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ABSTRACT

Wu, Yanan, Ph.D. The University of Memphis. August 2012. Stochastic Models of
Human Kidney Cancer. Major Professors: Wai-Yuan Tan, Ph.D. and Lih-Yuan Deng,
Ph.D.

This dissertation is focused on the development of stochastic models for

carcinogenesis of human kidney cancer. Based on recent biological studies, we have

developed a multiple-pathway stochastic model for the human pediatric kidney cancer -

Wilms’ tumor. To account for hereditary cancer cases and the development of

non-hereditary cancers through two different pathways in the stochastic model, we have

also developed a generalized mixture model. In this mixture model, two mixing

probability distributions were applied, which are a multinomial distribution to explain the

genetic segregation of the stage-limiting tumor suppressor genes and a binomial

distribution to account for the development of non-hereditary cancers through two

pathways. We have applied this model to fit and analyze the SEER data of Wilms’ tumor

from NCI/NIH. Our results indicate that the proposed model involving hereditary and

non-hereditary cancer cases fitted the data better than the single-pathway model with

hereditary cancer cases.

We have also derived a biologically supported stochastic model for human adult

kidney cancer - renal cell carcinoma (RCC) involving three pathways. These pathways

are: 3-stage pathway for pRCC , 4-stage pathway for ccRCC and 5-stage pathway for

chRCC. To account for different individuals in the population at risk of developing renal

cell carcinoma through different pathways, we have also presented a mixture model of

three pathways. We have used this model to fit and analyze the SEER data of renal cell

carcinoma from NCI/NIH. Our results indicate that the model not only provides a logical

avenue to incorporate biological information but also fits the data well.

These models not only would provide more insights into human kidney cancer but also

would provide useful guidance for its prevention and control and for prediction of future

cancer cases.
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CHAPTER I

INTRODUCTION AND SOME CANCER BIOLOGY WITH SPECIAL REVIEW OF

HUMAN KIDNEY CANCER

A. Introduction

According to the American Cancer Society, Kidney cancer is the sixth most common

cancer for men and the eighth most common cause of cancer for women. In the United

States, an estimated 59,600 new cases are expected to be diagnosed in 2012. Kidney

cancer incidence rates have been increasing steadily each year. Recent biological studies

have shown that kidney cancer is not a single disease. It consists of different cancers of

the kidney. The most two common types of kidney cancer are renal cell carcinoma, the

kidney cancer in adult, and Wilms’ tumor, the kidney cancer in children. Renal cell

carcinoma originates in the lining of the proximal convoluted tubule, the very small tubes

in the kidney that filter the blood and remove waste products. Wilms’ tumor arises from

immature kidney cells. These two cancers are developed through distinctly different

genetic and biological mechanisms. The aim of this dissertation is to develop some

general stochastic models for carcinogenesis of these two different cancers basing on

recent results from kidney cancer biology.

The structure of the dissertation is as follows. In Chapter I, we summarize some

cancer biology and review kidney cancer biology. In Chapter II, we develop a stochastic

model with multiple-pathway for Wilms’ tumor involving both hereditary and

non-hereditary cancer cases. We also derive a generalized mixture model to account for

the inherited cancer cases and different pathways for non-hereditary cancer development.

Then we illustrate the application of the models and methods by analyzing the SEER data

of Wilms’ tumor from NIC/NIH. In Chapter III, we derive a multi-stage stochastic model

for renal cell carcinoma involving multiple pathways. We also discuss the application of

the models and methods by analyzing the SEER data of renal carcinoma from NIC/NIH.

In Chapter IV, we present the discussions and conclusions.

1



B. Some Cancer Biology

The human body consists of two types of cells: stem cells and differentiated cells.

Normally, stem cell grow and divide in a controlled way to produce new stem cells and

new differentiated cells to replace old or damage cells; differentiated cells do not divide

and are end cells to serve as components of the tissue in human body. Cancer is a disease

in which stem cells grow out of control to form new abnormal cells and have the ability to

invade other tissues and spread to distant body parts. Carcinogenesis or tumorigenesis is a

stochastic proliferation and differentiation process by which normal stem cells become

cancer cells due to a series of irreversible genetic alterations [1], [2], [3].

There are two types of cancer gene that are affected by these genetic alterations. One

type of cancer gene is an oncogene, which includes instructions for controlling when cells

grow, divide, and die and it can speed up cell division and stop cells from dying. The other

type of cancer gene is a tumor suppressor gene, which slows down cell division, or causes

cells to die at the right time.

The two basic classes of genetic alterations are germline mutations and somatic

mutations. A germline mutation is an genetic alteration in the body’s reproductive cells

(sperm or egg) that becomes incorporated in the DNA of every cell in the body. Somatic

mutations occur in any of the cells of the body except the germ cells (sperm and egg) and

therefore are not passed on to offspring. Cancer caused by germline mutations is called

inherited cancer (hereditary cancer). Cancer that is due to somatic mutations is called

sporadic cancer (non-hereditary cancer), which accounts for 90% - 95% of all cancer

cases.

In 2000, Hanahan and Weinberg [4] proposed six hallmarks that a normal stem cell

must accumulate in order to develop into a malignant cancer cell. In a follow-up article in

2011 [5], they incorporated four new hallmarks. Those hallmark characteristics are: (1)

Self-sufficient growth signals. Cancer cells stimulate their own growth via genetic

changes and/or epigenetic changes. They can either make their own growth hormones or
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have changed so that they behave as if a growth stimulus were present even in the absence

of growth hormone. (2) Insensitivity to Anti-growth Signals. Cancer cells resist inhibitory

signals that might otherwise stop their growth via inactivation or silencing of tumor

suppressor genes. (3) Evading Apoptosis. Normal stem cells that accumulate excessive

DNA damage undergo apoptosis. However, cancer cells are resistant to apoptosis, and thus

they continue to grow and divide even as they accumulate mutations via genetic changes

and/or epigenetic changes. (4) Limitless Replicative Potential. Cancer cells can escape the

normal limits on how many times a cell can divide. These limits are set in large part by the

ends of chromosomes, which are known as telomeres. In normal cells, telomeres shrink

with each round of cell division, and when these telomeres become too short the cell can

no longer divide. In contrast, cancer cells can lengthen their telomeres, thus allowing them

to divide an indefinite number of times. (5) Sustained Angiogenesis. Cancer cells

stimulate the growth of blood vessels to supply nutrients to tumors. The process of

recruiting new blood vessels is called angiogenesis. (6) Tissue invasion and metastasis.

Cancer cells invade local tissue and spread to distant sites (metastasis). In order for cancer

to spread, cells must acquire mutations that turn on genes which allow them to break free

from the primary tumor, travel through the blood stream, and establish a new colony of

cells at another site in the body. (7) Genome Instability and Mutation. Cancer cells

generally have severe chromosomal abnormalities, which worsen as the disease

progresses. (8) Tumor-Promoting Inflammation. With inflammation, cancer cells can

become tumors. (9) Reprogramming Energy Metabolism. Cancer cells come up with their

own energy systems to sustain their uncontrolled growth and proliferation. (10) Evading

Immune Destruction. It is assumed that many potential cancer cells are destroyed by the

immune system, but many cancer cells know how to hide from such immune surveillance.

The above results indicates a multi-stage model of carcinogenesis, that involves the

sequential accumulation of many genetic changes or gene mutations. Although a large

number of cancer genes involving in human cancers, only a few of genes are stage and
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rate-limiting. Hence the number of stage in the multi-stage model of carcinogenesis is

finite. In most of human cancers, three or more rate-limiting stages are required for

development of cancer [6], [7], [8], [1].

Cancer tumor can be developed by a single pathway in some type of human cancer

such as retinoblastoma [1], [9]. However, in many other cancers, the same cancer may

derived from multiple pathways [2], [10], [11].

From the population perspective, the human cancer developing through different

pathways can be presented by a mixture model with multiple pathways. For example,

human colon cancers can be purposed by a mixture of five pathways for carcinogenesis [2]

and retinoblastomas can be described by a generalized mixture model to account for

hereditary cancer cases [9].

Cancer in children differs significantly from cancer in adults in several important

ways. Unlike adult cancers, pediatric cancers are rare. Pediatric cancers are usually much

more aggressive than adult cancers. Adult cancers are often related to specific risk factors,

however most pediatric cancers have no clear cause. Pediatric cancers typically respond

better to current therapies than adult cancers. Adult cancer are mostly developed from

highly differentiated epithelial tissues. Whereas pediatric cancer are generally derived

from non-ectodermal embryonal tissues [12]. However, like adult cancers, most pediatric

cancers are not inherited. They result from genetic mutations obtained during the child’s

life. Some of cancer cases are due to hereditary cancer syndromes.

C. Review of Kidney Cancer

The most common kidney cancers in children are Wilms’ tumors, which are

embryonal kidney tumors derived from immature kidney cells. They are quite rare and

contribute little to the incidence data in current datasets. In the United States, about 500

new cases of Wilms’ tumors are diagnosed each year. This number has been fairly stable

for many years. About 6% of all pediatric cancers are Wilms’ tumors. The average age at

diagnosis is about 3 years. It becomes less common as children grow older and is
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uncommon after age 6. So far research has not found any strong links between Wilms’

tumor and environmental factors, either during a mother’s pregnancy or after a child’s

birth. The known mutations genes in Wilms’ tumors are tumor suppressor genes WT1,

WTX and TP53 and an oncogene CTNNB1. Loss of heterozygosity (LOH) or loss of

imprinting (LOI) on chromosome 11p15 are also observed in tumor cases. Most Wilms’

tumors are not inherited. Instead, they seem to be the result of gene changes that occur

early in a child’s life, perhaps even before birth. Since the genes discussed above are not

altered in all Wilms’ tumor cases, there must be changes in other genes that have not yet

been found. In many cases, more than one gene change is probably involved. (see [13],

[14], [15]).

Kidney cancers in adults are renal cell carcinomas (RCCs), which arise from cells in

the tubules of the filtration portion of the kidney. They account for approximately 3% of

adult malignancies. The incidence of renal cell cancer has been rising steadily. The vast

majority of cases are diagnosed in patients over 65. RCCs exhibit unique genetic

abnormalities and differ from Wilms’ tumor in biology. Most RCCs (about 80%) are

classified as clear cell RCC. Other two common subtypes of RCCs are papillary RCC

(about 15%) and chromophobe RCC (about 5%). When seen under a microscope, the cells

that make up clear cell RCC look very pale or clear. Papillary RCC form little finger-like

projections (called papillae) in some of the tumor. The cells of Chromophobe RCC are

also pale, like the clear cells, but are much larger and have certain other features that can

be recognized [16], [17]. The cause of RCC is not known. Epidemiologic evidence

indicates that age beyond 50 years, male gender, and end-stage renal disease are risk

factors for developing renal cell carcinoma. Other risk factors include smoking, obesity,

hypertension and exposures to certain substances. Despite these associations, no definite

causal relationship has been established. While the specific causes of kidney cancer are

unknown, genetic abnormalities are consistently present in each histologic subtype.
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Different subtypes of RCCs undergo genetic or epigenetic changes and are developed by

different pathways.
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CHAPTER II

A NEW STOCHASTIC MODEL OF PEDIATRIC KIDNEY CANCER-WILMS’

TUMOR

A. Introduction

Wilms’ tumor, also known as nephroblastoma, is the most common kidney cancer in

children. Wilms’ tumor occurs of 1 in 10,000 live births, accounting for 6% of childhood

cancers and rating fourth in overall incidence among childhood cancers. In the United

States, about 500 children are diagnosed with Wilms’ tumor each year. The tumor most

often affects children between the ages of 2 and 4 years. About 95% of cases diagnosed

before the age of 10 years. Although Wilms’ tumor can develop in both kidneys (called

bilateral), it usually occurs in only one (unilateral). (see [13], [14], [15]).

In 1972, Knudson and Strong proposed a two-stage model for carcinogenesis of

human Wilms’ tumor [18]. They suggested that the development of Wilms’ tumor may

require two independent rate-limiting genetic events. In this model, people with bilateral

tumors or a family history of cancer carry a germline mutation in one allele of a

tumor-suppressor gene and need only one more genetic event to develop Wilms’ tumors.

People with unilateral tumors and no family history require two independent somatic

mutations to develop tumors. Unlike the development of retinoblastoma, which results

from the inactivation of one single tumor-suppressor gene RB, the development of Wilms’

tumor is complex and likely to involve several genes by multistage and multiple pathways.

In this chapter, we develop a stochastic model for human Wilms’ tumor with a generalized

mixture model to account for hereditary cancer cases and different pathways for

non-hereditary cancer cases.

For developing a biologically supported stochastic model of carcinogenesis for

Wilms’ tumor, in Section B, we provide a brief summary of Wilms’ tumor biology. In

Section C, we present a biologically supported stochastic model of Wilms’ tumor

incorporating hereditary cancer cases. In Section D, we develop a statistical model for
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cancer incidence data. This statistical model is basically a generalized mixture model of

Poisson distributions with two mixture probability distributions. One mixture probability

distributions is a bivariate multinomial distribution, which is used to account for

individuals with different genotypes at embryo stage in the population. The other one is a

binomial distribution which is applied to represent individuals who are normal at embryo

stage at risk of Wilms’ tumor by different pathways. In Section E, by using results from

Section B-D, we develop a generalized Bayesian inference procedure and multi-level

Gibbs sampling method to estimate unknown parameters. To illustrate the applications of

the model and methods, in Section F, we apply the models and methods to the SEER

Wilms’ tumor incidence data. In Section G, we present the computation details of fitting

the model of Wilms’ tumor. Finally in Section H, we discuss the usefulness of the model

and methods and provide some conclusions.

B. A Summary of Wilms’ Tumour Biology

Wilms’ tumor, an embryonal kidney tumor that consists of undifferentiated

mesenchymal cells, poorly organized epithelium, and surrounding stromal cells, is known

to be genetically heterogeneous [19]. The known mutations genes in Wilms’ tumors are

tumor suppressor genes WT1, WTX and TP53 and an oncogene CTNNB1 [20], [21], [22],

[23].

Mutations of the WT1 gene on chromosome 11p13 are observed in about 20% of

Wilms’ tumors and are an early event in tumorigenesis [24]. Germline mutations in WT1

have been identified in children with WAGR syndrome, Denys-Drash syndrome and

Frasier syndrome. Somatic mutations in WT1 have also been observed in people with

Wilms’ tumor. Loss of WT1 function alters normal differentiation of the induced

nephrogenic mesenchyme. WT1 mutation alone may be insufficient to develop tumors.

One or more additional rate-limiting genetic alterations is required for carcinogenesis [25].

Somatic mutations of the CTNNB1 gene on chromosome 3p22 occur in about 15% of

tumor cases and are at a later step in tumorigenesis [26]. A highly significant association
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of CTNNB1 mutations with WT1 mutations has been observed. These mutations lead to

deregulation of the Wnt-β-catenin signaling pathway, resulting in aberrant control of

cellular proliferation in the mesenchymal cells.

Somatic mutations of the WTX gene on the X chromosome are observed in up to 30%

of Wilms’ tumor cases. In contrast to biallelic inactivation of autosomal tumor suppressor

genes, WTX is altered by a monoallelic a single event targeting the single X chromosome

in males and the active X chromosome in females. WTX mutations encodes a protein that

forms a complex with β-catenin and other proteins, ultimately promoting ubiquitination

and degradation of β-catenin, thereby attenuating TCF-mediated transcription. WTX

mutations in Wilms’ tumor are negatively correlated with mutations in WT1. WTX

alteration alone may not results in tumors [21].

Both germline and somatic mutations of P53 gene on chromosome 17p occur in about

5% of tumor cases, which associated with anaplastic Wilms’ tumor [13].

Additionally, loss of heterozygosity (LOH) or loss of imprinting (LOI) on

chromosome 11p15, which harbors a cluster of imprinted genes (also referred to as WT2),

is observed in approximately 70% of tumor cases, resulting in biallelic expression of IGF2

[27], [28]. A recent study on mouse data suggested a model for Wilms’ tumor in which

WT1 ablation and IGF2 unpregulation are critical genetic events [29]. Loss of WT1

function alters normal differentiation of the induced nephrogenic mesenchyme and

upregulation of IGF2 drive the proliferation of these abnormal cells through IGF-IR

signaling transduced via pIRS1 and pERK1/2.

Based on the above genetics and molecular biology, we propose a multi-stage

stochastic model involving hereditary and non-hereditary cancer cases, in which a 3-stage

model is used to illuminate the development of hereditary cancers and some

non-hereditary cancers, and a 2-stage model is applied to explain other non-hereditary

cancers. WT1 mutation, IGF2 upregulation, CTNNB1 mutation and P53 mutation may

involve in carcinogenesis by the 3-stage model (N → I1→ I2→ I3→ Tumor), whereas
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WTX mutation and other unknown genetic event may contribute to carcinogenesis by the

2-stage model (N → J1→ J2→ Tumor).

C. A Biologically Supported Stochastic Model of Wilms’ Tumor Incorporating

Hereditary Cancer Cases and Involving Multiple Pathways

Given the biology of Wilms’ tumor, we observe that both germline cells (egg and

sperm) and somatic cells may carry mutant alleles of cancer genes such as WT1 gene and

P53 gene. In population at risk of developing Wilms’ tumor, based on genetic makeup at

the embryo stage, people can be classified into three groups: Normal people (N = I0

people), I1 people and I2 people. If both egg and sperm generating the individual carry

mutant alleles of relevant cancer genes, then this individual is a I2 stage person at the

embryo stage, in which case with high probability the individual is born with cancer. If

only one of germ line cells (egg or sperm) generating the individual carries mutant alleles

of cancer genes, then the individual is a I1 stage person at the embryo stage. If no

germline cells generating the individual carry mutant alleles of cancer genes, this

individual is a normal person.

To account for inherited cancer cases, we let pi (i = 1, 2) be the proportion of

Ii (i = 1, 2) person in the population. Then p0 = 1− p1 − p2 is the proportion of normal

person in the population. In general large human populations, under the assumption that

there are no new mutation in cancer genes one may practically assume that pi (i = 0, 1, 2)

is constant [30]. Let nj denote the number of people at risk of developing Wilms’ tumor

during the j−th age period [tj−1, tj). Among the nj people in the j−th age period, let

nij (i = 1, 2) be the number of Ii (i = 1, 2) people and n0j be the number of normal

people (n0j = nj − n1j − n2j). Based on the Hardy-Weinberg law, under assumptions that

mating between individuals in the population is random and the population size is very

large [31], [30], the conditional probability distribution of {n1j, n2j} given nj is

multinomial with parameters {nj; p1, p2}; that is,

{n1j, n2j}|nj ∼ Multinomial{nj; p1, p2}.
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Since the proliferation rates of all stem cells are large during pregnancy, I2 people in

the population may acquire additional genetic and/or epigenetic changes to become I3

stage people before birth and hence develop cancer at birth. Similarly, I1 people may

acquire genetic and/or epigenetic changes during pregnancy to become I2 people at birth.

Because of protection at the embryo stage and during pregnant period, normal people at

the embryo stage would remain to be normal people at birth. This model is represented

schematically in Figure 1, where α1 is the probability of a I2 → I3 transition in I2 people

during pregnancy.

)(PI 22

I 2Tumor

Embroyo 

Stage

At Birth

)(PI 11

I 2I1

( )210
P-P-1N/I

N/I0

α1 α-1 1

Fig. 1: Embryo Genotypes and Their Frequencies at Embryo Stage and at Birth

Based on studies of molecular biology given in Section B, we assume a stochastic

model for human Wilms’ tumor involving hereditary and non-hereditary cancer cases, in

which a 3-stage model is used to illuminate hereditary cancers and some non-hereditary

cancers, and a 2-stage model is applied to explain other non-hereditary cancers. For

people who are normal at the embryo stage, Wilms’ tumor is derived through two

pathways: N (I0)→ I1 → I2 → I3 → Tumor and N → J1 → J2 → Tumor. Let α2 be

the proportion of people in normal people at risk of developing Wilms’ tumor through the

2-stage model. Thus 1− α2 is the proportion of people in normal people at risk of

developing Wilms’ tumor through the 3-stage model. Among the n0j normal people at

risk of cancer in the j−th age period, let n(I)
0j be the number of people at risk of

developing tumor by 3-stage model and n(J)
0j the number of people at risk of developing
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tumor by 2-stage model. Based on the Hardy-Weinberg law again, the conditional

probability distribution of n(J)
0j given n0j is binomial with parameters {n0j;α2}; that is,

n
(J)
0j |n0j ∼ Binomial{n0j;α2}. For people who have genotype I1 at the embryo stage,

Wilms’ tumor is developed through I1 → I2 → I3 → Tumor. For people who have

genotype I2 at the embryo stage, Wilms’ tumor is derived through I2 → I3 → Tumor.

The proposed model for Wilms’ tumor can be represented schematically by Figure 2.

)(PI 22

I 2

Tumor

Embroyo 

Stage
At Birth

)(PI 11

I 2

I1

( )210
P-P-1N/I N/I0 I1 I3 Tumor

J1 J2

I2

I1

I3

I2

I3 Tumor

I3

Tumor

Fig. 2: Multiple-pathway for Wilms’ Tumor Development

The model assumes the Ii and Ji cells are subjected to stochastic proliferation (birth)

and differentiation (death). It takes into account cancer progression by following to

postulate cancer tumors derive from primary I3 (J2) by clonal expansion [32], where

primary I3 (J2) cells are I3 (J2) cells generated directly by I2 (J1) cells by genetic or

epigenetic changes. The model also postulate that all cells proceed forward independently

of other cells. The I3 stage and J2 stage are transient stages to cancer tumors, hence the

state variables for the model are the number Ij(t) (Jk(t)) of Ij (Jk) cells at time t for

12



j = 0, 1, 2 (k = 0, 1) and the number T (t) of cancer tumors at time t. Therefore, the

stochastic processes are {Ij(t), j = 0, 1, 2, Jk(t), k = 0, 1, T (t), t > 0} for normal people

in the population, {Ij(t), j = 1, 2, T (t), t > 0} for I1 people in the population, and

{I2(t), T (t), t > 0} for I2 people in the population. Notice that, to develop stochastic

models of carcinogenesis, it is conveniently assumed that the last stage cells (i.e. I3 cells,

J2 cells) grow instantaneously into cancer tumors as soon as they are generated as shown

in [1], [8], [33]. In this case, one may assume T (t) as Markov.

To develop mathematical theories for stochastic processes of carcinogenesis for

Wilms’ tumor, let Ii(t;u) (u = 0, 1, 2, i = u, . . . , 2) denote the number of

Ii (i = u, . . . , 2) cells at time t in people who are Iu people at the embryo stage and J1(t)

the number of J1 cells at time t in people who are normal people at the embryo stage. Let

Qi(j) denote the probability of developing tumor during the j−th age period

[tj−1, tj) (tj > t0) in people who are Ii (i = 0, 1, 2) people at the embryo stage. Let

Q
(I)
0 (j) (Q(J)

0 (j)) denote the probability of normal people developing tumor through

3-stage model (2-stage model) during the j−th age period [tj−1, tj) (tj > t0).

Let β(I)
j (t) denote the transition rate from Ij → Ij+1 (j = 0, 1, 2) at time t and β(J)

k (t)

the transition rate from Jk → Jk+1 (k = 0, 1) at time t. In many practical problems,

β
(I)
2 (t) and β(J)

1 (t) are very small (10−8 ∼ 10−4) and one may assume that β(I)
2 (t) = β

(I)
2

and β(J)
1 (t) = β

(J)
1 . Then, by using methods in Tan [34], Tan el al. [35], [2] and Tan and

Yan [10], it can be shown that {Q(I)
0 (j), Q(J)

0 (j), Qi(j), i = 1, 2, j ≥ 1} are given

respectively by:

Q
(I)
0 (j) = {e−β

(I)
2

∫ tj−1
t0

E[I2(x;0)]P
(I)
T (x,tj−1)dx − e−β

(I)
2

∫ tj
t0
E[I2(x;0)]P

(I)
T (x,tj−1)dx}+ o(β

(I)
2 )

Q
(J)
0 (j) = {e−β

(J)
1

∫ tj−1
t0

E[J1(x)]P
(J)
T (x,tj−1)dx − e−β

(J)
1

∫ tj
t0
E[J1(x)]P

(J)
T (x,tj−1)dx}+ o(β

(J)
1 )

Q1(j) = {e−β
(I)
2

∫ tj−1
t0 E[I2(x;1)]P

(I)
T (x,tj−1)dx − e−β

(I)
2

∫ tj
t0
E[I2(x;1)]P

(I)
T (x,tj−1)dx}+ o(β

(I)
2 )

Q2(j) = (1− α1){e−β
(I)
2

∫ tj−1
t0

E[I2(x;2)]P
(I)
T (x,tj−1)dx − e−β

(I)
2

∫ tj
t0
E[I2(x;2)]P

(I)
T (x,tj−1)dx}

+ o(β
(I)
2 )

13



Where E[I2(x; i)] (i = 0, 1, 2) (E[J1(x)]) is the expected number of I2(t; i) (J1(t)) and

where P (I)
T (s, t) (P (J)

T (s, t)) is the probability that a primary I3 (J2) cell generated from

an I2 (J1) cell at time s develops into a detectable tumor by time t. We will derive

E[I2(t; i)] and E[J1(t)] in the following subsection.

The Stochastic Model and Mathematical Analysis

For deriving mathematical analysis of the above model involving hereditary and

non-hereditary cancer cases, let b(I)j (t) and d(I)j (t) denote the birth rate and the death rate

at time t of the Ij (j = 0, 1, 2) cells respectively. Let {B(I)
j (t; i), D

(I)
j (t; i), M

(I)
j (t; i)} be

the number of birth and the number of death of Ij cells, and the number of transition from

Ij → Ij+1 cells during [t, t+ ∆t) respectively in people who are Ii people at the embryo

stage. Similarly, let b(J)k (t) and d(J)k (t) denote the birth rate and the death rate at time t of

the Jk (k = 0, 1) cells. Let {B(J)
k (t), D

(J)
k (t),M

(J)
k (t)} be the number of birth and the

number of death of Jk cells, and the number of transition from Jk → Jk+1 cells during

[t, t+ ∆t) respectively in people who are normal people at the embryo stage. Then, to

order of o(β(I)
j (t)∆t) and o(β(J)

k (t)∆t),

{B(I)
j (t; i), D

(I)
j (t; i)}|Ij(t; i) ∼ Multinomial{Ij(t; i); b(I)j (t)∆t, d

(I)
j (t)∆t} (1)

j = 0, 1, 2

{B(J)
k (t), D

(J)
k (t)}|Jk(t) ∼ Multinomial{Jk(t); b(J)k (t)∆t, d

(J)
k (t)∆t} (2)

k = 0, 1

M
(I)
j (t; i)|Ij(t; i) ∼ Binomial{Ij(t; i); β(I)

j (t)∆t} (3)

∼ Poisson{Ij(t; i)β(I)
j (t)∆t}+ o(β

(I)
j (t)∆t)

independently of {B(I)
j (t; i), D

(I)
j (t; i)}, j = 0, 1, 2

M
(J)
k (t)|Jk(t) ∼ Binomial{Jk(t); β(J)

k (t)∆t} (4)

∼ Poisson{Jk(t)β(J)
k (t)∆t}+ o(β

(J)
k (t)∆t)

independently of {B(J)
k (t), D

(J)
k (t)}, k = 0, 1

14



For an individual who is an N (I0) people at the embryo stage, the state variables in

this individual are {Ij(t), j = 0, 1, 2, Jk(t), k = 0, 1, T (t)}; for an individual who is an I1

people at the embryo stage, the state variables in this individual are {Ij(t), j = 1, 2, T (t)};

for an individual who is an I2 people at the embryo stage, the staging variables in this

individual are {I2(t), T (t)}. To derive E[I2(t; i)] (i = 0, 1, 2), E[J1(t)] and the probability

distributions of these state variables, we have the following stochastic equations for

{Ij(t; i), j = i, . . . , 2, i = 0, 1, 2, Jk(t), k = 0, 1} (see [34], [2], [35], [36], [37]):

Ii(t+ ∆t; i) = Ii(t; i) +B
(I)
i (t; i)−D(I)

i (t; i), i = 0, 1, 2 (5)

Ij(t+ ∆t;u) = Ij(t;u) +B
(I)
j (t;u)−D(I)

j (t;u) +M
(I)
j−1(t;u) (6)

u = 0, 1, j = u+ 1, . . . , 2

J1(t+ ∆t) = J1(t) +B
(J)
1 (t)−D(J)

1 (t) +M
(J)
0 (t) (7)

Given the probability distributions of the random transition variables in equations

(1)-(4) and the stochastic equations in equation (5)-(7), we derive the following stochastic

differential equations for the state variables

{Ij(t; i), i = 0, 1, 2, j = i, . . . , 2, Jk(t), k = 0, 1}

d

dt
Ii(t; i) = Ii(t; i)γ

(I)
i (t) + e

(I)
i (t; i), i = 0, 1, 2 (8)

d

dt
Ij(t;u) = Ij(t;u)γ

(I)
j (t) + Ij−1(t;u)β

(I)
j−1(t) + e

(I)
j (t;u) (9)

u = 0, 1, j = u+ 1, . . . , 2

d

dt
J1(t) = J1(t)γ

(J)
1 (t) + J0(t)β

(J)
0 (t) + e1(t) (10)

Where γ(I)u (t) = b
(I)
u (t)− d(I)u (t) for u = 0, 1, 2, γ(J)1 (t) = b

(J)
1 (t)− d(J)1 (t) and the

random noises are:

15



e
(I)
i (t; i)∆t = [B

(I)
i (t; i)− Ii(t; i)b(I)i (t)∆t]− [D

(I)
i (t; i)− Ii(t; i)d(I)i (t)∆t], i = 0, 1, 2,

e
(I)
j (t;u)∆t = [B

(I)
j (t;u)− Ij(t;u)b

(I)
j (t)∆t]− [D

(I)
j (t;u)− Ij(t;u)d

(I)
j (t)∆t]

+ [M
(I)
j−1(t;u)− Ij−1(t;u)β

(I)
j−1(t)∆t], u = 0, 1, j = u+ 1, . . . , 2

e
(J)
1 (t)∆t = [B

(J)
1 (t)− J1(t)b(J)1 (t)∆t]− [D

(J)
1 (t)− J1(t)d(J)1 (t)∆t]

+ [M
(J)
0 (t)− J0(t)β(J)

0 (t)∆t]

From the above equations, the random noises have expectation zero and are

un-correlated with the state variables. Given the initial conditions

Ij(t0; i) > 0, j = i, i+ 1 and Ij(t0; i) = 0, j > i+ 1, the solution of the above equation

(8)-(10) are given respectively by:

Ii(t; i) = Ii(t0; i)e
∫ t
t0
γ
(I)
i (x)dx

+ η
(I)
i (t; i), i = 0, 1, 2 (11)

Ij(t;u) = Ij(t0;u)e
∫ t
t0
γ
(I)
j (x)dx

+

∫ t

t0

Ij−1(x;u)β
(I)
j−1(x)e

∫ t
x γ

(I)
j (y)dydx+ η

(I)
j (t;u),

u = 0, 1, j = u+ 1, . . . , 2 (12)

J1(t) = J1(t0)e
∫ t
t0
γ
(J)
1 (x)dx

+

∫ t

t0

J0(x)β
(J)
0 (x)e

∫ t
x γ

(J)
1 (y)dydx+ η

(J)
1 (t) (13)

where η(I)j (t; i) =
∫ t
t0
e
∫ t
x γ

(I)
j (y)dye

(I)
j (x; i)dx and η(J)1 (t) =

∫ t
t0
e
∫ t
x γ

(J)
1 (y)dye

(J)
1 (x)dx.

Obviously, E[ηj(t; i)] = 0 (j = 1, 2, i = 0, 1, 2). Given {I0(t0; 0) = N(t0),

I1(t0; 0) = I2(t0; 0) = 0, J0(t0) = N(t0), J1(t0) = 0, γ
(I)
0 (x) = 0, γ

(J)
0 (x) = 0}, the

expected numbers E[Ij(t; i)] (j = 1, 2, i = 0, 1, 2) of Ij (j = 1, 2) and E[J(t)] of J1 are:
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E[I2(t; 2)] = E[I2(t0; 2)]e
∫ t
t0
γ
(I)
2 (x)dx

E[I2(t; 1)] = E[I2(t0; 1)]e
∫ t
t0
γ
(I)
2 (x)dx

+ E[I1(t0; 1)]

∫ t

t0

β
(I)
1 (x)e

∫ x
t0
γ
(I)
1 (z)dz+

∫ t
x γ

(I)
2 (z)dz

dx

E[I2(t; 0)] =

∫ t

t0

β
(I)
1 (x)E[I1(x; 0)]e

∫ t
x γ

(I)
2 (y)dydx

E[J1(t)] = E[N(t0)]

∫ t

t0

β
(J)
0 (x)e

∫ t
x γ

(J)
1 (y)dydx

If the model is time homogeneous so that {b(I)j (t) = b
(I)
j , d

(I)
j (t) = d

(I)
j , γ

(I)
j (t) = γ

(I)
j ,

β
(I)
j (t) = β

(I)
j , j = 0, 1, 2, b

(I)
j (t) = b

(I)
j , d

(J)
1 (t) = d

(J)
1 , γ

(J)
1 (t) = γ

(J)
1 , β

(J)
0 (t) = β

(J)
0 , }

and if γ(I)i 6= γ
(I)
j for i 6= j, then the above expected numbers reduce to:

E[I2(t; 2)] = E[I2(t0; 2)]eγ
(I)
2 (t−t0) (14)

E[I2(t; 1)] = E[I2(t0; 1)]eγ
(I)
2 (t−t0) + E[I1(t0; 1)]β

(I)
1

2∑
u=1

A12(u)eγ
(I)
u (t−t0) (15)

E[I2(t; 0)] = E[N(t0)]β
(I)
0 β

(I)
1

2∑
u=1

A12(u)
1

γ
(I)
u

[eγ
(I)
u (t−t0) − 1], (16)

E[J1(t; 0)] = E[N(t0)]β
(J)
0

1

γ
(J)
1

[eγ
(I)
u (t−t0) − 1], (17)

where Aij(u) =
∏j

v=i,v 6=u(γu − γv)−1 for i ≤ u ≤ j.

According to the above results, we can derive {Q(I)
0 (j), Q

(J)
0 (j), Qi(j), i = 1, 2,

j ≥ 1} for homogeneous models under the condition that γ(I)1 6= γ
(I)
2 :

Q
(I)
0 (j) = {e−λ3ψ02(tj−1) − e−λ3ψ02(tj)}+ o(β

(I)
2 ),

Q
(J)
0 (j) = {e−λ4ψ01(tj−1) − e−λ4ψ01(tj)}+ o(β

(J)
1 ),

Q1(j) = {e−θψ22(tj−1)−λ2ψ12(tj−1) − e−θψ22(tj)−λ2ψ12(tj)}+ o(β
(I)
2 ),

Q2(j) = (1− α1){e−λ1ψ22(tj−1) − e−λ1ψ22(tj)}+ o(β
(I)
2 ).
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Where λ1 = 1

γ
(I)
2

E[I2(t0; 2)]β
(I)
2 , λ2 = {

∏2
i=1 γ

(I)
i }−1E[I1(t0; 1)]β

(I)
1 β

(I)
2 ,

λ3 = {
∏2

i=1 γ
(I)
i }−1 E[N(t0)]

∏2
i=0 β

(I)
i , θ = 1

γ
(I)
2

E[I2(t0; 1)]β
(I)
2 ,

λ4 = 1

γ
(J)
1

2E[N(t0)]β
(J)
0 β

(J)
1 and

ψ22(t) = γ
(I)
2

∫ t

t0

eγ
(I)
2 (x−t0)P

(I)
T (x, t)dx

= {eγ
(I)
2 (t−t0) − 1} if P (I)

T (x, t) = 1 for t > x

ψ12(t) = {
2∏
i=1

γ
(I)
i }

2∑
u=1

A12(u)

∫ t

t0

eγ
(I)
u (x−t0)P

(I)
T (x, t)dx

= {
2∏
i=1

γ
(I)
i }

2∑
u=1

A12(u)
1

γu
{eγ

(I)
u (t−t0) − 1} if P (I)

T (x, t) = 1 for t > x

ψ02(t) = {
2∏
i=1

γ
(I)
i }

2∑
u=1

A12(u)
1

γ
(I)
u

∫ t

t0

{eγ
(I)
u (x−t0) − 1}P (I)

T (x, t)dx

= {
2∏
i=1

γ
(I)
i }

2∑
u=1

A12(u)
1

γ
(I)
u

2{e
γ
(I)
u (t−t0) − 1− γ(I)u (t− t0)},

if P (I)
T (x, t) = 1 for t > x

ψ01(t) = γ
(J)
1

2
∫ t

t0

{eγ1(x−t0) − 1}P (J)
T (x, t)dx

= {eγ
(J)
1 (t−t0) − 1− γ(J)1 (t− t0)} if P (J)

T (x, t) = 1 for t > x

The Transition Probability of State Variables

Let g(x, y;N, p1, p2) denote the density at (x, y) of a multinomial distribution with

parameters (N, p1, p2) and f(x;N, p) denote the density at x of a binomial distribution

with parameters (N, p). From equation (1)-(4), we obtain the transition probability of the

markov process of state variables as, to order of o(∆t) and for t > t0:

P{I2(t+∆t; 2) = v|I2(t; 2) = u} =
u∑
r=0

f(r;u, b
(I)
2 (t)∆t)f(u−v+r;u−r, d2(t)∆t

1− b(I)2 (t)∆t
).

P{I1(t+ ∆t; 1) = v1, I2(t+ ∆t; 1) = v2|I1(t; 1) = u1, I2(t; 1) = u2} =

P{I1(t+ ∆t; 1) = v1|I1(t; 1) = u1}P{I2(t+ ∆t; 1) = v2|I1(t; 1) = u1, I2(t; 1) = u2};
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P{I0(t+ ∆t; 0) = v0, I1(t+ ∆t; 0) = v1, I2(t+ ∆t; 0) = v2|I0(t; 0) = u0, I1(t; 0) =

u1, I2(t; 0) = u2} = P{I0(t+ ∆t; 0) = v0|I0(t; 0) = u0}
∏2

i=1 P{Ii(t+ ∆t; 0) =

vi|Ii−1(t, 0) = ui−1, Ii(t; 0) = ui};

P{J0(t+ ∆t) = v0, J1(t+ ∆t) = v1, |J0(t) = u0, J1(t) = u1} = P{J0(t+ ∆t) = v0|

J0(t) = u0}P{J1(t+ ∆t) = v1|J0(t) = u0, J1(t) = u1}, where

P{I1(t+ ∆t; 1) = v1|I1(t; 1) = u1}

=

u1∑
i=0

f(i;u1, b
(I)
1 (t)∆t)× f(u1 − v1 + i;u1 − i,

d
(I)
1 (t)∆t

1− b(I)1 (t)∆t
),

P{I2(t+ ∆t; 1) = v2|I1(t; 1) = u1, I2(t; 1) = u2}

=

u2∑
i=0

u2−i∑
j=0

g(i, j;u2, b
(I)
2 (t)∆t, d

(I)
2 (t)∆t)× f(v2 − u2 − i+ j;u1, β

(I)
1 (t)∆t).

P{I0(t+ ∆t; 0) = v0|I0(t; 0) = u0}

=

u0∑
i=0

f(i;u0, b
(I)
0 (t)∆t)× f(u0 − v0 + i;u0 − i,

d
(I)
0 (t)∆t

1− b(I)0 (t)∆t
),

P{Ii(t+ ∆t; 0) = vi|Ii−1(t; 0) = ui−1, Ii(t; 0) = ui}

=

ui∑
j=0

ui−j∑
m=0

g(j,m;ui, b
(I)
i (t)∆t, d

(I)
i (t)∆t)× f(vi − ui − j +m;ui−1, β

(I)
i−1(t)∆t),

i = 1, 2,

P{J1(t+ ∆t) = v1|J0(t) = u0, J1(t) = u1}

=

u1∑
i=0

u1−i∑
j=0

g(i, j;u1, b
(J)
1 (t)∆t, d

(J)
1 (t)∆t)× f(v1 − u1 − j +m;u0, β

(J)
0 (t)∆t).

D. A Statistical Model and The Probability Distribution of the Number of Detectable

Tumors

The data available for modelling carcinogenesis are usually cancer incidence over

different time periods. For example, the SEER data of NCI/NIH for human cancers are

given by {(y0, n0), (yj, nj), j = 1, . . . , k}, where y0 is the number of cancer cases at birth

and n0 the total number of birth and where for j ≥ 1, yj is the number of cancer cases

during the j−th age group of 1 year period (or 5 years period) and nj is the number of

people who are at risk of cancer and from whom yj of them have developed cancer during
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the j−th age group. Given in Table 1 are the SEER data for Wilms’ tumor cases. From

this data set, notice that there are cancer cases at birth implying some number of inherited

cancer cases. In this section, we will develop a statistical model for this data set.

To incorporate hereditary cancer cases, we have noted in the previous section that

nj =
∑2

i=0 nij , where nij is the number of individuals who have genotype Ii (i = 0, 1, 2)

at the embryo stage. Then, as showed in the previous section, the conditional probability

distribution of (n1j, n2j) given nj is multinomial with parameters {nj; p1, p2}. It follows

that nij|nj ∼ Binomial{nj, pi}, i = 1, 2. Among the n0j normal people at risk of cancer in

the j−th age period, n0j = n
(I)
0j + n

(J)
0j , where n(I)

0j is the number of people at risk of

developing tumor by 3-stage model and n(J)
0j the number of people at risk of developing

tumor by 2-stage model. As discussed in the previous section,

n
(J)
0j |n0j ∼ Binomial{n0j;α2}. We let Yj denote the random variable for yj and yj be the

observed number of Yj .

The Probability Distribution of Y0

Y0 is the number of cancer cases at birth and y0 derives only from individuals who

have genotype I2 at the embryo stage. Thus, given n20 individuals with genotype I2 at the

embryo stage, y0|n20 ∼ Poisson{n20α1}. Since n20|n0 ∼ Binomial{n0, p2}, obviously

we have, Y0 ∼ Poisson{χ0}, where χ0 = n0p2α1.

The expected number of Y0 given n0 is E(Y0|n0) = n0p2α1. The deviance D0 from

the conditional probability distribution of y0 given n0 is:

D0 = −2{log{h(y0;χ0)} − log{h(y0; χ̂0)}}

= 2{{χ0 − y0} − y0 log{χ0

y0
}}

where χ̂0 = y0.
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The Probability Distribution of Yj (j ≥ 1)

To derive the probability distribution of Yj (j ≥ 1) in the j−th age group, let

Yij (i = 0, 1, 2) be the number of cancer cases generated by people with genotype Ii at the

embryo stage among these Yj cancer cases. Let Y (I)
0j be the number of cancer cases

generated in normal people by 3-stage model and Y (J)
0j be the number of cancer cases

generated in normal people by 2-stage model. The conditional probability distribution of

Yij given nij is, for tj > t0:

Y
(I)
0j |n0j ∼ Poisson{n(I)

0j Q
(I)
0 (j)},

Y
(J)
0j |n0j ∼ Poisson{n(J)

0j Q
(J)
0 (j)},

Yij|nij ∼ Poisson{nijQi(j)}, i = 1, 2.

Then the conditional probability distribution of {Y (I)
0j , Y

(J)
0j , Y1j, Y2j} given

{n(I)
0j , n

(J)
0j , n1j, n2j} is

P{y1j, y2j, y(I)0j , yj|n1j, n2j, n
(I)
0j , nj}

= h{y(I)0j ;n
(I)
0j Q

(I)
0 (j)}h{y(J)0j ;n

(I)
0j Q

(I)
0 (j)}

2∏
i=1

h{yij;nijQi(j)}. (18)

Put QT (j) = n
(I)
0j Q

(I)
0 (j) + n

(J)
0j Q

(J)
0 (j) +

∑2
i=1 nijQi(j). The conditional distribution

of Yj|(nij, i = 0, 1, 2) ∼ Poisson{QT (j)}. It follows that the probability distribution of Yj

given nj is

P (yj|nj) =

nj∑
n1j=0

nj−n1j∑
n2j=0

g(n1j, n2j;nj, p1, p2)

n0j∑
n
(J)
0j =0

f{n(J)
0j ;n0j, α2}h{yj;QT (j)}, (19)

where g(n1j, n2j;nj, p1, p2) is the probability density of (n1j, n2j)|nj ∼ Multinomial

(nj; p1, p2), f(n0j;n
(J)
0j , α2) is the probability density of n(J)

0j |n0j ∼ Binomial(n0j;α2) and

h{yj;QT (j)} is the Poisson density of Yj|(nij, i = 0, 1, 2) ∼ Poisson {QT (j)}.
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The probability distribution P (yj|nj) given by equation (19) is a mixture of Poisson

distributions with two mixing probability distributions given by the multinomial

distribution of {n1j, n2j} given nj and the binomial distribution of n(J)
0j given n0j . The

multinomial mixing probability distribution represents individuals with different

genotypes at the embryo stage in the population. The binomial mixing probability

distribution represents individuals who are normal at embryo stage at risk of developing

Wilms’ tumor through different pathway.

Let Θ be the set of all unknown parameters (i.e. the parameters (p1, p2, αi, i = 1, 2)

and the birth rates, the death rates and the mutation rates of Ij cells and Jj cells). Based

on data (yj, j = 0, 1, . . . , k), the likelihood function of Θ is

L{Θ|yj, j = 0, 1, . . . , k} = h(y0;χ0)
k∏
j=1

P (yj|nj). (20)

The Probability Distribution of the Expanded Model

For applying the mixture distribution given by equation (20) to make inference about

the unknown parameters, we expand the model to include the un-observable variables

{n1j, n2j, n
(I)
0j , y1j, y2j, y

(I)
0j }. To derive the joint probability distribution of these variables,

observe that for j ≥ 1, the conditional probability distribution of {y1j, y2j} given

{nij, i = 1, 2, nj, yj} is multinomial with parameters {yj; n1jQ1(j)

QT (j)
,
n2jQ2(j)

QT (j)
}. That is,

P{y1j, y2j|nij, i = 1, 2, nj, yj} ∼ Multinomial{yj;
n1jQ1(j)

QT (j)
,
n2jQ2(j)

QT (j)
}. (21)

The conditional probability distribution of y(I)0j given {n0j, y0j} is binomial with

parameters {y0j;
n
(I)
0j Q

(I)
0 (j)

n
(I)
0j Q

(I)
0 (j)+n

(J)
0j Q

(J)
0 (j)
}. That is,

P{y(I)0j |n0j, y0j} ∼ Binomial{y0j;
n
(I)
0j Q

(I)
0 (j)

n
(I)
0j Q

(I)
0 (j) + n

(J)
0j Q

(J)
0 (j)

}, for j ≥ 1. (22)
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Hence for j ≥ 1, the joint density of {nij, yij, i = 1, 2, n
(I)
0j , y

(I)
0j , yj} given nj is

P{nij, yij, i = 1, 2, n
(I)
0j , y

(I)
0j , yj, j = 1, . . . , k|nj,Θ}

= g(n1j, n2j;nj, p1, p2)f{n(J)
0j ;n0j, α2}

× h{y(I)0j ;n
(I)
0j Q

(I)
0 (j)}h{y(J)0j ;n

(I)
0j Q

(I)
0 (j)}

2∏
i=1

h{yij;nijQi(j)}.

Put Y = (y1j, y2j, y
(I)
0j , j = 1, . . . , k), N = (n1j, n2j, n

(I)
0j , j = 1, . . . , k),

y
∼

= (yj, j = 0, 1, . . . , k) and n
∼

= (nj, j = 0, 1, . . . k}. For the SEER data, the joint

density P{Y , y
∼
,N |n

∼
,Θ} of {Y , y

∼
,N} given {n

∼
,Θ} is

P{Y , y
∼
,N |n

∼
,Θ} = h(y0;n0p2α1)

×
k∏
j=1

{g(n1j, n2j;nj, p1, p2)f{n(J)
0j ;n0j, α2}h{y(I)0j ;n

(I)
0j Q

(I)
0 (j)}

× h{y(J)0j ;n
(J)
0j Q

(J)
0 (j)}

2∏
i=1

h{yij;nijQi(j)}}. (23)

The joint density P{Y , y
∼
,N |n

∼
,Θ} of (Y , y

∼
,N ) given by equation (23) will be used

as the kernel for the Bayesian method to estimate the unknown parameters and to predict

the state variables.

Notice that the above distribution is a product of multinomial distributions, binomial

distributions and Poisson distributions. For this joint distribution, the deviance is

Dev = −2{logP [Y , y
∼
,N |n

∼
,Θ]− logP [Y , y

∼
,N |n

∼
, Θ̂]}. That is,

Dev = D0 +Dev(p1, p2) +Dev(α2) +
k∑
j=1

Dj, (24)
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where

D0 = 2{χ0 − y0 − y0 log{χ0

y0
}},

Dev(p1, p2) = 2
k∑
j=1

{n1j log{ n1j

njp1
}+ n2j log{ n2j

njp2
}+ n0j log{ n0j

nj(1− p1 − p2)
}},

Dev(α2) = 2
k∑
j=1

{n(I)
0j log{

n
(I)
0j

n0j(1− α2)
}+ n

(J)
0j log{

n
(J)
0j

n0jα2

}},

Dj = 2
2∑
i=1

{nijQi(j)− yij − yij log{nijQi(j)

yij
}}

+ 2{n(I)
0j Q

(I)
0 (j)− y(I)0j − y

(I)
0j log{

n
(I)
0j Q

(I)
0 (j)

y
(I)
0j

}}

+ 2{n(J)
0j Q

(J)
0 (j)− y(J)0j − y

(J)
0j log{

n
(J)
0j Q

(J)
0 (j)

y
(J)
0j

}}.

The Unknown Parameters and Fitting of the Model by Cancer Incidence Data

In the above model, the unknown parameters are {p1, p2, α1, α2, β
(I)
0 (t), β

(I)
i (t),

b
(I)
i (t), d

(I)
i (t), i = 1, 2, β

(J)
0 (t), β

(J)
1 (t), b

(J)
1 (t), d

(J)
1 (t)}. Since the mutation rates are very

small, we assume β(I)
i (t) = β

(I)
i for i = 0, 1, 2 and β(J)

i (t) = β
(I)
i for i = 0, 1. The

proliferation rates of Il cells for l = 1, 2 and J1 cells are expected to be small [3]. It is also

reasonable to assume b(I)1 (t) = b
(I)
1 , d

(I)
1 (t) = d

(I)
1 , b(I)2 (t) = b

(I)
2 , d(I)2 (t) = d

(I)
2 ,

b
(J)
1 (t) = b

(J)
1 and d(J)1 (t) = d

(J)
1 so that γ(I)1 (t) = b

(I)
1 − d

(I)
1 = γ

(I)
1 , γ(I)2 (t) = b

(I)
2 − d

(I)
2

= γ
(I)
2 and γ(J)1 (t) = b

(J)
1 − d

(J)
1 = γ

(J)
1 . (see [2], [37]).

To fit the SEER Wilms’ tumor data, we let one time unit (i.e. ∆t = 1) correspond to

three months after birth and take t0 = 1. Because the last stage cells (i.e. I3 cells, J2 cells)

grow so fast, during a three months period one may practically assume PT (s, t) ∼ 1 if

t− s ≥ 1. Using this discrete approximation, as shown in the Appendix A, we obtain:
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E[I2(t; 2)] ≈ E[I2(t0; 2)](1 + γ
(I)
2 )t−t0 , i = 1, 2,

E[I2(t; 1)] ≈ E[I2(t0; 1)](1 + γ
(I)
2 )(t−t0) + E[I1(t0; 1)]β

(I)
1

2∑
u=1

A12(u)(1 + γ(I)u )t−t0 ,

E[I2(t; 0)] ≈ E[N(t0)]β
(I)
0 β

(I)
1

2∑
u=1

A12(u)
1

γ
(I)
u

[(1 + γ(I)u )t−t0 − 1],

E[J1(t)] ≈ E[N(t0)]β
(J)
0

1

γ
(J)
1

[(1 + γ
(J)
1 )t−t0 − 1].

Comparing these expected numbers with those given by equations (14)-(17)

respectively, observe that if one replaces eγ
(I)
1 (t−t0) by (1 + γ

(I)
1 )(t−t0) = e(t−t0) log{1+γ

(I)
1 }

≈ e(t−t0)γ
(I)
1 , eγ

(I)
2 (t−t0) by (1 + γ

(I)
2 )(t−t0) = e(t−t0) log{1+γ

(I)
2 } ≈ e(t−t0)γ

(I)
2 and eγ

(J)
1 (t−t0) by

(1 + γ
(J)
1 )(t−t0) = e(t−t0) log{1+γ

(j)
1 } ≈ e(t−t0)γ

(J)
1 , then the above approximations are equal

to those by equations (14)-(17) respectively. Using the above results, as shown in the

Appendix A, we obtain, to order of o(β(I)
2 ) and o(β(J)

1 ):

Q
(I)
0 (j) = {e−λ3φ02(tj−1) − e−λ3φ02(tj)}+ o(β

(I)
2 ),

Q
(J)
0 (j) = {e−λ4φ01(tj−1) − e−λ4φ01(tj)}+ o(β

(J)
1 ),

Q1(j) = {e−θφ22(tj−1)−λ2φ12(tj−1) − e−θφ22(tj)−λ2φ12(tj)}+ o(β
(I)
2 ),

Q2(j) = (1− α1){e−λ1φ22(tj−1) − e−λ1φ22(tj)}+ o(β
(I)
2 ),
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where

φ22(t) = {(1 + γ
(I)
2 )(t−t0) − 1}, if γ(I)2 6= 0;

φ12(t) = {
2∏
i=1

γ
(I)
i }

2∑
u=1

A12(u)
1

γ
(I)
u

{(1 + γ(I)u )(t−t0) − 1},

if γ(I)2 6= γ
(I)
1 6= 0;

φ02(t) = {
2∏
i=1

γ
(I)
i }

2∑
u=1

A12(u)
1

γ
(I)
u

2{(1 + γ(I)u )(t−t0) − 1− γ(I)u (t− t0)},

if γ(I)2 6= γ
(I)
1 6= 0;

φ01(t) = {(1 + γ
(J)
1 )(t−t0) − 1− γ(J)1 (t− t0)}, if γ(J)1 6= 0.

From the above analysis, it follows that to order of o(β(I)
2 ), o(β(J)

1 ), {Q1(j), Q2(j),

Q
(I)
0 (j), Q

(J)
0 (j)} depend on the parameters only through the parametric functions

{λi, i = 1, 2, 3, 4, θ, γ
(I)
1 , γ

(I)
2 , γ

(J)
1 }. If E[N(t0)], E[I2(t0; 0)], E[I2(t0; 1)], E[I2(t0; 2)]

and E[J1(t0)] are unknown, it is not possible to estimate the mutation rates

{β(I)
i , i = 0, 1, 2, β

(J)
i , i = 0, 1} but only the functions {λi, i = 1, 2, 3, 4, θ} of these

parameters. Similarly, one can not estimate {b(I)i , d
(I)
i , i = 1, 2, b

(J)
1 , d

(J)
1 } but only the

proliferation rates {γ(I)i = b
(I)
i − d

(I)
i , i = 1, 2, γ

(J)
1 = b

(J)
1 − d

(J)
i }. Thus, the estimable

parameters are Θ = {pi, αi, γ(I)i , i = 1, 2, θ, γ
(J)
1 , λj, j = 1, 2, 3, 4}. Notice that there are

12 unknown estimable parameters. We will refer the model as Model-F.

Single Pathway Model with Hereditary Cancer Cases

For comparison purposes, we will also consider fitting the SEER data of Wilms’ tumor

by a single pathway 3-stage model with hereditary cancer cases. The model is referred to

as Model-S. For people who are normal at the embryo stage, Wilms’ tumor is derived by

one single pathway: N (I0)→ I1 → I2 → I3 → Tumor. For people who have genotype

I1 at the embryo stage, the tumor is developed by: I1 → I2 → I3 → Tumor. For people

who have genotype I2 at the embryo stage, the tumor is derived by: I2 → I3 → Tumor.
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This model has 9 unknown parameters, which are

Θ = {pi, γ(I)i , i = 1, 2, α1, θ, λj, j = 1, 2, 3}.

E. The Generalized Bayesian Method and the Gibbs Sampling Procedure

To fit the models to cancer incidence data and to validate the models, one would need

to estimate the unknown parameters and to predict the state variables. We propose a

generalized Bayesian inference procedure to achieve these purposes.

The generalized Bayesian inference is based on the posterior distribution P{Θ|N ,

Y , y
∼
, n
∼
} of Θ given {N ,Y , y

∼
, n
∼
}. This posterior distribution is derived by combining

the prior distribution P{Θ} of Θ with the joint probability distribution P{N ,Y , y
∼
|n
∼
, Θ}

given by equation (23). It follows that this inference procedure would combine

information from three sources: (1) Previous information and experiences about the

parameters in terms of the prior distribution P{Θ} of the parameters. (2) Biological

information of inherited cancer cases via genetic segregation of cancer genes in the

population (P [N |n
∼
, pi, i = 1, 2]). (3) Information from the expanded data Y and the

observed data y
∼

via the statistical model from the system (P [Y , y
∼
|N ,Θ]). Because of

additional information from the genetic segregation of the cancer genes, this inference

procedure provides an efficient procedure to extract information of effects of genotypes of

individuals at the embryo stage.

The Prior Distribution of the Parameters

For the prior distributions of Θ, because biological information have suggested some

lower bounds and upper bounds for the mutation rates and for the proliferation rates, we

assume

P (Θ) ∝ c (c > 0)

where c is a positive constant if these parameters satisfy some biologically specified

constraints; and equal to zero for otherwise. These biological constraints are:
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1) 0 < p1 < 10−2, 0 < p2 < 10−3, 0 < αi < 1 (i = 1, 2), −0.01 < γ
(I)
i < 1

(i = 0, 1), −0.01 < γ
(J)
1 < 1, 10−8 < β

(I)
i < 10−3 (i = 0, 1, 2), 10−8 < β

(J)
k < 10−3

(k = 0, 1) and 103 < N(t0) < 108 .

2) For the λj (j = 1, 2, 3, 4) and θ, we let 0 < λ1 = 1

γ
(I)
2

E[I2(t0; 2)]β
(I)
2 < 104,

0 < λ2 = 1

γ
(I)
1 γ

(I)
2

E[I1(t0; 1)]β
(I)
1 β

(I)
2 < 104, 0 < λ3 = 1

γ
(I)
1 γ

(I)
2

N(t0)β
(I)
0 β

(I)
1 β

(I)
2 < 10−1,

0 < λ4 = 1

γ
(J)
1

2N(t0)β
(J)
0 β

(J)
1 < 103 and 0 < θ = 1

γ
(I)
2

E[I2(t0; 1)]β
(I)
2 < 10−1.

We will refer the above prior as a partially informative prior which may be considered

as an extension of the traditional non-informative prior given in [38].

The Posterior Distribution of the Parameters Given {Y ,N , y
∼
, n
∼
}

Denote by Θ = {pi, αi, γ(I)i , i = 1, 2, λj, j = 1, 2, 3, 4, γ
(J)
1 , θ}. From the posterior

distribution P{Θ|N ,Y , y
∼
, n
∼
}, we obtain:

P{Θ|N ,Y , y
∼
, n
∼
} ∝ (α1)

y0e−n0α1p2p
∑k

j=1 n1j

1 p
y0+

∑k
j=1 n2j

2 (1− p1 − p2)
∑k

j=1 n0j

× α
∑k

j=1 n
(J)
0j

2 (1− α2)
∑k

j=1 n
(I)
0j

×
k∏
j=1

{e−n
(I)
0j Q

(I)
0 (j)[n

(I)
0j Q

(I)
0 (j)]y

(I)
0j e−n

(J)
0j Q

(J)
0 (j)[n

(J)
0j Q

(J)
0 (j)]y

(J)
0j

×
2∏
i=1

e−nijQi(j)[nijQi(j)]
yij},Θ ∈ Ω,

where Ω is the parameter space of Θ provided by the biological constraints in the previous

subsection.

For computational convenience, we notice that the log of P{Θ|N ,Y , y
∼
, n
∼
} is

proportional to the negative of the deviance given by equation (24).

The Multi-level Gibbs Sampling Procedure For Estimating Parameters

Given the above posterior probability distributions, we will use the following

multi-level Gibbs sampling procedure to derive estimates of the parameters. We notice that

numerically, the Gibbs sampling procedure given below is equivalent to the EM-algorithm
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from the sampling theory viewpoint with Steps (1)-(2) as the E-Step and with Step (3) as

the M-Step respectively [39]. These multi-level Gibbs sampling procedures are given by:

1) Generating N given (Y , y
∼
, n
∼
,Θ):

Given Θ and given n
∼

, use the multinomial distribution of {n1j, n2j} given nj and the

binomial distribution of n(I)
0j given n0j to generate a large sample of N . Then, by

combining this sample with P{Y , y
∼
|N , n

∼
,Θ} in equation (18) to select N through the

weighted bootstrap method due to Smith and Gelfant [40]. This selected N is then a

sample from P{N |Y , y
∼
, n
∼
,Θ} even though the latter is unknown. (For proof, see [31],

Chapter 3.) Call the generated sample N̂ .

2) Generating Y given (N , y
∼
, n
∼
,Θ):

Given {y
∼
, n
∼
,Θ} and given N = N̂ generated from Step (1), generate Y from the

multinomial distribution and the binomial distribution given by equation (21) and (22).

Call the generated sample Ŷ .

3) Estimation of Θ given {N ,Y , y
∼
, n
∼
}:

Given {y
∼
, n
∼
} and given (N ,Y ) = (N̂ , Ŷ ) from Step (1) and Step (2), derive the

posterior mode of Θ by maximizing the conditional posterior distribution

P{Θ|N̂ , Ŷ , y
∼
, n
∼
}. Under the partially informative prior, this is equivalent to maximize

the negative of the deviance given by equation (24) under the constraints given in this

section. Denote this generated mode by Θ̂.

4) Recycling Step:

With {(N ,Y ,Θ) = (N̂ , Ŷ , Θ̂)} given above, go back to Step (1) and continue until

convergence.

The proof of convergence of the above steps can be derived by using procedure given

in [31], Chapter 3. At convergence, the Θ̂ are the generated values from the posterior

distribution of Θ given {y
∼
, n
∼
} independently of (N ,Y ) (for proof, see [31], Chapter 3).

Repeat the above procedures one then generates a random sample of Θ from the posterior

distribution of Θ given {y
∼
, n
∼
}; then one uses the sample mean as the estimates of Θ and
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use the sample variances and covariances as estimates of the variances and covariances of

these estimates.

F. Application to Fit the SEER Data

In this section, we will apply the above model to the Wilms’ tumor incidence data

from NCI/NIH’s SEER program over the years 1973 - 2007. Given in Table 1 are the

numbers of people at risk and the Wilms’ tumor observed cases in the age groups together

with the predicted cases from the models. These data give cancer incidence at birth and

incidence for 84 age groups (k = 84) with each group spanning over a 1 year period.

To fit the data, we let one time unit be three months after birth and let t0 = 1. To

compare different models, we fit the following two mixture models: (1) The mixture

model with a 3-stage model for hereditary cancer cases and some non-hereditary cancer

cases and a 2-stage model for other non-hereditary cancer cases (Model-F). (2) The single

pathway 3-stage mixture model (Model-S). We fit these models to the SEER data given in

Table 1.

Given in Table 2 are the natural log of the likelihood functions, the AIC (Akaike

Information Criterion) and the BIC (Bayesian Information Criterion) for these models.

Table 3 shows estimates of parameters in Model-F. Figure 3 gives the plots of predicted

cancer cases from the Model-F and Model-S. For comparison purposes, in Table 1, we

also provide numbers of predicted cancer cases from Model-F and Model-S together with

the observed cancer cases over time from SEER. From these results, we have made the

following observations:

1) As shown by results in Table 1 and Figure 3, it appeared that Model-F fitted the

SEER data better than Model-S. The AIC (Akaike Information Criteria) and BIC

(Bayesian Information Criteria) values of Model-F are given by (AIC=352.332,

BIC=381.644) which are smaller than those of Model-S respectively. These results

suggest that Wilms’ tumor may best be described by a model with the first pathway given

30



as 3-stage model for both hereditary and non-hereditary cancer cases and the second

pathway given as a 2-stage model for non-hereditary cancer cancers.

2) From Table 3, the estimates of p1 and p2 from the SEER data are of orders 10−3 and

10−4 respectively. This indicates that in the US population, the frequency of stage limiting

cancer genes for Wilms’ tumor is approximately around 4× 10−3.

3) Table 3 shows that the estimate of α1 is 0.1459. This indicates that about 15%

individuals with genotype I2 would develop cancer at birth. The estimate of α2 is of order

of 10−5. This indicates that the proportion of normal people in the population at risk of

Wilms’ tumor by 2-stage pathway is very small.

4) From Table 3, estimate of proliferation rate of I1 is order of 10−7, quite small,

indicating that the phenotype I1 is almost identical to N/I0; further confirming

staging-limiting genes are basically tumor suppressor genes. Estimate of proliferation rate

of I2 is order of 10−5, which is 102 times greater than those of I1. Estimate of proliferation

rate of J1 is order of 10−3, which is 104 times greater than those of I1.

5) Results in Table 3 show that the estimates {λ̂j, j = 1, 2, 3, 4, θ̂} of {λj, θ} are of

order {102, 103, 10−2, 102, 10−2} respectively. Because {λ1 = 1

γ
(I)
2

E[I2(t0; 2)]β
(I)
2 ,

λ2 = 1

γ
(I)
1 γ

(I)
2

E[I1 (t0; 1)]β
(I)
1 β

(I)
2 , λ3 = 1

γ
(I)
1 γ

(I)
2

N(t0)β
(I)
0 β

(I)
1 β

(I)
2 , λ4 = 1

γ
(J)
1

2N(t0)β
(J)
0 β

(J)
1 ,

θ = 1

γ
(I)
2

E[I2(t0; 1)]β
(I)
2 }, assuming some values of {E[N(t0)], E[I1(t0; 1)], E[I2(t0; 2)]}

from some biological observations, one can have some rough ideas about the magnitude

of β(I)
j (j = 0, 1, 2) (β(J)

k (k = 0, 1)). If we follow [41] to assume E[N(t0)] =

E[I1(t0; 1)] = E[I2(t0; 2)] ∼ 108, then {β(I)
j , j = 0, 1, 2, β

(J)
k , k = 0, 1} ≈ 10−7 ∼ 10−5.
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Table 1: Wilms’ Tumor Incidence Data from SEER (Overall Population)

Age Number of Observed Model-F Model-S

Groups People at Risk Incidence Predicated Predicated

0 12495777 212 209 183

1 12221582 239 233 254

2 12120990 221 229 189

3 12112995 217 210 142

4 12146174 167 170 107

5 12161336 137 123 81

6 12111854 73 81 60

7 12160452 61 54 46

8 11942586 38 36 34

9 12381299 22 27 26

10 12512703 20 21 20

11 12410338 11 16 15

12 12449244 8 13 12

13 12527781 7 10 9

14 12602883 7 8 7

15 12719598 7 6 6

16 12766107 6 5 4

17 12831400 6 4 4

18 12382047 2 3 3

19 12581638 0 3 2

20 12636509 3 3 2

21 12682601 0 2 2

Continued on next page
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Table 1 – continued from previous page

Age Number of Observed Model-F Model-S

Groups People at Risk Incidence Predicated Predicated

22 12840510 6 2 2

23 13075528 4 2 2

24 13358635 6 2 2

25 13473849 4 2 2

26 13426340 4 2 1

27 13525264 2 2 1

28 13149674 3 2 1

29 13812811 0 2 1

30 13886874 0 2 2

31 13488332 1 2 1

32 13460286 3 2 2

33 13256067 3 2 2

34 13428827 1 2 2

35 13220037 1 2 2

36 12870265 2 2 2

37 12689592 0 2 2

38 12157014 0 2 2

39 12494081 1 2 2

40 12272125 3 2 2

41 11826573 2 2 2

42 11663153 3 2 2

43 11407082 3 2 2

44 11296848 2 2 2

Continued on next page
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Table 1 – continued from previous page

Age Number of Observed Model-F Model-S

Groups People at Risk Incidence Predicated Predicated

45 11016369 2 2 2

46 10651593 0 2 2

47 10475708 0 2 2

48 9994684 0 2 1

49 10138908 1 2 2

50 9836359 1 2 2

51 9475641 1 2 1

52 9250985 3 2 1

53 9027382 0 2 1

54 8883737 2 2 1

55 8547883 0 2 1

56 8279648 1 2 1

57 8062368 2 2 1

58 7654610 0 2 1

59 7563706 2 2 1

60 7232719 2 2 1

61 6927332 0 2 1

62 6708273 2 2 1

63 6543931 0 2 1

64 6404652 1 2 1

65 6168486 2 2 1

66 5913479 0 2 1

67 5746766 0 2 1

Continued on next page
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Table 1 – continued from previous page

Age Number of Observed Model-F Model-S

Groups People at Risk Incidence Predicated Predicated

68 5480517 2 2 1

69 5363912 0 2 1

70 5110728 0 1 1

71 4925076 1 1 1

72 4696825 1 1 1

73 4512136 1 1 1

74 4345300 1 1 1

75 4148801 2 1 1

76 3900900 1 1 1

77 3681587 1 1 1

78 3481918 1 1 1

79 3243631 1 1 1

80 2961234 0 1 1

81 2724984 0 1 1

82 2495219 0 1 1

83 2271595 0 1 1

84 2041351 0 1 1
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Table 2: The Log-Likelihood, AIC and BIC of the Fitted Models of Wilms’ Tumor

Models Log-Likelihood AIC BIC

Model-F -164.166 352.332 381.644

Model-S -211.840 441.680 463.664

Table 3: Estimates of Parameters for the Stochastic Model of Wilms’ Tumor

Parameters p1 p2 α1 α2

Estimates 3.999E-03 1.147E-04 1.459E-01 3.501E-05

St.D 1.057E-05 8.252E-07 8.051E-03 5.386E-07

95%CL-Lower 3.996E-03 1.145E-04 1.436E-01 3.485E-05

95%CL-Upper 4.002E-03 1.150E-04 1.482E-01 3.516E-05

Parameters γ
(I)
1 γ

(I)
2 γ

(J)
1 λ1

Estimates 5.134E-07 6.745E-05 5.471E-03 9.955E+02

St.D 8.636E-09 1.592E-06 2.627E-04 5.744E+01

95%CL-Lower 5.110E-07 6.700E-05 5.396E-03 9.792E+02

95%CL-Upper 5.159E-07 6.790E-05 5.545E-03 1.012E+03

Parameters λ2 λ3 λ4 θ

Estimates 1.757E+03 1.000E-02 3.796E+02 5.453E-02

St.D 1.465E+02 5.895E-04 1.296E+01 2.562E-03

95%CL-Lower 1.715E+03 9.835E-03 3.760E+02 5.380E-02

95%CL-Upper 1.799E+03 1.017E-02 3.833E+02 5.526E-02
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Fig. 3: Curve Fitting of Wilms’ Tumor SEER Data by Proposed Models

G. Computation Details

The multi-level Gibbs sampling procedure for estimating unknown parameters is

implemented in Fortran 90. The Fortran code is shown in the Appendix B. Figure 4 shows

the program flow chart. The subroutine NGENERNOR01 and the subroutine

NGENERNOR are used to generate N from multinomial distribution of {n1j, n2j} given

nj and binomial distribution of n(I)
0j given n0j . Since n

∼
is very large and p1 is very small,

the normal approximation is applied. The subroutine PICK is applied to select the k-th N

from a large sample of N through the Weighted Bootstrap Method. The selected N is a

sample from P{N |Y , y
∼
, n
∼
,Θ}. Y is generated by the subroutine YGENER from the

multinomial distribution and the subroutine Y3GENER from the binomial distribution.

The publicly available Genetic Algorithm PIKAIA is applied to derive the posterior mode

of Θ by maximizing the conditional posterior distribution P{Θ|N̂ , Ŷ , y
∼
, n
∼
}. The genetic

algorithms are a class of search techniques inspired from the biological process of
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evolution by means of natural selection. The basic principle is that those with the largest

fitness will be selected as the generation progresses. Given the fitness, the genetic

algorithm would choose the parameter values to maximize the fitness according to

evolutionary principle as described above. The function Fit is called in PIKAIA as fitness

function that is the negative of the deviance given in (2.26). The subroutine CalculateQ is

used to calculate the probability of developing tumor during each age period in people

through different pathways.

H. Discussion and Conclusion

Based on studies of molecular biology on human Wilms’ tumor as discussed in

Section B, in this chapter we have developed a multi-pathway stochastic model of

carcinogenesis for human Wilms’ tumor. To account for hereditary cancer cases and the

development of non-hereditary cancers through two different pathways in stochastic

model, we have also developed a generalized mixture model. In this mixture model, the

mixing probability distributions are a multinomial distribution to explain genetic

segregation of the stage-limiting tumor suppressor genes for Wilms’ tumor and a binomial

distribution is to account for the development of non-hereditary Wilms’ tumor through

two pathways. This mixture model allows us to estimate for the first time the frequency p1

of the stage-limiting tumor suppressor genes for Wilms’ tumor in the US population.

For using the proposed models to fit the cancer incidence data, in this Chapter we have

developed a generalized Bayesian inference procedure to estimate the unknown

parameters and to predict cancer cases. This inference procedure is advantageous over the

classical sampling theory inference (i.e. maximum likelihood method) because the

procedure combines information from three sources: (1) Previous information and

experiences about the parameters in terms of the prior distribution P{Θ} of the

parameters. (2) Biological information of hereditary cancer cases via the genetic

segregation of stage-limiting tumor suppressor genes in the population. (3) Information
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from the expanded data (Y ) and the observed data (y
∼

) via the statistical model from

P{Y , y
∼
|N ,Θ}.

To illustrate the usefulness and applications of our models and methods, we have

applied our models and methods to the SEER Wilms’ tumor data of NCI/NIH. Our

analysis clearly showed that the proposed multiple pathway model with hereditary cancer

cases fitted the data better than the single pathway 3-stage model with hereditary cancer

cases (see Table 2 and Figure 3).

Applying our models and methods to the SEER data of human Wilms’ tumor, we have

derived for the first time some useful information. Specifically, we mention: (1) For the

first time, we have estimated the frequency of the stage-limiting tumor suppressor genes in

the US population (p̂1 ∼ 4.003× 10−3). (2) With the estimate of α1 as α̂1 = 0.146, the

predicted number of Wilms’ tumor at birth is ŷ0 = n0α̂1p̂2 = 209 by multiple pathway

model with inherited cancer component (Model-F). (The observed number of Wilms’

tumor at birth is 212.)

Using models and methods of this paper, one can easily predict future cancer cases for

human Wilms’ tumor. Thus, by comparing results from different populations, our models

and methods can be used to assess cancer prevention and control procedures. This will be

our future research topics; we will not go any further here.
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CHAPTER III

A NEW STOCHASTIC MODEL OF ADULT KIDNEY CANCER-RENAL CELL

CARCINOMAS

A. Introduction

Renal cell carcinona (RCC), the most common form of kidney cancer in adults,

originates in the lining of the proximal convoluted tubule, the very small tubes in the

kidney that filter the blood and remove waste products. The incidence of renal cell

carcinomas worldwide has been increasing at an annual rate of approximately 2%. It most

commonly occurs in adults between the ages of 50 and 70 years. Based on histopathology,

three common subtypes of carcinomas are distinguished: clear cell carcinomas (ccRCC,

about 80% of RCC), papillary carcinomas (pRCC, about 15%) and chromophobe

carcinomas(chRCC, about 5%) [16], [17]. The purpose of this chapter is to develop a

multiple-pathway model for renal cell carcinomas basing on studies of genetics and

biology.

In Section B, we present a brief summary of renal cell carcinomas biology. In Section

C, we develop a biologically supported a multiple-pathway stochastic model of renal cell

carcinomas. In Section D, we derive a statistical model for cancer incidence data of

human renal cell carcinomas. This statistical model is basically a generalized mixture

model of Poisson distributions with a bivariate multinomial distribution as the mixing

probability distribution. By combining results from Section B-D, in Section E, we develop

a generalized Bayesian inference procedure to estimate unknown parameters. To illustrate

the applications of the model and methods, in Section F, we apply the models and methods

to the SEER renal carcinomas incidence data. In Section G, we show the computation

details of fitting the model of renal cell carcinoma. Finally in Section H, we discuss the

usefulness of the model and methods and provide some conclusions.
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B. A Brief Summary of Renal Cell Carcinoma Biology

Clear cell renal cell carcinoma (ccRCC) is the most common renal malignancy,

accounting for about 80% of renal cell carcinomas. It is characterized by loss of genetic

material on the short arm of chromosome 3. The von Hippel Lindau tumor suppressor

gene (VHL) on chromosome 3p25-p26 is mutated or inactivated in about 50% of ccRCC

cases [42]. It is an early event in carcinogenesis of this tumor. VHL gene plays a role in

the regulation of cell-cycle control, intercellular signaling, extracellular fibronectin

formation and angiogenesis. The VHL protein targets hypoxia inducible factors (HIF) for

ubiquitin mediated degradation. When VHL gene is mutated or inactivated, HIF

accumulates in the nucleus, resulting in increased transcription of downstream pathway

genes that promote tumor angiogenesis, growth and survival, such as VEGF, GLUT1 and

TGFB1 [43]. Although inactivation of VHL is necessary, VHL loss alone is insufficient of

ccRCC tumorigenesis and additional genetic events are needed [44]. Mutations of

PBRM1 on chromosome 3p21.1 and mutations of SETD2 on chromosome 3p21.31 have

been reported recently, which are observed in approximately 40% and 3% of ccRCCs.

Both genes are involved in chromatin regulation at the level of histone H3 modification

and recognition [45]. Based on these combined molecular genetic results, we propose a

4-stage model for ccRCC development. The proposed model is represented schematically

by Figure 5.

J1 J3J2

VHL
Second 

copy of 

VHL

PBRM1

N ccRCCJ4

Second 

copy of 

PBRM1

Fig. 5: Four-stage Model for ccRCC Development
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Papillary renal cell carcinoma (pRCC) comprises approximately 15% of renal cell

carcinomas. Mutations of MET oncogene on chromosome 7q31 are observed to play a

role in about 13% of patients with pRCC. These mutations result in ligand-independent

activation of intracytoplasmic tyrosine kinase domains, which activate the hepatocyte

growth factor(HGF)/MET pathway [46], [16]. Gains of Chromosomal 7 (85%) and 17

(92%) and additional gains of chromosome 3q, 8q, 12q, 16q and 20q (24%-67%) are

found in pRCC. It has been proposed that combined trisomy of chromosomes 7 and 17

induce renal papillary adenomas, trisomies at chromosome 3q, 8q, 12q, 16q and 20q mark

papillary RCCs and gain of chromosome 1q and loss of chromosomes 6q, 9p and 14q

relate to an aggressive clinical behavior and deadly progression [47]. The mutation of the

oncogene MET in chromosome 7q would speed up these transitions by promoting the

proliferation rates of the respective intermediate initiated cells. Based on these combined

molecular genetic findings, we propose a 3-stage model for pRCC development. The

proposed model is represented schematically by Figure 6.

I1 I3I2

+7, 

+17

+3, +8, +12, 

+16, +20

+1, -6q, -8p, 

-9p, -14q

N pRCC

Fig. 6: Three-stage Model for pRCC Development

Chromophobe renal cell carcinoma (chRCC) accounts for approximately 5% of renal

cell carcinomas. Recent studies have revealed that losses of multiple chromosomes 1, 2, 6,

10, 13, 17 and 21 occur in most of chRCC (up to 95%) [48], [49]. These studies suggest

that at least 5-7 chromosomes should be lost before a clinically recognizable chRCC

develops. Thus, we may assume a 5-stage model for chRCC development.
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C. A Stochastic Multi-Stage Model of Renal Cell Carcinomas Involving Multiple

Pathways

Based on results of molecular biology in the previous section, in this chapter we will

propose a three-pathway stochastic model of carcinogenesis for RCC with I-pathway as a

3-stage multi-stage model (N → I1 → I2 → I3 → tumor), with J-pathway as a 4-stage

multi-stage model (N → J1 → J2 → J3 → J4 → tumor) and with K-pathway as a

5-stage multi-stage model (N → K1 → K2 → K3 → K4 → K5 → tumor). The

proposed model can be represented schematically by Figure 7. We let pi (i = 1, 2, 3) be

the proportion of people in the population at risk of developing RCC through I-pathway,

J-pathway and K-pathway respectively (p1 + p2 + p3 = 1). Let nj denote the number of

people at risk of cancer during the j−th age period [tj−1, tj). Among the nj people at risk

of cancers in the j−th age period, let nij (i = 1, 2, 3) be the number of people at risk of

developing RCC through I-pathway, J-pathway and K-pathway respectively

(n1j + n2j + n3j = nj). The conditional probability distribution of {n1j, n2j} given nj is

multinomial with parameters {nj; p1, p2}; that is, (n1j, n2j) ∼ Multinomial{nj; p1, p2}.

N

I1 I3

TumorJ1 J2 J3 J4

K1 K2 K3 K4 K5

I2

Fig. 7: Three Pathways for RCC Development

Let Yj denote the random variable for the observed cancer cases yi in the j−th time

period [tj−1, tj) and fi(Yj) (i = 1, 2, 3) the probability density of Yj given that the

individual is an person who is at risk to develop RCC through I-pathway, J-pathway and
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K-pathway respectively. Then for any person taken randomly from the population , the

probability density of Yj is f(Yj) =
∑3

i=1 pifi(Yj).

The Stochastic Model and Mathematical Analysis

The stochastic model proposed above postulates that the Il (l = 1, 2, 3),

Ju (u = 1, 2, 3, 4) and Kv (v = 1, 2, 3, 4, 5) cells undergo stochastic proliferation (birth)

and differentiation (death); cancer tumors arise from primary I3 (J4, K5) cells through

clonal expansion by following stochastic birth-death process [32], where primary I3 (J4,

K5) cells are I3 (J4, K5) cells generated directly by I2 (J3, K4) cells by genetic

alterations; all cells proceed forward independently of other cells. The last stage in each

pathway (i.e. I3 stage, J4 stage, K5 stage) is a transient stage to cancer tumors. Therefore,

the state variables for this model are

X˜ (t) = {Il(t), l = 1, 2, Ju(t), u = 1, 2, 3, Kv(t), v = 1, 2, 3, 4} and T (t), where Il(t)

(Ju(t), Kv(t)) denotes the number of the Il (Ju, Kv) cells for

{l = 1, 2, u = 1, 2, 3, v = 1, 2, 3, 4} respectively at time t and T (t) the number of cancer

tumors at time t. Notice that {X˜ (t), t ≥ t0} can be assumed as Markov, where t0

represents time at birth. However, T (t) is in general not Markov [50]. To develop

stochastic models of carcinogenesis, it is conveniently assumed that the last stage cells

(i.e. I3 cells, J4 cells, K5 cells) grow instantaneously into cancer tumors as soon as they

are generated as shown in Tan [1], Little [8] and Zheng [33]. In this case, one may assume

T (t) as Markov.

Let Qi(j) (i = 1, 2, 3) denote the probability of developing tumor during the j−th age

period [tj−1, tj) (tj > t0) by the I-pathway, J-pathway and K-pathway respectively. Let

β
(I)
l (t) denote the transition rate from Il → Il+1 (l = 0, 1, 2) at time t, β(J)

u (t) the

transition rate from Ju → Ju+1 (u = 0, 1, 2, 3) at time t and β(K)
v (t) the transition rate

from Kv → Kv+1 (v = 0, 1, 2, 3, 4) at time t. Then by using methods in Tan [34], Tan el

al. [35], [2] and Tan and Yan [10], it can be shown that Qi(j), (i = 1, 2, 3) are given
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respectively by:

Q1(j) = {e−
∫ tj−1
t0

β
(I)
2 E[I2(x)]P

(I)
T (x,tj−1)dx − e−

∫ tj
t0
β
(I)
2 (x)E[I2(x)]P

(I)
T (x,tj−1)dx}+ o(β

(I)
2 ),

Q2(j) = {e−
∫ tj−1
t0

β
(J)
3 (x)E[J3(x)]P

(J)
T (x,tj−1)dx − e−

∫ tj
t0
β
(J)
3 (x)E[J3(x)]P

(J)
T (x,tj−1)dx}+ o(β

(J)
3 ),

Q3(j) = {e−
∫ tj−1
t0

β
(K)
4 (x)E[K4(x)]P

(K)
T (x,tj−1)dx − e−

∫ tj
t0
β
(K)
4 (x)E[K4(x)]P

(K)
T (x,tj−1)dx}

+ o(β
(K)
4 ).

Where E[I2(x)] (E[J3(x)], E[K4(x)]) is the expected number of I2(t) (J3(t), K4(t)) and

where P (I)
T (s, t) (P (J)

T (s, t), P (K)
T (s, t)) is the probability that a primary I3 (J4, K5) cell

generated from an I2 (J3, K4) cell at time s develops into a detectable tumor by time t.

For derive mathematical analysis for the above model, let b(I)l (t) (b
(J)
u (t), b

(K)
v (t)) and

d
(I)
l (t) (d

(J)
u (t), d

(K)
v (t)) denote the birth rate and the death rate at time t of the Il, l = 1, 2

(Ju, u = 1, 2, 3, Kv, v = 1, 2, 3, 4) cells respectively. Let {B(I)
l (t), D

(I)
l (t), M

(I)
l (t)}

({B(J)
u (t), D

(J)
u (t),M

(J)
u (t)}, {B(K)

v (t), D
(K)
v (t),M

(K)
v (t)}) be the number of birth and

the number of death of Il (Ju, Kv) cells and the number of transition from Il → Il+1

(Ju → Ju+1, Kv → Kv+1) cells during [t, t+ ∆t) respectively. Also let M (I)
0

(M (J)
0 ,M

(K)
0 ) be the number of mutation of N → I1 (N → J1, N → K1) during

[t, t+ ∆t). Then the conditional probability distributions of random transition variables

given the state variables are, to order of o(∆t),

M
(I)
0 (t)|N(t) ∼ Poisson{N(t)β

(I)
0 (t)∆t} (25)

{B(I)
l (t), D

(I)
l (t)}|Il(t) ∼ Multinomial{Il(t); b(I)l (t)∆t, d

(I)
l (t)∆t}, (26)

independently of M (I)
0 (t), l = 1, 2

M
(I)
l (t)|Il(t) ∼ Poisson{Il(t)β(I)

l (t)∆t}, (27)

independently of {M (I)
0 (t), B

(I)
l (t), D

(I)
l (t)}, l = 1, 2

M
(J)
0 (t)|N(t) ∼ Poisson{N(t)β

(J)
0 (t)∆t} (28)
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{B(J)
l (t), D(J)

u (t)}|Ju(t) ∼ Multinomial{Ju(t); b(J)u (t)∆t, d(J)u (t)∆t}, (29)

independently of M (J)
0 (t), u = 1, 2, 3

M (J)
u (t)|Ju(t) ∼ Poisson{Ju(t)β(J)

u (t)∆t}, (30)

independently of {M (J)
0 (t), B(J)

u (t), D(J)
u (t)}, u = 1, 2, 3

M
(K)
0 (t)|N(t) ∼ Poisson{N(t)β

(K)
0 (t)∆t} (31)

{B(K)
v (t), D(K)

v (t)}|Kv(t) ∼ Multinomial{Kv(t); b
(K)
v (t)∆t, d(K)

v (t)∆t}, (32)

independently of M (K)
0 (t), v = 1, 2, 3, 4

M (K)
v (t)|Kv(t) ∼ Poisson{Kv(t)β

(K)
v (t)∆t}, (33)

independently of {M (K)
0 (t), B(K)

v (t), D(K)
v (t)},

k = 1, 2, 3, 4

We have the following stochastic equations of the state variables {Il(t), l = 1, 2,

Ju(t), u = 1, 2, 3, Kv(t), v = 1, 2, 3, 4}:

Il(t+ ∆t) = Il(t) +B
(I)
l (t)−D(I)

l (t) +M
(I)
l−1(t), l = 1, 2, (34)

Ju(t+ ∆t) = Ju(t) +B(J)
u (t)−D(J)

u (t) +M
(J)
u−1(t), u = 1, 2, 3, (35)

Kv(t+ ∆t) = Kv(t) +B(K)
v (t)−D(K)

v (t) +M
(K)
v−1(t), v = 1, 2, 3, 4. (36)

Given the probability distributions of the random transition variables in equations

(25)-(33) and the stochastic equations in equations (34)-(36), we derive the following

stochastic differential equations for the state variables {Il(t), l = 1, 2, Ju(t),

u = 1, 2, 3, Kv(t), v = 1, 2, 3, 4}:

dIl(t) = Il(t)γ
(I)
l (t)∆t+ Il−1(t)β

(I)
l−1(t)∆t+ e

(I)
l (t)∆t, l = 1, 2, (37)

dJu(t) = Ju(t)γ
(J)
u (t)∆t+ Ju−1(t)β

(J)
u−1(t)∆t+ e(J)u (t)∆t, u = 1, 2, 3, (38)

dKv(t) = Kv(t)γ
(K)
v (t)∆t+Kv−1(t)β

(K)
v−1(t)∆t+ e(K)

v (t)∆t, v = 1, 2, 3, 4. (39)
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Where γ(I)l (t) = b
(I)
l (t)− d(I)l (t) for l = 1, 2, γ(J)u (t) = b

(J)
u (t)− d(J)u (t) for u = 1, 2, 3

and γ(K)
v (t) = b

(K)
v (t)− d(K)

v (t) for v = 1, 2, 3, 4 and the random noises

{e(I)l (t), e
(J)
u (t), e

(K)
v (t)} are:

e
(I)
l (t)∆t = [B

(I)
l (t)− Il(t)b(I)l (t)∆t]− [D

(I)
l (t)− Il(t)d(I)l (t)∆t]

+ [M
(I)
l−1(t)− Il−1(t)β

(I)
l−1(t)∆t], l = 1, 2,

e(J)u (t)∆t = [B(J)
u (t)− Ju(t)b(J)u (t)∆t]− [D(J)

u (t)− Ju(t)d(J)u (t)∆t]

+ [M
(J)
u−1(t)− Ju−1(t)β

(J)
u−1(t)∆t], u = 1, 2, 3,

e(K)
v (t)∆t = [B(K)

v (t)−Kv(t)b
(K)
v (t)∆t]− [D(K)

v (t)−Kv(t)d
(K)
v (t)∆t]

+ [M
(K)
v−1(t)−Kv−1(t)β

(K)
v−1(t)∆t], v = 1, 2, 3, 4.

From the above equations, the random noises have expectation zero and are

un-correlated with the state variables X˜ (t) and T (t). The covariances between these

random noises are o(∆t) and the variances of the random noises are given by:

var[e(I)l (t)∆t] = E[Il−1(t)]β
(I)
l−1∆t+ E[Il(t)][b

(I)
l (t) + d

(I)
l (t)]∆t+ o(∆t),

var[e(J)u (t)∆t] = E[Ju−1(t)]β
(J)
u−1∆t+ E[Ju(t)][b

(J)
u (t) + d(J)u (t)]∆t+ o(∆t),

var[e(K)
v (t)∆t] = E[Kv−1(t)]β

(K)
v−1∆t+ E[Kv(t)][b

(K)
v (t) + d(K)

v (t)]∆t+ o(∆t).

The solution of the above equation (37)-(39) are given respectively by:

Il(t) =

∫ t

t0

Il−1(x)β
(I)
l−1(x)e

∫ t
x γ

(I)
l (y)dydx+ η

(I)
l (t), l = 1, 2, (40)

Ju(t) =

∫ t

t0

Ju−1(x)β
(J)
u−1(x)e

∫ t
x γ

(J)
u (y)dydx+ η(J)u (t), u = 1, 2, 3, (41)

Kv(t) =

∫ t

t0

Kv−1(x)β
(K)
v−1(x)e

∫ t
x γ

(K)
v (y)dydx+ η(K)

v (t), v = 1, 2, 3, 4, (42)

48



where η(I)l (t) =
∫ t
t0
e
∫ t
x γ

(I)
l (y)dye

(I)
l (x)dx, η(J)u (t) =

∫ t
t0
e
∫ t
x γ

(J)
u (y)dye

(J)
u (x)dx,

η
(K)
v (t) =

∫ t
t0
e
∫ t
x γ

(K)
v (y)dye

(K)
v (x)dx and I0(t0) = J0(t0) = K0(t0) = N(t0).

Since E[η
(I)
l (t)] (l = 1, 2), E[η

(J)
u (t)] (u = 1, 2, 3) and E[η

(K)
v (t)] (v = 1, 2, 3, 4) are

all zeros, the expected numbers E[Il(t)] of Il (l = 1, 2), E[Ju(t)] of Ju (l = 1, 2, 3) and

E[Kv(t)] of Kv (v = 1, 2, 3, 4) are:

E[Il(t)] =

∫ t

t0

E[Il−1(x)]β
(I)
l−1(x)e

∫ t
x γ

(I)
l (y)dydx, l = 1, 2, (43)

E[Ju(t)] =

∫ t

t0

E[Ju−1(x)]β
(J)
u−1(x)e

∫ t
x γ

(J)
u (y)dydx, u = 1, 2, 3, (44)

E[Kv(t)] =

∫ t

t0

E[Kv−1(x)]β
(K)
v−1(x)e

∫ t
x γ

(K)
v (y)dydx, v = 1, 2, 3, 4. (45)

If the model is time homogeneous so that {b(I)l (t) = b
(I)
l , d

(I)
l (t) = d

(I)
l , γ

(I)
l (t) =

γ
(I)
l , β

(I)
l (t) = β

(I)
l , l = 0, 1, 2, b

(J)
u (t) = b

(J)
u , d

(J)
u (t) = d

(J)
u , γ

(J)
u (t) = γ

(J)
u , β

(J)
u (t) =

β
(J)
u , u = 0, 1, 2, 3, b

(K)
v (t) = b

(K)
v , d

(K)
v (t) = d

(K)
v , γ

(K)
v (t) = γ

(K)
v , β

(K)
v (t) = β

(K)
v , v =

0, 1, 2, 3, 4} and if {γ(I)i 6= γ
(I)
j , γ

(J)
i 6= γ

(J)
j , γ

(K)
i 6= γ

(K)
j } for i 6= j, then the above

expected numbers reduce to:

E[I2(t)] = E[N(t0)]
1∏
j=0

β
(I)
j

2∑
u=1

A12(u)
1

γ
(I)
u

[eγ
(I)
u (t−t0) − 1], (46)

E[J3(t)] = E[N(t0)]
2∏
j=0

β
(J)
j

3∑
u=1

A13(u)
1

γ
(J)
u

[eγ
(J)
u (t−t0) − 1], (47)

E[K4(t)] = E[N(t0)]
3∏
j=0

β
(K)
j

4∑
u=1

A14(u)
1

γ
(K)
u

[eγ
(K)
u (t−t0) − 1], (48)

where Aij(u) =
∏j

v=i,v 6=u(γu − γv)−1 for i ≤ u ≤ j.

According to the above results, we can derive Qi(j), i = 1, 2, 3 for homogeneous

models under the condition that {γ(I)i 6= γ
(I)
j , γ(J)i 6= γ

(J)
j , γ(K)

i 6= γ
(K)
j } for i 6= j:

Q1(j) = {e−λ1ψ02(tj−1) − e−λ1ψ02(tj)}+ o(β
(I)
2 ), (49)
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Q2(j) = {e−λ2ψ03(tj−1) − e−λ2ψ03(tj)}+ o(β
(J)
3 ), (50)

Q3(j) = {e−λ3ψ04(tj−1) − e−λ3ψ04(tj)}+ o(β
(K)
4 ), (51)

where λ1 = {
∏2

i=1 γ
(I)
i }−1E[N(t0)]

∏2
j=0 β

(I)
j , λ2 = {

∏2
i=1 γ

(J)
i }−2E[N(t0)]

∏3
j=0 β

(J)
j ,

λ3 = {
∏3

i=1 γ
(K)
i }−2E[N(t0)]

∏4
j=0 β

(K)
j , and

ψ02(t) = {
2∏
i=1

γ
(I)
i }

2∑
u=1

A12(u)
1

γ
(I)
u

∫ t

t0

{eγ
(I)
u (x−t0) − 1}P (I)

T (x, t)dx

= {
2∏
i=1

γ
(I)
i }

2∑
u=1

A12(u)
1

γ
(I)
u

2{e
γ
(I)
u (t−t0) − 1− γ(I)u (t− t0)},

if P (I)
T (x, t) = 1 for t > x;

ψ03(t) = {
2∏
i=1

γ
(J)
i }2

3∑
u=1

A13(u)
1

γ
(J)
u

∫ t

t0

{eγ
(J)
u (x−t0) − 1}P (J)

T (x, t)dx

= {
2∏
i=1

γ
(J)
i }2

3∑
u=1

A13(u)
1

γ
(J)
u

2{e
γ
(J)
u (t−t0) − 1− γ(J)u (t− t0)},

if P (J)
T (x, t) = 1 for t > x;

ψ04(t) = {
3∏
i=1

γ
(K)
i }2

4∑
u=1

A14(u)
1

γ
(K)
u

∫ t

t0

{eγ
(K)
u (x−t0) − 1}P (K)

T (x, t)dx

= {
3∏
i=1

γ
(K)
i }2

4∑
u=1

A14(u)
1

γ
(K)
u

2{e
γ
(K)
u (t−t0) − 1− γ(K)

u (t− t0)},

if P (K)
T (x, t) = 1 for t > x.

The Transition Probability of State Variables

Let g(x, y;N, p1, p2) denote the density at (x, y) of a multinomial distribution with

parameters (N, p1, p2) and h(x;λ) the density at x of Poisson distribution with mean λ.

From equation (25)-(33), we obtain the transition probability of the Markov process of

state variables as, to order of o(∆t) and for t > t0:

P{Ij(t+ ∆t) = vj, j = 1, 2|Ij(t) = uj, j = 1, 2}

= P{I1(t+ ∆t) = v1|I1(t) = u1}P{I2(t+ ∆t) = v2|I1(t) = u1, I2(t) = u2},
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P{I1(t+ ∆t) = v1|I1(t) = u1}

=

u1∑
r1=0

u1−r1∑
m1=0

g(r1,m1;u1, b
(I)
1 (t)∆t, d

(I)
1 (t)∆t)h(v1 − u1 − r1 +m1;N(t)β

(I)
0 (t)∆t),

P{I2(t+ ∆t) = v2|I1(t) = u1, I2(t) = u2}

=

u2∑
r2=0

u2−r∑
m2=0

g(r2,m2;u2, b
(I)
2 (t)∆t, d

(I)
2 (t)∆t)h(v2 − u2 − r2 +m2;u1β

(I)
1 (t)∆t).

P{Jj(t+ ∆t) = vj, j = 1, 2, 3|Jj(t) = uj, j = 1, 2, 3}

= P{J1(t+ ∆t) = v1|J1(t) = u1}

×
3∏
j=2

P{Jj(t+ ∆t) = vj|Jj−1(t) = uj−1, Jj(t) = uj},

P{J1(t+ ∆t) = v1|J1(t) = u1}

=

u1∑
r1=0

u1−r1∑
m1=0

g(r1,m1;u1, b
(J)
1 (t)∆t, d

(J)
1 (t)∆t)h(v1 − u1 − r1 +m1;N(t)β

(J)
0 (t)∆t),

P{Jj(t+ ∆t) = vj|Jj−1(t) = uj−1, Jj(t) = uj}

=

uj∑
rj=0

uj−r∑
mj=0

g(rj,mj;uj, b
(J)
j (t)∆t, d

(J)
j (t)∆t)h(vj − uj − rj +mj;uj−1β

(J)
j−1(t)∆t),

j = 2, 3.

P{Kj(t+ ∆t) = vj, j = 1, 2, 3|Kj(t) = uj, j = 1, 2, 3}

= P{K1(t+ ∆t) = v1|K1(t) = u1}

×
4∏
j=2

P{Kj(t+ ∆t) = vj|Kj−1(t) = uj−1, Kj(t) = uj},

P{K1(t+ ∆t) = v1|K1(t) = u1}

=

u1∑
r1=0

u1−r1∑
m1=0

g(r1,m1;u1, b
(K)
1 (t)∆t, d

(K)
1 (t)∆t)h(v1 − u1 − r1 +m1;N(t)β

(K)
0 (t)∆t),

P{Kj(t+ ∆t) = vj|Kj−1(t) = uj−1, Kj(t) = uj}

=

uj∑
rj=0

uj−r∑
mj=0

g(rj,mj;uj, b
(K)
j (t)∆t, d

(J)
j (t)∆t)h(vj − uj − rj +mj;uj−1, β

(K)
j−1(t)∆t),

j = 2, 3, 4.
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D. A Statistical Model and The Probability Distribution of the Number of Detectable

Tumors

The data available for modeling carcinogenesis are usually cancer incidence over

different time periods. For example, the SEER data of NCI/NIH for human renal

carcinomas are given by {(yj, nj), j = 1, . . . , k}, where yj is the number of cancer cases

during the j−th age group of 1 year period and nj is the number of people who are at risk

of renal carcinomas and from whom yj of them have developed cancer during the j−th

age group. Given in Table 4 are the SEER data for human renal carcinomas cases. We let

Yj denote the random variable for the observed cancer cases yj in the j−th age group. In

this section, we will develop a statistical model for this dataset.

The Probability Distribution of Yj

To derive the probability distribution of Yj in the j−th age group, let Yij (i = 1, 2, 3)

be the number of cancer cases generated by I-pathway, J-pathway and K-pathway

respectively. The conditional distribution of Yij|nij ∼ Poisson{nijQi(j)}. Then The

conditional probability distribution of {Y1j, Y2j, Yj} given {n1j, n2j, nj} is

P{y1j, y2j, yj|n1j, n2j, nj} = P{y1j, y2j, y3j|n1j, n2j, n3j} =
3∏
i=1

h{yij;nijQi(j)}. (52)

Let QT (j) =
∑3

i=1 nijQi(j). The conditional distribution of

Yj|(nij, i = 1, 2, 3) ∼ Poisson{QT (j)}. It follows that the probability distribution of Yj

given nj is

P (yj|nj) =

nj∑
n1j=0

nj−n1j∑
n2j=0

g(n1j, n2j;nj, p1, p2)h{yj;QT (j)}, (53)

where g(n1j, n2j;nj, p1, p2) is the probability density of

(n1j, n2j)|nj ∼ Multinomial(nj; p1, p2) and h{yj;QT (j)} is the Poisson density of

Yj|(nij, i = 1, 2, 3) ∼ Poisson{QT (j)}.
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The probability distribution P (yj|nj) given by equation (53) is a mixture of Poisson

distributions with a mixing probability distribution given by the multinomial distribution

of {n1j, n2j} given nj . This mixing probability distribution represents individuals at risk

of developing RCC through different pathway in the population. Let Θ be the set of all

unknown parameters (i.e. the parameters (p1, p2) and the birth rates, the death rates and

the mutation rates of Il cells, Ju cells and Kv cells). Based on data (yj, j = 1, . . . , k), the

likelihood function of Θ is

L{Θ|yj, j = 1, . . . , k} =
k∏
j=1

P (yj|nj). (54)

The Probability Distribution of the Expanded Model

For applying the mixture distribution given by equation (54) to make inference about

the unknown parameters, we expand the model to include the un-observable variables

{n1j, n2j, y1j, y2j}. To derive the joint probability distribution of these variables, observe

that the conditional probability distribution of {y1j, y2j} given {nij, i = 1, 2, nj, yj} is

multinomial with parameters {yj; n1jQ1(j)

QT (j)
,
n2jQ2(j)

QT (j)
}. That is,

P{y1j, y2j|nij, i = 1, 2, nj, yj} ∼ Multinomial{yj;
n1jQ1(j)

QT (j)
,
n2jQ2(j)

QT (j)
}. (55)

Hence the joint density of {nij, yij, i = 1, 2, yj} given nj is:

P{nij, yij, i = 1, 2, yj, j = 1, . . . , k|nj,Θ}

= g(n1j, n2j;nj, p1, p2)
3∏
i=1

h{yij;nijQi(j)}. (56)

Put Y = (yij, i = 1, 2, j = 1, . . . , k), N = (nij, i = 1, 2, j = 1, . . . , k), y
∼

= (yj,

j = 1, . . . , k) and n
∼

= (nj, j = 1, . . . k}. For the SEER data, the joint density
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P{Y , y
∼
,N |n

∼
,Θ} of {Y , y

∼
,N} given {n

∼
,Θ} is:

P{Y , y
∼
,N |n

∼
,Θ} =

k∏
j=1

{g(n1j, n2j;nj, p1, p2)
3∏
i=1

h[yij;nijQi(j)]}. (57)

Notice that the above distribution is a product of multinomial distributions and

Poisson distributions. For this joint distribution, the deviance is:

Dev = −2{logP [Y , y
∼
,N |n

∼
,Θ]− logP [Y , y

∼
,N |n

∼
, Θ̂]}

= 2
k∑
j=1

{n1j log[
n1j

njp1
] + n2j log[

n2j

njp2
] + n3j log[

n3j

nj(1− p1 − p2)
]}

+ 2
k∑
j=1

3∑
i=1

{nijQi(j)− yij − yij log[
nijQi(j)

yij
]}, (58)

The joint density P{Y , y
∼
,N |n

∼
,Θ} of (Y , y

∼
,N ) given by equation (57) will be used

as the kernel for the Bayesian method to estimate the unknown parameters and to predict

the state variables.

The Unknown Parameters and Fitting of the Model by Cancer Incidence Data

In the above model, the unknown parameters are {p1, p2, β(I)
0 (t), β

(I)
l (t), b

(I)
l (t),

d
(I)
l (t), l = 1, 2, β

(J)
0 (t), β

(J)
u (t), b

(J)
u (t), d

(J)
u (t), u = 1, 2, 3, β

(K)
0 (t), β

(K)
v (t), b

(K)
v (t),

d
(K)
v (t), v = 1, 2, 3, 4}. Since the mutation rates are very small, it is reasonable to assume

β
(I)
l (t) = β

(I)
l for l = 0, 1, 2, β(J)

u (t) = β
(J)
u for u = 0, 1, 2, 3 and β(K)

v (t) = β
(K)
v for

v = 0, 1, 2, 3, 4. The proliferation rates of Il cells for l = 1, 2, Ju cells for u = 1, 2 and Kv

cells for v = 1, 2, 3, 4 are expected to be small [3]. It is also reasonable to assume

b
(I)
l (t) = b

(I)
l , d(I)l (t) = d

(I)
l for l = 1, 2; b(J)u (t) = b

(J)
u , d(J)u (t) = d

(J)
u for u = 1, 2;

b
(K)
v (t) = b

(K)
v , d(K)

v (t) = d
(K)
v for v = 1, 2, 3, 4, hence γ(I)l (t) = b

(I)
l − d

(I)
l = γ

(I)
l ,

γ
(J)
u (t) = b

(J)
u − d(J)u = γ

(J)
u and γ(K)

v (t) = b
(K)
v − d(K)

v = γ
(K)
v (see Tan et al. [2], [36]).

Because the protection devises such as the apoptosis and cell cycle inhibition are activated

when the number of J3 cells are very large, one would expect a Gompertz curve for the
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growth of J3 cells. Then we may assume b(J)3 (t) = b
(J)
3 e−δ(t−t0), d

(J)
3 (t) = d

(J)
3 e−δ(t−t0),

then γ(J)3 (t) = γ
(J)
3 e−δ(t−t0).

To fit the SEER data for renal cell carcinoma, we let one time unit (i.e. ∆t = 1)

correspond to three months after birth. Since the growth of last stage cells (i.e. I3 cells, J4

cells and K5 cells) is very rapid, during a three months period one may practically assume

P
(I)
T (s, t) ∼ 1 (P (J)

T (s, t) ∼ 1, P (K)
T (s, t) ∼ 1) if t− s ≥ 1. Using this discrete

approximation, we obtain:

E[I2(t)] ≈ E[N(t0)]
1∏
j=0

β
(I)
j

2∑
u=1

A12(u)
1

γ
(I)
u

[(1 + γ(I)u )t−t0 − 1]

E[J3(t)] ≈ E[N(t0)]
2∏
j=0

β
(J)
j

3∑
u=1

A13(u)
1

γ
(J)
u

[(1 + γ(J)u )t−t0 − 1]

E[K4(t)] ≈ E[N(t0)]
3∏
j=0

β
(K)
j

4∑
u=1

A14(u)
1

γ
(K)
u

[(1 + γ(K)
u )t−t0 − 1]

If one replaces eγ
(I)
l (t−t0) by (1 + γ

(I)
l )(t−t0) = e(t−t0) log{1+γ

(I)
l } ≈ e(t−t0)γ

(I)
l , eγ

(J)
u (t−t0)

by (1 + γ
(J)
u )(t−t0) = e(t−t0) log{1+γ

(J)
u } ≈ e(t−t0)γ

(J)
u and eγ

(K)
v (t−t0) by

(1 + γ
(K)
v )(t−t0) = e(t−t0) log{1+γ

(K)
v } ≈ e(t−t0)γ

(K)
v , then the above approximations are equal

to those by equations (46)-(48) respectively. For time homogeneous models, the

Qi(j), i = 1, 2, 3 under discrete approximation are:

Q1(j) = {e−λ1φ02(tj−1) − e−λ1φ02(tj)}+ o(β
(I)
2 )

Q2(j) = {e−λ2φ03(tj−1) − e−λ2φ03(tj)}+ o(β
(J)
3 )

Q3(j) = {e−λ3φ04(tj−1) − e−λ3φ04(tj)}+ o(β
(K)
4 )

where λ1 = {
∏2

i=1 γ
(I)
i }−1E[N(t0)]

∏2
j=0 β

(I)
j , λ2 = {

∏2
i=1 γ

(J)
i }−2E[N(t0)]

∏3
j=0 β

(J)
j ,

λ3 = {
∏3

i=1 γ
(K)
i }−2E[N(t0)]

∏4
j=0 β

(K)
j , and
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φ02(t) = {
2∏
i=1

γ
(I)
i }

2∑
u=1

A12(u)
1

γ
(I)
u

2{(1 + γ(I)u )(t−t0) − 1− γ(I)u (t− t0)},

if γ(I)2 6= γ
(I)
1 6= 0

φ03(t) = {
2∏
i=1

γ
(J)
i }2

3∑
u=1

A13(u)
1

γ
(J)
u

2{(1 + γ(J)u )(t−t0) − 1− γ(J)u (t− t0)},

if γ(J)i 6= γ
(J)
j 6= 0, i 6= j

φ04(t) = {
3∏
i=1

γ
(K)
i }2

4∑
u=1

A14(u)
1

γ
(K)
u

2{(1 + γ(K)
u )(t−t0) − 1− γ(K)

u (t− t0)},

if γ(K)
i 6= γ

(K)
j 6= 0, i 6= j.

From the above analysis, it follows that to order of o(β(I)
2 ), o(β(J)

3 ) and o(β(K)
4 ), the

Qi(j)’s depend on the parameters only through the parametric functions

{λi, i = 1, 2, 3, γ
(I)
l , l = 1, 2, γ

(J)
u , u = 1, 2, 3, γ

(K)
v , v = 1, 2, 3, 4, δ}. Thus the

estimable parameters are Θ = {pi, γ(I)i , i = 1, 2, λj, γ
(J)
j , j = 1, 2, 3, γ

(K)
v ,

v = 1, 2, 3, 4, δ}. There are 14 unknown estimable parameters in the model.

E. The Generalized Bayesian Method and the Gibbs Sampling Procedure

To fit the models to the data and to validate the models, one would need to estimate the

unknown parameters and to predict the state variables. We propose a generalized Bayesian

inference procedure to achieve these purposes.

The generalized Bayesian inference is based on the posterior distribution P{Θ|N ,

Y , y
∼
, n
∼
} of Θ given {N ,Y , y

∼
, n
∼
}. This posterior distribution is derived by combining

the prior distribution P{Θ} of Θ with the joint probability distribution P{N ,Y , y
∼
|

n
∼
,Θ} given {n

∼
,Θ} given by equation (57). It follows that this inference procedure would

combine information from three sources: (1) Previous information and experiences about

the parameters in terms of the prior distribution P{Θ} of the parameters. (2) Biological

information of cancer cases via different pathways of RCC in the population
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(P [N |n
∼
, p1, p2]). (3) Information from the expanded data (Y ) and the observed data (y

∼
)

via the statistical model from the system (P [Y , y
∼
|N , n

∼
,Θ]).

The Prior Distribution of the Parameters

For the prior distributions of Θ, because biological information have suggested some

lower bounds and upper bounds for the mutation rates and for the proliferation rates, we

assume

P (Θ) ∝ c (c > 0)

where c is a positive constant if these parameters satisfy some biologically specified

constraints; and equal to zero for otherwise. These biological constraints are:

1) 0.05 < p1 < 0.15, 0.75 < p2 < 0.85, −0.01 < γ
(I)
l < 1 (l = 1, 2),

−0.01 < γ
(J)
u < 1 (u = 1, 2, 3), −0.01 < γ

(K)
v < 1 (v = 1, 2, 3, 4) and 0 < δ < 10−2;

2) For the λj (j = 1, 2, 3), we let 0 < λ1 = {
∏2

i=1 γ
(I)
i }−1E[N(t0)]

∏2
j=0 β

(I)
j < 10,

0 < λ2 = {
∏2

i=1 γ
(J)
i }−2E[N(t0)]

∏3
j=0 β

(J)
j < 1, 0 < λ3 = {

∏3
i=1 γ

(K)
i }−2E[N(t0)]∏4

j=0 β
(K)
j < 102, where 10−8 < β

(I)
i < 10−3 (i = 0, 1, 2), 10−8 < β

(J)
k < 10−3

(k = 0, 1), N(t0) ≈ 108.

We will refer the above prior as a partially informative prior which may be considered

as an extension of the traditional non-informative prior given in Box and Tiao [38].

The Posterior Distribution of the Parameters Given {Y ,N , y
∼
, n
∼
}

Denote by Θ = {pi, γ(I)i , i = 1, 2, λj, γ
(J)
j , j = 1, 2, 3, γ

(K)
v , v = 1, 2, 3, 4, δ}. From

the posterior distribution P{Θ|N ,Y , y
∼
, n
∼
}, we obtain:

P{Θ|N ,Y , y
∼
, n
∼
} ∝ p

∑k
j=1 n1j

1 p
∑k

j=1 n2j

2 (1− p1 − p2)
∑k

j=1 noj

k∏
j=1

3∏
i=1

e−nijQi(j){nijQi(j)}yij , Θ ∈ Ω,
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where Ω is the parameter space of Θ provided by the biological constraints in the previous

subsection. We notice that the log of P{Θ|N ,Y , y
∼
, n
∼
} is proportional to the negative of

deviance given by equation (58).

The Multi-level Gibbs Sampling Procedure For Estimating Parameters

Given the above posterior probability distributions, we apply the following multi-level

Gibbs sampling procedure to derive estimates of the parameters:

1) Generating N Given (Y , y
∼
, n
∼
,Θ):

Given Θ and given n
∼

, use the multinomial distribution of {n1j, n2j} given nj to

generate a large sample of N . Then, by combining this sample with P{Y , y
∼
|N , n

∼
,Θ} in

equation (52) to select N through the weighted bootstrap method due to Smith and

Gelfant [40]. This selected N is then a sample from P{N |Y , y
∼
, n
∼
,Θ} even though the

latter is unknown. (For proof, see Tan[31], Chapter 3.) Call the generated sample N̂ .

2) Generating Y Given (N , y
∼
, n
∼
,Θ):

Given {y
∼
, n
∼
,Θ} and given N = N̂ generated from step (1), generate Y from the

probability distribution P{Y |N̂ , y
∼
, n
∼
,Θ} given by equation (55). Call the generated

sample Ŷ .

3) Estimation of Θ Given {N ,Y , y
∼
, n
∼
}:

Given {y
∼
, n
∼
} and given (N ,Y ) = (N̂ , Ŷ ) from step (1) and step (2), derive the

posterior mode of Θ by maximizing the conditional posterior distribution

P{Θ|N̂ , Ŷ , y
∼
, n
∼
}. Under the partially informative prior, this is equivalent to maximize

the negative of the deviance given by equation (58) under the constraints given in this

section. Denote this generated mode by Θ̂. In this step, Genetic Algorithm is used to

derive the posterior mode of Θ.

4) Recycling Step:

With (N ,Y ,Θ) = (N̂ , Ŷ , Θ̂), go back to Step (1) and continue until convergence.

The proof of convergence of the above steps can be derived by using procedure given

in Tan ([31], Chapter 3). At convergence, the Θ̂ are the generated values from the
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posterior distribution of Θ given {y
∼
, n
∼
} independently of (N ,Y ) (for proof, see Tan

[31], Chapter 3). Repeat the above procedures one then generates a random sample of Θ

from the posterior distribution of Θ given {y
∼
, n
∼
}; then one uses the sample mean as the

estimates of Θ and use the sample variances and covariances as estimates of the variances

and covariances of these estimates.

F. Application to Fit the SEER Data

In this section, we will apply the above model to the renal carcinoma incidence data

from NCI/NIH’s SEER program over the years 1973 - 2007. Given in Table 4 are the

numbers of people at risk and the renal carcinoma cases in the age groups together with

the predicted cases from the model. This data are incidence for 84 age groups (k = 84)

with each group spanning over a one year period. Notice that there are few cancer cases

before 10 years old implying the inclusion of some inherited cancer cases in the SEER

dataset. Since our modeling in this chapter focus on the adult cancers, the quite rare

cancer cases before 10 years old in the dataset are ignored. Estimates of parameters in the

model are given in Table 5. The plot of the observed and predicted cancer incidence of

renal cell carcinoma are shown in Figure 8. From these results, we have made the

following observations:

1) As shown by results in Table 4 and Figure 8, the predicted number of cancer cases

are very close to the observed cases. This indicates that the three-pathway model fits the

data well and that one can safely assume that the human renal cell carcinoma can be

described by a mixture model of three pathways.

2) From results in Table 5, the estimates of p1 and p2 from the SEER data are 0.1602

and 0.8097 respectively. This indicates that about 81% individuals in US population at

risk of developing renal cell carcinoma by 4-stage pathway, 16% individuals by 3-stage

pathway and 3% individuals by 5-stage pathway.

3) Results in Table 5 show that the estimates λ̂j (j = 1, 2, 3) of λj are of order

{100, 10−1, 101} respectively. Because {λ1 = {
∏2

i=1 γ
(I)
i }−1E[N(t0)]

∏2
j=0 β

(I)
j ,
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λ2 = {
∏2

i=1 γ
(J)
i }−2E[N(t0)]

∏3
j=0 β

(J)
j , λ3 = {

∏3
i=1 γ

(K)
i }−2E[N(t0)]

∏4
j=0 β

(K)
j }, one

can have some rough ideas about the magnitude of β(I)
l (l = 0, 1, 2), β(J)

u (u = 0, 1, 2, 3)

and β(K)
v (v = 0, 1, 2, 3, 4) by assuming the value of E[N(t0)]. If we follow Potten et al.

[41] to assume E[N(t0)] ∼ 108, then β(I)
j (β

(J)
j , β

(K)
j ) ≈ 10−6 ∼ 10−5.

4) From Table 5, it is observed that the estimate of γ(I)1 is of order 10−6 and the

estimate of γ(I)2 is of order 10−4 which is about 100 times greater than those of I1 cells.

The estimate of γ(J)2 is of order 10−3, and the estimate of γ(J)3 is of order 10−1 which is

about 100 times greater than those of J2 cells. The estimate of γ(K)
4 is of order 10−2 which

is about 10 times greater than the estimate of γ(K)
2 . These observations are due

presumably to the effects of the silencing or inactivation of the cell cycle inhibition genes

and the apoptosis inhibition genes.

Table 4: Renal Cell Carcinomas Incidence Data from SEER (Overall Population)

Age Number of Observed Predicated

Groups People at Risk Incidence Incidence

1 12221582 1 0

2 12120990 4 0

3 12112995 2 0

4 12146174 2 0

5 12161336 1 1

6 12111854 4 1

7 12160452 0 1

8 11942586 3 2

9 12381299 4 3

10 12512703 4 3

11 12410338 6 4

12 12449244 5 5

Continued on next page
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Table 4 – continued from previous page

Age Number of Observed Predicted

Groups People at Risk Incidence Incidence

13 12527781 7 6

14 12602883 7 8

15 12719598 9 9

16 12766107 14 11

17 12831400 12 13

18 12382047 14 14

19 12581638 17 17

20 12636509 21 20

21 12682601 30 23

22 12840510 31 28

23 13075528 23 33

24 13358635 31 40

25 13473849 56 47

26 13426340 52 55

27 13525264 54 65

28 13149674 71 75

29 13812811 90 93

30 13886874 114 111

31 13488332 129 127

32 13460286 143 149

33 13256067 166 173

34 13428827 179 205

35 13220037 266 236

Continued on next page
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Table 4 – continued from previous page

Age Number of Observed Predicted

Groups People at Risk Incidence Incidence

36 12870265 297 269

37 12689592 300 308

38 12157014 302 343

39 12494081 380 407

40 12272125 522 460

41 11826573 482 508

42 11663153 585 572

43 11407082 652 636

44 11296848 772 712

45 11016369 801 783

46 10651593 890 850

47 10475708 970 934

48 9994684 1012 991

49 10138908 1086 1114

50 9836359 1176 1192

51 9475641 1245 1262

52 9250985 1324 1348

53 9027382 1412 1433

54 8883737 1488 1531

55 8547883 1541 1592

56 8279648 1690 1660

57 8062368 1773 1734

58 7654610 1756 1759

Continued on next page
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Table 4 – continued from previous page

Age Number of Observed Predicted

Groups People at Risk Incidence Incidence

59 7563706 1789 1850

60 7232719 1907 1876

61 6927332 1870 1898

62 6708273 1911 1936

63 6543931 1871 1981

64 6404652 1982 2028

65 6168486 1995 2035

66 5913479 1958 2027

67 5746766 1962 2039

68 5480517 2084 2007

69 5363912 1995 2021

70 5110728 2017 1975

71 4925076 1933 1947

72 4696825 1942 1893

73 4512136 1870 1849

74 4345300 1781 1805

75 4148801 1772 1742

76 3900900 1738 1652

77 3681587 1650 1567

78 3481918 1513 1487

79 3243631 1374 1385

80 2961234 1259 1262

81 2724984 1150 1155

Continued on next page
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Table 4 – continued from previous page

Age Number of Observed Predicted

Groups People at Risk Incidence Incidence

82 2495219 1025 1050

83 2271595 885 947

84 2041351 846 841

Table 5: Estimates of Parameters for the Stochastic Model of Renal Cell Carcinoma

Parameters p1 p2 γ
(I)
1 γ

(I)
2 λ1

Estimates 1.602E-01 8.097E-01 5.457E-06 9.777E-05 1.565E+00

St.D 7.171E-05 7.823E-05 7.221E-07 1.115E-05 5.356E-02

95%CL-Lower 1.600E-01 8.095E-01 3.663E-06 7.007E-05 1.432E+00

95%CL-Upper 1.604E-01 8.100E-01 8.010E-06 1.127E-04 1.710E+00

Parameters γ
(J)
1 γ

(J)
2 γ

(J)
3 δ λ2

Estimates 2.632E-04 3.927E-03 1.222E-01 3.554E-03 1.517E-01

St.D 1.856E-05 4.984E-04 9.652E-04 1.367E-05 1.353E-02

95%CL-Lower 2.171E-04 2.689E-03 1.198E-01 3.520E-03 1.181E-01

95%CL-Upper 2.893E-04 5.639E-03 1.250E-01 3.598E-03 1.704E-01

Parameters γ
(K)
1 γ

(K)
2 γ

(K)
3 γ

(K)
4 λ3

Estimates 2.879E-04 3.453E-03 8.679E-03 1.427E-02 8.853E+01

St.D 8.175E-05 2.446E-04 8.455E-04 6.165E-04 4.333E+00

95%CL-Lower 8.487E-05 2.846E-03 6.579E-03 1.274E-02 7.776E+01

95%CL-Upper 5.047E-04 4.057E-03 1.175E-02 1.586E-02 1.039E+02
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Fig. 8: Curve Fitting of Renal Cell Carcinoma SEER Data by Proposed Model

G. Computation Details

The multi-level Gibbs sampling procedure for estimating unknown parameters is

implemented in Fortran 90. The Fortran code is shown in the Appendix C. The subroutine

NGENERNOR01 are used to generate N from multinomial distribution of {n1j, n2j}

given nj . Since n
∼

is very large and {p1, p2} are very small, the normal approximation is

applied. The subroutine PICK is applied to select the k-th N from a large sample of N

through the Weighted Bootstrap Method. The selected N is a sample from

P{N |Y , y
∼
, n
∼
,Θ}. Y is generated by the subroutine YGENER from the multinomial

distribution. The publicly available Genetic Algorithm PIKAIA is applied to derive the

posterior mode of Θ by maximizing the conditional posterior distribution

P{Θ|N̂ , Ŷ , y
∼
, n
∼
}. The genetic algorithms are a class of search techniques inspired from

the biological process of evolution by means of natural selection. The basic principle is
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that those with the largest fitness will be selected as the generation progresses. Given the

fitness, the genetic algorithm would choose the parameter values to maximize the fitness

according to evolutionary principle as described above. The function Fit is called in

PIKAIA as fitness function that is the negative of the deviance given in (3.34). The

subroutine CalculateQ is used to calculate the probability of developing tumor during each

age period through different pathways.

H. Discussion and Conclusion

Based on most recent biological studies on renal cell carcinomas as discussed in

Section B, in this chapter we have presented a stochastic model for carcinogenesis of renal

cell carcinomas involving three different pathways, with each pathway being a multi-stage

model. To account for different individuals in the population at risk of developing cancer

through different pathways, we have also developed a mixture model of three pathways:

(1) 3-stage model for pRCCs which account for about 15% of all RCCs, (2) 4-stage model

for ccRCCs which account for about 80% of all RCCs, and (3) 5-stage model for chRCCs

which account for about 5% of all RCCs.

For using the proposed model to fit the cancer incidence data, we have developed a

generalized Bayesian inference procedure to estimate the unknown parameters and to

predict cancer cases. This inference procedure is advantageous over the classical sampling

theory inference (i.e. maximum likelihood method) because the procedure combines

information from three sources: previous information and experiences about the

parameters in terms of the prior distribution P{Θ} of the parameters; Biological

information of cancer cases via different pathways for developing RCC in the population

(P [N |n
∼
, p1, p2]); information from the expanded data Y and the observed data y

∼
via the

statistical model from the system (P [Y , y
∼
|N , n

∼
,Θ]).

We have applied our models and methods to the renal carcinomas incidence data from

NCI/NIH’s SEER program. Our analysis clearly showed that the proposed three-pathway
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model fitted the data well (see Table 4 and Figure 8); The estimates from the model are

consistent with biological findings.

Using models and methods of this chapter, one can easily predict future cancer cases

for renal cell carcinomas. Thus, by comparing results from different populations, our

models and methods can be used to assess cancer prevention and control procedures. This

will be our future research topics; we will not go any further here.
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CHAPTER IV

DISCUSSION AND CONCLUSION

Recent studies of cancer molecular biology have indicated that the carcinogenesis of

Wilms’ tumor was more complex than was first proposed by a ’two-hit’ model of Knudson

and Strong [18] in the early 1970’s. Based on biological information, we have developed a

general two-pathway stochastic model for Wilms’ tumor. The fist pathway is a 3-stage

model for both hereditary and non-hereditary cancer cases, in which the major genetic

alterations may include WT1 mutation, IGF2 upregulation, CTNNB1 mutation and P53

mutation. The second pathway is a 2-stage model for non-hereditary cancer cases, in

which WTX mutation and one more unknown genetic event may be the major genetic

alterations. To account for hereditary cancer cases and the development of non-hereditary

cancers through two different pathways in the stochastic model, we have also developed a

generalized mixture model. In this mixture model, two mixing probability distributions

were applied, which are a multinomial distribution to explain the genetic segregation of

the stage-limiting tumor suppressor genes for Wilms’ tumor and a binomial distribution to

account for the development of non-hereditary Wilms’ tumor through two pathways. We

have fitted the model to the Wilms’ tumor incidence data from NIH/NCI’s SEER program.

The fitting results have showed that the proposed two-pathway model involving hereditary

and non-hereditary cancer cases fitted the data better than the single-pathway model with

hereditary cancer cases. The results have confirmed the finding from molecular biology

that Wilms’ tumor is more genetically heterogeneous than other pediatric cancers such as

retinoblastoma. In combination of generalized Bayesian approach using multi-level Gibbs

sampling procedures, we have estimated the genetic segregation frequency of the

stage-limiting tumor suppressor genes, the proportion of the individual at risk of

developing non-hereditary cancer cases by different pathways and the proliferation rates of

cells in each stage. Furthermore, we have obtained some rough ideas about the magnitude

of the mutations rate of intermediate cells from the estimates of parameter functions.
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Based on kidney cancer biology, we have known that the mechanism of adult kidney

cancer (renal cell carcinoma) distinctly differs from that of pediatric kidney cancer. In

addition, we have also found that renal cell carcinomas consist of three main histological

subtypes and each subtype of renal cell carcinomas develops through different pathway.

Thus, based on recent biological results, we have developed a stochastic model for human

renal cell carcinoma involving three pathways, with each pathway being a multi-stage

model. To account for different individuals in the population at risk of developing renal

cell carcinoma through different pathways, we have also developed a mixture model of

three pathways. The first pathway is a 3-stage model for pRCCs, the second pathway is a

4-stage model for ccRCCs, and the third pathway is a 5-stage model for chRCCs. We have

also applied these models and procedure to the renal carcinoma incidence data from

NIH/NCI’s SEER program. Our results showed that the proposed multiple-pathway model

fitted the data nicely. Using the stochastic model and the mixture model, we have

developed a generalized Bayesian procedure to estimate the unknown parameters.

Overall, we have developed stochastic models for multiple-pathway carcinogenesis of

different kidney cancers. We have developed a model to analyse tumor development for

hereditary and non-hereditary Wilms’ tumor, and a model for renal cell carcinoma. The

stochastic models we have developed are based on biological information and hence are

more realistic and applicable in practice.

In this study, we have not predicted the future cancer cases for human kidney cancer.

Thus, our research in the future will be focused on developing predictive inference for

cancer incidence and progression. Furthermore, by comparing results from different

populations, we will apply our models and methods to assess cancer prevention and

control procedures.
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APPENDIX A

DERIVATION OF {Q1(J), Q2(J), Q
(I)
0 (J), Q

(J)
0 (J)} BY DISCRETE

APPROXIMATION

Under discrete time with one time unit (i.e. ∆t = 1) corresponding to 3 months or

longer, one may practically assume PT (s, t) = 1 for t− s ≥ 1; further Q1(j), Q2(j),

Q
(I)
0 (j), Q(J)

0 (j) are approximated by:

Q
(I)
0 (j) = {e−β

(I)
2

∑tj−1−1

s=t0
E[I2(x;0)] − e−β

(I)
2

∑tj−1

s=t0
E[I2(x;0)]}+ o(β

(I)
2 )

Q
(J)
0 (j) = {e−β

(J)
1

∑tj−1−1

s=t0
E[J1(x)] − e−β

(J)
1

∑tj−1

s=t0
E[J1(x)]}+ o(β

(J)
1 )

Q1(j) = {e−β
(I)
2

∑tj−1−1

s=t0
E[I2(x;1)] − e−β

(I)
2

∑tj−1

s=t0
E[I2(x;1)]}+ o(β

(I)
2 )

Q2(j) = (1− α1){e−β
(I)
2

∑tj−1−1

s=t0
E[I2(x;2)] − e−β

(I)
2

∑tj−1

s=t0
E[I2(x;2)]}+ o(β

(I)
2 )

Under discrete time, the stochastic differential equations for staging state variables

become stochastic difference equations for these state variables respectively. Thus, for

deriving {E[I2(t; i)] (i = 0, 1, 2), E[J1(t)]} and {Q1(j), Q2(j), Q(I)
0 (j), Q(J)

0 (j)} under

discrete time, we have the following difference equation for I2(t; 2). This stochastic

difference equation is derived from equation (5) by putting ∆t = 1:

I2(t+ 1; 2) = I2(t; 2) +B2(t; 2)−D2(t; 2)

= I2(t; 2)(1 + γ
(I)
2 ) + ε2(t; 2), t > t0, (59)

where ε2(t; 2) = [B2(t; 2)− I2(t; 2)b2]− [D2(t; 2)− I2(t; 2)d2].

From the above equation (59), we obtain:

E[I2(t; 2)] = E[I2(t− 1; 2)](1 + γ
(I)
2 ) = · · · = E[I2(t0; 2)](1 + γ

(I)
2 )t−t0 .

Put φ22(t) = γ
(I)
2

∑t−1
s=t0

(1 + γ
(I)
2 )s−t0 (t− 1 > t0). Using the result

∑t−1
i=0 a

i = at−1
a−1 , we

obtain:
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φ22(t) = γ
(I)
2

t−1∑
s=t0

(1 + γ
(I)
2 )s−t0 = γ

(I)
2

t−t0−1∑
s=0

(1 + γ
(I)
2 )s = (1 + γ

(I)
2 )t−t0 − 1.

It follows that

Q2(j) ≈ (1− α1){e−λ1φ22(tj−1) − e−λ1φ22(tj)},

where λ1 = 1

γ
(I)
2

E[I2(t0; 2)].

For deriving E[I2(t; 1)] and Q1(j) under discrete time, from equations (5)-(6) we

obtain the following difference equations for {I1(t; 1), I2(t; 1)}.

I1(t+ 1; 1) = I1(t; 1) +B1(t; 1)−D1(t; 1)

= I1(t; 1)(1 + γ
(I)
1 ) + ε1(t+ 1; 1), (60)

I2(t+ 1; 1) = I2(t; 1) +M1(t; 1) +B2(t; 1)−D2(t; 1)

= I2(t; 1)(1 + γ
(I)
2 ) + I1(t; 1)β

(I)
1 + ε2(t+ 1; 1), (61)

where

ε1(t+ 1; 1) = [B1(t; 1)− I1(t; 1)b1]− [D1(t; 1)− I1(t; 1)d1],

ε2(t+ 1; 1) = [M1(t; 1)− I1(t; 1)β
(I)
1 ] + [B2(t; 1)− I2(t; 1)b2]

− [D2(t; 1)− I2(t; 1)d2].

From equation (60), we obtain E[I1(t; 1)] = E[I1(t0; 1)](1 + γ
(I)
1 )t−t0 . From equation

(61), we obtain:
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E[I2(t; 1)]

= E[I2(t0; 1)](1 + γ
(I)
2 )t−t0 + β

(I)
1

t−1∑
s=t0

E[I1(s; 1)](1 + γ
(I)
2 )t−1−s

= E[I2(t0; 1)](1 + γ
(I)
2 )t−t0 + β

(I)
1 E[I1(t0; 1)]

t−1∑
s=t0

(1 + γ
(I)
1 )s−t0(1 + γ

(I)
2 )t−1−s

= E[I2(t0; 1)](1 + γ
(I)
2 )t−t0 + β

(I)
1 E[I1(t0; 1)](1 + γ

(I)
2 )t−1−t0

t−1∑
s=t0

(
1 + γ

(I)
1

1 + γ
(I)
2

)s−t0

= E[I2(t0; 1)](1 + γ
(I)
2 )t−t0 + E[I1(t0; 1)]β

(I)
1

2∑
u=1

A12(u)(1 + γ(I)u )t−t0 .

From the above expected numbers, it follows that

Q1(j) ≈ {e−θφ22(tj−1)−λ2φ12(tj−1) − e−θφ22(tj)−λ2φ12(tj)},

where {λ2 = 1

γ
(I)
1 γ

(I)
2

E[I1(t0; 1)]β
(I)
1 β

(I)
2 , θ = 1

γ
(I)
2

E[I2(t0; 1)]β
(I)
2 }, and

φ12(t) = {
2∏
i=1

γ
(I)
i }

2∑
u=1

A12(u)
1

γ
(I)
u

{(1 + γ(I)u )(t−t0) − 1},

φ22(t) = (1 + γ
(I)
2 )t−t0 − 1.

For deriving E[I2(t; 0)] and Q(I)
0 (j) (i = 0, 1) under discrete time, from equations

(5)-(6) we obtain the following difference equations for {I0(t), I1(t), I2(t)} with initial

conditions {I0(t0) = N(t0), Ii(t0) = I0(t0; 0) = 0, i = 1, 2} at birth (t0):

I0(t+ 1; 0) = I0(t; 0) +B0(t; 0)−D0(t; 0) = I0(t; 0)(1 + γ
(I)
0 ) + ε0(t+ 1; 0),

with I0(t0; 0) = N(t0), (62)

Ii(t+ 1; 0) = Ii(t; 0) +Mi−1(t; 0) +Bi(t; 0)−Di(t; 0) = Ii(t; 0)(1 + γ
(I)
i )

+ Ii−1(t; 0)β
(I)
i−1 + εi(t+ 1; 0), i = 1, 2. (63)
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where

ε
(I)
0 (t+ 1; 0) = [B0(t; 0)− I0(t; 0)b0]− [D0(t; 0)− I0(t; 0)d0],

ε
(I)
i (t+ 1; 0) = [Mi−1(t; 0)− Ii−1(t; 0)βi−1] + [Bi(t; 0)− Ii(t; 0)bi]

− [Di(t; 0)− Ii(t; 0)di], i = 1, 2.

Practically we will assume γ(I)0 = 0 after birth. Hence, from equation (62),

E[I0(t; 0)] = E[I0(t0; 0)] = E[N(t0)]. From equation (63), we obtain:

E[I1(t+ 1; 0)] = E[I1(t; 0)](1 + γ
(I)
1 ) + E[N(t0)]β

(I)
0 ,

E[I2(t+ 1; 0)] = E[I2(t; 0)](1 + γ
(I)
2 ) + E[I1(t; 0)]β

(I)
1 , t ≥ t0.

The solution of E[I1(t; 0)] under the initial condition I1(t0; 0) = 0 is

E[I1(t; 0)] = I1(t0)(1 + γ
(I)
1 )t−t0 + E[N(t0)]β

(I)
0

t−t0−1∑
s=0

(1 + γ
(I)
1 )s

=
E[N(t0)]β

(I)
0

γ
(I)
1

{(1 + γ
(I)
1 )t−t0 − 1} if γ(I)1 6= 0;

The solution of E[I2(t; 0)] under the initial conditions

{I0(t0; 0) = N(t0), Ii(t0; 0) = 0, i = 1, 2} is

E[I2(t; 0)] = I2(t0)(1 + γ
(I)
2 )t−t0 + β

(I)
1

t−1∑
s=t0

E[I1(s; 0)](1 + γ
(I)
2 )t−s−1

=
E[N(t0)]β

(I)
0 β

(I)
1

γ
(I)
1

t−1∑
s=t0

[(1 + γ
(I)
1 )s−t0 − 1](1 + γ

(I)
2 )t−s−1

= E[N(t0)]β
(I)
0 β

(I)
1

2∑
u=1

A12(u)
1

γ
(I)
u

{(1 + γ(I)u )t−t0 − 1}.
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From this result, it follows that

Q
(I)
0 (j) ≈ e−λ3φ02(tj−1) − e−λ3φ02(tj),

where λ3 = {
∏2

j=1 γ
(I)
j }−1E[N(t0)](

∏2
i=0 β

(I)
i ), and

φ02(t) = {
2∏
i=1

γ
(I)
i }

2∑
u=1

A12(u)
1

γ
(I)
u

2{(1 + γ(I)u )(t−t0) − 1− γ(I)u (t− t0)}

For deriving E[J1(t)] and Q(J)
0 (j) under discrete time, from equations (7) we obtain

the following difference equations for {J0(t), J1(t)} with initial conditions

{J0(t0) = N(t0), J1(t0) = 0} at birth (t0):

J0(t+ 1) = J0(t) +B0(t)−D0(t) = J0(t)(1 + γ
(J)
0 ) + ε0(t+ 1),

with J0(t0) = N(t0), (64)

J1(t+ 1) = J1(t) +M0(t) +B1(t)−D1(t) = J1(t)(1 + γ
(J)
1 )

+ J0(t)β
(J)
0 + εi(t+ 1). (65)

where

ε
(J)
0 (t+ 1) = [B0(t)− J0(t)b0]− [D0(t)− J0(t)d0],

ε
(J)
1 (t+ 1) = [M0(t)− J0(t)β0] + [B1(t)− J1(t)b1]

− [D1(t)− J1(t)d1].

Practically we will assume γ(J)0 = 0 after birth. Hence, from equation (64),

E[J0(t)] = E[J0(t0)] = E[N(t0)]. From equation (65), we obtain:

E[J1(t+ 1)] = E[J1(t)](1 + γ
(J)
1 ) + E[N(t0)]β

(J)
0 .
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The solution of E[J1(t)] under the initial condition J1(t0) = 0 is

E[J1(t)] = J1(t0)(1 + γ
(J)
1 )t−t0 + E[N(t0)]β

(J)
0

t−t0−1∑
s=0

(1 + γ
(J)
1 )s

=
E[N(t0)]β

(J)
0

γ
(J)
1

{(1 + γ
(J)
1 )t−t0 − 1} if γ(J)1 6= 0.

From this result, it follows that

Q
(J)
0 (j) ≈ {e−λ4φ01(tj−1) − e−λ4φ01(tj)}+ o(β

(J)
1 ),

where λ4 = 1

γ
(J)
1

2N(t0)β
(J)
0 β

(J)
1 , and

φ01(t) = {(1 + γ
(J)
1 )(t−t0) − 1− γ(J)1 (t− t0)}, if γ(J)1 6= 0.
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APPENDIX B

PROGRAM CODE TO FIT A MODEL OF WILMS’ TUMOR

PROGRAM WimlsTumor
USE RNNOR INT
USE RNBIN INT
USE UMACH INT
USE RNSET INT
USE FAC INT
IMPLICIT NONE
INTEGER , PARAMETER : : NB=500 , n f i t 2 = 12 , MaxAge = 84 , d t =4
INTEGER SEED(NB) , ISEED , K, c o n t r o l , Y( MaxAge ) ,Y1 ( 1 :NB) ,Y2

( 1 :NB) ,Y3 ( 1 :NB) , Y31 ( 1 :NB) , Y32 ( 1 :NB) ,N( MaxAge ) ,N1 ( MaxAge ) ,
N2 ( MaxAge ) ,N3 ( MaxAge ) , N31 ( MaxAge ) , N32 ( MaxAge ) , i , j ,
p i k a i a s t a t u s , n l o o p

INTEGER Y0 , N0 , N10 , N20 , N30 , N1Temp , N2Temp , N3Temp , N31Temp ,
N32Temp , kk , Y Orig ( MaxAge ) , N Orig ( MaxAge ) , q s t a t u s , T

DOUBLE PRECISION Q1 ( 1 :NB) ,Q2 ( 1 :NB) , Q3 ( 1 :NB) , Q31 ( 1 :NB) , Q32
( 1 :NB) , P22 ( MaxAge ) , P030 ( MaxAge ) , P130 ( MaxAge ) , P131 ( MaxAge
) , P231 ( MaxAge ) , P232 ( MaxAge ) , P020 ( MaxAge ) , Q( 1 :NB) , N1 pred
( MaxAge ) , N2 pred ( MaxAge ) , N3 pred ( MaxAge ) , N31 pred ( MaxAge )
, N32 pred ( MaxAge )

DOUBLE PRECISION mylambda ( 1 : 4 ) ,mygamma1 , mydel ta , myP , myP1 ,
myP2 , myalpha2 , myalpha1 , myalpha0 , myalpha3 , mygamma2 ,
mygamma3 , mytheta1 , mytheta2 , y0 pred , f i t 2 r e s u l t ,
Q f r o m p i k a i a o u t p u t ( 1 : MaxAge )

DOUBLE PRECISION , DIMENSION ( 1 :NB, 1 : MaxAge ) : : H, N1B , N2B , N3B ,
N31B , N32B

DOUBLE PRECISION , DIMENSION ( 1 : MaxAge ) : : N1 PICKED , N2 PICKED ,
N3 PICKED , N31 PICKED , N32 PICKED , K PICKED , Y1 PICKED ,
Y2 PICKED , Y3 PICKED , Y31 PICKED , Y32 PICKED

DOUBLE PRECISION ,DIMENSION ( 1 : 3 ) : : PRange , P1Range , P2Range ,
a lpha2Range , a lpha1Range , a lpha0Range , a lpha3Range ,
gamma1Range , gamma2Range , lambda1Range , lambda2Range ,
lambda3Range , lambda4Range , d e l t aRange , gamma3Range ,
the t a1Range , t h e t a 2 R a n g e

DOUBLE PRECISION , DIMENSION ( 1 : 1 2 ) : : o l d p a r a
DOUBLE PRECISION tmyP , tmyalpha2 , tmygamma1 , tmylambda ( 2 ) ,

t m y d e l t a , c h i s q
REAL c t r l ( 1 2 ) , p i k a i a f i t 2 x ( n f i t 2 ) , p i k a i a f i t 2 f , f i t 2 o u t ,

n o r m a l i z e d p a r a ( 1 : 1 4 )
INCLUDE ’ W i l m s 8 5 3 2 s t a g e . FI ’
DO i = 1 , MaxAge

Y( i ) = Y Orig ( i )
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N( i ) = N Orig ( i )
END DO
open ( u n i t =5 , f i l e = ’ o u t p u t . da t ’ , s t a t u s = ’ unknown ’ )
open ( u n i t =10 , f i l e = ’ o u t p u t p i c k . da t ’ , s t a t u s = ’ unknown ’ )
i s e e d =12345
CALL RNSET( i s e e d )
CALL r n i n i t ( i s e e d )

DO n l o o p = 1 , 50
DO i = 1 , MaxAge
DO kk =1 , NB
i s e e d = i s e e d +1
CALL NGENERNOR 01(N( i ) , myP1 , myP2 , ISEED , N1Temp , N2Temp , N3Temp

)
N1 ( i ) = N1Temp
N2 ( i ) = N2Temp
N3 ( i ) = N3Temp
N1B( kk , i ) =N1Temp
N2B( kk , i ) =N2Temp
N3B( kk , i ) =N3Temp
CALL NGENERNOR( N3 ( i ) , myalpha3 , ISEED , N32Temp , N31Temp )
N31 ( i ) = N31Temp
N32 ( i ) = N32Temp
N31B ( kk , i ) =N31Temp
N32B ( kk , i ) =N32Temp
END DO
END DO

DO i = 1 , MaxAge
IF (Y( i ) ==0) THEN
K PICKED ( i ) = 1
Y1 PICKED ( i ) = 0
Y2 PICKED ( i ) = 0
Y3 PICKED ( i ) = 0
N1 PICKED ( i ) = N1B( K PICKED ( i ) , i )
N2 PICKED ( i ) = N2B( K PICKED ( i ) , i )
N3 PICKED ( i ) = N3B( K PICKED ( i ) , i )
Y31 PICKED ( i ) = 0
Y32 PICKED ( i ) = 0
N31 PICKED ( i ) = N31B ( K PICKED ( i ) , i )
N32 PICKED ( i ) = N32B ( K PICKED ( i ) , i )
CYCLE
END IF
DO j = 1 , NB
CALL C a l c u l a t e Q ( myalpha2 , mygamma1 , mylambda , myalpha3 ,
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mygamma2 , mygamma3 , mytheta2 , N1B( j , i ) , N2B( j , i ) , N3B( j ,
i ) , N31B ( j , i ) , N32B ( j , i ) , i , Q( j ) , Q1 ( j ) , Q2 ( j ) , Q3 ( j ) ,
Q31 ( j ) , Q32 ( j ) , q s t a t u s )

END DO

IF ( q s t a t u s . EQ . 1 ) THEN
mygamma1 = o l d p a r a ( 1 )
mylambda ( 1 ) = o l d p a r a ( 2 )
mylambda ( 2 ) = o l d p a r a ( 3 )
mylambda ( 3 ) = o l d p a r a ( 4 )
myalpha2 = o l d p a r a ( 5 )
myP1 = o l d p a r a ( 6 )
mylambda ( 4 ) = o l d p a r a ( 7 )
myalpha3 = o l d p a r a ( 8 )
mygamma2 = o l d p a r a ( 9 )
mygamma3 = o l d p a r a ( 1 0 )
mythe ta2 = o l d p a r a ( 1 1 )
myP2 = o l d p a r a ( 1 2 )
GOTO 300
END IF

DO j = 1 , NB
CALL YGENER(Y( i ) ,Q1 ( j ) ,Q2 ( j ) ,Q3 ( j ) , ISEED , Y1 ( j ) ,Y2 ( j ) ,Y3 ( j ) )
CALL Y3GENER( Y3 ( j ) , Q31 ( j ) , Q32 ( j ) , ISEED , Y31 ( j ) , Y32 ( j ) )
END DO

CALL PICK (Y( i ) ,Y1 , Y2 , Y31 , Q1 , Q2 , Q31 , Q32 ,K)
K PICKED ( i ) = K

IF ( K PICKED ( i ) == 0)
K PICKED ( i ) = 1
Y1 PICKED ( i ) = Y1 (K)
Y2 PICKED ( i ) = Y2 (K)
Y3 PICKED ( i ) = Y3 (K)
N1 PICKED ( i ) = N1B( K PICKED ( i ) , i )
N2 PICKED ( i ) = N2B( K PICKED ( i ) , i )
N3 PICKED ( i ) = N3B( K PICKED ( i ) , i )
Y31 PICKED ( i ) = Y31 (K)
Y32 PICKED ( i ) = Y32 (K)
N31 PICKED ( i ) = N31B ( K PICKED ( i ) , i )
N32 PICKED ( i ) = N32B ( K PICKED ( i ) , i )

END DO

DO 10 i =1 ,12
c t r l ( i ) = −1
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10 c o n t i n u e
c t r l ( 1 ) =100
c t r l ( 2 ) =10000
c t r l ( 6 ) =0 .005
c t r l ( 7 ) =0 .0005
c t r l ( 8 ) =0 .2

o l d p a r a ( 1 ) = mygamma1
o l d p a r a ( 2 ) = mylambda ( 1 )
o l d p a r a ( 3 ) = mylambda ( 2 )
o l d p a r a ( 4 ) = mylambda ( 3 )
o l d p a r a ( 5 ) = myalpha2
o l d p a r a ( 6 ) = myp1
o l d p a r a ( 7 ) = mylambda ( 4 )
o l d p a r a ( 8 ) = myalpha3
o l d p a r a ( 9 ) = mygamma2
o l d p a r a ( 1 0 ) = mygamma3
o l d p a r a ( 1 1 ) = mythe ta2
o l d p a r a ( 1 2 ) = myp2

CALL p i k a i a ( F i t 2 , n f i t 2 , c t r l , p i k a i a f i t 2 x , p i k a i a f i t 2 f ,
p i k a i a s t a t u s )

CALL Q f r o m p i k a i a (DBLE( p i k a i a f i t 2 x ) , n f i t 2 , N,
Q f r o m p i k a i a o u t p u t )

mygamma1 = DenormalizeX (DBLE( p i k a i a f i t 2 x ( 1 ) ) , gamma1Range )
mylambda ( 1 ) = DenormalizeX (DBLE( p i k a i a f i t 2 x ( 2 ) ) ,

lambda1Range )
mylambda ( 2 ) = DenormalizeX (DBLE( p i k a i a f i t 2 x ( 3 ) ) ,

lambda2Range )
mylambda ( 3 ) = DenormalizeX (DBLE( p i k a i a f i t 2 x ( 4 ) ) ,

lambda3Range )
myalpha2 = DenormalizeX (DBLE( p i k a i a f i t 2 x ( 5 ) ) , a lpha2Range )
myp1 = DenormalizeX (DBLE( p i k a i a f i t 2 x ( 6 ) ) , p1Range )
mylambda ( 4 ) = DenormalizeX (DBLE( p i k a i a f i t 2 x ( 7 ) ) ,

lambda4Range )
myalpha3 = DenormalizeX (DBLE( p i k a i a f i t 2 x ( 8 ) ) , a lpha3Range )
mygamma2 = DenormalizeX (DBLE( p i k a i a f i t 2 x ( 9 ) ) , gamma2Range )
mygamma3 = DenormalizeX (DBLE( p i k a i a f i t 2 x ( 1 0 ) ) , gamma3Range )
mythe ta2 = DenormalizeX (DBLE( p i k a i a f i t 2 x ( 1 1 ) ) , t h e t a 2 R a n g e )
myp2 = DenormalizeX (DBLE( p i k a i a f i t 2 x ( 1 2 ) ) , p2Range )

y 0 p r e d =n0∗myp2∗myalpha2
w r i t e ( 5 , ∗ ) y 0 p r e d
do i = 1 , MaxAge
w r i t e ( 5 , ∗ ) Q f r o m p i k a i a o u t p u t ( i )
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end do
w r i t e ( 5 , ’ (A, I5 , $ ) ’ ) ’ n l o o p ’ , n l o o p
w r i t e ( 5 , ’ (A, ES14 . 6 ) ’ ) ’ F i t 2 ’ , p i k a i a f i t 2 f
w r i t e ( 5 , ’ (A, ES14 . 6 , $ ) ’ ) ’ p1 ’ , myp1
w r i t e ( 5 , ’ (A, ES14 . 6 , $ ) ’ ) ’ p2 ’ , myp2
w r i t e ( 5 , ’ (A, ES14 . 6 , $ ) ’ ) ’ a l p h a 2 ’ , myalpha2
w r i t e ( 5 , ’ (A, ES14 . 6 , $ ) ’ ) ’ gamma1 ’ , mygamma1
w r i t e ( 5 , ’ (A, ES14 . 6 , $ ) ’ ) ’ gamma2 ’ , mygamma2
w r i t e ( 5 , ’ (A, ES14 . 6 , $ ) ’ ) ’ lambda1 ’ , mylambda ( 1 )
w r i t e ( 5 , ’ (A, ES14 . 6 , $ ) ’ ) ’ lambda2 ’ , mylambda ( 2 )
w r i t e ( 5 , ’ (A, ES14 . 6 , $ ) ’ ) ’ lambda3 ’ , mylambda ( 3 )
w r i t e ( 5 , ’ (A, ES14 . 6 , $ ) ’ ) ’ lambda4 ’ , mylambda ( 4 )
w r i t e ( 5 , ’ (A, ES14 . 6 , $ ) ’ ) ’ a l p h a 3 ’ , myalpha3
w r i t e ( 5 , ’ (A, ES14 . 6 , $ ) ’ ) ’ gamma3 ’ , mygamma3
w r i t e ( 5 , ’ (A, ES14 . 6 , $ ) ’ ) ’ t h e t a 2 ’ , mythe ta2
w r i t e ( 5 , ’ (A, ES14 . 6 , $ ) ’ ) ’ F i t 2 ’ , p i k a i a f i t 2 f
w r i t e ( 5 , ∗ ) ’ End ’
w r i t e ( ∗ , ∗ ) ’ Loop ’
300 END DO ! End Main loop

CONTAINS
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

! S u b r o u t i n e : NGENERNOR 01
! D e s c r i p t i o n : G e n e r a t e ( n1 , n2 , n3 ) from m u l t i n o m i a l
! d i s t r i b u t i o n . S i n c e n i s ve ry l a r g e and p i s
! ve ry smal l , t h e normal a p p r o x i m a t i o n i s

a p p l i e d
! I n p u t : N = p o p u l a t i o n a t each age p e r i o d
! P1 = t h e p r o p o r t i o n f o r I1 p e o p l e i n p o p u l a t i o n
! P2 = t h e p r o p o r t i o n f o r I2 p e o p l e i n p o p u l a t i o n
! ISEED = seed f o r g e n e r a t i n g random number
! Outpu t : N1 = t h e number o f I1 p e o p l e
! N2 = t h e number o f I2 p e o p l e
! N3 = t h e number o f normal p e o p l e
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

SUBROUTINE NGENERNOR 01(N, P1 , P2 , ISEED , N1 , N2 , N3 )
DOUBLE PRECISION , INTENT ( IN ) : : P1 , P2
INTEGER , INTENT ( IN ) : : ISEED ,N
INTEGER , INTENT (OUT) : : N1 , N2 , N3
REAL NOR1, NOR2
REAL IR ( 1 )
DO
CALL RNNOR( IR )
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NOR1=IR ( 1 )
CALL RNNOR( IR )
NOR2=IR ( 1 )
IF (NOR1 < 3 .AND. NOR1 > −3) EXIT
IF (NOR2 < 3 .AND. NOR2 > −3) EXIT
END DO
N1=NOR1 ∗ s q r t (N∗p2∗(1−p2 ) ) + N∗p2
N2=NOR2 ∗ s q r t ( ( N−N1 ) ∗p1∗(1−P1−P2 ) /(1−P2 ) /(1−P2 ) ) + (N−N1 ) ∗

p1 /(1− p2 )
N3=N−N1−N2
IF ( N1 < 0) THEN

N1 = 1e−7
END IF
RETURN

END SUBROUTINE NGENERNOR 01

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

! S u b r o u t i n e : NGENERNOR 01
! D e s c r i p t i o n : G e n e r a t e ( n31 , n32 ) from b i n o m i a l
! d i s t r i b u t i o n . S i n c e n i s ve ry l a r g e and p i s
! ve ry smal l , t h e normal a p p r o x i m a t i o n i s

a p p l i e d
! I n p u t : N = t h e number o f p e o p l e i n p o p u l a t i o n who a r e

normal
! a t t h e embryo s t a g e a t each age p e r i o d
! P1 = t h e p r o p o r t i o n f o r normal p e o p l e i n p o p u l a t i o n
! who d e v e l o p tumor by 2− s t a g e pathway
! ISEED = seed f o r g e n e r a t i n g random number
! Outpu t : N3 = t h e number o f normal p e o p l e a t r i s k o f

d e v e l o p i n g
! tumor by 3− s t a g e pathway
! N2 = t h e number o f normal p e o p l e a t r i s k o f

d e v e l o p i n g
! tumor by 2− s t a g e pathway
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

SUBROUTINE NGENERNOR(N, P , ISEED , N2 , N3 )
IMPLICIT NONE
DOUBLE PRECISION , INTENT ( IN ) : : P
INTEGER , INTENT ( IN ) : : ISEED ,N
INTEGER , INTENT (OUT) : : N2 , N3
REAL NOR2, NOR3
REAL IR ( 1 )
DO

85



CALL RNNOR( IR )
NOR2=IR ( 1 )
IF (NOR2 < 3 .AND. NOR2 > −3) EXIT
END DO
N2=NOR2∗ s q r t (N∗ (2∗ p ) ∗(1−p ) / ( 1 + p ) / ( 1 + p ) ) +N∗2∗p / ( 1 + p )
N3= N−N2
RETURN

END SUBROUTINE NGENERNOR

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
! S u b r o u t i n e : YGENER
! D e s c r i p t i o n : G e n e r a t e ( y1 , y2 , y3 ) from m u l t i n o m i a l
! d i s t r i b u t i o n wi th p a r a m e t e r s {Y; Q1n / Qn , Q2n / Qn}
! I n p u t : Y = t h e o b s e r v e d c a n c e r c a s e s a t each age p e r i o d
! Q1n = t h e p r o d u c t o f N1 and t h e p r o b a b i l i t y o f
! d e v e l o p i n g tumor d u r i n g each age p e r i o d i n
! p e o p l e who have g e n o t y p e I1 a t embryo s t a g e
! Q2n = t h e p r o d u c t o f N2 and t h e p r o b a b i l i t y o f
! d e v e l o p i n g tumor d u r i n g each age p e r i o d i n
! p e o p l e who have g e n o t y p e I2 a t embryo s t a g e
! Q3n = t h e p r o d u c t o f N3 and t h e p r o b a b i l i t y o f
! d e v e l o p i n g tumor d u r i n g each age p e r i o d i n
! p e o p l e who normal p e o p l e a t embryo s t a g e
! ISEED = seed f o r g e n e r a t i n g random number
! Outpu t : Y1 = number o f c a n c e r c a s e s g e n e r a t e d by p e o p l e
! who have g e n o t y p e I1 a t embryo s t a g e
! Y2 = number o f c a n c e r c a s e s g e n e r a t e d by p e o p l e
! who have g e n o t y p e I2 a t embryo s t a g e .
! Y3 = number o f c a n c e r c a s e s g e n e r a t e d by p e o p l e
! who a r e normal p e o p l e a t embryo s t a g e
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

SUBROUTINE YGENER(Y, Q1n , Q2n , Q3n , ISEED , Y1 , Y2 , Y3 )
IMPLICIT NONE
DOUBLE PRECISION , INTENT ( IN ) : : Q1n , Q2n , Q3n
INTEGER , INTENT ( IN ) : : ISEED , Y
INTEGER , INTENT (OUT) : : Y1 , Y2 , Y3
REAL P1 , P2 , P3 , Qn
INTEGER IR ( 1 )
Qn = Q1n +Q2n + Q3n
P1=Q1n / Qn
P2=Q2n / Qn
! CALL RNSET( ISEED )
i f ( P1 ==0) t h e n
Y1=0
e l s e i f ( P1 ==1) t h e n
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Y1=Y
e l s e
CALL RNBIN(Y, P1 , IR )
Y1=IR ( 1 )
end i f
P3=P2 /(1−P1 )
i f ( P3 ==0) t h e n
Y2=0
e l s e i f ( P3 ==1) t h e n
Y2=Y−Y1
e l s e i f (Y−Y1 == 0) t h e n
Y2 = 0
Y3 = 0
e l s e
CALL RNBIN(Y−Y1 , P3 , IR )
Y2=IR ( 1 )
end i f
Y3=Y−Y2−Y1
RETURN

END SUBROUTINE YGENER

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
! S u b r o u t i n e : Y3GENER
! D e s c r i p t i o n : G e n e r a t e ( y31 , y32 ) from b i n o m i a l
! d i s t r i b u t i o n wi th p a r a m e t e r s {Y3 ; Q31n / Q3n}
! I n p u t : Y = t h e o b s e r v e d c a n c e r c a s e s a t each age p e r i o d
! Q31n = t h e p r o d u c t o f N31 and t h e p r o b a b i l i t y o f
! d e v e l o p i n g tumor d u r i n g each age p e r i o d i n
! p e o p l e who a r e normal p e o p l e a t embryo s t a g e
! and d e v e l o p tumor t h r o u g h 3− s t a g e pathway
! Q32n = t h e p r o d u c t o f N32 and t h e p r o b a b i l i t y o f
! d e v e l o p i n g tumor d u r i n g each age p e r i o d i n
! p e o p l e who a r e normal p e o p l e a t embryo s t a g e
! and d e v e l o p tumor t h r o u g h 2− s t a g e pathway
! ISEED = seed f o r g e n e r a t i n g random number
! Outpu t : Y31 = t h e number o f c a n c e r c a s e s g e n e r a t e d by

p e o p l e
! who a r e normal p e o p l e a t embryo s t a g e and
! d e v e l o p tumor t h r o u g h 3− s t a g e pathway
! Y32 = t h e number o f c a n c e r c a s e s g e n e r a t e d by

p e o p l e
! who a r e normal p e o p l e a t embryo s t a g e and
! d e v e l o p tumor t h r o u g h 2− s t a g e pathway
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

SUBROUTINE Y3GENER( Y3 , Q31n , Q32n , ISEED , Y31 , Y32 )

87



IMPLICIT NONE
DOUBLE PRECISION , INTENT ( IN ) : : Q31n , Q32n
INTEGER , INTENT ( IN ) : : ISEED , Y3
INTEGER , INTENT (OUT) : : Y31 , Y32
REAL P31 , Q3n
INTEGER IR ( 1 )
Q3n = Q31n +Q32n
P31=Q31n / Q3n
!CALL RNSET( ISEED )
i f ( P31 ==0) t h e n
Y31=0
e l s e i f ( P31 ==1) t h e n
Y31=Y3
e l s e i f ( Y3 == 0) t h e n
Y31 = 0
e l s e
CALL RNBIN( Y3 , P31 , IR )
Y31=IR ( 1 )
end i f
Y32=Y3−Y31
RETURN

END SUBROUTINE Y3GENER

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

! S u b r o u t i n e : PICK
! D e s c r i p t i o n : S e l e c t t h e k−t h ( n1 , n2 , n3 ) from 500 samples
! t h r o u g h t h e Weighted B o o t s t r a p Method
! I n p u t : Y = t h e number o f c a n c e r c a s e s a t each age p e r i o d
! Y1 = t h e number o f c a n c e r c a s e s g e n e r a t e d by p e o p l e
! who have g e n o t y p e I1 a t embryo s t a g e
! Y2 = t h e number o f c a n c e r c a s e s g e n e r a t e d by p e o p l e
! who have g e n o t y p e I2 a t embryo s t a g e
! Y31 = t h e number o f c a n c e r c a s e s g e n e r a t e d by p e o p l e
! who a r e normal p e o p l e a t embryo s t a g e and
! d e v e l o p tumor t h r o u g h 3− s t a g e pathway
! Q1 = t h e p r o d u c t o f N1 and t h e p r o b a b i l i t y o f
! d e v e l o p i n g tumor d u r i n g each age p e r i o d i n
! p e o p l e who have g e n o t y p e I1 a t embryo s t a g e
! Q2 = t h e p r o d u c t o f N2 and t h e p r o b a b i l i t y o f
! d e v e l o p i n g tumor d u r i n g each age p e r i o d i n
! p e o p l e who have g e n o t y p e I2 a t embryo s t a g e
! Q31 = t h e p r o d u c t o f N31 and t h e p r o b a b i l i t y o f
! d e v e l o p i n g tumor d u r i n g each age p e r i o d i n
! p e o p l e who a r e normal p e o p l e a t embryo s t a g e
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! and d e v e l o p tumor t h r o u g h 3− s t a g e pathway
! Outpu t : K = t h e s e l e c t e d number from 1 t o 500 t h r o u g h
! w e i g h t e d b o o t s t r a p method
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

SUBROUTINE PICK (Y, Y1 , Y2 , Y31 , Q1 , Q2 , Q31 , Q32 ,K)
IMPLICIT NONE
DOUBLE PRECISION , INTENT ( IN ) : : Q1 ( 1 :NB) ,Q2 ( 1 :NB) , Q31 ( 1 :NB)

, Q32 ( 1 :NB)
INTEGER , INTENT ( IN ) : : Y, Y1 ( 1 :NB) ,Y2 ( 1 :NB) , Y31 ( 1 :NB)
INTEGER , INTENT (OUT) : : K
DOUBLE PRECISION W(NB) ,G(NB)
DOUBLE PRECISION SW, U, SG , L o g F a c t o r i a l Y 1 ( 1 :NB) ,

L o g F a c t o r i a l Y 2 ( 1 :NB) , L o g F a c t o r i a l Y 3 1 ( 1 :NB) ,
L o g F a c t o r i a l Y 3 2 ( 1 :NB) ,w1 ( 1 :NB) , w2 ( 1 :NB) , w31 ( 1 :NB) ,
w32 ( 1 :NB) , wt ( 1 :NB) , wtmean

REAL R( 1 )
INTEGER T , j , Y32 ( 1 :NB) , l
Y32=Y−Y1−Y2−Y31
L o g F a c t o r i a l Y 1 = 0 . 0
L o g F a c t o r i a l Y 2 = 0 . 0
L o g F a c t o r i a l Y 3 2 = 0 . 0
SW = 0 . 0
DO j =1 ,NB

W( j ) =0 .0
END DO
DO j =1 ,NB
DO l = 1 , Y1 ( j )

L o g F a c t o r i a l Y 1 ( j ) = L o g F a c t o r i a l Y 1 ( j ) + l o g (REAL( l ) )
END DO
DO l = 1 , Y2 ( j )

L o g F a c t o r i a l Y 2 ( j ) = L o g F a c t o r i a l Y 2 ( j ) + l o g (REAL( l ) )
END DO
DO l = 1 , Y31 ( j )

L o g F a c t o r i a l Y 3 1 ( j ) = L o g F a c t o r i a l Y 3 1 ( j ) + l o g (REAL( l ) )
END DO
DO l = 1 , Y32 ( j )

L o g F a c t o r i a l Y 3 2 ( j ) = L o g F a c t o r i a l Y 3 2 ( j ) + l o g (REAL( l ) )
END DO
w1 ( j ) = (−Q1 ( j ) +Y1 ( j ) ∗ l o g ( Q1 ( j ) )−L o g F a c t o r i a l Y 1 ( j ) )
w2 ( j ) = (−Q2 ( j ) +Y2 ( j ) ∗ l o g ( Q2 ( j ) )−L o g F a c t o r i a l Y 2 ( j ) )
w31 ( j ) = (−Q31 ( j ) +Y31 ( j ) ∗ l o g ( Q31 ( j ) )−L o g F a c t o r i a l Y 3 1 ( j ) )
w32 ( j ) = (−Q32 ( j ) +Y32 ( j ) ∗ l o g ( Q32 ( j ) )−L o g F a c t o r i a l Y 3 2 ( j ) )
wt ( j ) = w1 ( j ) +w2 ( j ) + w31 ( j ) + w32 ( j )
END DO
wtmean = sum ( wt ) /NB
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DO j = 1 ,NB
W( j ) = exp ( wt ( j ) − wtmean )
SW=SW+W( j )
END DO
DO j =1 ,NB
IF (SW. NE . 0 ) G( j ) =W( j ) /SW
END DO
CALL RNUN( 1 ,R)
U=R( 1 )
SG=0.0
j =0
5 j = j +1
SG=SG+G( j )
IF (SG . LT .U) THEN
GOTO 5
END IF
K= j
RETURN

END SUBROUTINE PICK

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

! F u n c t i o n : F i t 2
! D e s c r i p t i o n : t h e f u n c t i o n i s c a l l e d i n p i k a i a a s a f i t n e s s
! f u n c t i o n
! I n p u t : m, X
! P a r a m e t e r : m = t h e number o f p a r a m e t e r s
! X = an a r r a y o f p a r a m e t e r s w i th m e l e m e n t s
! Re tu rn : F i t 2 = t h e f i t n e s s f u n c t i o n which i s t h e n e g a t i v e

o f
! t h e d e v i a n c e f o r t h e c o n d i t i o n a l p o s t e r i o r
! d i s t r i b u t i o n
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

REAL FUNCTION F i t 2 (m, X)
IMPLICIT NONE
INTEGER , INTENT ( IN ) : : m
REAL, INTENT ( IN ) : : X(m)
INTEGER j , s t a t u s
DOUBLE PRECISION : : gamma1 , lambda ( 4 ) , a lpha2 , p1 , p2 , a lpha1

, a lpha3 , gamma2 , gamma3 , a lpha0 , t h e t a 1 , t h e t a 2
DOUBLE PRECISION P030 ( 1 : MaxAge ) , P130 ( 1 : MaxAge ) , P131 ( 1 :

MaxAge ) , P231 ( 1 : MaxAge ) , P232 ( 1 : MaxAge ) , P020 ( 1 : MaxAge ) ,
p h i 2 s ( 1 : MaxAge ) , ph i2b ( 1 : MaxAge ) , p h i 2 2 s ( 1 : MaxAge ) ,
ph i22b ( 1 : MaxAge ) , p h i 3 s ( 1 : MaxAge ) , ph i3b ( 1 : MaxAge ) ,
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p h i 1 s ( 1 : MaxAge ) , ph i1b ( 1 : MaxAge ) ,Q1 ( 1 : MaxAge ) ,Q2 ( 1 :
MaxAge ) ,Q3 ( 1 : MaxAge ) , Q31 ( 1 : MaxAge ) , Q32 ( 1 : MaxAge ) ,Q( 1 :
MaxAge )

DOUBLE PRECISION D0 , Dev1 , Dev2 , Dev3
Dev1 = 0
Dev2 = 0
IF ( m /= n f i t 2 ) THEN
F i t 2 = 0
RETURN
END IF
gamma1 = DenormalizeX (DBLE(X( 1 ) ) , gamma1Range )
lambda ( 1 ) = DenormalizeX (DBLE(X( 2 ) ) , lambda1Range )
lambda ( 2 ) = DenormalizeX (DBLE(X( 3 ) ) , lambda2Range )
lambda ( 3 ) = DenormalizeX (DBLE(X( 4 ) ) , lambda3Range )
a l p h a 2 = DenormalizeX (DBLE(X( 5 ) ) , a lpha2Range )
p1 = DenormalizeX (DBLE(X( 6 ) ) , p1Range )
lambda ( 4 ) = DenormalizeX (DBLE(X( 7 ) ) , lambda4Range )
a l p h a 3 = DenormalizeX (DBLE(X( 8 ) ) , a lpha3Range )
gamma2 = DenormalizeX (DBLE(X( 9 ) ) , gamma2Range )
gamma3 = DenormalizeX (DBLE(X( 1 0 ) ) , gamma3Range )
t h e t a 2 = DenormalizeX (DBLE(X( 1 1 ) ) , t h e t a 2 R a n g e )
p2 = DenormalizeX (DBLE(X( 1 2 ) ) , p2Range )

DO j = 1 , MaxAge
CALL C a l c u l a t e Q ( a lpha2 , gamma1 , lambda , a lpha3 , gamma2 ,

gamma3 , t h e t a 2 , N1 PICKED ( j ) , N2 PICKED ( j ) , N3 PICKED ( j ) ,
N31 PICKED ( j ) , N32 PICKED ( j ) , j , Q( j ) ,Q1 ( j ) ,Q2 ( j ) ,Q3 ( j )

, Q31 ( j ) , Q32 ( j ) , q s t a t u s )
END DO

D0 = ( n0∗p2∗ a lpha2− y0 ) − y0∗ l o g ( ( n0∗p2∗ a l p h a 2 ) / y0 )
DO j = 1 , MaxAge
IF ( ( N1 PICKED ( j ) > 1e−20) ) THEN

Dev1 = Dev1 + N1 PICKED ( j ) ∗ l o g ( N1 PICKED ( j ) /N( j ) )
Dev1 = Dev1 − N1 PICKED ( j ) ∗ l o g ( p2 )

END IF
IF ( ( N2 PICKED ( j ) > 1e−20) ) THEN

Dev1 = Dev1 + N2 PICKED ( j ) ∗ l o g ( N2 PICKED ( j ) /N( j ) )
Dev1 = Dev1 − N2 PICKED ( j ) ∗ l o g ( p1 )

END IF
IF ( ( N3 PICKED ( j ) > 1e−20) ) THEN

Dev1 = Dev1 + N3 PICKED ( j ) ∗ l o g ( N3 PICKED ( j ) /N( j ) )
Dev1 = Dev1 − N3 PICKED ( j ) ∗ l o g (1−p1−p2 )

END IF
IF ( ( N31 PICKED ( j ) > 1e−20) ) THEN
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Dev3 = Dev3 + N31 PICKED ( j ) ∗ l o g ( N31 PICKED ( j ) / N3 PICKED (
j ) )

Dev3 = Dev3 − N31 PICKED ( j ) ∗ l o g (1− a l p h a 3 )
END IF
IF ( ( N32 PICKED ( j ) > 1e−20) ) THEN

Dev3 = Dev3 + N32 PICKED ( j ) ∗ l o g ( N32 PICKED ( j ) / N3 PICKED (
j ) )

Dev3 = Dev3 − N32 PICKED ( j ) ∗ l o g ( a l p h a 3 )
END IF
Dev2 = Dev2 + Q1 ( j ) − Y1 PICKED ( j )
IF ( ( Q1 ( j ) > 1e−20) .AND. ( Y1 PICKED ( j ) > 1e−20) ) THEN

Dev2 = Dev2 − Y1 PICKED ( j ) ∗ l o g ( Q1 ( j ) / Y1 PICKED ( j ) )
END IF
Dev2 = Dev2 + Q2 ( j ) − Y2 PICKED ( j )
IF ( ( Q2 ( j ) > 1e−20) .AND. ( Y2 PICKED ( j ) > 1e−20) ) THEN

Dev2 = Dev2 − Y2 PICKED ( j ) ∗ l o g ( Q2 ( j ) / Y2 PICKED ( j ) )
END IF
Dev2 = Dev2 + Q31 ( j ) − Y31 PICKED ( j )
IF ( ( Q31 ( j ) > 1e−20) .AND. ( Y31 PICKED ( j ) > 1e−20) ) THEN

Dev2 = Dev2 − Y31 PICKED ( j ) ∗ l o g ( Q31 ( j ) / Y31 PICKED ( j ) )
END IF
Dev2 = Dev2 + Q32 ( j ) − Y32 PICKED ( j )
IF ( ( Q32 ( j ) > 1e−20) .AND. ( Y32 PICKED ( j ) > 1e−20) ) THEN

Dev2 = Dev2 − Y32 PICKED ( j ) ∗ l o g ( Q32 ( j ) / Y32 PICKED ( j ) )
END IF
END DO
F i t 2 = −1.0 ∗ ( D0+Dev1+Dev2+Dev3 )

END FUNCTION F i t 2

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
! S u b r o u t i n e : C a l c u l a t e Q
! D e s c r i p t i o n : t h e f u n c t i o n i s used t o c a l c u l a t e t h e
! p r o b a b i l i t y o f d e v e l o p i n g tumor d u r i n g each
! age p e r i o d i n p e o p l e who have d i f f e r e n t
! g e n o t y p e and d e v e l o p tumor t h r o u g h d i f f e r e n t
! pa thways
! I n p u t : a lpha2 , gamma1 , lambda , a lpha3 , gamma2 , gamma3 , t h e t a 2
! a r e p a r a m e t e r s i n t h e model
! N1 = t h e number o f I1 p e o p l e a t embryo s t a g e
! N2 = t h e number o f I2 p e o p l e a t embryo s t a g e
! N3 = t h e number o f normal p e o p l e a t embryo s t a g e
! N31 = t h e number o f normal p e o p l e a t r i s k who

d e v e l o p
! tumor t h r o u g h 3− s t a g e pathway
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! N32 = t h e number o f normal p e o p l e a t r i s k who
d e v e l o p

! tumor t h r o u g h 2− s t a g e pathway
! i = t h e age p e r i o d
! Outpu t : Q = Q1+Q2+Q3
! Q1 = t h e p r o d u c t o f N1 and t h e p r o b a b i l i t y o f
! d e v e l o p i n g tumor d u r i n g each age p e r i o d i n
! p e o p l e who have g e n o t y p e I1 a t embryo s t a g e
! Q2 = t h e p r o d u c t o f N2 and t h e p r o b a b i l i t y o f
! d e v e l o p i n g tumor d u r i n g each age p e r i o d i n
! p e o p l e who have g e n o t y p e I2 a t embryo s t a g e
! Q3 = t h e p r o d u c t o f N3 and t h e p r o b a b i l i t y o f
! d e v e l o p i n g tumor d u r i n g each age p e r i o d i n
! p e o p l e who a r e normal p e o p l e a t embryo s t a g e
! Q31 = t h e p r o d u c t o f N31 and t h e p r o b a b i l i t y o f
! d e v e l o p i n g tumor d u r i n g each age p e r i o d i n
! p e o p l e who a r e normal p e o p l e a t embryo s t a g e
! and d e v e l o p tumor t h r o u g h 3− s t a g e pathway
! Q32 = t h e p r o d u c t o f N32 and t h e p r o b a b i l i t y o f
! d e v e l o p i n g tumor d u r i n g each age p e r i o d i n
! p e o p l e who a r e normal p e o p l e a t embryo s t a g e
! and d e v e l o p tumor t h r o u g h 2− s t a g e pathway
! s t a t u s r e t u r n 0 i f c o r r e c t ,
! r e t u r n 1 i f Q1<0 or Q2<0 or Q31 < 0
! o r Q32 < 0
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

SUBROUTINE C a l c u l a t e Q ( a lpha2 , gamma1 , lambda , a lpha3 , gamma2 ,
gamma3 , t h e t a 2 , N1 , N2 , N3 , N31 , N32 , i , Q, Q1 , Q2 , Q3 , Q31 , Q32 ,
s t a t u s )

IMPLICIT NONE
DOUBLE PRECISION , INTENT ( IN ) : : a lpha2 , a lpha3 , gamma1 , gamma2

, gamma3 , t h e t a 2 , lambda ( 4 ) , N1B , N2B , N3B , N31B , N32B
INTEGER , INTENT ( IN ) : : i
DOUBLE PRECISION , INTENT (OUT) : : Q, Q1 , Q2 , Q3 , Q31 , Q32
INTEGER , INTENT (OUT) : : s t a t u s
DOUBLE PRECISION P030 , P130 , P31 , P131 , P231 , P232 , P020 , ph i2s

, phi2b , ph i22s , phi22b , phi3b , ph i3s , ph i1s , ph i1b
INTEGER j , temp
s t a t u s = 0
p h i 1 s = ( ( 1 + gamma2 ) ∗∗ ( d t ∗ ( i −1) )−1)
ph i1b = ( ( 1 + gamma2 ) ∗∗ ( d t ∗ i −1)−1)
p h i 2 s = gamma1∗gamma2 ∗ ( ( ( 1 + gamma1 ) ∗∗ ( d t ∗ ( i −1) )−1) / ( gamma1−

gamma2 ) / gamma1 +( (1+ gamma2 ) ∗∗ ( d t ∗ ( i −1) )−1) / ( gamma2−gamma1
) / gamma2 )

ph i2b = gamma1∗gamma2 ∗ ( ( ( 1 + gamma1 ) ∗∗ ( d t ∗ i −1)−1) / ( gamma1−
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gamma2 ) / gamma1 +( (1+ gamma2 ) ∗∗ ( d t ∗ i −1)−1) / ( gamma2−gamma1 ) /
gamma2 )

p h i 3 s = gamma1∗gamma2 ∗ ( ( ( 1 + gamma1 ) ∗∗ ( d t ∗ ( i −1) )−1−gamma1∗ d t ∗ (
i −1) ) / ( gamma1−gamma2 ) / gamma1 / gamma1 +( (1+ gamma2 ) ∗∗ ( d t ∗ ( i
−1) )−1−gamma2∗ d t ∗ ( i −1) ) / ( gamma2−gamma1 ) / gamma2 / gamma2 )

ph i3b = gamma1∗gamma2 ∗ ( ( ( 1 + gamma1 ) ∗∗ ( d t ∗ i −1)−1−gamma1∗ ( d t ∗ i
−1) ) / ( gamma1−gamma2 ) / gamma1 / gamma1 +( (1+ gamma2 ) ∗∗ ( d t ∗ i −1)
−1−gamma2∗ ( d t ∗ i −1) ) / ( gamma2−gamma1 ) / gamma2 / gamma2 )

p h i 2 2 s = ( ( 1 + gamma3 ) ∗∗ ( d t ∗ ( i −1) )−1−gamma3∗ ( d t ∗ ( i −1) ) )
ph i22b = ( ( 1 + gamma3 ) ∗∗ ( d t ∗ i −1)−1−gamma3∗ ( d t ∗ i −1) )

P030 = exp(− lambda ( 3 ) ∗ p h i 3 s ) − exp(− lambda ( 3 ) ∗ ph i3b )
P232 = exp(− lambda ( 1 ) ∗ p h i 1 s ) − exp(− lambda ( 1 ) ∗ ph i1b )
P020 = exp(− lambda ( 4 ) ∗ p h i 2 2 s ) − exp(− lambda ( 4 ) ∗ ph i22b )

Q1 = N1B∗P232∗(1− a l p h a 2 )
Q2 = N2B∗ ( exp(− t h e t a 2 ∗ ph i1s−lambda ( 2 ) ∗ p h i 2 s )−exp(− t h e t a 2 ∗

phi1b−lambda ( 2 ) ∗ ph i2b ) )
Q31=N31B∗P030
Q32=N32B∗P020
Q3=Q31+Q32
IF ( Q1 < 0 .OR. Q2 < 0 .OR. Q31 < 0 .OR. Q32 < 0) THEN
s t a t u s = 1

END IF
Q = Q1+ Q2 + Q3
END SUBROUTINE C a l c u l a t e Q

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
! F u n c t i o n : DenormalizeX
! D e s c r i p t i o n : S c a l e p a r a m e t e r v a l u e from ( 0 , 1 ) r a n g e t o
! a c t u a l r a n g e
! P a r a m e t e r : x = t h e p a r a m e t e r i n t h e model
! x r a ng e = t h e r a n g e of p a r a m e t e r i n t h e model
! Re tu rn : DenormalizeX
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

DOUBLE PRECISION FUNCTION DenormalizeX ( x , x r a ng e )
IMPLICIT NONE
DOUBLE PRECISION , INTENT ( IN ) : : x , x r an g e ( 1 : 3 )
DenormalizeX = x ∗ ( x r a ng e ( 2 )−x ra ng e ( 1 ) ) + x ra ng e ( 1 )
END FUNCTION DenormalizeX

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
! S u b r o u t i n e : Q f r o m p i k a i a
! D e s c r i p t i o n : t o o b t a i n t h e p r e d i c t e d c a n c e r c a s e s
! I n p u t : m = t h e number o f p a r a m e t e r s
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! X = an a r r a y o f p a r a m e t e r s wi th m e l e m e n t s
! Outpu t : Q = t h e p r e d i c t e d c a n c e r c a s e s a t each age p e r i o d
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

SUBROUTINE Q f r o m p i k a i a (X, m, N, Q)
IMPLICIT NONE
INTEGER , INTENT ( IN ) : : m,N( 1 : MaxAge )
DOUBLE PRECISION , INTENT ( IN ) : : X(m)
DOUBLE PRECISION , INTENT (OUT) : : Q( 1 : MaxAge )
DOUBLE PRECISION p , p1 , p2 , gamma1 , lambda ( 4 ) , a lpha2 , gamma2 ,

a lpha1 , a lpha3 , a lpha0 , gamma3 , t h e t a 1 , t h e t a 2
DOUBLE PRECISION Q1 ( 1 : MaxAge ) , Q2 ( 1 : MaxAge ) ,Q3 ( 1 : MaxAge ) ,

Q31 ( 1 : MaxAge ) , Q32 ( 1 : MaxAge ) , N1 pred ( 1 : MaxAge ) , N2 pred
( 1 : MaxAge ) , N3 pred ( 1 : MaxAge ) , N31 pred ( 1 : MaxAge ) , N32 pred
( 1 : MaxAge )

INTEGER s t a t u s
gamma1 = DenormalizeX (DBLE(X( 1 ) ) , gamma1Range )
lambda ( 1 ) = DenormalizeX (DBLE(X( 2 ) ) , lambda1Range )
lambda ( 2 ) = DenormalizeX (DBLE(X( 3 ) ) , lambda2Range )
lambda ( 3 ) = DenormalizeX (DBLE(X( 4 ) ) , lambda3Range )
a l p h a 2 = DenormalizeX (DBLE(X( 5 ) ) , a lpha2Range )
p1 = DenormalizeX (DBLE(X( 6 ) ) , p1Range )
lambda ( 4 ) = DenormalizeX (DBLE(X( 7 ) ) , lambda4Range )
a l p h a 3 = DenormalizeX (DBLE(X( 8 ) ) , a lpha3Range )
gamma2 = DenormalizeX (DBLE(X( 9 ) ) , gamma2Range )
gamma3 = DenormalizeX (DBLE(X( 1 0 ) ) , gamma3Range )
t h e t a 2 = DenormalizeX (DBLE(X( 1 1 ) ) , t h e t a 2 R a n g e )
p2 = DenormalizeX (DBLE(X( 1 2 ) ) , p2Range )
DO j = 1 , MaxAge
N1 pred ( j ) =N( j ) ∗p2
N2 pred ( j ) =N( j ) ∗p1
N3 pred ( j ) =N( j )−N1 pred ( j )−N2 pred ( j )
N31 pred ( j ) =N3 pred ( j ) ∗(1− a l p h a 3 )
N32 pred ( j ) =N3 pred ( j )− N31 pred ( j )
CALL C a l c u l a t e Q ( a lpha2 , gamma1 , lambda , a lpha3 , gamma2 ,

gamma3 , t h e t a 2 , N1 pred ( j ) , N2 pred ( j ) , N3 pred ( j ) ,
N31 pred ( j ) , N32 pred ( j ) , j , Q( j ) ,Q1 ( j ) ,Q2 ( j ) ,Q3 ( j ) , Q31 ( j
) , Q32 ( j ) , q s t a t u s )

END DO
END SUBROUTINE Q f r o m p i k a i a
END PROGRAM WimlsTumor
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APPENDIX C

PROGRAM CODE TO FIT A MODEL OF RENAL CELL CARCINOMA

PROGRAM Rena lCarc inomas
USE RNNOR INT
USE RNBIN INT
USE UMACH INT
USE RNSET INT
USE FAC INT
IMPLICIT NONE
INTEGER , PARAMETER : : NB=500 , n f i t 2 = 15 , MaxAge = 84 , d t =4
INTEGER SEED(NB) , ISEED , K, c o n t r o l ,Y( MaxAge ) ,Y1 ( 1 :NB) ,Y2 ( 1 :NB)

,Y3 ( 1 :NB) ,N( MaxAge ) ,N1 ( MaxAge ) ,N2 ( MaxAge ) ,N3 ( MaxAge ) , i , j ,
p i k a i a s t a t u s , n loop , N1Temp , N2Temp , N3Temp , kk , Y Orig (
MaxAge ) , N Orig ( MaxAge ) , q s t a t u s , T

DOUBLE PRECISION Q1 ( 1 :NB) ,Q2 ( 1 :NB) , Q3 ( 1 :NB) , P22 ( MaxAge ) ,
P33 ( MaxAge ) , Q( 1 :NB) , Q f r o m p i k a i a o u t p u t ( 1 : MaxAge ) ,
N1 pred ( MaxAge ) , N2 pred ( MaxAge ) , N3 pred ( MaxAge ) ,
myalpha1 , myalpha2 , k idney 03 mylambda , kidney 03 mygamma
( 1 : 2 ) , kidney mygamma ( 1 : 3 ) , k i d n e y g a m m a 3 d e l t a s ,
k i d n e y g a m m a 3 d e l t a b , kidney mylambda , k i d n e y m y d e l t a ,
kidney 05 mygamma ( 1 : 4 ) , k idney 05 mylambda , f i t 2 r e s u l t ,
sum of H , c h i s q

DOUBLE PRECISION , DIMENSION ( 1 :NB, 1 : MaxAge ) : : H, N1B , N2B , N3B
DOUBLE PRECISION , DIMENSION ( 1 : MaxAge ) : : N1 PICKED , N2 PICKED ,

N3 PICKED , K PICKED , Y1 PICKED , Y2 PICKED , Y3 PICKED
DOUBLE PRECISION , DIMENSION ( 1 : 3 ) : : a lpha1Range , a lpha2Range ,

kidney 03 gamma1Range , kidney 03 gamma2Range ,
k idney 03 lambdaRange , kidney gamma1Range ,
kidney gamma2Range , kidney gamma3Range , k idney lambdaRange
, k i d n e y d e l t a R a n g e , kidney 05 gamma1Range ,
kidney 05 gamma2Range , kidney 05 gamma3Range ,
kidney 05 gamma4Range , k idney 05 lambdaRange ,
k i d n e y 0 5 d e l t a R a n g e

DOUBLE PRECISION , PARAMETER : : m i n r e a l = 1e−37
DOUBLE PRECISION , DIMENSION ( 1 : 1 5 ) : : o l d p a r a
REAL c t r l ( 1 2 ) , p i k a i a f i t 2 f , p i k a i a f i t 2 x ( n f i t 2 ) , f i t 2 o u t
REAL n o r m a l i z e d p a r a ( 1 : 1 5 )
! ! ! Read d a t a
INCLUDE ’ R e n a l C a r c i n o m a s 3 4 5 s t a g e I C C C . FI ’
DO i = 1 , MaxAge
Y( i ) = Y Orig ( i )
N( i ) = N Orig ( i )
END DO
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open ( u n i t =5 , f i l e = ’ o u t p u t . da t ’ , s t a t u s = ’ unknown ’ )
i s e e d =12345
CALL RNSET( i s e e d )
CALL r n i n i t ( i s e e d )

! ! ! Main loop
DO n l o o p = 1 , 50
DO i = 1 , MaxAge
Do kk =1 , NB
i s e e d = i s e e d +1
CALL NGENERNOR 0(N( i ) , myalpha1 , myalpha2 , ISEED , N1Temp , N2Temp ,

N3Temp )
N1 ( i ) = N1Temp
N2 ( i ) = N2Temp
N3 ( i ) = N3Temp
N1B( kk , i ) =N1Temp
N2B( kk , i ) =N2Temp
N3B( kk , i ) =N3Temp
END DO
END DO

DO i = 1 , MaxAge
IF (Y( i ) ==0) THEN
K PICKED ( i ) = 1
Y1 PICKED ( i ) = 0
Y2 PICKED ( i ) = 0
Y3 PICKED ( i ) = 0
N1 PICKED ( i ) = N1B( K PICKED ( i ) , i )
N2 PICKED ( i ) = N2B( K PICKED ( i ) , i )
N3 PICKED ( i ) = N3B( K PICKED ( i ) , i )
CYCLE
END IF

DO j = 1 , NB
CALL C a l c u l a t e Q ( myalpha1 , myalpha2 , kidney 03 mygamma ,

kidney 03 mylambda , kidney mygamma , kidney mylambda ,
k i d n e y m y d e l t a , kidney 05 mygamma , kidney 05 mylambda , N1B( j
, i ) ,N2B( j , i ) ,N3B( j , i ) , i ,Q( j ) ,Q1 ( j ) ,Q2 ( j ) ,Q3 ( j ) , q s t a t u s )

END DO

IF ( q s t a t u s . EQ . 1 ) THEN
myalpha1 = o l d p a r a ( 1 )
myalpha2= o l d p a r a ( 2 )
kidney 03 mygamma ( 1 ) = o l d p a r a ( 3 )
kidney 03 mygamma ( 2 ) = o l d p a r a ( 4 )
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kidney 03 mylambda = o l d p a r a ( 5 )
kidney mygamma ( 1 ) = o l d p a r a ( 6 )
kidney mygamma ( 2 ) = o l d p a r a ( 7 )
kidney mygamma ( 3 ) = o l d p a r a ( 8 )
kidney mylambda = o l d p a r a ( 9 )
k i d n e y m y d e l t a = o l d p a r a ( 1 0 )
kidney 05 mygamma ( 1 ) = o l d p a r a ( 1 1 )
kidney 05 mygamma ( 2 ) = o l d p a r a ( 1 2 )
kidney 05 mygamma ( 3 ) = o l d p a r a ( 1 3 )
kidney 05 mygamma ( 4 ) = o l d p a r a ( 1 4 )
k idney 05 mylambda = o l d p a r a ( 1 5 )

END IF

DO j = 1 , NB
CALL YGENER(Y( i ) ,Q1 ( j ) ,Q2 ( j ) ,Q3 ( j ) , ISEED , Y1 ( j ) ,Y2 ( j ) ,Y3 ( j ) )
END DO

CALL PICK (Y( i ) ,Y1 , Y2 , Q1 , Q2 , Q3 ,K)
K PICKED ( i ) = K

IF ( K PICKED ( i ) == 0)
K PICKED ( i ) = 1

Y1 PICKED ( i ) = Y1 (K)
Y2 PICKED ( i ) = Y2 (K)
Y3 PICKED ( i ) = Y3 (K)
N1 PICKED ( i ) = N1B( K PICKED ( i ) , i )
N2 PICKED ( i ) = N2B( K PICKED ( i ) , i )
N3 PICKED ( i ) = N3B( K PICKED ( i ) , i )
END DO

do 10 i =1 ,12
c t r l ( i ) = −1
10 c o n t i n u e
c t r l ( 1 ) =100
c t r l ( 2 ) =10000
c t r l ( 6 ) =0 .005
c t r l ( 7 ) =0 .0005
c t r l ( 8 ) =0 .2

o l d p a r a ( 1 ) = myalpha1
o l d p a r a ( 2 ) = myalpha2
o l d p a r a ( 3 ) = kidney 03 mygamma ( 1 )
o l d p a r a ( 4 ) = kidney 03 mygamma ( 2 )
o l d p a r a ( 5 ) = kidney 03 mylambda
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o l d p a r a ( 6 ) = kidney mygamma ( 1 )
o l d p a r a ( 7 ) = kidney mygamma ( 2 )
o l d p a r a ( 8 ) = kidney mygamma ( 3 )
o l d p a r a ( 9 ) = kidney mylambda
o l d p a r a ( 1 0 ) = k i d n e y m y d e l t a
o l d p a r a ( 1 1 ) = kidney 05 mygamma ( 1 )
o l d p a r a ( 1 2 ) = kidney 05 mygamma ( 2 )
o l d p a r a ( 1 3 ) = kidney 05 mygamma ( 3 )
o l d p a r a ( 1 4 ) = kidney 05 mygamma ( 4 )
o l d p a r a ( 1 5 ) = kidney 05 mylambda

CALL p i k a i a ( F i t 2 , n f i t 2 , c t r l , p i k a i a f i t 2 x , p i k a i a f i t 2 f ,
p i k a i a s t a t u s )

CALL Q f r o m p i k a i a (DBLE( p i k a i a f i t 2 x ) , n f i t 2 , N,
Q f r o m p i k a i a o u t p u t )

myalpha1 = DenormalizeX (DBLE( p i k a i a f i t 2 x ( 1 ) ) , a lpha1Range )
myalpha2 = DenormalizeX (DBLE( p i k a i a f i t 2 x ( 2 ) ) , a lpha2Range )
kidney 03 mygamma ( 1 ) = DenormalizeX (DBLE( p i k a i a f i t 2 x ( 3 ) ) ,

kidney 03 gamma1Range )
kidney 03 mygamma ( 2 ) = DenormalizeX (DBLE( p i k a i a f i t 2 x ( 4 ) ) ,

kidney 03 gamma2Range )
k idney 03 mylambda = DenormalizeX (DBLE( p i k a i a f i t 2 x ( 5 ) ) ,

k idney 03 lambdaRange )
kidney mygamma ( 1 ) = DenormalizeX (DBLE( p i k a i a f i t 2 x ( 6 ) ) ,

kidney gamma1Range )
kidney mygamma ( 2 ) = DenormalizeX (DBLE( p i k a i a f i t 2 x ( 7 ) ) ,

kidney gamma2Range )
kidney mygamma ( 3 ) = DenormalizeX (DBLE( p i k a i a f i t 2 x ( 8 ) ) ,

kidney gamma3Range )
kidney mylambda = DenormalizeX (DBLE( p i k a i a f i t 2 x ( 9 ) ) ,

k idney lambdaRange )
k i d n e y m y d e l t a = DenormalizeX (DBLE( p i k a i a f i t 2 x ( 1 0 ) ) ,

k i d n e y d e l t a R a n g e )
kidney 05 mygamma ( 1 ) = DenormalizeX (DBLE( p i k a i a f i t 2 x ( 1 1 ) ) ,

kidney 05 gamma1Range )
kidney 05 mygamma ( 2 ) = DenormalizeX (DBLE( p i k a i a f i t 2 x ( 1 2 ) ) ,

kidney 05 gamma2Range )
kidney 05 mygamma ( 3 ) = DenormalizeX (DBLE( p i k a i a f i t 2 x ( 1 3 ) ) ,

kidney 05 gamma3Range )
kidney 05 mygamma ( 4 ) = DenormalizeX (DBLE( p i k a i a f i t 2 x ( 1 4 ) ) ,

kidney 05 gamma4Range )
k idney 05 mylambda = DenormalizeX (DBLE( p i k a i a f i t 2 x ( 1 5 ) ) ,

k idney 05 lambdaRange )
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do i = 1 , MaxAge
w r i t e ( 5 , ∗ ) Q f r o m p i k a i a o u t p u t ( i )
end do
w r i t e ( 5 , ’ (A, I5 , $ ) ’ ) ’ n l o o p ’ , n l o o p
w r i t e ( 5 , ’ (A, ES14 . 6 , $ ) ’ ) ’ F i t 2 ’ , p i k a i a f i t 2 f
w r i t e ( 5 , ’ (A, ES14 . 6 , $ ) ’ ) ’ a l p h a 1 ’ , myalpha1
w r i t e ( 5 , ’ (A, ES14 . 6 , $ ) ’ ) ’ a l p h a 2 ’ , myalpha2
w r i t e ( 5 , ’ (A, ES14 . 6 , $ ) ’ ) ’ kidney 03 gamma1 ’ ,

kidney 03 mygamma ( 1 )
w r i t e ( 5 , ’ (A, ES14 . 6 , $ ) ’ ) ’ kidney 03 gamma1 ’ ,

kidney 03 mygamma ( 2 )
w r i t e ( 5 , ’ (A, ES14 . 6 , $ ) ’ ) ’ k i d n e y 0 3 l a m b d a 1 ’ ,

k idney 03 mylambda
w r i t e ( 5 , ’ (A, ES14 . 6 , $ ) ’ ) ’ kidney mygamma1 ’ , kidney mygamma

( 1 )
w r i t e ( 5 , ’ (A, ES14 . 6 , $ ) ’ ) ’ kidney mygamma2 ’ , kidney mygamma

( 2 )
w r i t e ( 5 , ’ (A, ES14 . 6 , $ ) ’ ) ’ kidney mygamma3 ’ , kidney mygamma

( 3 )
w r i t e ( 5 , ’ (A, ES14 . 6 , $ ) ’ ) ’ k i d n e y m y d e l t a ’ , k i d n e y m y d e l t a
w r i t e ( 5 , ’ (A, ES14 . 6 , $ ) ’ ) ’ k idney mylambda ’ ,

k idney mylambda
w r i t e ( 5 , ’ (A, ES14 . 6 , $ ) ’ ) ’ kidney 05 mygamma1 ’ ,

kidney 05 mygamma ( 1 )
w r i t e ( 5 , ’ (A, ES14 . 6 , $ ) ’ ) ’ kidney 05 mygamma2 ’ ,

kidney 05 mygamma ( 2 )
w r i t e ( 5 , ’ (A, ES14 . 6 , $ ) ’ ) ’ kidney 05 mygamma3 ’ ,

kidney 05 mygamma ( 3 )
w r i t e ( 5 , ’ (A, ES14 . 6 , $ ) ’ ) ’ kidney 05 mygamma4 ’ ,

kidney 05 mygamma ( 4 )
w r i t e ( 5 , ’ (A, ES14 . 6 , $ ) ’ ) ’ k idney 05 mylambda ’ ,

k idney 05 mylambda
w r i t e ( 5 , ∗ ) ’ End ’
w r i t e ( ∗ , ∗ ) ’ Loop ’
END DO
! ! ! End Main loop

CONTAINS
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

! S u b r o u t i n e : NGENERNOR 0
! D e s c r i p t i o n : G e n e r a t e ( n1 , n2 , n3 ) from m u l t i n o m i a l
! d i s t r i b u t i o n . S i n c e n j i s ve ry l a r g e and p i s
! ve ry smal l , normal a p p r o x i m a t i o n i s a p p l i e d .
! I n p u t : N = p o p u l a t i o n a t each age p e r i o d
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! P1 = t h e p r o p o r t i o n f o r 3− s t a g e pathway i n
p o p u l a t i o n

! P2 = t h e p r o p o r t i o n f o r 4− s t a g e pathway i n
p o p u l a t i o n

! ISEED = seed f o r g e n e r a t i n g random number
! Outpu t : N1 = t h e number o f p e o p l e a t r i s k who d e v e l o p

c a n c e r
! t h r o u g h 3− s t a g e pathway
! N2 = t h e number o f p e o p l e a t r i s k who d e v e l o p

c a n c e r
! t h r o u g h 4− s t a g e pathway
! N3 = t h e number o f p e o p l e a t r i s k who d e v e l o p

c a n c e r
! t h r o u g h 5− s t a g e pathway
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

SUBROUTINE NGENERNOR 0(N, P1 , P2 , ISEED , N1 , N2 , N3 )
IMPLICIT NONE
DOUBLE PRECISION , INTENT ( IN ) : : P1 , P2
INTEGER , INTENT ( IN ) : : ISEED ,N
INTEGER , INTENT (OUT) : : N1 , N2 , N3
REAL NOR1, NOR2
REAL IR ( 1 )
DO
CALL RNNOR( IR )
NOR1=IR ( 1 )
CALL RNNOR( IR )
NOR2=IR ( 1 )
IF (NOR1 < 3 .AND. NOR1 > −3) EXIT
IF (NOR2 < 3 .AND. NOR2 > −3) EXIT
END DO
N1=NOR1 ∗ s q r t (N∗p1∗(1−p1 ) ) + N∗p1
N2=NOR2 ∗ s q r t ( ( N−N1 ) ∗p2∗(1−P1−P2 ) /(1−P1 ) /(1−P1 ) ) + (N−N1 ) ∗p2

/(1− p1 )
N3=N−N1−N2
IF ( N1 < 0) THEN
N1 = 1e−7
END IF
RETURN
END SUBROUTINE NGENERNOR 0

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
! S u b r o u t i n e : YGENER
! D e s c r i p t i o n : G e n e r a t e ( y1 , y2 , y3 ) from m u l t i n o m i a l w i th
! p a r a m e t e r s {Y; p1 , p2}
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! I n p u t : Y = t h e o b s e r v e d c a n c e r c a s e s a t each age p e r i o d
! Q1n = t h e p r o d u c t o f N1 and t h e p r o b a b i l i t y o f
! d e v e l o p i n g tumor d u r i n g each age p e r i o d i n
! p e o p l e who d e v e l o p k idn ey c a n c e r t h r o u g h
! 3− s t a g e pathway
! Q2n = t h e p r o d u c t o f N2 and t h e p r o b a b i l i t y o f
! d e v e l o p i n g tumor d u r i n g each age p e r i o d i n
! p e o p l e who d e v e l o p k idn ey c a n c e r t h r o u g h
! 4− s t a g e pathway
! Q3n = t h e p r o d u c t o f N3 and t h e p r o b a b i l i t y o f
! d e v e l o p i n g tumor d u r i n g each age p e r i o d i n
! p e o p l e who d e v e l o p k idn ey c a n c e r t h r o u g h
! 5− s t a g e pathway
! ISEED = seed f o r g e n e r a t i n g random number
! Outpu t : Y1 = number o f c a n c e r c a s e s g e n e r a t e d by p e o p l e
! d e v e l o p i n g c a n c e r t h r o u g h 3− s t a g e pathway
! Y2 = number o f c a n c e r c a s e s g e n e r a t e d by p e o p l e
! d e v e l o p i n g c a n c e r t h r o u g h 4− s t a g e pathway
! Y3 = number o f c a n c e r c a s e s g e n e r a t e d by p e o p l e
! d e v e l o p i n g c a n c e r t h r o u g h 5− s t a g e pathway
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

SUBROUTINE YGENER(Y, Q1n , Q2n , Q3n , ISEED , Y1 , Y2 , Y3 )
IMPLICIT NONE
DOUBLE PRECISION , INTENT ( IN ) : : Q1n , Q2n , Q3n
INTEGER , INTENT ( IN ) : : ISEED , Y
INTEGER , INTENT (OUT) : : Y1 , Y2 , Y3
REAL P1 , P2 , P3 , Qn
INTEGER IR ( 1 )
Qn = Q1n+Q2n+Q3n
P1=Q1n / Qn
P2=Q2n / Qn
i f ( P1 ==0) t h e n
Y1=0
e l s e i f ( P1 ==1) t h e n
Y1=Y
e l s e
CALL RNBIN(Y, P1 , IR )
Y1=IR ( 1 )
end i f
P3=P2 /(1−P1 )
i f ( P3 ==0) t h e n
Y2=0
e l s e i f ( P3 ==1) t h e n
Y2=Y−Y1
e l s e i f (Y−Y1==0) t h e n
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Y2 = 0
Y3 = 0
e l s e
CALL RNBIN(Y−Y1 , P3 , IR )
Y2=IR ( 1 )
end i f
Y3=Y−Y2−Y1
RETURN
END SUBROUTINE YGENER

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

! S u b r o u t i n e : PICK
! D e s c r i p t i o n : S e l e c t t h e k−t h ( n1 , n2 , n3 ) from 500 samples
! t h r o u g h t h e Weighted B o o t s t r a p Method
! I n p u t : Y = t h e number o f c a n c e r c a s e s a t each age p e r i o d
! Y1 = t h e number o f c a n c e r c a s e s g e n e r a t e d by p e o p l e
! who d e v e l o p c a n c e r by 3− s t a g e pathway
! Y2 = t h e number o f c a n c e r c a s e s g e n e r a t e d by p e o p l e
! who d e v e l o p c a n c e r by 4− s t a g e pathway
! Q1 = t h e p r o d u c t o f N1 and t h e p r o b a b i l i t y o f
! d e v e l o p i n g tumor d u r i n g each age p e r i o d i n
! p e o p l e who d e v e l o p c a n c e r by 3− s t a g e pathway
! Q2 = t h e p r o d u c t o f N2 and t h e p r o b a b i l i t y o f
! d e v e l o p i n g tumor d u r i n g each age p e r i o d i n
! p e o p l e who d e v e l o p c a n c e r by 4− s t a g e pathway
! Q3 = t h e p r o d u c t o f N3 and t h e p r o b a b i l i t y o f
! d e v e l o p i n g tumor d u r i n g each age p e r i o d i n
! p e o p l e who d e v e l o p c a n c e r by 5− s t a g e pathway
! Outpu t : K = t h e s e l e c t e d number from 1 t o 500 t h r o u g h
! w e i g h t e d b o o t s t r a p method
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

SUBROUTINE PICK (Y, Y1 , Y2 , Q1 , Q2 , Q3 ,K)
IMPLICIT NONE
DOUBLE PRECISION , INTENT ( IN ) : : Q1 ( 1 :NB) ,Q2 ( 1 :NB) ,Q3 ( 1 :NB)
INTEGER , INTENT ( IN ) : : Y, Y1 ( 1 :NB) ,Y2 ( 1 :NB)
INTEGER , INTENT (OUT) : : K
DOUBLE PRECISION W(NB) ,G(NB) ,SW, U, SG , L o g F a c t o r i a l Y 1 ( 1 :NB) ,

L o g F a c t o r i a l Y 2 ( 1 :NB) , L o g F a c t o r i a l Y 3 ( 1 :NB) ,w1 ( 1 :NB) ,w2 ( 1 :
NB) ,w3 ( 1 :NB) , wt ( 1 :NB) , wtmean

REAL R( 1 )
INTEGER T , j , Y3 ( 1 :NB) , l
Y3=Y−Y1−Y2
L o g F a c t o r i a l Y 1 = 0 . 0
L o g F a c t o r i a l Y 2 = 0 . 0
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L o g F a c t o r i a l Y 3 = 0 . 0
SW = 0 . 0
DO j =1 ,NB

W( j ) =0 .0
END DO
DO j =1 ,NB
DO l = 1 , Y1 ( j )
L o g F a c t o r i a l Y 1 ( j ) = L o g F a c t o r i a l Y 1 ( j ) + l o g (REAL( l ) )
END DO
DO l = 1 , Y2 ( j )
L o g F a c t o r i a l Y 2 ( j ) = L o g F a c t o r i a l Y 2 ( j ) + l o g (REAL( l ) )
END DO
DO l = 1 , Y3 ( j )
L o g F a c t o r i a l Y 3 ( j ) = L o g F a c t o r i a l Y 3 ( j ) + l o g (REAL( l ) )
END DO
w1 ( j ) = (−Q1 ( j ) +Y1 ( j ) ∗ l o g ( Q1 ( j ) )−L o g F a c t o r i a l Y 1 ( j ) )
w2 ( j ) = (−Q2 ( j ) +Y2 ( j ) ∗ l o g ( Q2 ( j ) )−L o g F a c t o r i a l Y 2 ( j ) )
w3 ( j ) = (−Q3 ( j ) +Y3 ( j ) ∗ l o g ( Q3 ( j ) )−L o g F a c t o r i a l Y 3 ( j ) )
wt ( j ) = w1 ( j ) +w2 ( j ) + w3 ( j )
END DO
wtmean = sum ( wt ) /NB
DO j = 1 ,NB
W( j ) = exp ( wt ( j ) − wtmean )
SW = SW + W( j )
END DO
DO j =1 ,NB
IF (SW. NE . 0 ) G( j ) =W( j ) /SW
END DO
CALL RNUN( 1 ,R)
U=R( 1 )
SG=0.0
j =0
5 j = j +1
SG = SG+G( j )
IF (SG . LT .U) THEN
GOTO 5
END IF
K= j
RETURN
END SUBROUTINE PICK

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

! F u n c t i o n : F i t 2
! D e s c r i p t i o n : t h e f u n c t i o n i s c a l l e d i n p i k a i a a s f i t n e s s
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! f u n c t i o n
! I n p u t : m, X
! P a r a m e t e r : m = t h e number o f p a r a m e t e r s
! X = an a r r a y o f p a r a m e t e r s w i th m e l e m e n t s t h e
! Re tu rn : F i t 2 = t h e f i t n e s s f u n c t i o n which i s t h e n e g a t i v e o f
! d e v i a n c e f o r t h e c o n d i t i o n a l p o s t e r i o r
! d i s t r i b u t i o n
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

REAL FUNCTION F i t 2 (m, X)
IMPLICIT NONE
INTEGER , INTENT ( IN ) : : m
REAL, INTENT ( IN ) : : X(m)
INTEGER j , s t a t u s
DOUBLE PRECISION : : kidney 03 gamma ( 2 ) , k idney 03 lambda ,

a lpha2 , a lpha1 , kidney gamma ( 3 ) , k idney lambda ,
k i d n e y d e l t a , kidney 05 gamma ( 4 ) , k i d n e y 0 5 l a m b d a

DOUBLE PRECISION P22 ( 1 : MaxAge ) , P33 ( 1 : MaxAge ) , p h i 2 2 s ( 1 :
MaxAge ) , ph i22b ( 1 : MaxAge ) , p h i 3 3 s ( 1 : MaxAge ) , ph i33b ( 1 :
MaxAge ) , Q2 ( 1 : MaxAge ) ,Q3 ( 1 : MaxAge ) , Q( 1 : MaxAge )

DOUBLE PRECISION p h i 0 4 s ( 1 : MaxAge ) , ph i04b ( 1 : MaxAge )
DOUBLE PRECISION p h i 0 3 s ( 1 : MaxAge ) , ph i03b ( 1 : MaxAge )
DOUBLE PRECISION p h i 0 5 s ( 1 : MaxAge ) , ph i05b ( 1 : MaxAge )
DOUBLE PRECISION Dev1 , Dev2
Dev1 = 0
Dev2 = 0
IF ( m /= n f i t 2 ) THEN
F i t 2 = 0
RETURN
END IF
a l p h a 1 = DenormalizeX (DBLE(X( 1 ) ) , a lpha1Range )
a l p h a 2 = DenormalizeX (DBLE(X( 2 ) ) , a lpha2Range )
kidney 03 gamma ( 1 ) = DenormalizeX (DBLE(X( 3 ) ) ,

kidney 03 gamma1Range )
kidney 03 gamma ( 2 ) = DenormalizeX (DBLE(X( 4 ) ) ,

kidney 03 gamma2Range )
k i d n e y 0 3 l a m b d a = DenormalizeX (DBLE(X( 5 ) ) ,

k idney 03 lambdaRange )
kidney gamma ( 1 ) = DenormalizeX (DBLE(X( 6 ) ) , kidney gamma1Range

)
kidney gamma ( 2 ) = DenormalizeX (DBLE(X( 7 ) ) , kidney gamma2Range

)
kidney gamma ( 3 ) = DenormalizeX (DBLE(X( 8 ) ) , kidney gamma3Range

)
k i d n e y l a m b d a = DenormalizeX (DBLE(X( 9 ) ) , k idney lambdaRange )
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k i d n e y d e l t a = DenormalizeX (DBLE(X( 1 0 ) ) , k i d n e y d e l t a R a n g e )
kidney 05 gamma ( 1 ) = DenormalizeX (DBLE(X( 1 1 ) ) ,

kidney 05 gamma1Range )
kidney 05 gamma ( 2 ) = DenormalizeX (DBLE(X( 1 2 ) ) ,

kidney 05 gamma2Range )
kidney 05 gamma ( 3 ) = DenormalizeX (DBLE(X( 1 3 ) ) ,

kidney 05 gamma3Range )
kidney 05 gamma ( 4 ) = DenormalizeX (DBLE(X( 1 4 ) ) ,

kidney 05 gamma4Range )
k i d n e y 0 5 l a m b d a = DenormalizeX (DBLE(X( 1 5 ) ) ,

k idney 05 lambdaRange )
DO j = 1 , MaxAge
CALL C a l c u l a t e Q ( a lpha1 , a lpha2 , kidney 03 gamma ,

k idney 03 lambda , kidney gamma , k idney lambda ,
k i d n e y d e l t a , kidney 05 gamma , k idney 05 lambda , N1 PICKED
( j ) , N2 PICKED ( j ) , N3 PICKED ( j ) , j , Q( j ) , Q1 ( j ) , Q2 ( j ) ,Q3
( j ) , s t a t u s )

END DO
DO j = 1 , MaxAge
IF ( ( N1 PICKED ( j ) > 1e−20) ) THEN
Dev1 = Dev1 + N1 PICKED ( j ) ∗ l o g ( N1 PICKED ( j ) /N( j ) )
Dev1 = Dev1 − N1 PICKED ( j ) ∗ l o g ( a l p h a 1 )
END IF
IF ( ( N2 PICKED ( j ) > 1e−20) ) THEN
Dev1 = Dev1 + N2 PICKED ( j ) ∗ l o g ( N2 PICKED ( j ) /N( j ) )
Dev1 = Dev1 − N2 PICKED ( j ) ∗ l o g ( a l p h a 2 )
END IF
IF ( ( N3 PICKED ( j ) > 1e−20) ) THEN
Dev1 = Dev1 + N3 PICKED ( j ) ∗ l o g ( N3 PICKED ( j ) /N( j ) )
Dev1 = Dev1 − N3 PICKED ( j ) ∗ l o g ((1− a lpha1−a l p h a 2 ) )
END IF
Dev2 = Dev2 + Q1 ( j ) − Y1 PICKED ( j )
IF ( ( Q1 ( j ) > 1e−20) .AND. ( Y1 PICKED ( j ) > 1e−20) ) THEN
Dev2 = Dev2 − Y1 PICKED ( j ) ∗ l o g ( Q1 ( j ) / Y1 PICKED ( j ) )
END IF
Dev2 = Dev2 + Q2 ( j ) − Y2 PICKED ( j )
IF ( ( Q2 ( j ) > 1e−20) .AND. ( Y2 PICKED ( j ) > 1e−20) ) THEN
Dev2 = Dev2 − Y2 PICKED ( j ) ∗ l o g ( Q2 ( j ) / Y2 PICKED ( j ) )
END IF
Dev2 = Dev2 + Q3 ( j ) − Y3 PICKED ( j )
IF ( ( Q3 ( j ) > 1e−20) .AND. ( Y3 PICKED ( j ) > 1e−20) ) THEN
Dev2 = Dev2 − Y3 PICKED ( j ) ∗ l o g ( Q3 ( j ) / Y3 PICKED ( j ) )
END IF
END DO
F i t 2 = −1.0 ∗ ( Dev1+Dev2 )
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END FUNCTION F i t 2

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
! S u b r o u t i n e : C a l c u l a t e Q
! D e s c r i p t i o n : t h e f u n c t i o n i s used t o c a l c u l a t e t h e
! p r o b a b i l i t y o f d e v e l o p i n g tumor d u r i n g each
! age p e r i o d i n p e o p l e who a r e normal a t b i r t h
! and d e v e l o p k i dn ey c a n c e r t h r o u g h 3−s t a g e ,
! 4− s t a g e o r 5− s t a g e pathway .
! I n p u t : a lpha1 , a lpha2 , kidney 03 gamma , k idney 03 lambda ,
! kidney gamma , k idney lambda , k i d n e y d e l t a ,
! kidney 05 gamma , k i d n e y 0 5 l a m b d a a r e p a r a m e t e r s i n
! t h e model
! N1 = t h e number o f p e o p l e a t r i s k who d e v e l o p k idn ey
! c a n c e r t h r o u g h 3− s t a g e pathway
! N2 = t h e number o f p e o p l e a t r i s k who d e v e l o p k idn ey
! c a n c e r t h r o u g h 4− s t a g e pathway
! N3 = t h e number o f p e o p l e a t r i s k who d e v e l o p k idn ey
! c a n c e r t h r o u g h 5− s t a g e pathway
! i = t h e age p e r i o d
! Outpu t : Q = Q1+Q2+Q3
! Q1 = t h e p r o d u c t o f N1 and t h e p r o b a b i l i t y o f
! d e v e l o p i n g tumor d u r i n g each age p e r i o d i n
! p e o p l e who d e v e l o p k idn ey c a n c e r t h r o u g h
! 3− s t a g e pathway .
! Q2 = t h e p r o d u c t o f N2B and t h e p r o b a b i l i t y o f
! d e v e l o p i n g tumor d u r i n g each age p e r i o d i n
! p e o p l e who d e v e l o p k idn ey c a n c e r t h r o u g h
! 4− s t a g e pathway .
! Q3 = t h e p r o d u c t o f N3B and t h e p r o b a b i l i t y o f
! d e v e l o p i n g tumor d u r i n g each age p e r i o d i n
! p e o p l e who d e v e l o p k idn ey c a n c e r t h r o u g h
! 5− s t a g e pathway .
! s t a t u s r e t u r n 0 i f c o r r e c t ,
! r e t u r n 1 i f Q1<0 or Q2<0 or Q3<0
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

SUBROUTINE C a l c u l a t e Q ( a lpha1 , a lpha2 , kidney 03 gamma ,
k idney 03 lambda , kidney gamma , k idney lambda , k i d n e y d e l t a ,
kidney 05 gamma , k idney 05 lambda , N1 , N2 , N3 , i , Q, Q1 , Q2 , Q3 ,
s t a t u s )

IMPLICIT NONE
DOUBLE PRECISION , INTENT ( IN ) : : a lpha1 , a lpha2 ,

kidney 03 gamma ( 2 ) , k idney 03 lambda , kidney gamma ( 3 ) ,
k idney lambda , k i d n e y d e l t a , kidney 05 gamma ( 4 ) ,
k idney 05 lambda , N1 , N2 , N3
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INTEGER , INTENT ( IN ) : : i
DOUBLE PRECISION , INTENT (OUT) : : Q, Q1 , Q2 , Q3
INTEGER , INTENT (OUT) : : s t a t u s
DOUBLE PRECISION phi3s , phi3b , P03 , ph i05s , phi05b , P05 , ph i04s ,

phi04b , P04 , k i d n e y g a m m a 3 d e l t a s , k i d n e y g a m m a 3 d e l t a b
INTEGER j , temp
s t a t u s = 0
p h i 3 s = ( ( 1 + kidney 03 gamma ( 1 ) ) ∗∗ ( d t ∗ ( i −1) )−1−

kidney 03 gamma ( 1 ) ∗ d t ∗ ( i −1) ) / ( kidney 03 gamma ( 1 )−
kidney 03 gamma ( 2 ) ) / kidney 03 gamma ( 1 ) / kidney 03 gamma ( 1 )

p h i 3 s = p h i 3 s +( (1+ kidney 03 gamma ( 2 ) ) ∗∗ ( d t ∗ ( i −1) )−1−
kidney 03 gamma ( 2 ) ∗ d t ∗ ( i −1) ) / ( kidney 03 gamma ( 2 ) −
kidney 03 gamma ( 1 ) ) / kidney 03 gamma ( 2 ) / kidney 03 gamma ( 2 )

p h i 3 s = p h i 3 s ∗ kidney 03 gamma ( 1 ) ∗ kidney 03 gamma ( 2 )
ph i3b = kidney 03 gamma ( 1 ) ∗ kidney 03 gamma ( 2 ) ∗ ( ( ( 1 +

kidney 03 gamma ( 1 ) ) ∗∗ ( d t ∗ i −1)−1−kidney 03 gamma ( 1 ) ∗ ( d t ∗ i
−1) ) / ( kidney 03 gamma ( 1 )−kidney 03 gamma ( 2 ) ) /
kidney 03 gamma ( 1 ) / kidney 03 gamma ( 1 ) +( (1+
kidney 03 gamma ( 2 ) ) ∗∗ ( d t ∗ i −1)−1−kidney 03 gamma ( 2 ) ∗ ( d t ∗ i
−1) ) / ( kidney 03 gamma ( 2 )−kidney 03 gamma ( 1 ) ) /
kidney 03 gamma ( 2 ) / kidney 03 gamma ( 2 ) )

i f ( phi3b< 0) t h e n
ph i3b = 1e−20
end i f
P03=exp(− k i d n e y 0 3 l a m b d a ∗ p h i 3 s )−exp(− k i d n e y 0 3 l a m b d a ∗ ph i3b

)
k i d n e y g a m m a 3 d e l t a s = kidney gamma ( 3 ) ∗ exp(− k i d n e y d e l t a ∗ d t
∗ ( i −1) )

p h i 0 4 s = ( ( 1 + kidney gamma ( 1 ) ) ∗∗ ( d t ∗ ( i −1) )−1−d t ∗ ( i −1)∗
kidney gamma ( 1 ) ) / ( kidney gamma ( 1 ) ∗∗2) / ( kidney gamma ( 1 )−
k i d n e y g a m m a 3 d e l t a s ) / ( kidney gamma ( 1 )−kidney gamma ( 2 ) )

p h i 0 4 s = p h i 0 4 s +( (1+ kidney gamma ( 2 ) ) ∗∗ ( d t ∗ ( i −1) )−1−d t ∗ ( i −1)∗
kidney gamma ( 2 ) ) / ( kidney gamma ( 2 ) ∗∗2) / ( kidney gamma ( 2 )−
kidney gamma ( 1 ) ) / ( kidney gamma ( 2 )−k i d n e y g a m m a 3 d e l t a s )

p h i 0 4 s = p h i 0 4 s +( (1+ k i d n e y g a m m a 3 d e l t a s ) ∗∗ ( d t ∗ ( i −1) )−1−d t
∗ ( i −1)∗ k i d n e y g a m m a 3 d e l t a s ) / ( k i d n e y g a m m a 3 d e l t a s ∗∗2)
/ ( k i d n e y g a m m a 3 d e l t a s−kidney gamma ( 1 ) ) / (
k i d n e y g a m m a 3 d e l t a s−kidney gamma ( 2 ) )

p h i 0 4 s = kidney gamma ( 1 ) ∗kidney gamma ( 1 ) ∗kidney gamma ( 2 ) ∗
kidney gamma ( 2 ) ∗ p h i 0 4 s

k i d n e y g a m m a 3 d e l t a b = kidney gamma ( 3 ) ∗ exp(− k i d n e y d e l t a ∗ (
d t ∗ i −1) )

ph i04b = ( ( 1 + kidney gamma ( 1 ) ) ∗∗ ( d t ∗ i −1)−1−( d t ∗ i −1)∗
kidney gamma ( 1 ) ) / ( kidney gamma ( 1 ) ∗∗2) / ( kidney gamma ( 1 )−
k i d n e y g a m m a 3 d e l t a b ) / ( kidney gamma ( 1 )−kidney gamma ( 2 ) )
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ph i04b = ph i04b +( (1+ kidney gamma ( 2 ) ) ∗∗ ( d t ∗ i −1)−1−( d t ∗ i −1)∗
kidney gamma ( 2 ) ) / ( kidney gamma ( 2 ) ∗∗2) / ( kidney gamma ( 2 )−
kidney gamma ( 1 ) ) / ( kidney gamma ( 2 )−k i d n e y g a m m a 3 d e l t a b )

ph i04b = ph i04b +( (1+ k i d n e y g a m m a 3 d e l t a b ) ∗∗ ( d t ∗ i −1)−1−( d t ∗ i
−1)∗ k i d n e y g a m m a 3 d e l t a b ) / ( k i d n e y g a m m a 3 d e l t a b ∗∗2) / (
k i d n e y g a m m a 3 d e l t a b−kidney gamma ( 1 ) ) / (
k i d n e y g a m m a 3 d e l t a b−kidney gamma ( 2 ) )

ph i04b = kidney gamma ( 1 ) ∗kidney gamma ( 1 ) ∗kidney gamma ( 2 ) ∗
kidney gamma ( 2 ) ∗ ph i04b

P04 = exp(−k i d n e y l a m b d a ∗ p h i 0 4 s )−exp(−k i d n e y l a m b d a ∗ ph i04b )
p h i 0 5 s = ( ( 1 + kidney 05 gamma ( 1 ) ) ∗∗ ( d t ∗ ( i −1) )−1−d t ∗ ( i −1)∗

kidney 05 gamma ( 1 ) ) / ( kidney 05 gamma ( 1 ) ∗∗2) / (
kidney 05 gamma ( 1 )−kidney 05 gamma ( 2 ) ) / ( kidney 05 gamma
( 1 )−kidney 05 gamma ( 3 ) ) / ( kidney 05 gamma ( 1 )−
kidney 05 gamma ( 4 ) )

p h i 0 5 s = p h i 0 5 s +( (1+ kidney 05 gamma ( 2 ) ) ∗∗ ( d t ∗ ( i −1) )−1−d t ∗ ( i
−1)∗ kidney 05 gamma ( 2 ) ) / ( kidney 05 gamma ( 2 ) ∗∗2) / (
kidney 05 gamma ( 2 )−kidney 05 gamma ( 1 ) ) / ( kidney 05 gamma
( 2 )−kidney 05 gamma ( 3 ) ) / ( kidney 05 gamma ( 2 )−
kidney 05 gamma ( 4 ) )

p h i 0 5 s = p h i 0 5 s +( (1+ kidney 05 gamma ( 3 ) ) ∗∗ ( d t ∗ ( i −1) )−1−d t ∗ ( i
−1)∗ kidney 05 gamma ( 3 ) ) / ( kidney 05 gamma ( 3 ) ∗∗2) / (
kidney 05 gamma ( 3 )−kidney 05 gamma ( 1 ) ) / ( kidney 05 gamma
( 3 )−kidney 05 gamma ( 2 ) ) / ( kidney 05 gamma ( 3 )−
kidney 05 gamma ( 4 ) )

p h i 0 5 s = p h i 0 5 s +( (1+ kidney 05 gamma ( 4 ) ) ∗∗ ( d t ∗ ( i −1) )−1−d t ∗ ( i
−1)∗ kidney 05 gamma ( 4 ) ) / ( kidney 05 gamma ( 4 ) ∗∗2) / (
kidney 05 gamma ( 4 )−kidney 05 gamma ( 1 ) ) / ( kidney 05 gamma
( 4 )−kidney 05 gamma ( 2 ) ) / ( kidney 05 gamma ( 4 )−
kidney 05 gamma ( 3 ) )

p h i 0 5 s = kidney 05 gamma ( 1 ) ∗ kidney 05 gamma ( 1 ) ∗
kidney 05 gamma ( 2 ) ∗ kidney 05 gamma ( 2 ) ∗ kidney 05 gamma ( 3 )
∗ kidney 05 gamma ( 3 ) ∗ p h i 0 5 s

ph i05b = ( ( 1 + kidney 05 gamma ( 1 ) ) ∗∗ ( d t ∗ i −1)−1−( d t ∗ i −1)∗
kidney 05 gamma ( 1 ) ) / ( kidney 05 gamma ( 1 ) ∗∗2) / (
kidney 05 gamma ( 1 )−kidney 05 gamma ( 2 ) ) / ( kidney 05 gamma
( 1 )−kidney 05 gamma ( 3 ) ) / ( kidney 05 gamma ( 1 )−
kidney 05 gamma ( 4 ) )

ph i05b = ph i05b +( (1+ kidney 05 gamma ( 2 ) ) ∗∗ ( d t ∗ i −1)−1−( d t ∗ i
−1)∗ kidney 05 gamma ( 2 ) ) / ( kidney 05 gamma ( 2 ) ∗∗2) / (
kidney 05 gamma ( 2 )−kidney 05 gamma ( 1 ) ) / ( kidney 05 gamma
( 2 )−kidney 05 gamma ( 3 ) ) / ( kidney 05 gamma ( 2 )−
kidney 05 gamma ( 4 ) )

ph i05b = ph i05b +( (1+ kidney 05 gamma ( 3 ) ) ∗∗ ( d t ∗ i −1)−1−( d t ∗ i
−1)∗ kidney 05 gamma ( 3 ) ) / ( kidney 05 gamma ( 3 ) ∗∗2) / (
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kidney 05 gamma ( 3 )−kidney 05 gamma ( 1 ) ) / ( kidney 05 gamma
( 3 )−kidney 05 gamma ( 2 ) ) / ( kidney 05 gamma ( 3 )−
kidney 05 gamma ( 4 ) )

ph i05b = ph i05b +( (1+ kidney 05 gamma ( 4 ) ) ∗∗ ( d t ∗ i −1)−1−( d t ∗ i
−1)∗ kidney 05 gamma ( 4 ) ) / ( kidney 05 gamma ( 4 ) ∗∗2) / (
kidney 05 gamma ( 4 )−kidney 05 gamma ( 1 ) ) / ( kidney 05 gamma
( 4 )−kidney 05 gamma ( 2 ) ) / ( kidney 05 gamma ( 4 )−
kidney 05 gamma ( 3 ) )

ph i05b = kidney 05 gamma ( 1 ) ∗ kidney 05 gamma ( 1 ) ∗
kidney 05 gamma ( 2 ) ∗ kidney 05 gamma ( 2 ) ∗ kidney 05 gamma ( 3 )
∗ kidney 05 gamma ( 3 ) ∗ ph i05b

i f ( phi05b< 0) t h e n
ph i05b = 1e−20
end i f
P05=exp(− k i d n e y 0 5 l a m b d a ∗ p h i 0 5 s )−exp(− k i d n e y 0 5 l a m b d a ∗

ph i05b )
Q1= N1∗P03
Q2 = N2∗P04
Q3 = N3∗P05
IF ( Q1 < 0 .OR. Q2 < 0 .OR. Q3 < 0) THEN
s t a t u s = 1

END IF
Q = Q1+ Q2 + Q3
END SUBROUTINE C a l c u l a t e Q

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
! F u n c t i o n : DenormalizeX
! D e s c r i p t i o n : S c a l e p a r a m e t e r v a l u e from ( 0 , 1 ) r a n g e t o
! a c t u a l r a n g e
! P a r a m e t e r : x = p a r a m e t e r i n t h e model
! x r a ng e = r a n g e of p a r a m e t e r i n t h e model
! Re tu rn : DenormalizeX
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

DOUBLE PRECISION FUNCTION DenormalizeX ( x , x r a ng e )
IMPLICIT NONE
DOUBLE PRECISION , INTENT ( IN ) : : x , x r an g e ( 1 : 3 )
DenormalizeX = x ∗ ( x r a ng e ( 2 )−x ra ng e ( 1 ) ) + x ra ng e ( 1 )
END FUNCTION DenormalizeX

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
! S u b r o u t i n e : Q f r o m p i k a i a
! D e s c r i p t i o n : t o o b t a i n t h e p r e d i c t e d c a n c e r c a s e s
! I n p u t : m = t h e number o f p a r a m e t e r s
! X = an a r r a y o f p a r a m e t e r s wi th m e l e m e n t s
! Outpu t : Q = t h e p r e d i c t e d c a n c e r c a s e s a t each age p e r i o d
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! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

SUBROUTINE Q f r o m p i k a i a (X, m, N, Q)
IMPLICIT NONE
INTEGER , INTENT ( IN ) : : m,N( 1 : MaxAge )
DOUBLE PRECISION , INTENT ( IN ) : : X(m)
DOUBLE PRECISION , INTENT (OUT) : : Q( 1 : MaxAge )
DOUBLE PRECISION alpha1 , kidney 03 gamma ( 2 ) , k idney 03 lambda ,

a lpha2 , kidney gamma ( 3 ) , k idney lambda , k i d n e y d e l t a ,
kidney 05 gamma ( 4 ) , k i d n e y 0 5 l a m b d a

DOUBLE PRECISION Q1 ( 1 : MaxAge ) , Q2 ( 1 : MaxAge ) ,Q3 ( 1 : MaxAge ) ,
N1 pred ( 1 : MaxAge ) , N2 pred ( 1 : MaxAge ) , N3 pred ( 1 : MaxAge )

INTEGER s t a t u s
a l p h a 1 = DenormalizeX (DBLE(X( 1 ) ) , a lpha1Range )
a l p h a 2 = DenormalizeX (DBLE(X( 2 ) ) , a lpha2Range )
kidney 03 gamma ( 1 ) = DenormalizeX (DBLE(X( 3 ) ) ,

kidney 03 gamma1Range )
kidney 03 gamma ( 2 ) = DenormalizeX (DBLE(X( 4 ) ) ,

kidney 03 gamma2Range )
k i d n e y 0 3 l a m b d a = DenormalizeX (DBLE(X( 5 ) ) ,

k idney 03 lambdaRange )
kidney gamma ( 1 ) = DenormalizeX (DBLE(X( 6 ) ) , kidney gamma1Range

)
kidney gamma ( 2 ) = DenormalizeX (DBLE(X( 7 ) ) , kidney gamma2Range

)
kidney gamma ( 3 ) = DenormalizeX (DBLE(X( 8 ) ) , kidney gamma3Range

)
k i d n e y l a m b d a = DenormalizeX (DBLE(X( 9 ) ) , k idney lambdaRange )
k i d n e y d e l t a = DenormalizeX (DBLE(X( 1 0 ) ) , k i d n e y d e l t a R a n g e )
kidney 05 gamma ( 1 ) = DenormalizeX (DBLE(X( 1 1 ) ) ,

kidney 05 gamma1Range )
kidney 05 gamma ( 2 ) = DenormalizeX (DBLE(X( 1 2 ) ) ,

kidney 05 gamma2Range )
kidney 05 gamma ( 3 ) = DenormalizeX (DBLE(X( 1 3 ) ) ,

kidney 05 gamma3Range )
kidney 05 gamma ( 4 ) = DenormalizeX (DBLE(X( 1 4 ) ) ,

kidney 05 gamma4Range )
k i d n e y 0 5 l a m b d a = DenormalizeX (DBLE(X( 1 5 ) ) ,

k idney 05 lambdaRange )
DO j = 1 , MaxAge
N1 pred ( j ) =N( j ) ∗ a l p h a 1
N2 pred ( j ) =N( j ) ∗ a l p h a 2
N3 pred ( j ) =N( j )−N1 pred ( j )−N2 pred ( j )
! w r i t e ( 5 , ’ ( ES14 . 6 ,A, ES14 . 6 ,A, ES14 . 6 ) ’ ) N1 pred ( j ) , ’ ’ ,

N2 pred ( j ) , ’ ’ , N3 pred ( j )
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CALL C a l c u l a t e Q ( a lpha1 , a lpha2 , kidney 03 gamma ,
k idney 03 lambda , kidney gamma , k idney lambda ,
k i d n e y d e l t a , kidney 05 gamma , k idney 05 lambda , N1 pred (
j ) , N2 pred ( j ) , N3 pred ( j ) , j , Q( j ) , Q1 ( j ) ,Q2 ( j ) ,Q3 ( j ) ,
s t a t u s )

END DO
END SUBROUTINE Q f r o m p i k a i a
END PROGRAM Rena lCarc inomas
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