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ABSTRACT

Ago-Erik Riet. Ph.D. The University of Memphis. December, 2012. On Integer
Sequences, Packings and Games on Graphs. Major Professor: Béla Bollobás.

This dissertation concerns four problems in combinatorics.

In Chapter 2 we consider the Prolonger-Shortener game of F saturation that was

introduced by Füredi, Reimer and Seress: Players take turns drawing edges on an

initially edgeless vertex set of size n with the restriction that they do not complete a

copy of a graph in F . The game ends when no more edges can be drawn. Prolonger

wants as many edges as possible at the end of the game and Shortener as few as

possible. We ask what is the final number of edges with both players playing

optimally when F is a fixed path, or a collection of trees. We also consider a directed

version of the game.

In Chapter 3 we address a question about completing partial packings of copies of

a bipartite graph H, asked by Füredi and Lehel. An H-design on n vertices is an

edge-disjoint collection of copies of H whose edge sets partition the edge set of the

complete graph on n vertices. Given a bipartite graph H and an integer n, let

f(n;H) be the smallest integer such that any set of edge disjoint copies of H on n

vertices can be extended to an H-design on at most n+ f(n;H) vertices. We

establish tight bounds for the growth of f(n;H) as n→∞. In particular, we prove

the conjecture of Füredi and Lehel that f(n;H) = o(n).

Chapter 4 is dedicated to a particular integer sequence, the Slowgrow sequence,

originally introduced by Steven Kalikow. It starts with 1, and having defined terms

s1, . . . , sn the term sn+1 is the smallest positive integer such that the block

sn−sn+1+2 . . . sn+1 has not occurred in the sequence earlier. Our main result is that

blocks which can potentially occur multiple times in the sequence actually occur

infinitely often. We also prove bounds on the time of the first occurrence of n in the

Slowgrow sequence and that the limiting density of every number in the sequence is 0.
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Chapter 5 is motivated by a question of András Sárközy. We prove sufficient

conditions for existence of infinite sets of natural numbers A and B such that the

number of solutions of the equation a+ b = n where a ∈ A and b ∈ B is monotone

increasing for n > n0. We also examine a generalized notion of Sidon sets, that is,

sets A, B with the property that, for every n ≥ 0, the equation above has at most one

solution, i.e., all pairwise sums are distinct.
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Chapter 1

Introduction

1.1 Introduction

This dissertation concerns four problems in combinatorics. Chapter 1 gives a

basic overview of the structure of the dissertation, and also establishes the bulk of the

terminology and notation used, leaving some of the more specific terminology for the

chapters to come. Chapters 2 and 3 are on graph theoretic problems while Chapter 4

is on a specific integer sequence and Chapter 5 explores the additive number theoretic

properties of integer sequences.

In Chapter 2 we consider a particular 2-player game on a finite graph, introduced

by Füredi, Reimer and Seress [14]. This chapter is based on a joint work with

Jonathan Lee. Given a collection of graphs F , we define the Prolonger-Shortener

game G(Kn,F) as follows: players start with the empty graph En on n vertices. They

take turns drawing edges of the complete graph Kn on this vertex set with the

restriction that no edge completes, with all the edges drawn so far, a copy of a graph

in F as a subgraph. The game ends when no more edges can be drawn. Prolonger

wants as many edges as possible at the end of the game and Shortener as few as

possible. We ask what is the final number of edges with both players playing
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optimally. The game G(Kn, {K3}) was investigated by Füredi, Reimer and Seress [14]

and studied also by Biró, Horn and Wildstrom [4]. We look at the specific cases when

F contains only a fixed path, F is a collection of trees and separately a directed

version of the game. Let Pk be the path on k vertices. We prove in Theorem 2.3 that

the number of edges at the end of the game G(Kn, {P4}) is between 4
5
n− 1 and

4
5
n+ 1 regardless of who starts in the game. We have a similarly tight result for the

game G(Kn, {P5}), and we characterize the final types of components in G(Kn, {P6}).

We also have a tight result for the final number of edges in the game G(Kn, Tk) where

Tk is the collection of all trees on k vertices. Separately, we also consider a directed

version of the game which is played on a directed graph under the restriction that

players are not allowed to create a directed walk on k vertices. We prove that the

number of directed edges at the end of the game is 1
3
n2 + 1

3
kn+O(n+ k2).

Chapter 3 is motivated by a conjecture of Füredi and Lehel [13] concerning

completion of partial packings of copies of a bipartite graph H. An H-design on n

vertices is an edge-disjoint collection of copies of H whose edge sets union up to the

edge set of the complete graph Kn on n vertices. Given a bipartite graph H and an

integer n, let f(n;H) be the smallest integer such that any set of edge disjoint copies

of H on n vertices can be extended to an H-design on at most n+ f(n;H) vertices.

We establish tight bounds for the growth of f(n;H) as n→∞. In particular, we

prove the conjecture of Füredi and Lehel [13] that f(n;H) = o(n) which settles a

long-standing open problem. Chapter 3 is based on a joint work with Zoltán Füredi

and Mykhaylo Tyomkyn [15].

Chapter 4 is dedicated to a particular integer sequence. A block in a sequence is a

finite subsequence consisting of consecutive terms of the given sequence. The

Slowgrow sequence, introduced by Steven Kalikow, starts with 1 and, having defined

terms s1, . . . , sn, has for sn+1 the smallest positive integer such that the block

sn−sn+1+2 . . . sn+1 has not occurred in the sequence earlier. We prove bounds on the

time of the first occurrence of n in the Slowgrow sequence and that the limiting
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density of every number in the sequence is 0. We also prove the more surprising

result that blocks which can potentially occur multiple times in the sequence actually

occur infinitely often. This is an existential result, giving no bounds on the density of

occurrences of the block and is the most non-trivial fact we know about the Slowgrow

sequence so far. We also present a classification of such blocks. I am grateful to

Steven Kalikow for many helpful conversations.

In Chapter 5 we study the additive number theoretic properties of a pair of

general sequences of non-negative integers. This chapter is based on a joint work with

Fabricio Benevides, Jonathan Hulgan, Nathan Lemons, Cory Palmer and Jeffrey P.

Wheeler [3]. Motivated by a question of András Sárközy, we prove sufficient

conditions for existence of infinite sets of natural numbers A and B such that the

number of solutions of the equation a+ b = n where a ∈ A and b ∈ B, which we refer

to as the representation function r(A,B, n), is monotone increasing for n > n0. We

also examine a generalized notion of Sidon sets, that is, sets A, B with the property

that, for every n ≥ 0, the equation above has at most one solution, i.e., all pairwise

sums are distinct. Our main theorem here states that for all 0 ≤ α, β < 1,

1/2 < c1, c2 ≤ 1, there exist sets A,B ⊂ N0 such that r(A,B, n) is monotone

increasing in n;

lim sup
n→∞

A(n)

nc1
= α; lim sup

n→∞

B(n)

nc2
= β.

1.2 Notation

Throughout we follow the notation that is most widely accepted. For graph

theoretic notation, we mainly follow Bollobás [6]. We review the most commonly used

terminology and notation in this section.

We use N0 to denote the natural numbers with zero, {0, 1, 2, . . .}, and for n ∈ N0,

we denote [n] = {1, 2, . . . , n}, the set of the first n positive integers. Given a set X, we
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use X(k) to denote the set of all the k-element subsets of X; we will call a set of size k

a k-set. We use P(X) to denote the power set of X, i.e. the set of all subsets of X.

We use the standard “big-oh” notations O(·), o(·), θ(·),Ω(·), ω(·) for growth of

functions on natural numbers. That is, f(n) = O(g(n)) if and only if g(n) = Ω(f(n))

if and only if there exist constants C and n0 such that for each n′ > n0,

|f(n′)| ≤ C|g(n′)|. A function f(n) = θ(g(n)) if and only if it is O(g(n)) and Ω(g(n)).

Also, f(n) = o(g(n)) if and only if f(n)� g(n) if and only if g(n) = ω(f(n)) if and

only if g(n)� f(n) if and only if for each ε > 0, there exists n0 such that for every

n′ > n0, |f(n′)| ≤ ε|g(n′)|.

A (simple) graph G is an ordered pair (V (G), E(G)) where V (G) and

E(G) ⊆ V (G)(2) are the vertex set and edge set of G, respectively. Throughout,

unless otherwise stated, a graph named G is assumed to have vertex set V = [n] and

edge set E. The graph G is said to have order |G| := |V (G)| and size e(G) := |E(G)|.

We say an edge {u, v} is incident to each of the vertices u and v. We say two vertices

u and v of G are adjacent if {u, v} ∈ E(G). Following the standard convention, we

denote an edge {u, v} of a graph by uv. A graph is connected if for any two of its

vertices u and v it has i ≥ 0 vertices v1, . . . , vi such that uv1, v1v2, . . . , vi−1vi,

viv ∈ E(G). The degree d(v) of a vertex v is the number of edges containing it. A

graph G is called k-regular if all vertex degrees in it are precisely k. The minimum

degree δ(G) and maximum degree ∆(G) of a graph G are the minimum, respectively

maximum of the vertex degrees over all the vertex set. We say that a vertex is

isolated if it has degree 0. We say that an edge is isolated if all other edges have an

empty pairwise intersection with it. A subgraph of G is a graph G′ such that

V (G′) ⊆ V (G) and E(G′) ⊆ E(G)∩ V (G′)(2); we say that a graph contains each of its

subgraphs. A component of G is a maximal connected subgraph with respect to

inclusion as subgraphs. For a subset U ⊆ V (G), we use G[U ] to denote the graph

induced by the vertices of U ; that is, G[U ] has vertex set U and edge set E(G) ∩ U (2).
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For a vertex v in a graph G, the open neighborhood of v, denoted NG(v) = N(v),

is the set of all vertices which share an edge with v, i.e.,

NG(v) := {u ∈ V (G) : u 6= v, {u, v} ∈ E(G)}.

The complete graph Kn has n vertices and E(Kn) = V (Kn)(2) and the empty

graph En has n vertices and E(En) = ∅. A path Pk of length k − 1 or on k vertices is

a graph where V (Pk) = {v1, . . . , vk} are distinct vertices and

E(Pk) = {{vi, vi+1}|i = 1, 2, . . . , k − 1}. A walk of length k − 1 or on k vertices in a

graph G is a sequence v1, v2, . . . , vk of its (not necessarily distinct) vertices such that

vivi+1 ∈ E(G) for all i ∈ [k − 1]. A cycle Ck on k vertices is a graph where

V (Ck) = {v1, . . . , vk} and E(Ck) = {{vi, vi+1}|i = 1, 2, . . . , k − 1} ∪ {{vk, v1}}. A

graph G is bipartite with partite classes (or partition classes) U and W if

V (G) = U ∪W , U ∩W = ∅ and every edge of G has one of its vertices in U and one

in W . The complete bipartite graph Km,n is a bipartite graph with partite classes U ,

|U | = m and V , |V | = n such that for any u ∈ U and any v ∈ V , {u, v} ∈ E(Km,n). A

matching in the graph G is a set U ⊆ E(G) such that any two edges in U have an

empty intersection. A perfect matching is a matching whose union is the whole vertex

set. An independent set U of vertices of G is a set such that G[U ] is the empty graph,

i.e. it has no edges included in it. A graph G on n vertices is said to be hamiltonian

with Hamilton cycle v1 . . . vn if v1, . . . , vn is an enumeration of V (G) and

vivi+1 ∈ E(G) for all i ∈ [n− 1] and vnv1 ∈ E(G).

A multigraph G is an ordered pair (V (G), E(G)) where V (G) is a set and E(G) is

a multiset with elements from V (G)(2) ∪ V (G). Many of the notions defined for

graphs can be defined analogously for multigraphs.

We can generalize the notion of an edge to define a hypergraph. A hypergraph G

is an ordered pair (V (G), E(G)) where V (G) and E(G) ⊆ P(V (G)) are the vertex set

and (hyper)edge set of G, respectively. We say that the hypergraph G is k-uniform if

E(G) ⊆ V (G)(k). Note that a 2-uniform hypergraph is a graph. We refer to a

5



k-uniform hypergraph as a k-graph. The degree of a vertex and the minimum and

maximum degree are defined analogously to the graph case. A multihypergraph is

defined like a hypergraph except instead of the edge set we have an edge multiset.

A directed graph or digraph G is an ordered pair (V (G), E(G)) where V (G) and

E(G) ⊆ V (G)× V (G) are the vertex set and edge set of G, respectively. An edge

(u, v) ∈ V (G)× V (G) of a directed graph is said to go or be directed from u to v.

The edge (u, v) is often denoted by −→uv but we choose to denote it uv when no

confusion arises. The indegree d−(v) and outdegree d+(v) of a vertex v is the number

of edges directed to v, respectively the number of edges directed from v.

Now we define some terminology related to integer sequences in additive number

theory. Let A,B ⊆ N0 be sets of non-negative integers. The sumset of A and B,

denoted A+B is the set {a+ b|a ∈ A, b ∈ B}. We say that a set of non-negative

integers A = {a0, a1, . . .} is a Sidon set if all pairwise sums ai + aj where i ≤ j are

different.
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Chapter 2

F-saturation Games

2.1 F-saturation Game

We start with some definitions. Let F be a family of graphs. A graph G is

F-saturated if G contains no member of F as a subgraph, but for any nonadjacent

vertices u and v in G the graph obtained by adding uv to G contains some member of

F . For a discussion of saturated graphs see for example Bollobás [5].

In this chapter, we shall consider different 2-player games that we shall call

F-saturation games following West [33].

One recent variant of a game that we shall not study here but that is similar to

ours was introduced by Ferrera, Harris and Jacobson in 2010 [12]. Let H be an

arbitrary graph on n vertices and let F be a family of graphs. Two players start with

the empty graph En on n vertices. They take turns adding an edge to it from the

edge set of H, so the resulting graph is always a subgraph of H. The first player who

creates a member of F loses. Equivalently, the player who reaches an F -saturated

graph wins.
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The game we shall concentrate on in this chapter was introduced by Füredi,

Reimer and Seress in 1991 [14] who studied it in a special case. Let H be an arbitrary

graph on n vertices and let F be a family of graphs. Two players start with the

empty graph En on n vertices. They take turns adding an edge to it so that the

resulting graph is always a subgraph of H. No player is allowed to create a member

of F out of the edges drawn so far. The game finishes when the resulting subgraph of

H is F -saturated or equal to H. The objective of one player, Prolonger, is to have as

many edges in the resulting graph at the end of the game as possible and the other

player, Shortener, wants as few edges as possible. Let us denote this game by

G(H,F). If F = {F} then denote the game by G(H,F ). Let the game saturation

number Sat g(H,F) or game score be the length of the game under optimal play by

both players, with Prolonger starting. Let the game score with Shortener starting be

Sat g′(H,F).

Füredi, Reimer and Seress [14] concentrate on the game G(Kn, K3). They prove

that Prolonger can ensure that the number of edges at the end of the game is at least

(1
2

+ o(1))n lg n where lg n is the binary logarithm. They attribute to Erdős a lost

proof that Shortener can ensure that the number of edges at the end of the game is at

most n2

5
. Biró, Horn and Wildstrom [4] demonstrate the improved upper bound 9n2

50
.

2.2 Game of avoiding Pk

Let us denote a path on k vertices by Pk for every positive integer k. Let us write

G for the game G(Kn, Pk).

First of all, we shall consider a variant of the game where Prolonger can skip his

turn. We shall modify the game G so that Prolonger can skip his go if he chooses and

Shortener must, on her turn, still draw one edge. Let us call the modified game G1.
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Theorem 2.1. In the modified game G1, the game score will be at least n(k − 2)/4

regardless of who starts.

Proof. We need to give a strategy for Prolonger that realizes the lower bound. His

strategy is to keep all components in the graph under construction in the game

hamiltonian (or isolated edges or isolated vertices). For the purpose of this proof call

components that consist of an isolated edge or an isolated vertex hamiltonian (with

‘Hamilton cycle’ consisting of the single edge or the single vertex, respectively).

Suppose all components are hamiltonian before a move by Shortener. If Shortener

connects a component of at least two vertices with Hamilton cycle a1a2 . . . al to an

isolated vertex v by drawing the edge a1v then Prolonger draws the edge a2v thus

making the new component hamiltonian with Hamilton cycle a1va2a3 . . . al, see

Figure 2.1. Analogously, if Shortener draws the edge a1b1 to connect two hamiltonian

components with Hamilton cycles a1a2 . . . al and b1b2 . . . bm then Prolonger can draw

the edge a2b2 for hamiltonicity, see Figure 2.2. If Shortener makes any other move all

components will continue to be hamiltonian after that and Prolonger can skip his go.

That is, Prolonger’s strategy is as follows:

i) If there is a component with a Hamilton path but no Hamilton cycle, augment to

a Hamilton cycle;

ii) Otherwise skip turn.

We will reach a point when the total number of vertices in any two components is

at least k. Then no two of the (hamiltonian) components can be connected by an

edge. After that clearly all components will be completed to a clique. Since any two

cliques have at least k vertices in total, the average degree in the graph is at least

k/2− 1. Hence the total number of edges in the graph will be at least n(k− 2)/4.

We hope that a similar result can be proved for the unmodified game.

9
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Figure 2.1: Unifying a hamiltonian component and an isolated vertex
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a₅
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a₃

Figure 2.2: Unifying two hamiltonian components
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Figure 2.3: Types of components in a P4 saturated graph

Let us introduce some notation which helps us to consider the game G(Kn,F)

where F is either {P4} or {P5} or Tk, the collection of all trees on k vertices. For

concreteness we shall prove bounds on the game score in these cases with Prolonger

starting the game. However, our proofs work unchanged for Shortener starting. Let

the graph constructed during the game be initially G0 = En. After i moves, i.e., after

i edges have been drawn, let the graph constructed in the game be Gi. So after

Prolonger’s first move we have the graph G1, after Shortener’s first move G2, after

Prolonger’s second move G3 and so on.

2.2.1 Game of avoiding P4

Let us consider the (unmodified) game G(Kn, P4). We claim that the only types of

components present in the P4 saturated graph are those in Figure 2.3.

Lemma 2.2. A P4 saturated graph is either a vertex-disjoint union of triangles and

stars with at least two vertices or a vertex-disjoint union of triangles and an isolated

vertex.

Proof. This follows by induction on the number of vertices.

We are going to bound the game score in G(Kn, P4). Our bounds will not depend

on who starts.

11



Theorem 2.3.

4

5
n− 1 ≤ Sat g(Kn, P4), Sat g′(Kn, P4) ≤

4

5
n+ 1.

Proof. First we shall prove Sat g(Kn, P4), Sat g′(Kn, P4) ≤ 4
5
n+ 1 by fixing a strategy

for Shortener. Let Shortener

i) extend a K1,2 to a K1,3 if possible, otherwise

ii) draw an isolated edge if possible, otherwise

iii) extend a star by attaching the central vertex to an isolated vertex if possible,

otherwise

iv) extend a K1,2 to a K3.

Claim 2.4. In graphs G2i+1, i ∈ N0, there is at most one K1,2 component. Unless all

vertices of the graph have degree at least one the K1,2 will not become a K3; if a K1,2

becomes a K3, however, the game is finished. In graphs G2i, i ∈ N0, there is at most

one K1,2 component; if in a graph G2i, i ∈ N0, there is a K1,2 component it will be

extended into a K3 and this finishes the game.

Proof. Let us look at two cases and proceed by induction on i.

1. Suppose that in the graph G2i+1 there is a K1,2 component where i ∈ N0.

1) If there is an isolated vertex in the graph G2i+1, Shortener will extend the K1,2

to a K1,3. Since then there will be no K1,2 component in G2i+2, there can be at

most one of them in G2i+3.

2) If there is no isolated vertex in the graph G2i+1, Shortener will extend the K1,2

to a K3. This finishes the game: Let us say that a component is non-trivial if it

is not an isolated vertex. We can not unify two non-trivial components without

12



creating a P4; hence when all vertices are non-isolated the only possible moves

are filling in K1,2’s to K3’s.

2. Suppose that there is no K1,2 component in the graph G2i+1.

1) If there is an isolated vertex and another star of at least one vertex, Shortener

will join the isolated vertex to a star (which may be an isolated vertex) creating

at most one K1,2 component. If he creates a K1,2 component that means there

was only one isolated vertex available. This means that on the next move

Prolonger will have to extend the K1,2 to a K3 and thus finish the game with

the graph G2i+3.

2) Otherwise the game has finished by Lemma 2.2.

This finishes the proof.

By the Claim, until the last move of the game, the graph is a collection of vertex

disjoint stars. Let λ be the number of components at the end of the game. Since

there is at most 1 triangle, the score is bounded above by n+ 1− λ, with n− λ moves

producing non-trivial components (i.e. creating isolated edges) or extending stars. To

prevent Shortener making a new non-trivial component, Prolonger must make a K1,2,

which occurs at most once in any component. Hence at most λ of Shortener’s moves

fail to make a non-trivial component. Hence there are at least 1
2
(n− λ)− λ

components. So λ ≥ 1
5
n, and the score is at most 4

5
n+ 1.

Now we shall prove 4
5
n− 1 ≤ Sat g(Kn, P4), Sat g′(Kn, P4) by fixing a strategy for

Prolonger. Let Prolonger in G2i

i) complete a triangle component if possible, otherwise

ii) complete a K1,2 component if possible, otherwise

iii) extend a star component if possible, otherwise
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iv) draw an isolated edge.

Note that Prolonger is forced to play an isolated edge only as the first move or after

Shortener completes a triangle.

Let us say a move in the game uses k new vertices if the number of isolated

vertices is reduced by k as a result of that move.

Suppose Prolonger has created a K1,2 component in a graph G2i+1, i ∈ N0. We

shall show that the next move by Shortener and the next move by Prolonger will use

at most two new vertices in total. If Shortener plays elsewhere, Prolonger will extend

the K1,2 to a K3. If Shortener extends the K1,2 to a K3, Prolonger can make an

arbitrary move. If Shortener extends the K1,2 to a K1,3 then Prolonger can extend

that to a K1,4. In any case at most two new vertices are used to obtain G2i+3 from

G2i+1.

Suppose Prolonger can not create a K1,2 component in G2i+1 on his move that

creates G2i+1 from G2i. We will show that to get G2i+1 from G2i−1 (where i > 0) at

most 2 new vertices are used in total. If Prolonger cannot create a K1,2 component

then that means Shortener did not play an isolated edge into G2i−1 (or there are no

isolated vertices left in G2i). Prolonger can be forced to play an isolated edge into G2i

only if Shortener completed a triangle into G2i−1.

Suppose Prolonger can create a K1,2 component when creating G2i+1 but does

something else. That means Prolonger completes a triangle into G2i. So when

creating G2i+1 from G2i−1 at most 2 new vertices are used in total.

Note that with this strategy of Prolonger to obtain G2i+1 from G2i−1 we never use

4 new vertices. To obtain G2i+1 from G2i−1 we can use 3 new vertices only if in G2i−1

there was no K1,2 component and in G2i+1 there is. As a consequence, no two

consecutive pairs of moves by Shortener and then Prolonger both use 3 new vertices.

14



Figure 2.4: Types of components in a P5 saturated graph

Therefore, per 4 consecutive moves (of Shortener, Prolonger, Shortener and then

Prolonger), at most 5 new vertices are used. So the score is at least 4
5
n− 1.

This gives bounds for the game score in the game of avoiding a P4 which are tight

up to additive constants. We think that with more effort the exact value of the game

score can be found, for each of the players starting.

2.2.2 Game of avoiding P5

Let us consider the game G(Kn, P5). We claim that the only types of components

present in the P5 saturated graph are those in Figure 2.4.

Lemma 2.5. A P5 saturated graph is either a vertex-disjoint union of K4’s, triangles

with some (maybe zero) pendant edges at one vertex and double stars (more

precisely, edges with at least two pendant edges on both ends) and at most one

isolated edge or a vertex-disjoint union of one isolated vertex and some K4’s.
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k

l

Tk

Dk,l

Figure 2.5: Tk and Dk,l

Proof. This follows by induction on the number of vertices.

Let us denote a double star with k pendant edges at one end and l at the other

end of the middle edge by Dk,l. Let us denote a triangle with k pendant edges at one

vertex by Tk. See Figure 2.5 for these definitions in pictures.

We are going to prove bounds on the game score in G(Kn, P5). The bounds will

not depend on who starts.

Theorem 2.6. For every positive integer n,

n− 1 ≤ Sat g(Kn, P5), Sat g′(Kn, P5) ≤ n+ 2.

16



Proof. Let us fix a strategy for Shortener to prove the upper bound. She will in

G2i+1, i ∈ N0,

i) extend a P4 to a D1,2 or extend a K1,3 to a D1,2 or extend a T1 to a T2 if possible,

otherwise

ii) extend an isolated edge to a K1,2 if possible, otherwise

iii) extend a component of 5 or more vertices by attaching to it an isolated vertex if

possible, otherwise

iv) draw an isolated edge if possible, otherwise

v) play arbitrarily.

Lemma 2.7. In any graph G2i+1, i ∈ N0, there is at most one component of 4

vertices and at most one isolated edge, or, if there are no components of 4 vertices

then there are at most two isolated edges. The same condition is satisfied in any

graph G2i, i ∈ N0.

Proof. Let us look at two cases.

First, assume there are some isolated vertices in G2i+1. We shall prove that then

there is at most one component of 4 vertices which is a P4 or a K1,3 or a T1 and at

most one isolated edge, or, if there is no component of 4 vertices then there are at

most 2 isolated edges. It is certainly true in G1.

Now assume it is true in G2i+1. If there is a P4 or a K1,3 or a T1 component in

G2i+1 then Shortener will extend it to a D1,2, resp. D1,2, resp. T2; otherwise, if there

are two isolated edges in G2i+1 then Shortener will extend one of them to a K1,2. If in

G2i+1 there is no P4 or K1,3 or T1 or isolated edge then Shortener will unify a

≥ 5-vertex component with an isolated vertex (possible for every ≥ 5 vertex

component by Lemma 2.5); if not possible draw an isolated edge; if not possible that

17



means there is only one isolated vertex and possibly some 3-vertex components in

G2i+1, so Shortener plays arbitrarily. So in G2i+2 there is no 4-vertex component and

at most one isolated edge, or, any one of P4, K1,3 or T1 and no isolated edges and no

isolated vertices. In the former case, into G2i+2 Prolonger can create at most one new

4-vertex component, or otherwise draw at most one isolated edge; in the latter case

(if there was a 4-vertex component after Shortener’s move), Prolonger can create into

G2i+2 no new 4-vertex components and no isolated edges. When Prolonger creates a

4-vertex component (to form G2i+3 from G2i+2) from two smaller components it will

necessarily be a P4 or a K1,3 or a T1. So the condition is satisfied both in G2i+2 and

G2i+3.

Second, assume there are no isolated vertices in G2i+1. Before we run out of

isolated vertices the condition of the lemma holds by the previous paragraph. We

have also proved in the previous paragraph that it holds the first time when there are

no isolated vertices left after a move by Prolonger; also, it holds in G1. We shall

prove that the condition of the lemma holds in G2i+2 and G2i+3. When there are no

isolated vertices left the only way to create new 4-vertex components is to join two

isolated edges to create a P4. But the condition of the lemma says that if we have a

4-vertex component then there is at most one isolated edge, so we cannot make a new

4-vertex component; otherwise we have at most two isolated edges, so we can create

at most one 4-vertex component. Hence the condition of the lemma is satisfied both

in G2i+2 and G2i+3.

The proof is complete since the condition of the lemma is clearly satisfied in

G0.

So at the end of the game there is at most one K4. By Lemma 2.5 the number of

edges does not exceed the number of vertices in all other components. Hence the

game score is at most n+ 2.
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Let us fix a strategy for Prolonger to prove the lower bound. Let us call a

component trivial if it consists of an isolated vertex. Let us call a non-trivial

component standalone if it can not be connected to another non-trivial component

without completing a P5, otherwise call it non-standalone. Note that for a component

to be non-standalone it has to have a vertex rooting no P3. So the only

non-standalone components are stars. Let Prolonger’s strategy be, in the graph G2i,

i ∈ N0, to

(i) complete a triangle in a D1,2 component to make it a T2 or in a K1,3 component

to make it a T1, or, if not possible

(ii) complete a triangle in a component without a triangle, or, if not possible

(iii) connect two isolated edges to form a P4, or, if not possible

(iv) complete a K1,2 component, or, if not possible

(v) draw an isolated edge, or, if not possible

(vi) play arbitrarily.

Lemma 2.8. In any graph G2i+1, i ∈ N0, the set of non-standalone components may

be: empty; or one isolated edge; or one K1,2. In any graph G2i, i ∈ N0, the set of

non-standalone components may be: empty; or K1,2; or P4; or K1,3; or K1,2 and an

isolated edge; or two isolated edges; or one isolated edge.

Proof. The result holds in G0 and G1. One can check that if in G2i+1 the set of

non-standalone components was empty, an isolated edge or a K1,2 then whatever

Shortener does she can only create sets of non-standalone components in G2i+2

described in the statement of the lemma. Prolonger will

(i) complete a triangle in the K1,2 component to create a K3, in the P4 component

to create a T1, in the K1,3 component to create a T1 all of which are standalone;
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(ii) if not possible, he will complete a P4 from two isolated edges which is

standalone;

(iii) if not possible, he will complete a K1,2 component from one isolated edge;

(iv) if not possible, he will draw an isolated edge;

(v) this failing, he will play arbitrarily but his move will not extend a star into a

larger star (otherwise he could have completed a triangle in it),

so his edge will be a part of a standalone component. In any case the set of

non-standalone components will be as described in the statement of the lemma.

Lemma 2.9. At the end of the game all standalone components will contain a

triangle. The set of non-standalone components will consist of an isolated vertex or

an isolated edge.

Proof. In any graph G2i+1, i ∈ N0, the set of non-trivial components without a

triangle will be empty or consist of one component which will be an isolated edge, a

K1,2 or a P4: This is clearly true in G1. Assume it is true in G2i+1; we shall show it is

true in G2i+3. By Lemma 2.8 there is at most one standalone component in G2i+1, so

if Shortener wants to connect two components one of them has to be an isolated

vertex. So in G2i+2 the set of non-trivial components without a triangle will be

empty, consist of an isolated edge or a K1,2 or a P4 or consist of any one of the

preceding and an isolated edge or consist of a K1,3 or a D1,2. In each case, to form

G2i+3 from G2i+2, Prolonger will either

(i) complete a triangle in them to create a T2 component or a T1 component or a

K3 component or

(ii) connect two isolated edges to form a P4 component or

(iii) connect an isolated edge to an isolated vertex to form a K1,2 component or
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(iv) create an isolated edge or

(v) else there is at most one non-trivial component without a triangle which can

only be an isolated edge and he can play arbitrarily

– so again the set of non-trivial components without a triangle consists of an isolated

edge, a K1,2 or a P4.

Shortener can never create components Dk,l with k, l ≥ 2: Indeed, she would have

to go about building them by adding one isolated vertex at a time to the component

since by Lemma 2.8 there will be at most one non-standalone component in G2i+1;

she would first have to build a D1,2 component or a K1,3 component which will

immediately be completed into a T2, resp. T1 by Prolonger to form G2i+3. At the end

of the game the set of non-trivial components without a triangle will be an isolated

vertex or an isolated edge, since all other components – none of which can be a Dk,l

with k, l ≥ 2 in G2i+2 as we have proved – will get a triangle by Lemma 2.5.

We are now ready to prove that Sat g(Kn, P5) ≥ n− 1 and Sat g′(Kn, P5) ≥ n− 1.

By Lemma 2.9 all components at the end of the game will contain a triangle except

for at most one component which can be either an isolated edge or an isolated vertex.

That means that the number of edges in them is greater or equal to the number of

vertices. Thus the game score will be at least n− 1.

2.2.3 Game of avoiding P6

Let us consider the game G(Kn, P6). We claim that the only types of components

present in a P6 saturated graph are those in Figure 2.6.

Lemma 2.10. A P6 saturated graph is a vertex-disjoint union of components of the

following types: K5; K4 with some pendant edges at one vertex; components

consisting of a central vertex on which some triangles are built by identifying one of
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Figure 2.6: Types of components in a P6 saturated graph

its vertices with the central vertex and some stars are built by identifying a leaf with

the central vertex; triangles with some pendant edges on each vertex; components

consisting of a central edge with some triangles built on it by identifying one of its

edges with the central edge; some types of substructures of the components described.

Proof. This follows by induction on the number of vertices in the graph.

That is all we have proved about this game. The case analysis to find good

bounds on the game score seems hard.
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2.3 Game of avoiding all trees on k vertices

Let us consider the Prolonger-Shortener game G(Kn, Tk) where no player is

allowed to complete any tree on k vertices. So we are considering the F -saturation

game where F = Tk is the collection of all trees on k vertices. We are looking for the

game scores Sat g(Kn, Tk) and Sat g′(Kn, Tk).

The condition in the game is equivalent to saying that all components have less

than k vertices. Clearly at the end of the game all components will be cliques of at

most k − 1 vertices such that any two components have at least k vertices in total.

It is easy to see by computing the average degree that for Prolonger it is beneficial

if in the graph created by the end of the game there are as many components of size

k − 1 as possible and one component left over. We shall prove that Prolonger can

achieve almost that.

Theorem 2.11. In the game G(Kn, Tk) Prolonger can force

b n
k−1c

(
k−1
2

)
+
(n−(k−1)b n

k−1
c

2

)
edges if n 6≡ 1 mod (k − 1)

and at least

b n
k−1c

(
k−1
2

)
+
(n−(k−1)b n

k−1
c

2

)
− (k − 3) edges if n ≡ 1 mod (k − 1).

In other words, we prove that Prolonger can force the maximal possible number of

edges if n 6≡ 1 mod (k − 1) and at least the maximal possible number minus (k − 3)

edges otherwise.

Recall that G0 = En is the graph formed in the game in beginning, G2i−1 is the

graph formed in the game after the ith move by Prolonger and G2i the graph formed

in the game after the ith move by Shortener where i ∈ N0.

23



Proof. Let the strategy for Prolonger be to choose two components with the greatest

total number of vertices such that this number is at most k − 1 and connect them by

an edge.

Lemma 2.12. In any graph G2i+1, i ∈ N0, there are, either,

1) some components of k − 1 vertices, some isolated vertices and at most one more

component, or,

2) some components of k − 1 vertices, a component of k − 2 vertices and an isolated

edge.

Proof. It is clearly true in G1. Let us assume it is true in G2i+1. We shall prove it is

true in G2i+3. Shortener on her move has three choices:

a) connect the biggest component of less than k − 1 vertices to an isolated vertex or

b) play an edge inside of a component or

c) connect two isolated vertices to make an isolated edge.

In the first and second case, on his next move Prolonger connects the two largest

components of size less than k − 1 (one of which is an isolated vertex by our

induction hypothesis) to obtain Possibility 1) in G2i+3. In the third case,

(i) if the second largest size component has k − 3 or fewer vertices, he connects it

to the isolated edge to obtain Possibility 1) in G2i+3;

(ii) if the second largest size component has size k− 2 vertices and there are isolated

vertices he connects an isolated vertex to the size k − 2 component to obtain

Possibility 1) in G2i+3 (with the middle size component being the isolated edge);
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(iii) if the second largest size component has size k − 2 vertices and there are no

isolated vertices he plays arbitrarily inside a component (if the game has not

ended because all components are cliques) to obtain Possibility 2) in G2i+3.

This finishes the proof.

Clearly when Possibility 2) occurs in the game, the only possible moves are to

play inside existing components. Then we end up with cliques of k − 1 vertices, a

clique of k − 2 vertices and an isolated edge and Prolonger has forced the maximal

possible number minus
(
k−1
2

)
− (
(
k−2
2

)
+ 1) = k − 3 of edges.

If Possibility 1) occurs towards the end of the game when the only possible moves

are to play inside existing components then there are some components of k − 1

vertices and another component. Then we end up with cliques of k − 1 vertices and

possibly another clique and Prolonger has forced the maximal possible number of

edges.

2.4 Game of avoiding a directed walk on k vertices

Let us play the following game, starting on an empty directed graph on n vertices.

Let us consider the Prolonger-Shortener game Gdir where players put down directed

edges and at no time there should be a directed walk on k vertices, i.e. there is no

graph homomorphism from the directed path Pk into the graph.

Clearly the directed graph constructed in the game at any stage of the game must

have at most one edge (i.e. one direction) between any pair of vertices, no loops

(i.e. no edges starting and ending at the same vertex) and it is acyclic (i.e. has no

directed cycle), otherwise there is a homomorphism from Pλ to the graph for every

positive λ. Such a graph can always be topologically sorted to give a linear ordering of
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the vertices such that uv ∈ E(G) implies u < v in the ordering. Let us call v1v2 . . . vm

a descending sequence of vertices if vivi+1 is a directed edge for every

i = 1, 2, . . . ,m− 1. Suppose that a maximum descending sequence of vertices has l

vertices. Let us define classes G1, G2, . . . , Gl so that v ∈ Gi if the longest descending

sequence of vertices ending at v has i elements.

Assume k ≤ n – otherwise the game ends in the complete acyclic simple graph on

n vertices. Clearly at the end of the game l = k − 1 (otherwise we can take any class

Gi with at least two vertices and put an edge uv between them, splitting Gi as

Gi\{v} and {v}). Furthermore, all edges of the form wz exist where w ∈ Gi and

z ∈ Gj and i < j as the game cannot be continued.

So at the end of the game the game score is s = 1
2
(n2 −

∑k−1
i=1 c

2
i ) where ci = |Gi|.

Let us treat the case k < 4 separately.

The case k = 1 is not possible. If k = 2 then no edges can be created in the game

and the game score is 0. If k = 3 then all edges created go from G1 to G2, then G1

and G2 end up being as equal as possible: Indeed, let us consider the classes as empty

in the beginning. If an edge is created, let the initial vertex be put to class G1 and the

final vertex to G2. Let us prove that after any move by Prolonger except at the end

where all vertices have been assigned a class the number of vertices in G1 and G2 is

the same. If Shortener plays an edge between vertices that have already places in the

classes or creates an isolated edge, thus placing two vertices in the classes, one in each

of Gi then Prolonger can keep the balance by either playing an edge between vertices

already placed in G1 and G2 or creating an isolated edge. If Shortener connects a

vertex already placed in Gi to an unassigned vertex then Prolonger can connect a

vertex in G3−i to an unassigned vertex, for every i = 1, 2, thus keeping the balance.

There may end up to be a one-vertex difference in the size of classes only when all

vertices have been assigned to classes. So the game score will be 1
2
(n2 − bn

2
c2 − dn

2
e2).
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Now assume k ≥ 4.

Theorem 2.13. Let k ≥ 4. The game score in Gdir is at most

1
2
(n2 − k + 4− 2bn−k+4

3
c2 − dn−k+4

3
e2).

Proof. Let us give a strategy for Shortener.

We will be looking at the digraph that is empty in the beginning and gets edges

added to it during the game. First let Shortener build a path of k − 1 vertices. She

can use the edges that Prolonger builds for that, so that all of Prolonger’s edges

except at most one both start and end on the path:

• if Prolonger puts down an isolated edge uv and the existing path v1v2 . . . vl has

k − 3 vertices or less then Shortener will attach the isolated edge at the end of

the path thus forming the path v1v2 . . . vluv;

• if Prolonger puts down an isolated edge uv and if the existing path has k − 2

edges then Shortener will attach the isolated edge to the second vertex from the

end of the path thus forming the path v1v2 . . . vl−1uv and leaving one vertex vl

in one of Gk−1 or Gk−2;

• if Prolonger connects two vertices already on the longest path then Shortener

will attach an isolated vertex at the end of the path;

• if Prolonger puts down an edge viv to an isolated vertex v where i < l then

Shortener will create the edge vlv thus extending the existing path to

v1v2 . . . vlv;

• if Prolonger puts down an edge vvi from an isolated vertex v where 1 < i then

Shortener will create the edge vv1 thus extending the existing path to

vv1v2 . . . vl;
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• if Prolonger extends the existing path then Shortener will also just increase the

existing longest path (if it has less than k − 1 vertices) by attaching an isolated

vertex at the end.

Note that after the path of k − 1 vertices is formed, there is one vertex in each class

Gi and there may be one vertex that can belong to either Gk−2 or Gk−1.

So now we have a path v1v2 . . . vk−1.

Suppose ui is a vertex that has been forced to the class Gi (e.g. it could be vi). If

Prolonger creates the edge uiv then Shortener will create the edge vk−2v; if Prolonger

creates the edge vui then Shortener will create the edge vv2. So when Prolonger

attaches any isolated vertex v to an already assigned vertex Shortener will force v to

be in either G1 or Gk−1. If Prolonger plays an edge between vertices already assigned

to classes then Shortener will create the edge vk−2v where v is an isolated vertex

which will thus be forced into Gk−1. If Prolonger plays an isolated edge uv then

Shortener will create the edge vk−3u thus forcing u into Gk−2 and v into Gk−1. See

Figure 2.7 for an illustration.

It can thus be seen that after any move by Shortener all non-isolated vertices will

be forced to classes – except there may be a vertex which belongs to Gk−2 but may be

forced to Gk−1 at the end of the game. Also, note that all classes except G1, Gk−2

and Gk−1 will contain only one vertex. Assume that at the end of the game this

situation will be the worst possible for Shortener: each class Gi where 2 ≤ i ≤ k − 3

contains one vertex and the classes G1, Gk−2 and Gk−1 contain an almost equal

number of vertices (which will thus differ by at most 1 from n−k+4
3

). Hence Shortener

can force the game score to be at most 1
2
(n2 − k + 4− 2bn−k+4

3
c2 − dn−k+4

3
e2).

Theorem 2.14. Let k ≥ 4. The game score in Gdir is at least(
k−1
2

)
+ (n− k + 1)(k − 2) + 1/2(n− k − 9)2(1− 1/3).
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Figure 2.7: Shortener’s strategy to force into classes the vertices of paths on 3 vertices
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Proof. Let us give a strategy for Prolonger.

Suppose Prolonger likes to build long paths. The structures that arise in the

graph we are building in the game as a result of some λ moves by Prolonger and the

λ moves by Shortener after each of those are

A. λ vertices with in-edges and a path on λ+ 1 vertices

B. λ− 1 vertices with in-edges and a path on λ+ 1 vertices and a vertex on the path

with an in-edge or an out-edge

C. λ− 2 vertices with in-edges and a path on λ+ 1 vertices and two vertices of the

path with an in-edge or an out-edge

Let us denote the structures by Aλ, Bλ and Cλ, respectively, see Figure 2.8 for

illustration. Note that if Prolonger leaves these stuctures alone, Shortener can

eventually force at most λ+ 1, resp. λ, resp. λ− 1 vertices into one class and the rest

of the vertices will be in other individual classes. Note that if Shortener hopes to stop

the growth (by addition of isolated vertices) of the path u1 . . . ul she must force the

initial vertex u1 to G1 (for example by drawing the edge u1v2) and the final vertex ul

to Gk−1 (for example by drawing the edge vk−2ul) – hence the structures Bλ and Cλ.

Let a structure D consist of r vertices and force vertices to t different classes, with

dj vertices forced to the jth class (
∑t

j=1 dj = r). We can define the normalized score

for a structure as s(D) = (
∑t

j=1 d
2
j)/r

2. Let us choose the classes in the structure so

that d1 ≥ d2 ≥ . . . ≥ dt. We can define di = 0 for every i > t.

Consider the graph at the end of the game. Let it consist of m different types of

structures Di with ri vertices forced to at most t classes and class sizes

di1 ≥ di2 ≥ . . . ≥ dit for every i = 1, 2, . . . ,m (where the i is an upper index). Let the

vertex set of the graph be partitioned into gin/ri copies of structure of type i for
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Figure 2.8: Structures Aλ, Bλ and Cλ
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every i. Then the game score will be at least

1

2

(
n2 −

t∑
i=1

( m∑
j=1

gjnd
j
i/rj

)2)

=
n2

2

(
1−

t∑
i=1

( m∑
j=1

gjd
j
i/rj

)2)

≥n
2

2

(
1−

t∑
i=1

m∑
j=1

gj
(
dji/rj

)2)

=
n2

2

(
1−

m∑
j=1

gj

t∑
i=1

(
dji/rj

)2)

=
n2

2

(
1−

m∑
j=1

gjs(Dj)

)

where the inequality follows from the arithmetic mean-quadratic mean inequality

with weights gj.

We can compute

s(Aλ) =
λ+ (λ+ 1)2

(2λ+ 1)2
,

s(Bλ) =
λ+ λ2

(2λ)2
=

1

4
+

1

4λ
,

s(Cλ) =
λ+ (λ− 1)2

(2λ− 1)2
.

It is beneficial for Prolonger to have structures of low normalized score. We shall

prove that he can force only structures with normalized score 1
3
or less. Note that the

functions s(Aλ), s(Bλ) and s(Cλ) are decreasing in λ when λ ≥ 1. Note that

s(C2) = 1
3
, s(B3) = 1

3
, s(A4) >

1
3
and s(A5) <

1
3
. Also note that normalized score

goes down if the path length increases and the number of non-path vertices stays the

same.
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At the end of the game the graph will consist of many copies of the structures Aλ,

Bλ and Cλ (for different λ), a path of k − 1 vertices and possibly one more vertex in

either Gk−2 or Gk−1 and up to 9 more vertices. The 9 leftover vertices are the final

ones touched and the only ones Prolonger cannot force to structures of normalized

score ≤ 1
3
(the structure with the biggest number of vertices with normalized score

greater than 1
3
is A4; it has 9 vertices).

Note that we can move between structures using the next move by Prolonger and

then Shortener but only from Aλ through Bλ to Cλ and towards increasing λ.

Prolonger may create the first directed path p := v1v2 . . . vk−1 of length k − 1

exactly as described in the beginning of Shortener’s strategy, so that when done there

will be one vertex in each class Gi, i ∈ {1, 2, . . . , k − 1} and possibly one extra vertex

in either Gk−2 or Gk−1.

We shall describe the structures that arise as Prolonger goes about building long

paths.

If from some point on Shortener is allowed to play until the end without

interference from Prolonger (or, technically, Shortener will make moves instead of

Prolonger), then we say we are in the endgame. At this point it is the most beneficial

to Shortener if, for example, he forces the endvertices of the paths to Gk−1, the

second to last vertices to Gk−2 etc. So if Prolonger can create the disjoint paths p1,

p2, ..., pm involving all vertices then the game score will be at least

g := 1
2
(n2 −

∑k−1
i=1 c

2
i ) where ci = |Gi| = |{j : |pj| >= k − i}|.

Note that in the endgame, structure Aλ will contribute λ+ 1 vertices to one class

(for example Gk−1) and the other λ vertices to other individual classes; structure Bλ

will contribute λ vertices to one class and the other λ vertices to other individual

classes; structure Cλ will contribute λ− 1 vertices to one class and the other λ

vertices to other individual classes.
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Prolonger’s strategy is to build isolated edges. When Shortener increases the in-

or out-degree of a vertex of an isolated edge and

• if there is another isolated edge available Prolonger will attach that to the

non-assigned vertex of the first isolated edge to form a path of 4 vertices and

obtain structure B3;

• otherwise, Prolonger will attach an isolated vertex to the non-assigned vertex of

the first isolated edge to form a path of 3 vertices, and after the next move by

Shortener obtain structure C≥2 if Shortener touches this path again, or after the

next moves by Shortener, Prolonger and Shortener obtain a structure at least as

good as B≥3.

If before a move by Prolonger there are two isolated edges, both with both vertices

non-assigned then Prolonger attaches one edge to the other to form a path of 4

vertices; whatever Shortener does Prolonger can on the next move attach a path

(maybe just a vertex) to the path to form a path on ≥ 5 vertices: if Shortener

assigned a vertex of the path to a class we are in situation B≥4 which is good for

Prolonger (normalized score ≤ 1
3
), otherwise if it is an A-structure, on the next step

Prolonger can attach another vertex to the path to obtain an A≥5 or join to some

other vertex to obtain a B≥5 if there are no isolated vertices which is again beneficial

for Prolonger in terms of the score.

So at the end of the game there is a path on k − 1 vertices whose vertices become

joined to all other vertices on the path, every other vertex is joined to k − 2 vertices

of the path. All vertices not on the path are on structures of normalized score ≤ 1
3
,

except there may be one vertex left over to Gk−2 or Gk−1 and up to 9 more vertices

on structures of normalized score > 1
3
. So the game score is at least

(
k − 1

2

)
+ (n− k + 1)(k − 2) + 1/2(n− k − 9)2(1− 1/3).
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Note that both the lower and upper bounds on the game score in the game Gdir

are
1

3
n2 +

1

3
kn+O(n+ k2).

So we have determined the game score asymptotically if n� k.
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Chapter 3

Completing Partial Packings of

Bipartite Graphs

3.1 Introduction

Let H be a simple graph. A partial H-packing of order n, or simply H-packing, is

a set P := {H1, H2, . . . , Hm} of edge-disjoint copies of H whose union forms a simple

graph on n vertices. We say that an H-packing of order n is complete or an H-design

if the edge sets of Hi, i = 1, . . . ,m partition the edge set of the complete graph on n

vertices. More generally, we say that a graph G can be edge-decomposed into copies of

H if G is the union of some H-packing.

A long-standing problem in design theory is to find a way of completing an

H-packing into an H-design of a larger size, using as few new vertices as possible. We

define f(n;H) to be the smallest integer such that any H-packing on n vertices, can

be extended to an H-design on at most n+ f(n;H) vertices.

The existence of f(n;H) for any n and H follows from Wilson’s theorem [34], see

Section 3.3 for details. Many bounds of the type of f(n;H) ≤ c(H)n have been
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proved for various graphs H by explicit constructions. A (by no means complete) list

of references includes Hoffman, Küçükçifçi, Lindner, Roger, Stinson [20], [23], [24],

[25], [26], [27], Jenkins [21], Bryant, Khodkar and El-Zanati [7]. See also Füredi and

Lehel [13] for a survey of these results.

Hilton and Lindner [19] achieved a breakthrough, having proved a sub-linear

bound on f(n;H) for a particular H. More precisely, they showed that a C4-packing

can be completed by adding O(n3/4) new vertices.

Füredi and Lehel [13] applied methods from extremal graph theory and managed

to find the right order of magnitude for f(n;C4). They proved that

f(n;C4) = Θ(
√
n).

This settled the case H = C4 and solved a problem proposed decades ago (see [27]).

Based on their theorem, Füredi and Lehel [13] conjectured that for any bipartite

graph H the packing can be completed by adding o(n) new vertices. Our aim in this

article is to give a proof of their conjecture.

Theorem 3.1. For every bipartite graph H there is a function f(n;H) = o(n) such

that every H-packing of order n can be completed to an H-design on at most

n+ f(n;H) vertices.

In fact we determine the asymptotic growth of the function f(n;H) exactly.

To present our main result, we need to define a new property of graphs. We say

that a (not necessarily bipartite) graph H is matching-friendly if its vertex set V (H)

can be partitioned into V1 and V2 such that V2 is an independent set of vertices and

the induced graph H[V1] consists of a non-empty matching and a set of isolated

vertices. For example, C4 is not matching-friendly, but every other cycle is. The

choice of the name ‘matching-friendly’ should become clear in the course of the proof.
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Theorem 3.2. If H is matching-friendly, then

f(n;H) = Θ(ex (n,H)/n).

If H is not matching-friendly, then

f(n;H) = Θ
(
max

{
ex (n,H)/n,

√
n
})
.

Here, as usual, ex (n,H) stands for the extremal number of H, see next section for

its definition.

Theorem 3.2 applies to all graphs H, not just bipartite ones. However if H is not

bipartite, it just states that f(n;H) = Θ(n). This is rather easy to deduce: take a

packing Pn, whose union consists of two complete graphs on n/2 vertices each. Such

a packing exists for infinitely many values of n by Wilson’s theorem, to be stated in

Section 3.3. It is not hard to check that Pn needs Ω(n) vertices in order to be

extended to an H-design. On the other hand, every H-packing can be extended to an

H-design by adding O(n) new vertices; this is a consequence of Gustavsson’s

theorem, to be stated in Section 3.3.

Thus from now on we shall assume that H is bipartite. Note that Theorem 3.2

implies Theorem 3.1.

3.2 Notation and basic Tools

As usual, we write |G|, e(G), δ(G) and ∆(G) for the the number of vertices,

number of edges, minimum degree and maximum degree of a graph G. These

quantities will also be used for multigraphs and (multi)-hypergraphs. Denote by N(v)

the neighbourhood of v, excluding v.
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Let Kn and Km,n denote the complete graph on n vertices and the complete

bipartite graph with bipartition classes of size m and n. The graph K1,k is also called

a k-star. It has a central vertex of degree k and k endvertices or leaves of degree 1.

The degeneracy of G is dg (G) := max (δ(G′)), where the maximum is taken over

all induced non-empty subgraphs G′ of G. Suppose that the vertices of G are

numbered v1, v2, . . . , vn, starting the numbering from vn backwards, so that vi is a

minimum degree vertex of G(i) := G[v1, . . . , vi], the subgraph of G induced by the

vertices v1 through vi, for every i = 1, 2, . . . , n. It is easy to see that

dg (G) = max δ(G(i)).

A transversal of a graph G is a subset U of its vertices such that every edge of G

has at least one endpoint in U . In other words, transversals are complements of

independent sets. The transversal number τ(G) is the size of the smallest transversal

of the graph G.

A graph G not containing H as a (not necessarily induced) subgraph is called

H-free. Let us denote by ex (n,H) the extremal number for H, i.e. the maximum

number of edges of an H-free graph on n vertices. More generally, let ex (G,H) be

the maximum number of edges in an H-free subgraph of G. Then

ex (n,H) = ex (Kn, H). Also, if F ⊂ H then ex (n, F ) ≤ ex (n,H).

In our proof of Theorem 3.2 we shall use the following crude bound on symmetric

Zarankiewicz numbers z = z(m,n, s, s) = ex (Km,n, Ks,s), see for instance [5].

Theorem 3.3. For all m,n ≥ s, and s ≥ 1 we have

z(m,n, s, s) ≤ 2nm1−1/s + sm.

It is a well-known fact that z(n, n, s, s) ≥ 2ex (n,Ks,s), see [5]. Since every

bipartite graph H is a subgraph of Ks,s for some s, it follows that an H-free graph G
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on n vertices has at most c(H)n2−ε(H) edges, where ε = ε(H) is a small positive

number. Therefore δ(G) ≤ cn1−ε. Furthermore, since a subgraph of an H-free graph

is also H-free, we may conclude that dg (G) ≤ cn1−ε. A more careful estimate on the

degeneracy of an H-free graph is given by the following lemma.

Lemma 3.4. For every H-free graph G,

dg (G) ≤ 4ex (n,H)

n
+ 2|H| ≤ CH

ex (n,H)

n
.

In other words, every H-free graph G of order m ≤ n has a vertex of degree at

most CHex (n,H)/n, where CH is a constant that depends only on H.

Proof. The second inequality follows from the fact ex (n,H) ≥ n/2 for all graphs H

containing more than one edge (the case e(H) ≤ 1 is trivial), thus we can take

CH = 4 + 4|H|.

To prove the first inequality, notice that every H-free graph G on m vertices

contains a vertex of degree at most 2e(G)/m ≤ 2ex (m,H)/m. Hence, it suffices to

show that
ex (m,H)

m
≤ 2ex (n,H)

n
+ |H| (3.1)

for all 1 ≤ m ≤ n. We claim that

bn/mc · ex (m,H)− |H| ·m · bn/mc ≤ ex (n,H) (3.2)

for all 1 ≤ m ≤ n. It is easy to check that (3.2) implies (3.1), no matter if the left

hand side is positive or not.

To see that (3.2) holds, consider an m-vertex H-free graph G with the maximum

number of edges, and take bn/mc of its vertex disjoint copies G1, G2, .... If their
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union is H-free (e.g., in the case when H is connected) then

bn/mcex (m,H) ≤ ex (mbn/mc, H) ≤ ex (n,H).

If H is disconnected with components C1, ...., Ct then let s be the maximum integer

that the graph Fs with components C1, ..., Cs appears in G; by assumption that G is

H-free we have s < t. Let G′ = G \ V (Fs), that is remove Fs and all edges adjacent to

it from G; we have deleted at most m|H| edges. Then the graph comprising bn/mc

vertex disjoint copies of G′ is Fs+1-free, and therefore H-free as well, which implies

(3.2).

We shall need two basic facts about graph colouring. Their proofs can be found in

any standard textbook on graph theory e.g. [6]. One is the fact that a graph of

maximal degree ∆ can be ∆ + 1-coloured by a greedy algorithm. The other theorem

we need is Vizing’s theorem: a graph of maximal degree ∆ can be edge-coloured

using ∆ + 1-colours or, equivalently, can be decomposed into ∆ + 1 matchings.

3.3 A Primer on Graph Decompositions

In this section we shall state various theorems on graph decompositions that we

shall use in the proof of Theorem 3.2.

Let H be a bipartite simple graph of order d with vertices v1, v2, . . . , vd and let

deg(vi) denote the degree of vi. Denote gcd(H) = gcd(deg(v1), . . . , deg(vd)). For an

H-design of order n to exist we need the following obvious conditions:

e(H)|
(
n

2

)
and gcd(H)|(n− 1).
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If these conditions hold we say that n is H-divisible. If n admits an H-design, we call

it H-admissible. Wilson [34] proved the following fundamental theorem.

Theorem 3.5. There exists an integer n0, depending on H, such that every n > n0

that is H-divisible is also H-admissible.

Wilson’s theorem implies that f(n;H) exists for every H and n. Indeed, the union

of an H-packing P on n vertices can be considered as our new ‘building block’ H ′. By

Theorem 3.5 there exists an H ′-design P ′ for a sufficiently large H ′-divisible number

n′. By decomposing each copy of H ′ in P ′ into copies of H, we obtain an H-design on

n′ vertices. Since for a given n there are only finitely many H-packings on n vertices,

and each of them can be completed to an H-design as above, f(n;H) is well-defined.

More generally, let us say a graph G is H-divisible if all degrees of G are multiples

of gcd(H) and e(H)|e(G).

A very deep and powerful extension of Wilson’s theorem was proved by

Gustavsson [16].

Theorem 3.6. For any digraph D there exist εD > 0 and ND > 0 such that if G is a

digraph satisfying:

(a) e(G) is divisible by e(D);

(b) there exist non-negative integers aij such that

∑
vi∈V (D)

aijd
+
D(vi) = d+G(uj),

∑
vi∈V (D)

aijd
−
D(vi) = d−G(uj)

for every uj ∈ V (G);

(c) if there exists ~u1u2 ∈ E(G) such that ~u2u1 6∈ E(G) then there exists

~v1v2 ∈ E(D) such that ~v2v1 6∈ E(D);

(d) |V (G)| ≥ ND;
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(e) δ+, δ− > (1− εD)|V (G)|

then G can be written as an edge-disjoint union of copies of D.

Viewing simple graphs G and H as digraphs, by orienting each edge in both

directions, the above theorem translates to

Theorem 3.7. For every H there exist m0 and ε0 such that every H-divisible graph

G on m > m0 vertices with minimum degree at least (1− ε0)m can be

edge-decomposed into copies of H.

In the proof of Theorem 3.2 we shall need the analogue of Wilson’s theorem for

H-packings into complete bipartite graphs Km,n, in which case the obvious

divisibility conditions are

e(H)|mn , gcd(H)|m and gcd(H)|n.

Theorem 3.8. Let H be a bipartite graph. There exists an integer n0, depending on

H, such that every H-divisible Km,n with m,n > n0 can be edge-decomposed into

copies of H.

This was proved by Häggkvist [17] for the case when H is regular, m = n, and

under stronger divisibility assumptions. However, Häggkvist’s proof was before

Gustavsson’s theorem. With Theorem 3.6 at our disposal, we can give a proof of

Theorem 3.8. While it is almost certain that its statement has been well-known, we

could not find any explicit reference. Thus, we shall give a proof sketch, skipping

some technical details.

Proof. First suppose that m = n. The graph Kn,n on vertices [n] and {1′, ..., n′} can

be thought of as a directed graph with loops on [n] by replacing each edge ab′ with a

directed edge a to b. By embedding H so that the bipartite classes of H are sent to

disjoint subsets of [n] we can regard H as a directed graph H ′ without loops. By
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removing n copies of H from Kn,n first, where each copy has exactly one ’vertical’

edge, we reduce to the case of decomposing a dense digraph G (without loops) into

copies of the digraph H ′. Here ‘dense’ means that we must ensure that

δ±(G) > (1− ε)n. The packing of G can be done provided (a) n is large enough; (b)

the number of edges is divisible by e(H); and (c) the in- and out-degrees of any

vertex of G are representable as a non-negative linear combination of the in- and out-

degrees of vertices of H ′. This last condition should translate to the assumption than

n is divisible by both the gcd of the degrees of the vertices in A and the gcd of the

degrees of the vertices in B, where (A,B) is the bipartition of H. (This assumes one

wants to pack all the copies of H the same way round. If not, pack H ∪Hr where Hr

is H with the bipartition reversed, and possibly remove one extra copy of H initially

to ensure that 2e(H) divides e(G). Then n needs only be divisible by the gcd(H).)

So there is an integer n′0 such that the theorem holds for all Kn,n with n > n′0. In

fact, the same construction works for Km,n if n ≤ m ≤ (1 + ε′(H))n. To see this,

remove some copies of H in order to isolate m− n vertices in the larger partition

class, making sure that we do not reduce the degrees of the remaining vertices too

much. Having done that, apply the above digraph reduction to the remaining graph,

which can be viewed as a subgraph of Kn,n. Then apply Theorem 3.6 as above.

Given m,n ≥ n0 = (n′0)
2, we can partition both sets {1, ...,m} and {1, ..., n} into

subsets of size about n0 each and such that each complete bipartite graph (X, Y )

induced on two partition classes X ⊂ {1, ...,m} and Y ⊂ {1, ..., n} is H-divisible.

Pack every such graph with copies of H as described above.

This theorem does not have the full strength of Gustavsson’s theorem but it is

enough for our purposes to decompose complete bipartite graphs.
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3.4 Upper bound: Outline of the Proof

In this section we would like to describe our strategy for proving the upper bound

in Theorem 3.2.

Consider an H-packing P = {H1, H2, . . . , Hm} on n vertices. We want to

complete it to an H-design by adding few vertices. We consider the uncovered graph

G0 = (Kn) \ ∪i=1,...,mE(Hi) i.e. the graph consisting of edges that are not covered by

copies of H.

We proceed in three steps:

Step 1: Reducing the transversal. We add some new vertices and all possible

edges from those to other vertices. Now we delete an edge-disjoint collection of copies

of H from the resulting graph, so that the resulting graph has a smaller transversal

than the graph we started with. This step constitutes a major part of the proof of

Theorem 3.2 and will be carried out in Sections 3.5 through 3.7.

More precisely, in Section 3.5 we shall construct a ‘nice’ collection of disjoint

k-stars on the edges of any given graph G. This construction will be applied in

Section 3.6 to G0 in order to construct a hypergraph M with a small edge-chromatic

number, related to G0. Then in Section 3.7 we shall use M and its edge-colouring in

order to extend P to a packing on a larger vertex set, such that the uncovered graph

has a small transversal.

In Section 3.8 we shall describe how we iterate Step 1 in order to obtain further

packings with yet smaller transversals of the uncovered graphs.

Step 2: Decreasing the number of uncovered edges. Starting with an uncovered

graph G1 that has a small transversal we extend the new packing to obtain a new

uncovered graph G2 with very few edges. This will be established in Section 3.9.
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Step 3: Completing the packing. This will be done by applying Theorem 3.7 and

Theorem 3.8 in Section 3.10.

3.5 Degeneracy

The aim of this section is to prove Proposition 3.9: this will be our main tool for

reducing the transversal of the uncovered graph. We also believe that the statement

of Proposition 3.9 is interesting in its own right; see Section 3.12 for related questions.

Recall that a k-star is a copy of K1,k.

Proposition 3.9. For every integer k and a graph G of degeneracy d there is a

maximal collection C of edge disjoint k-stars on G such that each vertex of G is an

endvertex to at most d+ k − 1 stars in C.

Case k = 2 was proved by Füredi and Lehel [13]. We are following their approach,

using downdegree instead of updegree since this feels more natural to us. Let us

choose an ordering v1, v2, . . . , vn of vertices of G0 such that the (maximum)

downdegree
←−
∆ (G0), defined as the maximum of the number of edges from a vertex vi

to vertices vj, j < i, over all i = 1, 2, . . . , n, equals d = dg (G).

Let us construct C as follows: take a maximal collection of edge-disjoint k-stars

whose central vertex is smaller in the given ordering than any of its endvertices, and

then extend it to a maximal collection of edge-disjoint k-stars. Then u ∈ G appears

as an endvertex of a star of the first kind, or as such endvertex of a star of the second

kind which is greater than its centre at most
←−
∆ (G) times. It appears as an endvertex

smaller than the centre of a star of the second kind at most k − 1 times since

otherwise we could form a star of the first kind with u at its centre – this is a

contradiction as we started taking stars of the second kind in a graph containing no

stars of the first kind.
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It follows that u can appear at most
←−
∆ (G) + k − 1 = d+ k − 1 times as an

endvertex of a star in C, which proves Proposition 3.9. Note that the maximality of C

implies ∆(G \
⋃
C) ≤ k − 1.

3.6 A Hypergraph and its Colouring

We continue carrying out the plan outlined in Section 3.4. Recall that we are

given an H-packing P = {H1, H2, . . . , Hm} on n vertices and

G0 = (Kn) \ ∪i=1,...,mE(Hi) is our uncovered graph.

In this section we shall give a construction of a certain hypergraph M on a vertex

set of G0 along with its edge-colouring; we shall need it in order to extend P to a

packing on a larger set of vertices, in which the uncovered graph will have a small

transversal.

First of all, we can assume without loss of generality that G0 is H-free (by

removing a maximal set of edge-disjoint copies of H from G0). By Lemma 3.4 we

know that dg (G0) = O(ex (n,H)/n).

For a fixed vertex v of H, let k = deg(v) and W1 = N(v). Let (U,W ) be a

bipartition of H such that v ∈ U and W1 ⊂ W . Denote by R the ratio |W |/|W1|,

rounded up to the nearest integer. Let s = |U | and t = |W | be the sizes of the

bipartition classes. For convenience we can assume that s ≥ t, perhaps choosing

another v.

By Proposition 3.9 there is a collection C of disjoint k-stars on G0 with the

property that each vertex of G0 is an endvertex to at most dg (G0) + k − 1 stars in C.

Define a multi-k-graph (k-uniform hypergraph with several edges on the same set of

vertices allowed) called M as follows: for every star of C there is a k-edge containing

precisely the leaves of the star. The maximum degree ∆(M) (i.e. the maximum

47



number of edges containing any given vertex) is bounded by

dg (G0) + k − 1 ≤ c3 ∗ ex (n,H)/n, where c3 is a positive constant depending only on

H. We shall denote edges of M by (c, e) where c ∈ G0 is the centre of the respective

star and e is the hyperedge consisting precisely of the leaves of the star.

Let us introduce an edge-colouring on M so that each colour class forms a

vertex-disjoint collection of hyperedges. Since every hyperedge intersects at most

k(∆(M)− 1) other hyperedges, it can be done, using at most

k(∆(M)− 1) + 1 = c4 ∗ ex (n,H)/n colours: let us colour greedily as many

hyperedges with colour 1 as we can, then with colour 2 and so on (again c4 is a

positive constant depending only on H).

Split every colour class i into R = d|W |/|W1|e (almost) equal parts i.1 through

i.R. For every colour class i, fix a map σi which, for every j, takes hyperedges

coloured i.j to disjoint |W1|(R− 1)-subsets of vertices inside the union of hyperedges

coloured with one of the colours i.l, l 6= j. Note that this mapping takes hyperedges

into sets which are disjoint from the hyperedge itself.

Now we are ready to extend P in order to reduce G0 to a new uncovered graph G1

that has a new transversal.

3.7 Construction of a transversal

We shall prove that, by adding a small set of new vertices Q, we can use up all

the edges inside G0 in edge-disjoint copies of H and end up with a graph G1 on the

vertex set V ∪Q with no edges inside V (i.e. with transversal Q).

The following construction decreases the degrees of the vertices in V below k.

Construction 1. Covering all k-stars. Write V = V (G0). Consider v ∈ H,

k = deg(v), the bipartition H = (U,W ) and the colouring of the multihypergraph M
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as before. For every colour i.j add to G0 a set Qi.j = qi.j1 , . . . , q
i.j
|U |−1 of |U | − 1 new

vertices and place a copy of H = (U,W ) in the obvious way on every star (c, e) of

colour i.j such that U = {c, qi.j1 , . . . , q
i.j
|U |−1} and W ⊂ e ∪ σi(e) (if |W | is divisible by

|W1| then we have W = e ∪ σi(e)). Note that the sets e ∪ σi(e) for different

hyperedges e of colour i.j are pairwise disjoint and so the copies of H are placed

edge-disjointly. We needed O(ex (n,H)/n) new vertices.

The following construction takes care of all the edges from within V .

Construction 2. Covering the remaining edges. By Vizing’s theorem, the set of

remaining edges inside V can be partitioned into (at most) k matchings L1, . . . , Lk.

Consider the smallest r such that
(
r
2

)
≥ e(H)n

2
and Kr can be packed completely with

copies of H. By Theorem 3.5 we can pick r = O(
√
n). For each matching Li, add to

G0 a set QLi of r new vertices, and pack the copies of H into Kr ∪ Li so that the

packing is almost like the complete packing of Kr, except with all edges in Li covered

by an edge from different copies of H. This way we clearly pack copies of H

edge-disjointly. Note that |QLi | = O(n1/2) for every i, so we need O(n1/2) new

vertices for this construction.

However, if H is matching-friendly, we can do much better. Recall, H is

matching-friendly if V (H) can be partitioned into V1 and V2, where V2 is independent

and V1 is ‘almost’ independent, i.e. the V1-induced subgraph of H is a non-empty

matching and some isolated vertices. This implies that we can cover at least one edge

of an uncovered matching Li by adding |V2| new vertices such that no edge between

the new vertices will be used. It follows easily that the whole Li can be covered using

at most a constant number of c(H) new vertices.

Let Q = ∪i,jQi.j
⋃
∪iQLi . We have constructed a graph G1 on vertex set V ∪Q

with transversal Q. By removing copies of H, we can assume that G1 is H-free. For

the number of added vertices we have the bound |Q| ≤ c5 ∗max {ex (n,H)/n,
√
n}. If

H is matching-friendly, we obtain |Q| ≤ c6 ∗ ex (n,H)/n.
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3.8 Further transversals

We can add some more vertices to G1 to reduce the transversal number of the

resulting graph even further. This procedure can be repeated many times.

It suffices to prove the following lemma.

Lemma 3.10. Let G be an H-free graph on n vertices, containing a transversal Q of

size q = o(n). Then there is an ordering v1, . . . , vn of the vertices of G such that
←−
∆ (G) ≤ Cq1−ε, where C and 0 < ε = ε(H) < 1 are constants depending only on H.

In particular, dg (G) ≤ Cq1−ε.

Proof. Let us write Y = V (G)\Q and consider the bipartite graph G′ with bipartition

(Y,Q), whose edges are the edges of G having precisely one vertex in each of Q and

Y . Let G′′ = G[Q] be the subgraph of G induced by Q. Then the edge sets of G′ and

G′′ partition the edge set of G.

Since G′′ is an H-free graph on q vertices, its degeneracy is at most c′′q1−ε for a

positive constant c′′ depending only on H. Let us fix an ordering u1, u2, . . . , uq of the

vertices in Q such that
←−
∆ (G′′) = dg (G′′).

Select s and t with s ≥ t such that H ⊂ Ks,t ⊂ Ks,s and s is chosen as small as

possible. By Theorem 3.3 we have that

z(|Q|, |Y |, s, s) ≤ 2|Y ||Q|1−1/s + s|Q|.

Let ε ≤ 1/s. We find that

ex (K|Q|,|Y |, H) ≤ ex (K|Q|,|Y |, Ks,s) = z(|Q|, |Y |, s, s) ≤ 2|Y ||Q|1−1/s + s|Q|.

Therefore, as long as |Y | ≥ q1/s, the minimal degree in Y satisfies δ(Y ) = O(q1−1/s).
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Let v1 be a vertex of Y of smallest possible degree in the graph G′, let v2 be a

vertex of Y of minimal degree in G′[V (G)\{v1}], take v3 to be a vertex of Y of

minimal degree in G′[V (G)\{v1, v2}] and so on, until vr, where r = |Y | − q1/s. Each

of those degrees is O(q1−ε), by the previous paragraph. Let vr+1, vr+2 . . . vn−q be the

remaining vertices in Y .

Define the ordering vr+1, vr+2 . . . vn−q, u1, u2, . . . , uq, v1, v2, . . . , vr. It follows from

the construction that
←−
∆ (G′) ≤ c′q1−ε(H).

The lemma allows us to iterate the construction of Sections 3.6 and 3.7. An

H-free uncovered graph with a transversal of size q has by Lemma 3.10 degeneracy

c′q1−ε. Hence we can define a hypergraph as in Section 3.6 and use it in order to

construct a new packing as in Section 3.7. The number of new vertices needed in

Construction 1 will be O(q1−ε) and in Construction 2 of Section 3.7 each matching

has cardinality at most q, so we need to add a set QLi of O(q1/2) additional vertices

for every matching Li. Hence, the total number of new vertices will be at most

C(H)q1−ε(H). By construction, this set of vertices will be a transversal of the new

packing, so we can just repeat the procedure, using the new transversal. We iterate

as long as Cq1−ε ≤ q/2, that is q ≥ C ′(H) = (2C)1/ε. The number of new vertices

halves after each step, thus by adding O(max {ex (n,H)/n,
√
n}) new vertices, or

O(ex (n,H)/n) if H is matching-friendly, we can make the transversal smaller than

the constant C ′(H).

3.9 Decreasing the number of uncovered edges

Our next objective is to reduce the number of uncovered edges. Furthermore we

shall make sure that the number of vertices in the uncovered graph is congruent 1

modulo e(H). This will be needed later for completing the packing.
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Write G2 for the uncovered graph with Q ⊂ V (G2) a transversal and

Y = V (G2)\Q. As we know from Section 3.8, we may assume that |Q| < C ′(H).

Define g = gcd(H). By adding a few new vertices to Q we may also assume that

|G2| ≡ 1 mod e(H). Since G2 is the complement of a partial packing and g|e(H)

(because H is bipartite), all degrees in G2 must be multiples of g. This implies that

every vertex in Y is either isolated or has at least g neighbours in Q. We shall add a

set Z of new vertices of size m|Q|g in order to reduce G2 to a graph G3 in which

every subset of vertices of Q of size g has at most m common neighbours in Y and

every vertex in Y has either none or at least g neighbours in Q. That would bound

the number of edges between Y and Q by m|Q|g. In addition every vertex from Z

will have at most m uncovered edges in Y incident with it. Then G3 would have at

most m|Q|g +m|Z|+ 1/2(|Z|+ |Q|)2 = C ′′(H) edges.

Let m = 2n0, where n0 a multiple of e(H) that satisfies Theorem 3.8 for H, that

is any H-divisible complete bipartite graph with at least n0 vertices in each partition

class can be edge-decomposed into copies of H.

Let us pick a set K = {q1, q2, . . . , qg} of some g vertices in Q and write N for their

common neighbourhood in Y : N = N(q1) ∩N(q2) ∩ . . . ∩N(qg) ∩ Y . If |N | > m, we

are going to add to G2 an additional set Q∗q1,...,qg = Q∗ = {q∗1, q∗2, . . . , q∗m} of m

vertices. If |N | ≤ m, we just pick the next K.

We are going to cover almost all the edges in the complete bipartite graphs

(K ∪Q∗, N) and (Q∗, Y \N). Since |Q∗| and |K ∪Q∗| are both divisible by g, to make

those graphs H-divisible, it suffices to omit less than e(H) vertices from each of the

sets N and Y \N — so that we obtain respectively sets N ′ and Y ′. By Theorem 3.8 it

follows that both complete bipartite graphs (K ∪Q∗, N ′) and (Q∗, Y ′) can be packed

completely with edge-disjoint copies of H.

The uncovered graph has obtained m new vertices, each of which has at most m

(in fact at most 2e(H)) uncovered edges into Y and the vertices in Q∗ have now at
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most m common neighbours inside Y . Also, for each vertex in Y , the number of its

remaining neighbours in Q is a multiple of g.

If we repeat the procedure for all possible sets K ⊂ Q of size g, we obtain the

desired graph G3, taking Z to be the union over all K. Notice also that by adding m

vertices at a time, we make sure that |G3| ≡ 1 mod e(H).

3.10 Completing the packing

We shall now apply Theorems 3.7 and 3.8 to complete the packing. Since the

uncovered graph G3 has a constant number of edges, the number of non-isolated

vertices in it is also constant. Let Q be a set of vertices of size C3(H) such that all

vertices in Y = G3 \Q are isolated and |Y | ≡ 0 mod e(H); hence also

|Y | ≡ 0 mod g, where g is the greatest common divisor of all degrees in H, as

before. By the construction in the previous section we may assume that

|Q|+ |Y | = |G3| ≡ 1 mod e(H), thus |Q| ≡ 1 mod e(H).

We now apply Theorem 3.7 to G3[Q] to extend the packing by adding a set X of

few new vertices. More precisely, we pick X to be a set of new vertices of size

max {m0, (1/ε0)|Q|}, where m0 and ε0 are as in Theorem 3.7, this is a constant of H.

Also let |X| ≡ |Y |+ |Q| − 1 mod 2e(H). To complete the packing it suffices to

make sure that the uncovered graph on Q∪X and the complete bipartite graph KX,Y

are H-divisible.

One divisibility condition requires |X|+ |Q| ≡ 1 mod g for the former graph

and |X|, |Y | ≡ 0 mod g for the latter. Both conditions are satisfied since

|X| ≡ 0 mod g.

The other divisibility condition requires the number of edges in each graph to be

divisible by e(H). This is certainly true for KX,Y , by the choice of Y . So we only
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need to make sure that e(H) divides the number of edges of the uncovered graph on

Q ∪X, in other words

e(H)|
((
|X|+ |Q|

2

)
−
(
|Q|
2

)
+ e(G3)

)
.

Since G3 is the complement of an H-packing, we know that

e(G3) ≡
(
|Q|+ |Y |

2

)
mod e(H).

Therefore we need e(H) to divide

(
|X|+ |Q|

2

)
−
(
|Q|
2

)
+

(
|Q|+ |Y |

2

)
=

(
|X|+ |Y |+ |Q|

2

)
− |X||Y |.

This is true whenever |X| ≡ |Y |+ |Q| − 1 mod 2e(H).

Hence we can satisfy all divisibility conditions in order to apply Theorems 3.7 and

3.8 to complete the packing. This finishes the proof of the upper bound in Theorem

3.2.

3.11 Lower bound

In this section we want to show the existence of H-packings that need

Ω(ex (n,H)/n) vertices in order to be completed. If H is not matching-friendly, there

exist also packings that need Ω(
√
n) new vertices.

Let us start with the second claim. If H is not matching-friendly, we need Ω(
√
n)

new vertices in order to cover the edges of a complete matching L on n vertices.

Indeed, any time we place a copy of H that covers at least one edge of L, we must use

an edge between two new vertices (otherwise H would be matching-friendly). Hence,

in order to cover n/2 edges of L we need about
√
n new vertices.
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Now we have to make sure that the complement of a perfect matching is the

union of an H-packing for infinitely many n. Take two disjoint copies of H and view

their union H ′ as a bipartite graph with equal partition classes, i.e. one copy of H is

‘upside down’. Let s be the size of the partition classes. By Theorem 3.5, if n is

sufficiently large, there is a complete packing P of Kn with copies of H ′. Now take

two identical copies of P , one on {a1, a2, . . . an} and another on {b1, b2, . . . bn} and

add a copy of H ′ between ai1, . . . , ais and bj1, . . . , bjs and another one between

aj1, . . . , ajs and bi1, . . . , bis for each copy of H ′ in P between ai1, . . . , ais and

aj1, . . . , ajs, in the obvious way. We obtain a packing on 2n vertices, whose union is

the complement of a matching between vertices ai and bi.

Now let us prove the first claim. Suppose we have found an H-packing P , whose

complement is an H-free graph with about ex (n,H) edges. In order to cover each

edge of it, every copy of H would use at least one out of kn+
(
k
2

)
= (1 + o(1))kn new

edges, where k is the number of new vertices. Since we need at least ex (n,H)/e(H)

copies of H to cover all edges of the uncovered graph, we must have

k = Ω(ex (n,H)/n).

Hence, it remains to prove that such a packing P exists for arbitrarily large values

of n. Take an (extremal) H-free graph G on n vertices with ex (n,H) edges. We

would like to remove a small proportion of edges from G in order to make the

complement of the remaining graph satisfy the conditions of Theorem 3.7. This

would ensure the existence of the desired packing.

Let us first eliminate vertices of high degree. Suppose G has log n vertices of

degree at least ε0n, where ε0 is as in Theorem 3.7. Then by Theorem 3.3, for a

sufficiently large n the bipartite graph between m = log n such vertices and the rest

of G contains Ks,s ⊃ H, contradicting the assumption that G is H-free. It follows

that G has less than log n vertices of degree at least ε0n.
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Removing them, we lose at most n log n edges obtaining (unless H is a forest, in

which case there is nothing to prove) a new H-free graph G′ with (1− o(1))ex (n,H)

edges and no vertices of high degree.

Next we would like to remove a few more edges from G′ in order to fulfil the

divisibility conditions. A theorem of Pyber [28] states that a graph F that has at

least n log n ∗ 32r2 edges contains a (not necessarily spanning) r-regular subgraph.

Let us set r = 2e(H). Remove edge sets of r-regular subgraphs G1 ⊂ G′, G2 ⊂ G′ \G1

etc. until the remaining graph G′ \ (G1 ∪G2 ∪ · · · ∪Gk) has less than n log n ∗ 32r2

edges. Then the graph G′′ = G1 ∪G2 ∪ · · · ∪Gk satisfies all conditions of Theorem 3.7

and still has about ex (n,H) edges, whence we obtain the desired packing P .

3.12 Outlook

There is a simple sufficient condition for a graph H to be not matching friendly:

H cannot be matching-friendly if every edge of it is contained in a 4-cycle. However,

in this case, since C4 ⊂ H and ex (n,C4) = Θ(n3/2), we obtain ex (n,H)/n = Ω(n1/2),

thus being not matching-friendly does not matter, as far as Theorem 3.2 is concerned.

There are examples of bipartite graphs that are not matching-friendly and C4-free;

take for instance C8 and connect the opposite pairs of vertices by paths of length 2.

Or, alternatively, take the incidence graph of the Fano plane. However, we do not

know much about the extremal numbers of such graphs, so the question is: does

‘matching-friendly’ ever make a difference? In other words, is it always true

that ex (n,H) = Ω(n1/2) for a non-matching-friendly graph H? If this is indeed the

case, then the statement of Theorem 3.2 would simplify to f(n;H) = Θ(ex (n,H)/n)

for all graphs H.
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The constant CH in the proof of Lemma 3.4 depends on H only when H is a

disconnected forest. Is it possible to prove Lemma 3.4 with an absolute constant,

perhaps even CH = 2 + o(1)?

The following question was inspired by Proposition 3.9. We believe it is

interesting in its own right.

Conjecture 3.11. For every integer k and a graph G of degeneracy d there is a

maximal collection C of edge disjoint paths of length 2k on G such that each vertex of

G is an endvertex to at most ckd paths in C for some constant ck depending only on k.

This cannot hold for odd-length paths, as can be seen by taking, for instance

paths of length 3 and G = K2,m, where m is large. Case k = 1 of Conjecture 3.11 is

the special case of Proposition 3.9; it was first proved by Füredi and Lehel [13]. It

seems likely that using an elaboration of the method of proof of Proposition 3.9, one

can also prove Conjecture 3.11 for k = 2 and k = 3. However, for k ≥ 4 one would

probably need a genuinely different approach.

More generally, can the 2k-path in the statement of Conjecture 3.11 (or

Proposition 3.9) be replaced by a tree, in which all distances between the leaves are

even?

57



Chapter 4

Slowgrow Sequence

4.1 Introduction: the Slowgrow Sequence

Steven Kalikow introduced the following infinite sequence of positive integers for

potential study. We shall denote it S and call it the Slowgrow sequence.

Intuitively, we build the sequence up inductively. Let s1 = 1. For si, i ≥ 2, write

the smallest positive integer m such that the block of terms si−m+1si−m+2 . . . si−1m of

length m ending in that m has not appeared earlier.

Set s1 = 1. Having defined s1, s2, . . . , sn, let

sn+1 = min {m|(sn−m+2, sn−m+3, . . . , sn,m)

6= (sn−m+2−i, sn−m+3−i, . . . , sn−i, sn+1−i)

∀i ∈ [n−m+ 1]}.

Let us call the sequence S = (s1, s2, . . .) = s1s2 . . . the Slowgrow sequence. A block of

terms of a sequence is a finite subsequence consisting of consecutive terms. In words,

having defined the first n terms of the Slowgrow sequence, the (n+ 1)st term is the
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Table 4.1: The first 1000 terms of the Slowgrow sequence, 60 per row

122323334234334434444523445334543455344544455445554545555562
345556334556434564445653455654456634455664455672345655455665
455673345665555655566645456564555667434566655656556666565665
666666753456675445674445666676345566676445667654566677344566
774455675545667754556765556766455667665566776455677555566777
454566782345667775565666776556678334567564565667674555677665
667776565675655676755566784345676665667853456776756656766755
666777756566778444567676566678634566786445677766666777854456
778554567677566667786545677776676666778734556777776766676676
766776667778664566678744566787545667883445677866556777875556
777884455677876456677877455667788545567788645567855556778874
556778923456777886555677893345677877556677894345677888454567
788944456778895345678655667876556778885556678855656767766777
777786745656776767677767767777787665677778776566778875566788
665667877666787775667677778876566788766667878455567866656778
785566678877566777788865656777887766778786566678886666678887
5656778887667677867556767778777667788885

smallest positive integer m such that the suffix (sn−m+2, sn−m+3, . . . , sn,m) of the

Slowgrow sequence of length m ending in that m is a block of terms that has not

appeared earlier in the Slowgrow sequence.

The first 1000 terms of the Slowgrow sequence that are all 1-digit numbers are

given in Table 4.1. The sequence starts as 1223233342 . . . . For illustrative purposes

let us verify how this was calculated. The second term of the sequence cannot be 1

since 1 has occurred in the sequence earlier. The second term of the sequence is 2

since this is the first occurrence of 12 in the sequence. The third term cannot be 1

since 1 has occurred. It will be 2 since it is the first occurrence of 22. The fourth

term of the sequence cannot be 1 since 1 has occurred earlier; it also cannot be 2

since 22 has occurred earlier; it will be 3 since this is the first occurrence of 223. The

fifth term of the sequence cannot be 1 since 1 has occurred earlier; it will be 2 since it

is the first occurrence of 32. The sixth term cannot be 1 since 1 has occurred earlier,

it cannot be 2 since 22 has occurred earlier, it will be 3 since it is the first occurrence

of 323. The seventh and eighth term are found similarly to be 3s. The ninth term is
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not 1 since 1 has occurred earlier, not 2 since 32 has occurred earlier, not 3 since 333

has occurred earlier, so it is 4 since it is the first occurrence of 3334. The tenth term

is not 1 since 1 has occurred earlier, it is 2 since it is the first occurrence of 42.

Note that the Slowgrow sequence is defined to avoid repetitions of certain kinds of

blocks. Several sequences which avoid some kind of repetitions have been considered

previously, most notably the Ehrenfeucht-Mycielski sequence, see [9] and the Linus

sequence, see [2]. Both of the latter are sequences of binary digits 0 and 1. Both

sequences are useful in ergodic theory.

The Ehrenfeucht-Mycielski sequence starts with the single bit 0; each successive

digit is formed by finding the longest suffix of the sequence that also occurs earlier

within the sequence, and complementing the bit following the most recent earlier

occurrence of that suffix (the empty block “” is a suffix). The Ehrenfeucht-Mycielski

sequence starts as 0100110 . . .. For illustrative purposes let us verify how this was

calculated. The second digit is a 1: the suffix “” of “0” occurs earlier, most-recently

followed by a 0, so add the complement of 0 which is 1. The third digit is a 0: the

suffix “” of “01” occurs earlier, most recently followed by a 1, so add 0. The fourth

digit is a 0: the suffix “0” of “010” occurs earlier, most recently followed by a 1, so add

0. The fifth digit is a 1: the suffix “0” of “0100” occurs earlier, most recently followed

by a 0, so add 1. The sixth digit is a 1: the suffix “01” of “01001” occurs earlier, most

recently followed by a 0, so add 1. The seventh digit is a 0: the suffix “1” of “010011”

occurs earlier, most recently followed by a 1, so add 0.

The Linus sequence is built similarly to the Ehrenfeucht-Mycielski sequence,

except here we want to minimize the longest suffix that also occurs immediately

preceding the suffix. Define the Linus sequence (Ln)n≥1 as a 0-1 sequence with L1 = 0

and Ln chosen so as to minimize the length r of the longest immediately repeated

block Ln−2r+1 . . . Ln−r = Ln−r+1 . . . Ln. The Linus sequence starts as 0100110 . . .. For

illustrative purposes let us verify how this was calculated. The second digit is a 1:
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adding a 0 would produce the block “0” immediately preceded by the block “0”, but

adding a 1 produces the empty block “” immediately preceded by the empty block “”.

The third digit is a 0: adding a 1 would produce the block “1” immediately preceded

by the block “1”, but adding a 0 produces the empty block “” immediately preceded

by the empty block “”. The fourth digit is a 0: adding a 1 would produce the block

“01” immediately preceded by the block “01”, but adding a 0 produces the block “0”

immediately preceded by the block “0”. The fifth digit is a 1: adding a 0 would

produce the block “0” immediately preceded by the block “0”, but adding a 1 produces

the block “” immediately preceded by the block “”. The sixth digit is a 1: adding a 0

would produce the block “010” immediately preceded by the block “010”, but adding a

1 only produces the block “1” preceded by the block “1”. The seventh digit is a 0

because adding a 1 would produce the block “1” preceded by the same block but

adding a 0 only produces the block “” preceded by the same block.

The first digit where the Ehrenfeucht-Mycielski and Linus sequences differ is the

tenth digit.

The rest of the chapter concentrates on the Slowgrow sequence. Next we are going

to present our theorems whose proofs appear in the following sections. There are

three types of theorems. First, bounds on when a new number first occurs in S.

Second, a result about the density of any integer in S. Third, our main result which

concerns the frequency with which certain blocks of terms occur in S.

We are going to study when a new number appears in the Slowgrow sequence. Let

n be a positive integer. Let us define in := min {i : si = n}. So in is the index of the

first appearance of n. We are going to prove the following bounds on the quantity.

Theorem 4.1. Let in be the index of the first appearence of n in S. Then

in ≥ n(n+1)(2n−5)
6

+ 3 for every n ≥ 2.
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Theorem 4.2. Let in be the index of the first appearence of n in S. Then

in ≤ 2 · (n− 1)! + 1 for every n ≥ 1.

If S = s1, s2, . . . is the Slowgrow sequence, then the density of k up to n in S is
Sk(n)
n

where Sk(n) = |{j : 1 ≤ j ≤ n, sj = k}|. The limiting density of k is

limn→∞
Sk(n)
n

.

The next theorem gives a particular function as an upper bound on the density of

a number k up to n in the Slowgrow sequence.

Theorem 4.3. Let the Slowgrow sequence be S = (si)i≥1. Let k be a positive

integer. Let Sk(n) = |{j : 1 ≤ j ≤ n, sj = k}|. Then the density of k up to n is

Sk(n)

n
< max

{
2(k + 1)

( k
2n

) 1
k+1
,
2kkk+1

n
+ 1

}

for every positive integer n. Thus the limiting density of k is limn→∞
Sk(n)
n

= 0.

Say a block (of terms) b1b2 . . . bk occurs in S if there is a positive integer i such

that si = b1, si+1 = b2, . . . , si+k−1 = bk.

Our main result is a theorem concerning which blocks of terms occur in the

Slowgrow sequence. It says that blocks which can potentially occur multiple times in

S in fact occur infinitely often. However, giving any lower bounds on the number of

occurrences of these blocks up to the nth term of S seems like a hopeless task. Our

proof is purely existential and does not say anything about when those blocks occur.

It is the most non-trivial part of this chapter.

Let θ1 be the set of blocks of terms for which there is a k ≥ 1 such that the block

is of form a1a2 . . . ak and there is an i ∈ [k − 1] with ai+1 > ai + 1. We shall show in

Lemma 4.5 that these blocks cannot occur in S. Let θ2 be the set of blocks of terms

for which there is a k ≥ 1 such that the block is of form a1a2 . . . ak−1k. By the

definition of S these blocks occur in S at most once. Let θ3 be the set of blocks that
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do not belong to θ1 and that have no subblocks from θ2. Our main result says that all

blocks in θ3 occur in S infinitely often. Note that a block a1a2 . . . ak−2ak−1 where

k ≥ 2 belongs to θ3 if and only if ai+1 ≤ ai + 1 for every i = 1, 2, . . . , k − 2 and

k ≤ ak−1.

Theorem 4.4. Let k ≥ 2 and ai, i = 1, 2, . . . , k − 1 be positive integers such that

ai+1 ≤ ai + 1 for every i = 1, 2, . . . , k − 2 and k ≤ ak−1. Then the block of terms

a1a2 . . . ak−2ak−1 occurs in S infinitely often.

Why do we consider the Slowgrow sequence? It has the property that it avoids a

certain type of repetitions, but not only that: every new term in the sequence creates

a block that has not appeared so far. It also has the following four properties which

are interesting together:

1) It has a very simple natural definition

2) Every positive integer except 1 occurs infinitely often

3) Every number occurs with limiting density zero

4) A new number n seems to occur quite late, approximately around the 2nth term.

If all one requires are properties 1), 2) and 3) then one can consider the sequence

1, 2, 1, 3, 2, 1, 4, 3, 2, 1, 5, 4, 3, 2, 1, . . .

but in that sequence the first occurrence of n is around the n(n−1)
2

th index whereas in

the Slowgrow sequence it is much later.

If all one requires are properties 2), 3) and 4) then one can consider a sequence

something like

1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
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1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, . . .

which is just the previous sequence (ai) such that each number is repeated at most so

many times that the first n occurs at around index 2n and the limiting density of

every number is 0 (for example if we arrange that the densities up to n of all numbers

occurred so far are equal just before the first occurrence of a new number). However,

one can argue that such a sequence is not natural.

Many of the possible blocks of terms in θ2\θ1 seem to occur in S. The total

number of such blocks in s1, s2, . . . , sn is n because, by the definition of S, every si

defines a new block si−si+1si−si+2 . . . si of length si.

The following is a property of the Slowgrow sequence that limits the growth of S

from a term to the next one. However, there can be an arbitrary decrease from a

term to the next one. We are going to prove in Lemma 4.6 that all positive integers

appear in S. By the definition of S, every integer n is followed by a 2 at its first

occurrence since this will be the first occurrence of the block n2. This gives an

arbitrary decrease from a term to the next one.

Lemma 4.5. In the Slowgrow sequence S = (si)i≥1, for all positive integers i,

si+1 ≤ si + 1.

Proof. Let m = si. By the definition of the Slowgrow sequence, the block

si−m+1si−m+2 . . . si−1m

occurred for the first time here, so the block

si−m+1si−m+2 . . . si−1m(m+ 1)

has not occurred yet. Thus si+1 ≤ m+ 1 by the definition of the sequence.
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Lemma 4.6. All positive integers appear in the Slowgrow sequence S.

Proof. The first term of the Slowgrow sequence is 1 and by Lemma 4.5 the sequence

does not increase by more than 1 in consecutive terms. So it is enough to prove that

the sequence is not bounded. Suppose for contradiction that it is bounded and that

the greatest number in the sequence is n. But each of the blocks of terms of the form

a1a2 . . . am−1m where 1 ≤ m ≤ n and 1 ≤ ai ≤ n can appear only once. The total

number or terms in all these blocks is at most 1 + 2n+ 3n2 + 4n3 + . . .+ nn which is

finite – a contradiction with the infiniteness of the sequence.

Lemma 4.7. If the block of terms a1a2 . . . am−1am occurs in S and am > m then all

blocks of terms of the form a1a2 . . . am−1b also occur in S at least once where

m ≤ b ≤ am.

Proof. Assume the block of terms a1a2 . . . am−1am occurs in S. Then by the definition

of the sequence there are some positive integers b1, b2, . . . , bam−m preceding it, that is,

b1, b2, . . . , bam−ma1a2 . . . am−1am occurs in S. By the definition of S, the blocks

1, am−12, am−2, am−13, . . . , a1a2 . . . am−1m,

bam−ma1a2 . . . am−1(m+ 1), ...,

b2b3 . . . bam−ma1a2 . . . am−1(am − 1)

have all occurred in S earlier. In particular, their subblocks of form a1a2 . . . am−1b

where m ≤ b ≤ am − 1 have all occurred in S earlier.

These are quite general lemmas that will be useful later, in particular in proving

our main result.
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Table 4.2: The index of the first appearance of n in S, 2n and their ratio for n =
1, 2, . . . , 19

n in 2n in/2
n

1 1 2 0.5
2 2 4 0.5
3 4 8 0.5
4 9 16 0.56
5 22 32 0.69
6 59 64 0.92
7 107 128 0.84
8 308 256 1.2
9 667 512 1.3
10 1680 1024 1.64
11 2945 2048 1.44
12 6255 4096 1.53
13 14023 8192 1.71
14 32735 16384 2
15 55668 32768 1.7
16 109614 65536 1.67
17 195789 131072 1.49
18 305866 262144 1.17
19 609064 524288 1.16

4.2 The first occurrence of a new number in the

Slowgrow sequence

We are going to study when a new number n first occurs in the Slowgrow

sequence. Recall that in is the index of the first appearence of n in S. The first few

values of in, calculated by a computer, are given in Table 4.2. It is an open question

if the value of in grows like 2n: we observe that it is between 2n−1 and 2n+1 for all

n = 1, 2, . . . , 19.

Now we are going to prove a lemma that is the main part of the proof of our lower

bound on in, given in Theorem 4.1.

Lemma 4.8. in+1 ≥ in + n(n− 2) for every positive integer n.
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Proof. By the definition of in, the first time n occurs in the Slowgrow sequence is at

index in. By the definition of the sequence sin+1 = 2. By Lemma 4.5, sin+2 ≤ 3 and

by induction sin+m−1 ≤ m for every positive m, so sin+n−1 ≤ n. So the second time n

occurs is at least at index in + n− 1. Let the index where n occurs the ith time be ji

(suppressing the dependence on n in the notation). So j2 ≥ in + n− 1. We know

sj2+1 = 3. Since n33 has not occurred before, sj2+2 = 3. Now by Lemma 4.5,

sj2+3 ≤ 4 and by induction sj2+m−1 ≤ m for every m, so sj2+n−1 ≤ n. So the third

time n occurs is at index j3 ≥ j2 + n− 1. Now by Lemma 4.5, sj3+1 ≤ 4. Let ki be

the first index such that ski = n and ski+1 = i (again suppressing the dependence on

n in the notation), then k4 ≥ j3. Since n43 has not occurred before, sk4+2 = 3. Now

by Lemma 4.5, sk4+3 ≤ 4 and by induction sk4+n−1 ≤ n. Analogously k5 ≥ k4 + n− 1

and by induction km ≥ km−1 + n− 1 for every m such that 5 ≤ m ≤ n. Now

skn+1 = n, skn+2 = 3, and by Lemma 4.5, skn+3 ≤ 4 and by induction skn+m ≤ m+ 1

for every m = 3, 4, . . . , n, so in+1 ≥ kn + n. Hence

in+1 ≥ kn + n ≥ kn−1 + 2n− 1 ≥ . . . ≥ k4 + (n− 3)n− (n− 2)

≥ j3 + (n− 3)n− (n− 2) ≥ j2 + (n− 2)n− (n− 1)

≥ in + (n− 1)n− n = in + n(n− 2).

We are going to repeat Theorem 4.1 here for ease of reference.

Theorem. Let in be the index of the first appearence of n in S. Then

in ≥ n(n+1)(2n−5)
6

+ 3 for every n ≥ 2.

Theorem 4.1 follows from induction on n using Lemma 4.8 and i2 = 2.

Next we are going to give an upper bound on the time that a new number n first

appears in S. We are going to prove Theorem 4.2, repeated here for ease of reference.
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Theorem. Let in be the index of the first appearence of n in S. Then

in ≤ 2 · (n− 1)! + 1 for every n ≥ 1.

Proof. We shall work in the part s1, . . . sin−1 of S. By the definition of in this only

contains the numbers 1, 2, . . . , n− 1. Consider the types of blocks of terms 1, _ 2,

__ 3, ___ 4, . . ., __ . . ._ (n− 1), i.e. blocks in θ2 containing only numbers up to

n− 1. The first of them appears once. By Lemma 4.5, the second appears at most

n− 1 times (12, 22, 32, . . . , (n− 1)2). By Lemma 4.5, the third appears at most

(n− 2)(n− 1) times

(123, 223, 323, . . . , (n− 1)23, 233, 333, . . . , (n− 1)33, . . . , (n− 1)(n− 1)3),

since the second term of the block can be 2, 3, . . . , n− 1 and the first term of the

block can be 1, 2, . . . , n− 1. The fourth type of block of terms ___ 4 appears at

most (n− 3)(n− 2)(n− 1) times. In general, the kth type of block appears at most

(n− k + 1)(n− k + 2) . . . (n− 1) times since by Lemma 4.5 the number immediately

before k can be k − 1, k, . . . , n− 1, by Lemma 4.5 the number before that can be

k− 2, k− 1, . . . , n− 1 and inductively, by Lemma 4.5, the ith number from the end of

the block can be k− i, k− i+ 1, . . . , n− 1. Thus, by induction on n, the total number

of the blocks appearing in s1, . . . sin−1 is at most

1 + (n− 1) + (n− 2)(n− 1) + (n− 3)(n− 2)(n− 1) + . . .+ 2 · 3 . . . (n− 1)

≤ 2 · (n− 1)!.

Since, by the definition of S, every number si determines exactly one block from θ2,

the number of blocks is equal to the number of terms. So in (s1, . . . , s2·(n−1)!+1) we

must have a number at least n. Since by Lemma 4.5 the increase in consecutive terms

is not more than 1 we must have seen the number n.
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These theorems give basic bounds on the index in of the first appearence of n in

the Slowgrow sequence. We hope that better bounds can be proved.

4.3 Limiting density of a number in the Slowgrow

sequence

Recall that the density up to n in S of a positive integer k is the number of

occurrences of k in s1, . . . , sn divided by n. We are going to prove a relatively easy

upper bound on the density of k up to n in S which grows like O( 1
k+1√n) as n→∞.

By computer experiment, the density of 2 up to n decreases as θ( n
2n

). We conjecture

that the true density of k up to n decreases like O(n
k−1

2n
). It would be interesting to

bridge the gap between these rates. We are going to give the proof of Theorem 4.3

which is repeated here for ease of reference.

Theorem. Let the Slowgrow sequence be S = (si)i≥1. Let k be a positive integer.

Let Sk(n) = |{j : 1 ≤ j ≤ n, sj = k}|. Then the density of k up to n is

Sk(n)

n
< max

{
2(k + 1)

( k
2n

) 1
k+1
,
2kkk+1

n
+ 1

}

for every positive integer n. Thus the limiting density of k is limn→∞
Sk(n)
n

= 0.

Proof. Fix an integer b ≥ 2k. Let us call a block of terms in S given as k1k2 . . . kk−1k

bad if ki ≤ b for all i = 1, 2, . . . , k − 1. Crudely, there are at most bk bad strings in

total and hence the total number of occurrences of k in them is at most kbk. Thus

the density up to n in S of occurrences of k in bad strings is at most kbk

n
. Let us call

a block k1k2 . . . kk−1k good if it is not bad, i.e. there is an i, 1 ≤ i ≤ k − 1 such that

ki > b.
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The density up to n in S of occurrences of k in good blocks is at most 2k
b
: This is

because a good block has a number at least b, so as we go towards lower indices from

it in S, we arrive at an k only after at least b− k steps (since, by Lemma 4.5,

si−1 ≥ si − 1 for every i ≥ 2). So, the number of k’s in the good block and b− k steps

toward lower indices from it is at most k. So the proportion of k’s is at most k
b−k ≤

2k
b
.

Thus a function that bounds the density of k up to n from above is

fk,b(n) = kbk

n
+ 2k

b
. Now let us vary b as a function of n. We minimize fk,b with

respect to b to get the function fk(n) = max

{
2(k + 1)

(
k
2n

) 1
k+1 , 2

kkk+1

n
+ 1

}
, given by

b = max

{⌈(
2n
k

) 1
k+1

⌉
, 2k

}
. The function fk(n) bounds the density of k up to n from

above. In particular, the limiting density of k is 0 since fk(n) approaches 0 as n

approaches infinity.

We hope that a better upper bound on the density of a number k up to n in the

Slowgrow sequence can be proved. Indeed, we conjecture that a bound like O(c−n) for

a suitable constant c > 1 would be closer to the actual value of the density.

4.4 Infinite occurrence of blocks

In this section we are going to prove our main result. It says that any block that

can potentially occur in S multiple times in fact occurs infinitely often. This is

interesting because, even though the Slowgrow sequence is chosen specifically so as to

avoid repetition of certain kinds of blocks, all the blocks except those that appear at

most once by the definition of the sequence and those that do not appear by

Lemma 4.5 actually appear infinitely often.

Lemma 4.9. Let k ≥ 2 be an integer and b1, b2, . . . , bk−2 be positive integers such

that the block ab1b2 . . . bk−2 occurs in S for all sufficiently large a, i.e. for all a > A1
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where A1 is a positive integer. Then ab1b2 . . . bk−2k occurs in S for all sufficiently

large a, i.e. for all a > A2 where A2 is a positive integer.

Proof. We are given that the block ab1b2 . . . bk−2 occurs in S for all a > A1 where A1

is an integer. By the definition of the sequence, each of the blocks 1, bk−22, bk−3bk−23,

..., b1b2 . . . bk−2(k − 1) can occur in S at most once. Thus there are finitely many a

such that ab1b2 . . . bk−2b occurs for some b ≤ k − 1, let them be a1, a2, . . . am where

m ≤ k − 1. So by the definition of S, the block ab1b2 . . . bk−2k occurs in S for all

a > A2 := max {A1, a1, a2, . . . , am}.

The next proposition is the major step in proving our main theorem. Roughly, it

says that all blocks in which numbers decrease sufficiently fast occur in S infinitely

often (provided the last number is greater than the length of the block). It will be

proved by induction where the induction step is divided into two lemmas.

Let us define the following statements.

Pd is “Let p1, . . . , pd be positive integers such that d+ 1 ≤ pd and py+1 ≤ py
2
− 1 for

all y = 1, 2, . . . , d− 1. Any block of terms ap1p2 . . . pd occurs in S for all sufficiently

large a.” for any d ≥ 0.

Bk,d is “Any block of terms ab1b2 . . . bk−1 where b1 = d+ 1, bk−1 = k and

bj+1 ∈ {bj, bj + 1} for every j = 1, 2, . . . , k − 2 occurs in S for all sufficiently large a.”

for any d ≥ 0 and any k ≥ d+ 1.

Proposition 4.10. Pd holds for every d ≥ 0.

For this result we shall require the following lemmas.

Lemma 4.11. Let k and d be positive integers such that k ≥ d+ 1. If Pd−1 holds

then Bk,d holds.
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Proof. Let p0 = a. By Lemma 4.9, since p0p1p2 . . . pd−1 occurs in S for all sufficiently

large p0 we have that the block p0p1p2 . . . pd−1b1 occurs in S for all sufficiently large p0

(since b1 = d+ 1).

We are going to use induction on k. Our induction hypothesis is that there is an

integer-valued function fi (which may also depend on b1, . . . , bi) such that the block

pd+i−bipd+i−bi+1 . . . pd−1b1b2 . . . bi

occurs in S for all tuples (pd+i−bi , pd+i−bi+1, . . . , pd−1) such that pd−1 > fi(0) and

pj−1 > fi(pj) for every j = d+ i− bi + 1, . . . , d− 1. It is true for i = 1 as can be seen

from the statement of the lemma and the first paragraph of this proof. We shall

prove the claim for i+ 1, assuming the claim for i, splitting the proof into two cases.

Firstly, if bi+1 = bi + 1 then, by Lemma 4.9,

pd+i−bipd+i−bi+1 . . . pd−1b1b2 . . . bibi+1

occurs in S for all sufficiently large pd+i−bi . Rewriting,

pd+(i+1)−bi+1
pd+(i+1)−bi+1+1 . . . pd−1b1b2 . . . bibi+1

occurs in S for all sufficiently large pd+(i+1)−bi+1
. We can define fi+1(j) = (fi(j) plus

the increase on the lower bound on the possible pd+i−bi) for every j.

Secondly, if bi+1 = bi, then first of all we notice that

pd+i−bi+1pd+i−bi+2 . . . pd−1b1b2 . . . bi

occurs in S for all sufficiently large pd+i−bi+1 by the existence of fi. Now, by

Lemma 4.9,

pd+i−bi+1pd+i−bi+2 . . . pd−1b1b2 . . . bibi+1
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occurs in S for all sufficiently large pd+i−bi+1. Rewriting,

pd+(i+1)−bi+1
pd+(i+1)−bi+1+1 . . . pd−1b1b2 . . . bibi+1

occurs in S for all sufficiently large pd+(i+1)−bi+1
. We can define fi+1(j) = (fi(j) plus

the increase on the lower bound on the possible pd+i−bi+1) for every j.

To finish the proof, notice that pd+k−1−bk−1
= pd−1 and define a := pd−1.

Recall that Bk,d says that any block of terms ab1b2 . . . bk−1 where b1 = d+ 1,

bk−1 = k and bj+1 ∈ {bj, bj + 1} for every j = 1, 2, . . . , k − 2 occurs in S for all

sufficiently large a. To prove the next lemma, we use that Bk,d means that the block

ab1 . . . bk−1 occurs in S for all possible choices of the set of j such that bj+1 = bj. Note

that this set has d− 1 elements, denote them j0 < . . . < jd−2. We are going to do

induction on d within the proof of the next lemma. On the ith induction step we

assume that j0, . . . , ji−1 have been fixed previously, we are going to vary ji from

roughly k − k
2i

to k − k
2i+1 and assume that we can make any choices for ji+1, . . . , jd−2

such that roughly ji+1 > k − k
2i+1 . The idea is that we vary ji in the same kind of

space that the ji+1, . . . , jd−2 are restricted to. Recall that Pd says that if we let

p1, . . . , pd be positive integers such that d+ 1 ≤ pd and py+1 ≤ py
2
− 1 for all

y = 1, 2, . . . , d− 1 then any block of terms ap1p2 . . . pd occurs in S for all sufficiently

large a. By varying ji we obtain roughly k
2i+1 occurrences of the block

bk+i−pibk+1+i−pi . . . bk−1p1p2 . . . pi. So this gives us that there is an occurrence in S of

bk+i+1−pi+1
bk+i+2−pi+1

. . . bk−1p1p2 . . . pipi+1 (which is a subblock of the previous

followed by pi+1) roughly for every pi+1 = i+ 1, i+ 2, . . . , k
2i+1 and an occurrence in S

of pi+2−pi+1
. . . pi+1 for every pi+1 = 1, 2, . . . , i.

Lemma 4.12. Let d and k be positive integers such that k ≥ d+ 1. If Bk,d holds

then Pd holds.
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Proof. Assume bk−1 > bk−2. Let a := bk−2 such that p1 ≤ a. Then

bk−p1bk−p1+1 . . . bk−3ap1 occurs in S by Lemma 4.7.

Let us define j0 = min {j : bj = bj+1} and let ji = min {j > ji−1 : bj = bj+1}. Now

we are going to vary the bi (within the allowed constraints) so that j0 varies from

k − p1 to k − dp1
2
e and the other ji stay fixed so that j1 ≥ k − dp1

2
e+ 1. We examine

what term comes after bk−p1bk−p1+1 . . . bk−3ap1. If it was a 2 then it was the first

occurrence of p12; varying the position of j0 we may assume not. If it was a 3 then it

was the first occurrence of ap13; varying the position of j0 we may assume not.

Continuing, we may assume it was any p2, d+ 1 ≤ p2 ≤ p1
2
− 1. Now we are going to

treat j0 as fixed. Letting the bi vary so that j1 varies from k − p2 + 1 to k − dp2
2
e+ 1

and fixing j2 ≥ k − dp2
2
e+ 2 and fixing all ji, i ≥ 3, we prove analogously that the p2

can be followed by any p3, d+ 1 ≤ p3 ≤ p2
2
− 1. Continuing inductively, treating

j0, . . . , ji−2 as fixed and varying ji−1 from k − pi + (i− 1) to k − dpi
2
e+ (i− 1) and

fixing ji ≥ k − dpi
2
e+ i and fixing all ji+1, . . . , jd−2, we prove analogously that pi can

be followed by any pi+1, d+ 1 ≤ pi+1 ≤ pi
2
− 1. Finally, varying the position of jd−2,

we have proved that pd−1 can be followed by any pd, d+ 1 ≤ pd ≤ pd−1

2
− 1.

Now we are ready to prove Proposition 4.10.

Proof. By Lemma 4.6, every positive integer a occurs in S. That is, we have P0. We

proceed by induction on d, using Lemmas 4.11 and 4.12. Their statements together

give us: if Pd−1 then Pd for any d ≥ 0. So Pd for any d ≥ 0.

Now we are ready to prove our main result Theorem 4.4. It says that all possible

blocks of terms that can potentially occur in S multiple times actually occur

infinitely often. We repeat Theorem 4.4 here for ease of reference.
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Theorem. Let k ≥ 2 and ai, i = 1, 2, . . . , k − 1 be positive integers such that

ai+1 ≤ ai + 1 for every i = 1, 2, . . . , k − 2 and k ≤ ak−1. Then the block of terms

a1a2 . . . ak−2ak−1 occurs in S infinitely often.

Proof. Let d = a1 − 2. By Proposition 4.10 we know that there is an integer-valued

function f such that whenever pi are such that pi−1 ≥ f(pi) for every i = 1, 2, . . . , d

and pd ≥ f(0) then p0p1 . . . pd occurs in S. By Lemma 4.9, p0p1 . . . pd is followed by a1

for all sufficiently large p0. So, by increasing the values f(p1) by the bound on p0

given by Lemma 4.9, we can obtain a new function f1 such that p0p1 . . . pda1 occurs

for all sufficiently large pd and for all pi such that pi ≥ f1(pi+1), i = 0, 1, . . . , d− 1.

Now our induction hypothesis is that there is an integer-valued function fj such

that

pd−aj+j+1pd−aj+j+2 . . . pda1a2 . . . aj

occurs for all sufficiently large pd and for all pi such that pi ≥ fj(pi+1),

i = d− aj + j + 1, d− aj + j + 2, . . . , d− 1. Now, by Lemma 4.9,

pd−aj+j+1pd−aj+j+2 . . . pda1a2 . . . aj

is followed by aj+1 for all sufficiently large pd−aj+1+(j+1)+1. We can define a new

function fj+1 by increasing all fj(pd−aj+1+(j+1)+2) by the bound given on

pd−aj+1+(j+1)+1 by Lemma 4.9. This gives an integer-valued function fj+1 such that

pd−aj+1+(j+1)+1pd−aj+1+(j+1)+2 . . . pda1a2 . . . aj+1

occurs for all sufficiently large pd and for all pi such that pi ≥ fj+1(pi+1),

i = d− aj+1 + (j + 1) + 1, d− aj+1 + (j + 1) + 2, . . . , d− 1.
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Note that d− ak−1 + (k − 1) + 1 ≤ d. Thus by induction we get that

pd−ak−1+(k−1)+1pd−ak−1+(k−1)+2 . . . pda1a2 . . . ak−2ak−1

occurs for all sufficiently large pd−ak−1+(k−1)+1. Hence a1a2 . . . ak−2ak−1 occurs in S

infinitely often.

Corollary 4.13. Let ai, k ≥ 2 be positive integers such that ai+1 ≤ ai + 1 for every

i = 1, 2, . . . , k − 3, k ≤ ak−2 + 1. Then the block of terms a1a2 . . . ak−2(k − 1) occurs

in S once.

Proof. It follows from Theorem 4.4 and Lemma 4.7.

Corollary 4.14. The block of terms nn . . . n where n appears n times occurs in S

once.

Proof. The occurrence follows from the previous corollary. It can only occur once by

the definition of S.

Our next proposition says that some blocks which can potentially occur in S,

i.e. that are in θ2\θ1, actually never occur.

Proposition 4.15. Let n ≥ 2. Assume that the block of terms a1a2 . . . ak−1k occurs

in

(s1, s2, . . . , sin−1).

Then the block of terms a1a2 . . . ak−1k(k + 1) . . . (n+ 1) never occurs in S.

Proof. Since the block a1a2 . . . ak−1k occurs in S at most once, it would have to be

followed by (k + 1) . . . (n+ 1) at its only occurrence. However, assuming that it is

indeed followed by (k + 1) . . . n this is in turn followed by a 2 since it will be the first

occurrence of n2.
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We have established that blocks which can potentially occur several times in the

Slowgrow sequence actually occur infinitely often. A far-reaching goal would be to

give bounds on the density of such blocks up to n.

4.4.1 Summary

Let us call a block of terms a1a2 . . . ak good if it does not belong to θ1,

i.e. ai+1 ≤ ai + 1 for every i = 1, 2, . . . , k − 1. Since, by Lemma 4.5, si ≥ si+1 − 1 for

every positive integer i, only good blocks can occur in S.

As a summary, the following blocks of terms occur in S infinitely often: a1a2 . . . ak

where the block is good and ak > k.

The following blocks of terms occur in S once: a1a2 . . . ak−1k where the block is

good and ak−1 > k − 1.

Some good blocks never occur in S as seen in Proposition 4.15.

4.5 Open questions

We state a few open questions, asked by Steven Kalikow and the author.

When does a new number n first appear in the Slowgrow sequence? Recall that in

is the index of the first appearance of n in S. It would be interesting to give better

bounds on in. By computer experiments, it seems that, for every positive integer n,

in is about 2n, see Table 4.2. It would be interesting to know any good intuitive

argument why it may be so. On some level, the Slowgrow sequence may be treated as

(pseudo)random, so perhaps some probabilistic argument may give an intuitive

explanation.
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For every postitive integer i, it takes some time before the first i appears in the

Slowgrow sequence. Then i becomes more “frequent” until it eventually appears less

and less often – since its density up to n approaches zero as n approaches infinity. It

would be interesting to know for what n the density of i up to n is the largest.

Computer experiments suggest that there are large subblocks in the Slowgrow

sequence where i occurs often. One could also somehow define a ‘local density’ of i in

the Slowgrow sequence and study when it will be the largest.
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Chapter 5

co-Sidon: Additive Properties of a

Pair of Sequences

5.1 Introduction

For a given set A ⊂ N0 of non-negative integers, here and throughout the chapter,

the counting function A(n) is defined as the number of elements of A not exceeding

n, i.e., A(n) = |A ∩ {0, 1, 2, . . . , n}|. Consider the following functions

r(A, n) =|{(a1, a2) ∈ A× A : a1 + a2 = n}|,

r1(A, n) =|{(a1, a2) ∈ A× A : a1 + a2 = n and a1 ≤ a2}|,

r2(A, n) =|{(a1, a2) ∈ A× A : a1 + a2 = n and a1 < a2}|.

A well-studied problem concerning these functions is to determine necessary and

sufficient conditions on A for their (eventual) monotonicity. Here and throughout the

chapter, monotonicity refers to monotonicity in n. In other words, for what sets A we

can find an n0 such that r(A, n+ 1) ≥ r(A, n) for all n > n0? Although the three

functions look similar, and in fact |r(A, n)− 2r2(A, n)| ≤ 1 and
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|r1(A, n)− r2(A, n)| ≤ 1, the (partial) answers to these questions may be quite

different.

Erdős, Sárközy and Sós [10] proved that r(A, n) is eventually monotone increasing

if and only if A contains all the positive integers from a certain point on. On the

other hand, they obtained only a partial answer for r1 and r2. In particular, they

proved that if

lim
n→+∞

n− A(n)

log n
= +∞

then r1(A, n) is not eventually monotone increasing. (This result was also obtained

independently by Balasubramanian [1].)

Also, for r2(A, n) they proved that if

A(n) = o

(
n

log n

)

then r2(A, n) cannot be monotone increasing from a certain point on.

Motivated by these results, Sárközy asked the following question in his valuable

paper on unsolved problems in number theory [30] (see Problem 4 in [30]).

Problem 5.1. If A,B are given infinite sets of non-negative integers, what can one

say about the monotonicity of the number of solutions of the equation

a+ b = n, a ∈ A, b ∈ B?

We can naturally rephrase this question by defining the following function.

Definition 5.2. The representation function for two sets A,B ⊂ N0 is

r(A,B, n) = |{(a, b) ∈ A×B : a+ b = n}|.
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The main goal of the present chapter is to give some sufficient conditions on A,B

for the monotonicity of this function. This new representation function acts in a

surprisingly different way from the prequel. Our main result is as follows.

Theorem 5.3. For all 0 ≤ α, β < 1, 1/2 < c1, c2 ≤ 1, there exist sets A,B ⊂ N0 such

that r(A,B, n) is monotone increasing in n;

lim sup
n→∞

A(n)

nc1
= α; lim sup

n→∞

B(n)

nc2
= β.

In the next sections we develop tools to approach Theorem 5.3 and prove some

related results. Then we will return to the proof of Theorem 5.3.

5.2 co-Sidon Sets

Before proving Theorem 5.3, we introduce a generalized notion of Sidon sets and

study some of its properties. Recall that a set A ⊂ N0 is called Sidon if r1(A, n) ≤ 1

for all n ∈ N, i.e., the sums of unordered pairs of elements of A are all distinct. We

remark that it is possible to extend the notion of a Sidon set to a pair of sets in

different ways. In this chapter, we consider the following generalization.

Definition 5.4. Two sets A,B ⊂ N0 are called co-Sidon if r(A,B, n) ≤ 1 for all

n ∈ N0, i.e., the sums a+ b are distinct for all (a, b) ∈ A×B.

Note that if A,B are co-Sidon then |A ∩B| ≤ 1.

For sets A and B of integers we denote their sum set by

A+B = {a+ b : a ∈ A, b ∈ B}. For simplicity if the set B is a single element b we

denote their sum set by A+ b = A+B.

When A,B are finite sets, we prove a simple but sharp result about |A|, |B|.
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Proposition 5.5. If A,B ⊂ {0, 1, 2, . . . , n} are co-Sidon, then

min {|A|, |B|} ≤ b
√

2nc.

Furthermore, equality can be obtained for infinitely many values of n.

Proof. Since A and B are finite (and co-Sidon) we have |A+B| = |A||B|. Without

loss of generality assume |A| ≤ |B|. Then, |A|2 ≤ |A+B|.

Clearly for an element c ∈ A+B we have 0 ≤ c ≤ 2n. However, either 0 or 2n is

not an element of A+B, otherwise we would have 0, n ∈ A ∩B and there would be

two distinct solutions to a+ b = n with a ∈ A and b ∈ B. Thus, |A+B| ≤ 2n which

yields |A| ≤ b
√

2nc and the upper-bound is established.

To see that the upper bound is best possible for infinitely many n, consider the

following construction for A and B. Let m ∈ N be fixed and define

A := {0,m, 2m, . . . , (2m− 1)m}

and

B := {0, 1, 2, . . . ,m− 1, 2m2, 2m2 + 1, 2m2 + 2, . . . , 2m2 +m− 1}.

Note that |A| = |B| = 2m and A+B = {0, 1, . . . , 4m2 − 1}. Therefore A and B

are co-Sidon. As A,B ⊆ {0, 1, 2, . . . , 2m2 +m− 1}, we can take n = 2m2 +m− 1.

This gives

2m =
√

4m2 ≤
√

4m2 + 2m− 2 =
√

2n <
√

4m2 + 4m+ 1 = 2m+ 1.

Hence min {|A|, |B|} = 2m = b
√

2nc. As the choice of m was arbitrary, there are

infinitely many n for which we can reach the upper bound in the statement of the

theorem.
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It is worth to compare the above result to the following theorem of Erdős and

Turán [11] on finite Sidon sets.

Theorem 5.6. There is an absolute positive constant c such that if n ∈ N and

A ⊂ [n] is a Sidon set, then |A| < n1/2 + cn1/4.

On the other hand, the best known constructions give Sidon sets of size n1/2 for

infinitely many n (see e.g. [18, 29] for details). The reduction of this gap is a

well-known hard problem.

We consider now the case where A,B are infinite co-Sidon. Defining

An = A ∩ {0, 1, . . . , n} and Bn = B ∩ {0, 1, . . . , n}, we have that An,Bn are co-Sidon.

So, by Theorem 5.5, for any n we have

min {A(n), B(n)}/
√
n = min {|An|, |Bn|}/

√
n ≤ b

√
2nc/

√
n ≤
√

2.

A simple example shows that we can come close to achieving this bound.

Construction 5.7. Let A be the set of integers which can be written in the form∑k
i=0 αi2

2i where αi ∈ {0, 1} and k ∈ N. Let B be the set of integers which can be

written in the form
∑k

i=0 αi2
2i+1 where αi ∈ {0, 1} and k ∈ N. It is clear that A and

B are co-Sidon and A+B = N0. It can easily be verified that

lim inf
n→∞

A(n)√
n

= 1

lim inf
n→∞

B(n)√
n

=

√
2

2

lim sup
n→∞

A(n)√
n

=
√

3

lim sup
n→∞

B(n)√
n

=

√
6

2
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Thus,

lim inf
n→∞

min {A(n), B(n)}√
n

=
√

2/2.

Comparing this with the following result of Erdős (see [31, 18]), we conclude that

infinite Sidon sets and infinite co-Sidon sets also behave differently. In general, we

have more freedom when working with co-Sidon sets.

Theorem 5.8. There is an absolute, positive constant c such that for any infinite

Sidon set A ⊂ N we have

lim inf
n→∞

A(n)√
n/ log n

< c.

It is also worth mentioning the following theorem of Krückeberg [22] for infinite

Sidon sets.

Theorem 5.9. There is a Sidon set A ⊂ N such that

lim sup
n→∞

A(n)√
n
≥
√

2/2.

The following definition will be useful for us.

Definition 5.10. We call sets A,B ⊂ N0 perfect if the sum set A+B is an interval

(possibly unbounded) of consecutive integers.

The next proposition will be helpful in building new perfect co-Sidon sets from

other co-Sidon sets.

Proposition 5.11. Let A,B ⊂ N0 be finite perfect co-Sidon sets. Let

c = max (A) + max (B)−min (A)−min (B) + 1. Then for any k ∈ N0, the sets

A and C =
⋃k
i=0 (B + ic) are perfect co-Sidon.
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Proof. Let r = min (A) + min (B). By assumption, A+B = {r, r + 1, . . . , c+ r − 1}.

For each i, the sets A and B + ic are co-Sidon. Furthermore, the sets

A+ (B + c) = {c+ r, c+ r + 1, . . . , 2c+ r − 1}

A+ (B + 2c) = {2c+ r, 2c+ r + 2, . . . , 3c+ r − 1}
...

A+ (B + kc) = {kc+ r, kc+ r + 1, . . . , (k + 1)c+ r − 1}

are all pairwise disjoint consecutive intervals. Therefore A and
⋃k
i=0 (B + ic) are

perfect co-Sidon with sum set {r, r + 1, . . . , (k + 1)c+ r − 1}.

Clearly the proposition also holds for C =
⋃∞
i=0 (B + ic).

Next we characterize all infinite perfect co-Sidon sets A,B ⊂ N0 using the mixed

radix representation. Note that both the co-Sidon and perfect properties are

invariant under translation of each of the sets (i.e. addition or subtraction by a

constant), so without loss of generality we may assume 0 ∈ A ∩B.

Theorem 5.12. Let A,B ⊂ N0 be infinite, such that 0 ∈ A ∩B. Then A,B are

perfect co-Sidon if and only if there exists an infinite sequence of integers (ki)
∞
i=1 such

that ∀i, ki ≥ 2 and (up to an exchange of A and B),

A =

{
∞∑
i=1

k1k2 . . . k2i−2a2i−1 : ∀j, 0 ≤ a2j−1 < k2j−1, finitely many a2i−1 non-zero

}

and

B =

{
∞∑
i=1

k1k2 . . . k2i−1a2i : ∀j, 0 ≤ a2j < k2j, finitely many a2i non-zero

}
.

Proof. A sum of the form
∑∞

i=1 k1k2 . . . ki−1ai where 0 ≤ aj < kj, and only finitely

many ai are non-zero, is precisely the so-called mixed-radix representation with bases
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(k1, k2, . . . , ki, . . .). Thus the base r representation is the special case where ki = r for

all i. For any sequence (ki)
∞
i=1 of integers with ki ≥ 2, every non-negative integer is

uniquely representable with bases (ki).

Let (ki)
∞
i=1 be a sequence of integers such that ∀i, ki ≥ 2. Suppose A and B are of

the form determined by the bases ki as above. As every non-negative integer is

uniquely representable by with bases (ki), A and B are co-Sidon. Also observe that

A+B =

{
∞∑
i=1

k1k2 . . . ki−1ai : ∀j, 0 ≤ aj < kj, finitely many ai non-zero

}
.

Thus A+B = N0 and therefore A and B are perfect.

Now assume that A,B are perfect co-Sidon. Unless A = B = {0}, we can assume

without loss of generality that 1 ∈ A. To show that A,B are of the required form, we

need to construct a sequence of base elements (ki)i∈N that represents A and B as in

the statement of the theorem.

Our construction of the integers ki is recursive. Let k0 = 1. For t ≥ 1 define

ct = kt−1kt−2 · · · k0 and let

kt =


max {a : {ct, 2ct, . . . , (a− 1)ct} ⊂ A}, if t is odd

max {b : {ct, 2ct, . . . , (b− 1)ct} ⊂ B}, if t is even

Note that ∀t > 0, kt <∞. Otherwise, one of A or B contains an infinite arithmetic

progression, whose consecutive terms differ by ct. But as they are co-Sidon, this

implies that the other set is finite (in fact of cardinality at most ct), a contradiction.

Now define two families of sets. Let A0 = B0 = {0} and for each t ≥ 1,

At =

{
t∑
i=1

k1k2 . . . ki−1ai : ∀j, 0 ≤ aj < kj and a2j = 0

}
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and

Bt =

{
t∑
i=1

k1k2 . . . ki−1bi : ∀j, 0 ≤ bj < kj and b2j−1 = 0

}
.

Note that for all j, A2j = A2j−1 and B2j−1 = B2j−2. Let A∗ =
⋃∞
i=0At and

B∗ =
⋃∞
i=0Bt. It only remains to prove that A = A∗ and B = B∗. We will use the

following claim.

Claim 5.13. For all t ≥ 0

A ∩ {0, 1, . . . , k1 · · · kt − 1} = At

B ∩ {0, 1, . . . , k1 · · · kt − 1} = Bt.

Proof. Suppose not and let t be minimal such that the claim does not hold. Thus

there must exist an x ∈ N such that either x ∈ (A ∩ {0, 1, . . . , k1k2 · · · kt − 1})∆At or

x ∈ (B ∩ {0, 1, . . . , k1k2 · · · kt − 1})∆Bt, where ∆ denotes the symmetric difference of

sets. Pick a minimal such x. Let us assume that t is odd and t ≥ 3; the proof is

trivial for t = 0 or t = 1 and similar when t ≥ 2 is even. As t is odd (and minimal)

Bt = Bt−1 = B ∩ {0, 1, . . . , k1 · · · kt−1 − 1} ⊂ B ∩ {0, 1, . . . , k1 · · · kt − 1}, thus

Bt\(B ∩ {0, 1, . . . , k1 · · · kt − 1}) is empty.

Now write

x =
t∑
i=1

k1k2 . . . ki−1ai

in the mixed-radix representation with bases (ki)
∞
i=1. Set

z =

b t
2c∑
i=0

k1 · · · k2ia2i+1

and

w =

b t
2c∑
i=1

k1 · · · k2i−1a2i.
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By definition, z ∈ At, w ∈ Bt = Bt−1 and x = z + w. By the minimality of t,

Bt−1 ⊂ B, thus w ∈ B. We now distinguish the remaining three cases.

(i) Suppose x ∈ (A ∩ {0, 1, . . . k1 · · · kt − 1})\At. Since x /∈ At, we have x 6= z, thus

z ∈ A by minimality of x. Now we have that x, z ∈ A and 0, w ∈ B. But

x+ 0 = z + w, contradicting the fact that A and B are co-Sidon.

(ii) Suppose x ∈ At\(A ∩ {0, 1, . . . , k1 · · · kt − 1}). As A+B = N0, we can write

x = a+ b with a ∈ A, b ∈ B. Note that x ≤ k1k2 · · · kt − 1 and this implies x /∈ A. In

particular, x 6= a. We claim that x = b. If not, then 0 < a, b < x and the minimality

of x implies that a ∈ At and b ∈ Bt. But a+ b = x ∈ At, which contradicts the

definition of At and Bt. Thus we may suppose x = b, i.e., x ∈ At ∩B.

For 0 ≤ i ≤
⌊
t
2

⌋
− 1, define

α2i+1 =


k2i+1 − a2i+1 if a2i+1 > 0

0 if a2i+1 = 0

and

β2i+2 =


0 if α2i+1 = 0

1 if α2i+1 > 0.

Let

u = (αt−10αt−4 . . . α3 − α1)(ki) =

b t
2c−1∑
i=0

k1 · · · k2iα2i+1 ∈ At−2,

v = (βt−10βt−30 . . . β20)(ki) =

b t
2c∑
i=1

k1 · · · k2i−1β2i.

By definition of kt, at
∏t−1

i=0 ki ∈ A and by minimality of t, we have u ∈ A and v ∈ B.

Clearly, u 6= at
∏t−1

i=0 ki. But u+ x = at
∏t−1

i=0 ki + v, contradicting the fact that A and

B are co-Sidon.
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(iii) Suppose x ∈ (B ∩ {0, 1, . . . , k1 · · · kt − 1})\Bt. Clearly x /∈ A, otherwise

0, x ∈ A ∩B which contradicts A,B being co-Sidon. Also x /∈ At, otherwise

x ∈ At ∩B and we can continue as at the end of case (ii). Thus x 6= z, this implies

z ∈ A by the minimality of x. Also w ∈ Bt implies x 6= w. Now 0 + x = z + w, with

0, z ∈ A and x,w ∈ B contradicting the fact that A and B are co-Sidon.

To complete the proof of the theorem, we must show ∀t > 0, kt ≥ 2. Suppose that

kt0 = 1. That is, ct0 = k1k2 · · · kt0−1 is in neither A nor B. But then as A and B are

perfect co-Sidon, there exist a ∈ A and b ∈ B such that a+ b = ct0 . By assumption,

a, b < ct0 . But clearly (a, b) /∈ At0 ×Bt0 as At0 +Bt0 ⊂ {0, 1, . . . , ct0 − 1} contradicting

Claim 5.13.

Theorem 5.12 allows us to make a useful observation about the structure of

perfect co-Sidon sets.

Corollary 5.14. If A and B are infinite perfect co-Sidon sets then for all m ∈ N

there are infinitely many n ∈ N such that {n, n+ 1, . . . , 2n+m} ∩ A = ∅.

Proof. As the statement remains true when we translate A or B, it suffices to prove it

for A and B with 0 ∈ A ∩B. There exists an infinite sequence of integers

(ki) ∀i, ki ≥ 2 such that A and B are represented by the bases ki as in Theorem 5.12.

Fix m ∈ N and let t be such that 2
∏t−1

i=0 ki − 3 ≥ m and (kt − 1)
∏t−1

i=0 ki ∈ A. Then

by Theorem 5.12 the next element in A is exactly
∏t+1

i=0 ki. Let

n = (kt − 1)
∏t−1

i=0 ki + 1. Now

t+1∏
i=0

ki = kt+1 {(kt − 1) + 1}
t−1∏
i=0

ki

≥ 2

{
n− 1 +

t−1∏
i=0

ki

}

≥ 2n− 2 +m+ 3 = 2n+m+ 1.
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Thus {n, n+ 1, . . . , 2n+m} ∩ A = ∅. Since A is infinite, it follows that for every m

there are infinitely many such n.

Of course, the claim also holds for B.

It is natural to ask whether all co-Sidon sets A,B are subsets of perfect co-Sidon

sets A∗, B∗. The answer turns out to be no as the following proposition shows.

Proposition 5.15. The sets A = {2k : k ∈ N, k ≥ 9} and B = {3l : l ∈ N, l ≥ 9} are

co-Sidon and there are no perfect co-Sidon sets A∗, B∗ such that A ⊆ A∗ and B ⊆ B∗.

Proof. The Diophantine equation 2k + 3l = 2m + 3n with k < m and l > n has only

five solutions (see [32]); all have exponents less than 9. This implies that A and B are

co-Sidon.

Note that, for all n ≥ 29, A contains numbers between n and 2n. That is, for all

n, A ∩ {n, n+ 1, . . . , 2n} 6= ∅. However, if A∗ and B∗ are perfect co-Sidon sets such

that A ⊂ A∗ and B ⊂ B∗, then according to Corollary 5.14 there is an n with

A∗ ∩ {n, n+ 1, . . . , 2n+m} = ∅ .

The discussion of perfect and co-Sidon pairs of sets in this section prepares us for

the study of the representation function in the next section.

5.3 Representation Function

We seek to provide sufficient conditions on A and B so that the representation

function r(A,B, n) = |{(a, b) ∈ A×B : a+ b = n}| is (eventually) monotone

increasing. For C ⊂ N0 let us denote its complement C = N0\C.

It is easy to see that if either A or A is finite and either B or B is finite then

r(A,B, n) is eventually monotone. To see this, if A and B are finite, then for all
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n > max (A) + max (B) we have that b ∈ B implies n− b ∈ A and thus

r(A,B, n) = |B|. Also, if A and B are finite, then for all n > max (A) + max (B) we

have r(A,B, n) = n+ 1− |A| − |B|. Finally, if A and B are both finite then it is

obvious that r(A,B, n) is eventually monotone. So the study is non-trivial only in the

case when A and A are both infinite.

Proposition 5.16. Let A,B ⊂ N0 be infinite perfect co-Sidon sets such that

A+B = N0. Then, for any A′ ⊂ A and B′ ⊂ B, the representation function

r(A+B′, B + A′, n) is monotone increasing.

Proof. Note that

r(A+B′, B + A′, n) = r

(⋃
b∈B′

A+ b,
⋃
a∈A′

B + a, n

)

=
∑

a∈A′,b∈B′
r(A+ b, B + a, n)

The second equality holds because the unions are disjoint.

From A+B = N0 it follows that (A+ b) + (B + a) = N0 + a+ b and thus each

summand is

r(A+ b, B + a, n) =

 0 if n < a+ b,

1 if n ≥ a+ b.

Therefore, the representation function r(A+B′, B + A′, n) is monotone

increasing.

It follows from Theorem 5.12 that sets A and B which are infinite perfect

co-Sidon exist. Since the subsets in Proposition 5.16 are arbitrary, we can construct

many sets A and B such that r(A,B, n) is monotone increasing. The next theorem

allows us to choose sets A and B whose representation function is monotone and

increasing and whose counting functions A(n) and B(n) grow at a controlled rate.
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Theorem 5.17. Let A,B ⊂ N0 be infinite perfect co-Sidon such that A+B = N0.

Let f : N0 → R be such that A(n) ≤ f(n) and for every M > 0 there exists n0 such

that for n > n0 we have f(n) < n+ 1−MA(n). Then there exists a B′ ⊆ B such that

(A+B′)(n) ≤ f(n) for all n ∈ N0

and

(A+B′)(n) ≥ f(n)− A(n) for infinitely many n ∈ N0.

Proof. Let A and B be as in the statement and write B = {b0 < b1 < . . .}. By

assumption, b0 = 0. Let us construct B′ ⊆ B greedily as follows: set B′0 = {0} and for

i > 0 let

B′i+1 =

 B′i ∪ {bi+1} if
(
A+ (B′i ∪ {bi+1})

)
(n) ≤ fA(n) for all n ∈ N0,

B′i otherwise.

Then let B′ =
⋃∞
i=0B

′
i. We claim that this B′ satisfies the conditions of the

theorem. By the construction,

(A+B′)(n) ≤ f(n) for all n ∈ N0.

To prove that the other inequality holds for infinitely many values of n, we first

need to show that B \B′ is infinite. Suppose that B \B′ is finite, and let

M = |B\B′|. Since A+B\B′ = ∪b∈B\B′(A+ b) we have (A+B\B′)(n) ≤MA(n) for

every n. Now, clearly

⋃
b∈B′

(A+ b) = N0\

 ⋃
b∈B\B′

(A+ b)

 .

It follows that
(
A+B′

)
(n) = n+ 1−

(
A+ (B\B′)

)
(n) ≥ n+ 1−MA(n) for all n.
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But, for large enough n, we have n+ 1−MA(n) > f(n). Then, for large enough n we

would have
(
A+B′

)
(n) > f(n), which contradicts the construction of B′. Hence

B \B′ is infinite.

Therefore, for infinitely many i, we have bi+1 /∈ B′. For such an i we have

B′i+1 = B′i. Therefore, by definition of B′i+1, there exists ni+1 such that

(A+B′i ∪ {bi+1})(ni+1) > f(ni+1). Note that ni+1 ≥ bi+1, because for all n < bi+1,

(
A+B′i ∪ {bi+1}

)
(n) =

(
A+B′i

)
(n) ≤ fA(n).

Therefore there are infinitely many n such that,

(A+B′)(n) ≥ (A+B′i)(n) ≥ f(n)− A(n).

Our main theorem follows as a corollary of Theorem 5.17. We restate our main

theorem here for ease of reference:

Theorem. For all 0 ≤ α, β < 1, 1/2 < c1, c2 ≤ 1, there exist sets A,B ⊂ N0 such

that r(A,B, n) is monotone increasing in n;

lim sup
n→∞

A(n)

nc1
= α; lim sup

n→∞

B(n)

nc2
= β.

Proof. Suppose we are given constants 0 ≤ α < 1 and 1/2 < c1 ≤ 1 Let A0, B0 be

perfect co-Sidon sets such that A0(n) = Θ(n1/2), B0(n) = Θ(n1/2) (e.g. Construction

5.7.) Let f(n) = αnc1 + d where d is a constant large enough such that f(n) ≥ A0(n)

for all n. Clearly for all m > 0 there exists an n0 such that for n > n0,

f(n) < n+ 1−mA0(n). By Theorem 5.17, there is a B′ ⊂ B0 such that

(A0 +B′)(n) ≤ f(n) for all n and (A0 +B′)(n) ≥ f(n)− A0(n) for infinitely many n.
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Set A = A0 +B′. Then

α = lim
n→∞

f(n)

nc1
≥ lim sup

n→∞

A(n)

nc1
≥ lim

n→∞

f(n)− A0(n)

nc1
= α.

We can construct B in the same manner. By Proposition 5.16, the representation

function r(A,B, n) is monotone increasing.

By modifying the previous two proofs, we can restate Theorem 5.3 with either (or

both) limit superiors replaced with limit inferiors. The details are left to the

interested reader. Theorem 5.3 gives a strong answer about the densities of sets A

and B with monotone representation function r(A,B, n).

When c1 = c2 = 1 and α, β ∈ Q we can restate Theorem 5.3 by replacing the limit

superiors with standard limits.

Theorem 5.18. For all rational 0 ≤ α, β ≤ 1, there exist sets A,B ⊂ N0 such that A

has density α, B has density β and r(A,B, n) is monotone increasing in n.

Proof. We construct A and B using mixed radix representation to describe its

elements. Write α = p1/q1 and β = p2/q2 where pi, qi ∈ N. Set k1 = q1, k2 = q2 and

ki = 2 for all i > 2. Let A0 be the set of all integers that can be written in the form

k∑
i=0

k1k2 · · · k2ia2i+1

where for each i, 0 ≤ a2i+1 < k2i+1. Similarly let B0 be the set of all integers that can

be written in the form
k∑
i=1

k1k2 · · · k2i−1b2i

where for each i, 0 ≤ b2i < k2i. Note that A0 and B0 are perfect co-Sidon.

Let A′ be the subset of A0 consisting of all those integers whose k1-digit (in the

mixed radix representation) lies in the set {0, 1, . . . , p1 − 1}. As p1 ≤ q1 we must have
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p1 − 1 ≤ k1 − 1. Thus A′ is well-defined. Then B = A′ +B0 is the set of all numbers

whose k1-digit lies in {0, . . . , p1 − 1} that is, B consists of the numbers congruent to

0, 1, . . . , p1 − 1 (mod q1). The density of this set is clearly p1/q1.

Similarly, let B′ be the subset of B0 consisting of all those integers whose k2-digit

(in the mixed radix representation) lies in the set {0, 1, . . . , p2 − 1}. Again as p2 ≤ q2

we have p2 − 1 ≤ k2 − 1 so B′ is also well-defined. A similar argument holds when we

are considering A = A0 +B′. Here, A is the set of numbers whose k2-digit is in

{0, 1, . . . , p2 − 1}. Thus A consists exactly of the numbers less than or equal to

(p2 − 1)q1 (mod q1q2). This follows as the base of the first digit is q1. Again it is clear

that A has density (p2q1)/(q1q2) = p2/q2.

By Proposition 5.16, r(A,B, n) is monotone increasing.

Finally, we determine for which sets A,B the representation function r(A,B, n) is

eventually strictly increasing. The corresponding question for a single set has been

considered by Chen and Tang [8] who discuss when the functions r, r1, r2 are strictly

increasing. When considering two sets and the function r, the problem turns out to

be easy.

Proposition 5.19. Let A,B ⊂ N0, then the representation function r(A,B, n) is

eventually strictly monotone increasing if and only if A and B are finite.

Proof. First, let us assume that r(A,B, n) is eventually strictly increasing. We will

use the trivial identity that

n+ 1 = r(N0,N0, n) = r(A,B, n) + r(A,B, n) + r(A,B, n) + r(A,B, n),

which is equivalent to

n+ 1− r(A,B, n) = r(A,B, n) + r(A,B, n) + r(A,B, n).
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In the last identity the left hand side is bounded, since we assumed that r(A,B, n) is

eventually strictly increasing. Thus so is the right hand side. Hence r(A,B, n),

r(A,B, n) and r(A,B, n) are all bounded. From this it follows that

r(A,N0, n) = r(A,B, n) + r(A,B, n) and r(N0, B, n) = r(A,B, n) + r(A,B, n) are

bounded. Thus A and B must be finite.

Now we assume that A and B are finite. For any n > max (A) + max (B) we know

that a ∈ A implies n− a 6∈ B and vice versa, so we can write

r(A,B, n) = n+ 1− |A| − |B|

< n+ 2− |A| − |B| = r(A,B, n+ 1)

Thus for n > max (A) + max (B) the representation function is strictly increasing.

This concludes the discussion of our generous sufficient conditions on sets A and

B for the representation function to be eventually monotone increasing. It would also

be interesting to give some necessary conditions.

5.4 Open Problems

A far-reaching goal would be to completely characterize co-Sidon sets. Which

co-Sidon sets are subsets of some perfect co-Sidon sets? Are two random sets likely to

be co-Sidon?

Can we completely characterize sets A,B whose representation function is

monotone increasing? Are there constructions that do not come from perfect

co-Sidon sets?
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