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ABSTRACT

Kubiak, Damian Marcin. Ph.D. The University of Memphis. May, 2012. Geometric
properties of Cesàro function and sequence spaces. Major Professor: Anna Kamińska.

Theory of Banach spaces as a branch of Functional Analysis was founded at the

beginning of the 20th century and since then it has been extensively developed and

applied. Banach lattices, in particular Banach function and sequence spaces, like

classical Lebesgue spaces or Orlicz, Lorentz, Musielak-Orlicz spaces, are of special

interest and importance for applications.

In this dissertation we study Cesàro function and sequence spaces which, unlike

many other classical spaces, are not rearrangement invariant. This makes them a very

interesting object to explore with possible applications to some functional analysis

problems.

Cesàro function and sequence spaces appeared for the first time in 1968 in the

Dutch Mathematical Society Journal as a problem to find a representation of their

dual space. This problem, in case of sequences, was solved in 1974 by Jagers. Since

then, Cesàro sequence spaces have gain an attention among Banach space theory

specialists. For example, in the nineties several geometric properties of them were

studied. During the last decade, more general spaces, Cesàro-Orlicz sequence spaces,

have been explored as well. Cesàro function spaces attracted a wider attention only

since 2008 when Astashkin and Maligranda published series of interesting papers on

their geometrical and topological properties.

In this dissertation we study geometric properties of Cesàro function spaces with

general weight.We find an isometric description of the dual of Cesàro function space.

This description involves a new concept of essential Ψ-concave majorant of a measurable

function which we define and study. We show, among others, that every non empty
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relatively open subset (and hence every slice) of the unit ball of Cesàro function space

has diameter 2. In particular these spaces do not have the Radon-Nikodym property.

Also, they are strictly convex Banach spaces while the unit sphere does not have

strongly extreme points. This shows rather unexpected differences between Cesàro

function and sequence spaces since the latter are known to have the Radon-Nikodym

property and to be locally uniformly rotund.

We also explore Cesàro-Orlicz sequence spaces. We show that they are not B-

convex and investigate under what conditions there is an isometric or isomorphic

copy of `∞ in these spaces.
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1 Introduction

In this chapter we give historical background on Cesàro sequence and function

spaces. We also set up terminology and notation.

1.1 Introduction

In 1968 the Dutch Mathematical Society posted the following problem labeled “1968.

2.”([1], see also [2]):

“Define the Cesàro sequence spaces cesp as follows:
cesp is the space of all numerical sequences

a = (a1, a2, . . .)

with finite norms

|a|p = [
∞∑
n=1

1

n

n∑
k=1

|ak|p]1/p for 1 ≤ p <∞,

|a|∞ = sup
n≥1

1

n

n∑
k=1

|ak|.

Similarly, the function space Cesp consists of all (L)-measurable functions f on [0,∞]
with finite norms

|f |p = [

∫ ∞
0

(
1

x

∫ x

0

|f(y)| dy)p dx]1/p for 1 ≤ p <∞,

|f |∞ = sup
x>0

1

x

∫ x

0

|f(y)| dy.

Investigate the properties of these normed linear spaces and their adjoint spaces (i.e.
Banach dual spaces).”

Some basic results regarding both Cesàro sequence and function spaces were

obtained in early seventies by Shiue [63,64], Leibovitz [45] and Hassard and Hussein

[30]. In 1974 Jagers gave an explicit isometric description of the dual of cesp,

1 6 p < ∞ [34]. Similar result was obtained in 1976 by Ng and Lee for the case
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p =∞ [54]. It is worth to mention that in two former papers Cesàro sequence spaces

with general positive weight sequence, in place of the weight (1/n)∞n=1, are considered.

In the late nineties mathematicians became interested in geometric properties of these

spaces. Cui and Płuciennik studied local uniform nonsquareness [23], and, together

with Meng, they proved that cesp has Banach-Saks property and property (β) of

Rolewicz [22]. Cui and Hudzik showed that cesp has fixed point property [18] (see

also [23, Part 9]) and obtained the packing constant [19]. Several other geometric

properties of cesp are considered in [17], [23] and [20]. Another look at Cesàro sequence

spaces appeared in 2010 [61].

Contrary to the Cesàro sequence spaces their function counterparts did not attract

a lot of attention for a long time. In 1987 an interesting description of the dual of

Cesàro function spaces appeared. Authors obtained an equivalent norm on the dual

of Cesp, 1 < p <∞ using dual of cesp as an important ingredient [67] (see also [44]).

Only recently in a series of papers [4–6], Astashkin and Maligranda started to study

thoroughly the structure of Cesàro function spaces. In [4] they proved that Cesp fails

the fixed point property and in [5] they investigated, among others, dual spaces for

Cesp induced by the weight w(x) = x−1 for 1 < p < ∞. Their description can be

viewed as being analogous to one given for sequence spaces by Bennett in [9]. They

found a Banach space equipped with a norm equivalent to the dual norm, which is

an isomorphic representation of the dual space.

Cesàro-Orlicz sequence spaces cesϕ appeared for the first time in 1988 [66] and

since then they have been studied by a number of authors. In 2006, Cui et al.

studied basic topological and geometric properties of cesϕ [21]. For example, they

found conditions on ϕ under which cesϕ is strictly convex. Maligranda, Petrot and

Suantai showed that cesϕ is not B-convex for a wide class of Orlicz functions ϕ

[51]. Local geometric structure of cesϕ has been studied by Foralewski, Hudzik and
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Szymaszkiewicz [28]. In 2010 they found, among others, conditions on an Orlicz

function ϕ under which cesϕ is locally uniformly rotund [29].

We consider in this dissertation the problem of existence of order linearly isometric

copy of `∞ in cesϕ under the Luxemburg norm. We also show that all non-trivial cesϕ

spaces are not B-convex solving the problem posted in [51].

In Chapter 2 we present an isometric description of the dual of Cesàro function

space Cp,w where 1 < p <∞ and w > 0. We introduce a notion of essential Ψ-concave

majorant of an arbitrary measurable function and study its properties. This notion

is a main ingredient in the description of the dual space. In the last section of this

chapter we prove, among other things, that Cp,w does not have the Radon-Nikodym

property.

In Chapter 3 we show that Cesàro function space is strictly convex, contains

almost isometric copy of `1 and has all weakly relatively open sets of its unit ball of

diameter 2. We also present some relations among geometrical properties in general

Banach spaces.

Chapter 4 is devoted to Cesàro-Orlicz sequence spaces. We show that these spaces

are not B-convex. We present a comparison theorem for them and obtain conditions

under which cesϕ contains an order isometric copy of `∞.

1.2 Preliminaries

As usual, N and R denote the set of positive integers and real numbers, respectively.

For an interval I ⊂ R by L0(I) we denote the set of all (equivalence classes of

extended) real valued Lebesgue (almost everywhere finite) measurable functions on

I. The positive cone of L0(I) is denoted L+
0 (I) = {f ∈ L0(I) : f > 0 a.e.}. By `0 we

denote the set of all real sequences and by c0 the set of all sequences convergent to 0.
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For a Banach space (X, ‖ · ‖) by BX and SX , we denote the unit ball and the unit

sphere of X, and by X∗ the dual space of X. Any Banach space E = E(I) ⊂ L0(I)

with norm ‖·‖ satisfying the condition that f ∈ E and ‖f‖ 6 ‖g‖ whenever 0 6 f 6 g

a.e., f ∈ L0(I) and g ∈ E, is called a Banach function space or Köthe function space.

An element f in a Banach function space E is called order continuous if for every

0 6 fn 6 |f | a.e. such that fn ↓ 0 a.e. it holds ‖fn‖ ↓ 0. We say that E is

order continuous if every element in E is order continuous. A Banach function space

(E, ‖ · ‖) has the Fatou property if for any sequence (fn) ⊂ E and any f ∈ L0(I)

such that 0 6 fn 6 f a.e., fn ↑ f a.e. and supn ‖fn‖ < ∞ it holds f ∈ E and

‖f‖ = limn ‖fn‖.

Similarly for sequence spaces. A Banach space (X, ‖·‖) is a Banach sequence space

(or Köthe sequence space) if it is a subspace of `0, contains an element x such that

x(n) 6= 0 for all n ∈ N, and if x ∈ `0 and y ∈ X with |x| 6 |y|, i.e. |x(n)| 6 |y(n)| for

all n ∈ N, then x ∈ X and ‖x‖ 6 ‖y‖. We say that a Banach sequence space X has

the Fatou property if for any sequence (xm) of positive elements of X and any x ∈ `0

such that xm ↑ x that is for all n ∈ N, (xm(n))∞m=1 is increasing and xm(n) → x(n),

and supm ‖xm‖ <∞ we have that x ∈ X and ‖xm‖ → ‖x‖ as m→∞.

Banach sequence and function spaces are examples of Banach lattices.

Throughout this dissertation, terms decreasing or increasing mean non-increasing

or non-decreasing, respectively. By m we denote the Lebesgue measure on the real

line R.
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2 The dual of Cesàro function space

The content of this chapter is published in [38] except Theorem 2.28 which is

presented there in a less general case. The main part of this chapter is the isometric

description of the dual of Cesàro function space.

2.1 Preliminaries

In 1974, Jagers [34] found an isometric representation of the dual of Cesàro sequence

space

cesp,w =

x ∈ `0 : ‖x‖cesp,w :=

[
∞∑
n=1

(
w(n)

n∑
i=1

|x(n)|

)p]1/p

<∞

 ,

where 1 < p <∞ and (w(n))∞n=1 is a (weight) sequence of arbitrary positive numbers.

He obtained that the (Köthe) dual of cesp,w is

(cesp,w)′ =

x ∈ c0 : ‖x‖(cesp,w)′ =

[
∞∑
n=1

(
x̂(n)− x̂(n− 1)

w(n)

)q]1/q
 ,

where 1/p+ 1/q = 1 and for a sequence x ∈ c0, x̂ is defined in the following way. Let

Ψ(n) =
∞∑
k=n

w(n)p, n ∈ N.

Suppose first that x is nonnegative. Denote N = N∪{∞} and define increasing (finite

or infinite) sequence (mn) of elements of N by

m1 := max{k ∈ N : x(k) = max
i∈N

x(i)}
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and, provided that mn is defined and finite,

mn+1 := max

{
k ∈ N : k > mn,

x(mn)− x(k)

Ψ(mn)−Ψ(k)
= min

mn<s6∞

x(mn)− x(s)

Ψ(mn)−Ψ(s)

}
.

Define

x̂(j) := x(m1) for j 6 m1,

and for mn < j 6 mn+1, provided mn is defined and finite, x̂(j) to be such that

x(mn)− x̂(j)

Ψ(mn)−Ψ(j)
=

x(mn)− x(mn+1)

Ψ(mn)−Ψ(mn+1)
.

For arbitrary sequence x ∈ c0 we define x̂ = |̂x|. Given x ∈ c0, the sequence x̂ is

always a c0 decreasing sequence and satisfies the following inequality

x̂(i)− x̂(j)

Ψ(i)−Ψ(j)
6

x̂(j)− x̂(k)

Ψ(j)−Ψ(k)
for all i < j < k in N. (2.1)

This sequence x̂ is the smallest sequence satisfying inequality (2.1) and such that

|x| 6 x̂. Any sequence x̂ satisfying (2.1) is called a Ψ-concave sequence.

We compute precisely the dual norm of the Cesàro function space Cp,w on (0, l),

0 < l 6 ∞, generated by 1 < p < ∞ and an arbitrary positive weight function

w. A description presented in this dissertation resembles the approach of Jagers

for sequence spaces; however, the techniques are more involved due to necessity of

dealing with functions instead of sequences. One of the difficulties was to find an

appropriate definition of a function f̂ for an arbitrary measurable function f which

satisfies inequality corresponding to (2.1). We define such f̂ and explore its properties.

Section 2.1 of this chapter is devoted to Ψ-concave functions and essential Ψ-

concave majorants of measurable functions and it can of independent interest. In this
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section, Ψ is a nonnegative strictly decreasing function on the interval I = (a, b) ⊂ R.

The notion related to Ψ-concavity was defined by Beckenbach in 1937 [7] [58, cf.

Section 84, p. 240]. We introduce here also a new notion of essential Ψ-concave

majorant f̂ of a measurable function f , which is a key to study a representation of dual

spaces. We discuss several properties of Ψ-concave functions as well as the existence,

continuity or differentiability of Ψ-concave majorant f̂ of an arbitrary measurable

function f .

In the main section 2.2, we give an isometric description of the dual of Cesàro

function space with arbitrary weight function on finite or infinite interval (0, l). We

treat finite and infinite case in an unified way, opposite to the isomorphic description

given in [5]. It is also worth to mention that in the process of showing our results, we

do not use Hardy inequality at all, an essential tool in studying the space Cesp.

In section 2.3, applying techniques developed in studying duality, we prove that

convex combinations of some slices of the unit ball of Cp,w, 1 < p <∞ have diameter

2. From the latter result it follows that every slice of the unit ball BCp,w , 1 < p <∞,

has diameter 2. Consequently, in a final part we state several corollaries as that

Cesàro function spaces do not have the Radon-Nikodym property, neither strongly

exposed nor denting points, as well as they are not locally uniformly rotund or that

they are not dual spaces.

2.2 Ψ-concave functions and essential Ψ-concave majorants

In this section, we fix I = (a, b) ⊂ R to be an open (finite or infinite) interval and

Ψ : I → R+ to be a strictly decreasing function on I. We first collect a number of

properties of Ψ-concave functions. Some of them are certainly known [58, cf Section

84, p. 240] but we provide their proofs here for the sake of completeness. Next we
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introduce a notion of essential Ψ-concave majorant f̂ of f ∈ L0(I) and discuss a

number of its properties like existence, continuity and differentiability. This section

can be of independent interest.

Recall a definition of Ψ-concave function [34].

Definition 2.1. A function f : I → R is called Ψ-concave (respectively strictly

Ψ-concave) on I if for all x < y < z in I,

∣∣∣∣∣∣∣∣∣∣
1 1 1

Ψ(x) Ψ(y) Ψ(z)

f(x) f(y) f(z)

∣∣∣∣∣∣∣∣∣∣
> 0 (respectively > 0). (2.2)

It is easy to check that inequality (2.2) is equivalent to

f(x)− f(y)

Ψ(x)−Ψ(y)
6

f(y)− f(z)

Ψ(y)−Ψ(z)
(respectively < ) for all x < y < z in I. (2.3)

It is also possible to rewrite (2.3) as

f(x)− f(y)

Ψ(x)−Ψ(y)
6

f(x)− f(z)

Ψ(x)−Ψ(z)
6

f(y)− f(z)

Ψ(y)−Ψ(z)
(resp. < ) for all x < y < z in I.

(2.4)

If the interval I = (a, b) is finite and Ψ(x) = b− x, x ∈ I, then Ψ-concavity on I

is just usual concavity.

The following definition will be also useful.

Definition 2.2. We say that a function f : I 7→ R is Ψ-affine on I, if f(x) =

AΨ(x) +B, x ∈ I, for some constants A and B.

For arbitrary interval J we say that f : J → R is Ψ-concave on J if it is Ψ-concave

on the interior of J . Similarly in the case of Ψ-affine function.
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Now, similarly as done for example in [58] in context of convex functions, we show

basic properties of Ψ-concave functions.

Let f : I → R be Ψ-concave on I. Define for x ∈ I,

D+
Ψf(x) = lim

y→x+

f(y)− f(x)

Ψ(y)−Ψ(x)
and D−Ψf(x) = lim

y→x−

f(y)− f(x)

Ψ(y)−Ψ(x)
.

In order to see the existence and finiteness of the above quantities, it is enough to

observe that for any w < x < y < z < u in I, by (2.4) it follows that

f(w)− f(y)

Ψ(w)−Ψ(y)
6

f(x)− f(y)

Ψ(x)−Ψ(y)
6

f(y)− f(z)

Ψ(y)−Ψ(z)
6

f(y)− f(u)

Ψ(y)−Ψ(u)
,

and hence, for any fixed y ∈ I, the left side of the inequality

f(x)− f(y)

Ψ(x)−Ψ(y)
6

f(y)− f(z)

Ψ(y)−Ψ(z)

increases as x ↑ y and the right side decreases as z ↓ y. It follows that D−Ψf(y),

D+
Ψf(y) exist and D−Ψf(y) 6 D+

Ψf(y) for all y ∈ I. Monotonicity of D+
Ψf and D−Ψf

follows again from (2.4). Namely, for any w < x < y < z in I,

D+
Ψf(w) = lim

y↓w

f(y)− f(w)

Ψ(y)−Ψ(w)
6

f(w)− f(x)

Ψ(w)−Ψ(x)

6
f(y)− f(z)

Ψ(y)−Ψ(z)
6 lim

y↑z

f(y)− f(z)

Ψ(y)−Ψ(z)
= D−Ψf(z).

Hence D−Ψf(w) 6 D+
Ψf(w) 6 D−Ψf(z) 6 D+

Ψf(z) for all w, z ∈ I such that w < z.

In fact D+
Ψf is right-continuous if Ψ is right-continuous. Indeed, by monotonicity

of D+
Ψf we have that limx→w+ D+

Ψf(x) exists for any w ∈ I. Since for any y > x,

D+
Ψf(x) 6

f(y)− f(x)

Ψ(y)−Ψ(x)
,

9



and since f and Ψ are right-continuous, limx→w+ D+
Ψf(x) 6 f(y)−f(w)

Ψ(y)−Ψ(w)
, y > x > w. It

follows that

lim
x↓w

D+
Ψf(x) 6 lim

y↓w

f(y)− f(w)

Ψ(y)−Ψ(w)
= D+

Ψf(w).

On the other hand, we know that D+
Ψf(w) 6 D+

Ψf(x) for all w < x, and so for all

w ∈ I, limx↓wD
+
Ψf(x) = D+

Ψf(w). Similarly one can show the left-continuity of D−Ψf

under assumption of left-continuity on Ψ.

The next proposition summarizes our discussion so far.

Proposition 2.3. If f is Ψ-concave on I then D+
Ψf(x), D−Ψf(x) exist, are finite and

D−Ψf(x) 6 D+
Ψf(x) for all x ∈ I. Moreover, D+

Ψf , D−Ψf are increasing functions on

I. If Ψ is right-continuous on I then so is D+
Ψf . Similarly, if Ψ is left-continuous on

I then so is D−Ψf . For any fixed y ∈ I the ratio f(x)−f(y)
Ψ(x)−Ψ(y)

increases as x ↑ y and the

ratio f(y)−f(z)
Ψ(y)−Ψ(z)

decreases as z ↓ y.

The following basic fact will be also useful.

Lemma 2.4. If Ψ is right-, left-, absolutely or Lipschitz continuous then any Ψ-

concave function f on I has the same property.

Proof. Let [c, d] ⊂ I and a < c1 < c and d < d1 < b, by Ψ-concavity of f we get

f(c1)− f(c)

Ψ(c1)−Ψ(c)
6

f(x)− f(y)

Ψ(x)−Ψ(y)
6

f(d)− f(d1)

Ψ(d)−Ψ(d1)
for all c 6 x < y 6 d,

hence ∣∣∣∣ f(x)− f(y)

Ψ(x)−Ψ(y)

∣∣∣∣ 6 max

{∣∣∣∣ f(c1)− f(c)

Ψ(c1)−Ψ(c)

∣∣∣∣ , ∣∣∣∣ f(d)− f(d1)

Ψ(d)−Ψ(d1)

∣∣∣∣} .

Denoting the right-hand side by K we get that |f(x) − f(y)| 6 K|Ψ(x) − Ψ(y)| for

all x, y ∈ [c, d]. The claim follows.
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Lemma 2.5. Let f be Ψ-concave on I. If D+
Ψf(x) > 0, x ∈ I, then f is decreasing

on I. If D+
Ψf(x) 6 0, x ∈ I, then f is increasing on I.

Proof. Let D+
Ψf(x) > 0. Since the ratio f(z)−f(x)

Ψ(z)−Ψ(x)
decreases as z ↓ x, it follows that

f(z)−f(x)
Ψ(z)−Ψ(x)

> 0 for z > x, and hence f(z) 6 f(x) by monotonicity of Ψ. Since x ∈ I is

arbitrary, we get that f is decreasing. The proof of another case is similar.

Lemma 2.6. Let function f > 0 be Ψ-concave on I. If limx→a+ Ψ(x) = ∞ then

limx→a+ D
+
Ψf(x) > 0.

Proof. Since function D+
Ψf is increasing, limx→a+ D

+
Ψf(x) exists or is equal to −∞.

Suppose that limx→a+ D
+
Ψf(x) = C < 0. It follows that there exists x0 > a such that

−∞ < D := D+
Ψf(x0) < 0, so D−Ψf(x) 6 D for x ∈ (a, x0). It follows that for all

z < x, f(x)−f(z)
Ψ(x)−Ψ(z)

6 D < 0, which gives f(z) 6 DΨ(z)−DΨ(x) + f(x). Now, keeping

x ∈ (a, x0) fixed and taking z → a+ we would get that f(z) < 0 for z close enough to

a, which contradicts the condition f > 0.

Lemmas 2.5 and 2.6 imply the following corollary.

Corollary 2.7. If a function f > 0 is Ψ-concave on I and limx→a+ Ψ(x) = ∞ then

f is decreasing on I.

Observe that inequality (2.3) can also be equivalently written as

f(y) >
Ψ(y)−Ψ(z)

Ψ(x)−Ψ(z)
f(x) +

Ψ(x)−Ψ(y)

Ψ(x)−Ψ(z)
f(z) for all x, y, z ∈ I with x < y < z.

(2.5)

Lemma 2.8. A function f : I → R is Ψ-concave on I if and only if for each

y ∈ I there is at least one function T (x) = f(y) + A(Ψ(x) − Ψ(y)) such that A ∈

[D−Ψf(y), D+
Ψf(y)] and f(x) 6 T (x) for x ∈ I.
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Proof. If f is Ψ-concave on I and y ∈ I then for any A ∈ [D−Ψf(y), D+
Ψf(y)],

f(x)− f(y)

Ψ(x)−Ψ(y)
> A or 6 A,

if x > y or x < y, respectively. In any case f(x) 6 AΨ(x) + f(y)−AΨ(y) = T (x) for

all x ∈ I.

Conversely, suppose that for each y ∈ I there is at least one function T (x) =

f(y) +A(Ψ(x)−Ψ(y)) such that f(x) 6 T (x) for x ∈ I. Let x, y, z ∈ I be such that

x < y < z. Denoting α = Ψ(y)−Ψ(z)
Ψ(x)−Ψ(z)

we get Ψ(y) = αΨ(x) + (1−α)Ψ(z), α ∈ [0, 1]. It

follows that f(y) = T (y) = αT (x) + (1− α)T (z) > αf(x) + (1− α)f(z). Hence, in a

view of (2.5), f is Ψ-concave.

The following lemma will be useful.

Lemma 2.9. Let f be Ψ-concave on I. The function f is strictly Ψ-concave on I

if and only if there is no interval (c, d) ⊂ I on which f is Ψ-affine. The function

f is Ψ-affine on I if and only if D+
Ψf is constant on I. The function f is strictly

Ψ-concave on I if and only if D+
Ψf is strictly increasing on I.

Proof. We prove only the first part. The proof of the second part is similar.

If there exists an interval (c, d) ⊂ I on which f(x) = AΨ(x) +B, then f(x)−f(y)
Ψ(x)−Ψ(y)

=

A for all x, y ∈ (c, d). Hence f is not strictly Ψ-concave on I. Conversely, if f is not

strictly Ψ-concave on I, then from (2.3) we get that there exist w < x < u in I such

that

A :=
f(w)− f(x)

Ψ(w)−Ψ(x)
=

f(x)− f(u)

Ψ(x)−Ψ(u)
.

It follows from (2.4) that for any y in (x, u),

A =
f(w)− f(x)

Ψ(w)−Ψ(x)
6

f(w)− f(y)

Ψ(w)−Ψ(y)
6

f(w)− f(u)

Ψ(w)−Ψ(u)
6

f(x)− f(u)

Ψ(x)−Ψ(u)
= A.

12



Hence f(y) = AΨ(y) + f(w)−AΨ(w) for all y ∈ (x, u), that is f is Ψ-affine on (x, u),

a contradiction.

In the case when Ψ is a continuous function, we can define Ψ-concavity in one

more equivalent way. Namely, denoting α = Ψ(y)−Ψ(z)
Ψ(x)−Ψ(z)

for x < y < z in I, we get that

Ψ(y) = αΨ(x) + (1− α)Ψ(z), and so (2.5) can be written as

f(Ψ−1(αΨ(x) + (1− α)Ψ(z))) > αf(x) + (1− α)f(z). (2.6)

If Ψ is continuous then for any x, z ∈ I, say x 6 z, and any α ∈ [0, 1] there exists

y ∈ [x, z] such that Ψ(y) = αΨ(x) + (1−α)Ψ(z). Then inequality (2.6) holds true for

all α ∈ [0, 1] and all x, z ∈ I, that is function f ◦Ψ−1 is concave on Ψ(I). Furthermore,

in this case, by induction it can be shown that

f

(
Ψ−1

(
n∑
i=1

αiΨ(yi)

))
>

n∑
i=1

αif(yi)

for all αi > 0,
n∑
i=1

αi = 1 and (y1, y2, . . . , yn) ∈ In.

(2.7)

We have the following lemma.

Lemma 2.10. If Ψ is a continuous function on I then f is Ψ-concave on I if and

only if f ◦Ψ−1 is concave on Ψ(I).

Proof. Only one direction requires proof. Suppose that f ◦ Ψ−1 is concave on Ψ(I).

Let x, y, z ∈ I be arbitrary, x < y < z and u = Ψ(x), v = Ψ(z). Since Ψ is

one-to-one, x = Ψ−1(u) and z = Ψ−1(v). By concavity of f ◦ Ψ−1 we get that

(f ◦Ψ−1)(αu+ (1− α)v) > α(f ◦Ψ−1)(u) + (1− α)(f ◦Ψ−1)(v) for all α ∈ [0, 1]. It

follows that f(Ψ−1(αΨ(x) + (1 − α)Ψ(z))) > αf(x) + (1 − α)f(z). Since y ∈ (x, z)
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there exists α ∈ [0, 1] such that Ψ(y) = αΨ(x) + (1 − α)Ψ(z). This gives inequality

(2.5) and so f is Ψ-concave on I.

The following notion of essential Ψ-concave majorant is crucial for characterization

of the dual space to Cesàro function spaces.

Definition 2.11. For any function f ∈ L+
0 (I) we define its essential Ψ-concave

majorant f̂ by

f̂(y) := inf

{
M > 0 : m(n)

{
(y1, . . . , yn) ∈ In :

n∑
i=1

αif(yi) > M,
n∑
i=1

αi = 1, αi > 0,

i = 1, . . . , n,Ψ(y) =
n∑
i=1

αiΨ(yi)
}

= 0, n ∈ N
}

, y ∈ I,

where m(n) is the Lebesgue product measure on In. For arbitrary function f ∈ L0(I)

we define f̂ = |̂f |.

The above definition should be compared to one of concave majorants given in

1970 by Peetre [56].

The remaining results of this section describe several properties of f̂ . First we

give conditions on f under which the essential Ψ-concave majorant f̂ is finite on I.

Lemma 2.12. Let f ∈ L+
0 (I). If ess supx∈(y,b) f(x) < ∞ and ess supx∈(a,y)

f(x)
Ψ(x)

< ∞

for all y ∈ I then f̂ <∞ on I.

Proof. Let f ∈ L+
0 (I) and y ∈ I. Suppose that

Ay := ess supx∈(y,b) f(x) <∞ and By := ess supx∈(a,y)

f(x)

Ψ(x)
<∞.

14



For any n ∈ N, if

Ψ(y) =
n∑
i=1

αiΨ(yi),
n∑
i=1

αi = 1, αi > 0, yi ∈ I, i = 1, 2, . . . , n,

we have that

n∑
i=1

αif(yi) =
∑
yi<y

αif(yi) +
∑
yi>y

αif(yi)

=
∑
yi<y

αiΨ(yi)f(yi)/Ψ(yi) +
∑
yi>y

αif(yi) 6 ByΨ(y) + Ay

except possibly some subset of the set

C :=
⋃{

(y1, . . . , yn) ∈ In : max
i∈I1:yi<y

(f(yi)/Ψ(yi)) > By

}
∪
{

(y1, . . . , yn) ∈ In : max
i∈I2:yi>y

(f(yi)) > Ay

}
,

where the union is taken over all partitions of {1, 2, . . . , n} into two disjoint nonempty

sets I1, I2. It is not difficult to see that m(n)C = 0, whence it follows that f̂(y) 6

ByΨ(y) + Ay <∞.

Lemma 2.13. Let f ∈ L+
0 (I). If f̂ <∞ on I then f̂ is Ψ-concave on I.

Proof. The proof is similar to one for concave majorants [41, p. 47]. Let x < y < z

in I. We will show inequality (2.5) for f̂ . Let α = Ψ(y)−Ψ(z)
Ψ(x)−Ψ(z)

and ε > 0 be arbitrary.

From the definition of f̂(x) it follows that there exist j ∈ N and a set

B =

{
(xε1, x

ε
2, . . . , x

ε
j) ∈Ij :

j∑
i=1

αεif(xεi) > f̂(x)− ε/2,Ψ(x) =

j∑
i=1

αεiΨ(xεi),

j∑
i=1

αεi = 1

}

with m(j)B > 0. Denoting α
′ε
i = ααεi , i = 1, . . . , j, we get that for all (xε1, x

ε
2, . . . , x

ε
j) ∈

B, αf̂(x) 6
∑j

i=1 α
′ε
i f(xεi)+ε/2, where

∑j
i=1 α

′ε
i = α, α

′ε
i > 0, αΨ(x) =

∑j
i=1 α

′ε
i Ψ(xεi).
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Similarly, by definition of f̂(z), there exist k ∈ N and a set

C =

{
(zε1, z

ε
2, . . . , z

ε
k) ∈ Ik :

k∑
i=1

βεif(zεi ) > f̂(z)− ε/2,Ψ(z) =
k∑
i=1

βεiΨ(zεi ),
k∑
i=1

βεi = 1

}

with m(k)C > 0. Denoting β
′ε
i = (1 − α)βεi , i = 1, 2, . . . , k, we get that for all

(zε1, z
ε
2, . . . , z

ε
k) ∈ C, (1 − α)f̂(z) 6

∑k
i=1 β

′ε
i f(zεi ) + ε/2, where

∑k
i=1 β

′ε
i = 1 − α,

β
′ε
i > 0, (1 − α)Ψ(z) =

∑k
i=1 β

′ε
i Ψ(zεi ). Denoting now γεi = α

′ε
i , yεi = xεi for i =

1, 2, . . . , j, γεi+j = β
′ε
i , yεi+j = zεi for i = 1, 2, . . . , k, and n = j + k we get that∑n

i=1 γ
ε
i = 1 and

∑n
i=1 γ

ε
iΨ(yεi ) = αΨ(x) + (1 − α)Ψ(z) = Ψ(y). It follows that

αf̂(x) + (1 − α)f̂(z) 6
∑n

i=1 γ
ε
if(yεi ) + ε 6 f̂(y) + ε a.e. Since ε was arbitrary the

claim follows.

Recall that if C is a measurable subset of R and y ∈ R, then y is called a point of

density of C if

lim
m(x,z)→0
y∈(x,z)

m(C ∩ (x, z))

m(x, z)
= 1.

It is known that if C is a measurable subset of R then almost every x ∈ C is a point

of density of C [65, p. 106] [60, p. 141].

Lemma 2.14. If Ψ is a continuous function and limx→a+ Ψ(x) = ∞ then for any

function f ∈ L+
0 (I) with f̂ < ∞ on I, it holds that f 6 f̂ a.e. on I, and f̂ is also

continuous on I.

Proof. Suppose there exist ε > 0 and a set C ⊂ I with mC > 0 such that f > f̂ + ε

on C. Without loss of generality, we assume that all points in C are points of density

of C. It follows that for all y ∈ C and all x < y < z in I, m(C ∩ (x, z)) > 0.

First we show that for any x < z such that m(C∩(x, z)) > 0 there is y ∈ C∩(x, z)

for which m(C ∩ (x, y)) > 0 and m(C ∩ (y, z)) > 0. Let c = supy∈C∩(x,z) m(C ∩
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(x, y)) = 0 and d = infy∈C∩(x,z) m(C ∩ (y, z)) = 0. It follows that c < d, which gives

m(C ∩ (x, y)) > 0 and m(C ∩ (y, z)) > 0 for all c < y < d.

Since Ψ is a continuous function, by Lemmas 2.13 and 2.4 we get that f̂ is

continuous. Let x < z in I be such that

f̂(x)− f̂(z) < ε/2 and m(C ∩ (x, z)) > 0. (2.8)

By the above there is y ∈ C∩(x, z) such that m(C∩(x, y)) > 0 and m(C∩(y, z)) > 0.

Consider the set B := {(y1, y2) ∈ (C ∩ (x, z)) × (C ∩ (x, z)) : Ψ(y) = αΨ(y1) + (1 −

α)Ψ(y2) for some α ∈ (0, 1)}. It is clear that B = {(y1, y2) ∈ (C∩(x, z))×(C∩(x, z)) :

y1 < y < y2 or y2 < y < y1} = ((C∩(x, y))×(C∩(y, z)))∪((C∩(y, z))×(C∩(x, y)))

and hence m(2)B > 0. Observe that by (2.8) we have |f̂(y1) − f̂(y2)| < ε/2 for all

y1, y2 ∈ I such that (y1, y2) ∈ B. Now, for almost all (y1, y2) ∈ B, since f̂ is decreasing

by Corollary 2.7, we have that

f̂(y) > αf(y1) + (1− α)f(y2) > αf̂(y1) + (1− α)f̂(y2) + ε > f̂(y) + ε/2.

This is impossible, hence f 6 f̂ a.e. on I.

Remark 2.15. (1) If f, g ∈ L+
0 (I) and f 6 g a.e. on I then f̂ 6 ĝ. In fact∑n

i=1 αif(yi) 6
∑n

i=1 αig(yi) for all (y1, y2, . . . , yn) ∈ In except possibly some

set of measure 0.

(2) Let Ψ be a continuous function on I and limx→a+ Ψ(x) =∞. If f is Ψ-concave

on I then f = f̂ . Consequently ˆ̂
f = f̂ for any function f ∈ L0(I) with

f̂ < ∞ on I. Indeed, from (2.7) it follows that
∑n

i=1 αif(yi) 6 f(y) whenever

Ψ(y) =
∑n

i=1 αiΨ(yi) and hence f̂ 6 f which together with Lemma 2.14 gives

that f = f̂ .
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Lemma 2.16. Let Ψ be a continuous function on I and limx→a+ Ψ(x) = ∞. Let

f ∈ L+
0 (I) be such that f̂ <∞ on I, ε > 0 be fixed,

A = {x ∈ I : f(x) > f̂(x)− ε}

and (u, v) ⊂ I be a finite open interval. If m(A ∩ (u, v)) = 0 then f̂ is Ψ-affine on

(u, v).

Proof. Let y ∈ (u, v) be fixed. For any η > 0, by definition of D−Ψf̂(y),

D−Ψf̂(y) >
f̂(c)− f̂(y)

Ψ(c)−Ψ(y)
> D−Ψf̂(y)− η

for all c < y close enough to y. Moreover, the ratio f̂(c)−f̂(x)
Ψ(c)−Ψ(x)

is a continuous function

of x and by Proposition 2.3 it decreases as x ↓ y. Hence for every η > 0 and every

c < y there exists d > y arbitrary close to y such that

D−Ψf̂(y) + η >
f̂(c)− f̂(d)

Ψ(c)−Ψ(d)
> D−Ψf̂(y)− η.

By the above, we construct an increasing sequence (an) ⊂ (u, y) and a sequence

(bn) ⊂ (y, v) such that an → y, bn → y and

sn :=
f̂(an)− f̂(bn)

Ψ(an)−Ψ(bn)
→ C := D−Ψf̂(y) as n→∞.

Consider the sequence of functions

Sn(x) = snΨ(x) + f̂(an)− snΨ(an), x ∈ I.

It is clear that Sn(an) = f̂(an), Sn(bn) = f̂(bn) and by (2.5), Sn(x) 6 f̂(x) for all
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x ∈ (an, bn), n ∈ N. By Lemma 2.8, f̂(x) 6 CΨ(x) + (f̂(y)− CΨ(y)). Hence

f̂(x)− Sn(x) = f̂(x)− (snΨ(x) + (f̂(an)− snΨ(an)))

6 CΨ(x) + f̂(y)− CΨ(y)− snΨ(x)− f̂(an) + snΨ(an)

= (C − sn)Ψ(x) + f̂(y)− f̂(an) + snΨ(an)− CΨ(y)

6 |C − sn|Ψ(a1) + f̂(y)− f̂(an) + snΨ(an)− CΨ(y).

It follows that for every δ > 0 there exists Nδ ∈ N such that for all n > Nδ and for

all x ∈ (an, bn),

0 6 f̂(x)− Sn(x) 6 δ.

By the above for all y ∈ (u, v) there exist cy, dy ∈ (u, v), cy < y < dy, such that

f̂(x) > DΨ(x) + B and f̂(x) − (DΨ(x) + B) 6 ε for all x ∈ (cy, dy) where D =

(f̂(cy)− f̂(dy))/(Ψ(cy)−Ψ(dy)) and B = (Ψ(cy)f̂(dy)−Ψ(dy)f̂(cy))/(Ψ(cy)−Ψ(dy)).

By definition of the set A it follows that f(x) 6 DΨ(x) + B a.e. on (cy, dy). Since

function g(t) = f̂χ(cy ,dy)c(t) + (DΨ(t) +B)χ(cy ,dy)(t), t ∈ I, is Ψ-concave on I it must

be f̂ = g by Remark 2.15. But g is Ψ-affine on (cy, dy), so D+
Ψf̂ is constant there by

Lemma 2.9.

The family of sets (cy, dy), y ∈ (u, v) cover each closed subinterval [u + ε, v − ε],

ε > 0. Using compactness we conclude that D+
Ψf̂ is constant on (u, v) and by Lemma

2.9, f̂ is Ψ-affine on (u, v).

Recall the following theorem concerning convex functions [55, Corollary 1.3.8].

Theorem 2.17. If fn : I → R is a pointwise converging sequence of convex functions,

then the limit is also convex. Moreover, the convergence is uniform on any compact

subinterval included in the interior of I, and (f ′n) converges to f ′ except possibly at

countably many points of I.
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Observe that the above theorem works if one replaces words ”convex” by ”concave”.

Now, by Lemma 2.10 and Theorem 2.17, we conclude this section by the following

result.

Lemma 2.18. Let Ψ be an absolutely continuous function on each closed subinterval

of I with finite and non zero derivative Ψ′ a.e. on I. If fn : I → R is a sequence of Ψ-

concave functions converging to a function f which is finite on I, then f is Ψ-concave

on I and the convergence is uniform on any compact subinterval of I. Moreover, (f ′n)

converges to f ′ a.e. on I.

2.3 Description of the dual space

Let I = (0, l), 0 < l 6∞ and 0 < w ∈ L0(I). The weighted Cesàro function space on

I is defined to be (1 6 p <∞)

Cp,w = Cp,w(I) :=

{
f ∈ L0(I) : ‖f‖Cp,w :=

(∫
I

(
w(x)

∫ x

0

|f(t)| dt
)p

dx

)1/p

<∞

}
.

Note that for f ∈ Cp,w(I),

‖f‖Cp,w = ‖Hwf‖p where Hwf(x) = w(x)

∫ x

0

|f(t)| dt, x ∈ I,

and ‖ · ‖p is the norm in the Lebesgue space Lp(I).

The goal of this section is Theorem 2.27 which gives an isometric description of

the Banach dual space (Cp,w)∗. We start with two basic lemmas.

Lemma 2.19. The space (Cp,w, ‖ · ‖Cp,w) is an order continuous Banach function

lattice with the Fatou property.

Proof. To see that (Cp,w, ‖·‖Cp,w) has the Fatou property it is enough to apply Fatou’s
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Lemma twice. Using the Monotone Convergence Theorem one can show that Cp,w(I)

is an order continuous space [8, 41].

Lemma 2.20. (a) Cp,w(I) 6= {0} if and only if
∫ l
c
w(x)p dx <∞ for some c ∈ I.

(b) Cp,w(I) is not continuously embedded into L1(I) whenever it is not trivial.

Proof. (a) Suppose that
∫ l
c
w(x)p dx <∞ for some c ∈ I. For all d ∈ (c, l) we have

‖χ(c,d)‖pCp,w
=

∫ l

c

(w(x)

∫ x

0

χ(c,d)(t) dt)
p dx 6 (d− c)p

∫ l

c

w(x)p dx <∞,

whence χ(c,d) ∈ Cp,w. If Cp,w(I) 6= {0} then χ(c,d) ∈ Cp,w for some c, d ∈ I, d > c.

It follows that
∫ l
d
w(x)p dx <∞.

(b) Let an be a strictly increasing sequence in I such that
∫ l
an
w(x)p dx = 1/np,

n > n0, for some large enough n0 ∈ N. For n > n0, let

gn =


χ(an,an+n) if l =∞,

n
an+1−anχ(an,an+1) if l <∞.

Clearly in both cases ‖gn‖1 → ∞ as n → ∞,
∫ x

0
gn(t) dt = 0 for x < an and∫ x

0
gn(t) dt 6 n for x > an. Hence ‖gn‖pCp,w

6
∫ l
an
npw(x)p dx = 1 for all n > n0,

and the claim follows.

If p = 1 then by Fubini’s Theorem

∫ l

0

w(x)

∫ x

0

|f(t)| dt dx =

∫ l

0

|f(t)|
∫ l

t

w(x) dx dt.

Hence the space C1,w(I) is just a weighted Lebesgue space with weight
∫ l
t
w(x) dx,

t ∈ I.
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In the sequel we assume that 1 < p < ∞ is fixed and the weight function w

satisfies the following conditions

(i) w > 0 a.e. on I,

(ii)
∫ l
x
w(t)p dt <∞ for all x ∈ I,

(iii)
∫ l

0
w(t)p dt =∞.

Let further

Ψ(x) =

∫ l

x

w(t)p dt, x ∈ I.

Conditions (i)-(iii) imply that the function Ψ is strictly decreasing on I, limx→l Ψ(x) =

0 and limx→0+ Ψ(x) = ∞. Also by absolute continuity of Ψ on each compact

subinterval of I, Ψ′ = −wp < 0 a.e. on I. Moreover, if f ∈ L0(I) is such that

f̂ <∞ on I then by definition of D+
Ψf̂ , we get that

D+
Ψf̂(x) = f̂ ′(x)/Ψ′(x) = −f̂ ′(x)/w(x)p for a.a. x ∈ I,

where f̂ ′(x) denotes the derivative of f̂ at x. Note that this derivative exists a.e.

because Ψ is absolutely continuous on every closed subinterval of I, and so is f̂ by

Lemma 2.4.

It is easy to check that if the weight w is a power function w(x) = xs then

conditions (i)-(iii) are satisfied for s < −1/p if l =∞, and for s 6 −1/p if l <∞. If

s = −1 then the space Cp,w is the standard Cesàro function space Cesp considered

by several authors (see [5] and the references given therein).

For 1 < p <∞ let q be its conjugate exponent 1/p+ 1/q = 1. Let us denote

Ĥwf(x) = −f̂ ′(x)/w(x) for a.a. x ∈ I.
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We will show that the Köthe dual space of Cp,w(I),

(Cp,w)′ = (Cp,w(I))′ =

{
f ∈ L0(I) :

∫
I

f(t)g(t) dt <∞ for all g ∈ Cp,w
}

,

equipped with the usual norm

‖f‖(Cp,w)′ = sup

{∫
I

f(t)g(t) dt : g ∈ Cp,w, ‖g‖Cp,w 6 1

}
,

is the space

(Cp,w(I))′ =
{
f ∈ L0(I) : f̂ <∞ on I, lim

x→l
f̂(x) = 0 and Ĥwf ∈ Lq(I)

}
,

where ‖f‖(Cp,w)′ = ‖Ĥwf‖q and the essential Ψ-concave majorant f̂ is obtained with

respect to Ψ. Observe that Ψ (and hence f̂) depends on both p and w. Since Cp,w

is an order continuous space with the Fatou property its Köthe dual (Cp,w)′ can be

identified with its Banach dual space (Cp,w)∗. In fact each bounded linear functional

F ∈ (Cp,w)∗ is of the integral form F (g) =
∫
I
f(t)g(t) dt, g ∈ Cp,w, where f ∈ (Cp,w)′

and ‖F‖(Cp,w)∗ = ‖f‖(Cp,w)′ [8, 41].

We start with several preparatory lemmas.

Lemma 2.21. If 0 6 f ∈ (Cp,w)′ then ess supx∈(y,l) f(x) <∞ and ess supx∈(0,y)
f(x)
Ψ(x)

<

∞ for all y ∈ I. Consequently f̂(y) <∞ for all y ∈ I.

Proof. Let y ∈ I be fixed and 0 6 f ∈ (Cp,w)′. Suppose that ess supx∈(y,l) f(x) =∞.

For all C > 0 there exists a set A ⊂ (y, l) with 0 < mA < ∞ such that f > C on

A. Letting g = χA/mA, it follows that
∫
I
f(t)g(t) dt > C. But for all sets A ⊂ (y, l)

of positive and finite measure ‖χA/mA‖Cp,w 6 Ψ(y)p, hence f /∈ (Cp,w)′. The latter

gives a contradiction. We proved that ess supx∈(y,l) f(x) <∞.
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Now we show that
∫ y

0
(w(x)/Ψ(x))p dx < ∞ for all y ∈ I. Fix y ∈ I. By (ii) and

(iii) we can find a sequence (an) decreasing to 0, a0 = l such that

n 6
∫ an

an+1

w(x)p dx < n+ 1, n = 0, 1, . . . .

Hence, for x ∈ [an+1, an), n = 0, 1, . . .

Ψ(x) >
∫ l

an

w(t)p dt =
n−1∑
i=0

∫ ai

ai+1

w(t)p dt >
n−1∑
i=0

i =
n(n− 1)

2
.

Since y ∈ [ak+1, ak) for some k = 0, 1, . . ., and p > 1 we get that

∫ y

0

(
w(x)

Ψ(x)

)p
dx 6

∞∑
n=k

∫ an

an+1

(
w(x)

Ψ(x)

)p
dx

6
∞∑
n=k

(
2

n(n− 1)

)p ∫ an

an+1

w(x)p dx 6
∞∑
n=k

2p(n+ 1)

np(n− 1)p
<∞.

Next, for arbitrary y ∈ I, since
∫ y

0
(w(x)/Ψ(x))p dx <∞, Ψ is decreasing and 1/Ψ is

bounded on (0, y), denoting B =
∫ y

0
1/Ψ(x) dx, by (ii) we get that

∫
I

(
w(x)

∫ x

0

χA(t)

Ψ(t)mA
dt

)p
dx 6

∫ y

0

(
w(x)

Ψ(x)

∫ x

0

χA(t)

mA
dt

)p
dx+

∫ l

y

(Bw(x))p dx

6
∫ y

0

(
w(x)

Ψ(x)

)p
dx+Bp

∫ l

y

w(x)p dx =: E <∞.

Hence ‖1/((mA)Ψ)χA‖Cp,w 6 E1/p <∞ for all A ⊂ (0, y) with 0 < mA <∞.

Suppose now that ess supx∈(0,y)
f(x)
Ψ(x)

=∞. Then for every C > 0 there exists a set

A ⊂ (0, y) withmA > 0 such that f(x) > CΨ(x) for x ∈ A. Let g = 1/((mA)Ψ)χA. It

follows that
∫
I
f(x)g(x) dx >

∫
A
CΨ(x)(1/((mA)Ψ(x)) dx = C and hence f /∈ (Cp,w)′,

which gives a contradiction.

Finally by Lemma 2.12 we have that f̂ <∞ on I, and the proof is completed.
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Lemma 2.22. If f ∈ L0(I) is such that f̂ ∈ (Cp,w)′ then limx→l f̂(x) = 0.

Proof. By Corollary 2.7, f̂ is decreasing and hence limx→l f̂(x) exists. Suppose that

limx→l f̂(x) = C for some C > 0. It follows that f̂(t) > C on I. By Lemma 2.20(b)

there is a sequence of functions gn ∈ BCp,w such that ‖gn‖1 →∞ as n→∞. Therefore∫
I
f̂(t)gn(t) dt > C

∫
I
gn(t) dt→∞, and so f̂ /∈ (Cp,w)′.

Lemma 2.23. If f ∈ L0(I) is such that Ĥwf ∈ Lq(I) then limx→0+ D
+
Ψf̂(x) = 0.

Proof. By Proposition 2.3 function D+
Ψf̂ is increasing and so limx→0+ D

+
Ψf̂(x) exists.

Moreover, (iii) and Lemma 2.6 imply that this limit is nonnegative. Suppose that

limx→0+ D
+
Ψf̂(x) = C for some constant C > 0. Since D+

Ψf̂(x) = −f̂ ′(x)/w(x)p

a.e., −f̂ ′(x)/w(x)p > C > 0 a.e. It follows (−f̂ ′(x)/w(x))q > Cqw(x)p a.e., so

by (iii) the integral
∫
I
(−f̂ ′(x)/w(x))q dx =

∫
I
(Ĥwf)q(x) dx diverges, and this is a

contradiction.

Lemma 2.24. Let f ∈ L0(I) with f̂ < ∞ on I be such that limx→l f̂(x) = 0. Then∫
I
f(t)g(t) dt 6 ‖Ĥwf‖q‖g‖Cp,w for any g ∈ Cp,w. Consequently ‖f‖(Cp,w)′ 6 ‖Ĥwf‖q.

Proof. If ‖Ĥwf‖q =∞ then the claim is clear. Assume that ‖Ĥwf‖q <∞. In view of

limx→l f̂(x) = 0, using Fubini’s Theorem and the Hölder inequality, for any g ∈ Cp,w

we have the following

∫ l

0

f(t)g(t) dt 6
∫ l

0

|f(t)||g(t)| dt 6
∫ l

0

f̂(t)|g(t)| dt

=

∫ l

0

∫ l

t

−f̂ ′(x) dx|g(t)| dt =

∫ l

0

−f̂ ′(x)

w(x)
w(x)

∫ x

0

|g(t)| dt dx

6 ‖Ĥwf‖q ‖Hwg‖p = ‖Ĥwf‖q‖g‖Cp,w .

From the above it follows that f ∈ (Cp,w)′ and ‖f‖(Cp,w)′ 6 ‖Ĥwf‖q.
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Theorem 2.25. If f ∈ L0(I) is such that ‖Ĥwf‖q < ∞ and limx→l f̂(x) = 0 then

f ∈ (Cp,w)′ and ‖f‖(Cp,w)′ = ‖Ĥwf‖q.

Proof. Without loss of generality we assume that ‖Ĥwf‖q = 1. By Lemma 2.24 we

have that
∫
I
f(t)g(t) dt 6 ‖Ĥwf‖q‖g‖Cp,w , whence f ∈ (Cp,w)′ and ‖f‖(Cp,w)′ 6 1.

The assumption ‖Ĥwf‖q = (
∫
I
(−f̂ ′(x)/w(x))q dx)1/q < ∞ gives that f̂ < ∞

on I. Let h = (D+
Ψf̂)q/p. Function h is increasing, finite and right-continuous on

I and limx→0+ h(x) = 0 as shown in Proposition 2.3 and Lemma 2.23. Note that

h = (−f̂ ′/wp)q/p a.e. on I.

Fix ε ∈ (0, 1). Our main goal is to define a function g such that ‖g‖Cp,w 6 1 + ε

and
∫
I
f(t)g(t) dt > 1 − 2ε. The construction of g will involve a special set A ⊂ I

and a carefully chosen subdivision of I. First we find A and then a finite sequence

(an) ⊂ I which divides I.

Given y ∈ I such that h(y) > 0 let

Ay = {x ∈ I : f̂(x) 6 |f(x)|+ ε/4h(y)}.

Suppose m(Ay ∩ (0, y)) = 0 for all y > y0 and some y0 ∈ I. In such case, Lemma 2.16

implies that f̂ is Ψ-affine on each interval (0, y), y ∈ I, and hence f̂ is Ψ-affine on

I. By Lemmas 2.9 and 2.23, D+
Ψf̂ is constant on I and limx→0− D

+
Ψf̂(x) = 0. Hence

D+
Ψf̂ = 0 on I and so f̂ = 0 by limx→l f̂(x) = 0, which gives a contradiction with

the condition ‖Ĥwf‖q = 1. This shows that for all y ∈ I there is b ∈ (y, l) such that

m(Ab ∩ (0, b)) > 0. Since Lq(I) is order continuous we choose b ∈ I such that

‖(Ĥwf)χ(b,l)‖qq 6 εp/2, and m(A ∩ (0, b)) > 0, where A = Ab,

and b is a point of continuity of h.
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Observe now, that if there is x ∈ I such that m(A ∩ (0, x)) = 0 then, by Lemma

2.16, f̂ is Ψ-affine on (0, x) and so h = 0 on (0, x). Suppose now that m(A∩(0, x)) > 0

for all x ∈ I. Then for all y ∈ I, there exists a < y such that m(A ∩ (a, x)) > 0

whenever x > a. Indeed, otherwise there exists y ∈ I such that for all a < y,

m(A∩ (a, x)) = 0 for x > a close enough to a, say for x < xa. Now the family of sets

(a, xa), a ∈ (0, y), covers [η, y − η] for any η > 0. From this, using compactness, one

can infer that m(A ∩ (0, y)) = 0, which gives a contradiction.

Hence we fix a ∈ I, without loss of generality a point of continuity of h, such that

‖(Ĥwf)χ(0,a)‖qq 6 εp/2 and either

m(A ∩ (a, x)) > 0 for all x > a, or (2.9)

h(a) = 0 and m(A ∩ (a, c)) = 0 for some c > a. (2.10)

It follows that b > a, m(A ∩ (a, b)) > 0 and

‖(Ĥwf)χ(0,a)∪(b,l)‖qq 6 εp (2.11)

Let γ = Ψ(a)1/p and yi be points of discontinuity of D+
Ψf̂ (and hence of h) in

(a, b) such that h(y+
i ) − h(y−i ) > ε/4γ. Here h(y+

i ) = limx→y+i
h(x) and h(y−i ) =

limx→y−i
h(x). Clearly there is only finite number of them, say a < y1 < y2 < . . . <

yM < b. Since f̂ is continuous on I for each yi, i = 1, 2, . . . ,M , we can find two

points of continuity of h, y
i
, yi ∈ (a, b) such that y

i
< yi < yi, the intervals [y

i
, yi] are

pairwise disjoint, ∫ yi

y
i

w(x)p dx 6
εp

2pM(h(y+
i )− h(y−i ))p

, (2.12)
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f̂(y
i
)− f̂(yi) 6

ε

4h(b)
, (2.13)

h(x)− h(y+
i ) 6

ε

4γ
for x ∈ (yi, yi), and (2.14)

h(y−i )− h(x) 6
ε

4γ
for x ∈ (y

i
, yi). (2.15)

By Lemmas 2.9 and 2.16, m(A ∩ (y
i
, yi)) > 0 for all i = 1, 2, . . . ,M . Condition

(2.22) implies that for all i = 1, 2, . . . ,M ,

1

m(A ∩ (y
i
, yi))

∫
A∩(y

i
,yi)

f̂(t) dt > f̂(y
i
)− ε

4h(b)
. (2.16)

Now, the set (a, b)\∪Mi=1[y
i
, yi] is a union of finite number of open disjoint intervals,

say ∪j(vj, vj). Each such interval (vj, vj) can be divided using finite number of points

of continuity of h, say uk, into subintervals (uk, uk+1) in such a way that the family

(uk, uk+1)k is a partition of (vj, vj), and

h(uk+1)− h(uk) 6
ε

4γ
, (2.17)

f̂(uk)− f̂(uk+1) 6
ε

4h(b)
. (2.18)

If m(A ∩ (uk, uk+1)) > 0 then by (2.27),

1

m(A ∩ (uk, uk+1))

∫
A∩(uk,uk+1)

f̂(t) dt > f̂(uk)−
ε

4h(b)
. (2.19)

Let (an)N+1
n=0 be a strictly increasing sequence consisting of all points uk ∈ ∪j(vj, vj)

obtained above, points a, b and y
i
, yi, i = 1, 2, . . . ,M . Note that a0 = a, aN+1 = b

and each interval (an, an+1) contains at most one of the points yi, i = 1, 2, . . . ,M .

Note that the union of all sets (an, an+1] is (a, b].
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Denote An = A∩(an, an+1), n = 0, 1, . . . , N . Let E = {n ∈ {0, 1, . . . , N} : mAn >

0}. Clearly E 6= ∅. We can write E = {n1, n2, . . . , nk} where 0 6 n1 < n2 < . . . <

nk 6 N . Note that, if n /∈ E then by Lemmas 2.16 and 2.9, h(an+1)−h(an) = 0 since

h is constant on (an, an+1) and continuous at each point ai, i = 0, 1, . . . , N + 1.

Let κ = 0 if n1 > 0, i.e. if mA0 = 0 (which is possible only when (2.10) holds

true), κ = h(a0)/mA0 if n1 = 0, i.e. if mA0 > 0 (which is always a case when (2.9)

holds true). Note that κmA0 = h(a0). Define function

g =

(
k∑
i=1

h(ani+1)− h(ani
)

mAni

χAni
+ κχA0

)
sign f .

Now we show that

‖g‖Cp,w 6 1 + ε.

It is clear that
∫ x

0
|g(t)| dt = 0 if x < a0. Since h is increasing we get that

∫ x
0
|g(t)| dt 6

h(aN+1) if x > aN+1 and
∫ x

0
|g(t)| dt 6 h(an+1) if an 6 x < an+1, n = 0, 1, . . . , N . If

x ∈ (an, an+1) and (an, an+1) does not contain any of points yi, i = 1, 2, . . . ,M , then

h(an+1) − h(x) 6 ε/4γ by (2.26). Similarly, if x ∈ (an, an+1) and (an, an+1) contains

point yi for some i = 1, 2, . . . ,M , then h(an+1) − h(x) 6 ε/2γ + (h(y+
i ) − h(y−i )) by

(2.23) and (2.24). It follows that for x ∈ I,

Hwg(x) = w(x)

∫ x

0

|g(t)| dt

6 w(x)h(x) +
ε

2γ
w(x)χ[a,l)(x) + w(x)

M∑
i=1

(h(y+
i )− h(y−i ))χ[y

i
,yi](x).

By the triangle inequality, definition of γ and (2.21) we get that

∥∥∥∥∥ ε2γwχ(a,l) + w
M∑
i=1

(h(y+
i )− h(y−i ))χ[y

i
,yi]

∥∥∥∥∥
p

6 ε.
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Moreover

‖wh‖p =

(∫
I

w(x)p(−f̂ ′(x)/w(x)p)q dx

)1/p

=
(
‖Ĥwf‖qq

)1/p

= 1

and hence

‖Hwg‖p 6 ‖wh‖p +

∥∥∥∥∥ ε2γwχ(a,l) + w
M∑
i=1

(h(y+
i )− h(y−i ))χ[y

i
,yi]

∥∥∥∥∥
p

6 1 + ε.

Since ∫
A

|g(t)|ε/4h(b) dt 6 ε

∫ b

0

|g(t)| dt/4h(b) 6 ε/4,

by definition of A we have that

∫
I

f(t)g(t) dt =

∫
I

|f(t)|g(t) sign f(t) dt

>
∫
A

(f̂(t)− ε/4h(b))g(t) sign f(t) dt

>
∫
A

f̂(t)g(t) sign f(t) dt− ε/4.

Now by definition of g, (2.25) and (2.28),

∫
A

f̂(t)g(t) sign f(t) dt =
k∑
i=1

h(ani+1)− h(ani
)

mAni

∫
Ani

f̂(t) dt+ κ

∫
A0

f̂(t) dt

>
k∑
i=1

(h(ani+1)− h(ani
))(f̂(ani

)− ε/4h(b))

+ h(a0)(f̂(a0)− ε/4h(b)).

It is easy to see that

(
k∑
i=1

(h(ani+1)− (ani
)) + h(a0)

)
ε/4h(b) 6 ε/4.
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Since h(a0) = 0 if n1 > 0, h(an+1)− h(an) = 0 if n /∈ E and by (2.11),

k∑
i=1

(h(ani+1)− h(ani
))f̂(ani

) + h(a0)f̂(a0) =
N∑
n=0

(h(an+1)− h(an))f̂(an) + h(a0)f̂(a0)

= h(aN+1)f̂(aN) +
N∑
n=1

h(an)(f̂(an−1)− f̂(an))

=
N∑
n=1

h(an)

∫ an

an−1

(−f̂ ′(t)) dt+ h(aN+1)

∫ l

aN

(−f̂ ′(t)) dt

>
N∑
n=1

∫ an

an−1

h(t)(−f̂ ′(t)) dt+

∫ aN+1

aN

h(t)(−f̂ ′(t)) dt >
∫ b

a

(
−f̂ ′(t)
w(t)

)q

dt > 1− ε.

Combining all the above together we obtain
∫
I
f(t)g(t) dt > 1− 3ε/2. Dividing both

sides by 1 + ε one gets

∫
I

f(t)g(t)/(1 + ε) dt > 1− 3ε.

Finally, by ‖g/(1 + ε)‖Cp,w 6 1 it follows that ‖f‖(Cp,w)′ = 1.

Lemma 2.26. If f ∈ (Cp,w)′ then f̂ ∈ (Cp,w)′ and ‖f‖(Cp,w)′ = ‖f̂‖(Cp,w)′ = ‖Ĥwf‖q.

Proof. Consider first the case when l < ∞. Let f ∈ (Cp,w)′ and fm = fχ[1/m,l−1/m],

m ∈ N. By Lemma 2.21, f̂ <∞ on I. Clearly f̂m 6 f̂ . Letting y ∈ I, by definition of

f̂ , for every ε > 0 there exist n ∈ N and a set A = {(y1, . . . , yn) ∈ In :
∑n

i=1 αif(yi) >

f̂(y) − ε,
∑n

i=1 αiΨ(yi) = Ψ(y),
∑n

i=1 αi = 1, αi > 0, i = 1, 2, . . . , n} with m(n)A > 0.

Let r > 0 be such that 1/r < y < l− 1/r and m(n)(A∩ (1/r, l− 1/r)n) > 0. Since for

all m > r, f = fm on (1/r, l− 1/r) it follows that f̂m(y) > f̂(y)− ε. By arbitrariness

of ε we get that f̂m(y)→ f̂(y) as m→∞. By Lemma 2.18, f̂m
′

→ f̂ ′ a.e. on I.

Note that D+
Ψf̂m(x) = −f̂m

′
(x)/w(x)p is 0 a.e. on (0, 1/m) and constant a.e. on

(l − 1/m, l). Hence the function −f̂m
′
(x)/w(x) = w(x)p−1D+

Ψf̂m(x) a.e. is in Lq(I),

m ∈ N. By Theorem 2.25 we get that ‖fm‖(Cp,w)′ = ‖Ĥwfm‖q for all m ∈ N. Now by
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Lemma 2.24, Lemma 2.18, the Fatou Lemma and the Fatou property of (Cp,w)′ we

get that

‖f̂‖(Cp,w)′ 6 ‖Ĥwf‖q =

(∫
I

(−f̂ ′(x)/w(x))q dx

)1/q

=

(∫
I

(− lim
n
f̂n
′
(x)/w(x))q dx

)1/q

6 lim inf
n

(∫
I

(−f̂n
′
(x)/w(x))q dx

)1/q

6 sup
n
‖Ĥwfn‖q = sup

n
‖fn‖(Cp,w)′ = ‖f‖(Cp,w)′ <∞.

So ‖f‖(Cp,w)′ = ‖f̂‖(Cp,w)′ , since |f | 6 f̂ . The above inequality also shows that

‖f‖(Cp,w)′ = ‖Ĥwf‖q.

In case when l = ∞ we proceed similarly as above taking fm = fχ[1/m,m], m ∈

N.

Now we are ready to present the main result in this section, isometric description

of the dual space (Cp,w)∗. Namely, by Lemma 2.22, Theorem 2.25 and Lemma 2.26

we get the following theorem.

Theorem 2.27. Let 1 < p < ∞, q = p
p−1

, Ψ(x) =
∫ l
x
w(t)p dt, x ∈ I = (0, l),

0 < l 6∞. Then a function f ∈ (Cp,w)′ if and only if f̂ <∞ on I, limx→l f̂(x) = 0

and ‖Ĥwf‖q <∞. Moreover

‖f‖(Cp,w)′ = ‖Ĥwf‖q for all f ∈ (Cp,w)′.

The Banach dual space (Cp,w)∗ of Cp,w is isometrically isomorphic to (Cp,w)′ in the

sense that every F ∈ (Cp,w)∗ is of the form

F (g) =

∫
I

f(t)g(t) dt, g ∈ Cp,w,

for a unique f ∈ (Cp,w)′ and ‖F‖(Cp,w)∗ = ‖f‖(Cp,w)′.
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2.4 Diameter of slices of the unit ball

Let (X, ‖·‖) be a Banach space. Recall that the set s(x∗; η) = {x ∈ BX : x∗x > 1−η},

where x∗ ∈ SX∗ , 0 < η < 1, is called a slice of BX . Applying the techniques described

in the previous section, we show the following result.

Theorem 2.28. Let fj ∈ S(Cp,w)′, j = 1, 2, . . . , r, r ∈ N be such that f̂j = f̂i,

i, j = 1, 2, . . . , r. The diameter of a finite convex combination of slices defined by fj,

j = 1, 2, . . . , r, is 2.

Proof. Let f = f̂j, j ∈ {1, 2, . . . , r} and Fj(g) =
∫
I
fj(t)g(t) dt, g ∈ Cp,w be bounded

linear functionals on Cp,w defined by fj ∈ S(Cp,w)′ , j = 1, 2, . . . , r, r ∈ N. Let S =∑r
j=1 αjs(Fj; ηj), αj > 0, 0 < ηj < 1, j = 1, 2, . . . , r,

∑r
j=1 αj = 1 be a convex

combination of slices. Let 0 < ε < min{ηj : j = 1, 2, . . . , r}/10 be arbitrary.

Denote h = (D+
Ψf̂)q/p. Note that h = (−f̂ ′/wp)q/p a.e. on I. Function h

is increasing, finite and right-continuous on I and limx→0+ h(x) = 0 as shown in

Proposition 2.3 and Lemma 2.23. Moreover h is not constant on I, in particular h

is not identically 0 on I. Indeed, if h is constant on I, that is D+
Ψf̂ is constant on

I, then by 2.23, limx→0+ D
+
Ψf̂(x) = 0. Now, Lemma 2.9 implies that D+

Ψf̂ = 0 on I

and so f̂ is Ψ-affine on I by Lemma 2.9. We have that f̂ = AΨ + B on I for some

constants A and B. Since D+
Ψf̂ = 0 and in view of Lemma 2.22 both A = B = 0.

Hence f̂ = 0 on I, which gives a contradiction with the condition ‖f‖(Cp,w)′ = 1.

Given y ∈ I such that h(y) > 0 let

A(j)
y = {x ∈ I : |fj(x)| > f(x)− ε/4h(y)}, j = 1, 2, . . . , r.

First, observe that for each y ∈ I there is b ∈ (y, l) such that for all j ∈ {1, 2, . . . , r}

m(A
(j)
b ∩ (0, b)) > 0. Indeed, if there exists y0 ∈ I such that for all b ∈ (y0, l) there is
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j ∈ {1, 2, . . . , r} for which m(A
(j)
b ∩ (0, b)) = 0 then by Lemma 2.16 f̂ is Ψ-affine on

(0, b) and hence by Lemma 2.9 D+
Ψf̂ is constant on (0, b). The latter and the condition

limx→0+ D
+
Ψf̂ = 0 imply that h = 0 on (0, b) for all b ∈ (y0, l) and hence h = 0 on I,

which gives a contradiction.

By the above and by the order continuity of Lq we fix b ∈ I such that m(A
(j)
b ∩

(0, b)) > 0 for all j ∈ {1, 2, . . . , r} and ‖(Ĥwf)χ(b,l)‖qq 6 εp/2. Moreover, without loss

of generality, we assume that b is a point of continuity of h and such that h is not

constant on (0, b). Denote A(j) = A
(j)
b , j = 1, 2, . . . , r.

Now, we show that either h = 0 on some interval near 0 or h > 0 on I and

for each y ∈ I there is a < y such that for all j ∈ {1, 2, . . . , r} and all x > a

m(A(j) ∩ (a, x)) > 0. Indeed, suppose that there exists y0 ∈ I such that for all

a ∈ (0, y0) there are j ∈ {1, 2, . . . , r} and xa ∈ (a, l) for which m(A(j) ∩ (a, xa)) = 0.

By Lemma 2.16 h is constant on each interval (a, xa). But the family of intervals

(a, xa), a ∈ (0, y0) covers [η, y0 − η], η > 0, whence, using compactness, we infer that

h is constant on (0, y0). Since limx→0+ h(x) = 0 by Lemma 2.23 we get that h = 0 on

(0, y0). The claim follows.

By the above, we can find a ∈ (0, b) such that

m(A(j) ∩ (a, b)) > 0, ‖(Ĥwf)χ(0,a)‖qq 6 εp/2 and

either h(a) = 0 or m(A(j) ∩ (a, x)) > 0 for all j = 1, 2, . . . , r and all x > a. (2.20)

It follows that ‖(Ĥwf)χ(0,a)∪(b,l)‖qq 6 εp. Again, without loss of generality, we assume

that a is a point of continuity of h and such that h is not constant on (a, b).

Let γ = Ψ(a)1/p and yi be points of discontinuity of D+
Ψf̂ (and hence of h) in

(a, b) such that h(y+
i ) − h(y−i ) > ε/4γ. Here h(y+

i ) = limx→y+i
h(x) and h(y−i ) =
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limx→y−i
h(x). Clearly there is only finite number of them, say a < y1 < y2 < . . . <

yM < b. Since f̂ is continuous on I for each yi, i = 1, 2, . . . ,M , we can find two

points of continuity of h, y
i
, yi ∈ (a, b) such that y

i
< yi < yi, the intervals [y

i
, yi] are

pairwise disjoint, ∫ yi

y
i

w(x)p dx 6
εp

2pM(h(y+
i )− h(y−i ))p

, (2.21)

f̂(y
i
)− f̂(yi) 6

ε

4h(b)
, (2.22)

h(x)− h(y+
i ) 6

ε

4γ
for x ∈ (yi, yi), and (2.23)

h(y−i )− h(x) 6
ε

4γ
for x ∈ (y

i
, yi). (2.24)

By Lemmas 2.9 and 2.16, m(A(j) ∩ (y
i
, yi)) > 0 for all i = 1, 2, . . . ,M , j =

1, 2, . . . , r. Condition (2.22) implies that for all i = 1, 2, . . . ,M and j = 1, 2, . . . , r

1

m(A(j) ∩ (y
i
, yi))

∫
A(j)∩(y

i
,yi)

f̂(t) dt > f̂(y
i
)− ε

4h(b)
. (2.25)

Now, the set (a, b)\∪Mi=1[y
i
, yi] is a union of finite number of open disjoint intervals,

say ∪j(vj, vj). Each such interval (vj, vj) can be divided using finite number of points

of continuity of h, say uk, into subintervals (uk, uk+1) in such a way that the family

(uk, uk+1)k is a partition of (vj, vj), and

h(uk+1)− h(uk) 6
ε

4γ
, (2.26)

f̂(uk)− f̂(uk+1) 6
ε

4h(b)
. (2.27)

If m(A(j) ∩ (uk, uk+1)) > 0, j ∈ {1, 2, . . . , r} then by (2.27),

1

m(A(j) ∩ (uk, uk+1))

∫
A(j)∩(uk,uk+1)

f̂(t) dt > f̂(uk)−
ε

4h(b)
. (2.28)
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Let (an)N+1
n=0 be a strictly increasing sequence consisting of all points uk ∈ ∪j(vj, vj)

obtained above, points a, b and y
i
, yi, i = 1, 2, . . . ,M . Note that a0 = a, aN+1 = b

and each interval (an, an+1) contains at most one of the points yi, i = 1, 2, . . . ,M .

Moreover ∪Nn=0(an, an+1] = (a, b].

Denote

A(j)
n = A(j) ∩ (an, an+1), n = 0, 1, . . . , N , j = 1, 2, . . . , r.

Let

E(j) = {n ∈ {0, 1, . . . , N} : mA(j)
n > 0},j = 1, 2, . . . , r.

Clearly E(j) 6= ∅, j = 1, 2, . . . , r. Let E = ∩rj=1E
(j). We have that E 6= ∅. Indeed, if

E = ∅ then for each n ∈ {0, 1, . . . , N} there is j ∈ {1, 2, . . . , r} such that m(A(j) ∩

(an, an+1) = 0 and hence by Lemma 2.16 f̂ = f̂j is Ψ-affine on each interval (an, an+1),

n ∈ {0, 1, . . . , N}. By the latter and Lemma 2.9 we would have that h is constant on

(a, b) which is not the case.

We can write E = {n1, n2, . . . , nk} where 0 6 n1 < n2 < . . . < nk 6 N . Note

that, if n /∈ E then n /∈ E(j) for some j and hence by Lemmas 2.16 and 2.9, h(an+1)−

h(an) = 0 since h is constant on (an, an+1) and continuous at each point ai, i =

0, 1, . . . , N + 1.

Now, for each n ∈ E let sets B(j)
n , C

(j)
n ⊂ A

(j)
n be such that m(B

(j)
n ) > 0, m(C

(j)
n ) >

0, for j = 1, 2, . . . , r, ∪rj=1A
(j)
n = ∪rj=1(B

(j)
n ∪ C(j)

n ) and all sets B(i)
n , C

(j)
n are pairwise

disjoint i, j = 1, 2, . . . , r.

Observe that if 0 /∈ E then by (2.20), h(a0) = 0 and in this case we interpret

expressions h(a0)

mB
(j)
0

χ
B

(j)
0

and h(a0)

mC
(j)
0

χ
C

(j)
0

as 0 (also when sets B(j)
0 , C(j)

0 are not formally

defined).
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For j = 1, 2, . . . , r define functions

g1,j =

(
k∑
i=1

h(ani+1)− h(ani
)

mB
(j)
ni

χ
B

(j)
ni

+
h(a0)

mB
(j)
0

χ
B

(j)
0

)
sign fj

and

g2,j =

(
k∑
i=1

h(ani+1)− h(ani
)

mC
(j)
ni

χ
C

(j)
ni

+
h(a0)

mC
(j)
0

χ
C

(j)
0

)
sign fj.

Now, we show that

‖gs,j‖Cp,w 6 1 + ε for s = 1, 2 and j = 1, 2, . . . , r.

It is clear that
∫ x

0
|gs,j(t)| dt = 0 if x < a0. Since h is increasing we get that∫ x

0
|gs,j(t)| dt 6 h(aN+1) if x > aN+1 and

∫ x
0
|gs,j(t)| dt 6 h(an+1) if an 6 x < an+1,

n = 0, 1, . . . , N . For a fixed n ∈ {0, 1, . . . , N}, if x ∈ (an, an+1) and (an, an+1) does

not contain any of points yi, i = 1, 2, . . . ,M , then h(an+1) − h(x) 6 ε/4γ by (2.26).

Similarly, if x ∈ (an, an+1) and (an, an+1) contains point yi for some i = 1, 2, . . . ,M ,

then h(an+1) − h(x) 6 ε/2γ + (h(y+
i ) − h(y−i )) by (2.23) and (2.24). It follows that

for x ∈ I,

Hwgs,j(x) = w(x)

∫ x

0

|gs,j(t)| dt

6 w(x)h(x) +
ε

2γ
w(x)χ[a,l)(x) + w(x)

M∑
i=1

(h(y+
i )− h(y−i ))χ[y

i
,yi](x).

By the triangle inequality, definition of γ and (2.21) we get that

∥∥∥∥∥ ε2γwχ(a,l) + w
M∑
i=1

(h(y+
i )− h(y−i ))χ[y

i
,yi]

∥∥∥∥∥
p

6 ε. (2.29)
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Moreover

‖wh‖p =

(∫
I

w(x)p(−f̂ ′(x)/w(x)p)q dx

)1/p

=
(
‖Ĥwf‖qq

)1/p

= 1

and hence

‖Hwgs,j‖p 6 ‖wh‖p +

∥∥∥∥∥ ε2γwχ(a,l) + w
M∑
i=1

(h(y+
i )− h(y−i ))χ[y

i
,yi]

∥∥∥∥∥
p

6 1 + ε.

Next we show that for s = 1, 2, gs,j ∈ s(Fj; ηj), j ∈ 1, 2, . . . , r.

Denote B(j) = ∪ki=1B
(j)
ni the support of g1,j, j = 1, 2, . . . , r. Let j ∈ {1, 2, . . . , r}

be arbitrary. Since

∫
B(j)

|g1,j(t)|ε/4h(b) dt 6 ε

∫ b

0

|g1,j(t)| dt/4h(b) 6 ε/4,

by definition of B(j) we have that

∫
I

fj(t)g1,j(t) dt =

∫
I

|fj(t)|g1,j(t) sign fj(t) dt

>
∫
B(j)

(f(t)− ε/4h(b))g1,j(t) sign fj(t) dt

>
∫
B(j)

f(t)g1,j(t) sign fj(t) dt− ε/4.

Now by definition of g1,j, (2.25) and (2.28),

∫
B(j)

f(t)g1,j(t) sign fj(t) dt =
k∑
i=1

h(ani+1)− h(ani
)

mB
(j)
ni

∫
B

(j)
ni

f(t) dt+

∫
I

h(a0)

mB
(j)
0

χ
B

(j)
0
f(t) dt

>
k∑
i=1

(h(ani+1)− h(ani
))(f(ani

)− ε/4h(b))

+ h(a0)(f(a0)− ε/4h(b)).
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It is easy to see that

(
k∑
i=1

(h(ani+1)− h(ani
)) + h(a0)

)
ε/4h(b) 6 ε/4.

Since h(a0) = 0 if 0 /∈ E, h(an+1)− h(an) = 0 if n /∈ E and by (2.11),

k∑
i=1

(h(ani+1)− h(ani
))f(ani

) + h(a0)f(a0) =
N∑
n=0

(h(an+1)− h(an))f(an) + h(a0)f(a0)

= h(aN+1)f(aN) +
N∑
n=1

h(an)(f(an−1)− f(an))

=
N∑
n=1

h(an)

∫ an

an−1

(−f ′(t)) dt+ h(aN+1)

∫ l

aN

(−f ′(t)) dt

>
N∑
n=1

∫ an

an−1

h(t)(−f ′(t)) dt+

∫ aN+1

aN

h(t)(−f ′(t)) dt >
∫ b

a

(
−f ′(t)
w(t)

)q
dt > 1− ε.

Combining all the above together we obtain
∫
I
fj(t)g1,j(t) dt > 1 − 3ε/2. Dividing

both sides by 1 + ε one gets

∫
I

fj(t)g1,j(t)/(1 + ε) dt > 1− 3ε > 1− ηj, j = 1, 2, . . . , r.

Similarly one can show that g2,j ∈ s(Fj; ηj), j = 1, 2, . . . , r.

Let g1 =
∑r

j=1 αjg1,j and g2 =
∑r

j=1 αjg2,j be convex combinations of functions g1,j

and g2,j, j ∈ {1, 2, . . . , r}, respectively, where αj > 0, j = 1, 2, . . . , r and
∑r

j=1 αj = 1.

Clearly g1, g2 ∈ S. Observe that
∫ x

0
|gs,j(t)| dt = 0 if x < a0, s = 1, 2, j = 1, 2, . . . , r.

Let n ∈ {0, 1, . . . , N} be arbitrary. If x ∈ (an, an+1) and yi /∈ (an, an+1) for all

i = 1, 2, . . . ,M , then
∫ x

0
|gs,j(t)| dt > h(an) > h(an+1) − ε/2γ by (2.26), s = 1, 2,

j = 1, 2, . . . , r. Similarly, if x ∈ (an, an+1) and yi ∈ (an, an+1) for some i = 1, 2, . . . ,M ,

then
∫ x

0
|gs,j(t)| dt > h(an) > h(an+1)− ε/2γ − (h(y+

i )− h(y−i )) by (2.23) and (2.24),
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s = 1, 2, j = 1, 2, . . . , r. It follows that for all x ∈ (a, b), s = 1, 2, j = 1, 2, . . . , r,

∫ x

0

|gs,j(t)| dt > h(x)χ(a,b)(x)− ε

2γ
χ(a,b)(x)−

M∑
i=1

(h(y+
i )− h(y−i ))χ(y

i
,yi)(x). (2.30)

Observe that

h(x)−
M∑
i=1

(h(y+
i )− h(y−i ))χ(y

i
,yi)(x) > 0 for all x ∈ I.

Let c = sup{x ∈ I : h(x) < ε/2γ}. If c > a then by definition of γ,

‖whχ(a,c)‖pp 6 (ε/2γ)p‖wχ(a,l)‖pp 6 (ε/2)p. (2.31)

Let d = max{a, c}. Now, for x ∈ (d, b) the right-hand side of 2.30 is non-negative.

Since function gs,j, s = 1, 2, j = 1, 2, . . . , r have disjoint supports, we get that for

all x ∈ (a, b),

w(x)

∫ x

0

|g1(t)− g2(t)| dt = w(x)
r∑
j=1

αj

(∫ x

0

|g1,j(t)| dt+

∫ x

0

|g2,j(t)| dt
)

> 2w(x)h(x)χ(a,b)(x)− ε

γ
w(x)χ(a,b)(x)− 2w(x)

M∑
i=1

(h(y+
i )− h(y−i ))χ(y

i
,yi)(x).

It follows that

‖g1 − g2‖Cp,w >

∥∥∥∥∥2whχ(d,b) −

(
ε

γ
wχ(d,b) + 2w

M∑
i=1

(h(y+
i )− h(y−I ))χ(y

i
,yi)

)∥∥∥∥∥
p

>

∣∣∣∣∣∣2‖whχ(d,b)‖p −

∥∥∥∥∥ εγwχ(d,b) + 2w
M∑
i=1

(h(y+
i )− h(y−i ))χ(y

i
,yi)

∥∥∥∥∥
p

∣∣∣∣∣∣ .
Since ‖wh‖p = 1, ‖whχ(0,a)∪(b,l)‖pp = ‖(Ĥwf)χ(0,a)∪(b,l)‖qq 6 εp and by (2.31) we get
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that

‖whχ(d,b)‖p = ‖wh− (whχ(0,a)∪(b,l) + whχ(a,c))‖p

>
∣∣‖wh‖p − ‖whχ(0,a)∪(b,l)‖p − ‖whχ(a,c)‖p

∣∣
= 1− ‖(Ĥwf)χ(0,a)∪(b,l)‖q/pq − ε/2 > 1− 3ε/2.

By the above and (2.29) we get that ‖g1 − g2‖Cp,w > 2 − 4ε. Dividing now both

sides by 1 + ε we obtain that ‖(g1 − g2)/(1 + ε)‖Cp,w > 2 − 6ε. Since ε can be taken

arbitrarily small we obtain that the diameter of S is 2.

Corollary 2.29. Every slice of BCp,w has diameter 2.

2.5 The Radon-Nikodym property

Recall that a Banach space (X, ‖·‖) is called locally uniformly convex if for any x ∈ SX

and any sequence (xn) ⊂ BX , limn→∞ ‖x+xn‖ = 2 implies that limn→∞ ‖x−xn‖ = 0.

A point x ∈ SX is said to be strongly exposed if there is x∗ ∈ SX∗ such that x∗x = 1,

x∗y < 1 for all y ∈ BX \ {x}, and x∗xn → 1 implies that ‖x− xn‖ → 0 as n→∞ for

any sequence (xn) ⊂ BX .

A point x ∈ SX is called a denting point of BX if x /∈ co{BX \ (x+ εBX)} for each

ε > 0. It is easy to see that if the unit ball BX has denting points then it has slices

of arbitrary small diameter [12, Proposition 2.3.2, p. 28]. Also any strongly exposed

point is a denting point [57, p. 227] and in locally uniformly convex space all points of

its unit sphere are denting [27]. The Radon-Nikodym property can be characterized in

terms of denting points. Namely, a Banach space X has the Radon-Nikodym property

if and only if for every equivalent norm in X the respective unit ball BX has a denting

point [12, p. 30]. For definition and more details on Radon-Nikodym property, we

refer to [12]. Consequently by Corollary 2.29 we get the following corollaries.
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Corollary 2.30. The space (Cp,w, ‖·‖Cp,w) does not have the Radon-Nikodym property.

Corollary 2.31. The unit sphere of (Cp,w, ‖ · ‖Cp,w) does not have strongly exposed

points.

Corollary 2.32. The unit sphere of (Cp,w, ‖ · ‖Cp,w) does not have denting points.

Corollary 2.33. The space (Cp,w, ‖ · ‖Cp,w) is not locally uniformly convex.

Corollary 2.34. The space (Cp,w, ‖ · ‖Cp,w) is not a dual space.

Proof. It is known that every separable dual space has the Krĕın-Milman Property

[10] and that the latter is equivalent to the Radon-Nikodym Property in Banach

lattices [11,15]. Since Cp,w is a separable Banach lattice without the Radon-Nikodym

Property it cannot be a dual space.
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3 Other geometric properties of Cesàro function spaces

In this chapter we show that Cesàro function space is strictly convex, contains an

asymptotically isometric copy of `1 and has all relatively weakly open sets of its unit

ball of diameter 2. We also show that no point of this space is uniformly non-square,

and what follows, there are no strongly extreme points nor H-points and the space is

not uniformly convex in every direction. As in Chapter 2, I = (0, l), 0 < l 6∞, is a

finite or infinite interval on which we consider the space Cp,w, where 1 < p <∞ and

the weight function w satisfies conditions (i)-(iii) from page 22.

3.1 Strict convexity

A point x ∈ SX is called extreme if for every y ∈ X the condition ‖x± y‖ = 1 implies

that y = 0. Equivalently, if y, z ∈ BX and ‖(y + z)/2‖ = 1 then y = z = x. If all

points of the unit sphere SX are extreme then the space (X, ‖ · ‖) is called strictly

convex.

In this section, we show that space Cp,w is strictly convex.

Theorem 3.1. The space (Cp,w, ‖ · ‖Cp,w) is strictly convex.

Proof. Let f ∈ SCp,w and suppose that ‖f ± g‖Cp,w = ‖f‖Cp,w . Since

|f | = |f + g + f − g|
2

6
1

2
|f + g|+ 1

2
|f − g|,

we get that

‖f‖ =

∥∥∥∥1

2
(f + g + f − g)

∥∥∥∥ 6
1

2
‖f + g‖+

1

2
‖f − g‖ = ‖f‖.
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It follows that

∫
I

(
w(x)

∫ x

0

|f(t) + g(t)|+ |f(t)− g(t)|
2

dt

)p
dx−

∫
I

(
w(x)

∫ x

0

|f(t)| dt
)p

dx = 0.

Since (|f + g|+ |f − g|)/2 > |f |, we get that

w(x)

∫ x

0

|f(t) + g(t)|+ |f(t)− g(t)|
2

dt = w(x)

∫ x

0

|f(t)| dt for a.a x ∈ I.

Since Lp(I) space is strictly convex for 1 < p <∞ and, by assumption,

w(x)

∫ x

0

|f(t)| dt, w(x)

∫ x

0

|f(t) + g(t)| dt, w(x)

∫ x

0

|f(t)− g(t)| dt ∈ SLp

we get that
∫ x

0
|f(t)± g(t)| − |f(t)| dt = 0 for all x ∈ I and by [59, Lemma 8, p. 105],

|f(t)± g(t)| = |f(t)| a.e. on I. This gives g = 0.

The above result can be also obtained by applying [33, Corollary 1].

3.2 Copy of `1

Recall [26] that a Banach space (X, ‖·‖) contains an asymptotically isometric copy of

`1 if there exists a sequence (εn) ⊂ (0, 1), εn → 0 as n→∞ and a sequence (xn) ⊂ X

such that for arbitrary (αn) ∈ `1 we have

∞∑
n=1

(1− εn)|αn| 6 ‖
∞∑
n=1

αnxn‖ 6
∞∑
n=1

|αn|. (3.1)

In 2008 Astashkin and Maligranda proved that the Cesàro function space with

standard weight w(x) = 1/x contains an asymptotically isometric copy of `1 [4]. In

fact their proof works well also for arbitrary weights.
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Theorem 3.2. The space (Cp,w, ‖ · ‖Cp,w) contains an asymptotically isometric copy

of `1.

Proof. Let (bn)∞n=1 be any strictly increasing sequence in I such that limn→∞ bn = b <

l. Denote a = b1. Let gn = χ(bn,bn+1) and fn = gn/‖gn‖Cp,w , n ∈ N. It is easy to check

for any function f ∈ L1(I) with supp f ⊂ [c, d] for some bounded interval [c, d] ⊂ I,

Ψ(d)1/p‖f‖L1 6 ‖f‖Cp,w 6 Ψ(c)1/p‖f‖L1 . (3.2)

Let (αn)∞n=1 ∈ `1. Since supp
∑∞

n=1 αnfn ⊂ [a, b] and supp gn ⊂ [bn, bn+1], by (3.2) we

get that

‖
∞∑
n=1

αnfn‖Cp,w > Ψ(b)1/p‖
∞∑
n=1

αnfn‖L1

= Ψ(b)1/p

∞∑
n=1

|αn|‖fn‖L1 = Ψ(b)1/p

∞∑
n=1

|αn|‖gn‖L1/‖gn‖Cp,w

>
∞∑
n=1

|αn|Ψ(b)1/p/Ψ(bn)1/p =
∞∑
n=1

(1− εn)|αn|,

where εn = 1−Ψ(b)1/p/Ψ(bn)1/p. Clearly εn → 0 as n→∞. The other inequality is

obvious.

LetX be a Banach space. Recall that a mapping T : K → K is called nonexpansive

if ‖Tx−Ty‖ 6 ‖x− y‖ for all x, y ∈ K ⊂ X. A Banach space X has the (weak) fixed

point property if every nonexpansive mapping of every (nonempty weakly compact

convex) closed bounded convex subset K into itself has a fixed point.

Similarly as in [4] by results in [25], we conclude this section with the following

corollary.

Corollary 3.3. Cesàro function space (Cp,w, ‖·‖Cp,w) and its dual ((Cp,w)
′
, ‖·‖(Cp,w)′ )
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fail the fixed point property. Moreover ((Cp,w)
′
, ‖ · ‖(Cp,w)′ ) contains an isometric copy

of L1[0, 1], hence it even fails the weak fixed point property.

3.3 Some results in general Banach spaces

Let (X, ‖ · ‖) be a (real) Banach space. For any x∗ ∈ SX∗ and ε > 0 the set s(x∗; ε) =

{x ∈ BX : x∗x > 1− ε} is called a slice determined by x∗ and ε.

Following Schaffer [62, p. 131], we say that point x ∈ X is uniformly non-square

if there exists ρ > 1 such that

ρmin{‖x‖, ‖y‖} 6 max{‖x+ y‖, ‖x− y‖} for all y ∈ X.

If all points of the unit sphere SX are uniformly non-square then the space (X, ‖ · ‖)

is called locally uniformly non-square (a LUNS space for short).

The following simple observation is known, however we provide its proof for

completeness.

Lemma 3.4. Let (X, ‖ · ‖) be a Banach space.

(i) If x ∈ X is a uniformly non-square point then so is λx for any λ > 0.

(ii) All points x ∈ X are uniformly non-square if and only if all points x ∈ SX are

uniformly non-square.

Proof. (i) Let x ∈ X be uniformly non-square and λ > 0. Let y ∈ X be arbitrary

and y′ = y/λ. By definition we get

max(‖λx+ y‖, ‖λx− y‖) = max(‖λx+ λy′‖, ‖λx− λy′‖)

= λmax(‖x+ y′‖, ‖x− y′‖) > ρλmin(‖x‖, ‖y′‖)

= ρmin(‖λx‖, ‖λy′‖) = ρmin(‖λx‖, ‖y‖).
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(ii) Suppose that every x ∈ SX is uniformly non-square. Clearly x = 0 is uniformly

non-square. For 0 6= x ∈ X, since x/‖x‖ is uniformly non-square so is x by (i).

Proposition 3.5. Let (X, ‖ · ‖) be a Banach space. The following are equivalent.

(i) A point x ∈ SX is not uniformly non-square.

(ii) There exists a sequence (yn) ⊂ X such that ‖yn‖ → 1 and ‖x ± yn‖ → 1 as

n→∞.

(iii) There exists a sequence (yn) ⊂ BX such that ‖yn‖ → 1 and ‖x ± yn‖ → 1 as

n→∞.

(iv) There exists a sequence (yn) ⊂ SX such that ‖x± yn‖ → 1 as n→∞.

(v) There exists a sequence (yn) ⊂ BX such that ‖yn‖ → 1 and ‖λx ± yn‖ → 1 as

n→∞ for all λ ∈ [0, 1].

Proof. (i) =⇒ (ii) First observe that, for any x, y ∈ X,

‖x‖ =

∥∥∥∥x− y2
+
x+ y

2

∥∥∥∥ 6
1

2
‖x+ y‖+

1

2
‖x− y‖.

Hence

‖x+ y‖+ ‖x− y‖ > 2‖x‖. (3.3)

Changing the roles of x and y we can infer that ‖x+ y‖+ ‖x− y‖ > 2 max(‖x‖, ‖y‖).

Hence

max(‖x+ y‖, ‖x− y‖) > max(‖x‖, ‖y‖), for all x, y ∈ X. (3.4)

It follows that
max(‖x+ y‖, ‖x− y‖)

min(‖x‖, ‖y‖)
> 1, for all x, y ∈ X. (3.5)
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Let x ∈ SX be a point which is not uniformly non-square. By the definition of x

and inequality (3.5), we get that there exists sequence (yn) ⊂ X such that

max(‖x+ yn‖, ‖x− yn‖)
min(1, ‖yn‖)

→ 1 as n→∞. (3.6)

By (3.4) we have that max(‖x+yn‖, ‖x−yn‖) > 1 for all n ∈ N and hence it must be

‖yn‖ → 1 as n → ∞. Indeed, if there is a subsequence ynk
such that ‖ynk

‖ 6 η < 1

for all k ∈ N then max(‖x + ynk
‖, ‖x − ynk

‖)/min(1, ‖ynk
‖) > 1/η > 1. Similarly, if

‖ynk
‖ > η > 1 for all k ∈ N then by (3.4) max(‖x+ ynk

‖, ‖x− ynk
‖)/min(1, ‖ynk

‖) >

η > 1. Which is a contradiction with (3.6). Now it follows from (3.6) that max(‖x+

yn‖, ‖x− yn‖)→ 1 as n→∞. Since ‖x‖ = 1, by (3.3) we get that ‖x± yn‖ → 1 as

n→∞.

(ii) =⇒ (iv) By (ii) we can find a subsequence of (yn), again called (yn), such

that ‖yn‖ → 1, ‖x± yn‖ → 1 as n→∞ and either (yn) ⊂ BX or (yn) ⊂ X \BX .

Suppose first that (yn) ⊂ BX . Let γ, γn > 0 be such that γn → γ as n→∞. We

have

‖(1+γn)yn±x‖ = ‖(2+γn)yn−(yn∓x)‖ > |(2 + γn)‖yn‖ − ‖yn ∓ x‖| → 2+γ−1 = 1+γ.

Hence limn→∞‖(1+γn)yn±x‖ > 1+γ. But ‖(1+γn)yn±x‖ 6 γn‖yn‖+‖yn±x‖ → 1+γ

whence limn→∞‖(1 + γn)yn ± x‖ 6 1 + γ and so limn→∞ ‖(1 + γn)yn ± x‖ = 1 + γ.

Equivalently

lim
n→∞

1 + γn
1 + γ

‖(1 + γn)−1x± yn‖ = 1.

Since (1 + γn)/(1 + γ) → 1 as n → ∞ we get that limn→∞ ‖(1 + γn)−1x ± yn‖ = 1.
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Now taking γn = 1/‖yn‖ − 1 we obtain that γn → 0 and

∥∥∥∥x± yn
‖yn‖

∥∥∥∥ =
1

‖yn‖
‖‖yn‖x± yn‖ = (1 + γn)‖(1 + γn)−1x± yn‖ → 1.

In case when (yn) ⊂ X \BX we proceed similarly. Let 0 6 γn 6 1, n ∈ N be such

that γn → 0 as n→∞. We have

‖(1− γn)yn± x‖ = ‖(2− γn)yn− (yn∓ x)‖ > |(2− γn)‖yn‖ − ‖yn ∓ x‖| → 2− 1 = 1.

Hence limn→∞‖(1− γn)yn ± x‖ > 1. But ‖(1− γn)yn ± x‖ 6 ‖γnyn‖+ ‖yn ± x‖ → 1

whence limn→∞‖(1−γn)yn±x‖ 6 1 and so limn→∞ ‖(1−γn)yn±x‖ = 1. Equivalently

lim
n→∞

(1− γn)‖(1− γn)−1x± yn‖ = 1.

Now taking γn = 1− 1/‖yn‖ we obtain that γn → 0 and

∥∥∥∥x± yn
‖yn‖

∥∥∥∥ =
1

‖yn‖
‖‖yn‖x± yn‖ = (1− γn)‖(1− γn)−1x± yn‖ → 1.

Implications (iv) =⇒ (iii) and (iii) =⇒ (i) are obvious. Hence conditions (i)-(iv)

are equivalent.

The implication (v) =⇒ (iii) is clear. While (iii) =⇒ (v) can be proved in the

same way as the first part of (ii) =⇒ (iv) by taking γn = 1/λ − 1 to be a constant

sequence and γ = 1/λ− 1 in case when λ ∈ (0, 1]. For λ = 0 the claim is clear.

Observe that x ∈ SX is uniformly non-square if and only if there exists δ > 0 such

that

max{‖x+ y‖, ‖x− y‖} > 1 + δ for all y ∈ SX . (3.7)
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Clearly, if x ∈ SX is uniformly non-square then (3.7) is satisfied. If x ∈ SX is not

uniformly non-square then by Proposition 3.5 (iv) there exists a sequence (yn) ⊂ SX

such that ‖x± yn‖ → 1. Hence (3.7) is not satisfied.

A point x ∈ SX is called strongly extreme or midpoint locally uniformly rotund (a

MLUR point) if for every sequence (xn) ⊂ BX the condition ‖x±xn‖ → 1 as n→∞

implies that xn → 0 as n → ∞. If all points of the unit sphere SX are strongly

extreme points then the space (X, ‖ · ‖) is called midpoint locally uniformly rotund (a

MLUR space). A Banach space (X, ‖ · ‖) is called uniformly rotund in every direction

(URED space) if xn, z ∈ X, ‖xn‖ → 1, ‖xn + z‖ → 1 and ‖2xn + z‖ → 2 implies that

z = 0.

Lemma 3.6. If x ∈ SX is a strongly extreme point then it is a uniformly non-square

point.

Proof. If x ∈ SX is not a uniformly non-square point then by Proposition 3.5 (iv)

there exists a sequence (yn) ⊂ SX such that ‖x ± yn‖ → 1. Since ‖yn‖ = 1 for all

n ∈ N we see that x is not a strongly extreme point.

Proposition 3.7. If a Banach space (X, ‖ · ‖) is uniformly rotund in every direction

then it is locally uniformly non-square.

Proof. Let (X, ‖ · ‖) be an URED space. Suppose that x ∈ SX is not an uniformly

non-square point. By Proposition 3.5 (iv) there exists a sequence (yn) ⊂ SX such

that ‖x± yn‖ → 1 as n→∞. We get that

‖2yn + x‖ = ‖3yn − (yn − x)‖ > |3‖yn‖ − ‖yn − x‖| → 2 as n→∞.

Hence limn‖2yn + x‖ > 2. But ‖2yn + x‖ 6 ‖yn‖ + ‖yn + x‖ → 2 as n → ∞, which

gives limn‖2yn + x‖ 6 2. It follows that limn ‖2yn + x‖ = 2. Since X is an URED
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space we get that x = 0 which is a contradiction with x ∈ SX .

Proposition 3.8. If there are no uniformly non-square points in the unit sphere SX

then all slices of the unit ball BX have diameter 2.

Proof. Let x∗ ∈ SX∗ and η > 0 be arbitrary. Let δ < η/4 be positive and choose

x ∈ SX such that x∗x > 1 − δ. In particular x ∈ s(x∗; η). By assumption x is

not a uniformly non-square point, so by Proposition 3.5 (iii) there exists a sequence

(yn) ⊂ BX such that ‖x± yn‖ → 1 and ‖yn‖ → 1 as n→∞. Since

x∗(x± yn) 6 |x∗(x± yn)| 6 ‖x∗‖X∗‖x± yn‖ → 1,

there exists N ∈ N such that x∗(x ± yn) < 1 + δ for all n > N . It follows that

|x∗yn| < 2δ for all n > N . Now, since ‖x± yn‖ → 1 as n→∞, for all n large enough

∥∥∥∥x± yn1 + δ

∥∥∥∥ 6 1.

Moreover

x∗
(
x± yn
1 + δ

)
=

1

1 + δ
(x∗x± x∗yn) >

1

1 + δ
(1− δ − 2δ) > 1− 4δ > 1− η,

hence x±yn
1+δ
∈ s(x∗; η) for all n large enough. We also get that

∥∥∥∥x+ yn
1 + δ

− x− yn
1 + δ

∥∥∥∥ =
1

1 + δ
‖2yn‖ →

2

1 + δ
as n→∞.

Since δ can be taken arbitrarily small we get that diameter of s(x∗; η) is equal 2.

The following result is a part of the proof of Theorem 2.5 in [3]. We provide it

here for reader’s convenience.
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Lemma 3.9. Let (X, ‖ · ‖) be an infinite dimensional Banach space. If for every

x ∈ SX there is a sequence (yn) ⊂ BX such that ‖x± yn‖ → 1, ‖yn‖ → 1 and yn → 0

weakly in X as n → ∞ then all nonempty relatively weakly open subsets of the unit

ball BX have diameter 2.

Proof. Let W 6= ∅ be a relatively weakly open subset of BX . Since X is infinite

dimensional there is x ∈ W such that ‖x‖ = 1. By assumption there exists sequence

(yn) ⊂ BX such that ‖x ± yn‖ → 1, ‖yn‖ → 1 and yn → 0 weakly in X as n → ∞.

Let x
′
n = x + yn and x

′′
n = x− yn. Clearly x

′
n, x

′′
n → x weakly in X, ‖x′n‖, ‖x

′′
n‖ → 1

and ‖x′n − x
′′
n‖ = 2‖yn‖ → 2 as n → ∞. Taking zn = x

′
n/‖x

′
n‖ and wn = x

′′
n/‖x

′′
n‖,

we clearly have that zn, wn → x weakly in X, zn, wn ∈ BX and ‖zn − wn‖ → 2 as

n→∞.

Recall that a point x ∈ SX is called an H-point of BX if for every sequence

(xn) ⊂ X such that ‖xn‖ → ‖x‖ and xn → x weakly it follows that ‖x− xn‖ → 0 as

n → ∞. If all points of the unit sphere are H-points then (X, ‖ · ‖) is said to have

Kadec-Klee property or H property or Radon-Riesz property.

Similarly as above we can prove the following.

Lemma 3.10. If for x ∈ SX there is a sequence (yn) ⊂ BX such that yn 9 0, yn → 0

weakly in X and either ‖x + yn‖ → 1 or ‖x − yn‖ → 1 as n → ∞ then x is not an

H-point of BX .

Proof. It is enough to take xn = x+ yn or xn = x− yn. By assumption ‖xn‖ → 1 =

‖x‖, xn → x weakly and ‖xn − x‖ = ‖yn‖9 0.
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3.4 Several geometric properties of Cesàro function spaces

First, we define a sequence of Rademacher-like functions on an arbitrary measurable

set of finite and positive Lebesgue measure.

Definition 3.11. Let A ⊂ R be a Lebesgue measurable set with 0 < mA < ∞. A

sequence of Rademacher functions rn, n ∈ N, on A is defined as

rn(t) =


1 if t ∈

⋃2n−1
i=0 A

(n)
2i ,

−1 if t ∈
⋃2n−1
i=0 A

(n)
2i+1,

where A(0)
0 = A and given A

(n−1)
i , i = 0, 1, . . . , 2n−1 − 1, sets A(n)

i are any sets which

satisfy

A
(n−1)
i = A

(n)
2i ∪ A

(n)
2i+1, A

(n)
2i ∩ A

(n)
2i+1 = ∅, mA

(n)
2i = mA

(n)
2i+1,

for i = 0, 1, . . . , 2n−1−1. Note that A = ∪2n−1
i=0 A

(n)
i for all n ∈ N, and mA(n)

i = mA/2n

for all n ∈ N, and i ∈ {0, 1, . . . , 2n − 1}.

The following fact is known but we provide its proof for completeness.

Lemma 3.12. Let A ⊂ I be a Lebesgue measurable set with 0 < mA < ∞. A

sequence of Rademacher functions rn on A converges to 0 weakly in L1(I).

Proof. Let 0 6 g ∈ L∞(I). Let ε > 0 be arbitrary and sets Bi ⊂ A, i = 1, 2, . . . , N ,

be disjoint and such that A = ∪Ni=1Bi and ess supt,s∈Bi
|g(t) − g(s)| < ε/mA, i =

1, 2, . . . , N . For large enough n’s and for all i ∈ {1, 2, . . . , N} there exist disjoint

sets C
(n)
i , D(n)

i and E
(n)
i such that B

(n)
i = C

(n)
i ∪ D(n)

i ∪ E(n)
i , mC(n)

i = mD
(n)
i ,

rn(C
(n)
i ) = {1}, rn(D

(n)
i ) = {−1} and m(E

(n)
i )→ 0 as n→∞. Observe that

∫
∪Ni=1E

(n)
i

|g(t)rn(t)| dt 6 ‖g‖∞m(∪Ni=1E
(n)
i )→ 0 as n→∞,
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and for all i ∈ {1, 2, . . . , N}

∣∣∣∣∣
∫
Bi\E

(n)
i

g(t)rn(t) dt

∣∣∣∣∣ =

∣∣∣∣∣
∫
C

(n)
i

g(t) dt−
∫
D

(n)
i

g(t) dt

∣∣∣∣∣
6 mC

(n)
i ess sup

t∈Bi

g(t)−mD(n)
i ess inf

t∈Bi

g(t) < εmBi/mA.

Now, for n’s large enough,

∣∣∣∣∫
I

g(t)rn(t) dt

∣∣∣∣ =

∣∣∣∣∫
A

g(t)rn(t) dt

∣∣∣∣
=

N∑
i=1

∣∣∣∣∫
Bi

g(t)rn(t) dt

∣∣∣∣
6

N∑
i=1

∣∣∣∣∣
∫
Bi\E

(n)
i

g(t)rn(t) dt

∣∣∣∣∣+
N∑
i=1

∫
E

(n)
i

|g(t)| dt 6 2ε.

Since ε > 0 is arbitrary, we get that
∫
I
g(t)rn(t) dt → 0 as n → ∞. If g ∈ L∞(I) is

arbitrary then one writes g = g+− g−, where g+, g− > 0 and applies the above result

to both g+, g− and obtains the hypothesis.

Lemma 3.13. For any function f ∈ L0(I) there exists sequence (pn) ⊂ L1(I),

pn(I) = {−1, 1} such that
∫
I
fχBpn → 0 as n → ∞ for any measurable set B for

which fχB ∈ L1(I).

Proof. Suppose first that m(supp f) <∞. Let pn = rn be a sequence of Rademacher

functions defined on supp f and (Am) be an increasing sequence of measurable sets

such that ∪mAm = supp f and f is essentially bounded on each Am. Since L1(I) is

order continuous for every ε > 0 there exists M ∈ N such that
∫
I
|f(t)|χB∩Ac

m
(t) dt < ε

for all m > M . It follows that
∣∣∫
I
|f(t)|χB∩Ac

m
(t)pn(t) dt

∣∣ < ε for all m > M and all
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n ∈ N. Since pn → 0 weakly in L1(I), we get that

∣∣∣∣∫
I

f(t)χB(t)pn(t) dt

∣∣∣∣ =

∣∣∣∣∫
I

f(t)χB∩Am(t)pn(t) dt+

∫
I

f(t)χB∩Ac
m

(t)pn(t) dt

∣∣∣∣
6

∣∣∣∣∫
I

f(t)χB∩Am(t)pn(t) dt

∣∣∣∣+

∫
I

|f(t)|χB∩Ac
m

(t) dt

6

∣∣∣∣∫
I

f(t)χB∩Am(t)pn(t) dt

∣∣∣∣+ ε→ ε as n→∞.

It follows that
∣∣∫
I
f(t)χB(t)pn(t) dt

∣∣ 6 2ε for all n’s large enough. Hence

∫
I

f(t)χB(t)pn(t) dt→ 0 as n→∞.

Suppose now that m(supp f) = ∞. Similarly as above let (Am) be an increasing

sequence of measurable sets such that ∪mAm = supp f and f is essentially bounded

on each Am. Since L1(I) is order continuous for every ε > 0 there exists M ∈ N such

that
∫
I
|f(t)|χB∩Ac

m
(t) dt < ε for all m > M . For each m ∈ N let p(m)

n be sequence of

Rademacher functions defined onAm. By the first part
∫
I
f(t)χAm(t)χB(t)p

(m)
n (t) dt→

0 as n→∞ for each m ∈ N. We have that for each m ∈ N there exists Nm ∈ N such

that for all n > Nm,

∣∣∣∣∫
I

f(t)χAm(t)χB(t)p(m)
n (t) dt

∣∣∣∣ =

∣∣∣∣∫
I

f(t)χB(t)p(m)
n (t) dt

∣∣∣∣ < 1/m.

Taking pn = p
(n)
Nn

finishes the proof.

Lemma 3.14. For every function f ∈ SCp,w there exists a sequence (gn) ⊂ BCp,w

such that ‖f ± gn‖Cp,w → 1, ‖gn‖Cp,w → 1 and gn → 0 weakly in Cp,w as n→∞.

Proof. Since f ∈ SCp,w by Lemma 3.13 there exists sequence (pn) ⊂ L1(I), pn(I) =

{−1, 1} such that
∫
I
fχBpn → 0 as n → ∞ for any measurable set B for which

fχB ∈ L1(I). Let gn = fpn. Since Cp,w is order continuous and supp pn ⊂ supp f ,
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m(supp f \ supp pn) → 0 it is clear that ‖gn‖Cp,w → 1 as n → ∞ and ‖gn‖Cp,w 6

‖f‖Cp,w = 1.

Now, by Lemma 3.13, for all x ∈ I we get that

∫ x

0

|f(t)± gn(t)| dt =

∫ x

0

|f(t)± f(t)pn(t)| dt =

∫ x

0

|f(t)|(1± pn(t)) dt

=

∫ x

0

|f(t)| dt±
∫ x

0

|f(t)|pn(t) dt→
∫ x

0

|f(t)| dt as n→∞.

By the Lebesgue Dominated Convergence Theorem we get that ‖f ± gn‖Cp,w → 1 as

n→∞.

Observe that for any f ∈ Cp,w, gn = fpn → 0 weakly in Cp,w. Indeed, for every

function g ∈ (Cp,w)′,
∫
I
g(t)f(t)pn(t) dt → 0 as n → ∞ since fg ∈ L1(I), by Lemma

3.14.

Lemmas 3.14, 3.9, 3.10 imply the following.

Corollary 3.15. All nonempty relatively open subsets of the unit ball of the space Cp,w

have diameter 2. The unit sphere SCp,w does not have uniformly non-square points

nor strongly extreme points nor H-points. The space (Cp,w, ‖ · ‖Cp,w) is neither locally

uniformly non-square nor midpoint locally uniformly rotund nor uniformly rotund in

every direction.
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4 Cesàro-Orlicz sequence spaces

In this chapter we study Cesàro-Orlicz sequence spaces. We explore the influence

of the growth condition δ2 of ϕ on the geometric structure of these spaces. Moreover,

we present the comparison theorem for these spaces and show that they are not

B-convex.

All results presented in this chapter are published in [42] and [37].

4.1 Preliminaries

Cesàro sequence spaces cesp, 1 6 p <∞, appeared in 1968, as mentioned in Chapter

1. It seems that their generalization, Cesàro-Orlicz sequence spaces cesϕ, were defined

for the first time in 1988, when Lim and Yee found their dual spaces [66]. Recently

Cui, Hudzik, Petrot, Suantai and Szymaszkiewicz obtained important properties of

spaces cesϕ [21]. In 2007 Maligranda, Petrot and Suantai showed that cesϕ is not B-

convex, if ϕ satisfies δ2 condition and cesϕ 6= {0} [51]. The extreme points and strong

U -points of cesϕ have been characterized by Foralewski, Hudzik and Szymaszkiewicz

in [28]. They also considered local uniform convexity and Kadec-Klee property of

cesϕ [29]. Although the spaces cesϕ have been studied by several mathematicians,

some essential and basic properties remain still unknown.

In this dissertation, we present characterizations of some of them. In section 4.2,

under the assumption that the lower index αϕ > 1, we shall present that δ2 condition

is necessary and sufficient for the space of all order continuous elements (cesϕ)a to

coincide with cesϕ. In section 4.3, given functions ϕ1 and ϕ2, under the assumption

that αϕ1 > 1, we show that cesϕ1 ⊂ cesϕ2 if and only if `ϕ1 ⊂ `ϕ2 , that is, there

exist b > 0 and t0 > 0 such that 0 < ϕ1(t0) < ∞ and ϕ2(t) 6 ϕ1(bt) for all t with

0 < t 6 t0.
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In section 4.4 we consider the problem of existence of order linearly isometric

copy of `∞ in cesϕ under the Luxemburg norm. Recall that `∞ is an order isometric

copy in Orlicz space `ϕ equipped with the Luxemburg norm if and only if ϕ does

not satisfy condition δ2 [47]. It is expected that a similar result remains true in

cesϕ. However such factors as lack of symmetry or the presence of averaging operator

in the definition of these spaces cause that this problem in the context of Cesàro-

Orlicz spaces is more involved than in Orlicz spaces. Here we present a solution of

this problem for comparatively large class of Orlicz functions ϕ. In section 4.4 we

prove that such a copy exists in cesϕ whenever ϕ does not satisfy condition δ2 and

the Orlicz class {x : Iϕ(x) < ∞} is closed under the averaging operator G, that is

{x : Iϕ(x) < ∞} ⊂ {x : Iϕ(Gx) < ∞}. We also present several conditions under

which the latter inclusion is satisfied and discuss their relations to Matuszewska-Orlicz

indices of ϕ. We show among others that whenever ϕ1/p is strongly equivalent to a

convex function for some p > 1, then the Orlicz class is closed under the averaging

operation. The latter condition is also fulfilled whenever the Hardy inequality for

the Orlicz function ϕ holds true. We finish this section by presenting an example of

Orlicz function ϕ for which the Hardy inequality is not satisfied but the space cesϕ

contains an order isometric copy of `∞.

In 2007, Maligranda, Petrot and Suantai showed that cesϕ is not B-convex if

ϕ ∈ δ2 and cesϕ 6= {0} [51]. In the last section we show that the n-th (strong) James

constant of non-trivial space cesϕ equipped with either the Luxemburg or Orlicz norm

equals n (which, in particular implies that the space is not B-convex), extending the

family of functions ϕ for which it is satisfied and solving the problem posed in [51].

We shall use the following notation in the sequel. For any a ∈ R, dae is the

smallest integer greater than a. By Hn we denote the n-th harmonic number, that

is Hn =
∑n

i=1 i
−1. A function ϕ : [0, ∞) → [0, ∞] is called an Orlicz function if it
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is convex, right-continuous at 0, left-continuous on (0, ∞), ϕ(0) = 0, and ϕ(u) > 0

for some u > 0. If, in addition, ϕ satisfies the conditions limu→0 ϕ(u)/u = 0 and

limu→∞ ϕ(u)/u =∞ then it is called an N -function.

By `0 we denote the linear space of all real sequences x = (x(n))∞n=1. By en we

denote unit vectors in `0. The convex modular Iϕ(x) =
∑∞

n=1 ϕ (|x(n)|) defined on

the whole `0 gives rise of the Orlicz sequence space `ϕ with the Luxemburg norm

‖x‖ϕ = inf{ε > 0 : Iϕ(ε−1x) 6 1}. We say that the Orlicz function ϕ satisfies

the δ2 condition (we will write ϕ ∈ δ2) if there are K > 0 and u0 > 0 such that

ϕ(u0) > 0, and ϕ (2u) 6 Kϕ (u) for all u ∈ [0, u0]. It follows that ϕ(u0) < ∞. This

condition plays crucial role in the theory of Orlicz sequence spaces. The function

ϕ∗ (v) = sup {uv − ϕ (u) : u > 0}, v > 0, is called a complementary function to ϕ.

Two Orlicz functions ϕ1 and ϕ2 are said to be equivalent if there exist a, b, u0 > 0

such that ϕ2 (u0) > 0 and ϕ1(au) 6 ϕ2(u) 6 ϕ1(bu) for all u ∈ [0, u0]. Two Orlicz

functions ϕ1 and ϕ2 are said to be strongly equivalent if there exist A, B, u0 > 0 such

that ϕ1(u0) > 0, and Aϕ1(u) 6 ϕ2(u) 6 Bϕ1(u) for all u ∈ [0, u0].

Orlicz sequence spaces are thoroughly discussed in [47] (see also [16]), and the

most comprehensive exposition of Orlicz functions is presented in [40] and [16]. The

information on modular spaces can be found in [53].

For any x ∈ `0 we denote by Gx the sequence of averages of x, that is

Gx(n) =
1

n

n∑
i=1

|x(i)|, n ∈ N.

Given an Orlicz function ϕ, the modular

Icesϕ(x) = Iϕ(Gx) =
∞∑
n=1

ϕ(Gx(n))
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is convex and defines Cesàro-Orlicz sequence space

cesϕ =
{
x ∈ `0 : Icesϕ (λx) <∞ for some λ > 0

}
with the Luxemburg norm given by

‖x‖cesϕ = inf {ε > 0 : Icesϕ
(
ε−1x

)
6 1} = ‖Gx‖ϕ.

In cesϕ we also define the Orlicz norm in the Amemyia form

‖x‖0
cesϕ = inf

k>0

1

k

(
1 + Icesϕ(kx)

)
= ‖Gx‖0

ϕ = inf
k>0

1

k
(1 + Iϕ(kGx)) .

It is well known that for any x ∈ cesϕ, ‖x‖cesϕ 6 ‖x‖0
cesϕ 6 2‖x‖cesϕ [32].

Unless we state explicitly otherwise, we shall consider further the space cesϕ

equipped with the Luxemburg norm.

In the case when ϕ (u) = up, 1 6 p <∞, the space cesϕ is just a Cesàro sequence

space cesp, with the norm given by

‖x‖cesp =

[ ∞∑
n=1

( 1

n

n∑
i=1

|x(i)|
)p]1/p

.

If ϕ(u) = 0 for u ∈ [0, 1] and ϕ(u) =∞ for u ∈ (1,∞), then cesϕ is denoted by ces∞

and

ces∞ = {x ∈ `0 : sup
n∈N

1

n

n∑
i=1

|x(i)| <∞},

where ‖x‖cesϕ = ‖x‖0
cesϕ = supn∈N

1
n

∑n
i=1 |x(i)|.

Note that, if we define in a similar way the space cesϕ for a function ϕ : [0,∞)→

[0,∞) which is concave and such that ϕ (0) = 0, we get a trivial space if ϕ vanishes
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only at zero. Indeed, if there is N ∈ N such that x(N) 6= 0 then for any λ > 0, by

concavity of ϕ we have

Icesϕ(λx) =
∞∑
n=1

ϕ

(
λ

n

n∑
i=1

|x(i)|

)
>

∞∑
n=N

ϕ

(
λ

n

n∑
i=1

|x(i)|

)

>
∞∑
n=N

ϕ

(
λ|x(N)|

n

)
>

∞∑
n=N

1

n
ϕ(λ|x(N)|) =∞,

hence cesϕ = {0}. It is well known that ces1 = {0} [45], which also follows from

the fact that ϕ(u) = u is concave and our remark mentioned above. Note that, if

limu→0+ ϕ(u)/u > 0 then cesϕ = {0} since ϕ is then equivalent to a linear function

and so cesϕ = ces1. Hence as long as we deal with a non trivial space cesϕ we may

assume that ϕ is an N -function (in the case when limu→∞ ϕ(u)/u <∞ we can always

find an N -function which is equivalent to ϕ).

Let ϕ be an Orlicz function. Let us mention some well known facts about the cesϕ

spaces. The space cesϕ is not trivial if and only if for every k > 0 there exist nk ∈ N

such that
∑∞

n=nk
ϕ
(
k
n

)
<∞ (this is also equivalent to the condition

∑∞
n=n1

ϕ
(

1
n

)
<∞

for some n1 ∈ N) [21].

The space cesϕ (as well as `ϕ) is a Köthe sequence space with the Fatou property.

For a proof of the Fatou property in cesϕ we refer to [21], and for details on Köthe

spaces see [39].

Recall that the Matuszewska-Orlicz lower index αϕ and upper index βϕ of an

Orlicz function ϕ are defined as follows

αϕ = sup
{
p > 0 : ∃K>0, v:ϕ(v)>0 ∀0<t61, 0<λ6v ϕ(λt) 6 Ktpϕ(λ)

}
,

βϕ = inf
{
p > 0 : ∃K>0, v:ϕ(v)>0 ∀0<t61, 0<λ6v ϕ(λt) > Ktpϕ(λ)

}
.
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Note, that in the case when the function ϕ vanishes only at zero, we can write

αϕ = sup {p > 0 : ∃K>0 ∀0<λ,t61ϕ(λt) 6 Ktpϕ(λ)}

βϕ = inf {p > 0 : ∃K>0 ∀0<λ,t61ϕ(λt) > Ktpϕ(λ)} .
(4.1)

These indices were introduced by Matuszewska and Orlicz in [52] in a different,

but equivalent way. By convexity of ϕ, 1 6 αϕ 6 βϕ 6 ∞. It is well known

that the condition βϕ < ∞ is equivalent to ϕ ∈ δ2, for an N -function ϕ we have

α−1
ϕ + β−1

ϕ∗ = α−1
ϕ∗ + β−1

ϕ = 1 [49, 50], and that αϕ > 1 is equivalent to ϕ∗ ∈ δ2 [49].

It turns out that αϕ = p(`ϕ) and βϕ = q(`ϕ) where p(`ϕ) and q(`ϕ) are the

lower and upper Boyd indices of the Orlicz sequence space `ϕ (see [48, Proposition

2.b.5 and Remark 2 on page 140]). We also have that the appropriate indices of two

equivalent functions coincide. For necessary definitions and more information about

Boyd indices, Matuszewska-Orlicz indices (as well as for relations among them) and

Boyd indices of Orlicz spaces we refer to [14, 35] and chapter 4 of [49]; see also two

classical books [47,48].

For a bounded sequence x its decreasing rearrangement x∗ is defined by

x∗(n) = inf { λ : #{i ∈ N : |x(i)| > λ} < n} , n ∈ N,

where for a set A, #A denotes the number of elements in A if A is a finite set, or ∞

otherwise. Let us mention one important, direct consequence of Theorem 1 and its

proof in [13].

Theorem 4.1. The Hardy operator H : `ϕ → `ϕ defined by

Hx(n) =
1

n

n∑
i=1

x∗(i) for all n ∈ N,
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where x∗ is a decreasing rearrangement of x, is bounded if and only if p(`ϕ) > 1.

As a further consequence of Theorem 4.1, we have the following.

It is clear that for any sequence x ∈ cesϕ, ‖x‖cesϕ = ‖Gx‖ϕ. Suppose that

p(`ϕ) > 1, then

‖Gx‖ϕ 6 ‖Gx∗‖ϕ = ‖Hx‖ϕ 6 C‖x∗‖ϕ = C‖x‖ϕ,

hence x ∈ `ϕ implies x ∈ cesϕ. Conversely, suppose that there is C > 0 such

that ‖Gx‖ϕ 6 C‖x‖ϕ for every x ∈ `ϕ. Then it also holds for every x∗, and hence

‖Hx‖ϕ 6 C‖x‖ϕ, which implies p(`ϕ) > 1. Since p(`ϕ) = αϕ, we get

Corollary 4.2. For any Orlicz function ϕ we have αϕ > 1 if and only if `ϕ ⊂ cesϕ.

In particular, if αϕ > 1 then cesϕ 6= {0}.

The following example shows that it is possible that αϕ = 1 and cesϕ 6= {0}, as

well as that cesϕ = {0} although ϕ is not equivalent to a linear function.

Example 4.3. Let a > 1 and

ϕa(t) =


0 if t = 0,

t
(− ln(t))a

if 0 < t 6 1
e
,

1
2
e(a2 + 2a)t2 + (1− a− a2)t+ a2

2e
if t > 1

e
.

It is easy to see that each ϕa is a strictly convex N -function. Moreover, for p > 1

(applying de L’Hospital rule dae times), we get

lim
t→0+

ϕa(λt)

ϕa(λ)tp
= lim

t→0+

(− lnλ)at1−p

(− lnλt)a
=

(
p− 1

a

)dae
lim
t→0+

(− lnλ)at1−p

(lnλt)a−dae
=∞
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for all λ > 0. Hence sup0<λ,t61
ϕa(λt)
ϕa(λ)tp

=∞ for all p > 1, which together with convexity

of ϕa gives αϕa = 1 (hence βϕ∗a = ∞ which is equivalent to ϕ∗a /∈ δ2). We also have

ϕa ∈ δ2, since

lim sup
t→0+

ϕa(2t)

ϕa(t)
= lim sup

t→0+

2(− ln t)a

(− ln(2t))a
6 2 <∞.

Hence βϕa < ∞ (in fact βϕa = 1). For a > 1 the space cesϕa 6= {0} since∑∞
n=3 ϕa(

1
n
) =

∑∞
n=3

1
n(ln(n))a

< ∞ by the integral test. Notice that cesϕ1 = {0}

since
∑∞

n=3
1

n(ln(n))
=∞, but the function ϕ1 is not equivalent to a linear function.

The above example also shows that Matuszewska-Orlicz index αϕ is not fine

enough to determine the validity of cesϕ 6= {0}.

4.2 The condition δ2 in the Cesàro-Orlicz sequence space

Let ϕ be an Orlicz function and

(cesϕ)a =

{
x ∈ cesϕ : ∀k>0∃nk∈N

∞∑
n=nk

ϕ

(
k

n

n∑
i=1

|x(i)|

)
<∞

}
.

It turns out that (cesϕ)a is the subspace of all order continuous elements of cesϕ [21].

Remark 4.4. Let ψ be an Orlicz function, such that ψ(u) > 0 for all u > 0. For an

Orlicz function ϕ defined by

ϕ(u) =


0 for u ∈ [0, a],

ψ(u− a) for u > a,

for some a > 0, we have cesϕ 6= (cesϕ)a. Indeed, taking x = (a, a, . . .) we have

Icesϕ(x) = 0 and so x ∈ cesϕ. Moreover
∑∞

n=n2
ϕ
(

2
n

∑n
i=1 |x(i)|

)
=
∑∞

n=n2
ϕ (2a) =∞

for any n2 ∈ N, which implies that x /∈ (cesϕ)a.
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Theorem 2.4 in [21] states that if ϕ ∈ δ2 then cesϕ = (cesϕ)a. We will show the

partial converse of this theorem.

Theorem 4.5. If (cesϕ)a = cesϕ and αϕ > 1 then ϕ ∈ δ2. In particular, if αϕ > 1

then (cesϕ)a = cesϕ if and only if ϕ ∈ δ2.

Proof. Let (cesϕ)a = cesϕ and αϕ > 1. Note that we have cesϕ 6= {0} by Corollary

4.2, and that ϕ(u) > 0 for all u > 0 by Remark 4.4. Let u0 be such that ϕ(2u0) <∞.

Suppose that ϕ /∈ δ2. Then for all K > 0 and u > 0 there exists v ∈ [0, u], such

that ϕ(2v) > Kϕ(v). So there exists u1 ∈ (0, u0] such that ϕ(2u1) > 2ϕ(u1). Let

c1 = d 1
2ϕ(u1)

e. We can find a decreasing sequence (un) ⊂ (0, u0] such that

ϕ(2un) > 2nϕ(un). (4.2)

Let

cn =

⌈
1

2nϕ(un)

⌉
for n > 1.

It follows that

ϕ(un) <
ϕ(2un)

2n
6
ϕ(2u0)

2n
for all n ∈ N. (4.3)

Let c0 = 0. Define sets for n ∈ N,

En = {c0 + c1 + c2 + . . .+ cn−1 + 1, c0 + c1 + . . .+ cn−1 + 2, . . . , c0 + c1 + . . .+ cn} .

The sets En are pairwise disjoint, µEn = cn for all n ∈ N and
⋃∞
n=1En = N.

Define the sequence (x(i))∞i=1 by

x(i) = un if i ∈ En for some n ∈ N.
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We have that

Iϕ(x) =
∞∑
i=1

ϕ(|x(i)|) =
∞∑
n=1

ϕ(un)µEn =
∞∑
n=1

ϕ(un)

⌈
1

2nϕ(un)

⌉
6

∞∑
n=1

ϕ(un)

(
1

2nϕ(un)
+ 1

)
6

∞∑
n=1

(
1

2n
+
ϕ(2u0)

2n

)
= 1 + ϕ(2u0) <∞

by inequality (4.3). Hence x ∈ lϕ, so x ∈ cesϕ since `ϕ ⊂ cesϕ by the condition

αϕ > 1.

But, by inequality (4.2) and the fact that x is a decreasing sequence we have

∞∑
n=n2

ϕ

(
2

n

n∑
i=1

|x(i)|

)
>

∞∑
n=n2+1

∑
i∈En

ϕ(2un)

=
∞∑

n=n2+1

ϕ(2un)µEn

>
∞∑

n=n2+1

2nϕ(un)

⌈
1

2nϕ(un)

⌉
>

∞∑
n=n2+1

1 =∞

for all n2 ∈ N, so x /∈ (cesϕ)a. Hence we get a contradiction.

The equivalence stated in the second part of this theorem follows clearly from the

first part and from Theorem 2.4 in [21].

We would like to be able to replace condition αϕ > 1 in Theorem 4.5 by cesϕ 6= {0}.

It would be possible if we manage to show that the conditions αϕ = 1 and βϕ = ∞

imply, either cesϕ = {0} or (cesϕ)a 6= cesϕ. Unfortunately these conditions do not

imply cesϕ = {0}, which shows the following example.
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Example 4.6. Let

p(t) =


0 if t = 0,

1
n!

if t ∈
[

1
(n+1)!

, 1
n!

)
for n ∈ N,

t if t > 1.

The function ϕ(u) =
∫ u

0
p(t)dt is an N -function such that ϕ /∈ δ2 and ϕ∗ /∈ δ2,

that is βϕ = ∞ and αϕ = 1. Indeed, let un = 1
n!

for all n ∈ N. It is easy to see that

u2
n(1− (n− 1)−1) 6 ϕ(un) 6 u2

n. We have that

ϕ(2un)

ϕ(un)
>

∫ 2/n!

1/n!
p(t)dt

ϕ(un)
>

(n!(n− 1)!)−1

(n!n!)−1
= n

and

ϕ (2−1un)

ϕ(un)
>
ϕ(un)− 2−1ϕ(un)− (n!(n+ 1)!)−1

ϕ(un)

=
1

2
− (n!(n+ 1)!)−1

(n!)−2(1− (n− 1)−1)
>

1

2
− 1

n− 2
for n > 2.

So ϕ(2un) > nϕ(un) for all n > 2, which gives ϕ /∈ δ2. Similarly ϕ∗ /∈ δ2, since

ϕ(2−1un)/ϕ(un)→ 2−1 as n→∞. We also have, for all n ∈ N,

ϕ

(
1

n!

)
=

∞∑
k=n+1

(
1

(k − 1)!
− 1

k!

)
1

(k − 1)!

=
∞∑
k=n

(
1

k!

)2(
1− 1

k + 1

)
<

∞∑
k=n

(
1

k!

)2

,

and
(n+1)!−1∑
m=n!

ϕ

(
1

m

)
6 ((n+ 1)!− n!)ϕ

(
1

n!

)
= nn!ϕ

(
1

n!

)
.
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Hence

∞∑
n=1

ϕ

(
1

n

)
=
∞∑
n=1

(n+1)!−1∑
m=n!

ϕ

(
1

m

)
6

∞∑
n=1

∞∑
k=n

nn!

(k!)2

6 e+
∞∑
n=2

1

(n− 1)!

(
1 +

1

(n+ 1)2
+

1

(n+ 1)2(n+ 2)2
+ . . .

)
6 e+

∞∑
n=2

1

(n− 1)!

∞∑
k=1

1

nk
= e+

∞∑
n=1

1

n!n
< 2e <∞,

which means that cesϕ 6= {0} (note that also cesϕ∗ 6= {0}).

4.3 The comparison theorem for the Cesàro-Orlicz sequence spaces

We start this section with a basic observation.

Proposition 4.7. Let ϕ1 and ϕ2 be Orlicz functions. If there exist b, t0 > 0 such

that ϕ2(t0) > 0 and ϕ2(t) 6 ϕ1(bt) for all t ∈ [0, t0] then cesϕ1 ⊂ cesϕ2.

Proof. We may assume that b > 1, and substituting u = bt we get that

ϕ2(b−1u) 6 ϕ1(u) for all u ∈ [0, bt0]. (4.4)

Let x ∈ cesϕ1 , i.e. there exists λ > 0, such that Icesϕ1
(λx) < ∞. The set Ax ={

n ∈ N : λ
n

∑n
i=1 |x(i)| > bt0

}
is finite, because otherwise we would get

Icesϕ1
(λx) >

∑
n∈Ax

ϕ1

(
λ

n

n∑
i=1

|x(i)|

)
>
∑
n∈Ax

ϕ1 (bt0) >
∑
n∈Ax

ϕ2(t0) =∞

by the inequality (4.4). Taking λ̃ = c
b

for c small enough, we get that Icesϕ2
(λ̃x) 6

Icesϕ1
(cx) 6 Icesϕ1

(λx) <∞, and so x ∈ cesϕ2 .
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Corollary 4.8. If functions ϕ1 and ϕ2 are equivalent then cesϕ1 = cesϕ2 as sets and

the norms of these spaces are equivalent.

Proof. It follows from Proposition 4.12 and the fact that cesϕ is a Köthe sequence

(function) space with the Fatou property for any Orlicz function ϕ (see [8, Theorem

1.8] and [39]).

We use a similar approach as in the proof of Theorem 4.5 to show the following

comparison theorem.

Theorem 4.9. Let ϕ1 and ϕ2 be Orlicz functions such that ϕ1(u) > 0, ϕ2(u) > 0 for

all u > 0 and αϕ1 > 1. If cesϕ1 ⊂ cesϕ2 then there exist b > 0 and t0 > 0 such that

ϕ2(t) 6 ϕ1(bt) for all t with 0 < t 6 t0.

Proof. By convexity of ϕ2, the condition stated in the hypothesis is equivalent to the

following one: there exist a, b, u0 > 0 such that

ϕ2(u) 6 aϕ1(bu) for all u ∈ (0, u0]. (4.5)

Assume that cesϕ1 ⊂ cesϕ2 . Suppose that condition (4.5) is not satisfied. Let u0 > 0

be such that ϕ2(u0) < ∞. We can find decreasing sequence (un)∞n=1 ⊂ (0, u0] such

that ϕ2(u1) > 2ϕ1(2u1) and

ϕ2(un) > (c1 + c2 + . . .+ cn−1)2nϕ1((c1 + c2 + . . .+ cn−1)2nun), (4.6)

where c1 =
⌈

1
2ϕ1(2u1)

⌉
, and

cn =

⌈
1

(c1 + . . .+ cn−1)2nϕ1((c1 + . . .+ cn−1)2nun)

⌉
for n > 1. (4.7)
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We have 1 6 cn < ∞ for all n ∈ N by (4.6) and since ϕ1(u) > 0 for all u > 0.

Denote d1 = 1 and dn =
∑n−1

i=1 ci for n > 1. Note that the sequence (dj)
∞
j=1 is strictly

increasing. Define the sets E1 = {1, 2, . . . , c1} and En = {dn + 1, dn + 2, . . . , dn+1} for

n > 1. The sets En are pairwise disjoint, µEn = cn for all n ∈ N and
⋃∞
n=1En = N.

Define the sequence (x(i))∞i=1 by

x(i) = dn2nun if i ∈ En for some n ∈ N.

We have that

Iϕ1(x) =
∞∑
n=1

ϕ1(dn2nun)µEn 6
∞∑
n=1

ϕ1(dn2nun)

(
1

dn2nϕ1(dn2nun)
+ 1

)
6

∞∑
n=1

(
2−n + 2−nϕ2(u0)

)
= 1 + ϕ2(u0) <∞,

by inequality (4.6). Hence x ∈ lϕ1 , so x ∈ cesϕ1 since `ϕ1 ⊂ cesϕ1 by the assumption

αϕ1 > 1.

Let now λ > 0. Since for n ∈ Ej we have

n− dj
n

dj =

(
1− dj

n

)
dj >

(
1− dj

dj + 1

)
dj =

dj
dj + 1

→ 1 as j →∞.

The latter and inequality (4.6) imply that

Icesϕ2
(λx) =

∞∑
j=1

∑
n∈Ej

ϕ2

(
λ

n

n∑
i=1

|x(i)|

)
>

∞∑
j=1

∑
n∈Ej

ϕ2

λ
n

n∑
i=dj+1

dj2
juj


=
∞∑
j=1

∑
n∈Ej

ϕ2

(
λ
n− dj
n

dj2
juj

)
>

∞∑
j=j0

ϕ2

(
λ

1

2
2juj

)
µEj

>
∞∑
j=j1

ϕ2 (uj)µEj >
∞∑
j=j1

dj2
jϕ1

(
dj2

juj
)
µEj =

∞∑
j=j1

1 =∞
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for sufficiently large indices j1 > j0 > 1. Since λ was arbitrary, we get x /∈ cesϕ2 , and

this gives a contradiction.

Corollary 4.10. Let ϕ1 and ϕ2 be Orlicz functions such that ϕ1(u) > 0, ϕ2(u) > 0

for all u > 0, and αϕ1 > 1. The following conditions are equivalent.

(i) cesϕ1 ⊂ cesϕ2.

(ii) There exist b, t0 > 0 such that ϕ2(t) 6 ϕ1(bt) for all t ∈ [0, t0].

(iii) There exists C > 0 such that ‖x‖cesϕ2
6 C‖x‖cesϕ1

for all x ∈ cesϕ1.

Proof. It follows from Lemma 4.12, Corollary 4.8 and Theorem 4.9.

4.4 Order isometric copy of `∞ in Cesàro-Orlicz sequence spaces

In this section we provide some sufficient conditions under which the space cesϕ

contains an order isometric copy of `∞. Recall that if ϕ ∈ δ2 then cesϕ is order

continuous [21, Theorem 2.4], and thus in view of [39, Theorem 4, p. 295], cesϕ does

not contain any isomorphic copy of `∞. On the other hand, if ϕ /∈ δ2 and α(ϕ) > 1

then cesϕ is not order continuous (Theorem 4.5) and again by [39, Theorem 4, p.

295], cesϕ contains an order isomorphic copy of `∞. It is also well known that the

Orlicz sequence space `ϕ under the Luxemburg norm has an order isometric copy of

`∞ if and only if ϕ /∈ δ2 [36]. It is expected that the similar result remains true in

the case of cesϕ spaces. We prove here the desired result for quite large family of

Orlicz functions, namely for ϕ /∈ δ2 and such that the Orlicz class is closed under

the operation G, in particular for such ϕ that ϕ1/p is strongly equivalent to a convex

function for some p > 1.

We start with the main result in this section.
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Theorem 4.11. If ϕ /∈ δ2 and the Orlicz class {x : Iϕ(x) < ∞} is closed under the

averaging operator G, then cesϕ contains an order isometric copy of `∞.

Proof. We will consider two cases. First we assume that ϕ(u) > 0 for all u > 0.

Let b = sup{u > 0 : ϕ(u) < ∞}. It is well known that ϕ ∈ δ2 if and only if

there exist L > 1 and K, u0 > 0 such that ϕ(u0) > 0, and ϕ(Lu) 6 Kϕ(u) for all

u ∈ [0, u0] (see [16] p. 9) Assuming that ϕ /∈ δ2, for all L > 1 there exists a decreasing

sequence (un)∞n=1 ⊂ (0, L−1b), depending on L, such that ϕ(Lun) > Knϕ(un) where

the sequence (Kn)∞n=1 can be chosen to have a property that
∑∞

n=1K
−1
n <∞. Clearly

0 < ϕ(Lun) <∞ for every n ∈ N. Hence

∞∑
n=1

ϕ(un)

ϕ(Lun)
<
∞∑
n=1

1

Kn

<∞. (4.8)

Note that the above gives un → 0 as n→∞. Indeed, otherwise we would be able to

find a subsequence (unk
)∞k=1 such that for all k ∈ N and for some ε > 0, ϕ(unk

) > ε.

Then for all k ∈ N,
ϕ(unk

)

ϕ(Lunk
)
>

ε

ϕ(Lun1)
> 0,

which would contradict (4.8).

Let (εm)∞m=1 be any positive, decreasing sequence converging to zero. For any

m ∈ N let (K
(m)
n )∞n=1 be a sequence of positive real numbers such that

∞∑
n=1

1

K
(m)
n

6
1

2m+1
.

Now by the first part, for any m ∈ N we can find a decreasing sequence (u
(m)
n )∞n=1 ⊂

(0, (1 + εm)−1b) such that u(m)
n → 0 as n→∞, and

ϕ((1 + εm)u(m)
n ) > K(m)

n ϕ(u(m)
n )

72



for all m ∈ N. Thus for all m ∈ N,

∞∑
n=1

ϕ(u
(m)
n )

ϕ((1 + εm)u
(m)
n )

<
∞∑
n=1

1

K
(m)
n

6
1

2m+1
.

In view of u(m)
n → 0 as n → ∞, we can find a subsequence (nk) ⊂ N such that

u
(1)
n1 > u

(2)
n2 > u

(3)
n3 > . . .. Hence without loss of generality we can assume that for

m > 1, u(m)
m < u

(m−1)
m−1 . Let

cn =

 1

ϕ
(

(1 + εn)u
(n)
n

)


for n ∈ N. Note that 1 6 cn < ∞ for all n ∈ N. Define x(i) = u
(n)
n whenever

i ∈ [c1 + c2 + . . .+ cn−1 + 1, . . . , c1 + c2 + . . .+ cn]. It is clear that the sequence x is

decreasing. We have

Iϕ(x) =
∞∑
i=1

ϕ(|x(i)|) =
∞∑
n=1

cnϕ(u(n)
n ) =

∞∑
n=1

 1

ϕ
(

(1 + εn)u
(n)
n

)
ϕ (u(n)

n

)

6
∞∑
n=1

ϕ
(
u

(n)
n

)
ϕ
(

(1 + εn)u
(n)
n

) + ϕ
(
u(n)
n

)
6 2

∞∑
n=1

ϕ
(
u

(n)
n

)
ϕ
(

(1 + εn)u
(n)
n

) 6 2
∞∑
n=1

1

2n+1
<∞.

By the assumption we get Icesϕ(x) <∞. For any ε > 0 and M ∈ N we obtain that

∞∑
i=M

ϕ((1 + ε)|x(i)|) >
∞∑

n=M ′

cnϕ
(
(1 + ε)u(n)

n

)

>
∞∑

n=M ′

ϕ
(

(1 + ε)u
(n)
n

)
ϕ
(

(1 + εn)u
(n)
n

) >
∞∑

n=M ′′

1 =∞
(4.9)

for some M
′′
> M

′
> M . Denoting by x|{N,N+1,...} the sequence which is equal to x
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on {N,N + 1, . . .} and 0 otherwise, we see that for N large enough

Icesϕ(x|{N,N+1,...}) =
∞∑
n=N

ϕ

(
1

n

n∑
i=N

|x(i)|

)
6

∞∑
n=N

ϕ

(
1

n

n∑
i=1

|x(i)|

)
6 1,

since Icesϕ(x) <∞. Let y = x|{N,N+1,...}. Since x is decreasing, for any ε > 0,

(1 + ε)
1

n

n∑
i=N

|x(i)| > (1 + ε)

(
n−N
n

)
|x(n)|

= (1 + ε)

(
1− N

n

)
|x(n)| >

(
1 +

ε

2

)
|x(n)|

(4.10)

for n large enough. Now, by (4.9) and (4.10), for any ε > 0 and N
′

large enough

Icesϕ((1 + ε))y) >
∞∑
n=N

ϕ

(
1 + ε

n

n∑
i=N

|x(i)|

)
>

∞∑
n=N ′

ϕ
((

1 +
ε

2

)
|x(n)|

)
=∞.

We have constructed an element y ∈ cesϕ such that Icesϕ(y) 6 1 and for every

ε > 0, Icesϕ((1 + ε)y) = ∞. We observe that the subspace (cesϕ)a of all order

continuous elements in cesϕ and the closure of the set of sequences with finite number

of non-zero coordinates coincide (Theorem 2.3 in [21]). Now it is not difficult to see

that the distance of y to (cesϕ)a is 1, since the above calculations hold true for

arbitrary large N . By applying Theorem 2 from [31] we conclude that cesϕ contains

an order linearly isometric copy of `∞.

Now assume there exists a > 0 such that ϕ(u) = 0 for u ∈ [0, a] and ϕ(u) > 0

for u > a. Taking x = (a, a, a, . . .), it is easy to see that Icesϕ(x) = 0. Moreover

Icesϕ((1 + ε)(x − s)) = ∞ for all ε > 0 and all sequences s ∈ `0 with finite support.

Indeed, taking n0 = max{i ∈ N : s(i) 6= 0} and denoting y = (1 + ε)(x − s) we see

that

Gy(n) >
n− n0

n
(1 + ε)a =

(
1− n0

n

)
(1 + ε)a >

(
1 +

ε

2

)
a,
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for n large enough. Thus for some N ∈ N,

Icesϕ(y) >
∞∑
n=N

ϕ(Gy(n)) >
∞∑
n=N

ϕ
((

1 +
ε

2

)
a
)

=∞.

It follows that ‖x− s‖cesϕ = 1 and so the distance of x to (cesϕ)a is 1. We finish the

proof analogously as before by applying Theorem 2 from [31].

Recall that the classical Hardy inequality for p > 1 reads [43]

∞∑
n=1

(
1

n

n∑
i=1

|x(i)|

)p

6

(
p

p− 1

)p ∞∑
n=1

|x(n)|p for all x ∈ `0.

The following proposition shows the connections between the sufficient condition

under which cesϕ has an order isometric copy of `∞ and some other conditions which

are easier to check.

Proposition 4.12. Let ϕ be an Orlicz function. Consider the following conditions.

(i) There exist p > 1, a convex function γ and constants A,B, u0 > 0 such that

ϕ(u0) > 0 and for 0 < u 6 u0,

Aγ(u) 6 ϕ(u)1/p 6 Bγ(u).

(ii) There exist constants C, u0 > 0 such that ϕ(u0) > 0 and

∞∑
n=1

ϕ

(
1

n

n∑
i=1

|x(i)|

)
6 C

∞∑
n=1

ϕ(|x(n)|)

for all x ∈ `0 with ‖x‖∞ = supn |x(n)| 6 u0.

(iii) The Orlicz class {x : Iϕ(x) <∞} is closed under the averaging operator G.
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(iv) αϕ > 1.

(v) There exists n0 ∈ N such that
∑∞

n=n0
ϕ
(

1
n

)
<∞.

We have the implications (i) =⇒ (ii) =⇒ (iii) =⇒ (iv) =⇒ (v).

Proof. If ϕ(u) = 0 for u ∈ [0, a] and ϕ(u) = ∞ for u > a, where a > 0 then all

conditions (i)-(v) are satisfied. In the remaining case, without loss of generality we can

assume that the constant u0 which appears in (i) and (ii) is such that 0 < ϕ(u0) <∞,

and that the function γ is finite on [0,∞). Now, the implication (i) =⇒ (ii) follows

by Jensen’s inequality and Hardy’s inequality for p > 1. In fact

∞∑
n=1

ϕ

(
1

n

n∑
i=1

|x(i)|

)
6 Bp

∞∑
n=1

(
γ

(
1

n

n∑
i=1

|x(i)|

))p

6 Bp

∞∑
n=1

(
1

n

n∑
i=1

γ(|x(i)|)

)p

6
Bp

Ap

∞∑
n=1

(
1

n

n∑
i=1

ϕ(|x(i)|)1/p

)p

6

(
pB

(p− 1)A

)p ∞∑
n=1

ϕ(|x(n)|).

Now we show implication (ii) =⇒ (iii). Let a = sup{u > 0 : ϕ(u) = 0}, and

let x ∈ `0 be such that Iϕ(x) < ∞. For every ε > 0 there exists N1 ∈ N such that

|x(n)| 6 a+ ε, for n > N1. Taking ε = (u0−a)/2 and n > N1 we get that |x(n)| 6 u0

and

Gx(n) 6
1

n

N1∑
i=1

|x(i)|+
(
n−N1

n

)
(a+ ε) =

a

2
+
u0

2
+

1

n

(
N1∑
i=1

|x(i)| −N1
a+ u0

2

)
.

Thus there exists N ∈ N such that Gx(n) 6 u0 and |x(n)| 6 u0 for all n > N . Let

y = (Gx(N), . . . , Gx(N)︸ ︷︷ ︸
N times

, x(N + 1), x(N + 2), . . .). Clearly ‖y‖∞ 6 u0 and Gy(n) =
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Gx(n) for all n > N . By (ii) applied to y we get that

∞∑
n=N+1

ϕ(Gx(n)) 6
∞∑
n=1

ϕ(Gy(n)) 6 C
∞∑
n=1

ϕ(y(n))

= C

(
Nϕ(Gx(N)) +

∞∑
n=N+1

ϕ(x(n))

)
<∞.

Since ‖Gx‖∞ 6 ‖x‖∞ we get Iϕ(Gx) <∞.

(iii) =⇒ (iv). Let x ∈ `ϕ, that is Iϕ(λx) <∞ for some λ > 0. By (iii) we get that

∞ > Iϕ(G(λx)) = Icesϕ(λx) and so x ∈ cesϕ. Hence `ϕ ⊂ cesϕ which is equivalent to

αϕ > 1 by Corollary 4.2.

(iv) =⇒ (v). Follows from Corollary 4.2.

An immediate consequence of Theorem 4.11 and Proposition 4.12 is the following

corollary.

Corollary 4.13. If ϕ /∈ δ2 and for some p > 1 the function ϕ1/p is strongly equivalent

to a convex function, then the Cesàro sequence space cesϕ contains an order isometric

copy of `∞.

Remark 4.14. 1. In the case when 1 < α(ϕ) 6 β(ϕ) < ∞, the condition (i) of

Proposition 4.12 is satisfied for 1 < p < α(ϕ). It follows from [35, Theorem 1.7]

applied to function ϕ1/p, since α(ϕ1/p) = α(ϕ)/p > 1 and β(ϕ1/p) = β(ϕ)/p <

∞.

2. Levinson showed in [46] that the composition ϕ1/p is convex for p > 1 if an

Orlicz function ϕ is twice differentiable and

ϕ(u)ϕ
′′
(u) > (1− 1/p)(ϕ

′
(u))2. (4.11)

Clearly, it is sufficient that condition (4.11) is satisfied in a neighborhood of
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zero in order to get condition (i) of Proposition 4.12. This condition is satisfied

for example by the following functions (a > 0),

ϕa(u) =


0 if u = 0,

e−u
−a

if 0 < u 6 (a(a+ 1)−1)1/a,

(ea(a+ 1)−1)
−(a+1)a−1

ua+1 if u > (a(a+ 1)−1)1/a,

whenever p > 1. Indeed, for u small enough

ϕa(u)ϕ
′′

a(u)−
(

1− 1

p

)
(ϕ
′

a(u))2 =

(
ae−u

−a

ua+1

)2(
1

p
− a+ 1

a
ua
)

> 0.

Note that β(ϕa) =∞ and α(ϕa) > 1 [51].

Similarly, condition (4.11) in a neighborhood of zero for any p > 1 is satisfied by

functions ψa(u) = u1+a ln(1 + e−u
−a

), a > 0. Indeed, for u > 0 small enough

ψa(u)ψ
′′

a(u)−
(

1− 1

p

)
(ψ
′

a(u))2 =

(
a

1 + eu−a

)2

×

×

[
(a+ 1)

a2
u2a
(

1 + eu
−a

ln(1 + e−u
−a

)
)2
(
a+ 1

p
− 1

)

+ (a+ 1)ua ln(1 + e−u
−a

)
1 + eu

−a

a

(
2

p
− 1

)
+ eu

−a

ln(1 + e−u
−a

)− 1 +
1

p

]
> 0,

since eu
−a

ln(1 + e−u
−a

)→ 1 as u→ 0+. We also have β(ψa) =∞ and α(ψa) > 1 [51].

Thus by Corollary 4.13, the Orlicz functions ϕa and ψa generate the Cesàro spaces

cesϕa and cesψa such that both contain order isometric copies of `∞.

The following example shows that in general, condition (iv) of Proposition 4.12,

(αϕ > 1), is not necessary for the existence of order isometric copy of `∞ in cesϕ.
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Example 4.15. Let function ϕ be defined as in Example 4.6. We have that ϕ, ϕ∗ /∈ δ2,

that is βϕ =∞ and αϕ = 1. Also cesϕ 6= {0}.

Recall that ϕ(u) =
∫ u

0
p(t)dt, where

p(t) =


0 if t = 0,

1
n!

if t ∈
[

1
(n+1)!

, 1
n!

)
for n ∈ N,

t if t > 1.

Now we will make preparation to define x ∈ cesϕ such that Icesϕ(x) 6 1 and

Icesϕ((1 + ε)x) =∞ for all ε > 0. Let for m = 4, 5, . . .,

cm = 3! +
m∑
k=4

(k − 3)!(k!− (k − 1)!),

and let for m = 4, 5, . . . and n = 0, 1, 2, . . . , (m+ 1)!−m!− 1,

Em,n = {cm + (m− 2)!n+ 1, cm + (m− 2)!n+ 2, . . . , cm + (m− 2)!(n+ 1)} .

The sets Em,n are pairwise disjoint and their union and the set {1, 2, . . . , c4} gives

the whole N. Note that there are exactly (m − 2)! integers in each Em,n, and that

for every integer r > 24 = c4, there exists a unique triple (m,n, j) of non-negative

integers satisfying m > 4, 0 6 n 6 (m+ 1)!−m!− 1, and 1 6 j 6 (m− 2)! such that

r = cm + (m− 2)!n+ j.

Now we will construct x ∈ `0 such that the sequence (Gx(n))∞n=1 is decreasing for

large n and

Gx(cm + (m− 2)!n) =
1

m! + n
(4.12)

for m = 4, 5, . . . and n = 0, 1, . . . , (m+ 1)!−m!− 1.
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Let s̃m,n be the solution of

(cm + (m− 2)!n)Gx(cm + (m− 2)!n)

cm + (m− 2)!n+ s̃m,n
=

1

m! + n+ 1
,

that is

s̃m,n = (cm + (m− 2)!n)(m! + n)−1

for m = 4, 5, . . . and n = 0, 1, . . . , (m+ 1)!−m!− 1. Letting

sm,n = ds̃m,ne ,

the number sm,n is the smallest integer such that

(cm + (m− 2)!n)Gx(cm + (m− 2)!n)

cm + (m− 2)!n+ sm,n
6

1

m! + n+ 1
.

Moreover, we can show by induction that sm,n 6 (m− 2)! for n = 0, 1, . . . , (m+ 1)!−

m!− 1, since cm 6 m!(m− 2)! for m = 4, 5, . . ..

We now define x as x(r) = 0 for r = 1, 2, . . . , c4 − 1, x(c4) = 1, and

x(r) =



0, if r ∈ Em,n and r < cm + (m− 2)!n+ sm,n,

(cm + (m− 2)!n+ sm,n)(m! + n+ 1)−1

−(cm + (m− 2)!n)(m! + n)−1, if r = cm + (m− 2)!n+ sm,n,

(m! + n+ 1)−1, if r ∈ Em,n and r > cm + (m− 2)!n+ sm,n.

We will show that x satisfies (4.12). We proceed by induction. Observe that

Gx(c4) = 1
4!

and that the condition Gx(cm + (m− 2)!n) = 1
m!+n

implies that Gx(cm +

(m− 2)!(n+ 1)) = 1
m!+n+1

for all m = 4, 5, . . . and n = 0, 1, 2, . . . , (m+ 1)!−m!− 1.
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Indeed,

Gx(cm + (m− 2)!(n+ 1)) =
1

cm + (m− 2)!(n+ 1)
×

×

(
(cm + (m− 2)!n)Gx(cm + (m− 2)!n) +

cm + (m− 2)!n+ sm,n
m! + n+ 1

− cm + (m− 2)!n

m! + n

+
cm + (m− 2)!(n+ 1)− (cm + (m− 2)!n+ sm,n)

m! + n+ 1

)
=

1

cm + (m− 2)!(n+ 1)
×

×
(
cm + (m− 2)!n

m! + n
− cm + (m− 2)!n

m! + n
+
cm + (m− 2)!(n+ 1)

m! + n+ 1

)
=

1

m! + n+ 1
.

It follows, that for n = (m + 1)! − m! − 1 we have Gx(cm+1) = 1
(m+1)!

, which gives

(4.12).

Clearly, Gx is decreasing on {c4, c4 + 1, . . .} by the choice of sm,n. Moreover, the

sequence x has the properties that y 6 Gx 6 y + z, where

y(n) = Gx(n), and z(n) = 0 for n = 1, 2, . . . , c4,

y(r) =
1

m! + n+ 1
and

z(r) =
1

m! + n
− 1

m! + n+ 1
for all m = 4, 5, . . . , n = 0, 1, . . . , (m+ 1)!−m!− 1

whenever r ∈ Em,n.

Hence for all m = 4, 5, . . . we have that

z(r) 6
1

m!(m! + 1)

and
1

m! + n+ 1
+ z(r) 6

1

m!

whenever r ∈ Em,n, n = 0, 1, . . . , (m+ 1)!−m!− 1.
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Applying the above relations and the definition of ϕ, we obtain that

Icesϕ(x) = Iϕ(Gx) 6 Iϕ(y + z)

= ϕ

(
1

4!

)
+
∞∑
m=4

(m+1)!−m!−1∑
n=0

∑
r∈Em,n

ϕ

(
1

m! + n+ 1
+ z(r)

)

= ϕ

(
1

4!

)
+
∞∑
m=4

(m+1)!−m!−1∑
n=0

∑
r∈Em,n

[
ϕ

(
1

m! + n+ 1

)
+

∫ (m!+n+1)−1+z(r)

(m!+n+1)−1

p(t) dt

]

= ϕ

(
1

4!

)
+
∞∑
m=4

(m+1)!−m!−1∑
n=0

∑
r∈Em,n

ϕ

(
1

m! + n+ 1

)
+
∞∑
m=4

(m+1)!−m!−1∑
n=0

∑
r∈Em,n

z(r)

m!

6 Iϕ(y) +
∞∑
m=4

((m+ 1)!−m!)(m− 2)!
1

m!2(m! + 1)

= Iϕ(y) +
∞∑
m=4

1

(m− 1)(m! + 1)

6 Iϕ(y) +
1

3

(
e− 2− 2

3

)
= Iϕ(y) +

e

3
− 8

9
6 Iϕ(y) + 0.018,

and

(m+1)!∑
n=m!+1

ϕ

(
1

n

)
=

(m+1)!−m!∑
i=1

[
ϕ

(
1

(m+ 1)!

)
+

1

m!

(
1

m! + i
− 1

(m+ 1)!

)]
= ((m+ 1)!−m!)ϕ

(
1

(m+ 1)!

)
− ((m+ 1)!−m!− 1)

1

m!

1

(m+ 1)!

+
1

m!

(m+1)!−m!−1∑
i=1

1

m! + i

= mm!ϕ

(
1

(m+ 1)!

)
−mm!

1

m!

1

(m+ 1)!
+

1

m!

(
H(m+1)! −Hm!

)
6

m

(m+ 1)(m+ 1)!
− m

(m+ 1)!
+

ln(m+ 1)

m!
.

By the latter inequality and by

ln(m+ 1) 6
√
m− 1 for m > 3,
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we get that

Iϕ(y) = ϕ

(
1

4!

)
+
∞∑
m=4

(m+1)!−m!−1∑
n=0

∑
r∈Em,n

ϕ

(
1

m! + n+ 1

)

= ϕ

(
1

4!

)
+
∞∑
m=4

(m− 2)!

(m+1)!∑
n=m!+1

ϕ

(
1

n

)

6
1

4!2
+
∞∑
m=4

1

(m+ 1)2(m− 1)
−
∞∑
m=4

1

(m− 1)(m+ 1)
+
∞∑
m=4

ln(m+ 1)

m(m− 1)

6
1

576
+

(
247

288
− π2

12

)
− 7

24
+

(
ln(5)

12
+ ζ

(
3

2

)
− 1−

√
2

4
−
√

3

9

)

= − 83

192
− π2 + ln 5

12
+ ζ

(
3

2

)
−
√

2

4
−
√

3

9
6 0.95,

where ζ(s) is the Riemann zeta function. Combining all the above calculations, we

obtain that Icesϕ(x) 6 1.

Let now ε > 0 and s be a positive integer such that ε > s−1. Since

(s+ 1) ln
(
1 + s−1

)
> 1 for any s > 1,

we can take N > s large enough such that for integers m > N , we have

Hm!+s−1m! −Hm! >
∫ m!+s−1m!

m!+1

1

t
dt

= ln

(
m!

(
1 +

1

s

))
− ln(m! + 1)

= ln

(
1 +

1

s

)
+ ln

(
m!

m! + 1

)
.
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It follows for m > N that

(m+1)!∑
n=m!+1

ϕ

(
1 + 1

s

n

)
>

(1+s−1)m!∑
n=m!+1

ϕ

(
1 + 1

s

n

)
=

(
ϕ

(
1

m!

)
+

1

(m− 1)!

(
1 + 1

s

m! + 1
− 1

m!

))
+(

ϕ

(
1

m!

)
+

1

(m− 1)!

(
1 + 1

s

m! + 2
− 1

m!

))
+ . . .+

(
ϕ

(
1

m!

)
+ 0

)
=

((
1 +

1

s

)
m!−m!

)
ϕ

(
1

m!

)
−
((

1 +
1

s

)
m!−m!− 1

)
1

(m− 1)!m!
+

1

(m− 1)!

(
1 +

1

s

)
(Hm!+s−1m!−1 −Hm!) =

1

s
m!ϕ

(
1

m!

)
− 1

s

1

(m− 1)!
+

1

(m− 1)!

(
1 +

1

s

)
(Hm!+s−1m! −Hm!)

>
1

s(m− 1)!
[(s+ 1) (Hm!+s−1m! −Hm!)− 1]

>
1

s(m− 1)!

[
(s+ 1) ln

(
1 +

1

s

)
− 1 + (s+ 1) ln

(
m!

m! + 1

)]
>

C

s(m− 1)!

for some C > 0 not dependent on m. By the above inequality, we obtain

Icesϕ((1 + ε)x) = Iϕ((1 + ε)Gx) > Iϕ((1 + ε)y) > Iϕ

((
1 +

1

s

)
y

)
>

∞∑
m=4

(m+1)!−m!−1∑
n=0

∑
r∈Em,n

ϕ

(
1 + 1

s

m! + n+ 1

)

=
∞∑
m=4

(m− 2)!

(m+1)!∑
n=m!+1

ϕ

(
1 + 1

s

n

)

>
∞∑

m=N

(m− 2)!

(1+s−1)m!∑
n=m!+1

ϕ

(
1 + 1

s

n

)
>

1

s

∞∑
m=N

C

m− 1
=∞.

The existence of an order linearly isometric copy of `∞ follows now exactly in the

same way as at the end of the proof of Theorem 4.11.

Note that in [29] there is another explicit example of an Orlicz function ϕ for

which the space cesϕ contains an order isometric copy of `∞. However in that case

it can be easily checked that α(ϕ) > 1. Also, it is not immediately clear whether the

84



condition (iii) of Proposition 4.12 is satisfied or not by this function ϕ.

4.5 On B-convexity of Cesàro-Orlicz sequence spaces

Throughout this section we adopt the notation ‖·‖b for either ‖·‖cesϕ or ‖·‖0
cesϕ . In [21]

it has been shown that the n-th (strong) James constant in cesϕ for the Luxemburg

or the Orlicz norm satisfies

Jsn(cesϕ) := sup

{
min
εk=±1

∥∥∥∥∥
n∑
k=1

εkxk

∥∥∥∥∥
b

: ‖xk‖b = 1, k = 1, 2, . . . , n

}
= n, (n > 2)

(4.13)

under some additional assumption on the function ϕ. We show that this extra

assumption is in fact not necessary. Taking in the definiton of Jsn the supremum

over the whole unit ball we obtain constants Jn. A Banach space X is said to be

B-convex if Jn(X) < n for some n > 2. For more details on James constant(s) and

B-convexity we refer to [21,24] and references given therein.

Theorem 4.16. Let ϕ be an Orlicz function and the space cesϕ be equipped with either

the Luxemburg or Orlicz norm. If cesϕ 6= {0} then Jsn(cesϕ) = n for n = 2, 3, . . ..

Proof. Let n > 2 be a fixed integer and xk,m = em+k−1/‖em+k−1‖b for k = 1, 2, . . . , n,

and m ∈ N. For both Luxemburg and Orlicz norm we have

‖xk,m‖b = 1 and min
εk=±1

∥∥∥∥∥
n∑
k=1

εkxk,m

∥∥∥∥∥
b

=

∥∥∥∥∥
n∑
k=1

xk,m|

∥∥∥∥∥
b

.

Denoting by am,i =
∑m+i

j=m ‖ej‖
−1
b for i = 0, 1, . . . , n− 1, we see that G (

∑n
k=1 xk,m) >

am,n−1G(em+n−1), and hence

n >

∥∥∥∥∥
n∑
k=1

xk,m

∥∥∥∥∥
b

> am,n−1‖em+n−1‖b =
m+n−1∑
k=m

‖em+n−1‖b
‖ek‖b

> n
‖em+n−1‖b
‖em‖b

.
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We will show that ‖em+n−1‖b/‖em‖b → 1 as m → ∞ for both norms, which in

view of the above inequality proves that Jsn(cesϕ) = n for n = 2, 3, . . ..

Consider the Luxemburg norm now. For any m ∈ N we get

‖mem‖cesϕ = ‖G(mem)‖ϕ =

∥∥∥∥(0, . . . , 0, 1,
m

m+ 1
,

m

m+ 2
, . . .

)∥∥∥∥
ϕ

=

∥∥∥∥(1,
m

m+ 1
,

m

m+ 2
, . . .

)∥∥∥∥
ϕ

= ‖[G(mem)]∗‖ϕ,

where x∗ denotes the decreasing rearrangement of x for x ∈ `0. So [G(mem)]∗ is an

increasing sequence converging to (1, 1, 1, . . .) coordinatewise. If ϕ(u) > 0 for u > 0,

we have

sup
m∈N
‖mem‖cesϕ = lim

m→∞
‖mem‖cesϕ = lim

m→∞
‖G(mem)‖ϕ =∞

by the Fatou property of `ϕ, because otherwise we would get (1, 1, 1, . . .) ∈ `ϕ which

is not the case since ϕ(u) > 0 for any u > 0. Hence

1 >
‖em+n−1‖cesϕ
‖em‖cesϕ

=
‖Gem+n−1‖ϕ
‖Gem‖ϕ

=
‖Gem −

∑n−2
i=0 (m+ i)−1em+i‖ϕ
‖Gem‖ϕ

>1− ‖
∑n−2

i=0 (m+ i)−1em+i‖ϕ
‖Gem‖ϕ

= 1−
n−2∑
i=0

‖e1‖ϕ
(m+ i)‖Gem‖ϕ

→ 1

as m→∞, since ‖Gem‖ϕ > ‖
∑n−2

i=0 (m+ i)−1em+i‖ϕ, and for i = 0, 1, . . . , n− 2,

0 6
‖e1‖ϕ

(m+ i)‖Gem‖ϕ
=

‖e1‖ϕ
‖(m+ i)em‖cesϕ

6
‖e1‖ϕ

‖mem‖cesϕ
→ 0 as m→∞.

If ϕ(u) = 0 on [0, a] for a > 0, and ϕ(u) > 0 for u > a, then limm→∞ ‖mem‖cesϕ =

‖(1, 1, 1, . . .)‖ϕ = a−1 by the Fatou property of `ϕ. Since

1 >
(m+ n− 1)‖em+n−1‖cesϕ

m‖em‖cesϕ
→ 1 as m→∞,
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we get ‖em‖−1
cesϕ‖em+n−1‖cesϕ → 1 as m→∞.

Now we will show the similar equality for the Orlicz norm in the Amemyia form.

Since this norm is equivalent to the Luxemburg norm it is easy to see that in the case

when ϕ(u) > 0 for u > 0 we also have

lim
m→∞

‖mem‖0
cesϕ = lim

m→∞
‖G(mem)‖0

ϕ =∞.

Now we can repeat the reasoning which we used for the Luxemburg norm, taking into

account that ‖x‖0
cesϕ = ‖Gx‖0

ϕ. In the case when ϕ is equal to 0 on some interval

then we also proceed similarly as in the case of the Luxemburg norm.

Corollary 4.17. For any Orlicz function ϕ, if cesϕ 6= {0} then cesϕ is not B-convex.

We finish with the immediate consequence of the above result in view of the well

known fact that if a Banach space is uniformly non-square then it is B-convex [51].

Corollary 4.18. For any Orlicz function ϕ, if cesϕ 6= {0} then cesϕ is not uniformly

non-square for both Luxemburg and Orlicz norm.
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198 (2010), no. 3, 235–247. MR2650988

[7] E. F. Beckenbach, Generalized convex functions, Bull. Amer. Math. Soc. 43 (1937), no. 6, 363–

371. MR1563543

[8] C. Bennett and R. Sharpley, Interpolation of operators, Pure and Applied Mathematics, vol. 129,

Academic Press Inc., Boston, MA, 1988. MR928802 (89e:46001)

[9] G. Bennett, Factorizing the classical inequalities, Mem. Amer. Math. Soc. 120 (1996), no. 576,

viii+130. MR1317938 (96h:26020)

[10] C. Bessaga and A. Pełczyński, On extreme points in separable conjugate spaces, Israel J. Math.

4 (1966), 262–264. MR0211244 (35 #2126)

[11] J. Bourgain and M. Talagrand, Dans un espace de Banach reticulé solide, la propriété de Radon-
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[30] B. D. Hassard and D. A. Hussein, On Cesàro function spaces, Tamkang J. Math. 4 (1973),

19–25. MR0333700 (48 #12025)

[31] H. Hudzik, Banach lattices with order isometric copies of l∞, Indag. Math. (N.S.) 9 (1998),

no. 4, 521–527. MR1691991 (2000d:46025)

[32] H. Hudzik and L. Maligranda, Amemiya norm equals Orlicz norm in general, Indag. Math.

(N.S.) 11 (2000), no. 4, 573–585. MR1909821 (2003e:46039)

[33] H. Hudzik and K. Wlaźlak, Rotundity properties in Banach spaces via sublinear operators,

Nonlinear Anal. 64 (2006), no. 6, 1171–1188. MR2200484 (2006j:46022)
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Campinas, 1989. MR2264389 (2007e:46025)

91



[51] L. Maligranda, N. Petrot, and S. Suantai, On the James constant and B-convexity of Cesàro and

Cesàro-Orlicz sequences spaces, J. Math. Anal. Appl. 326 (2007), no. 1, 312–331. MR2277785

(2007m:46023)

[52] W. Matuszewska and W. Orlicz, On certain properties of ϕ-functions, Bull. Acad. Polon. Sci.

Sér. Sci. Math. Astronom. Phys. 8 (1960), 439–443. MR0126158 (23 #A3454)

[53] J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Mathematics, vol. 1034,

Springer-Verlag, Berlin, 1983. MR724434 (85m:46028)

[54] P. N. Ng and P. Y. Lee, On the associate spaces of Cesàro sequence spaces, Nanta Math. 9
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