesteads 

(Bunkse 2000).   

Latvia had the fastest growing economy in Europe from 2004 until the middle of 

2008 (Eurostat, 2010). After this period, Latvia experienced a particularly severe 

economic setback along with the world economic crisis, which forced substantial 

outmigration for work opportunities. The increased out-migration, in addition to one of 



 

12 

 

the lowest birth rates in the world, caused an increase in annual population loss (Zvidrins 

1998). Most of Latvia’s export is from wood and agricultural products (Eurostat 2010). 

Therefore, maintaining the health of Latvia’s rural ecosystems is important to the 

economy of Latvia. During the summer of 2011, the author, along with a research team, 

collected field data of ground control points and ground truth of relevant land-cover types 

in the study area, which lies in the country's north-east, in the Vidzeme region, and parts 

of the Latgale and Zemgale regions (Fig.1). This region was chosen because of the wide 

variety of demographic changes in the region, including areas of out-migration and some 

of the few areas within Latvia experiencing in-migration, and it encompasses some of the 

fastest developing cities in the country, such as Valmiera, Sigulda, and Cesis. 
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Fig. 1 Study area - northeastern Latvia 
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Data 

In this study two LANDSAT Thematic Mapper (TM) images (path 186, row 20) 

with a spatial resolution of 30x30 meters were acquired from the summers of 1992 and 

2007. Summer images were chosen to best distinguish the spectral signatures of the 

different land cover types, and near-anniversary dates were chosen for consistency 

between the two time points. Cloud cover in the southwest of the image required creating 

a subset of the image without that portion (9% of image). Municipal boundaries and 

population data from the Latvian Central Statistical Bureau (obtained and adapted from 

Latvian Censuses and updated via estimates from vital statistics data) are also used in this 

study. 

Geometric correction 

Ground control points were collected during field work in the summer of 2011, to 

georectify the 2007 image. The 1992 image was then co-registered to the 2007 image in 

ERDAS IMAGINE 9.3. Both images were registered to a common Universal Traverse 

Mercator (UTM) projection. The 2007 image was geometrically corrected using the 

second-order polynomial method and re-sampled using the nearest neighbor technique to 

match the 1992 resolution. The nearest neighbor technique was used because it tranfers 

the original pixel values which is essential for post-classification change detection. One 

limitation of this method is that the edges of the image may appear jagged. The total 

RMS error for the 2007 image was approximately 2.5 meters, which is quite good for this 

study given that the RMS error should be at most half the size of the pixel (15m) 

(Campbell 2002). Both images were overlaid on top of each other and zoom to locate 

features (major highways) that are clearly visible on both images to make sure those 
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features were directly on top of each other and displacement was minimal through visual 

inspection. 

Land cover classification scheme 

This study used per-pixel supervised classifications which group satellite image 

pixels with the same or similar spectral reflectance features into the same information 

categories (Campbell 2002). In addition to using relevant land-use and land-cover 

classes, all classes of interest must be carefully selected and defined to successfully 

classify remotely sensed data into land-cover (or land-use) information (Gong and 

Howarth 1992). Six information classes of interest to this study were chosen from the 

U.S. Geological Survey Land Use/Land Cover Classification System (Anderson et al. 

1976; Vogelmann et al. 2001) based on dominant land-cover types in Latvia and the goal 

of this study, which was focused on identifying and analyzing the causes of land-use and 

land-cover changes associated with forest clearing, forest growth (including agricultural 

abandonment), and development.  The six classes used were urban/suburban (built-up), 

agriculture, bare field/barren, forest, water, and wetlands. Bare soil was used as an 

additional class for classification of the LANDSAT images, but for land-use change 

analyses the agriculture and bare soil classes were merged into an agriculture land-use 

class, since bare soil in Latvia generally represents agriculture – fallow or recently 

harvested. 

Maximum likelihood supervised classifications were performed in ERDAS 

IMAGINE 9.3 on the 1992 and 2007 LANDSAT images. For each class, 10 ground-truth 

polygons were digitized based on air photos and visual analysis of locations on Google 

Maps and the image itself. In order to insure proper alignment of the air photos and the 

LANDSAT image the transparency on the air photo was reduced to 50% and check with 
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the base map to see which features on the map can also be seen on the air photos.  Points 

such as rail roads, bends in roads, bends in rivers or river junctions, road intersection, 

buildings were checked especially in the corners of the air photos. There was no need for 

rotation. 

  In accordance with Jensen (2005), each polygon contained at least 50 pixels 

except in a few cases where a high proportion of land cover patches in the study area 

contained fewer than 50 pixels (for the suburban and water classes). To improve 

classification, training polygons with confusing spectral signatures were discarded and 

new ones created based on a visual analysis of the locations on Google Maps and on the 

image itself, and these were added to the existing samples and the maximum likelihood 

algorithm was run again. Pixels throughout the classified image were visually compared 

with the raw image and Google Maps to determine general classification accuracy. This 

process was repeated until the observable errors in the classification were negligible 

(similar spectral signatures on both the classified and raw image). Fig. 2a and 2b shows 

the final output of the supervised classification, which consists of two classified maps of 

northeast Latvia in 1992 and 2007.  
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Fig. 2a Map of supervised classification of 1992  
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Fig. 2b Map of supervised classification 2007 
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Results 

Accuracy assessment 

An accuracy assessment was performed for the 2007 image, because of good 

available ground truth at this date. For the 2007 image, three hundred pixels were 

selected using stratify random sampling (50 pixels from each class). Stratify random 

sampling was used because it preserves the major randomness and eliminates the 

probability for an unbalance distribution of points within the categories. These selected 

pixels were then checked for accuracy using fieldwork ground truth data (2009 and 2010) 

when available, aerial photographs (2007) and Google Earth maps (2007). Out of the 300 

Pixels, those that fell on the boundary between two classes and could not be classified as 

belonging to either class were eliminated. In total 15 pixels were eliminated and 285 

pixels were checked for accuracy assessment. Three summaries are standardly reported 

for the accuracy assessment: the error matrix, the overall accuracy and the Kappa 

coefficient (Congalton 1991).  Error matrices illustrate a quantitative comparison of the 

relationship between the classified maps and the reference data which may include field 

observations, aerial photographs or high resolution satellite images. The overall accuracy 

for the 2007 classified map based on the supervised classification was 89.12% which is 

considered good, and it is above the limit set by USGS guideline of 85% (USGS, 1996). 

User`s and producer`s accuracies were calculated to summarize classification accuracies 

for each class. Both the user`s and producer`s accuracies were very high in water (100% 

for all testing data). This is common and probably due to the fact that the spectral 

signature for water is quite different from the other classes. The user`s accuracy was also 

high for wetland (100%), forest (84.21%), bare field (92.11%), and urban/suburban 

(97.56%). The user`s accuracy was moderate for agriculture (71.43%) and this can be 
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attributed to the commission errors from urban/suburban and bare fields. The producer`s 

accuracy was high in wetlands (86%), forest (96%), agriculture (90%), and 

urban/suburban (83.33%). The producer`s accuracy was moderate in bare field (77.78%). 

The bare field class contains errors of omission from agriculture and forest. Because the 

overall accuracy assessment tends to overestimate the actual performance, a more useful 

representation of performance is the kappa coefficient (Cohen 1960). The Kappa statistic 

for the supervised 2007 image is 0.869 which means that 86.9% of the classification is 

better than a random classification. This is considered good because a Kappa value above 

80% is considered to have a strong agreement (Ramita et al. 2009). Table 1 reports the 

results for the accuracy assessment for the supervised classification of the 2007 image. 

Table 1 Classification accuracy assessment using error matrix 
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Land-use change analysis 

Bare soil and agriculture were recoded as one class because most of the bare soil 

land-cover class generally represented land-uses that were either pastures or agricultural 

fields without crops at that moment (e.g., recently harvested or fallow). A total of five 

classes were produced for each of the two images (water, wetlands, forest, agriculture, 

and urban/suburban). The 1992 image and the 2007 image were compared in terms of the 

total area of each land cover category. As seen in fig. 3, the classes that have increased in 

area include wetland, forest, and urban, while water, and agriculture have decreased over 

the same time period. For example 598 km
2
 of area was wetland in 1992, and in 2007 it 

increased to 705 km
2
. Out of the 274 km

2
 area that was water in 1992, only 228 km

2 

remained water in 2007. Water decrease can be attributed to water bodies drying up over 

years or within a season. Agriculture areas have decreased primarily due to farm 

abandonment and development (construction of buildings, roads, and houses). The lower 

percentage of agriculture can be attributed to farm abandonment that started primarily in 

1991 after Latvia gained independence from the former Soviet Union and the agricultural 

sector became less profitable due to the breakup of farms to smaller plots (through land 

restitution) and the shift to a capitalist economy. Increase in forest may also be due to 

farm abandonment that resulted in the conversion of many agricultural fields into young 

forest. The persistence beyond the early post-Soviet transition years of increase in forest 

cover follows the forest transition theory (Rudel et al. 2005), which hypothesizes that 

forest cover decreases with early development levels of a society, but then increases with 

an even higher level of development. This period also saw a population shift within 

Latvia to bigger cities in search of jobs which led to a recent development of urban 

sprawl (increased buildings, and roads, at the urban periphery and beyond). Development 
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can be seen throughout the study area, especially in cities and suburban areas of 

Valmiera, Cesis, Sigulda, and Madona. 

 

        
 
 
 

       
        
        
        

        
        
        
        
        
        
        
        
        
        
        

Fig. 3 Land-cover classes and area represented by each class in square kilometers for 

1992 and 2007 

A pixel-level “from-to” change analysis was then run with five classes and the 

result was a change map with twenty five classes. In order to reduce the number of 

classes in the change map, “no-change” classes and “change” classes that were 

considered unimportant (change to water or wetland because Giant Hogweed does not 

grow in water or wetlands) to the study were classified as irrelevant (with a value of 0), 

all the classes that changed to forest were classified as 1, all classes that changed to 

agriculture were classified as 2, and all classes that changed to urban were classified as 3 

(fig. 4). 

Among change classes, land cover types that changed to forest were most 

common (17.1%), followed by classes that changed to agriculture (8.6%), and finally 
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classes that changed to urban (0.8%). The “No-change” class (71.6%) combined with 

changes considered unimportant (2%) for this study comprised 73.6% of the pixels as 

shown in table 2. 

 

Table 2 Detail LULCC classes, 1= water, 2 = wetland, 3 = forest, 4 = agriculture, 5 = 

urban. Examples of LULCC: 12 = change from water to wetland, 34 = forest to 

agriculture, 43 = agriculture to forest, other changes = change from any land cover type 

to water or wetland. 

LULCC 

class 

Number 

of pixels 

Area in 

square km 

Area in 

percent 

12 442 0.3978 0.00% 

13 43914 39.5226 0.27% 

14 16567 14.9103 0.10% 

15 6 0.0054 0.00% 

21 1087 0.9783 0.01% 

23 167351 150.6159 1.05% 

24 70071 63.0639 0.44% 

25 544 0.4896 0.00% 

31 5111 4.5999 0.03% 

32 120252 108.2268 0.75% 

34 1193399 1074.0591 7.47% 

35 13396 12.0564 0.08% 

41 5623 5.0607 0.04% 

42 175590 158.031 1.10% 

43 2509379 2258.4411 15.71% 

45 111332 100.1988 0.70% 

51 38 0.0342 0.00% 

52 3441 3.0969 0.02% 

53 5770 5.193 0.04% 

54 85403 76.8627 0.53% 
No 

change 
11441425 10297.28 

71.64% 

Other 

changes 
311584 280.45 

1.95% 

Total 

number 

of pixels 
15970141 14373.1269   
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Fig. 4 Post-classification “change-to” map 
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Fig. 5 Distribution of LULCC categories between 1992 and 2007 of Northeastern Latvia 

Finally, the land use land cover change map was overlaid with municipal boundary data 

at the level of pagasti (municipality) and rajoni (similar to US counties) as shown in fig. 6 

and 7. 

 

 

  

Distribution of LULCC categories 
between 1992 and 2007 

no change (71.6%)

 other/unimportant
changes (2.0%)

change to forest (17.1%)

change to agric (8.6%)

change to
urban/suburban (0.8%)
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Fig. 6 Multilayer mapping of pagasti boundaries of Northeastern Latvia with land cover 

change map of LANDSAT TM image. 
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Fig. 7 Multilayer mapping of the rajoni boundaries of Northeastern Latvia with land 

cover change map of LANDSAT TM images. 
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Land use land cover classes were then extracted and aggregated at these two 

spatial units of analysis, namely rural pagasti (excluding big cities) and rajoni (including 

all major cities). The percent of each LULCC class was calculated in each pagasti and 

rajoni. Then a series of correlations were performed to establish the correlation between 

1) socio-demographic factors (population density in 2008, percent population growth rate 

between 1993 and 2008,) and 2) geographic and topographic factors (elevation, % 

pagasti/rajoni area within given buffer distances from urban centers, % of protected areas 

within pagasti/rajoni and proximity to Riga) and the proportion of each LULCC class. 

Multiple buffer distances within 0.5 km -15km of percent pagasti and rajoni areas were 

created from roads and used to run the correlation. Buffer distances that were 

insignificant to all three LULCC types were eliminated. The results are shown in Table 2. 

The results show that, at the pagasti level, percent of pagasti area within 1km from roads 

and range in elevation are positively correlated with all three types of land cover change 

variables (i.e. percent change to agriculture, forest and urban/suburban). Therefore, it 

seems that the more number of roads a pagasti has (e.g. roads) the more rural 

development occurs (Creightney 1993). According to Chomitz and Gray (1996) rural 

roads not only promote economic development but they also facilitate deforestation. The 

significance with range in elevation is interesting; as a low range in elevation has been 

found in other studies to be associated with land-use changes, mostly occurring in coastal 

areas and in areas having low slope values (Selcuk 2008). In this study site, the higher 

ranges in elevation tend to follow the Gauja River Valley, along which fall the towns of 

Sigulda, Cesis and Valmiera; in addition, the areas near the slopes of this valley are 

popular tourist destinations. These two drivers likely promote development, reforestation 

(especially within Gauja National Park), and apparently agriculture as well (perhaps due 
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to proximity to these rural towns). The positive relationship between range in elevation 

and the other types of land-use change may seem surprising (since development is not 

likely to occur at high elevations or on high slopes). But the range in elevation in the 

study area varies between 0-270m and most of the highest points are located near big 

cities and close to the Gauja River. Development in such areas may reflect scenic views. 

A similar study that revealed a positive correlation between range in elevation and land 

use change was reported by Turner et al. (1996).  The percent of rajoni within 10km of an 

urban area was calculated, and found to be significantly negatively correlated with the 

change to forest. This means rajoni with more areas within 10km from urban centers 

experienced less changes to forest and is likely due to the higher value of lands near 

urban centers, both for agriculture and conversion to urban cover; therefore, less 

agricultural land was converted to forest in these areas.  Percent population growth rate 

was not significantly correlated with percent change to forest and agriculture but it was 

positively correlated with percent change to urban at the level of pagasti. At the rajoni 

scale, percent population growth rate was not significantly correlated with any of the land 

cover variables. Percent of pagasti areas within 10km from urban centers and percent 

population growth rates were highly correlated with a change to urban/suburban 

development. These results are as expected:  development occurs to accommodate 

population growth near cities. Also, the more increase in people a pagsati has the more 

urban development will occur to accommodate them. Factors that significantly negatively 

correlated with some land-use changes at the pagasti scale were population density in 

2008 (decrease in population density in 2008) and proximity to Riga. New agricultural 

activities and forestry activities were occurring in pagasti with low population density. At 

the rajoni scale, there was a significant positive correlation between population density 
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and change to forest, which is surprising, as it shows agricultural abandonment in high 

population areas; this may be due to the fact that most of the highest population rajoni 

have substantial area inside Gauja National Park, where forest regrowth was promoted 

through government policy (Taff 2005). Proximity to Riga was found to be negatively 

correlated with all land-cover change variables, and significant with some of them - on 

both the rajoni and the pagasti scales.  Increased distance to Riga was associated with 

decreases in land-cover changes.  Agriculture, forestry, and urbanization are happening 

more near Riga than far away.  The result regarding urbanization is as expected, and the 

results regarding increased forestry and agriculture nearer to Riga may have to do with 

distance to market (cost of carrying goods to Riga) or because people are engaging in 

farming/forestry activities part time, while they or family members have other 

employment in Riga. Percent protected areas within pagasti/rajoni were not significantly 

correlated with any of the land cover variables at both the pagasti and rajoni scales. Also, 

range in elevation was not found to be significantly correlated with any of the land cover 

variables at the rajoni scale. 
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Table 3 Correlation of socio-demographic and geographic variables and LULCC at the 

level of pagasti and rajoni (*) significant correlation (p<0.05), (**) significant correlation 

(p<0.01). 

 

 

 

 

 

 

 

 

 

Pagasti 

Socio 

demographic/ 

geographic 

factors 

% change to 

Agriculture 

% 

Change to 

Forest 

% Change to 

Urban/suburban 

% pagasti area 
within 10km of 
urban centers 
P-values 

-0.029 
 
  0.72                            

-0.082 
 
0.302 

.175* 
 
0.027 

% pagasti area 
within 1km from 
roads 
  P-values          

.213** 
 
0.007 

.162* 
 
0.041 

.209** 
 
0.008 

Population density 
2008 
P-values          

-.160* 
0.043 

-.236** 
0.003 

-0.068 
0.394 

% Population 
growth 1993-2008 
P-values 

0.054 
 
0.5 

-0.076 
 
0.338 

.215** 
 
0.007 

% Protected area 
within pagasti 
P-values 

0.144 
 
0.07 

0.096 
 
0.228 

.180* 
 
0.023 

Proximity to Riga 
in Km 
P-values 

-.286** 
0 

-0.086 
0.28 

-.550** 
0 

range in elevation 
P-values 

.360** 
0 

.280** 
0 

.304** 
0 

% rajoni area 
within 10km of 
urban centers 

-0.289 
 

-.533* 
 

-0.078 
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Conclusion 

  Land-use and land-cover change monitoring in northeastern Latvia was achieved 

using post-classification change detection. The results demonstrate that remote sensing 

can be used to assess, monitor and quantify land-use and land-cover change in large areas 

where traditional methods (such as field observation) may not be possible. The results 

from this study revealed changes in some landscape patterns in northeastern Latvia in the 

post-Soviet period. The most significant land-cover change experienced in the study area 

was increase in forest cover. The percent of forest cover loss between 1992 and 2007 was 

8.3% and percent of forest cover gain over the same time period was 17.1%. Out of the 

17.1%, 15.71% resulted from the conversion of agriculture to forest cover.  Much of this 

change can be attributed to reforestation (table 2) resulting from agricultural 

P-values 0.316 0.05 0.791 

 

 

 

 

 

 

 

Rajoni 

% rajoni area 
within 1km from 
roads 
P-values 

-0.297 
 
0.303 

-0.34 
 
0.234 

-0.138 
 
0.639 

% population 
growth 1993-2008 
P-values 

0.318 
 
0.268 

0.472 
 
0.088 

0.503 
 
0.066 

Population density 
2008 
P-values 

-0.032 
0.913 

.645* 
0.013 

0.526 
0.053 

% Protected areas 
within rajoni 
P-values 

0.002 
 
0.994 

-0.275 
 
0.341 

0.247 
 
0.395 

proximity to Riga 
P-values 

-0.523 
0.055 

-0.452 
0.104 

-.727** 
0.003 

Range in elevation 
P-values 

-0.181 
0.535 

0.043 
0.883 

0.231 
0.427 
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abandonment, as is common throughout the former Soviet Union since 1991 (Taff et al. 

2010). Reforestation on abandoned agricultural lands was most common in low 

population density pagasti e.g. 70.2% of land cover that changed to forest occurred in 

pagasti that had less than ten people per square kilometers. The increase in 

urban/suburban cover occurred mostly around big cities and in high population density 

pagasti.  Between 1992 and 2007, the percent of agriculture loss was 17.5% and percent 

of agriculture gain was 8.6%.  

Among the socio-demographic and geographic variables used to explain land 

cover change in this region, the most contributing factors with positive correlation to all 

three land cover change variables were percent of pagasti/rajoni area within 1km from 

roads, and range in elevation. Proximity to Riga had a negative correlation with all the 

land cover change variables at both the pagasti and rajoni scale.  Some of the factors that 

had a significant correlation at the pagasti scale (e.g. elevation) had no significant 

correlation at the rajoni scale. In general, based on comparison between the pagasti and 

rajoni correlations, it appears that the rajoni scale is too broad to catch the appropriate 

processes with regards to some of the demographic and geographic variables. 

  Latvia has been experiencing serious depopulation and low fertility levels 

(Zvidrins 1998; European Environment agency 2010) since independence in 1991. The 

demographic statistics show that most of the rural pagasti (147 out of 159) have 

experience a decrease in their population between 1993 and 2007. This research shows 

that regions of rural depopulation in Latvia are associated with substantial agricultural 

abandonment. While an increase in forest cover may increase the country`s capacity to 

sequester carbon, provide clean air, prevent erosion, and address some other 

environmental issues, it is worthwhile to note that decrease in agricultural land in this 
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region can lead to decrease in biodiversity, loss in cultural landscape and some tourist 

opportunities (Taff 2005), and loss in food production in the region, which can lead to 

reliance on foreign imports and a trade imbalance. The food production index (covers 

food crops that are considered edible and that contain nutrients) in Latvia has dropped 

from 222.00 in 1992 to 138.00 in 2009 (World Bank Indicators 2010). These results on 

patterns of change in agriculture and associated variables can help policy makers to 

address key relevant variables associated with loss of agriculture, which can help them 

address food security, cultural landscape maintenance, and employment issues –  the rate 

of unemployment in Latvia in 1992 was 3.178% and in 2010 was 18.965% (International 

Monetary Fund 2011). Considering the three land cover types in this study, the lowest 

percentage of land cover (0.8%) was converted to urban/suburban development, and most 

of these changes took place near cities. Results of this study therefore suggest the need to 

monitor increases in urban/suburban cover near cities, and to plan to maintain/develop 

green spaces. The general land-use change trends found in this study, and the variables 

found to be associated with these land-use changes, can be useful to policy makers 

beyond the study site in the northeast to all of Latvia regarding land-use planning based 

on geographic and population characteristics to address issues of land-use, economic 

development, and food security.  

In this study significant correlation was found between demographic and 

geographic variables and LULCC data which implies demographic and geographic 

conditions played an important role in local landscape change at both the pagasti and 

rajoni scales. Future studies should research the association of socio-demographic and 

geographic variables at the city scale and incorporate more economic variables such as 

poverty and unemployment. 



 

35 

 

Acknowledgements  

This research was supported by the University of Memphis College of Arts and 

Sciences through the Travel Enrichment Fund, a University of Memphis Study Abroad 

Scholarship, and the Department of Earth Sciences at the University of Memphis. A 

special thanks to the Vidzeme University of Applied Sciences in Valmiera, Latvia for 

their assistance to support field work.  

References 

 

Anderson JR, Hardy E,  Roach J,  Witmer R (1976) A Land Use and Land Cover 

Classification System for use with remote sensor data. Washington DC: U.S. 

Geological Survey Profession Paper 964, p 28  

Berlanga CA, Ruiz LA (2002) Land use mapping and change detection in the coastal 

zone of Northwest Mexico using remote sensing techniques. Journal of Coastal 

Research, 18(3): 514-522 

 

Bunkse EV (2000) Reality of Rural Landscape Symbolism in the Formation of a Post-

Soviet, Postmodern Latvian Identity. Norsk Geografisk Tidsskrift, Volume 53, pp. 

121 – 138 

 

Campbell JB (2002) Introduction to remote sensing (3rd ed.). The Guilford Press. ISBN 

1-57230-640-8 

Cardille JA, Foley JA (2003) Agricultural land-use change in Brazilian Amazonia 

between 1980 and 1995: Evidence from integrated satellite and census data. Remote 

Sensing of Environment 87(4): 551-562  

Chomitz K, Gray D (1996) Roads, Land Use and Deforestation: A Spatial Model Applied 

to Belize, World Bank Economic Review, 10(3):487-512. 

Cingolani A, Renison D, Zak M,  Cabido M (2004) Mapping vegetation in a 

heterogeneous mountain rangeland using LANDSAT data: an alternative method to 

define and classify land-cover units. Remote Sensing of Environment, 92(1):84-97 

Codjoe SN (2004) Population and land use/cover dynamics in the Volta River Basin of 

Ghana. Ecology and Development Series, No. 15. Gottingen: Cuvillier Verlag 

 

Cohen J (1960) A coefficient of agreement for nominal scales. Educational and 

Psychological Measurement 20, 37-46 

 

Cohen WB, Goward SN (2004) LANDSAT’s role in ecological applications of remote 

sensing. BioScience 54:535-545 

http://en.wikipedia.org/wiki/Special:BookSources/1572306408
http://en.wikipedia.org/wiki/Special:BookSources/1572306408


 

36 

 

 

Congalton GR (1991) A review of assessing the accuracy of classification of remote 

sensed data. Remote Sensing and Environment 7:35-46 

  

Creightney, Cavelle D (1993) Transport and Economic Performance: A Survey of 

Developing Countries. World Bank Technical Paper 232. Washington, D.C. 

Eberhards G (1984) Reljefs (The relief). In: Latvijas enciklopedija (Encyclopedia of 

Latvia), Vol. 5, part 2, GER, Riga, pp. 34-41 

Eetvelde V, Antrop M (2004) Analyzing structural and functional changes of traditional 

landscapes-two examples from Southern France. Landscape and Urban Planning 

67(1-4):79-95 

European Environment Agency (2010) State and outlook, country assessment - Latvia 

http://www.eea.europa.eu/soer/countries/lv/soertopic_view?topic=land.Accessed 12 

April 2012 

Eurostat (2010) Economy of Latvia. http://balticexport.com/?article=latvijas-

ekonomika&lang=en Accessed 12 April 2012 

Geyer HS (2011) International Handbook of Urban Policy and Issues in the Developed 

World. UK: Edward Elgar Publishing Limited 

Gellrich M, Zimmermann NE (2007) Investigating the regional-scale pattern of 

agricultural land abandonment in the Swiss mountains: A spatial statistical modeling 

approach.  Landscape and Urban Planning 75(1): 65-76 

Gong P,   Howarth P (1992) Frequency-based Contextual Classification and Gray-level 

Vector Reduction for Land-use Identification, Photogrammetric Engineering and 

Remote Sensing 58(4):423-437 

 

Gregory P. Asner, Amanda S. Warner 2003. Canopy shadow in IKONOS satellite 

observations of tropical forests and savannas. Remote Sensing of Environment 87, 521 – 

533 

 

International Monetary Fund  (2011) World Economic Outlook, 

http://www.indexmundi.com/latvia/unemployment_rate.html.  Accessed 12 April 

2012 

Jensen  JR (2005) Introductory Digital Image Processing: A Remote Sensing Perspective. 

New Jersey: Pearson Education, Inc. 

 

Lo CP, Faber BJ (1997) Integration of LANDSAT Thematic Mapper and census data for 

quality of life assessment. Remote Sensing Environ. 62(2): 143-157 

 

Mena CF, Bilsborrow RE, McClain M (2006) Socioeconomic Drivers of Deforestation in 

the Northern Ecuadorian Amazon. Environmental Management, 37(6): 802-815 

 

http://www.imf.org/
http://www.springerlink.com/content/261244t821541n04/
http://www.springerlink.com/content/261244t821541n04/


 

37 

 

Meyer BW, and Turner B.L (1992). Human population growth and global land-use/cover 

change. Annu. Rev. Ecol. Syst. 23, 39-61 

 

Mladenoff DJ,  Sickley TA, Haight RG,  Wydeven AP (1995) A regional landscape 

analysis and prediction of favorable gray wolf habitat in the northern great lakes 

region Conserv. Biol. 9(2):279-294 

 

Normunds P (1993) Black Alder Swamps on Forested Peatlands in Latvia Folia 

Geobotanica & Phytotaxonomica, Vol. 28, No. 3, pp. 261-277 Published by: Springer 

 

Radeloff VC, Hagen AE, Voss PR, Field DR, Mladenoff DJ (2000) Exploring the spatial 

relationship between census and land-cover data. Society and Natural Resources 13 

(6) 599–609 

Ramita M, Inakwu OA, Tiho A (2009) Improving the accuracy of land-use and land-

cover classification of LANDSAT data using post-classification enhancement. 

Remote Sensing, ISSN 2072-4292.  www.mdpi.com/journal/remotesensing 

Roberts DA, Keller M, Vianei S (2003) Studies of land-cover, land-cover, and 

biophysical properties of vegetation in the large scale biosphere atmosphere 

experiment in Amazonia. Remote Sensing of Environment, 87: 377-388 

Rudel TK, Coomes OT, Moran E, Achard F, Angelsen A, Xu J, Lambin E (2005) Forest 

transitions: towards a global understanding of land use change. Glob Env Change A 

15(1):23-31 

Selcuk R (2008) Analyzing Land Use/Land Cover Changes Using Remote Sensing and 

GIS in Rize, Noth-East Turkey. Sensors. ISSN 1424-8220, www.mdpi.org/sensors 

Shao Yang, Taff Gregory N, Walsh Stephen J (2011). Shadow detection and building-

height estimation using IKONOS data. International Journal of Remote 

Sensing Volume: 32   Issue: 22   Pages: 6929-6944   DOI: 

10.1080/01431161.2010.517226 

 

Taff GN (2005) Conflict between local and global land-use values in Latvia’s Gauja 

National Park. Landscape Research, 30(3):415-430 

Taff GN, Müller D, Kuemmerle T, Ozdenerol E, Walsh SJ (2010) Reforestation in 

Central and Eastern Europe After the Breakdown of Socialism. In: Nagendra H, 

Southworth J, (eds.), Reforesting Landscapes:  Linking Pattern and Process, Springer 

Netherlands (Landscape Series, volume 10, pp. 121 – 147 

Turner, B. L., W. C. Clark, R. W. Kates, J. F. Richards, J. T. Mathews, and W. B. Meyer, 

eds. 1990. The Earth as Transformed by Human Action. Cambridge: Cambridge 

University Press. 

 

Turner M, Wear D, Flamn R (1996) Land ownership and land-cover change in the 

Southern Appalachian Highlands and the Olympic Peninsula. Ecological applications, 

vol. 6. No. 4, 1150-1172 

 

http://www.mdpi.org/sensors


 

38 

 

U.S. Geological Survey, Department of the Interior. 1996. Standards for digital 

orthophotos: National Mapping Program technical instructions 

 

Vogelmann JE, Howard SM, Yang Y, Larson CR, Wylie BK, Driel JN (2001) 

Completion of the 1990’s National Land Cover Data Set for the conterminous United 

States, Photogrammetric Engineering and Remote Sensing 67:650-662 

Wood CH, Skole D (1998) Linking satellite, census, and survey data to study 

deforestation in the Brazilian Amazon., In: Liverman, DM (ed) People and pixels: 

Linking remote sensing and social science, National Academy Press, Washington, 

DC, pp. 94–120  

World Bank Indicators (2010) Latvia Agricultural Production 

http://www.tradingeconomics.com/latvia/food-production-index-1999-2001--100-wb-

data.html. Accessed 12 April 2012 

Zvidrins P (1998) Changes in living standards and depopulation in Latvia in the 1990s. 

Social Indicators Research, vol. 43, No. 1 - 2, pp. 121-140 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

39 

 

Chapter 3 

 

 

Using Logistic regression to model the spread of invasive Giant Hogweed in Latvia 

Introduction 

Invasive species are a global problem with widespread effects on agriculture, 

fisheries, human health, and natural ecosystems (Andersen et al. 2004). In many areas, 

large scale colonization by non-native plants is changing nutrient cycling, increasing fire 

severity, and seriously compromising ecosystem condition and native biological diversity 

(Vitousek et al. 1996; Mack et al. 2000; Mooney and Cleland 2001). In this study 

“invasive species” refers to non-native species that become established in new locations, 

spread, and then cause ecological or economic harm or threaten human health (U.S. Fish 

and Wildlife Service 2003; Pimentel et al. 2000).  The impacts of invasive species on 

plants and animals range from local suppression of single native species to species 

extinction and wholesale changes in the functioning of ecosystems (Ota 1993). 

Ecosystem functioning changes includes, among others: altering natural water resources, 

carbon sequestration, and biodiversity. Almost half of the US species listed under the 

Endangered Species Act are threatened by competition with invasive species (Wilcove et 

al. 1998) while, globally, invasive species are a major threat to 30% of birds, 11% of 

amphibians, and 8% of mammals on the International Union for Conservation of Nature 

(IUCN) Red List of Threatened Species (Baillie et al. 2004). Invasive species, once fully 

established may be very expensive and difficult to control and eradicate. For example the 

annual cost to the US economy to monitor, contain, and control invasive species is 

estimated to be between $100 billion and $200 billion (NASA 2009). In addition, 

homeowners spend an estimated $500 million a year and golf courses spend $1 billion a 

year to control non-native invasive species. Crop losses cost $26 billion a year and an 
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additional $3 billion is spent annually on herbicides to control non-native species (JFNew 

2009). A fundamental approach to understanding and managing invasive species is to 

determine their current and potential distributions (Allen et al. 2006). Additionally, it is 

important to identify and minimize land uses that promote invasion, for example 

emplacement and improvement of roads (Forman and Alexander 1998; Trombulak and 

Frissell 2000). Roads provide dispersal of exotic species via three mechanisms: providing 

habitat by altering conditions, making invasion more likely by stressing or removing 

native species, and allowing easier movement by wild and human vectors. 

Spatial modeling is a promising approach to predicting risk of invasion. Applying 

a predictive distribution model within a spatial context relies on the existence of 

landscape-scale variables that define suitable habitat for a species (Osborne, Alonso and 

Bryant 2001; Austin 2002a,b) based on the biological/ecological needs of that species. 

Spatial patterns of invasion can be predicted by linking current presence and absence of 

invasive species to spatially explicit predictor variables, like land use, geomorphology, 

and topography, using geographic information systems (GIS); (Store and Kangas 2001). 

Successful modeling efforts have demonstrated that establishing such spatial 

relationships requires extensive field data (Bethany et al. 2006). For example, Larson et 

al. (2001) collected data from more than 1300 transects in the Theodore Roosevelt 

National Park, North Dakota, USA to determine non-native plant relationships to native 

plant communities and anthropogenic disturbance. However, the paucity of relevant 

scientific data often makes it difficult to develop the type of predictive model that is 

required for decisions concerning invasive species management. Three types of data were 

used in this project: Giant Hogweed locational data collected from Public Participation 

Geographic Information Systems (PPGIS) involving Latvian high school geography 
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students using GPS units; Giant Hogweed point data collected in the field by the author 

with the research team; Data of Giant Hogweed obtained from the Latvia ministry of 

Agriculture. These data (Giant Hogweed presence data) and pseudo absence data of Giant 

Hogweed generated using stratify random sampling were analyzed in a GIS and then 

input into a logistic regression for modeling and assessment. Logistic regression is a 

robust statistical tool to model species distribution (Smith 1994, Brito et al. 1999). 

Logistic regression models based on topography and other environmental factors have 

been used to predict species distribution, e.g. Charlotte et al. (2008) predict the 

distribution of invasive alien Heracleum mantegazzianum in Denmark using logistic 

regression, Zimmermann and Kienast (1999) predicted the distribution of alpine 

grasslands in Switzerland, and Robertson et al. 2003 used logistic regression to predict 

the potential distribution of species in South Africa.  

In this study a logistic regression approach was used to describe the relationship 

between Giant Hogweed distribution and geographic and demographic features. The 

main objectives of this research are 1) to identify the most important variables 

influencing the distribution of Giant Hogweed in Latvia, 2) Validate the performance of 

the model and 3) produce a habitat suitability map of northeastern Latvia. 

Background 

Sosnowskyi Hogweed (Heracleum sosnowskyi) is a biennial or perennial herb in 

the carrot family (Apiaceae) which can grow to 12 feet or more (fig. 1a). Its hollow, 

ridged stems grow 2-4 inches in diameter. Its large compound leaves can grow up to 5 

feet wide (fig. 1b). Its white flower heads can grow up to 2 1/2 feet in diameter. There are 

other poisonous Hogweed species related to Sosnowskyi Hogweed (Heracleum 

mantegazzianum, Heracleum persicum) that occur in many parts of the world, though all 
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are native only to the Caucuses region. The Heracleum sosnowskyi species is a biennial 

or perennial plant mostly found out of its native range in the Baltic States, and especially 

Latvia. It is an invasive and highly toxic weed that threatens biodiversity, ecological 

health, and human health of infested areas in the Baltic countries (Estonia, Latvia, and 

Lithuania), northwest Russia, Belarus, Poland, and Ukraine even though the plant is most 

common in Latvia (Kabuce 2006). Local residents are afraid and have very special 

concerns about the safety of their children because the plant causes phytophotodermatitis 

(severe burns), painful blistering, permanent scarring and blindness when the sap of the 

plant comes in contact with the human body and is exposed to sunlight. The plant usually 

flourishes during summer and grows to heights of about 4-5 m (Pysek et al. 2007).  Its 

large inflorescence is composed of many small flowers which can be white or sometimes 

pinkish. Flowering typically last from June to August in Latvia, and the seeds are egg-

shaped or oval (Nielsen et al. 2005). Giant hogweed dies back during the winter months, 

leaving bare ground that can lead to an increase in soil erosion on riverbanks and steep 

slopes. The plant is hardy and can thrive in a cold climate (Kabuce, N. 2006). It was 

promoted as a crop for cattle feed in northwest Russia, where it was first introduced in 

1947. From the 1940s onwards, it was introduced as a fodder plant to Latvia, Estonia, 

Lithuania, Belarus, Ukraine and the former German Democratic Republic (Nielsen et al. 

2005).  H. sosnowskyi was sown as a fodder plant for the first time in Latvia in 1948 and 

was grown on experimental agricultural farms (Gavrilova and Roze 2005). In addition to 

use as a crop for livestock feed, it was cultivated in many Botanic Gardens sometimes as 

an ornamental. In the 1960`s larger scale cultivation for forage needs began (Laiviņš and 

Gavrilova 2003). Continued plans to harvest hogweed commercially were halted shortly 

thereafter because its anise-like scent affected the flavor of the meat and milk of the 
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animals that ate it and also posed health risk to humans and cattle (Nielsen C. et al. 2005).  

Giant hogweed quickly spread out from areas in which it was cultivated and began to 

populate the surrounding countryside. Currently, H. sosnowskyi in the Baltic States, 

especially in Latvia, has developed stands of hundreds and thousands of square meters, 

and the process of naturalization is intense (Gavrilova 2003). Giant hogweed grows on 

waste grounds, abandon fields (figure 1c), and wet areas along streams and rivers (fig. 

1d), near houses, in vacant lots, and along railways and roads. It prefers moist soil and 

can quickly dominate ravines and stream banks. In Latvia H. sosnowskyi species is 

mostly found in artificial habitats (roadsides [figure 1e], disturbed areas [figure 1f], 

agricultural fields, abandoned farm yards and gardens) and semi natural habitats (bushes, 

grasslands, parks, pastures, abandoned orchards) (Gavrilova 2003). Giant Hogweed is an 

aggressive competitor. Because of its size and rapid growth, it out-competes native plant 

species by providing shade for native plants that are much in need of sunlight (Nielsen et 

al. 2005). Giant Hogweed overwhelms native species in occupied territories and therefore 

Giant Hogweed societies are poor in biodiversity (Gavrilova 2003).  Presently, the 

naturalization of H. sosnowskyi is out of control and the plant has spread over almost all 

of the Baltic countries, mainly in unmanaged land areas and near ditches (Kabuce et al. 

2010). Its naturalization is favored by abandoned land, particularly abandoned agriculture 

(Oboļeviča 2001), and also due to political changes (fall of communism) in the late 

1980’s and early 1990’s, when Latvia experienced a shift in economic energy that 

refocused its workforce from an agriculture base into a new, service-oriented economy 

that forced many farmers to abandon their farms (Taff et al., 2010). According to 

Oboļeviča (2001), of the Latvia University of Agriculture, H. sosnowskyi has become so 
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widespread in Latvia that it has outstripped the government’s current capacity to 

eradicate or even control the invader.  

The mode of dispersal of the plant is by both natural and human activities. The 

seeds are dispersed by running water, floods and by wind. Humans also carry the seeds 

on automobile wheels along roads, and in some cases the seeds can stick to clothes and 

be carried to other locations. The most common mode of dispersal is the establishment of 

new Giant Hogweed plants close to existing stands.  A study by Pysek et al. (2007) 

showed that 90% of the seeds of the related H. mantegazzianum fall within a 4-meter 

radius of the plant. 

Study Area 

The study was carried out in Latvia which lies on the Baltic coast, in the western 

part of Eastern Europe. Latvia is one of the three Baltic States, situated on the east side of 

the Baltic Sea, the others being Estonia (to the north) and Lithuania (to the south). Latvia 

also borders Russia and Belarus to the east (fig. 2). The total land area is 64.6 thousand 

km² and the terrain is mostly low plain, with the majority of the territory between 40-200 

meters above sea level (Eberhards 1984). The climate is wet with moderate winters for 

this latitude. The average amount of precipitation is 600-650 mm annually, the vegetation 

period usually lasts for 180-200 days (Normunds 1993). The landscape is characterized 

by matured forests, secondary forest, meadows, farmland, abandoned farmlands, lakes, 

rivers, hills, plains, villages and dispersed rural homesteads (Bunkse 2000).  

Some land cover types are more vulnerable to invasion by Giant Hogweed than 

others e.g. cleared forest areas and abandoned agricultural areas are more susceptible to 

Giant Hogweed invasion than forested areas. Once an area is invaded by Giant Hogweed 

it develops large stands and dominates native species in occupied territories. It is easy to 
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distinguish it from the surrounding vegetation especially during summer when the plant 

flowers. Large patches of Giant Hogweed are common to find in rural areas where 

agricultural abandonment is common due to out migration of workers into bigger cites in 

search for better opportunities.  Latvia had the fastest growing economy in Europe from 

2003 until the middle of 2008 (Eurostat 2010). After this period Latvia experience an 

economic setback which forced many Latvians to migrate to other European countries in 

search of better jobs and this caused a decrease in population. Most of Latvia’s export is 

from wood and agricultural products including wildlife (Central Intelligence Agency 

2009). Therefore, maintaining the health of the ecosystems in Latvia is important to 

policy and decision makers at all levels of government. The challenges caused by 

invasive species in general are numerous. They impact range site productivity, disturb 

wildlife habitats, and reduce biodiversity.  During the field trip to Latvia in the summer 

of 2009, 2010 and 2011, the field team collected field data of Giant Hogweed locations 

and other land cover types using GPS in Valmiera, Cesis and Madoma located in the 

Vidzeme region in the country’s northeast. This region was chosen because it is where 

the species was first introduced in the country as cattle fodder and records of the study 

species in this region are widely distributed 
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Fig. 1 Study area - northeastern Latvia 
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Methodology 

Data collection 

The data used were a LANDSAT Thematic Mapper (TM) image (path 186, row 

20) obtained in the summers of 1992 and 2007 of northeast Latvia (downloaded from the 

USGS Global Visualization Viewer (Glovis)). The part of the image that corresponds to 

the study area covers approximately 6137 rows and 5515 columns. Digital elevation 

Model (DEM) and soil data were downloaded from DIVA-GIS (a free computer program 

for mapping and geographic data analysis).  The LANDSAT  TM image had a resolution 

of 30m x 30m. The DEM and soil data had a resolution of 90m x 90m and were 

resampled to 30m x30m resolution using the nearest neighbor technique to match the 

resolution of the LANDSAT image. GIS topographic layers of road network, urban 

centers, railroads, water, and protected areas were obtained from SIA Envirotech 

(Envirotech LTD). All data layers were converted to a 30m x 30m resolution for analysis. 

Giant Hogweed location points and pseudo-absence points were generated randomly. 

Ground-based surveys and monitoring by field personnel, including the author, with GPS 

equipment were used in summers of 2009, 2010 and 2011 for ground truth, particularly 

for satellite image classification and accuracy assessment purposes. This research team 

began ground control and ground truth in a preliminary field trip in the summer of 2009 

led by Dr. Gregory Taff. In the summer of 2010 the research team collected data of Giant 

Hogweed in the form of public participation Geographic Information systems (PPGIS) 

involving Latvian geography high school students. PPGIS brings the academic practices 

of GIS and computer mapping to the public in order to promote knowledge production 

and potentially improve data quality and/or quantity. Public participation has the potential 

to accumulate large amounts of long-term data required to construct predictive models, 
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which may otherwise be difficult to collect (Kadoya and Washitani 2007).  In order to 

maximize probability of detection, surveys were timed to coincide with the growing 

season from June to August (Kabuce 2006). In addition the research team trained high 

school students to participate in the process of field data collection of Giant Hogweed 

locations in the form of public participation GIS. We also obtained locational data of 

Giant Hogweed presence (1969-2010, with a vast majority of cases in recent years since 

2000) from the Latvian Ministry of Agriculture. These data together with PPGIS data, 

and data collected by the research team were used as Giant Hogweed presence points to 

run a regression model to predict suitable habitat of Giant Hogweed occurrence. As might 

be expected there are some limitations when data from various sources are pooled 

(Graham et al. 2004), e.g. collection bias in geographical space. We have more records 

near roads, towns and cities and fewer records in remote areas. For species distribution 

modeling, spatial bias in the record may not be a problem if the data are not 

environmentally biased (Newbold 2010). It is difficult to infer absence data; our data was 

presence only and pseudo-absence data need to be created for some modeling techniques 

(Graham et al. 2004) as in our case, requiring both presence and absence data. These 

issues were addressed by carefully checking the records and eliminating misleading data. 

Since true-absence data was not available, pseudo-absence data (Graham et al. 2004) was 

generated using methods to be discussed later in this paper. The Giant Hogweed location 

dataset was split into training data (70%) and test data (30%). 
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Fig. 2 Distribution of Giant Hogweed in northeastern Latvia using presence and pseudo-

absence data 
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Environmental Variables 

The distribution of species in space and time is highly influenced by biological 

and anthropogenic factors including their environmental context (Liu et al. 2011). 

Environmental variables are potentially related to species distribution and may have a 

direct or indirect impact on their distribution. Understanding the main drivers shaping 

species distribution is particularly important for species distribution modeling (Pulliam 

2000). Even though many variables may be related to species distribution it is important 

to include only those that are ecologically relevant to the target species (Elith and 

Leathwick 2009).  

In this study ten explanatory variables (Table 1) were generated in ESRI ArcGIS 

10, to represent resource availability and topographical features on the landscape that 

may facilitate invasion (Davis et al. 2000).  Most of these variables were chosen based on 

extensive literature review. Many studies have focused on identifying factors that 

influence invasibility. For example Davis et al. (2000) showed that topographic features 

(elevation, slope, and aspect) on the landscape may facilitate invasion. Some researchers 

have evaluated the relationship between disturbance regimes and invasibility. Greenburg 

et al. (1997) and Tyser and Worley (1992) found that roadways and trails facilitated non-

native species spread.  Other studies have found that riparian areas were more invaded 

than upland sites (Stohlgren et al. 1998; Levine 2000; Larson et al. 2001). Soil type has 

also been proposed as a factor related to invasibility. Harrison (1999) determined that 

invasion was greater on soils with greater levels of nutrients. Human population density 

was correlated with the distribution of H. mantegazzianum in the Czech Republic (Pysek 

et al. 1998). 
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Slope and aspect were derived from a Digital Elevation Model in the study site 

using Spatial Analyst in ArcGIS 10. These variables were derived at the original 

resolution of the DEM (90m) and then resample to 30 m using nearest neighbor technique 

to match the resolution of the LANDSAT image. The nearest neighbor technique was 

used because it tranfers the original pixel values which is essential for post-classification 

change detection. One limitation of this method is that the edges of the image may appear 

jagged. Euclidean distances from features (e.g. roads, railways, water bodies, and urban 

centers) were created from GIS shape files using the map calculator function in the 

Spatial Analyst extension in ArcMap. Soil and LULCC data were included in the 

analysis. All the data were converted to the same scale (30m x 30m). 

Elevation, aspect and slope were selected because they have been demonstrated to 

be useful surrogates for the spatial and temporal distribution of factors such as radiation, 

precipitation, and temperature that influence species composition and productivity 

(Albert et al. 2007). Roads, railways, and land-cover change were selected because 

human disturbance is very important for the expansion and persistence of many invasive 

species. Previous studies have demonstrated that these landscape characteristics often 

play an important role in species distribution and patterns of invasion (lambrinos 2002; 

Stohlgren et al. 2003; Kumar et al. 2006). 
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Table 1 Predictor variables 

Variable Description Ecological meaning 

Elevation Altitude from sea 

level 

Influence climatic conditions 

Slope Slope angle 

(degrees) 

Stability, erosion, moisture 

Aspect North,Northeast, 

East, Southeast, 

South, Southwest, 

etc. 

Solar radiation, wind 

Soil Unconsolidated 

mineral or 

organic material. 

Nutrient availability, nutrient retention capacity, rooting 

conditions  

Land cover 

change 

Change to forest, 

agriculture, and 

urban 

Affects the distribution of plants and animals 

Distance to 

nearest road 

Highways, paved 

roads 

Influence plants and animal distributions 

Water bodies Rivers, streams, 

lakes 

Influence plants and animal distribution 

Rail roads Rail roads Influence species distribution 

Distance to 

urban center 

Central districts, 

high population 

Humans influence species distribution 
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areas 

Presence of 

protected areas 

Presence, absence Influence plants and animal distributions 

 

 

Modeling Technique 

Model selection 

Several ecological niche models have been widely used to predict potential 

geographic distribution of non-native species, such as bioclimatic prediction system 

(BIOCLIM) (Busby 1991), generic algorithm for rule-set prediction modeling system 

(GARP) (Stockwell and Peters 1991; Stockwell et al. 2006), artificial neutral network 

(ANN) (Pearson et al. 2002), ecological niche factor analysis (ENFA) (Hirzel et al. 2002) 

and regression methods such as generalized linear model (GLM) (Lehman et al. 2002), 

generalized additive model (GAM) (Elith et al. 2006), boosted regression trees (BRT) 

(Leathwick et al. 2006) and multivariate adaptive regression splines (MARS) (Elith et al. 

2007). The logistic regression model was selected for this study and was preferred to 

other regression methods because it is ‘terse’, the dependent variable (Giant Hogweed 

presence/absence) is a dichotomous variable, and logistic regression has already proved 

its value in many case studies (Robertson et al. 2003; Brenning 2005). 

Logistic regression model is a type of Generalized Linear Model (GLM) appropriate for 

binary outcome data such as species presence or absence (McCullagh and Nelder 1989; 

Evans et al. 2000). For example, David et al. (2009) used logistic regression to model the 

potential spread of invasive plants in the Green Ridge State Forest in Western Maryland 

along the Potomac River. Site features that have been associated with invasibility include 
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both environmental and anthropogenic factors such as disturbance (Almasi 2000; Silveri 

et al. 2001), proximity to roads (Harrison et al. 2002), soil nutrients, topographic position, 

and forest fragmentation (Brothers and Spingarn 1992; Cadanasso and Pickett 2001). A 

logistic regression model was built and run in SPSS IBM statistic 20 (IBM 2011) using 

distance to road edge, distance to river edge, distance to urban centers, soil, LULCC, 

elevation, aspect, slope and protected areas as predictor variables, and Giant Hogweed 

presence/absence as the outcome variable to determine which variables were significant, 

and to assess the potential habitat distribution of Giant Hogweed in the study area. 

A logistic regression model of the type below was used:  

  

Where, p is the probability of presence of the characteristic of interest (presence of Giant 

Hogweed), bo is a constant, b1,…,bk are the model coefficients X1,…,Xk  are the 

independent variables. 

 

 

and 

 

 

The outcome variable will be 1 if Giant Hogweed exists at that location and 0 for 

locations having no Giant Hogweed. 
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The logistic regression model is widely used with presence and absent data but 

has some disadvantages in that absence data is needed (absence of species does not 

necessarily mean the habitat is not suitable for the species but could be due to natural 

barriers that have prevented the species from habiting that area and logistic regression is 

also sensitive to multicollinearity (McCullagh and Nelder 1989).  Logistic regression 

requires both presence and absence data. Data on Giant Hogweed locations obtained from 

the research team, PPGIS, and the Latvian Ministry of Agriculture were used as presence 

data, and absences were generated as pseudo-absences generated at random with a 

geographic weighted exclusion (points within a given buffer distance will be excluded) 

(e.g. Hirzel et al. 2001). Based on the author’s field work and the size of Giant Hogweed 

patches in the field together with literature review, a distance of 500m was chosen to 

reduce the probability of selecting pseudo-absence points that are actually presence 

points.  A 500m buffer around each present point was created; the absence points were 

then randomly drawn from the areas out of these buffers, a procedure similar to that used 

by Akcakaya Atwood (1997). In total there were 476 presence points and 364 pseudo-

absence points. 

The logistic regression was run using the stepwise procedure, i.e. enter significant 

variables sequentially; after entering a variable in the model, check for multicollinearity 

among the explanatory variables and possibly remove variables that became non-

significant (p-values > 0.10). Significance of the predictors in the logistic regression 

model was assessed at the 0.05 and 0.01 levels. The data was divided into training (70%) 

and test (30%) data using random selection and the model was run using stepwise logistic 

regression on the training data. The overall accuracy (proportion of Giant Hogweed 

points that were correctly classified as 1 (present) and 0 (absence)) for the training and 
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test data were very similar 71% (training data) and 70% (test data), showing the data fit 

the model well (table 2). Due to the similar results between testing and training data, it 

was deemed beneficial to run the model again with all the data to increase the sample size 

and test the null hypothesis to see if the independent variables have any effect on the 

dependent variable, as shown in table 3 & 4. 

Model Validation 

The model evaluation is an important step in modeling and, ideally, models 

should be tested with independent data (Guisan and Zimmermann 2000). There are 

several methods of assessing model performance. The first approach uses test data that 

are collected independently from the data used to calibrate the model (Fleishman et al. 

2002). The second approach partitions the available data into calibration and test datasets 

(e.g. Pearson et al. 2002). As stated, the second approach was used in this study because 

of distance and cost from the U.S. to Latvia to collect independent test data. The datasets 

were divided into training (70%) to develop the model and the other 30% (test data) was 

used to evaluate the model. 

The predictive successes of the model’s performance were evaluated by the 

overall accuracy from the confusion matrix for both the training and the testing data. The 

receiver operating characteristic (ROC) technique was also used to evaluate the 

performance of the model. The use of this threshold-independent method has increased in 

ecological applications in recent years (Osborne, Alonso and Bryant 2001). The ROC 

curve is a plot of true positive cases (a true positive in this study represents a predicted 

value of greater than 0.5 for Giant Hogweed presence where Giant Hogweed was actually 

present) against corresponding false positive cases (a predicted value of greater than 0.5 

where Giant Hogweed was absent). The calculation of area under the curve (AUC) of the 
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ROC plot provides a measure of discrimination ability that varies from 0.5 – 1. The 

bigger the value of AUC is, the stronger the relationship between the presence locations 

and the environmental variables, which indicate better performance of the model. For the 

logistic regression, the software SPSS was used for ROC analysis and calculations of the 

AUC is based on cut-off values taking into account the full range of threshold values. 

AUC values > 0.7 indicate a good fit of the model to the original data.  

Results 

 

Table 2 Stepwise logistic regression using training (70%) and test data (30%) 

 

Observed 

Predicted 

 Selected Cases
b
 Unselected Cases

c
 

 
presence/absenc
e 

Percentag
e Correct 

presence/absence 
Percentag
e Correct  0 1 0 1 

 Step 
1 

presence/absenc
e 

0 167 90 65.0 71 36 66.4 

 1 75 260 77.6 34 107 75.9 

 Overall Percentage     72.1     71.8 

 a. The cut value is .500 

  

  

          

As mentioned, since the outcomes were so similar between the training and 

testing data (a test to show that that data fits the model), it was deemed useful to re-run 

the analysis using all the data as training data in order to increase the sample size. 

 

Table 3 The model assumes independent variables do not have any effect on the 

dependent variable (null hypothesis). 

Block 0: Beginning Block   

      

Classification Table
a,b

 

Observed Predicted 
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presence/absence 
Percentage 

Correct 0 1 

Step 0 presence/absence 0 0 364 0.0 

1 0 476 100.0 

Overall Percentage     56.7 

 
 

 

 

  

Table 4 Classification Table using all the data set. Model 

assumes independent variables have an effect on the 

dependent variable. 

 

Observed 

Predicted 

presence/absence 
Percentage 

Correct 0 1 

Step 
1 

presence/absence 0 224 140 61.5 

1 96 380 79.8 

Overall Percentage     71.9 

 

Table 5a Results from the ENTER logistic regression including all the variables that 

contributed to model performance with the exception of slope. 

        

Variables in the Equation 

  B S.E. Wald Df Sig. Exp(B) 

Step 1
a
 Distance to road 

(km) 
-.631 .132 23.003 1 .000 .532 

Distance to road 
(0.1km) 

1.080 .249 18.835 1 .000 2.945 

Distance to railway 
(0.3km) 

1.538 .577 7.090 1 .008 4.653 

Distance 
urbancenter (km) 

-.036 .013 7.501 1 .006 .965 

Distance to water 
(0.3km) 

.492 .183 7.252 1 .007 1.636 
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slope .073 .051 2.061 1 .151 1.076 

LULCC (change to 
forest)_3x3 

    14.174 3 .003   

LULCC (change to 
forest)_3x3(1) 

-.445 .665 .448 1 .503 .641 

LULCC (change to 
agriculture)_3x3(2) 

-1.542 .724 4.542 1 .033 .214 

LULCC (change to 
urban)_3x3(3) 

-.915 .743 1.516 1 .218 .401 

soil     11.909 2 .003   

soil(1) .517 .283 3.343 1 .067 1.676 

soil(2) -.143 .314 .208 1 .648 .867 

Elevation -.009 .002 19.668 1 .000 .991 

Distance to water 
(km) 

-.071 .034 4.413 1 .036 .932 

Distance to urban 
center (5km) 

.026 .283 .008 1 .927 1.026 

Constant 2.289 .785 8.511 1 .004 9.866 

 

 

Table 5b Variables not in the equation includes all variables that did not contribute 

significantly to model performance after the last step (13) from the stepwise logistic 

regression. 

    score df Sig. 

 
Step 
13 

Variables Aspect .027 1 .870 

 

Distance to railway 
(0.015km) 

.017 1 .896 

 

Distance to railway 
(0.02km) 

.017 1 .896 

 

Distance to railway 
(0.05km) 

.092 1 .762 

 

Distance to railway 
(0.1km) 

1.508 1 .219 

 

Distance to railway 
(0.5km) 

1.266 1 .261 

 

Distance to road 
(0.015km) 

.057 1 .812 

 

Distance to road (0.02km) .029 1 .866 

     

 

Distance road (0.05km) .131 1 .717 

 

Distance to road (0.5km) 1.162 1 .281 
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Distance urbancenter 
(0.5km) 

.436 1 .509 

 
slope 3.464 1 .063 

 

Distance to water 
(0.015km) 

.355 1 .551 

 

Distance to water 
(0.02km) 

2.974 1 .085 

 

Distance to water 
(0.03km) 

1.605 1 .205 

 

Distance to water 
(0.05km) 

.137 1 .711 

 

Distance to water (0.1km) .256 1 .613 

 

Distance to water (0.5km) 1.004 1 .316 

 

Presence/bsence of 
protected areas 

1.776 1 .183 

 

 

The variables not included in the model are aspect, slope and percent protected 

areas (table 5b). These variables were insignificant. For some reason SPSS does not 

differentiate between variables and coded variables e.g. types of soil. If the variable is 

significant, then all the coded variables will be included irrespective of whether the 

individual coded variables are significant or not (soil is significant and soil(1), soil(2) and 

soil(3) are included in the model even though soil(1) and soil(2) are insignificant. Slope 

was added to the ENTER logistic regression model (table 5a) because it had value very 

close to significant and secondly slope has been shown to be an important factor affecting 

Giant Hogweed spread in other studies (Pysek et al. 2005). 
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Fig. 3 Receiver Operating Characteristic Curve for the model performance. The Area 

Under Curve (AUC) is equal to 0.776 and the standard error for the AUC equals 0.016 

(table 5). A larger AUC indicates better agreement with the data. AUC scale: 0.7-0.8 

acceptable, 0.8-0.9 excellent, 0.9-1 outstanding (Hosmer and Lemesshow 2000). 

 

Table 6 Area Under the curve 

 
 
  

   

 

Area 
Std. 

Error
a
 

Asymptotic 
Sig.

b
 

Asymptotic 95% 
Confidence Interval  

 
Lower 
Bound 

Upper 
Bound  

 .776 .016 .000 .745 .808  

 a. Under the nonparametric assumption  

 
b. Null hypothesis: true area = 0.5 
  



 

62 

 

       

From table 2, the overall percentage correctly classified for the training data was 72.1 % 

and for the test data was 71.8 %. These two values are close (the difference between the 

two values is less than 2 %) meaning the data are not overfitted to the model. 

Accuracy measures for the logistic regression are reported using the classification 

table. The classification table is a table tells us how many of the cases where the observed 

values of the dependent variable were 1 or 0 respectively have been correctly predicted. 

In the Classification table (table 3), the columns are the two predicted values of the 

dependent, while the rows are the two observed (actual) values of the dependent. In a 

perfect model, all cases will be on the diagonal and the overall percent correct will be 

100%. Accuracy measures are reported as overall percentage (number of cases correctly 

classified), specificity (percent of absences correctly classified); sensitivity (percent of 

true presences) and AUC (area under the curve). 

Table 3 shows the overall accuracy for the model performance using all the data 

as training (71.9 %).  This is a considerable improvement on the 56.7% correct 

classification with the constant model so we know that the model with predictors is a 

significantly better model than the only constant model. The percentage of Giant 

Hogweed that was correctly predicted as present by the model is 79.8 % and Giant 

Hogweed that was correctly predicted as absent is 61.5 %. 

Importance of variables in the model 

Stepwise logistic regression removes all variables that do not contribute to the 

model’s performance and only retains those variables that contribute significantly to the 

model’s performance. All utilized variables were entered into the stepwise logistic 

regression, though some were deleted from the model due to a lack of significance. 

Aspect and protected areas did not contribute to the model’s performance and were 
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therefore not included in the model. Seven of the eight topographic variables contributed 

significantly to the logistic regression model. Distances to roads, water, railways, and 

urban center were the most important factors determining the probability of occurrence of 

Giant Hogweed. Slope, LULCC and soil contributed to a lesser extent. For roads, rail 

roads and water, buffer distances of 0.015 km, 0.02 km, 0.03 km, 0.1 km, 0.3 km, 0.5 km 

were tested. For urban centers, buffer distances of 0.5 km, 1 km, 3 km, 5 km and 10 km 

were also tested. The probability of finding Giant Hogweed was predicted to increase at 

sites within 0.1km from roads and within 0.3km from water and railways. It is also more 

likely to find Giant Hogweed within 5km from urban centers and less likely further from 

than 5km. It is also less likely to find Giant Hogweed at higher elevations. 

Only the contribution of slope was slightly insignificant (0.151). The included variables 

contributed significantly to the model according to the Wald statistics. 

Habitat suitability map 

Habitat modeling generated using spatial statistics and GIS can help in the 

characterizations of habitat requirements and the localization of suitable habitats (Guisan 

and Zimmermann 2000). Habitat distribution models or predictive distribution models are 

probability maps that depict the likelihood of occurrence of a species (Store and Kangas 

2001). In this analysis, the logistic regression model output was used to predict 

probability of potential future Giant Hogweed invasion. In order to map the analysis 

results,  the variable values at each pixel within the study site were calculated and 

multiplied by their respective parameter estimates from the model (Table 4) using the 

spatial analyst raster calculator in ArcMap 10. This procedure allocates a value for the 

logarithm of the odds (i.e. logit(P)) of detecting Giant Hogweed in all pixels in the study 

site (Fig. 4a) using the equation: Logit(P) = B0 +B1X1…….BkXk. Figure 4b shows a 
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small zoom in area of possible Giant Hogweed colonization in relation to roads, railways, 

rivers and urban centers. 

 

Fig. 4a Habitat suitability map of Giant Hogweed using the formula Logit(P) = B0 

+B1X1…….BkXk. 
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Fig. 4b A small zoom in area (habitat suitability map) showing possible Giant Hogweed 

colonization in relation to roads, railways, rivers and urban centers. 
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The logit value was subsequently converted into a probability using the formula P 

= exp(logit value)/(1+exp(logit value)) in the spatial analyst raster calculator. The 

resulting map shows probability values as suitability predictions (Fig. 5a). Fig. 5b is a 

zoom in area showing suitable areas of Giant Hogweed colonization in relation to 

selected variables such as roads, rivers and urban centers.  Note that these are 

probabilities of Giant Hogweed suitability, though not direct probabilities of invasion. 

 

Fig. 5a Probability map of Giant Hogweed using the formula P = exp(logit 

value)/(1+exp(logit value)) 
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Fig. 5b A small zoom in area (probability map of Giant Hogweed) showing possible 

Giant Hogweed colonization in relation to roads, rivers and urban centers. 
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Threshold selection 

Binary predictions of ‘presence’ or ‘absence’ are necessary to test model performance 

using statistics derived from the confusion matrix. That is, when you run the regression 

model there is an option to save statistics from the confusion matrix such sensitivity and 

specificity for all cases. The sensitivity and specificity values can later be used to 

generate a ROC curve from which a threshold value can be determined. The continuous 

suitability map therefore needed to be transformed into a binary output using a threshold 

value. A number of different methods have been used to select threshold occurrences 

which include fixed value (Manel et al. 1999; Robertson et al. 2001). This method is said 

to be subjective and lacks ecological reasoning (Liu et al. 2005).  Another method is to 

use the lowest predicted value (Pearson et al. 2006; Phillips et al. 2006). This method 

assumes that species presence is restricted to locations equally. The Fixed sensitivity 

method (Pearson et al. 2004) allows for certain omission (5%) and is less sensitive to 

outliers. Other methods to select threshold values include: Sensitivity-specificity equality 

(Pearson et al. 2004), sensitivity-specificity sum maximization (Manel et al. 2001), 

Maximize kappa (Huntley et al. 1995; Elith et al. 2006), Average probability/suitability 

(Cramer 2003), and equal prevalence (Cramer 2003). In this research the sensitivity-

specificity sum maximization was used as the threshold method for the following 

reasons: 

1) The data included presence and absence data 

2) The research is focused on predicting where Giant Hogweed occurs 

3) If the threshold value is very low then sensitivity will be high and specificity will 

be low (can lead to over prediction) and if the threshold value is very high then 

specificity will be high and sensitivity will be low (can lead to under prediction).  
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4) Maximizing the sum of sensitivity and specificity assumes the two quantities are 

equally important and thereby reduces the chance of over prediction or under 

prediction of the model’s performance. 

5) Liu et al. (2005) tested twelve methods for setting thresholds using presence and 

absence data for two European plant species. Based on four assessments of 

predictive performance (sensitivity, specificity, accuracy and Kappa), they 

concluded that the best methods for setting thresholds included maximizing the 

sum of sensitivity and specificity. 

Based on these factors we expect sensitivity to be a non-increasing function of the 

cut-off and specificity to be non-decreasing function of the cut-off. Fig 6 shows the 

value of the cut-off that simultaneously maximizes both the sensitivity and the 

specificity (the graph was constructed using saved probabilities from the ROC curve).  

In the diagram, this occurs where the two curves cross. At this point, the cut-off is 

estimated to be 0.567 and the sensitivity and specificity are equal to 0.72. In order to 

produce a binary prediction map of Giant Hogweed, values above the cut-off (0.567) 

were coded as 1 indicating Giant Hogweed presence and values below the cut-off 

were coded as 0 to indicate Giant Hogweed absence (Fig. 7).  

To evaluate the binary map, known Giant Hogweed points were overlaid on the map 

as shown in Fig. 8. The percentage of Giant Hogweed points (from the testing 

dataset) that fell in areas that are considered suitable is 75%.  
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Fig. 6 Maximizing specificity and sensitivity 
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Fig. 7 Binary prediction map of Giant Hogweed (1= Giant Hogweed presence and 0 = 

Giant Hogweed absence) 
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Fig. 8 Test of habitat suitability 
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Discussion 

The results reported in the previous section (figure 4) show that distance to road, 

distance to water bodies and distance to urban centers are useful in predicting data on 

weed presence and absence. The negative correlations between these variables and Giant 

Hogweed presence indicates that the further away from roads, water bodies and urban 

centers, the less likely Giant Hogweed is to be found. This is verified by previous 

research that Giant Hogweed flourishes near roads, rivers and close to urban centers 

(Pysek et al. 2005). Giant Hogweed seeds are transported by running water, tires of 

vehicles, and by humans. Close to urban centers human activities increase and Giant 

Hogweed seeds are more likely to be transported. Giant Hogweed thrives well in 

abandoned fields and in Latvia many abandoned fields are closer to roads which increase 

the chances of finding Giant Hogweed near roads. Also further away from water bodies 

the soil gets dryer and Giant Hogweed thrives well in moist soil. The positive correlation 

between Giant hogweed presence and distance to railway is misleading. The reason is 

likely because there are very few railways in the study area (just five), and therefore 

many of the distances of pixels in the study site to railways are quite high. Topographic 

variables such elevation, slope, and aspect are also important in predicting the locations 

of Giant Hogweed. The negative correlation between elevation and Giant Hogweed 

occurrence indicates it is less likely to find Giant Hogweed at higher elevation. Even 

though slope is slightly insignificant, it was included in the model because other studies 

indicate that slope plays an important role in Giant Hogweed spread (Pysek et al. 2005). 

The results from the logistic regression show that Giant Hogweed is more likely to grow 

on higher slopes. The reason could be that on higher slopes there is more abandoned land, 

and therefore the land is more susceptible to Giant Hogweed invasion. Using the stepwise 
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logistic regression, aspect was left out (did not contribute to the model prediction) 

possibly because Latvia is a relatively flat country (slopes quite low in general) and 

exposure to the sun is quite evenly distributed. Human disturbances such as land use land 

cover change also play an important role in the spread of Giant Hogweed. Land-cover 

change was coded as dummy variables with 1=change to forest, 2=change to agriculture 

and 3=change to urban. All three dummy variables were negatively correlated with Giant 

Hogweed spread. When land changes to forest, the forest canopy shades Giant Hogweed 

from receiving sunlight and therefore reduces its chances of surviving. When land is 

continuously used for agriculture or urban development, it prevents Giant Hogweed from 

spreading. During field trips to Latvia, anecdotal stories from farmers revealed that Giant 

Hogweed spread increases when a farm is abandoned for one or more years. Soil too was 

negatively correlated with Giant Hogweed occurrence.  

Conclusion 

The invasion dynamics of exotic species depend to a large extent on 

characteristics of the landscape (Planty-Tabacchi et al. 1996; Garcia-Robledo and Murcia 

2005; Thomas et al. 2006). Landscape factors interact with biotic and abiotic factors such 

as human disturbance and climate. Together, these factors can allow exotic species to 

become abundant and persistent differentially within the landscape, and contribute to 

their potential nuisance or pest status (Rand et al. 2004; Knight and Reich 2005). 

Disturbance frequently favors invasion (Hobbs 1989; Hobbs and Huenneke 1992; Orians 

1986). The distribution of Giant Hogweed in northeastern Latvia is strongly influenced 

by distance to roads, distance to water bodies, distance to urban centers, elevation, land-

cover land-use change and, to a lesser extent, slope and soil type. Results from the 

logistic regression suggest that Giant Hogweed thrives well near roads, near water bodies, 
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and proximity to urban centers in low elevation areas and moderate slopes. During the 

years of economic growth, there was a tendency to build family houses in the suburbs and 

commute to work in cities. The urban sprawl caused a reduction in natural areas and 

increased landscape fragmentation, and these problems still remain, even though the 

period of economic expansion is now over (European Environment Agency 2010). 

During this period transportation development also saw a rise to connect many Latvian 

cities to accommodate economic growth. This research strongly suggests that urban 

sprawl and road networks are important factors that influence the spread of Giant 

Hogweed. Maybe the most significant contribution of this study from a methodological 

stand point is that, for the first time it has been determined quantitatively from what 

distances from roads, rivers, rail roads and urban centers we are more likely to find Giant 

hogweed as opposed to just mentioning that Giant Hogweed thrives near roads, rivers, 

and rail roads in other studies.  

This study also shows how land cover and LULCC affect the distribution of 

invasive Giant Hogweed in the study area.  In recent years, Latvia has experienced a 

significant trend towards the abandonment of agricultural land, caused by the 

unfavourable economic situation in the agricultural sector, rural-to-urban migration and 

the ageing of the rural population (European Environment Agency 2010). The 

depopulation of rural areas leads to agricultural land abandonment. Open disturbed areas 

such as cleared forest or abandon agriculture are favorable areas for Giant hogweed to 

thrive. Therefore, one way to reduce Giant Hogweed spread presently and in the future is 

to plant trees where land is cleared and in abandoned farmlands. Giant Hogweed does 

poorly in closed canopy (forested areas) where there is less sunlight and in lands that 

have continuously been used for agriculture or development. 
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Plant traits favoring invasion include lack of controlling natural enemies, ability to 

effectively compete in a new ecosystem, availability of artificial or disturbed habitats, 

and intrinsic adaptability to novel conditions (Hierro et al. 2005; Lloret et al. 2005; 

Pimentel et al. 2000). As the spread of invasive species becomes increasingly more 

common globally, it is important to have early detection methods, but distribution maps 

are not available for many invasive species. This makes it difficult for land managers to 

focus their efforts to control the spread of invasive species before they become 

unmanageable. The habitat suitability map produced from this study shows locations that 

are suitable and likely to be occupied by Giant Hogweed, and such a map can help land 

managers and policy makers to focus their prevention and control efforts, contain the 

weed, and finally eradicate it.  
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Chapter 4 

 
 

Ecological niche modeling using cluster analysis to determine suitable environments 

for Giant Hogweed presence 

 

Introduction 

 

Invasive species drive ecological dynamics at multiple spatial scales and levels of 

organization, through local and regional extinctions of native species (Mack et al. 2000) 

and entire communities, shifts in native species richness and abundance (Parker et al. 

1999), and altered fire regimes, water quality, and biogeochemical cycles (D’Antonio and 

Vitousek 1992; Vitousek et al. 1996; Strayer et al. 1999; Bohlen et al. 2004). Invasive 

species are the second leading cause (after human population growth and associated 

activities) of species extinction and endangerment in the US (Pimentel 2002). The most 

common strategy for estimating the actual or potential geographic distribution of a 

species is to characterize the environmental conditions that are suitable for the species, 

and to then identify where suitable environments are distributed in space (Pearson et al. 

2007). Some types of land use can exacerbate the spread and effects of invasive species 

across scales (Dukes and Mooney 1999; Simberloff 2000). Identifying invasion and 

curtailing the spread of invaders is an enormous ecological and societal challenge (Lodge 

et al. 2006). Many plant populations are declining and face increasing threat from human 

disturbances and the proliferation of nonindigenous species. For example, fragmentation 

of habitat may increase the distribution and abundance of many invasive plants (With 

2002, 2004).  

Invasive alien plants such as Giant Hogweed give increasing cause for concern. 

Giant Hogweed was introduced to Latvia from the Caucuses in 1948 as a silage plant for 

livestock because of its hardiness and large biomass (Pysek et al. 2007). During this time, 



 

85 

 

little was known about the toxicity of the plant, and it has since then spread out to form 

dense patches in many regions of the country, threatening biodiversity, ecological 

functioning and human health. According to a 2001 survey, Giant Hogweed had invaded 

and occupied over 12,000 hectares of land in Latvia (Obolevica 2008). The plant is 

poisonous to humans and domesticated animals and can be fatal if ingested (Benezra 

1989). Local residents are afraid and have very special concerns about the safety of their 

children because the plant causes phytophotodermatitis (severe burns), which results in 

painful blistering, permanent scarring when the sap of the plant comes in contact with 

human skin and is exposed to sunlight, and blindness when the sap comes in contact with 

eyes.  Giant Hogweed also has severe negative impacts on a variety of ecosystems 

leading to a reduction in local plant biodiversity, considerable economic loss and health 

hazards to humans (Nielsen 2005). No comprehensive tool exists to stop these invasive 

plants, reduce their impact or prevent future invasions. Giant Hogweed is present 

throughout the whole country of Latvia and is spread via natural and human means.  

Therefore, landscape-level effects (topographic and distance variables) should be 

important, but should be studied on a regional level since human drivers of species spread 

may vary throughout different parts of the country.  

Spatial modeling is a promising approach to predicting risk of invasion because 

spatial patterns of invasion can be predicted by linking current presence and absence of 

invasive species to spatially explicit predictor variables, such as land use, 

geomorphology, and topography, using geographic information systems (GIS); (Store 

and Kangas 2001). Applying a predictive distribution model within a spatial context 

relies on the existence of landscape-scale variables that define suitable habitat for a 
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species (Osborne, Alonso and Bryant 2001; Austin 2002a, b) based on the 

biological/ecological needs of that species.  

Cluster analysis is a class of techniques used to classify cases into groups that are 

relatively homogeneous among themselves and heterogeneous between each other, on the 

basis of a defined set of variables. These groups are called clusters. 

Cluster analysis was proposed in previous studies as a useful tool for the selection 

of sites with representative environmental conditions (Mackey et al. 1988; Belbin 1993, 

1995; Kirkpatrick and Brown 1994; Faith and Walker 1996a; Fairbanks and Benn 2000). 

The objective of cluster analysis is ascription of the objects in question into groups 

(clusters), so as to maximize the similarity between the members of each group and to 

minimize the similarity between groups (Legendre and Legendre 1998). Hence, sites 

could be classified using cluster analysis into relatively homogenous groups, different 

from each other, on the basis of their values of environmental factors. In this study cluster 

analysis was used to group the environmental factors that promote Giant Hogweed 

presence. We therefore hypothesize that cluster analysis can be used to accurately predict 

sets of environmental variable values that characterize where Giant Hogweed thrives, and 

will likely grow in the future based on a set of environmental conditions, e.g. in low flat 

areas near roads. 

The first main objective of this study is to use cluster analysis to group the most 

common classes of conditions where Giant Hogweed is present to understand its key 

habitats in this landscape. For example Giant hogweed may generally not flourish in high 

elevation habitats but if there is development such as roads construction or buildings on 

high elevation habitats they may become suitable for Giant hogweed to grow. The second 

main objective of this study is to determine what sets of environmental and land use 
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conditions characterize each of the clusters, and 3) use the results from cluster analysis to 

create a Giant Hogweed suitability map which can be used to determine priority areas for 

conservation planning. 

To validate the performance of the model the data was divided into training and 

test data sets using random sampling in SPSS. The training data (70%) was used for 

training and calibration of the model while the test data (30%) was used to test the 

performance of the model. 

 

Methods 

 
Study area 

 

The study was carried out in northeast Latvia which lies on the Baltic coast, in the 

western part of Eastern Europe centered between 57’ 96” and 56’ 03” N-latitude and 25’ 

35” and 27’ 45” E-longitude. Latvia is one of the three Baltic States, situated on the east 

side of the Baltic Sea, the others being Estonia (to the north) and Lithuania (to the south). 

Latvia also borders Russia and Belarus to the east (fig. 1). The total land area is 64.6 

thousand km² and the terrain is mostly low plain, with majority of the territory between 

40-200 meters above sea level (Eberhards 1984). The climate is wet with moderate 

winters for this latitude. The average amount of precipitation is 600 – 650 mm annually; 

the vegetation period usually last for 180 – 200 days (Normunds Prieditis 1993). The 

landscape is characterized by mature forests, secondary forests, meadows, farmland, 

abandoned farmlands, lakes, rivers, hills, plains, villages and dispersed rural homesteads 

(Bunkse 2000). Some of these land cover types have been invaded by Giant Hogweed 

where it develops large stands and dominates native species in occupied territories. It is 

easy to distinguish it from the surrounding vegetation especially during summer when the 
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plant flowers. This region is chosen as the study site because it is where the species was 

first introduced in the country and existing records of the study species in this region 

show a substantial distribution, and many Giant Hogweed patches are large when 

compared to other areas. 

Environmental variables used for the cluster analysis 

  

Three types of environmental variables were used in the cluster analysis, 

including topographic, land-cover land-use change, and demographic data. These 

landscape characteristics often play an important role in species distribution and patterns 

of invasion (lambrinos 2002; Stohlgren et al. 2003; Kumar et al. 2006) and have been 

used extensively in other studies as factors affecting invasive species distribution 

(Bethany et al. 2006; Almasi 2000; Silveri et al 2001). Thirteen environmental variables 

were used: elevation, slope, neighborhood land cover change (no change, change to 

agriculture, change to forest, and change to urban), neighborhood land cover types (forest 

cover, agriculture cover, urban cover), distance to roads, distance to water, distance to 

urban centers, and human population density. LANDSAT data was used for the land 

cover data which were obtained from the USGS Visualization Viewer (Glovis), 

demographic data were obtained from the Latvian Bureau of Statistics, DEM and other 

GIS layer were obtained from free and open source GIS to make maps of species 

distribution data (DIVA GIS). Giant Hogweed presence location points were obtained 

from Agnese Priede’s research and from the Latvia Ministry of Agriculture, and 

supplemented with the authors’ fieldwork and public participation geographic 

Information systems (PPGIS) organized by our research group at the University of 

Memphis. 
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Fig. 1 Study area - northeastern Latvia 
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Species Modeling 

  

Several ecological niche models such as bioclimatic prediction system 

(BIOCLIM) (Busby 1991), generic algorithm for rule-set prediction modeling system 

(GARP) (Stockwell and Peters 1999; Stockwell et al. 2006), artificial neutral network 

(ANN) (Pearson et al. 2002), ecological niche factor analysis (ENFA) (Hirzel et al. 2002) 

and regression methods such as generalized linear models (GLM) (Lehman et al. 2002), 

generalized additive models (GAM) (Elith et al. 2006), boosted regression trees (BRT) 

(Leathwick et al. 2006) and multivariate adaptive regression  splines (MARS) (Elith et al. 

2007) have been widely used to predict potential geographic distribution of non-native 

species. Cluster analysis was selected for this study because it is a novel modeling 

technique that can uses presence-only data and uniquely gives a combination of 

environmental factors that promote the presence of invasive species. Although predictive 

models are often, and perhaps best, built using techniques such as logistic regression that 

rely on both presence and absence data (e.g., Peeters and Gardeniers 1998; Manel et al. 

1999; Mladenoff et al. 1999), in many applications absence data are unavailable, 

unreliable, or incomplete. At the time of a survey, a species may have undergone declines 

for reasons unrelated to habitat quality (van Manen et al. 2005; Thompson et al. 2006). 

On the other hand, many predictive models been developed to predict distribution or rank 

potential habitat using only presence data (e.g., Busby 1991; Clark et al. 1993; Hirzel et 

al. 2002; Lele and Keim 2006). Cluster analysis in this study uses presence only data. 

One disadvantage of presence only models is that presence-only locations are not 

guaranteed to be unbiased with respect to the spatial distribution of the species. In this 

research sampling was biased towards roads because of the serious health issues such as 

severe burns caused by Giant Hogweed which can lead to bias prediction in species 
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occurrence. Nonetheless presence only data have been used widely to predict species 

distribution. There is certainly more work to do in developing statistical models for the 

analysis of presence-only data that account for sample selection bias and for errors in 

detection of species.  

Clustering methods 

 

Cluster analysis is a class of techniques used to classify cases into groups that are 

relatively homogeneous within themselves and heterogeneous between each other, on the 

basis of a defined set of variables. These groups are called clusters. There are numerous 

ways in which clusters can be formed. Hierarchical clustering is one of the most 

straightforward methods. It can be either agglomerative (building clusters from 

individuals) or divisive (starting from 1 cluster, breaking it into n cluster). Agglomerative 

hierarchical clustering begins with every case being a cluster unto itself. At successive 

steps, similar clusters are merged. The algorithm ends with cases in a smaller set of 

clusters. In agglomerative clustering, once a cluster is formed, it cannot be split; it can 

only be combined with other clusters. Agglomerative hierarchical clustering is such a 

method, which doesn’t let cases separate from clusters that they’ve joined:  once in a 

cluster, always in that cluster. If variables are measured on different scales, variables with 

large values contribute more to the distance measure than variables with small values. If 

variables are measured on the same scale (through standardizing variables, for instance), 

then this not a problem. Hierarchical clustering chooses the number of final clusters, and 

write in basic terms which parameters or outcomes this decision can be based on. It 

computes all possible distances and specify distances between each case and all clusters. 

A clustering method that does not require computation of all possible distances is 
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k-means clustering. It differs from hierarchical clustering in several ways. One has to 

know in advance the number of clusters one wants. First assignment of the k cluster 

means is arbitrary. The algorithm is called k-means, where k is the number of clusters one 

wants, since a case is assigned to the cluster for which its distance to the cluster mean is 

the smallest. After all cases are assigned, new cluster means are calculated. This step is 

repeated until cluster means don’t change much between successive steps (based on a 

predefined threshold). Finally, the algorithm calculates the means of the clusters once 

again and assigns the cases to their permanent clusters. K-means clustering is very 

sensitive to outliers. 

Data Processing 

There were a total of 477 cases and data were divided into training and test 

datasets. 75% of the data was used to train the model and 25% was reserved for testing. 

Euclidean Distance was calculated as distance to the nearest road, river and urban center. 

Slope was derived from a Digital Elevation Model using the Spatial Analysis tool in 

ArcMap 10. New raster data layers were created using 5x5 neighborhood filters created 

for each of the land cover types and land cover change classes, counting the total number 

of each class represented within the 5x5 filter. These values range from 0 to 25 (table 1). 

Giant Hogweed location points were then overlaid onto the land cover and LCC maps 

and the values of these raster grids were extracted to each Giant Hogweed point. The 

result of this process was to provide a characterization of land cover and LCC in 

neighborhoods (5x5 30m-cell neighborhoods) around each Giant Hogweed point. 

In this study, agglomerative hierarchical clustering was performed using Ward’s method 

applying the Euclidean Distance as the distance or similarity measure to define the 

number of clusters. Agglomerative cluster was chosen because it uses a bottom-up 
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algorithm that treats each case as single cluster and then successfully merged (or 

agglomerate) pairs of clusters until all clusters have been merged into a single cluster that 

contain all the cases. This method assumes that the merged operation is monotonic. This 

method has the advantage it can produce an ordering of objects which may be 

informative for data display. The method is also simple and you do not need to specify 

any number of clusters from the beginning. The main disadvantage of this method is that 

no provisions can be made for a relocation of cases that may have been incorrectly 

grouped from the beginning. 

All variables were first standardized using Z-scores and outliers deleted.  The 

number of clusters was determined from the agglomeration schedule table which 

provides a solution for every possible number of cluster like in this study from 1-377 (i.e. 

identify the step where the “distance coefficient” number makes a big jump and then 

subtract this number from the total number of cases):  377 – 373 = 4 (Kaufman et al., 

2005). After the number of clusters (four) was determined using agglomerative 

hierarchical clustering, a k-Means cluster was run with the specification that four clusters 

should be formed. The descriptive statistics for all (unstandardized) variables for the final 

clusters, including cluster centers (means), are shown (tables 4). The clusters were 

evaluated using F ratios in table 5. F ratios describe the differences between the clusters 

and can be tested for statistical significance. 
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Results 

 

Table 1 Descriptive statistics for the unstandardized independent variables  

 
 

 
N Minimum Maximum Mean 

Std. 
Deviation 

Elevation 377 39 245 109.58 42.689 

Distance to road 
(km) 

377 .00 3.34 .4541 .56458 

Distance to 
urbancenter (km) 

377 .00 36.85 11.2188 7.51846 

Distance to water 
(km) 

377 .03 12.30 3.7393 2.20015 

Slope 377 .00 18.43 .7311 2.22460 

No change 377 0 25 21.64 4.480 

Forest change 377 0 25 1.18 3.054 

Agriculture change 377 0 22 1.05 2.391 

Urban change 377 0 15 1.13 2.492 

Urban land cover  377 0 23 1.82 3.288 

Agriculture land 
cover 

377 0 25 20.07 5.980 

Forest land cover 377 0 25 2.55 5.303 

Population density 377 0 133 12.40 11.322 

Valid N (listwise) 377 
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Results of Hierarchical-cluster analysis 

Agglomeration schedule 

In the column labelled Coefficients, the value of the distance (or similarity) 

statistic used to form clusters is found. From these numbers, you get an idea of how 

unlike the clusters being combined are.  These coefficients help to decide how many 

clusters to represent the data. The distance coefficient makes the largest jump from 7.108 

to 9.326 between stages 373 and 374. Therefore, based on criterion above, the ideal 

number of clusters = 377-373=4 

 

Table 2 Defining the number of clusters using portion of the agglomeration schedule 

table. The columns labeled Stage Cluster First Appears tell you the step at which each of 

the two clusters that are being joined first appear e.g. at stage 371, cluster 1 combines 

with cluster 136, the resulting cluster is cluster 1 and that cluster 1 will still action in the 

next stage 372 

Stage 

Cluster Combined 

Coefficients 

Stage Cluster First 
Appears 

Next 
Stage Cluster 1 Cluster 2 Cluster 1 Cluster 2 

367 136 193 5.399 351 364 371 

368 10 377 5.442 363 0 369 

369 10 303 5.776 368 353 372 

370 1 191 5.830 360 365 371 

371 1 136 6.018 370 367 372 

372 1 10 6.471 371 369 373 

373 1 125 7.108 372 366 374 

374 1 240 9.326 373 362 375 

375 1 239 10.554 374 0 376 

376 1 327 11.800 375 0 0 
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Results of K-cluster analysis 

 

Table 3 Standardized variables for the final cluster centers. 

 
Standardized Cluster Means 

1 2 3 4 

Zscore(agricultural change) -.24007 .90767 -.07773 -.16594 

Zscore(elevation) .08065 -.05849 -.33569 -.07463 

Zscore(distance to road km) .03159 -.42826 .33472 -.25259 

Zscore(distance to urban 
center km) 

.21010 -.43524 -.45707 -.55315 

Zscore(distance to water km) .04965 -.11011 -.03520 -.19479 

Zscore(forest change) -.23607 -.31313 1.91316 -.23138 

Zscore(agriculture land 
cover) 

.48235 -.67534 -1.93205 .12605 

Zscore(forest land cover) -.32168 -.29858 2.35100 -.12066 

Zscore(urban land cover) -.34958 1.78076 -.44222 .01226 

Zscore(nochange) .47631 -1.24443 -1.09161 .27748 

Zscore(population density) -.15205 .08813 .61235 .49152 

Zscore(slope) -.23951 -.20978 -.18295 3.12492 

Zscore(urban change) -.34824 1.84792 -.36147 -.05113 

 

The final cluster centers are formed when all the cases have been assigned to a cluster 

and the cluster centers are computed one last time. The final cluster centers are used to 

describe the clusters by variables (discussion section). 
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Table 4 Distances (in standardized variable space) between final cluster centers 

 

Cluster 1 2 3 4 

1  3.965 4.625 3.593 

2 3.965  5.031 4.714 

3 4.625 5.031  5.342 

4 3.593 4.714 5.342  

 

Table 4, shows the Euclidean distance between the final cluster centers. Greater 

distances between clusters mean there are greater dissimilarities e.g. cluster 3 and cluster 

4 have the greatest dissimilarity because the distance between them is 5.342, which is 

greater than the distance value between any other two clusters. 

Cluster membership 

Cluster membership shows the number of cases in each cluster. Fig. 2, shows the 

number of cases in cluster 1, cluster 2, cluster 3 and cluster 4.  A majority of the cases are 

in cluster 1 (252) and the least number of cases are in cluster 4 (26). This simply means 

that cluster 1 represents the most common set of conditions where Giant Hogweed is 

found in the Latvian landscape in this part of the country. This most common cluster is 

represented by agricultural lands where little land-use change has occurred in the 

neighbourhood (see detailed cluster descriptions below in Discussion section). 

 

Table 5  Number of cases in each cluster 

 

Cluster 1 252.000 

2 60.000 

3 39.000 

4 26.000 

Valid 377.000 

Missing .000 
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F-ratios table 

F-ratios are shown in the ANOVA table (Table 5) which presents the F values and 

significance levels to show which mean differences are significant. Most of the between 

groups means are significant, indicating eleven variables reliably distinguish between the 

four clusters. The significance level of distance to water and elevation are >0.05 meaning 

they did not contribute much to the separation of the clusters (table 5) 

Table 6  F-test and significance of variables in the model 

ANOVA 

 

Cluster Error 

F Sig. 

Mean 

Square df 

Mean 

Square df 

Zscore(agriculture 

change) 

21.477 3 .771 373 27.855 .000 

Zscore(elevation) 2.125 3 .971 373 2.189 .089 

Zscore(distance to 

road inkm) 

5.650 3 .914 373 6.178 .000 

Zscore(distance 

tourbancenter inkm) 

12.839 3 .894 373 14.358 .000 

Zscore(distance to 

water inkm) 

.794 3 1.055 373 .753 .521 

Zscore(forest change) 54.606 3 .526 373 103.717 .000 

Zscore(land-cover 

agriculture) 

77.258 3 .366 373 211.123 .000 

Zscore(land-cover  

forest) 

82.359 3 .288 373 285.990 .000 

Zscore(land-cover 

urban) 

76.228 3 .441 373 172.950 .000 

Zscore(no change) 66.099 3 .461 373 143.285 .000 

Zscore(populationden

sity) 

9.054 3 1.031 373 8.785 .000 

Zscore(slope) 90.764 3 .330 373 274.725 .000 

Zscore(urban change) 80.152 3 .484 373 165.553 .000 
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Habitat suitability maps for each cluster 

Habitat suitability maps may be created using binary habitat suitability maps or 

ranking suitability maps. Binary suitability maps classify landscape as either good or bad, 

with no other choice. Ranked suitability classifies the landscape using a range of values 

from bad to good. Binary suitability is simple but has the disadvantage of no “in-

between” choices. To create a habitat suitability map for each cluster, areas were 

demarcated throughout the study site whose variable values fit those of each cluster. To 

do so, the 10
th

 and 90
th

 percentiles for each variable were calculated for the cases within 

each cluster, and all values of variables between these percentiles therefore contains the 

majority of the cases in the center range of each variable within the cluster. Ranked 

habitat suitability was then used to classify all the different clusters. In this case, the 

number of variables for which each pixel fell in the appropriate range (between the 10
th

 

percentile and 90
th

 percentile) was summarized for each cluster.  Since there were 13 

variables, each pixel received a rank from 0 to 13, with 13 being the highest suitability 

for that cluster (map shown for Cluster 1 in Figure 2). A map of the most suitable areas 

for Cluster 1 is shown in Figure 3 (showing areas where between 10 and 13 variables in 

the 10
th

 – 90
th

 percentile range overlap). The main disadvantage of this method is that it 

cannot determine what factors contributed to the final value. The results of these analyses 

show how suitable each pixel in the landscape is to be colonized by Giant Hogweed in 

the future, based on any of the 4 clusters (Figure 4). The percentiles for each cluster are 

shown in Tables 7, 8, 9 and 10. 
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Cluster 1 Results 

 

Table 7 Percentile for cluster 1 (10
th

 and 90
th

 percentiles used as endpoints to find likely 

candidate pixels where Giant Hogweed is currently absent but likely to be present in the 

future). 

Percentiles 

  
Percentiles 

5 10 25 50 75 90 95 

Weighted 
Average(Definitio
n 1) 

elevation 61.00 64.00 91.00 97.50 141.75 183.00 188.00 

Distance to road 
(km) 

.0123 .0319 .0862 .2474 .6541 1.3900 1.8394 

Distance to 
urbancenter 
(km) 

2.143
0 

4.057
8 

6.665
9 

13.840
0 

18.344
3 

20.543
2 

23.371
2 

Distance to 
water (km) 

.3375 1.021
1 

2.296
0 

3.7188 5.1881 6.3079 7.8597 

slope .0000 .0000 .0000 .0000 .0000 .8949 1.9092 

No change 19.00 21.00 23.00 25.00 25.00 25.00 25.00 

Forest change .00 .00 .00 .00 .00 2.70 3.00 

Agriculture 
change 

.00 .00 .00 .00 .00 2.00 4.00 

Urban change .00 .00 .00 .00 .00 1.00 2.00 

Land-cover 
urban 

.00 .00 .00 .00 1.00 3.00 4.00 

Land-cover 
agriculture 

17.00 19.00 21.00 24.00 25.00 25.00 25.00 

Land-cover 
forest 

.00 .00 .00 .00 1.00 4.00 5.00 

populationdensit
y 

3.00 5.00 8.00 8.00 11.00 17.00 19.05 
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Cluster 2 Results 

 

Table 8 Percentile for cluster 2 

 
Percentiles 

5 10 25 50 75 90 95 

Weighted 
Average(Definition 
1) 

elevation 45.45 56.00 77.25 101.00 126.00 160.00 190.60 

Distance 
to road km 

.0077 .0156 .0371 .1082 .2656 .4813 1.1346 

Distance 
to urban 
center 
(km) 

.0000 .0000 .0893 5.2018 15.6288 19.8358 28.2383 

Distance 
to water 
(km) 

.3848 .6264 1.5470 3.2786 5.0505 6.5010 7.4694 

slope .0000 .0000 .0000 .0000 .0000 .0000 1.8614 

No 
change 

10.00 10.00 13.00 16.00 19.75 21.00 21.00 

Forest 
change 

.00 .00 .00 .00 .00 1.00 1.00 

Agriculture 
change 

.00 .00 .00 2.00 5.00 9.80 13.85 

Urban 
change 

.00 1.00 3.00 5.00 8.00 11.90 12.95 

Land-
cover 
urban 

.05 2.00 5.00 7.00 10.00 13.00 16.90 

Land-
cover 
agriculture 

7.05 11.10 13.25 17.00 18.00 20.90 22.00 

Land-
cover 
forest 

.00 .00 .00 .00 1.00 4.00 6.00 

Population 
density 

.00 5.10 8.00 11.00 17.00 24.30 33.00 
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Cluster 3 Results 

 

Table 9 Percentile for cluster 3 

 
Percentiles 

5 10 25 50 75 90 95 

Weighted 
Average(Definition 
1) 

elevation 47.00 50.00 57.00 92.00 104.00 171.00 192.00 

Distance to 
road (km) 

.0355 .0624 .1628 .4935 1.0696 1.4116 1.6781 

Distance to 
urban 
center (km) 

.1038 .6679 3.4737 6.3964 13.0528 16.3707 19.5405 

Distance to 
water (km) 

.2579 .4398 1.8361 3.9562 5.4066 6.5562 6.8095 

slope .0000 .0000 .0000 .0000 .0000 1.3502 2.8624 

No change 5.00 7.00 13.00 18.00 20.00 24.00 25.00 

Forest 
change 

.00 .00 2.00 6.00 12.00 18.00 20.00 

Agriculture 
change 

.00 .00 .00 .00 1.00 5.00 5.00 

Urban 
change 

.00 .00 .00 .00 .00 1.00 3.00 

Land-cover 
urban 

.00 .00 .00 .00 .00 1.00 4.00 

Land-cover 
agriculture 

.00 .00 3.00 8.00 14.00 17.00 19.00 

Land-cover 
forest 

6.00 8.00 10.00 15.00 22.00 25.00 25.00 

Population 
density 

6.00 8.00 8.00 17.00 21.00 48.00 48.00 
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Cluster 4 Results 

 

Table 10 Cluster 4 percentile 

 
Percentiles 

5 10 25 50 75 90 95 

Weighted 
Average(Definition 
1) 

elevation 44.00 46.80 57.75 108.00 139.50 172.50 212.90 

Distance 
to road 
(km) 

.0029 .0062 .0252 .2114 .4792 .9198 1.2622 

Distance 
to urban 
center 
(km) 

.0000 .0000 1.7839 5.3849 11.4314 18.9248 21.6264 

Distance 
to water 
(km) 

.7916 1.2615 2.2672 3.5314 4.4938 5.1131 5.3719 

slope 3.8141 3.8141 4.7636 5.7106 9.6940 12.4978 16.5796 

No 
change 

16.05 18.70 20.75 24.00 25.00 25.00 25.00 

Forest 
change 

.00 .00 .00 .00 .00 4.00 4.65 

Agriculture 
change 

.00 .00 .00 .00 1.25 3.00 3.00 

Urban 
change 

.00 .00 .00 .00 2.00 3.00 4.30 

Land-
cover 
urban 

.00 .00 .00 1.50 4.00 4.30 5.00 

Land-
cover 
agriculture 

4.55 13.70 19.50 22.00 24.25 25.00 25.00 

Land-
cover 
forest 

.00 .00 .00 .00 1.00 6.30 18.70 

Population 
density 

4.05 7.40 8.75 12.00 18.00 48.00 48.00 
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Fig. 2 Habitat suitability ranking for cluster 1 
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Fig. 3 Cluster 1 shows 10 out of 13 of all layers. These are areas where at least 10 out of 

13 layers had suitable conditions for Giant Hogweed to grow. 
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Fig. 4 This map shows all pixels whose environmental variables resemble any of the four 

clusters (based on having 10 or more variables fall within the 10
th

 – 90
th

 percentile 

ranges), and are therefore likely candidates for future Giant Hogweed colonization. 
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Discussion 

 

The use of environmental, geographic and population data in predicting species 

distribution have been reported in other studies (Bethany et al. 2006; Mackey et al. 1988, 

1989; Belbin 1993, 1995; Faith and Walker 1996a, b). This study examines the 

performance of cluster analysis in selecting a set of suitable environmental conditions 

where Giant Hogweed is present. The performance of the model was evaluated using an 

independent testing data set not used for training.  

A cluster analysis was run on 377 cases, each responding to a set of environmental 

variables. A K-cluster analysis using Ward’s method produced four clusters, for which 

the majority of the variables were significantly different. The final cluster centers are 

used to describe the clusters depending on how far the values are above or below the 

overall means (note all means are 0 since variables were standardized using Z-scores). 

These clusters represent the various environmental conditions where Giant Hogweed 

thrives in this landscape. The clusters were characterized by: 

1) Cluster 1:  Occurs in areas with moderate elevation with low slopes and where the 

predominant land cover type is agriculture near low population centers. 

2) Cluster 2: Occurs in areas of low elevation and low slopes, near roads and urban 

centers, and in neighborhoods with high urban density and in neighborhoods 

where land cover change to both agriculture and urban is high. 

3) Cluster three: Occurs in areas of low elevation and low slope, close to urban 

centers, in neighborhoods of high forest proportion and where where land cover 

change to forest is common, and near high population centers. 

4) Cluster four: low elevation with steep slopes, near roads, near urban centers and 

close to water bodies and high population centers. The predominant neighborhood 
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land cover type in this cluster is agriculture and this cluster occurs in areas with 

little or no neighbourhood land cover change. 

The distribution of clusters as shown on the cluster habitat suitability maps are 

representative of a set of environmental conditions that promote the occurrence of 

Giant Hogweed. From table 5, Cluster 1 has the highest number of cases (252) and 

contains the second largest area (48.5%) considered suitable for Giant Hogweed 

(table. 11). Cluster 3 has only 39 cases but has the highest largest area (53.22%) in 

terms of suitability. Cluster 2 and cluster 4 have the smallest areas considered suitable 

for Giant Hogweed occurrence.  

Habitat suitability maps show areas that more likely to be suitable for Giant 

Hogweed. Figure 3, shows as example cluster 1 with low-high ranking from 0 – 13, 

with 0 being bad and 13 highly suitable. When only 13 is selected for all four clusters 

and tested using test data only 27% of the test data fall within the area considered 

suitable for Giant Hogweed. When 12 – 13 and 10-13 are selected and tested about 

85% and 95% of test data fall within the areas considered suitable for Giant Hogweed 

respectively. Figure 5, show the 95% of test data while Figure 6, shows where 5% of 

test data fall within areas considered unsuitable for Giant Hogweed. The areas 

consider to be unsuitable are located far away from roads and could be due to bias in 

sampling Giant Hogweed locational points in the field.  
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Table 11 Percent suitable area in each cluster 

 Cluster 1 Cluster 2 Cluster 3 Cluster 4 

Less suitable 

area sqkm  ( 

0-9) 

 

9368.92  17455.30  

 

8509.20  

 

11470.05  

 

Suitable area 

sqkm (10-13) 

8824.67  

 

738.30 

 

9684.40 

 

6723.55 

 

Total area 

sqkm 

18193.61 

 

18193.61 

 

18193.61 

 

18193.61 

 

Percent 

suitable areas 

(sqkm) 

48.50 % 

 

4.05 % 

 

53.22 % 

 

36.95 % 
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Fig. 5  95% of test data used to validate the model fall within the areas consider suitable 

for Giant Hogweed invasion, defined by suitability scores of 10 or greater.. 15.5 % of the 

total area is considered unsuitable. 
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Fig. 6 Shows areas (white = less suitable) where just 5% of the test data fall (note the 

white, less suitable areas tend to be quite distant from roads)  
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Conclusions 
 

Giant Hogweed (H. sosnowskyi) is included in the lists of the most aggressive alien 

species in all Baltic States (Gavrilova 2003). Therefore mapping and predicting the 

spatial distribution of this poisonous plant is very important for conservation planning 

and possible control/eradication efforts. The goal of this study was to evaluate the 

effectiveness of cluster analysis based on environmental factors as a new tool to select 

sites with favorable conditions for Giant Hogweed occurrence. Whereas most ecological 

niche models, e.g. MAXENT, can predict which environmental factors contribute the 

most or least in predicting species distribution, cluster analysis give different 

combinations of environmental factors that promote the spread of species.  This analysis 

shows that for each factor (e.g., distance to roads) there is not necessarily one set of 

values that is the best predictor of Giant Hogweed locations – Giant Hogweed is found in 

different types of locations, each with its set of characteristic variables levels. 

The results from cluster analysis indicate the following: 

Cluster 1 occurs in mostly agricultural areas where the population density is low 

and little land-use change has occurred. As shown on the habitat suitability map, these 

areas are mostly rural areas where agricultural abandonment is common. During our field 

trip to Latvia in the summer of 2010, anecdotal evidence from discussions with farmers 

taught us that once farms are abandoned Giant Hogweed seeds regenerate and spread 

quickly. 

Cluster 2 occurs mostly in urban areas close to roads and urban centers. This is 

probably near the larger cities where urban expansion is taking place and where disturbed 

land for new construction, including new roads, provides excellent habitat for Giant 

Hogweed.  
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Cluster 3: occurs near urban centers in neighborhoods with a high proportion of 

forest and where substantial land cover change to forest is occurring. These are probably 

less accessible areas near cities that are far from roads and along forest edges, likely 

where land has been abandoned. 

Cluster 4 occurs mostly in urban areas near roads where the population density is 

high. These are most likely small farm areas and gardens in big cities, and roadsides. 

Cluster 4 is very similar to cluster 2. 

This is the first known study that has utilized cluster analysis in this way to study 

habitat suitability. This study has shown that cluster analysis is not only useful to 

determine the multiple ecological/landscape niches a species can occupy (and has the 

ability to accommodate multiple optimal ranges of variable values), it also can be used to 

provide information on habitats suitable for Giant Hogweed spread. The combined cluster 

map shows the expected extent of potential invasion of Giant Hogweed in the study area. 

This map shows that the extent of potential invasion is generally higher in the lowlands 

than in the highlands and mostly in agricultural areas and along roadsides. This supports 

the findings of Pysek et al. (2007). 

There are several factors that could contribute to the improvement of this 

approach. For instance other environmental factors such as temperature and rainfall and 

soil could be included in a future study, especially if a study is done on a more diverse, 

larger geographic extent. Z-scores were used in this study to run the K-cluster analysis, 

giving all the variables equal weight, but in reality some variables contribute more than 

others so future research may study ways to appropriately weight different environmental 

variables and to use more control data with all cluster types. 
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Concluding remarks 
 

This dissertation has presented research on LCC and the spread of invasive 

nonindigenous species. The study illustrates how human interactions with the 

environment can have adverse consequences such as the proliferation of invasive species. 

The main goal of this study was to monitor LCC and how LCC and geographic variables 

influence the spread of Giant Hogweed in Latvia. These three papers not only shed light 

on factors that promote LCC and the spread of Giant Hogweed but also elucidate the 

consequences of such changes and potential impacts both in the present and near future.  

The first part of the study demonstrates how empirical relationships between LCC and 

demographic and geographic variables can be established using remote sensing and GIS. 

An understanding of these empirical relationships is essential for mapping, monitoring, 

and predicting future land use land cover change (Bethany et al. 2006). The results from 

this study revealed that landscape pattern in this region have undergone severe changes 

since Latvia became independent in 1991. During the Soviet era (prior to 1991), 

agriculture was a primary industry in Latvia employing much of the population. The 

single most widespread change was change to forest due to agricultural abandonment. 

Most of these changes to forest occurred in rural pagasti where depopulation is a 

significant trend (many people have migrated to bigger cities in search for jobs and better 

opportunities) and many farms have been abandoned. The results also indicate that most 

LCC occurs near roads and relatively near to Riga. Part 1 of this dissertation has 

demonstrated the linkage between land use land cover change and both socio-

demographic factors and geographic variables. 
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Part 2 and Part 3 of this study demonstrate the use of ecological niche models in 

predicting species distribution. While logistic regression models use both presence and 

absence data, cluster analysis can be used with only presence data in predicting Giant 

Hogweed distribution. Both results revealed environmental factors that promote the 

spread of Giant Hogweed. Both studies indicated that distance to roads, distance to urban 

centers, low elevation areas, and land use land cover change are important factors 

influencing the spread of Giant Hogweed in northeastern Latvia. In addition to these 

factors, the cluster analysis indicated population density is also an important factor 

affecting Giant Hogweed occurrence even though stepwise logistic regression finds 

population density to be insignificant. Cluster analysis was used for the first time in this 

context and offers the added value of showing the set of combinations of factors that 

promote the spread of Giant Hogweed. That is, clusters 1, 2, 3 and 4 represent regions 

characterised by different combination of environmental factors (discussion section). 

Both models also show habitat suitability maps showing areas that are more likely to be 

occupied by Giant Hogweed. These maps are very important in terms of monitoring and 

managing Giant Hogweed spread, and can be very useful for conservation planning, land 

managers and policy makers as to where to allocate resources for control. 

In this study significant correlation was found between LULCC data and both 

demographic and geographic variables, which imply demographic and geographic 

conditions, played an important role in regional landscape change. Comparison between 

the pagasti (municipality) and rajoni (county) correlations suggest that the rajoni scale is 

too broad to catch the appropriate processes with regards to some of the demographic and 

geographic variables. LULCC, demographic and geographic factors influence the spread 

of Giant Hogweed in Latvia. The created Giant Hogweed suitability maps showing 
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predicted potential spread may be useful for managing and controlling Giant Hogweed in 

Latvia.  This research may be applicable to other regions with high Giant Hogweed 

occurrence, such as the larger Baltic region and Russia, Central and Western Europe, 

Northern USA and Canada. 

There are several factors that could contribute to the improvement of the analyses 

in this research. For instance, in this land use land cover change analysis (Part 1), finer 

scale socio-demographic and economic variables were not used because of their lack of 

availability at the city scale, but these fine-scale variables likely had significant influence 

on land use change. For the species distribution modeling, climatic variables were not 

incorporated into these studies because there is not much climate variability within this 

study site and Giant Hogweed is well-adapted to the small range of existing variability 

within the study site.  Another limitation of these Giant Hogweed distribution modeling 

studies is the limited number (2) of satellite images used in the time series, and the time 

gap between them. For instance, it is likely that some areas were forests in 1992, then cut 

down and farmed during the late 1990’s, and then abandoned (for instance, in 2004):  

such areas would be identified in this research cut forest, whereas in reality its most 

recent land use change was agriculture abandonment. While a higher frequency of 

satellite image data is useful to capture more of the actual land use changes, such high 

frequency land use change data (with satellite images from several time points) can easily 

become unwieldy for analysis.  

Furthermore, while the population data was studied at 2 scales (pagasti and 

rajoni), this study was unable to relate population data to land use change and Giant 

Hogweed presence at an individual level. It would be useful to study how out-migration 
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from individual houses affects LULCC and Giant Hogweed presence; however this 

would require a significant data acquisition project. 
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