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ABSTRACT

Kubiak, Damian Marcin. Ph.D. The University of Memphis. May, 2012. Geometric
properties of Cesaro function and sequence spaces. Major Professor: Anna Kaminska.

Theory of Banach spaces as a branch of Functional Analysis was founded at the
beginning of the 20th century and since then it has been extensively developed and
applied. Banach lattices, in particular Banach function and sequence spaces, like
classical Lebesgue spaces or Orlicz, Lorentz, Musielak-Orlicz spaces, are of special
interest and importance for applications.

In this dissertation we study Cesaro function and sequence spaces which, unlike
many other classical spaces, are not rearrangement invariant. This makes them a very
interesting object to explore with possible applications to some functional analysis
problems.

Cesaro function and sequence spaces appeared for the first time in 1968 in the
Dutch Mathematical Society Journal as a problem to find a representation of their
dual space. This problem, in case of sequences, was solved in 1974 by Jagers. Since
then, Cesaro sequence spaces have gain an attention among Banach space theory
specialists. For example, in the nineties several geometric properties of them were
studied. During the last decade, more general spaces, Cesaro-Orlicz sequence spaces,
have been explored as well. Cesaro function spaces attracted a wider attention only
since 2008 when Astashkin and Maligranda published series of interesting papers on
their geometrical and topological properties.

In this dissertation we study geometric properties of Cesaro function spaces with
general weight.We find an isometric description of the dual of Cesaro function space.
This description involves a new concept of essential W-concave majorant of a measurable

function which we define and study. We show, among others, that every non empty
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relatively open subset (and hence every slice) of the unit ball of Cesaro function space
has diameter 2. In particular these spaces do not have the Radon-Nikodym property.
Also, they are strictly convex Banach spaces while the unit sphere does not have
strongly extreme points. This shows rather unexpected differences between Cesaro
function and sequence spaces since the latter are known to have the Radon-Nikodym
property and to be locally uniformly rotund.

We also explore Cesaro-Orlicz sequence spaces. We show that they are not B-
convex and investigate under what conditions there is an isometric or isomorphic

copy of £, in these spaces.
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1 Introduction

In this chapter we give historical background on Cesaro sequence and function

spaces. We also set up terminology and notation.

1.1 Introduction

In 1968 the Dutch Mathematical Society posted the following problem labeled “1968.

2.7(]1], see also [2]):

“Define the Cesaro sequence spaces ces, as follows:
cesy is the space of all numerical sequences

a = (ay,as,...)

with finite norms

> agl’)P for 1 < p < oo,
k=1

S|

o0
jaly =)
n=1
1 n
|a| 0o = sup — Z lag|.
n2l T

Similarly, the function space Ces, consists of all (L)-measurable functions f on [0, o0]
with finite norms

=[G [ wldyrda or1<p<o
1 €T
o = — dy.
[l =stp s [ 1701y

x>0 T

Investigate the properties of these normed linear spaces and their adjoint spaces (i.e.
Banach dual spaces).”

Some basic results regarding both Cesaro sequence and function spaces were
obtained in early seventies by Shiue [63}/64], Leibovitz [45] and Hassard and Hussein
[30]. In 1974 Jagers gave an explicit isometric description of the dual of ces,,

1 < p < oo [34]. Similar result was obtained in 1976 by Ng and Lee for the case
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p =00 [54]. Tt is worth to mention that in two former papers Cesaro sequence spaces

o0

o° 1, are considered.

with general positive weight sequence, in place of the weight (1/n)
In the late nineties mathematicians became interested in geometric properties of these
spaces. Cui and Phuciennik studied local uniform nonsquareness [23], and, together
with Meng, they proved that ces, has Banach-Saks property and property (/) of
Rolewicz [22]. Cui and Hudzik showed that ces, has fixed point property [18] (see
also |23, Part 9]) and obtained the packing constant [19]. Several other geometric
properties of ces, are considered in [17], [23] and [20]. Another look at Cesaro sequence
spaces appeared in 2010 [61].

Contrary to the Cesaro sequence spaces their function counterparts did not attract
a lot of attention for a long time. In 1987 an interesting description of the dual of
Cesaro function spaces appeared. Authors obtained an equivalent norm on the dual
of Ces,, 1 < p < oo using dual of ces, as an important ingredient [67] (see also [44]).
Only recently in a series of papers [4-6], Astashkin and Maligranda started to study
thoroughly the structure of Cesaro function spaces. In [4] they proved that Ces, fails
the fixed point property and in [5] they investigated, among others, dual spaces for
Ces, induced by the weight w(z) = 7! for 1 < p < co. Their description can be
viewed as being analogous to one given for sequence spaces by Bennett in [9]. They
found a Banach space equipped with a norm equivalent to the dual norm, which is
an isomorphic representation of the dual space.

Cesaro-Orlicz sequence spaces ces,, appeared for the first time in 1988 [66] and
since then they have been studied by a number of authors. In 2006, Cui et al.
studied basic topological and geometric properties of ces, [21]. For example, they
found conditions on ¢ under which ces,, is strictly convex. Maligranda, Petrot and
Suantai showed that ces, is not B-convex for a wide class of Orlicz functions ¢

[51]. Local geometric structure of ces, has been studied by Foralewski, Hudzik and
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Szymaszkiewicz [28]. In 2010 they found, among others, conditions on an Orlicz
function ¢ under which ces,, is locally uniformly rotund [29).

We consider in this dissertation the problem of existence of order linearly isometric
copy of £ in ces, under the Luxemburg norm. We also show that all non-trivial ces,,
spaces are not B-convex solving the problem posted in [51].

In Chapter 2 we present an isometric description of the dual of Cesaro function
space C),,, where 1 < p < oo and w > 0. We introduce a notion of essential W-concave
majorant of an arbitrary measurable function and study its properties. This notion
is a main ingredient in the description of the dual space. In the last section of this
chapter we prove, among other things, that C,,, does not have the Radon-Nikodym
property.

In Chapter 3 we show that Cesaro function space is strictly convex, contains
almost isometric copy of ¢; and has all weakly relatively open sets of its unit ball of
diameter 2. We also present some relations among geometrical properties in general
Banach spaces.

Chapter 4 is devoted to Cesaro-Orlicz sequence spaces. We show that these spaces
are not B-convex. We present a comparison theorem for them and obtain conditions

under which ces, contains an order isometric copy of {.

1.2 Preliminaries

As usual, N and R denote the set of positive integers and real numbers, respectively.
For an interval I C R by Lg(I) we denote the set of all (equivalence classes of
extended) real valued Lebesgue (almost everywhere finite) measurable functions on
I. The positive cone of Ly(I) is denoted L (I) = {f € Lo(I) : f = 0 a.e.}. By ° we

denote the set of all real sequences and by c¢q the set of all sequences convergent to 0.



For a Banach space (X, || -||) by Bx and Sx, we denote the unit ball and the unit
sphere of X, and by X* the dual space of X. Any Banach space E' = E(I) C Lo(I)
with norm ||-|| satisfying the condition that f € F and || f|| < ||g|| whenever 0 < f < g
a.e., f € Lo(I) and g € E, is called a Banach function space or Kdthe function space.
An element f in a Banach function space E is called order continuous if for every
0 < fn < |f| a.e. such that f,, | 0 a.e. it holds ||f.|| J 0. We say that F is
order continuous if every element in E is order continuous. A Banach function space
(E,]|| - ||) has the Fatou property if for any sequence (f,) C E and any f € Lo([)
such that 0 < f, < f ae., f, T f ae and sup, ||f.|| < oo it holds f € E and
[fI]= Tim, [[ fu]-

Similarly for sequence spaces. A Banach space (X, ||-||) is a Banach sequence space
(or Kdithe sequence space) if it is a subspace of £°, contains an element z such that
z(n) #0 foralln € N, and if z € (Y and y € X with |z| < |y|, i.e. |z(n)| < |y(n)] for
all n € N, then z € X and ||z| < ||y|]|. We say that a Banach sequence space X has
the Fatou property if for any sequence (z,,) of positive elements of X and any x € °

such that z,, T = that is for all n € N, (z,,(n))>

°_, is increasing and z,,(n) — x(n),

and sup,, ||Z|| < co we have that z € X and ||z,,|| — ||z]| as m — .
Banach sequence and function spaces are examples of Banach lattices.
Throughout this dissertation, terms decreasing or increasing mean non-increasing

or non-decreasing, respectively. By m we denote the Lebesgue measure on the real

line R.



2 The dual of Cesaro function space

The content of this chapter is published in [38] except Theorem which is
presented there in a less general case. The main part of this chapter is the isometric

description of the dual of Cesaro function space.

2.1 Preliminaries

In 1974, Jagers [34] found an isometric representation of the dual of Cesaro sequence

space

00 n py1/p
ceSpw = T € L0 ]|2||ces, ., = [Z (w(n) Z |x(n)|> ] <00y,

n=1 =1

where 1 < p < oo and (w(n))52, is a (weight) sequence of arbitrary positive numbers.

He obtained that the (Kothe) dual of ces,,, is

0o 1/q
2(n) —z(n —1)\*
(cespuw) = @ € co ||| (cesyn)y = [Z ( ,

n=1

where 1/p+1/g = 1 and for a sequence x € ¢y, & is defined in the following way. Let

[e.e]

U(n) = Zw(n)p, n e N.

k=n

Suppose first that x is nonnegative. Denote N = NU{oco} and define increasing (finite

or infinite) sequence (m,,) of elements of N by

my :=max{k € N: 2(k) = max z(i)}
1€



and, provided that m, is defined and finite,

~—

. = x(my,) —x(k) . x(my) — x(s)
Myt = max{k‘ eN:k>m,, Umy) — W) mnngrgloo () — 0 (s) } )

Define

(j) == x(mq) for j < my,
and for m,, < j < my,41, provided m,, is defined and finite, Z(j) to be such that

x(mn) - iﬂ(ﬂ) _ x(mn) - x(anrl)
U(my,) = V(i) V(mn) — ¥(ma)

—

For arbitrary sequence x € ¢y we define & = |z|. Given z € ¢y, the sequence & is

always a ¢y decreasing sequence and satisfies the following inequality

foralli <j <kinN. (2.1)

This sequence 7 is the smallest sequence satisfying inequality (2.1]) and such that

|z| < Z. Any sequence Z satisfying (2.1)) is called a W-concave sequence.

We compute precisely the dual norm of the Cesaro function space C,,, on (0,1),
0 <l < oo, generated by 1 < p < oo and an arbitrary positive weight function
w. A description presented in this dissertation resembles the approach of Jagers
for sequence spaces; however, the techniques are more involved due to necessity of
dealing with functions instead of sequences. One of the difficulties was to find an
appropriate definition of a function f for an arbitrary measurable function f which

satisfies inequality corresponding to 1} We define such f and explore its properties.

Section 2.1 of this chapter is devoted to W-concave functions and essential W-

concave majorants of measurable functions and it can of independent interest. In this



section, ¥ is a nonnegative strictly decreasing function on the interval I = (a,b) C R.
The notion related to W-concavity was defined by Beckenbach in 1937 [7] [58, cf.
Section 84, p. 240]. We introduce here also a new notion of essential W-concave
majorant f of a measurable function f, which is a key to study a representation of dual
spaces. We discuss several properties of W-concave functions as well as the existence,
continuity or differentiability of W-concave majorant f of an arbitrary measurable
function f.

In the main section 2.2, we give an isometric description of the dual of Cesaro
function space with arbitrary weight function on finite or infinite interval (0,7). We
treat finite and infinite case in an unified way, opposite to the isomorphic description
given in [5]. It is also worth to mention that in the process of showing our results, we
do not use Hardy inequality at all, an essential tool in studying the space Ces,,.

In section 2.3, applying techniques developed in studying duality, we prove that
convex combinations of some slices of the unit ball of C,, ,,, 1 < p < oo have diameter
2. From the latter result it follows that every slice of the unit ball B¢, ,, 1 < p < oo,
has diameter 2. Consequently, in a final part we state several corollaries as that
Cesaro function spaces do not have the Radon-Nikodym property, neither strongly
exposed nor denting points, as well as they are not locally uniformly rotund or that

they are not dual spaces.

2.2 VU-concave functions and essential V-concave majorants

In this section, we fix I = (a,b) C R to be an open (finite or infinite) interval and
¥ : I — R, to be a strictly decreasing function on /. We first collect a number of
properties of W-concave functions. Some of them are certainly known [58, cf Section

84, p. 240] but we provide their proofs here for the sake of completeness. Next we
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introduce a notion of essential W-concave majorant f of f € Lo(I) and discuss a
number of its properties like existence, continuity and differentiability. This section
can be of independent interest.

Recall a definition of W-concave function [34].

Definition 2.1. A function f : I — R is called W-concave (respectively strictly

W-concave) on I if for all x < y < zin I,

U(x) W(y) U(z) | =0 (respectively > 0). (2.2)

f() <

respectively < ) for all x <y < z in [. 2.3
Uy) Sy 0 ) 2%

f(y)
U(y)

: < (resp. <) forallz <y < zin I.
(2.4)
If the interval I = (a,b) is finite and ¥(x) = b — z, x € I, then V-concavity on [
is just usual concavity.

The following definition will be also useful.

Definition 2.2. We say that a function f : [ — R is V-affine on I, if f(z) =

AV (x) + B, z € I, for some constants A and B.

For arbitrary interval J we say that f : J — R is U-concave on J if it is U-concave

on the interior of J. Similarly in the case of W-affine function.
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Now, similarly as done for example in [58] in context of convex functions, we show

basic properties of W-concave functions.

Let f: I — R be WU-concave on I. Define for x € I,

= i SO = F@) o f )~ f(@)

In order to see the existence and finiteness of the above quantities, it is enough to

observe that for any w < z <y < z < win I, by ({2.4)) it follows that

f(2)
U(z)

<

f(y)
(y)

<

increases as x 1 y and the right side decreases as z | y. It follows that Dy f(y),
Dy f(y) exist and Dy f(y) < Dy f(y) for all y € I. Monotonicity of Dy f and Dy f

follows again from (2.4]). Namely, for any w < x <y < z in [,

Feiy e JW) = fw) _f
D‘I’f(w)_glfg\p(y) < U

Hence Dy, f(w) < Dg f(w) < Dy f(2) < Dy, f(2) for all w, 2z € I such that w < 2.

In fact Dy f is right-continuous if ¥ is right-continuous. Indeed, by monotonicity

of Dy f we have that lim,_,,+ Dy, f(z) exists for any w € I. Since for any y > ,

D} f(x) <



and since f and W are right-continuous, lim,_,,+ Dy, f(z) < %, y>x>w. It

follows that

f()

zjw ydw \If(y) \I/(w)

lim DY, f(z) < lim J(w) = D} f(w).

On the other hand, we know that D{, f(w) < Dy f(x) for all w < z, and so for all
w € I, limgy,, Dy f(x) = DY f(w). Similarly one can show the left-continuity of Dy, f
under assumption of left-continuity on W.

The next proposition summarizes our discussion so far.

Proposition 2.3. If f is -concave on I then D} f(x), Dy f(x) exist, are finite and
Dy f(z) < Dy f(x) for all z € I. Moreover, DY, f, Dy f are increasing functions on

I. If U is right-continuous on I then so is Dg, f. Similarly, if U is left-continuous on

I then so is Dy f. For any fived y € I the ratio % increases as x 1Ty and the
ratio % decreases as z | y.

The following basic fact will be also useful.

Lemma 2.4. If U s right-, left-, absolutely or Lipschitz continuous then any W-

concave function f on I has the same property.

Proof. Let [¢,d] C I and a < ¢; < c and d < d; < b, by WU-concavity of f we get

fle) = fle) _ flx) = fly) _ f(d)— f(dr)
V(o) () S W)~ Wly) S W) () HOSTIUSE
hence
’ flx) = fly) ’ S {‘ fler) = f(e) ’ f(d) — f(dy) }
U(z) —U(y)| U(c)) —W(e)| | U(d) —¥(dy)| )"

Denoting the right-hand side by K we get that |f(z) — f(y)| < K|V(z) — U(y)| for

all z,y € [c,d]. The claim follows. O
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Lemma 2.5. Let f be W-concave on . If Dy f(z) > 0, x € I, then f is decreasing

on I. If Dy f(x) <0, z €I, then f is increasing on I.

Proof. Let D{ f(z) > 0. Since the ratio % decreases as z | x, it follows that

S)-f@) S

3w = 0 for z >z, and hence f(2) < f(z) by monotonicity of ¥. Since x € [ is

arbitrary, we get that f is decreasing. The proof of another case is similar. m

Lemma 2.6. Let function f > 0 be W-concave on I. If lim, ,,+ ¥(z) = oo then

lim, .+ D f(x) = 0.

Proof. Since function Dy f is increasing, lim, .+ Dy, f(z) exists or is equal to —oo.
Suppose that lim, .+ Dy, f(z) = C < 0. It follows that there exists xo > a such that
—00 < D = D{ f(xg) < 0, s0 Dgf(z) < D for z € (a,zp). It follows that for all
z <z, % < D < 0, which gives f(z) < DV(z) — DV(z) + f(x). Now, keeping

x € (a,xp) fixed and taking z — at we would get that f(z) < 0 for z close enough to

a, which contradicts the condition f > 0. ]
Lemmas [2.5] and [2.6] imply the following corollary.

Corollary 2.7. If a function f > 0 is W-concave on I and lim, .+ ¥(x) = oo then

f is decreasing on I.

Observe that inequality (2.3) can also be equivalently written as

f(z) for all z,y,z € [ with x <y < z.

(2.5)

Lemma 2.8. A function f : I — R is W-concave on I if and only if for each

y € I there is at least one function T(x) = f(y) + A(V(x) — ¥(y)) such that A €
Dy f(y), Dg f(y)] and f(z) < T'(x) forz € 1.

11



Proof. If f is U-concave on I and y € I then for any A € [Dy, f(y), Dy f(y)],

f()

— >A or <A,
— U(y)

if © >y or x < y, respectively. In any case f(z) < AV(x)+ f(y) — AV(y) = T'(x) for
all z € 1.

Conversely, suppose that for each y € I there is at least one function 7'(z) =
f(y) + A(¥(x) — ¥(y)) such that f(z) < T(z) for x € I. Let z,y,z € I be such that
r <y < z. Denoting o = % we get U(y) = a¥(z) + (1 —a)¥(z), a € [0,1]. It

follows that f(y) =T(y) = aT(z) + (1 — a)T(2) = af(z) + (1 — «) f(z). Hence, in a
view of , f is W-concave. O]

The following lemma will be useful.

Lemma 2.9. Let f be V-concave on I. The function f is strictly V-concave on I
if and only if there is no interval (¢,d) C I on which f is V-affine. The function
[ is V-affine on I if and only if D f is constant on I. The function f is strictly

U-concave on I if and only if Dy f is strictly increasing on I.

Proof. We prove only the first part. The proof of the second part is similar.
If there exists an interval (¢, d) C I on which f(z) = AV(z)+ B, then % =
A for all x,y € (¢,d). Hence f is not strictly W-concave on I. Conversely, if f is not

strictly W-concave on I, then from ([2.3]) we get that there exist w < z < w in I such

that

(u)

f(y)
U(y)

<



Hence f(y) = AV(y)+ f(w) — AV(w) for all y € (x,u), that is f is W-affine on (z, u),

a contradiction. ]

In the case when V¥ is a continuous function, we can define W-concavity in one

%forx<y<zinl,wegetthat

more equivalent way. Namely, denoting a = 3 o)

U(y) =a¥(z)+ (1 —a)¥(z), and so (2.5) can be written as
FI T aW(2) + (1 - a)¥(2))) = af(@) + (1 - a)f(2). (2.6)

If U is continuous then for any x,z € I, say < z, and any « € [0, 1] there exists
y € [z, z] such that ¥(y) = a¥(x)+ (1 —a)¥(z). Then inequality (2.6|) holds true for
all € [0,1] and all z, z € I, that is function fo¥~! is concave on ¥(I). Furthermore,

in this case, by induction it can be shown that

/ (‘I’l <Z aﬂ’(!ﬁ))) P Zoéif(yz’)

for all a; > 0, Zai =1and (y1,vy2,...,Yyn) € I".
i=1

(2.7)

We have the following lemma.

Lemma 2.10. If ¥ is a continuous function on I then f is W-concave on I if and

only if fo W™t is concave on U(I).

Proof. Only one direction requires proof. Suppose that f o U~! is concave on W¥(I).
Let z,y,z € I be arbitrary, z < y < z and u = ¥U(z), v = ¥(z). Since V¥ is
one-to-one, x = U (u) and 2 = ¥ 1(v). By concavity of f o U™l we get that
(fol Nau+ (1 —a)) = alfol H(u)+ (1 —a)(foPt)(v) for all a € [0,1]. It
follows that f(¥~!'(aV¥(z) 4+ (1 — a)¥(2))) > af(z) + (1 — @) f(z). Since y € (z, 2)

13



there exists o € [0,1] such that U(y) = a¥(z) + (1 — a)¥(z). This gives inequality
(2.5) and so f is W-concave on I. m

The following notion of essential ¥-concave majorant is crucial for characterization

of the dual space to Cesaro function spaces.

Definition 2.11. For any function f € L§(I) we define its essential U-concave

majorant f by

f(y> = lnf{M >0: m(n){(y177yn) er: Zalf(yl) > M)Za’i = laai 2 07
=1 =1

i=1,...,n,¥(y) :Zailll(yi)} =0, nEN}, yel,
i=1

(n

where m(™ is the Lebesgue product measure on I™. For arbitrary function f € Ly([)

we define f = ]/f\|

The above definition should be compared to one of concave majorants given in

1970 by Peetre [56].

The remaining results of this section describe several properties of f . First we
give conditions on f under which the essential U-concave majorant f is finite on 1.

Lemma 2.12. Let f € Lg(I). If esssup,e(, ) f(2) < 00 and esssup,e,.,) % < 00

forallyé[thenf<ooon[.

Proof. Let f € L (I) and y € I. Suppose that

f(z)

Ay = esssup,e(,p) f(7) <00 and By = essSuP,e(a,) T,y < O

V()
14



For any n € N if

:Zailll(yi), Z%‘Zl, a; 20,y,€l,i=1,2,....n
i=1 i=1

we have that

Z aif(yi) = Z i f(yi) + Z a; f(y;)

Yi<y Yi2y

_Zaz (We) f (a) /¥ () +Zaz Yi) \B\Ij(y)—{_AZ/

Yi<y Yi2y

except possibly some subset of the set

€=U om) €15 max (£(5)/ %) > B, }

ie€liy; <y
U {(yl, cosyn) €17 max (f(yi)) > Ay},
i€l:y; >y
where the union is taken over all partitions of {1,2,...,n} into two disjoint nonempty

sets Iy, Ip. Tt is not difficult to see that m™C = 0, whence it follows that f(y) <

B,¥(y) + A, < oo. O
Lemma 2.13. Let f € L (I). If f < oo on I then f is U-concave on I.

Proof. The proof is similar to one for concave majorants [41, p. 47]. Let x <y < 2

in /. We will show inequality 1) for f . Let a = % and € > 0 be arbitrary.

From the definition of f(z) it follows that there exist j € N and a set

B:{(mi,x%,...,xj-)elj:Zaff(xf)> x)—€/2,¥ Zoz\lf Z 1}

with mU) B > 0. Denoting o,¢ = aa$, i = 1,..., j, we get that for all (z,z5,...

B,af(x)< j 1oz ‘f(z )+e/2,where2{zla = q, a €>0,a¥(x) = j 1&“1’( <)

15



Similarly, by definition of f (z), there exist k£ € N and a set

C = {(257257722) el”: Zﬂff(z:) > f'(z)—e/Q,\IJ(z) :Zﬂqu 256: }

=1

with m®C > 0. Denoting B¢ = (1 — )85, i = 1,2,...,k, we get that for all
(25,25, ..,25) € O, (1 —a)f(2) < X0, Bf(26) + €/2, where Y7, 5 = 1 — a,
Bie >0, (1 —a)¥(z) = 38, BW(z). Denoting now ~¢ = aif, y¢ = a¢ for i =
L2,...,0, Yy = 526, Yiy; = 2 for v = 1,2,...,k, and n = j + k we get that
Yoy =Lland Y U(y) = a¥(z) + (1 — a)¥(z) = U(y). It follows that
af(x) + (1 —a)f(z) < 1 7 f (W) + € < f(y) + € ae. Since € was arbitrary the

claim follows. O

Recall that if C' is a measurable subset of R and y € R, then y is called a point of
density of C' if

cn

i MC0@2)
m(z,2)»0  m(x, z)

y€(z,2)

It is known that if C' is a measurable subset of R then almost every x € C'is a point

of density of C' [65], p. 106] [60, p. 141].

Lemma 2.14. If ¥ is a continuous function and lim, .+ V(z) = oo then for any
function f € L (I) with f < 0o on I, it holds that f < f a.e. on I, and f is also

continuous on I.

Proof. Suppose there exist ¢ > 0 and a set C' C [ with mC > 0 such that f > f—i— €
on C. Without loss of generality, we assume that all points in C' are points of density
of C. Tt follows that for all y € C and all x <y < zin I, m(C' N (x,z)) > 0.

First we show that for any « < z such that m(C'N(z,z)) > 0 thereisy € CN(x, 2)

for which m(C' N (z,y)) > 0 and m(C N (y,2)) > 0. Let ¢ = sup,ecr(s, m(C N

16



(z,9)) = 0 and d = infycon(z,.) m(C N (y,2)) = 0. It follows that ¢ < d, which gives
m(C'N(z,y)) >0and m(CN(y,z)) >0forall c<y<d.
Since ¥ is a continuous function, by Lemmas and we get that f is

continuous. Let x < z in I be such that
fl@)—f(z) <€¢/2 and m(CN(x,z2)>0. (2.8)

By the above there is y € C'N(x, z) such that m(C'N(x,y)) > 0 and m(CN(y, z)) > 0.
Consider the set B := {(y1,42) € (CN(x,2)) x (CN(x,2)): V(y) =a¥(y) + (1 —
a)W(ys) for some a € (0,1)}. Itisclear that B = {(y1,v2) € (CN(z, 2))x(CN(x, 2)) :
y1 <y<ye ory:<y<y}=((CN(z,y))x(CN(y,2))U(CN(y,=2))x(CN(z,y)))
and hence m® B > 0. Observe that by we have |f(y1) — f(y2)| < €/2 for all
y1,yo € I such that (y1,y2) € B. Now, for almost all (y1,1») € B, since f is decreasing
by Corollary 2.7, we have that

~

fy) = af(y) + (1= a)f(yz) = af(y) + (1= a)flye) +e = fly) +e/2.

This is impossible, hence f < f a.e. on [. O]

Remark 2.15. (1) If f,g € L{(I) and f < g ae. on I then f < §. In fact

Soryaif(y) < >0 augly;) for all (y1,ys,...,yn) € I™ except possibly some

set of measure 0.

(2) Let ¥ be a continuous function on [ and lim, .+ ¥(z) = co. If f is U-concave
on I then f = f. Consequently f = f for any function f € Lo(I) with
f < oo on I. Indeed, from it follows that Y ", a;f(y;) < f(y) whenever
U(y) = 3, a;¥(y;) and hence f < f which together with Lemma m gives
that f = f.

17



Lemma 2.16. Let VU be a continuous function on I and lim, ..+ V(z) = oco. Let

f e LE(I) be such that f < co on I, e > 0 be fized,

A={zel: f(x) > f(x) - ¢}

and (u,v) C I be a finite open interval. If m(AN (u,v)) = 0 then f is U-affine on

(u,v).
Proof. Let y € (u,v) be fixed. For any n > 0, by definition of Dgf(y),

_; flo) = fy) i
f(0)-f)
W(c)—¥(z)

for all ¢ < y close enough to y. Moreover, the ratio is a continuous function
of x and by Proposition [2.3] it decreases as x | y. Hence for every n > 0 and every

¢ < y there exists d > y arbitrary close to y such that

s f(e) — f(d) 2
D\pf(y)+7]>m/

\%
-
Sl
—
—~
&
|
3

By the above, we construct an increasing sequence (a,) C (u,y) and a sequence

(b,) C (y,v) such that a, — v, b, — y and

(an) — f(bn)
(an) — W(bn)

snzzé — C =Dy f(y) asn— .

Consider the sequence of functions

(bn) and by (2.5), Sa(z) < f(z) for all

I
~

It is clear that S,(a,) = f(an), Sp(by)



x € (an,by), n € N. By Lemma , flz) <OU(z) + (f(y) — CU(y)). Hence

~ A A

f(z) = Sn(z) = f(z) = (52 ¥(z) + (f(an) — sn¥(an)))
< C"If(x) + f(y) - O\Ij@) - Sn\ll(x) - f(an) + anj(an)

= (O = 8,)¥(z) + f(y) — f(GN> + s,V (an) — CV(y)

<O = 80| ¥(ar) + f(y) - f(an) + s,¥(a,) — CU(y).

It follows that for every 6 > 0 there exists Ns € N such that for all n > Ns and for
all z € (an,by),

0 < f(x) = Spx) < 6.

By the above for all y € (u,v) there exist ¢,,d, € (u,v), ¢, <y < d,, such that
f(z) = DU(z) + B and f(z) — (DU(z) + B) < ¢ for all z € (¢,,d,) where D =
(Fley) = F(d,))/(B(ey) — W(dy)) and B = (¥(c,) f(dy) — W(dy) f(c,))/(¥(c,) — W(d,)).
By definition of the set A it follows that f(z) < DVU(x) + B a.e. on (¢, d,). Since
function g(t) = fX(cy,dy)c(t) + (DY (t) + B)X(c,.a,) (1), t € 1, is U-concave on [ it must
be f = g by Remark m But g is P-affine on (¢, d,), so Dy f is constant there by
Lemma 2.9

The family of sets (¢,,d,), y € (u,v) cover each closed subinterval [u + €,v — €,

¢ > 0. Using compactness we conclude that Dy, f is constant on (u,v) and by Lemma

, f is W-affine on (u, v). O
Recall the following theorem concerning convex functions [55, Corollary 1.3.8].

Theorem 2.17. If f,, : I — R is a pointwise converging sequence of convex functions,
then the limit is also convex. Moreover, the convergence is uniform on any compact
subinterval included in the interior of I, and (f!) converges to f' except possibly at

countably many points of I.
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Observe that the above theorem works if one replaces words ” convex” by ” concave”.
Now, by Lemma [2.10] and Theorem [2.17, we conclude this section by the following

result.

Lemma 2.18. Let ¥ be an absolutely continuous function on each closed subinterval
of I with finite and non zero derivative V' a.e. on I. If f, : I — R is a sequence of V-
concave functions converging to a function f which is finite on I, then f is W-concave
on I and the convergence is uniform on any compact subinterval of I. Moreover, (f)

converges to ' a.e. on I.

2.3 Description of the dual space

Let I = (0,1),0 <l <ocand 0 <w € Ly(I). The weighted Cesaro function space on

I is defined to be (1 < p < 00)

Cpus = Crull) = {f e Lo(D): e, o= ([ (wte) [0 @) ar) i oo} .

Note that for f € C, (1),

1flle, = [Hufll, where ’wa(x):w(x)/o FOldt, zel,

and | - ||, is the norm in the Lebesgue space L,(I).
The goal of this section is Theorem which gives an isometric description of

the Banach dual space (C,,,)*. We start with two basic lemmas.

Lemma 2.19. The space (Cpu, || - |lc,..) is an order continuous Banach function

lattice with the Fatou property.

Proof. To see that (Cp.w, ||-||c,..,) has the Fatou property it is enough to apply Fatou’s
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Lemma twice. Using the Monotone Convergence Theorem one can show that Cj, (1)

is an order continuous space [8,|41]. [
Lemma 2.20. (a) C,,(I) # {0} if and only if fcl w(x)P dr < oo for some c € 1.
(b) Cpuw(I) is not continuously embedded into Li(I) whenever it is not trivial.

Proof. (a) Suppose that fcl w(z)? dx < oo for some ¢ € I. For all d € (¢,l) we have

l x l
IXealle, ., = / (w(x)/o X(eay(t) dt)P dz < (d — C)P/ w(z)? dr < oo,

whence X(c,a) € Cpw. If Cpo(I) # {0} then x(ca) € Cp for some c,d € I, d > c.

It follows that f; w(z)P dz < oo.

(b) Let a, be a strictly increasing sequence in I such that f;n w(x)Pdxr = 1/nP,

n = ng, for some large enough ny € N. For n > ny, let

X(an,an+n) if [ = oo,
gn =

n .
p—— X (an,ant1) if [ < oo.

Clearly in both cases [|g,|li — o0 as n — oo, [ g,(t)dt = 0 for z < a, and
Jo gn(t) dt < nfor x> a,. Hence ||ga|l7, , < f;n nPw(x)? dr = 1 for all n > ny,

and the claim follows. O]

If p =1 then by Fubini’s Theorem

[ ww (1@t = 150 [ o aa

Hence the space C,,(]) is just a weighted Lebesgue space with weight ftl w(z) dz,

tel
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In the sequel we assume that 1 < p < oo is fixed and the weight function w

satisfies the following conditions
(i) w>0a.e. on I,
(ii) flf w(t)Pdt < oo for all x € I,
(iii) [ w(t)? dt = oo.

Let further

U(z) = /lw(t)pdt, x el

Conditions (f)- (i) imply that the function W is strictly decreasing on I, lim,_,; ¥(z) =
0 and lim, ,o+ U(z) = oco. Also by absolute continuity of ¥ on each compact
subinterval of I, W/ = —w? < 0 a.e. on I. Moreover, if f € Ly(I) is such that

f < oo on I then by definition of Dj, f , we get that
Dy f(x) = f'(2))¥'(x) = —f'(2)/w(z)? for a.a. €1,

where f’ () denotes the derivative of f at 2. Note that this derivative exists a.e.
because V¥ is absolutely continuous on every closed subinterval of I, and so is f by
Lemma 2.4

It is easy to check that if the weight w is a power function w(z) = x* then
conditions (i)-(ii) are satisfied for s < —1/p if | = oo, and for s < —1/p if | < co. If
s = —1 then the space C,,, is the standard Cesaro function space Ces, considered
by several authors (see [5] and the references given therein).

For 1 < p < oo let g be its conjugate exponent 1/p 4+ 1/q = 1. Let us denote

~

Hof(x) = —f'(z)/w(z) foraa. zel.
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We will show that the Kothe dual space of C,, (1),

(Cyu) = (Cyu(D)) = {feLo /f dt<ooforallg€0pw},

equipped with the usual norm

£ pwf—sup{/f i : gecpw,ngn%\l},

is the space
(Cpu(I)) = {f € Lo(I) : f<ooonl, hir%f(a:) =0 and H,f € Lq(I)},

where || f|l(c,) = || Huwfll; and the essential W-concave majorant f is obtained with
respect to W. Observe that ¥ (and hence f ) depends on both p and w. Since C,,
is an order continuous space with the Fatou property its Kothe dual (C,,)" can be
identified with its Banach dual space (Cpﬂu)*. In fact each bounded linear functional
F € (Cpu)* is of the integral form F(g) = [, f(t)g(t)dt, g € Cp, where f € (Cppp)
and || Fllc, .- = [Ifllc, .y [8A1]-

We start with several preparatory lemmas.

Lemma 2.21. If0 < f € (Cpu) then esssup,e(, ) f() < 00 and esssup,¢ (g, % <

0o for all y € I. Consequently f(y) < oo for ally € I.

Proof. Let y € I be fixed and 0 < f € (Cp)". Suppose that esssup,¢(, ) f(z) = oo.
For all C' > 0 there exists a set A C (y,l) with 0 < mA < oo such that f > C on
A. Letting g = xa/mA, it follows that [, f(t)g(t)dt > C. But for all sets A C (y,1)
of positive and finite measure ||x4/mAlc,, < ¥(y)?, hence f ¢ (Cp.)". The latter

gives a contradiction. We proved that esssup,¢(, ) f(r) < oco.
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Now we show that [}/ (w(x)/¥(z))P dz < oo for all y € I. Fix y € I. By and

we can find a sequence (an) decreasing to 0, ag = [ such that

né/ w(x)Pder<n+1,n=0,1,....

An+1

Hence, for x € [apy1,a,), n =0,1,...

U(z) > / t)P dt = Z/ pdt>Zz_ ”_1)

Since y € [agy1,ar) for some k =0,1,..., and p > 1 we get that

[ GE) =< ()

b 27 +1
<Z( n—l) /an+1 pdx<z n =

Next, for arbitrary y € I, since [} (w(x)/¥(z)) dz < oo, ¥ is decreasing and 1/¥ is
bounded on (0,y), denoting B = [/ 1/\I/(x) dz, by (ii) we get that

/f (w(x) /0 W0 )in)A dt) s /Oy (7&;08 / Kl dt) d + /y (Bu@)y do
<[ () v freramen

Hence [|1/((mA)¥)xallc,. < EY? < oo for all A C (0,y) with 0 < mA < cc.

flz) _
V()

Suppose now that esssup,¢ g 00. Then for every C > 0 there exists a set
A C (0,y) withmA > 0such that f(z) > CV(z) forx € A. Let g = 1/((mA)V)xa. It
follows that [, f(x)g(z)dx > [, CW(z)(1/((mA)¥(z))dz = C and hence f ¢ (C,.,)',

which gives a contradiction.

Finally by Lemma we have that f < oo on I, and the proof is completed. [
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Lemma 2.22. If f € Lo(I) is such that f € (C,,) then lim,_,; f(x) = 0.

Proof. By Corollary , f is decreasing and hence lim,_,; f (x) exists. Suppose that
lim,_,; f(x) = C for some C' > 0. It follows that f(£) > C on I. By Lemma [2.20|b)

there is a sequence of functions g,, € B¢, , such that ||g,||; — oo as n — oco. Therefore

[, F(#)gn(t)dt = C [, gu(t) dt — oo, and so f & (Cy.,)" O
Lemma 2.23. If f € Lo(I) is such that H,f € Ly(I) then lim,_o+ DY f(z) = 0.

Proof. By Proposition 2.3 function D f is increasing and so lim,_o+ D f(z) exists.
Moreover, and Lemma imply that this limit is nonnegative. Suppose that
lim, o+ D¢ f(x) = C for some constant C' > 0. Since DEf(z) = —f'(x)/w(x)?

e, —f'(x)/w(x)? > C > 0 ae It follows (—f'(z)/w(x))? > Clw(z)? ae., so
by the integral fl(—f/(m)/w(a:))q dr = fl(’}:[wf)q(x) dx diverges, and this is a

contradiction. ]

Lemma 2.24. Let f € Lo(I) with f < oo on I be such that lim,_,; f(x) = 0. Then

[ F g dt < | Hufllallglc,., for any g € Gy Consequently || fllc,.y < [Hufllo-

Proof. If | #.u f|lq = oo then the claim is clear. Assume that ||H., f]l; < oo. In view of
lim,_y; f (x) = 0, using Fubini’s Theorem and the Hélder inequality, for any g € C,,,,

we have the following

/Of(t)g(t)dt</0 If(ff)\lg(lf)ldté/0 F(D)lg(t)] dt

-/ | / () delg(t)] dt = / | ‘j('g)w(x) [ atoldeas

< N Huwfllo Hwgll, = [Hofllollgllc,.

From the above it follows that f € (Cp.) and || f||(c,..) < [ f 4 O
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Theorem 2.25. If f € Lo(I) is such that |[Hyf]l, < oo and lim,_,; f(z) = 0 then
f € (Cp) and || fllcpy = 1Huf

Proof. Without loss of generality we assume that ||7:lwf |, = 1. By Lemma we
have that [, f(t)g(t) dt < “ﬁwaquHCEW whence f € (Cp) and || flc,.y < 1.

The assumption ||[Hyfll, = (fl(—f’(a:)/w(x))qd:c)l/q < o0 gives that f < oo
on I. Let h = (D f)4?. Function h is increasing, finite and right-continuous on
I and lim, ,o+ h(xz) = 0 as shown in Proposition and Lemma [2.23] Note that
h=(—f"/wP)¥? ae. on I.

Fix € € (0,1). Our main goal is to define a function g such that [|g|lc,, < 1+ €
and [, f(t)g(t)dt > 1 — 2e. The construction of g will involve a special set A C I
and a carefully chosen subdivision of I. First we find A and then a finite sequence
(a,) C I which divides 1.

Given y € I such that h(y) > 0 let
Ay ={r eI f@) < |f()] +e/ahm)}

Suppose m(A, N (0,y)) = 0 for all y > yo and some yo € I. In such case, Lemma [2.16]
implies that f is W-affine on each interval (0,y), y € I, and hence f is W-affine on
I. By Lemmas and , Dy, f is constant on I and lim,_,o- Dy, f(x) = 0. Hence
D&,’f = 0 on / and so f = 0 by lim,_ f(x) = 0, which gives a contradiction with
the condition ||, f]|l; = 1. This shows that for all y € I there is b € (y,1) such that

m(Ay N (0,b)) > 0. Since Ly(I) is order continuous we choose b € I such that
||(7¥wf)><(b,1)||3 < €”/2, and m(AN(0,0)) > 0, where A = Ay,

and b is a point of continuity of h.
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Observe now, that if there is « € I such that m(A N (0,z)) = 0 then, by Lemma
, f is W-affine on (0,z) and so h = 0 on (0, ). Suppose now that m(AN(0,z)) > 0
for all z € I. Then for all y € I, there exists a < y such that m(A N (a,z)) > 0
whenever x > a. Indeed, otherwise there exists y € [ such that for all a < vy,
m(AN (a,x)) =0 for z > a close enough to a, say for x < z,. Now the family of sets
(a,,), a € (0,y), covers [,y — n] for any n > 0. From this, using compactness, one

can infer that m(A N (0,y)) = 0, which gives a contradiction.

Hence we fix a € I, without loss of generality a point of continuity of h, such that

H(H F)X0.a)llE < €/2 and either
m(AN (a,z)) > 0 for all x > a, or (2.9)

h(a) =0 and m(AN (a,c)) = 0 for some ¢ > a. (2.10)

It follows that b > a, m(A N (a,b)) > 0 and

1(Fw /) x0aenllé < € (2.11)

Let v = ¥(a)/? and y; be points of discontinuity of DFf (and hence of h) in
(a,b) such that h(y;") — h(y;) > €¢/4y. Here h(yS) = lim,_, + h(z) and h(y; ) =
lim, T h(z). Clearly there is only finite number of them, say a < y1 < y2 < ... <
ym < b. Since f is continuous on [ for each y;, ¢ = 1,2,..., M, we can find two
points of continuity of h, y , J; € (a,b) such that y. <y; <7;, the intervals [y ,7,] are

pairwise disjoint,

[ er s < s e 212)



a €

fly) - f@) < 0L

for x € (y;,7;), and

€

(o) — h(r) < -

for z € (y,, vi)-

(2.13)
(2.14)

(2.15)

By Lemmas and 2.16f m(AN(y,,y;)) > 0 for all i = 1,2,..., M. Condition

(2.22]) implies that for all : = 1,2,..., M,

1 A
m(AN (pri)) /140(yi7y¢) fe)di > f(g’) B 4h(b)

(2.16)

Now, the set (a, b)\UM, [y, Y;] is a union of finite number of open disjoint intervals,

say U;(v;,7;). Each such interval (v;,7;) can be divided using finite number of points

of continuity of h, say ug, into subintervals (uy, ug,1) in such a way that the family

(ug, ug41)x is a partition of (v;,v;), and

h(urs1) = h(ur) < %,
flue) = Fl) < s

If m(AN (ug, ug1)) > 0 then by (2.27)),

1 .
7MAmwme»[Q%Mm“”“>fw”‘4mw

(2.17)

(2.18)

(2.19)

Let (a,)n) be a strictly increasing sequence consisting of all points u;, € U;(v;,7;)

obtained above, points a, b and Y. U t=12,..., M. Note that ag = a, ays1 =0

and each interval (a,,a,.1) contains at most one of the points y;, i = 1

Note that the union of all sets (an, an11] is (a, b].
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Denote A, = AN(ap,ans1),n=0,1,....N. Let E={n € {0,1,...,N}: mA, >
0}. Clearly E # (). We can write E = {ny,ng,...,n;} where 0 < ny < ng < ... <
nr < N. Note that, if n ¢ E then by Lemmas and 2.9) h(an41) —h(a,) = 0 since

h is constant on (a,, a,+1) and continuous at each point a;, 7 =0,1,..., N + 1.

Let k = 0 if ny > 0, i.e. if mAg = 0 (which is possible only when (2.10]) holds
true), kK = h(ag)/mAp if ny = 0, i.e. if mAy > 0 (which is always a case when ([2.9)

holds true). Note that kmAy = h(ag). Define function

h(ay, — h(ap, .
g:< (1) — >xAni+non> den /.
1 maAay,

1=

Now we show that

It is clear that [ |g(t)| dt = 0if 2 < ag. Since h is increasing we get that [; |g(t)] dt <
hans1) if = ayyr and [) |g(t)| dt < hagsq) if an < 2 < @y, n=0,1,...,N. If
x € (ap,an+1) and (ay, a,+1) does not contain any of points y;, ¢ = 1,2,..., M, then
h(ant1) — h(z) < e/4y by (2.26). Similarly, if € (a,, an+1) and (an, an41) contains
point y; for some ¢ = 1,2,..., M, then h(a,1) — h(x) < €/2v + (h(y;") — h(y;)) by
and . It follows that for x € I,

Hug(o) = w(a) [ loto)] d
< w(@)h(e) + gow(e)xian(e) +wle) D) = b)), a(),

=1
By the triangle inequality, definition of « and (2.21]) we get that

M
€

27 WX + > () = ()X, 3
=1

< e

p
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Moreover

futll, = ([ wer(- @) futay o) Y (i) =1

and hence

[Huwgllp < llwhllp +

M
e+ D () = B0
=1

Since

/|g e/4h(b) /|g )\ dt /4h(b) < ¢/4,

by definition of A we have that

/I F(t)gtydt = / F()lg(t) sign £() dt
> / (F(t) — e/Ah(b))g(t) sign £(t) dt

/f t)sign f(t) dt — e/4.

Now by definition of g, (2.25)) and (2.28)),

/f t)sian (1) di =

h(an +1
mA

M-

i, / f(t dt+mAf()t

=1

(h(@n+1) = P(an))(f(an,) = €/4h(D))

\Y
]~

1

ao)(f(ao) — ¢/4h(b)).

<.
I

+
=

It is easy to see that

k
<Z(h(ani+1) — (an,)) + h(@o)) €/4h(b) < €/4.

i=1
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Since h(ag) = 0if ny > 0, h(ans1) — h(a,) =0if n ¢ E and by (2.11)),

k N

Y (hlan1) = hlan)) f(an,) + hlao) f(ao) = Y (R(ans1) = hlan)) f(an) + h(ao) f (ao)
= h(ay+1)flan) + Y blan)(f(an-1) = flan))

I
[~]=
>
—
S
3
N—
@\
3 Q
1 3
—~
|
\)

mwu+umwo/’efu»ﬁ

o o s A AT
22:1/an1h(t)(—f'(t))dt+/w h(t)(_f/(t))dt>/a (J(g)) G

Combining all the above together we obtain [, f(t)g(t) dt > 1 — 3¢/2. Dividing both

sides by 1 + € one gets

5o+ d > -se

I

Finally, by ||g/(1 + €)||¢,.., < 1 it follows that || f]/(c,.y = 1. O
Lemma 2.26. If f € (C,,,) then f € (Cy.) and || fllc, .y = Ifllcyy = [[Huf o

Proof. Consider first the case when | < co. Let f € (Cpu) and fr, = fX[1/mi—1/m];

m € N. By Lemma , f < oo onl. Clearly fAm < f. Letting y € I, by definition of

f, for every € > 0 there exist n € Nand aset A = {(y1,...,yn) € I": > 1 a;f(y;) >
fy) — e 30 apW(y) = U(y), S oy =1, > 0,0 =1,2,...,n} with m™A > 0.
Let 7 > 0 be such that 1/r <y <1 —1/r and m™ (AN (1/r,l—1/r)") > 0. Since for

allm>r, f= f,on (1/r,l —1/r) it follows that ﬁ\n(y) > f(y) — e. By arbitrariness

!/

of € we get that fr\n(y) — f(y) as m — oo. By Lemma [2.18 f/\m — f" a.e. on I.

Note that Dfprf/,\n(x) = —f/,\n/(x)/w(x)p is 0 a.e. on (0,1/m) and constant a.e. on
(I —1/m,1). Hence the function —f/\m/(x)/w(x) = w(@)P" DY fn(x) ae. is in Ly(I),

m € N. By Theorem we get that || finll(c,.) = | Hwfimlq for all m € N. Now by
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Lemma [2.24] Lemma [2.18, the Fatou Lemma and the Fatou property of (C,,,)" we

get that

1, < 1Hufll = ([~ @ uta) o) o

n

] (/ i ﬁ’@/w@))%) <t ( / (—ﬁ’(@/w(x))qu) v

< sup [[Ho folly = sup [ fallicyy = [[fllicyny < oo

So || fllcpwy = HfH(cp,w)/, since |f| < f. The above inequality also shows that
1y = Huwfllo-

In case when [ = oo we proceed similarly as above taking f., = fX[/mm], m €

N. []

Now we are ready to present the main result in this section, isometric description

of the dual space (C),,)*. Namely, by Lemma [2.22] Theorem and Lemma

we get the following theorem.

Theorem 2.27. Let 1 < p < oo, ¢ = 2, U(z) = [

1’ T

- w(t)Pdt, x € I = (0,1),
0 <1< oo. Then a function f € (Cyo) if and only if f < oo on I, lim,_; f(z) = 0

and ||Hy f|l, < co. Moreover

1l py = 1Huflly for all f € (Cyu)

The Banach dual space (Cp)* of Cpa ts isometrically isomorphic to (Cp.) in the

sense that every F € (Cp.)* is of the form

Flg) = / f(Dg(t)dt, g Cyu
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2.4 Diameter of slices of the unit ball

Let (X, ||-]|) be a Banach space. Recall that the set s(z*;n) = {x € Bx : z*x > 1—n},
where z* € Sx+, 0 < n < 1, is called a slice of Bx. Applying the techniques described

in the previous section, we show the following result.

Theorem 2.28. Let f; € S g =12,....r, r € N be such that }; = fi,

p,w)/7

1,7 =1,2,...,r. The diameter of a finite convex combination of slices defined by f;,

g=12...,r, 15 2.

Proof. Let f = ]?j, je{l.2,...,r} and Fj(g) = [, f;(t)g(t) dt, g € Cp, be bounded
linear functionals on C),,, defined by f; € S,y J = 1,2,...,7, 7 € N. Let S =
> aps(Eying), a5 20,0 <my < 1,5 =1,2,...,r, 0 a5 = 1 be a convex
combination of slices. Let 0 < ¢ < min{n; : j =1,2,...,r}/10 be arbitrary.

Denote h = (D& f)¥P. Note that h = (—f'/uw?)¥? ae. on I. Function h
is increasing, finite and right-continuous on I and lim, ,o+ h(x) = 0 as shown in
Proposition [2.3] and Lemma [2.23] Moreover h is not constant on I, in particular h
is not identically 0 on 7. Indeed, if h is constant on I, that is Dy, f is constant on
I, then by , lim,_,o+ DF f(x) = 0. Now, Lemma [2.9) implies that D f = 0 on I
and so f is W-affine on I by Lemma . We have that f = AV + B on [ for some
constants A and B. Since D{f = 0 and in view of Lemma both A = B = 0.
Hence f = 0 on I, which gives a contradiction with the condition || f licpwy = 1-

Given y € I such that h(y) > 0 let

Aé]) — {LC cl: |fj(l’>’ > f(x) — €/4h(y)}, Jg=12...r.

First, observe that for each y € I there is b € (y,[) such that for all j € {1,2,...,7}

m(Al()j) N (0,b)) > 0. Indeed, if there exists yo € I such that for all b € (yo, () there is
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je{1,2,...,r} for which m(AZ()j) N (0,b)) = 0 then by Lemma f is W-affine on
(0,b) and hence by Lemma Dy, f is constant on (0,b). The latter and the condition
lim,, o+ D$f = 0 imply that A = 0 on (0,b) for all b € (yo,!) and hence h =0 on I,

which gives a contradiction.

By the above and by the order continuity of L, we fix b € I such that m(AI()j N
(0,b)) >0 for all j € {1,2,...,7r} and H(}lwf)X(b,z)Hg < €?/2. Moreover, without loss
of generality, we assume that b is a point of continuity of A and such that A is not

constant on (0,b). Denote AV = Al()j), j=1,2,...,7.

Now, we show that either ~ = 0 on some interval near 0 or h > 0 on [ and
for each y € I there is a < y such that for all j € {1,2,...,r} and all z > «a
m(AY N (a,2)) > 0. Indeed, suppose that there exists y, € I such that for all
a € (0,y0) there are j € {1,2,...,r} and z, € (a,l) for which m(4AY N (a,2,)) = 0.
By Lemma h is constant on each interval (a,z,). But the family of intervals
(a,x,), a € (0,yo) covers [n,yo — 1], n > 0, whence, using compactness, we infer that
h is constant on (0,yp). Since lim, o+ h(z) = 0 by Lemma we get that h = 0 on

(0,90). The claim follows.

By the above, we can find a € (0,b) such that
m(AY N (a,0)) > 0, |(Huwf)X0alE < /2 and

either h(a) = 0 or m(AY N (a,z)) >0 forall j =1,2,...,7 and all z > a. (2.20)
It follows that ||(H..f IX0,auey i < €. Again, without loss of generality, we assume
that a is a point of continuity of h and such that h is not constant on (a,b).

Let v = ¥(a)'/? and y; be points of discontinuity of DEf (and hence of h) in

(a,b) such that h(yS) — h(y;) > €/4y. Here h(y;") = lim,_, +h(z) and h(y;) =
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limx_w; h(z). Clearly there is only finite number of them, say a < y; < ys < ... <
yu < b. Since f is continuous on [ for each y;, ¢ = 1,2,..., M, we can find two
points of continuity of h, y., J; € (a,b) such that Y. < y; <Y, the intervals [gi, Y] are

pairwise disjoint,

/ WP A S G R (220)
fly)—F@) < 4h€(b), (2.22)

h(z) — h(y}) < % for x € (y;,7,), and (2.23)
h(y;) = h(z) < — forz € (y, ). (2.24)

By Lemmas and , m(AY) N (y,¥;)) > 0 foralli = 1,2,.... M, j =
1,2,...,r. Condition (2.22)) implies that for all i =1,2,...,M and j =1,2,...,r

(2.25)

1 ) )
AT A (5.7) /Amn(y,yi)f(t) = 1)~ gy

Now, the set (a,b) \U, [y, 7;] is a union of finite number of open disjoint intervals,
say U;(v;,7;). Each such interval (v;, ;) can be divided using finite number of points
of continuity of h, say ug, into subintervals (uy, ux,1) in such a way that the family

(U, ug41)x is a partition of (v;,v;), and

h(ugs) — hiuy) < E (2.26)
2 A €
flug) = flugsr) < ) (2.27)
If m(AY N (ug, upy1)) >0, j € {1,2,...,7} then by (2.27),
: / Ftydr > fum) — (2.28)
: > flug) — . .
m (AW N (ug, ug1)) AD A(wp upg1) g 4h(b)
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Let (a,)Y2) be a strictly increasing sequence consisting of all points u;, € U; (v, 75)
obtained above, points a, b and Yo Y t=1,2,... , M. Note that ay = a, anyy1 = b
and each interval (a,,a,.1) contains at most one of the points y;, i = 1,2,..., M.

Moreover UN_(an, any1] = (a, b].

Denote

A(]):A(j)m<an,an+l)7n:07177N7]:]‘727’T

n

Let

EY ={ne{0,1,....,N}:mAY >0},j=1,2,...,r

Clearly EV) #£0, j =1,2,...,r. Let E =’_ EY. We have that E # 0. Indeed, if
E = () then for each n € {0,1,..., N} there is j € {1,2,...,r} such that m(AU) N
(Gpn, ap+1) = 0 and hence by Lemma f= fj is W-affine on each interval (a,, a,.1),
n €{0,1,..., N}. By the latter and Lemma we would have that h is constant on

(a,b) which is not the case.

We can write £ = {ny,ng,...,np} where 0 < ny < ng < ... < ni < N. Note
that, if n ¢ E then n ¢ EU) for some j and hence by Lemmas and , h(ani1) —
h(a,) = 0 since h is constant on (a,,a,+1) and continuous at each point a;, i =

0,1,...,N +1.

Now, for each n € E let sets BY, C) ¢ AY be such that m(BY)) > 0, m(C{) >
0, for j=1,2,...,r, u;?:lA? = U;Zl(Bflj) U C’,sj)) and all sets Bg), CY) are pairwise
disjoint 7,7 = 1,2,...,7.

Observe that if 0 ¢ E then by (2.20), h(ag) = 0 and in this case we interpret

HPlao) )

expressmns o) X nl BY) and XC(J> as 0 (also when sets B C’ are not formally

defined).
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For j =1,2,...,r define functions

k
h a/nz"v‘l (a’ni) h(a()) :
(Z BT et poiXeg | e

=1

and

k
han 1) = han,) h(ao) .
A

=1

Now, we show that
lgs,jllcy. <S14+efors=1,2and j=1,2,...,7

It is clear that [ |gs;(f)]dt = 0 if # < ao. Since h is increasing we get that
Jo 195, O] dt < hlansr) if @ = ani1 and [ |gs;(0)] dt < h(ansr) if an < & < apy,
n=20,1,...,N. For a fixed n € {0,1,...,N}, if z € (a,, ans1) and (a,, a,y1) does
not contain any of points y;, i = 1,2,..., M, then h(a,1) — h(z) < /4y by (2.26).

Similarly, if € (ap, any1) and (ay,, a,11) contains point y; for some i = 1,2,..., M,

then h(a,11) — h(z) < €/2v + (h(y;") — h(y; ) by (2.23) and (2.24). It follows that

for x € 1,

Hogey () = w(z) / gay (1) dt

< w@)h(@) + g-w@)xian @) +w@) 3 () = hED))Xy,50@)

=1

By the triangle inequality, definition of « and (2.21]) we get that

<e (2.29)

M
€ _
WX +w > () = h(y;)Xw, 71
i=1

p
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Moreover
futll, = ([ wley (- oty )qdm)w = (I#f1) " =1
and hence

<1l+e

p

[Huwgsjllp < [lwhllp +

Next we show that for s = 1,2, g, ; € s(Fj;n;), j € 1,2,...,r
Denote BY) = UleBfi) the support of ¢1;, j =1,2,...,7. Let j € {1,2,...,r}

be arbitrary. Since

/ 195 (8) /4R (D) / 191,(8)] dt/4R(B) < /4,
B
by definition of BY) we have that

[ 100 = [ 110y 0)sien 0 at
> /B (00) = /(b)) g ¢)sign f(0)

Z | f()gr;(t)sign f;(t) dt — e/4.

BW)

Now by definition of ¢ ;, (2.25) and (2.28§),

. o Mang 1) — hiag,) h(ao)
" f(t)gr,;(t)sign f;(t) dt = mBﬁf " f(t)dt + /1 mBéj)XBéwf(t) dt

WV

M- 1+

(han;1) = hlan,))(f(an;) — €/4h(b))

=1

+ h(ao)(f(ao) — €/4h(D)).
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It is easy to see that

(Z(h<ani+1) = h(an,;)) + h(@o)) €/4h(b) < €/4.

i=1

Since h(ag) = 0if 0 ¢ E, h(ant1) — h(a,) = 0if n ¢ E and by (2.11)),

D _(hlan 1) = h(an))f(an) + hao) fa0) = 3 (hlans1) = han)f(an) + hlao) f(a0)
= h(ans1) flan) + D hlan)(f(an) — flan))
=Y _Nlan) / (S P(0) dt + ha) / (—f'(t)) dt
N an , aN+1 ) b —f/(t) q
>3 [ oo [T oeroas [(ZER) @z

Combining all the above together we obtain [, f;(t)g1;(t)dt > 1 — 3¢/2. Dividing

both sides by 1 + € one gets

/f](t)gL](t)/(l—’—E)dt} 1—362 1—7’]j,j: 172,...,7”.
I

Similarly one can show that ¢o; € s(Fj;n;), j =1,2,...,7.

Let g1 = 2221 a;g1j and g = E;Zl a;g2,; be convex combinations of functions g ;
and g2, j € {1,2,...,r}, respectively, where a; > 0, 7 =1,2,...,r and Z;Zl a; = 1.
Clearly g1, g2 € S. Observe that fox lg5,;(0)]dt =0ifx <ag,s=1,2,j=1,2,...,r.
Let n € {0,1,...,N} be arbitrary. If x € (an,ans1) and y; ¢ (an,an41) for all
i =1,2,...,M, then [ |gs;(t)]dt > h(a,) = h(ani1) — €/2y by , s = 1,2,
M

* Y

then [i7 |gs; () dt = h(an) = h(ans1) — €/2y — (h(y;") — h(y; ) by and (2.24),

j=1,2,...,r. Similarly, if x € (ap,an41) and y; € (ay, ay41) forsomei = 1,2, ..
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s=1,2,7=1,2,...,r. It follows that for all z € (a,b), s=1,2, j =1,2,...,7,

x M
[ 190501t > o)) = - xian () = S = bl i o) (230)
=1
Observe that
M
h(y) — h(y; )Xy, ) (x) 2 0 for all z € 1.
i=1

Let ¢ = sup{x € I : h(x) < €/2v}. If ¢ > a then by definition of ~,

lwhX(a.olly < (€/27)[wx@nlly < (e/2)". (2.31)

Let d = max{a, c}. Now, for x € (d,b) the right-hand side of is non-negative.

Since function g, ;, s = 1,2, 7 = 1,2,...,r have disjoint supports, we get that for
all x € (a,b),
/ l91(t) — g2(t)] dt = w(z Z%(/ |g1,5(t !dt+/ |g2,5( \dt)
7=1
. M
2 2w(z) ()X (ap)(T) — ;%U(iv)xmb — 2w(z) > (h(y (Wi )X, 7 (@)
=1

It follows that

g1 — 92llc,.. =

M
€ _
2whx(ap) — (;WX(d,b) +2w > (h(y) — hly; ))X(y,.,yn)

=1

p
. M
> 2|lwhxanll, — H;MX(d,b) + 2w Z(h(yj) - h(yi_))X(gi,yi)
i=1 »

Since [[whll, = 1, [[whxoauenllh = ||(7:[wf)x(0,a)u(b7l)||g < € and by (2.31) we get
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that

lwhX @pllp = llwh — (Whx©aue) + WX (@) llp
> [|whll, = lwhx©auesllp = lwhX@ell]

=1- H(ﬂwf)X(o,a)u(b,z)Hg/p —€/2>1—3¢/2.

By the above and (2.29) we get that [|g; — g2/lc,., = 2 — 4e. Dividing now both
sides by 1+ € we obtain that ||(g1 — g2)/(1 + €)||c,., = 2 — 6e. Since € can be taken

arbitrarily small we obtain that the diameter of S is 2. m

Corollary 2.29. Every slice of Bc, ,, has diameter 2.

2.5 The Radon-Nikodym property

Recall that a Banach space (X, ||-||) is called locally uniformly convez if for any z € Sy
and any sequence (z,) C By, lim,_, ||z +2,| = 2 implies that lim,,_,, ||z —z,| = 0.
A point x € Sy is said to be strongly exposed if there is z* € Sy« such that z*z = 1,
x*y < 1for all y € Bx \ {z}, and z*x,, — 1 implies that ||z — z,|| = 0 as n — oo for
any sequence (x,) C Bx.

A point x € Sx is called a denting point of Bx if © ¢ ¢o{Bx \ (r +€Bx)} for each
e > 0. It is easy to see that if the unit ball Bx has denting points then it has slices
of arbitrary small diameter [12, Proposition 2.3.2, p. 28]. Also any strongly exposed
point is a denting point [57, p. 227] and in locally uniformly convex space all points of
its unit sphere are denting [27]. The Radon-Nikodym property can be characterized in
terms of denting points. Namely, a Banach space X has the Radon-Nikodym property
if and only if for every equivalent norm in X the respective unit ball Bx has a denting
point [12, p. 30]. For definition and more details on Radon-Nikodym property, we

refer to |12]. Consequently by Corollary we get the following corollaries.
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Corollary 2.30. The space (Cy., ||-||lc,..) does not have the Radon-Nikodym property.

Corollary 2.31. The unit sphere of (Cpu, || - ||lc,.,) does not have strongly exposed

points.

Corollary 2.32. The unit sphere of (Cpu, | - |lc,..) does not have denting points.
Corollary 2.33. The space (Cpu, || - ||lc,.,) s not locally uniformly convex.
Corollary 2.34. The space (Cpu, || - ||lc,.) 95 not a dual space.

Proof. 1t is known that every separable dual space has the Krein-Milman Property
[10] and that the latter is equivalent to the Radon-Nikodym Property in Banach
lattices |11L[15]. Since C,,, is a separable Banach lattice without the Radon-Nikodym

Property it cannot be a dual space. O
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3 Other geometric properties of Cesaro function spaces

In this chapter we show that Cesaro function space is strictly convex, contains an
asymptotically isometric copy of ¢; and has all relatively weakly open sets of its unit
ball of diameter 2. We also show that no point of this space is uniformly non-square,
and what follows, there are no strongly extreme points nor H-points and the space is
not uniformly convex in every direction. As in Chapter 2, I = (0,1), 0 <l < o0, is a
finite or infinite interval on which we consider the space C, ,,, where 1 < p < oo and

the weight function w satisfies conditions — from page 22.

3.1 Strict convexity

A point = € Sx is called extreme if for every y € X the condition ||z £y|| = 1 implies
that y = 0. Equivalently, if y,z € Bx and ||(y + 2)/2|| = 1 then y = z = z. If all
points of the unit sphere Sx are extreme then the space (X, || - ||) is called strictly
convez.

In this section, we show that space C,,, is strictly convex.

Theorem 3.1. The space (Cpu, || - |lc,..,) is strictly convex.

Proof. Let f € S¢,,, and suppose that || f % g||c,. = [|fllc,... Since

f+g+f—gl _1
!ﬂz' <!
2 2

1
u+m+§u—m,

we get that

171 = 30+ 947 -0 < 307+l + 315 ol = 171
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It follows that

[ty [ LOSEUO =003 [ (o) [ 001a) a0,

Since (|f + gl +|f —gl)/2 = | f], we get that

w(x) /Om @)+ gl +17(0) = 90 dt = w(x) /j |f(t)| dt for a.a x € I.

2
Since L,(I) space is strictly convex for 1 < p < oo and, by assumption,
wa) [ 150l de wo) 170+ g0l de wle) [ 150 - g0l dr € 5,
0 0 0

we get that [ f(¢) £ g(t)] —|f(t)|dt = 0 for all z € I and by [59, Lemma 8, p. 105],
|f(t) £ g(t)] = |f(t)] a.e. on I. This gives g = 0. O

The above result can be also obtained by applying |33, Corollary 1].

3.2 Copy of /;

Recall [26] that a Banach space (X, ||-||) contains an asymptotically isometric copy of
¢y if there exists a sequence (¢,) C (0,1), ¢, — 0 as n — oo and a sequence (x,) C X

such that for arbitrary («,) € ¢; we have

Z(l_en)|an| < ||Z%$n|| < Z|an| (3.1)
n=1 n=1 n=1

In 2008 Astashkin and Maligranda proved that the Cesaro function space with
standard weight w(x) = 1/z contains an asymptotically isometric copy of ¢; [4]. In

fact their proof works well also for arbitrary weights.
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Theorem 3.2. The space (Cpuw, || - ||lc,.) contains an asymptotically isometric copy

Ofgl.

Proof. Let (b,):2, be any strictly increasing sequence in I such that lim,, ., b, = b <
[. Denote a = by. Let g, = X(bnbnrn) a0d fro = gn/||lgnllc,., 7 € N. It is easy to check

for any function f € Ly(I) with supp f C ¢, d] for some bounded interval [c,d] C I,
()P flley < [ fllopa < U2 Ly (32)

Let (o), € £4. Since supp » oo @nfy C [a,b] and supp g, C [by, buta], by (3.2)) we

get that

1>~ anfallopw = TGP anflle,
n=1 n=1

= VO el falley = )Y |anlllgnlle/Ignllc,.
n=1

n=1
> ) | U(0) P/ (b,) P = (1= €)|anl,
n=1 n=1

where €, = 1 — W(b)"/?/WU(b,)/?. Clearly €, — 0 as n — co. The other inequality is

obvious. O

Let X be a Banach space. Recall that a mapping 7' : K — K is called nonexpansive
if [Tz —Ty|| < ||z —y]| forall z,y € K C X. A Banach space X has the (weak) fized
point property if every nonexpansive mapping of every (nonempty weakly compact
convex) closed bounded convex subset K into itself has a fixed point.

Similarly as in [4] by results in [25], we conclude this section with the following

corollary.

Corollary 3.3. Cesaro function space (Cp, || ||c,..) and its dual ((Cp), ||+ licpy)
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fail the fized point property. Moreover ((Cpw), |- ll(c,.y) contains an isometric copy

of L1]0,1], hence it even fails the weak fixed point property.

3.3 Some results in general Banach spaces

Let (X, |- ||) be a (real) Banach space. For any 2* € Sx« and € > 0 the set s(z*;¢) =
{z € Bx : 2"z > 1 — ¢} is called a slice determined by z* and e.
Following Schaffer [62, p. 131], we say that point z € X is uniformly non-square

if there exists p > 1 such that

pmin{|[z]], lyll} < max{||z +yll, [z —y[|} for all y € X

If all points of the unit sphere Sy are uniformly non-square then the space (X, || - ||)
is called locally uniformly non-square (a LUNS space for short).
The following simple observation is known, however we provide its proof for

completeness.
Lemma 3.4. Let (X,| - ||) be a Banach space.

(i) If x € X is a uniformly non-square point then so is Az for any A > 0.

(ii) All points x € X are uniformly non-square if and only if all points x € Sx are

uniformly non-square.

Proof. (i) Let x € X be uniformly non-square and A > 0. Let y € X be arbitrary

and y' = y/A. By definition we get

max([[Az +yl|, [ Az — yl]) = max(||[Az + Ay, [| Az — Ay/'[])
= Amax([|z + ¢/, [l — y'll) = pAmin(|lz]], [y/]})

= pmin([|Az|, [[Ay[]) = pmin([|Az]], [|ly[]).
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(ii) Suppose that every x € Sy is uniformly non-square. Clearly x = 0 is uniformly
non-square. For 0 # x € X, since /||z|| is uniformly non-square so is « by (i).

[
Proposition 3.5. Let (X, || -||) be a Banach space. The following are equivalent.
(i) A point x € Sx is not uniformly non-square.

(ii) There exists a sequence (y,) C X such that ||y,|| — 1 and ||z £ y,|| — 1 as

n — Q.

(iii) There exists a sequence (y,) C Bx such that ||y,|| — 1 and ||z £ yn|| — 1 as

n — oo.
(iv) There exists a sequence (y,) C Sx such that |z £ y,|| = 1 as n — oc.

(v) There ezists a sequence (y,) C Bx such that ||y,|| — 1 and ||A\x £ y,|| — 1 as

n — oo for all X € [0,1].

Proof. (i) = (ii) First observe that, for any z,y € X,

rT—y T4y 1 1
p— <— — —_— .
R e H\Qum+yy\+2ux 1l
Hence
|z +yll + llz —yll = 2|z (3.3)

Changing the roles of x and y we can infer that ||z 4+ y|| + ||z — y|| = 2 max(||z|[, ||ly]])-
Hence

max(||z +yl, [l = yl}) = max(|[z[], |[y]), for all 2,y € X. (3-4)

It follows that
max(||x + yll, |z — yl|)

: > 1, forall z,y € X. (3.5)
min[|z[[, [ly[})
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Let z € Sx be a point which is not uniformly non-square. By the definition of =

and inequality (3.5)), we get that there exists sequence (y,) C X such that

max(||lz + yn|l, |z — ynl|)

, — 1l asn — oo. (3.6)
min (1, [[y[])

By we have that max(||z +yx||, ||z —y.||) = 1 for all n € N and hence it must be
llyn]| = 1 as n — oo. Indeed, if there is a subsequence y,, such that ||y, || <7 <1
for all & € N then max(||z + yn, ||, [T — Yn,||)/ min(1, ||yn,||) = 1/n > 1. Similarly, if
gl > 7> 1 for all ks € N then by @) max(z+ g, 12— g 1)/ min(1, 1y, ) >
n > 1. Which is a contradiction with (3.6). Now it follows from that max(||z +
Ynll, |z — ynll) = 1 as n — oo. Since ||z|| = 1, by we get that || £ y,| — 1 as

n — o0.

(i) = (iv) By (ii) we can find a subsequence of (y,), again called (y,), such

that ||y,|| — 1, ||z £ y.|| — 1 as n — oo and either (y,) C By or (y,) C X \ By.

Suppose first that (y,) C Bx. Let v,7, = 0 be such that v, — v as n — oco. We

have

| (T ym)ynEz]| = | 2+ 1) yn—(wnF2) || = [(2 + ) |¥nll = llyn F 2l|] = 247—1 = 1+,

Hence lim,, o [|(1+m)ynF2]| = 147, But [|(1+9 )y 2]l < vallyall+llyate| = 14+
whence lim,, o0|[(1 4+ 7n)yn £ 2| < 1+~ and so lim, o0 [|[(1 + 70)yn £ 2| = 1+ 7.

Equivalently

. 1"’771 —1
1 1+ 7,) e £y, = 1.
im0 3m) ™ g

Since (1 +7,)/(1+7) — 1 as n — oo we get that lim, . ||(1 +v,) 'z £ y,| = 1.
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Now taking 7, = 1/||ys|| — 1 we obtain that ~, — 0 and

Yn _
H : Nyl 2 gl = (1 4 3) (1 + 30) "2 £ gall = 1.

T
[l

‘ 1
[

In case when (y,) C X \ Bx we proceed similarly. Let 0 < v, < 1, n € N be such

that v, — 0 as n — oco. We have

(1 =v)yn £2)| = [[2= V)0 — Wn F2)|| = [(2 = w)|¥nll = lyn F2l|| =2-1=1

Hence lim,, , ||(1 — vu)yn £ 2|| = 1. But [[(1 —v0)yn £ 2f] < [[Vabnll + |y £2f] =1

whence limy, o |[(1 =) yn 2| < 1 and so lim, e |(1 =70 )yn £ 2| = 1. Equivalently

lim (1 - ’Yﬂ)”(l - ’Yn)ill’ + ynH =1L

n—oo

Now taking 7, = 1 — 1/||y,|| we obtain that , — 0 and

Yn -
H L lynllz £ yall = (1 = 7)I1(1 = ) "'z £yl — 1.

X
(7]

1

’ ol

Implications (iv) = (iii) and (iii) = (i) are obvious. Hence conditions (i)-(iv)
are equivalent.

The implication (v) == (iii) is clear. While (iii) == (v) can be proved in the

same way as the first part of (ii) = (iv) by taking v, = 1/A — 1 to be a constant

sequence and v = 1/A — 1 in case when A € (0, 1]. For A = 0 the claim is clear. [

Observe that x € Sy is uniformly non-square if and only if there exists § > 0 such
that

max{||z + vy, ||t —y||} = 1+ for all y € Sx. (3.7)
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Clearly, if x € Sx is uniformly non-square then is satisfied. If x € Sx is not
uniformly non-square then by Proposition (iv) there exists a sequence (y,,) C Sx
such that ||z £ y,|| — 1. Hence is not satisfied.

A point z € Sy is called strongly extreme or midpoint locally uniformly rotund (a
MLUR point) if for every sequence (x,) C Bx the condition || +x,| — 1 as n — oo
implies that =z, — 0 as n — oo. If all points of the unit sphere Sy are strongly
extreme points then the space (X, || - ||) is called midpoint locally uniformly rotund (a
MLUR space). A Banach space (X, ||-]|) is called uniformly rotund in every direction
(URED space) if z,,, z € X, ||z,|| = 1, ||z, + 2| — 1 and |22, + z|| — 2 implies that
z=0.

Lemma 3.6. If v € Sx is a strongly extreme point then it is a uniformly non-square

point.

Proof. If z € Sy is not a uniformly non-square point then by Proposition (iv)
there exists a sequence (y,,) C Sx such that ||z £ y,|| — 1. Since |ly,|| = 1 for all

n € N we see that z is not a strongly extreme point. O]

Proposition 3.7. If a Banach space (X, || -||) is uniformly rotund in every direction

then it is locally uniformly non-square.

Proof. Let (X, || - ||) be an URED space. Suppose that z € Sx is not an uniformly
non-square point. By Proposition (iv) there exists a sequence (y,) C Sx such

that ||z £+ y,|| = 1 as n — co. We get that

129 + 2l = [13yn = (Yn = )| = Bllyall = lyn — [|| = 2 as n — oo.

Hence lim,, |2y, + 2| = 2. But [|2y, + z[| < [lyall + llyn + #[] = 2 as n — oo, which

gives lim,||2y, + | < 2. It follows that lim, |2y, + || = 2. Since X is an URED
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space we get that = 0 which is a contradiction with z € Sx. m

Proposition 3.8. If there are no uniformly non-square points in the unit sphere Sx

then all slices of the unit ball Bx have diameter 2.

Proof. Let x* € Sy- and n > 0 be arbitrary. Let 6 < 1/4 be positive and choose
x € Sx such that z*x > 1 — 4. In particular = € s(z*;n). By assumption z is
not a uniformly non-square point, so by Proposition (iii) there exists a sequence

(yn) C Bx such that ||z + y,|| = 1 and ||y,|| = 1 as n — oco. Since

vz £ yn) < 2" (z £yn)| < |27

x|z £ yn| = 1,

there exists N € N such that 2*(x £ y,) < 1+ for all n > N. It follows that

|z*y,| < 20 for all n > N. Now, since ||z y,| — 1 as n — oo, for all n large enough

T £ Y,
14+46

~

Moreover

Tt Y, 1 1
* — *r 4+ ot — (1=65-9 1—4 1 —
x(l 5) 1 5(:1::6 zl:yn)>1 (5< ) 5) > o> 1,

hence % € s(z*;n) for all n large enough. We also get that

1
)

x_’_yn T —Yn

2
2l = —— — 00.
149 149 Hy” wn >

1+0

Since § can be taken arbitrarily small we get that diameter of s(z*;n) is equal 2. [

The following result is a part of the proof of Theorem 2.5 in [3]. We provide it

here for reader’s convenience.
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Lemma 3.9. Let (X, || - ||) be an infinite dimensional Banach space. If for every
x € Sx there is a sequence (y,) C Bx such that ||z £ y,|| — 1, ||yn]| = 1 and y, = 0
weakly in X as n — oo then all nonempty relatively weakly open subsets of the unit

ball Bx have diameter 2.

Proof. Let W # () be a relatively weakly open subset of Bx. Since X is infinite
dimensional there is x € W such that ||z|| = 1. By assumption there exists sequence
(yn) C Bx such that ||z £ y,|| = 1, ||lyn]] — 1 and y, — 0 weakly in X as n — oo.

ol = 1

Let 2, = 2 +y, and 2, = 2 — y,. Clearly x,,x, — x weakly in X, |z, ||,

"

Al = 2|lynll — 2 as n — oo. Taking z, = xln/Hx;LH and w,, = $;;/||x;;||,

and ||z, —
we clearly have that z,,w, — x weakly in X, z,,w, € Bx and ||z, — w,|| — 2 as

n — 00. O

Recall that a point z € Sx is called an H-point of Bx if for every sequence
(x,) C X such that ||z,| — ||z| and z,, — = weakly it follows that || — z,|| — 0 as
n — oo. If all points of the unit sphere are H-points then (X, || - ||) is said to have

Kadec-Klee property or H property or Radon-Riesz property.

Similarly as above we can prove the following.

Lemma 3.10. If for z € Sx there is a sequence (y,) C Bx such that y, - 0, y, — 0
weakly in X and either ||x + y,|| = 1 or ||x — yn|| = 1 as n — oo then x is not an

H-point of Bx.

Proof. 1t is enough to take z, = =z + y, or x,, = x — y,,. By assumption ||z,| — 1 =

|x||, x, — = weakly and ||z, — x| = ||ya| = 0. O
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3.4 Several geometric properties of Cesaro function spaces

First, we define a sequence of Rademacher-like functions on an arbitrary measurable

set of finite and positive Lebesgue measure.

Definition 3.11. Let A C R be a Lebesgue measurable set with 0 < mA < oco. A

sequence of Rademacher functions r,, n € N, on A is defined as

Lif t e U2 A5,
Tn(t) =
—vifte U7t AS,

where A(()O) = A and given Agn_l), i=0,1,...,2"71 — 1, sets Agn) are any sets which
satisfy

n—1 n n n n n n
Az(' ) = Aéi) U Agilp Aéz‘) n A;iJ)rl =0, mA;i) = mAéiib
fori=0,1,...,2"'—1. Note that A = U* 5 A™ for all n € N, and mA™ = mA/2"
foralln € N, and ¢ € {0,1,...,2" — 1}.
The following fact is known but we provide its proof for completeness.

Lemma 3.12. Let A C I be a Lebesque measurable set with 0 < mA < oco. A

sequence of Rademacher functions r, on A converges to 0 weakly in Li(I).

Proof. Let 0 < g € Loo(I). Let € > 0 be arbitrary and sets B; C A, i =1,2,..., N,

g(t) —g(s)] < e/mA, i =

1,2,...,N. For large enough n’s and for all i € {1,2,..., N} there exist disjoint

be disjoint and such that A = UY,B; and ess SUP; s,

sets C, D™ and E™ such that B™ = ¢™ u D™ U E™, mc™ = mD™,

7

Tn(Ci(n)) = {1}, rn(Dgn)) ={-1} and m(EZ(n)) — 0 as n — oo. Observe that

/N . lg(t)r(t)] dt < ||g||oom(U£V:1Ei(n)) — 0 as n — oo,
Ui—lE’Ln
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and for alli € {1,2,... N}

/(n) g(t)dt — /(n) g(t)dt
cf D

< mC’i(n) esssup g(t) — mDZ(n) essinf g(t) < emB;/mA.
teB; teB;

/ o()ralt) dt
B\E™

Now, for n’s large enough,

/g(t)rn(t) dt‘ =

1

/A (B (t) dt‘
/B o0 dt'

/ o(tyralt) dt
B\E™

Since € > 0 is arbitrary, we get that [, g(t)r,(t)dt — 0 as n — oco. If g € Lo(I) is

I
,MZ

@
I
—

N
t)| dt < 2e.
+3 [, ol a <

N

@
Il
A

arbitrary then one writes g = g™ — ¢, where g™, g~ > 0 and applies the above result

to both ¢, ¢~ and obtains the hypothesis. O]

Lemma 3.13. For any function f € Lo(I) there exists sequence (p,) C Li(I),
(1) = {—=1,1} such that [, fxspn — 0 as n — oo for any measurable set B for
which fxp € Li(I).

Proof. Suppose first that m(supp f) < co. Let p, = r, be a sequence of Rademacher
functions defined on supp f and (A,,) be an increasing sequence of measurable sets
such that U,,A,, = supp f and f is essentially bounded on each A,,. Since L;(I) is
order continuous for every e > 0 there exists M € N such that [} |f()|xpnag, (t) dt <€

for all m > M. It follows that | [, | f(£)|xpnac, (t)pa(t) dt| < € for all m > M and all
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n € N. Since p, — 0 weakly in L;(I), we get that

/] £ xs()palt) dt‘ - / F()XB0a, (Opa(t) dt + / F(O e, (Dpa(t) dt

< /f XBA, (1)Pa(t ‘ /’f )xBrag, (t
< /f(t)XBnAm(t)pn(t) dt‘ +e—e asn— 0.
I
It follows that | [, f(£)x5()pa(t) dt| < 2€ for all n’s large enough. Hence

/If(t)XB(t)pn(t) dt — 0 asn — oo.

Suppose now that m(supp f) = oo. Similarly as above let (A4,,) be an increasing
sequence of measurable sets such that U,,A,, = supp f and f is essentially bounded
on each A,,. Since L;(I) is order continuous for every ¢ > 0 there exists M € N such
that [, [f(¢)|xBnae, (t) dt < € for all m > M. For each m € N let ™ be sequence of
Rademacher functions defined on A,,. By the first part [} f(t)xa,, (t)x5 (t) \(t t)dt —
0 as n — oo for each m € N. We have that for each m € N there exists INV,, € N such

that for all n > N,,,

/f XA (t)x5(t)p dt‘

/f (P (E) dt| < 1/m.

Taking p,, = pg\?z finishes the proof. n

Lemma 3.14. For every function f € Scp. there ewists a sequence (gn,) C B,

such that ||f £ gnllc,.. = L, |lgnllc,.. = 1 and g, — 0 weakly in Cy,, asn — oo.

Proof. Since f € Scyp, by Lemma there exists sequence (p,) C Li(I), p,(I) =
{=1,1} such that f] fxspn — 0 as n — oo for any measurable set B for which

fxs € Li(I). Let g, = fp,. Since C,,, is order continuous and suppp, C supp f,
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m(supp f \ suppp,) — 0 it is clear that ||g,|lc,., = 1 as n = oo and ||gn|lc,. <

Hf”cp,w = 1
Now, by Lemma |3.13] for all € I we get that

/0 C1F() £ gult)] dt = / C1F0) % F(palt) di = / C1F 0101 £ pu(t)) dt
:/0’3 ’f(t)|dti/0x |f()]|pn(t) dt — /Ox |f(t)]dt as n — co.

By the Lebesgue Dominated Convergence Theorem we get that ||f £ g,/c,., — 1 as
n — oo.

Observe that for any f € C,., ¢ = fpn — 0 weakly in C,,,. Indeed, for every
function g € (Cpw)’, [; 9(t) f(t)pa(t) dt — 0 as n — oo since fg € Ly(I), by Lemma
B.14 O

Lemmas 3.9, imply the following.

Corollary 3.15. All nonempty relatively open subsets of the unit ball of the space C,,,
have diameter 2. The unit sphere Sc, , does not have uniformly non-square points
nor strongly extreme points nor H-points. The space (Cpu, || - ||c,..) is neither locally
uniformly non-square nor midpoint locally uniformly rotund nor uniformly rotund in

every direction.
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4 Cesaro-Orlicz sequence spaces

In this chapter we study Cesaro-Orlicz sequence spaces. We explore the influence
of the growth condition d, of ¢ on the geometric structure of these spaces. Moreover,
we present the comparison theorem for these spaces and show that they are not
B-convex.

All results presented in this chapter are published in [42] and [37].

4.1 Preliminaries

Cesaro sequence spaces ces,, 1 < p < 0o, appeared in 1968, as mentioned in Chapter
1. It seems that their generalization, Cesaro-Orlicz sequence spaces ces,,, were defined
for the first time in 1988, when Lim and Yee found their dual spaces [66]. Recently
Cui, Hudzik, Petrot, Suantai and Szymaszkiewicz obtained important properties of
spaces ces,, [21]. In 2007 Maligranda, Petrot and Suantai showed that ces,, is not B-
convex, if ¢ satisfies d, condition and ces, # {0} [51]. The extreme points and strong
U-points of ces, have been characterized by Foralewski, Hudzik and Szymaszkiewicz
in [28]. They also considered local uniform convexity and Kadec-Klee property of
ces, [29]. Although the spaces ces, have been studied by several mathematicians,
some essential and basic properties remain still unknown.

In this dissertation, we present characterizations of some of them. In section 4.2],
under the assumption that the lower index o, > 1, we shall present that d, condition
is necessary and sufficient for the space of all order continuous elements (ces,), to
coincide with ces,. In section given functions ¢; and y, under the assumption
that o,, > 1, we show that ces,, C cesy, if and only if ¢, C {¢,,, that is, there
exist b > 0 and tp > 0 such that 0 < ¢1(tg) < oo and ¢a(t) < ¢1(bt) for all ¢ with
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In section [4.4] we consider the problem of existence of order linearly isometric
copy of { in ces, under the Luxemburg norm. Recall that { is an order isometric
copy in Orlicz space £, equipped with the Luxemburg norm if and only if ¢ does
not satisfy condition dy [47]. It is expected that a similar result remains true in
ces,,. However such factors as lack of symmetry or the presence of averaging operator
in the definition of these spaces cause that this problem in the context of Cesaro-
Orlicz spaces is more involved than in Orlicz spaces. Here we present a solution of
this problem for comparatively large class of Orlicz functions ¢. In section we
prove that such a copy exists in ces, whenever ¢ does not satisfy condition d, and
the Orlicz class {x : I,(x) < oo} is closed under the averaging operator G, that is
{z : I(x) < oo} C {x: [,(Gz) < oo}. We also present several conditions under
which the latter inclusion is satisfied and discuss their relations to Matuszewska-Orlicz
indices of ¢. We show among others that whenever p'/? is strongly equivalent to a
convex function for some p > 1, then the Orlicz class is closed under the averaging
operation. The latter condition is also fulfilled whenever the Hardy inequality for
the Orlicz function ¢ holds true. We finish this section by presenting an example of
Orlicz function ¢ for which the Hardy inequality is not satisfied but the space ces,
contains an order isometric copy of /.

In 2007, Maligranda, Petrot and Suantai showed that ces, is not B-convex if
@ € 0y and ces, # {0} [51]. In the last section we show that the n-th (strong) James
constant of non-trivial space ces, equipped with either the Luxemburg or Orlicz norm
equals n (which, in particular implies that the space is not B-convex), extending the
family of functions ¢ for which it is satisfied and solving the problem posed in [51].

We shall use the following notation in the sequel. For any a € R, [a] is the
smallest integer greater than a. By H, we denote the n-th harmonic number, that

is H, =Y i ' A function ¢ : [0, 0c0) — [0, o] is called an Orlicz function if it
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is convex, right-continuous at 0, left-continuous on (0, 0o0), ¢(0) = 0, and p(u) > 0
for some u > 0. If, in addition, ¢ satisfies the conditions lim,_ o @(u)/u = 0 and

lim,, 00 (1) /u = 0o then it is called an N-function.

o0
n=1-

By (° we denote the linear space of all real sequences x = (x(n)) By e, we
denote unit vectors in £°. The convex modular I,(z) = Y oo ¢ (Jo(n)|) defined on
the whole ¢° gives rise of the Orlicz sequence space {, with the Luxemburg norm
|z]l, = inf{e > 0 : I,(¢7'x) < 1}. We say that the Orlicz function ¢ satisfies
the do condition (we will write ¢ € dy) if there are K > 0 and wy > 0 such that
o(ug) > 0, and ¢ (2u) < Ky (u) for all u € [0, up]. It follows that ¢(uy) < co. This
condition plays crucial role in the theory of Orlicz sequence spaces. The function
©* (v) = sup{uv — ¢ (u) : u >0}, v > 0, is called a complementary function to .
Two Orlicz functions ¢ and @9 are said to be equivalent if there exist a, b, ug > 0
such that ¢ (ug) > 0 and ¢y (au) < @o(u) < @i(bu) for all u € [0,up]. Two Orlicz

functions ¢, and g are said to be strongly equivalent if there exist A, B, ug > 0 such

that ¢;(ug) > 0, and Ag;(u) < pa(u) < By (u) for all u € [0, ug).

Orlicz sequence spaces are thoroughly discussed in [47] (see also [16]), and the
most comprehensive exposition of Orlicz functions is presented in [40] and [16]. The

information on modular spaces can be found in [53].

For any z € (° we denote by Gz the sequence of averages of x, that is

Ga(n) = %Z (i), neN.

Given an Orlicz function ¢, the modular

[e.9]

Lees, (x) = 1,(Gx) = Z ©(Gz(n))

n=1
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is convex and defines Cesaro-Orlicz sequence space

ces, = {x e Tees, (Ar) < 00 for some A > 0}
with the Luxemburg norm given by

[2lces, = Inf {& > 0 L, (e7'2) < 1} = ||Gzlf,.
In ces, we also define the Orlicz norm in the Amemyia form

H ”CGS

1 |
]ngo‘ E (1 + [cesw(kx)) - ||Gx||<p - ]igg E (1 + [w(kGQZ)) :

It is well known that for any = € ces,, [|@|ces, < [|2]|%s, < 2]|2|ces, [32]-

cesy X
Unless we state explicitly otherwise, we shall consider further the space ces,

equipped with the Luxemburg norm.

In the case when ¢ (u) = u?, 1 < p < 00, the space ces, is just a Cesaro sequence

space ces,, with the norm given by

0 1 n \P 1/p
el = |03 Soketl)’]
n=1 " i=1
If ¢(u) =0 for v € [0,1] and ¢(u) = oo for u € (1,00), then ces,, is denoted by cesq,
and
w={z€l’: <
ceSo = {x ilelp " Z |z(7)| < oo},
where [|]|ces, = [|2[|Cs, = sUPper 7 20 [2(0)].

Note that, if we define in a similar way the space ces,, for a function ¢ : [0, 00) —

[0, 00) which is concave and such that ¢ (0) = 0, we get a trivial space if ¢ vanishes
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only at zero. Indeed, if there is N € N such that x(N) # 0 then for any A > 0, by

concavity of ¢ we have

s, (M) = 0 (% > |:c<z'>|> >3 ¢ (% ) |x<z'>|>

3, (Ale(LN)|> >y %w(m(zv)y) — o,

hence ces, = {0}. It is well known that ces; = {0} [45], which also follows from
the fact that ¢(u) = w is concave and our remark mentioned above. Note that, if
lim,,_,o+ ¢(u)/u > 0 then ces, = {0} since ¢ is then equivalent to a linear function
and so ces, = ces;. Hence as long as we deal with a non trivial space ces, we may
assume that ¢ is an N-function (in the case when lim, ., ¢(u)/u < 0o we can always

find an N-function which is equivalent to ¢).

Let ¢ be an Orlicz function. Let us mention some well known facts about the ces,
spaces. The space ces, is not trivial if and only if for every £ > 0 there exist n, € N
o0

such that Y77 ¢ (£) < oo (this is also equivalent to the condition Doy, P (1) <

for some n; € N) [21].

The space ces,, (as well as £,,) is a Kothe sequence space with the Fatou property.
For a proof of the Fatou property in ces, we refer to [21], and for details on Kéthe

spaces see [39].

Recall that the Matuszewska-Orlicz lower index a, and upper index B, of an

Orlicz function ¢ are defined as follows

Q, = sup {p > 01 Fg50,vi0()>0 Vo<i<1, 0<acw P(AL) < KtP‘P(A)} ]
5@ = inf {p >0: E|K>0,v:t,0('v)>0 v0<t<1, 0<AY 90()\15) = KtPQO()\)} .
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Note, that in the case when the function ¢ vanishes only at zero, we can write

a, =sup{p > 0: Jx-0 Vocr <19 M) < KtPp(N)} (4.1)

By =1nf {p > 0: Tx=0 Vocrr<cap(At) = KtPp(N)}.

These indices were introduced by Matuszewska and Orlicz in [52] in a different,
but equivalent way. By convexity of ¢, 1 < a, < B, < o00. It is well known
that the condition 8, < oo is equivalent to ¢ € 09, for an N-function ¢ we have
a;l + B;} = a;*l + ﬂ;l =1 [49,50], and that a,, > 1 is equivalent to ¢* € d, [49].

It turns out that o, = p({,) and B, = q({,) where p({,) and ¢({,) are the
lower and upper Boyd indices of the Orlicz sequence space £, (see |48, Proposition
2.b.5 and Remark 2 on page 140]). We also have that the appropriate indices of two
equivalent functions coincide. For necessary definitions and more information about
Boyd indices, Matuszewska-Orlicz indices (as well as for relations among them) and
Boyd indices of Orlicz spaces we refer to [14,135] and chapter 4 of [49]; see also two

classical books [47,/48].

For a bounded sequence z its decreasing rearrangement x* is defined by
z'(n) =inf{ \: #{i e N: |z(i)| > \} <n},neN,

where for a set A, # A denotes the number of elements in A if A is a finite set, or oo
otherwise. Let us mention one important, direct consequence of Theorem 1 and its

proof in [13].
Theorem 4.1. The Hardy operator H : £, — {, defined by

1 n
Hzx(n) = - Zx*(z) for alln € N,
i=1
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where x* is a decreasing rearrangement of x, is bounded if and only if p(€,) > 1.

As a further consequence of Theorem [4.1] we have the following.
It is clear that for any sequence x € cesy, [|Z||ces, = [|Gz|l,. Suppose that

p(l,) > 1, then
|Gz, < [|Gz*|l, = [|Hzl, < Cllz*|l, = Cllzll,,

hence z € {, implies v € ces,. Conversely, suppose that there is C' > 0 such
that |Gz|, < C||z||, for every z € {,. Then it also holds for every z*, and hence

|Hz||, < C||x||,, which implies p(¢,) > 1. Since p({,) = o, we get

Corollary 4.2. For any Orlicz function ¢ we have a, > 1 if and only if £, C ces,,.

In particular, if o, > 1 then ces, # {0}.

The following example shows that it is possible that a, = 1 and ces, # {0}, as

well as that ces, = {0} although ¢ is not equivalent to a linear function.

Example 4.3. Let a > 1 and

.

0 ift =0,

©a(t) = if0<t<l,

—t
(= In(2))°

0/2 3
k%e(aQ—i—Qa)ﬁjL(l —a—ad)t+ & ift>1

It is easy to see that each ¢, is a strictly convex N-function. Moreover, for p > 1

(applying de L’Hospital rule [a] times), we get

, (—InA)ett—P
iS50+ (In At)a—[al

= o

PaA) _ glg&ﬁif:(ﬂziyﬂ

150+ wa(M)tP 50+ (—In At)e a
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2a) oo for all p > 1, which together with convexity

for all A > 0. Hence supg_ ;<1 PP

of ¢, gives a,, =1 (hence B+ = oo which is equivalent to ¢} ¢ J5). We also have

Ya € 09, since

(2t 2(—1Int)*
limsupw (2¢) :limsup&<2<oo.

-0+t Palt) im0+ (—1In(20))°
Hence fp,, < oo (in fact B, = 1). For a > 1 the space ces,, # {0} since

> spa(t) = Zzozswln))a < oo by the integral test. Notice that ces,, = {0}

since >, m = 00, but the function ¢; is not equivalent to a linear function.

The above example also shows that Matuszewska-Orlicz index «, is not fine

enough to determine the validity of ces, # {0}.

4.2 The condition J, in the Cesaro-Orlicz sequence space

Let ¢ be an Orlicz function and

(cesy)q = {x € cesy : Vis03nen Z © (ﬁ 2; |x(z)|> < oo} :

n=nig
It turns out that (ces,), is the subspace of all order continuous elements of ces,, [21].

Remark 4.4. Let ¢ be an Orlicz function, such that ¢ (u) > 0 for all w > 0. For an

Orlicz function ¢ defined by

0 for u € [0, al,
plu) =
Y(u—a) for u > a,

for some a > 0, we have ces, # (ces,),. Indeed, taking x = (a, a, ...) we have

Iees, () = 0 and so € ces,,. Moreover Z;‘;m 7 (2 S \:c(z)|) =3  »(2a) =00

n n=n2

for any ny € N, which implies that = ¢ (ces,,),.
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Theorem 2.4 in [21] states that if ¢ € d, then ces, = (ces,),. We will show the

partial converse of this theorem.

Theorem 4.5. If (ces,), = ces, and a, > 1 then ¢ € §y. In particular, if o, > 1

then (cesy,), = ces, if and only if ¢ € 6.

Proof. Let (ces,), = ces, and o, > 1. Note that we have ces, # {0} by Corollary
[1.2] and that ¢(u) > 0 for all u > 0 by Remark [£.4] Let ug be such that ¢(2ug) < co.
Suppose that ¢ ¢ d. Then for all K > 0 and u > 0 there exists v € [0, u], such
that p(2v) > Kp(v). So there exists u; € (0, ug] such that p(2u;) > 2¢(u;). Let

= [mw We can find a decreasing sequence (u,) C (0, ug] such that

©(2uy) > 2"p(uy,). (4.2)

Let

It follows that

P2u) _ pl2u)

S o for all n € N. (4.3)

p(u,) <

Let ¢y = 0. Define sets for n € N,

E,={co+cr+c+...+cp1+l,co+a+...4c1+2,...,cotcr+...+ e}

The sets E,, are pairwise disjoint, uF, = ¢, for all n € N and Ufle FE, =N.

Define the sequence (x(i))$°, by

z(i) = u, if i € E,, for some n € N.
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We have that

1) = 3l = 3 plonhif = 3 ot | 5|
< gw(un) (ml(un) + 1) < :1 (2% + “0(530))

by inequality (4.3). Hence z € l,, so € ces, since {, C ces, by the condition

ay, > 1.

But, by inequality (4.2)) and the fact that x is a decreasing sequence we have

> (%Z |x<z'>|> > 3 3 plow)

= Y oQun)pE,

n=ns+1

> i 2"p(uy,) [2"

n=ns+1

sz;l:oo

n=ng+1

1
o(un)

for all ny € N, so z ¢ (ces,),. Hence we get a contradiction.

The equivalence stated in the second part of this theorem follows clearly from the

first part and from Theorem 2.4 in [21]. O

We would like to be able to replace condition av, > 1 in Theorem[4.5|by ces,, # {0}.
It would be possible if we manage to show that the conditions o, = 1 and 3, = oo
imply, either ces, = {0} or (ces,), # ces,. Unfortunately these conditions do not

imply ces, = {0}, which shows the following example.
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Example 4.6. Let

0 ift=0,
P(t):<% 1ft€[(n+1),, ,) for n € N,
t ift > 1.
\
The function (u) = ;' p(t)dt is an N-function such that ¢ ¢ 0, and ¢* ¢ 0,

that is B, = oo and o, = 1. Indeed, let u,, = % for all n € N. It is easy to see that
w2 (1—(n—11 < o(u,) < u?. We have that

©(2un) IZ/ZTP > (nl(n — 1)1

o)~ plu) (mn)1 "
and
0 (27 ) _ lum) — 27 o) — (l(n + 1))~
gp(un) g So(un)
:1_ (n!(n+1)!)_1 > 1— 1 for n > 2.

2 )2(1-(n—-1)"1)7"2 n-2

So ¢©(2u,) > np(u,) for all n > 2, which gives ¢ ¢ do. Similarly ¢* ¢ J, since

027 ) /o(u,) — 271 as n — co. We also have, for all n € N,

() H( S

and



Hence

n=1 n=1 m=n! n=1 k=n
- 1 1 1
<e+ E (1 + + + .. )
_ | 2 2 2
“— (n—1)! (mn+1)?2  (n+1)%2(n+2)
e+ §° 1 L =e+ EOO < 2e < o0
h < (n—1)! nk £~ nln ’

which means that ces, # {0} (note that also ces,« # {0}).

4.3 The comparison theorem for the Cesaro-Orlicz sequence spaces
We start this section with a basic observation.

Proposition 4.7. Let o and ps be Orlicz functions. If there exist b, to > 0 such

that pa(to) > 0 and pa(t) < @1(bt) for all t € [0,1o] then ces,, C cesy,.
Proof. We may assume that b > 1, and substituting u = bt we get that
o (b u) < @y(u)  for all u € [0, bty]. (4.4)

Let z € ces,,, i.e. there exists A > 0, such that [ce%1 (Ax) < oo. The set A, =

{neN: 25" |z(i)| > bt} is finite, because otherwise we would get

e 00> 1 (3370001 ) > 3t > 3 it -

nEAg nEAy neAy

by the inequality (4.4). Taking \ = ¢ for ¢ small enough, we get that Iceswz(j\l’) <

Lecs,, (€1) < lees, (A7) < 00, and s0 = € ces,,. O
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Corollary 4.8. If functions @1 and s are equivalent then ces,, = ces,, as sets and

the norms of these spaces are equivalent.

Proof. 1t follows from Proposition and the fact that ces, is a Kothe sequence
(function) space with the Fatou property for any Orlicz function ¢ (see [8, Theorem

1.8] and [39]). O

We use a similar approach as in the proof of Theorem to show the following

comparison theorem.

Theorem 4.9. Let vy and @y be Orlicz functions such that p1(u) > 0, @a(u) > 0 for
all w> 0 and ay,, > 1. If ces,, C ces,, then there exist b > 0 and ty > 0 such that

©a(t) < @1(bt) for all t with 0 <t < to.

Proof. By convexity of ¢, the condition stated in the hypothesis is equivalent to the

following one: there exist a, b, ug > 0 such that
wo(u) < apy(bu)  for all u € (0, ug). (4.5)

Assume that ces,, C ces,,. Suppose that condition (4.5]) is not satisfied. Let uy > 0
be such that ¢s(ug) < co. We can find decreasing sequence (uy,),-; C (0,u] such

that wo(u1) > 2¢1(2uy) and
QOQ(Un) > (Cl +co+ ...+ cn,l)Z”gol((cl +co+ ...+ cn,1)2"un), (46)

where ¢; = [m-‘, and

1
Cp =
[(cl + .ot n1)201((er + o F cp1)27uy,)

—‘ for n>1. (4.7)
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We have 1 < ¢, < oo for all n € N by and since ¢;(u) > 0 for all u > 0.
Denote d; = 1 and d,, = 327~ ¢; for n > 1. Note that the sequence (d;)% 22, is strictly
increasing. Define the sets £y = {1,2,...,¢;} and E,, = {d, + 1,d,, + 2,...,d,4+1} for
n > 1. The sets E, are pairwise disjoint, pFE, = ¢, for all n € N and | J -, E, = N.

Define the sequence (x(4))52, by
x(i) = d,2"u, if i€ E, forsome n € N.

We have that

> 1
(dn2™uy) (dn2™u,, 1
;% ' Z% ! (dn2"w1(dn2nun) i )

Z 2 427 QPQ(U())) =1+ QPQ(UO) < 00,
n=1

by inequality (4.6)). Hence x € I, so « € ces,, since {,, C ces,, by the assumption

p, > 1.

Let now A > 0. Since for n € E; we have

n—d d; d d; .
di=(1-Z)d>(1--—2)d=-—2— 1 .
0 j ( n) j ( d]—|—1) j dj—|—1—> asy—)oo

The latter and inequality (4.6 imply that

Lics,, (Az) Z > e (%ZWM) >> > e % > d2

7=1 ’VLEE 7j=1 HGE]' i=dj+1

Y T (M) > 3 (M2 ) um)
j=1 neEj; J=Jjo
Zgogu]uE>Zd2g01 dQuJ ,uE—Zl—
J=i1 J=i1 J=i1
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for sufficiently large indices j; > jo > 1. Since A was arbitrary, we get = ¢ ces,,, and

this gives a contradiction. O]

Corollary 4.10. Let @1 and py be Orlicz functions such that @1(u) > 0, pa(u) > 0

for allu >0, and ay,, > 1. The following conditions are equivalent.
(i) cesy, C cesy,.
(ii) There exist b, ty > 0 such that @o(t) < 1(bt) for all t € [0, to].
(iii) There exists C > 0 such that ||7|ces,, < C|7|ces,, for all v € cesy,.

Proof. Tt follows from Lemma [£.12] Corollary [4.§] and Theorem [4.9] O

4.4 Order isometric copy of /., in Cesaro-Orlicz sequence spaces

In this section we provide some sufficient conditions under which the space ces,
contains an order isometric copy of {. Recall that if ¢ € d, then ces, is order
continuous |21, Theorem 2.4], and thus in view of [39, Theorem 4, p. 295], ces,, does
not contain any isomorphic copy of /o.. On the other hand, if ¢ ¢ J; and a(p) > 1
then ces,, is not order continuous (Theorem [4.5) and again by [39, Theorem 4, p.
295], ces, contains an order isomorphic copy of {o. It is also well known that the
Orlicz sequence space £, under the Luxemburg norm has an order isometric copy of
U~ if and only if ¢ ¢ 5 [36]. It is expected that the similar result remains true in
the case of ces, spaces. We prove here the desired result for quite large family of
Orlicz functions, namely for ¢ ¢ 05 and such that the Orlicz class is closed under
the operation G, in particular for such ¢ that ¢!/ is strongly equivalent to a convex
function for some p > 1.

We start with the main result in this section.
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Theorem 4.11. If ¢ ¢ 0, and the Orlicz class {z : I,(x) < oo} is closed under the

averaging operator G, then ces,, contains an order isometric copy of lo.

Proof. We will consider two cases. First we assume that ¢(u) > 0 for all u > 0.
Let b = sup{u > 0 : ¢(u) < oo}. It is well known that ¢ € do if and only if
there exist L > 1 and K,uy > 0 such that ¢(ug) > 0, and p(Lu) < Ke(u) for all
u € [0, ug)] (see [16] p. 9) Assuming that ¢ ¢ 0y, for all L > 1 there exists a decreasing
sequence (u,)%; C (0, L7'b), depending on L, such that ¢(Lu,) > K,¢(u,) where
the sequence (K,)2, can be chosen to have a property that Y>> | K1 < co. Clearly

0 < ¢(Lu,) < oo for every n € N. Hence

[e.9]

> Up, 1
n; ;((Luj) < ; 7 <o (4.8)

Note that the above gives u,, — 0 as n — oo. Indeed, otherwise we would be able to
find a subsequence (u,, )52, such that for all £ € N and for some € > 0, ¢(u,,) > €.

Then for all k € N,
p(un,) S €

which would contradict (4.8)).

> 0,

Let (€,)%°_; be any positive, decreasing sequence converging to zero. For any

m € N let (Kflm));":l be a sequence of positive real numbers such that

= 1 1
Z (m) S om+1°
n=1 K”

Now by the first part, for any m € N we can find a decreasing sequence (u;m))zozl C

(0, (1 + €,)'b) such that u™ = 0 as n — oo, and

P((1+ en)ui™) > K™ o(ui™)
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for all m € N. Thus for all m € N,

©© (m) 00
Un 1 1
Z gp( ) (m) < Z (m) < m+1"
n=1 90((1 + em)un ) n=1 Kn 2

In view of u{™

1
U%l) > Unpgy

m > 1, ult < uﬁ,ﬁ”_]l). Let

— 0 as n — oo, we can find a subsequence (ng) C N such that

@ uq(f;) > .... Hence without loss of generality we can assume that for

1
© ((1 + en)w(ln)>

Cp =

(n

for n € N. Note that 1 < ¢, < oo for all n € N. Define z(i) = u” whenever
i€l tea+... 4+t 1.0, +c+ ...+ ¢, Itis clear that the sequence z is

decreasing. We have

Ig,xzoo z(7 :Oocn u%")zoo L unn)
(x) ;w(l()l) ; p(uy”) ; ¢<(1+En)u;n)> o (u”)

o w(w@) o0 w(w&"’) > 1
<> REACERDY <2) o<

S <(1 + el S <(1 - en)U5L")) i

Yo+l = Y cap (L+e)ul”)
- ”:OOM s N (4.9)
- w<(1+)n) S
n=M' P ((1 + En)%(%n)> n=M"

/

for some M > M > M. Denoting by x]{N7N+1,,,.} the sequence which is equal to =
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on {N,N +1,...} and 0 otherwise, we see that for N large enough

Ll ) = 3 ¢ (aZ W) DI (aZ W') =
n=N i=N n=N =1

since Iees, (v) < 00. Let y = x| n41,..}. Since x is decreasing, for any € > 0,

n

U+ an Dkl > (149 (25 fato
=N (4.10)

=49 (1= 2 ) o) > (14 5) lato)

for n large enough. Now, by (£.9) and (#.10), for any ¢ > 0 and N’ large enough

(14 5) o) ==

We have constructed an element y € ces, such that I, (y) < 1 and for every

Les, (1 €)y) 2 > (1 Z - Z Ix(i)l> >

oo
!
n=N

€ > 0, Ies,((1 + €)y) = oo. We observe that the subspace (cesy,), of all order
continuous elements in ces,, and the closure of the set of sequences with finite number
of non-zero coordinates coincide (Theorem 2.3 in |21]). Now it is not difficult to see
that the distance of y to (ces,), is 1, since the above calculations hold true for
arbitrary large N. By applying Theorem 2 from [31] we conclude that ces, contains

an order linearly isometric copy of /.

Now assume there exists a > 0 such that ¢(u) = 0 for u € [0,a] and ¢(u) > 0
for u > a. Taking x = (a,a,a,...), it is easy to see that I, (x) = 0. Moreover
Iees, (1 4+ €)(z — s)) = oo for all € > 0 and all sequences s € ¢ with finite support.
Indeed, taking ng = max{i € N : s(i) # 0} and denoting y = (1 + ¢)(x — s) we see

that




for n large enough. Thus for some N € N,

It follows that ||z — s|/ces, = 1 and so the distance of  to (ces,), is 1. We finish the

proof analogously as before by applying Theorem 2 from [31]. [

Recall that the classical Hardy inequality for p > 1 reads [43]

0o n p 0o
1 . p )p 0
— (1 < | —— z(n)P for all z € ¢°.

The following proposition shows the connections between the sufficient condition
under which ces, has an order isometric copy of £, and some other conditions which

are easier to check.
Proposition 4.12. Let ¢ be an Orlicz function. Consider the following conditions.

(i) There exist p > 1, a convez function vy and constants A, B,uy > 0 such that

©(ug) >0 and for 0 < u < uy,
Av(u) < ()" < By(u).

(ii) There exist constants C,uy > 0 such that ¢(ug) > 0 and

> (5 5 |x<z>|> <Y ()
n=1 i=1 n=1
for all x € €° with ||z]|. = sup,, |z(n)] < u.

(i) The Orlicz class {x : I,(x) < oo} is closed under the averaging operator G.
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(iv) a, > 1.
(v) There exists ng € N such that Y >" ¢ (1) < oc.
We have the implications (1) = (ii) = (i) = (iv) = (v).

Proof. 1t p(u) = 0 for u € [0,a] and p(u) = oo for u > a, where a > 0 then all
conditions (i)-(v) are satisfied. In the remaining case, without loss of generality we can
assume that the constant ug which appears in (i) and (ii) is such that 0 < p(uy) < oo,
and that the function + is finite on [0, 00). Now, the implication (i) = (ii) follows

by Jensen’s inequality and Hardy’s inequality for p > 1. In fact

Now we show implication (ii) = (iii). Let a = sup{u > 0 : p(u) = 0}, and
let 2 € (% be such that I,(z) < co. For every e > 0 there exists N; € N such that

|z(n)| < a+e, for n > Ny. Taking € = (ug—a)/2 and n > Ny we get that |z(n)| < uo

and

n)<%Z!x(iﬂ—l—(n_]vl)(a—l—e)—i >+ (Z\x )| - N ‘”“0).

Thus there exists N € N such that Gz(n) < up and |z(n)| < up for all n > N. Let
= (Gz(N),...,Gx(N),z(N + 1),x(N + 2),...). Clearly ||y||cc < uo and Gy(n) =

TV
N times
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Gz(n) for all n > N. By (ii) applied to y we get that

> w(Ga(n) <) e(Gy(n) <C Y ely(n)

=C (ng(ax(zv)) + > go(a:(n))) < 0.

n=N+1

Since ||Gz||oo < ||7]|oo We get I,(Gz) < oo.

(ili) = (iv). Let @ € £, that is I,(Az) < oo for some A > 0. By (iii) we get that
00 > I,(G(Ax)) = Ies,(Ar) and so x € ces,,. Hence /£, C ces, which is equivalent to
o, > 1 by Corollary 4.2

(iv) = (v). Follows from Corollary [4.2] O

An immediate consequence of Theorem [£.11] and Proposition [£.12]is the following

corollary.

Corollary 4.13. If o ¢ 6, and for some p > 1 the function ©'/? is strongly equivalent

to a convex function, then the Cesaro sequence space ces, contains an order isometric
copy of le

Remark 4.14. 1. In the case when 1 < a(p) < B(p) < oo, the condition (i) of
Proposition 4.12]is satisfied for 1 < p < a(y). It follows from [35, Theorem 1.7
applied to function /7, since a(¢'/?) = a(p)/p > 1 and B(p*/?) = B(v)/p <

Q.

2. Levinson showed in [46] that the composition /7 is convex for p > 1 if an

Orlicz function ¢ is twice differentiable and

p(u)e’ (u) = (1=1/p)(¢ ()™ (4.11)

Clearly, it is sufficient that condition (4.11]) is satisfied in a neighborhood of
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zero in order to get condition (i) of Proposition 4.12, This condition is satisfied

for example by the following functions (a > 0),

0 if u=0,

Pau) = { g—u—e if 0<u<(a(a+1)"HYe,

(ea(a + 1)‘1)7(“1)“_1 s if uw> (a(a+1)"HYe,

\

whenever p > 1. Indeed, for v small enough

Note that 8(p,) = oo and a(p,) > 1 [51].

Similarly, condition (4.11]) in a neighborhood of zero for any p > 1 is satisfied by

functions 9, (u) = vt In(1 + e * "), a > 0. Indeed, for u > 0 small enough

a0 - (1= 3) atwy = (—) »

P 1+ev™™

(at1) o (1 +e' " In(1 + 6_“>>2 <a . 1)

a?

—a 1 w2 —a —a 1
+(a+1uIn(l +e )+—e (——1)—1—6" In(l+e™ )—1+4+-
a p

since e “In(1+e * ") — 1 as u — 0F. We also have 3(¢),) = oo and «a(1),) > 1 [51].

Thus by Corollary [4.13] the Orlicz functions ¢, and ¥, generate the Cesaro spaces

ces,, and cesy, such that both contain order isometric copies of (.

The following example shows that in general, condition (iv) of Proposition [4.12]

(a, > 1), is not necessary for the existence of order isometric copy of £ in ces,,.
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Example 4.15. Let function ¢ be defined as in Example[d.6] We have that ¢, ¢* ¢ 0y,
that is 8, = oo and a, = 1. Also ces,, # {0}.

Recall that ¢(u) = [ p(t)dt, where

0 ift=0,

p(t) = T% 1ft€[ for n € N,

(n+1)1? n')

t ift > 1.

Now we will make preparation to define x € ces, such that I, () < 1 and

Tees,((1+€)x) = oo for all € > 0. Let for m = 4,5, ..,
Cn =31+ (k= 3)(kl — (k= 1)),
k=4
and let form =4,5,...and n=0,1,2,...,(m+ 1)l =m! —1,
Epn={cmn+(m-=2)n+1cu+(m—-2)n+2,....,¢;+(m—2)(n+1)}.

The sets E,,, are pairwise disjoint and their union and the set {1,2,..., ¢4} gives
the whole N. Note that there are exactly (m — 2)! integers in each E,, ,, and that
for every integer r > 24 = ¢4, there exists a unique triple (m,n, j) of non-negative
integers satisfyingm >4, 0 <n < (m+1)!—m! -1, and 1 < j < (m —2)! such that
r=cm+(m—2)n+j.

Now we will construct z € ¢° such that the sequence (Gz(n))>, is decreasing for

large n and

Gz(cym + (m—2)n) = (4.12)

m!+n

form=4,5...andn=0,1,...,(m+ 1) —m! — 1.
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Let 8, be the solution of

(em + (m —2)n)Gx(cp + (m — 2)In) 1
Cm + (m—2)In+ 8, S oml+n+1

that is

S = (em + (m = 2)tn)(m! +n) !

form=4,5...andn=0,1,...,(m+ 1)! —m! — 1. Letting

Smun = I_gm,n-l 5

the number s, ,, is the smallest integer such that

(cm + (m —2)In)Gx(cy + (m —2)In) o 1
Cm + (M —2)In + Spp “ml4n+ 1

Moreover, we can show by induction that s,,, < (m—2)! forn=0,1,...,(m+1)! —
m! — 1, since ¢,, < m!(m —2)! for m =4,5,....

We now define z as z(r) =0 for r =1,2,...,¢4 — 1, z(c4) = 1, and

;

0, if re By, and r < ¢+ (m—2)In+ S,
(Cm+ (M —=2)!n 4 spp)(m! +n+1)7"

—(em + (m = 2)In)(m! +n)~L, if r=cp+ (m—2)n+ s,

(m!+n+1)"1 if re By and r > cp 4+ (m—2)In+ s, 0.
\

We will show that x satisfies (4.12). We proceed by induction. Observe that
Gz (cs) = 57 and that the condition Gz(cy, + (m —2)In) = —L— implies that Gz (c,, +

(m—2)!(n+1)):mforallm:4,5,...andn:0,1,2,...,(m+1)!—m!—1.
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Indeed,

1
Cm+ (m—2)(n+1
Cm+ (M —=2)n+ 5,  cn+(m—2)n
m! +n+1 m!+n

Gz(epm+ (m—2)(n+1)) = )><

X <(Cm + (m —2)In)Gz(cp + (m — 2)In) +

+cm+(m—2)!(n+1)—(cm+(m—2)!n—i—sm,n) B 1 y
m!l+n+1 Cm 4+ (m—=2)(n+1)

y Cm+ (m—2)n cm+(m—2)!n+cm+(m—2)!(n+1) B 1
m!+n m!+n m!+n+1 m!+n+1

It follows, that for n = (m + 1)! — m! — 1 we have Gz(cpy1) = m, which gives

@12).

Clearly, Gz is decreasing on {c4, ¢4 + 1,...} by the choice of s,,,. Moreover, the

sequence x has the properties that y < Gx < y + z, where

y(n) = Gz(n), and z(n) =0 forn =1,2,... ¢y,
1
y(r) nd
1 1

= 2a

m!+n-+1

z(r) = — forallm=4,5,..., n=0,1,...,(m+ 1)l =m! -1
m'+n ml+n+1

whenever r € I, ,.

Hence for all m = 4,5, ... we have that
1
2(r) ml(m! +1)
and
1 1
a1 TS
whenever r € E,, ,,n=0,1,...,(m+ 1) —m! — 1.
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Applying the above relations and the definition of ¢, we obtain that

1 i (m+1)!—m!-1 1 (ml4n+1)"142(r)
= <—) + @ <—) +/ p(t) dt
4l m=4 n=0 rek m! +n+1 (m!4+n+1)—1
()X % |

1 (m+1)!—m!-1 1 oo (m41)l—ml-1 ( )
zZ\r
AV ¢<| )+§: Tl
4l m=4 n=0 r€EEm n me+n o+ 1 m=4 n=0 r€EEm n
- 1
l —m! — 2
< Ip(y) + m§_4((m + D! =ml)(m —2) m2(m! + 1)

' \n)~ - 4 (m+1)! m! \m!+i  (m+1)!
n=m!+1 =1

1
= D! —ml! D
((m+1) m)go((m+1)!
(m4+1)!—m!-1

1 1
+ﬁ Z m! +1

1=

1 1 1 1
=mmlp (—) —mm!—— + — (H(m+l)! — ng)

>—«m+M—mPU£— !

m! (m+1)!

(m+1)! m! (m+1)!  m!
o m om In(m + 1)
S (m+1)(m+1)! (m+1) m!

By the latter inequality and by

In(m+1) < vm—1form > 3,
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we get that

1 0o (m4+1)!l-m!-1 1
[w(y):¢<ﬂ)+z Z Z S0(m‘+n+1)
m=4 n=0 rek
1 >0 )ty
ROR 0
m=4 n=m!+1
J— 1 = 1 In(m + 1)
< — — e S
4!2+mZ::4(m+1)2(m—1) ;(m—l)(m—kl)—i_n;lm(m—l)
1 24 2 2
<_+ _7_7T_ _l+ n5>_|_< § _1_£_£
576 288 12 24 12 2 4 9

83_7r2+1n5+< 3 V2 V3
192 12

where ((s) is the Riemann zeta function. Combining all the above calculations, we

obtain that I, (z) < L.

Let now € > 0 and s be a positive integer such that € > s~!. Since
(s+1)In(1+s") >1forany s> 1,
we can take N > s large enough such that for integers m > N, we have

ml4s~1m! 1
Hm!+s—1m! —Hpy > / —dt
m!+1 t

—In (m! (1+§>> ~In(m! + 1)
:ln(l—l—%) +1n (mﬁ' )
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It follows for m > N that

(m —1)! s m!
ﬁ <1 + %) (Hm!-i-s*lm! - Hm!)
> g [ D) (i = Hn) = 1

> e (1) e ()] > 5y

for some C' > 0 not dependent on m. By the above inequality, we obtain
1
Lees, (1 + €)7) = I,((1 + €)Ga) > L((1+e)y) > I, ((1 " E) y)

oo (m+1)!l—m!-1 1+ 1
>y X Y ()

m=4 n=0 reEm,
00 (m+1)! 1
141

=S me2 3 o)

m=4 n=m!+1

[e'e) (1+371)m! 1 [e'e)

1+= 1 C

>3 (m—2)! Sp( s>>_ ¢ &

T;\/ n;—l—l n o m=N m—1

The existence of an order linearly isometric copy of /., follows now exactly in the

same way as at the end of the proof of Theorem [4.11]

Note that in [29] there is another explicit example of an Orlicz function ¢ for
which the space ces, contains an order isometric copy of /.. However in that case

it can be easily checked that a(y) > 1. Also, it is not immediately clear whether the
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condition (iii) of Proposition is satisfied or not by this function ¢.

4.5 On B-convexity of Cesaro-Orlicz sequence spaces

Throughout this section we adopt the notation |||, for either ||-[|ces, or [|-[lce,, - In [21]

it has been shown that the n-th (strong) James constant in ces,, for the Luxemburg

or the Orlicz norm satisfies

n

E €T

J(ces,) = sup { min
ep==1 o

:||xk||b:1,k;:1,2,...,n}:n, (n>2)

(4.13)

b

under some additional assumption on the function ¢. We show that this extra
assumption is in fact not necessary. Taking in the definiton of J7 the supremum
over the whole unit ball we obtain constants J,. A Banach space X is said to be
B-convex if J,(X) < n for some n > 2. For more details on James constant(s) and

B-convexity we refer to [21},24] and references given therein.

Theorem 4.16. Let ¢ be an Orlicz function and the space ces,, be equipped with either

the Luzemburg or Orlicz norm. If ces, # {0} then J;(ces,) =n forn=2,3,....

Proof. Let n > 2 be a fixed integer and xj , = €mik—1/]|€mir—1|lp for k=1,2,... . n,

and m € N. For both Luxemburg and Orlicz norm we have

n

E €ELTk.m
k

|zkmllp =1 and nin

n
D @hanl
k=1

b b
m-1
Jj=m

Denoting by ap,; = > " |lejll; ! for i = 0,1,...,n — 1, we see that G (Yp_, Tpm) =

amn-1G(€min—1), and hence

m+n—1

Em+n— Emtn—
> am,n—luem_,_n_l”b = Z || m+n le > n” m+n IHb‘

n >
~ lexllo lemlls

n
E Tkm
k=1

b k=m
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We will show that |lemin_1lls/|lémlls — 1 as m — oo for both norms, which in

view of the above inequality proves that J$(ces,) =n forn =2,3,....

Consider the Luxemburg norm now. For any m € N we get

m m
||mem||cesw = ||G(men)|l, = H (0,...,071,—,—,...)

m+1 m+2
B ] m m
N "m+1"m+2" "

where z* denotes the decreasing rearrangement of z for z € (. So [G(me,,)]* is an

)

= [llG(men)]" e,

®

increasing sequence converging to (1,1,1,...) coordinatewise. If p(u) > 0 for u > 0,
we have

?nléllil ”mechesw = n}Ll_IPOO Hmem”cesq; = nll_g})o |G (men)|l, = oo

by the Fatou property of /,, because otherwise we would get (1,1,1,...) € ¢, which

Y P

is not the case since p(u) > 0 for any u > 0. Hence

1> Hem-i-n—chesga o ||G€m+n—1||<p - HGem - Z:’L:_oz(m + i>_1em+i||<p
> — —
Heches(p HGechp HGem”w
—2 N 2
R i L) e PO < S Y P
> —
|Genll, — (m+1i)||Genlly
as m — 00, since [|Genlly, = || 02 (m 4 i) emiillp, and for i = 0,1,...,n — 2,
lede e e o w o
~ . - . ~ .
(m"“l)HGemH@ ||(m+2)em|’ces¢ Hmechesg;

If o(u) = 0 on [0,a] for a > 0, and p(u) > 0 for u > a, then limy, o [|[MEm [|ces, =

(1,1,1,...)|l, = a~! by the Fatou property of £,. Since

(m +n = Dllemin-illees,

1>
m||en||ces,

—1 asm — oo,

86



-1

we get [em|ces,,

lemsn—1llces, — 1 as m — oo.

Now we will show the similar equality for the Orlicz norm in the Amemyia form.
Since this norm is equivalent to the Luxemburg norm it is easy to see that in the case
when ¢(u) > 0 for u > 0 we also have

0

hm ||m€m ”cest

— 1 0 _

Now we can repeat the reasoning which we used for the Luxemburg norm, taking into

0

account that ||z]|0,,

= [|Gz]|. In the case when ¢ is equal to 0 on some interval

then we also proceed similarly as in the case of the Luxemburg norm. O
Corollary 4.17. For any Orlicz function ¢, if ces, # {0} then ces,, is not B-convex.

We finish with the immediate consequence of the above result in view of the well

known fact that if a Banach space is uniformly non-square then it is B-convex [51].

Corollary 4.18. For any Orlicz function ¢, if ces, # {0} then ces, is not uniformly

non-square for both Luremburg and Orlicz norm.
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