
University of Memphis University of Memphis 

University of Memphis Digital Commons University of Memphis Digital Commons 

Electronic Theses and Dissertations 

4-15-2012 

Problems in Extremal Combinatorics Problems in Extremal Combinatorics 

Neal Owen Bushaw 

Follow this and additional works at: https://digitalcommons.memphis.edu/etd 

Recommended Citation Recommended Citation 
Bushaw, Neal Owen, "Problems in Extremal Combinatorics" (2012). Electronic Theses and Dissertations. 
417. 
https://digitalcommons.memphis.edu/etd/417 

This Dissertation is brought to you for free and open access by University of Memphis Digital Commons. It has 
been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of University of 
Memphis Digital Commons. For more information, please contact khggerty@memphis.edu. 

https://digitalcommons.memphis.edu/
https://digitalcommons.memphis.edu/etd
https://digitalcommons.memphis.edu/etd?utm_source=digitalcommons.memphis.edu%2Fetd%2F417&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.memphis.edu/etd/417?utm_source=digitalcommons.memphis.edu%2Fetd%2F417&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:khggerty@memphis.edu


PROBLEMS IN EXTREMAL COMBINATORICS

by

Neal Owen Bushaw

A Dissertation

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

Major: Mathematical Sciences

The University of Memphis

May 2012



Copyright 2012 Neal Owen Bushaw

Partial rights reserved

ii



To Beh -

For teaching me that mathematics is possible.

iii



ACKNOWLEDGMENTS

This dissertation could not exist without the help, guidance, and support of

a huge number of people, both junior and senior, mathematical and

non-mathematical. It is a great honor and pleasure to thank at least some of them

here. Since I am given only finite space for this, I certainly cannot thank everyone

here. If you are not mentioned, assume it is because you have been so crucial

that I assumed you already knew you were thanked.

Without the support and guidance of my supervisor, Professor Dr. Béla
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ABSTRACT

Bushaw, Neal Owen. PhD. The University of Memphis. May 2012.
Problems in Extremal Combinatorics. Major Professor: Dr. Béla Bollobás.

This dissertation is divided into two major sections. Chapters 1 to 4 are

concerned with Turán type problems for disconnected graphs and hypergraphs. In

Chapter 5, we discuss an unrelated problem dealing with the equivalence of two

notions of stationary processes.

The Turán number of a graph H, ex(n,H), is the maximum number of

edges in any n-vertex graph which is H-free. We discuss the history and results in

this area, focusing particularly on the degenerate case for bipartite graphs.

Let Pl denote a path on l vertices, and k · Pl denote k vertex-disjoint copies

of Pl. We determine ex(n, k · P3) for n appropriately large, confirming a conjecture

of Gorgol. Further, we determine ex(n, k · Pl) for arbitrary l, and n appropriately

large. We provide background on the famous Erdős-Sós conjecture, and

conditional on its truth we determine ex(n,H) when H is an equibipartite forest,

for appropriately large n.

In Chapter 4, we prove similar results in hypergraphs. We first discuss the

related results for extremal numbers of hyperpaths, before proving the extremal

numbers for multiple copies of a loose path of fixed length, and the corresponding

result for linear paths. We extend this result to forests of loose hyperpaths, and

linear hyperpaths. We note here that our results for loose paths, while tight, do not

give the extremal numbers in their classical form; much more detail on this is

given in Chapter 4.

In Chapter 5, we discuss two notions of stationary processes. Roughly, a

process is a uniform martingale if it can be approximated arbitrarily well by a

process in which the letter distribution depends only on a finite amount of the

past. A random Markov process is a process with a coupled ‘look back’ time; that

is, to determine the letter distribution, it suffices to choose a random look-back
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time, and then the distribution depends only on the past up to this time. Kalikow

proved that on a binary alphabet, any uniform martingale is also a random Markov

process. We extend this result to any finite alphabet.
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Chapter 1. Introduction

1.1 Introduction

This dissertation is divided into two major parts. The first part, Chapters 1

to 4, are concerned with Turán theory. This chapter gives a basic overview of the

structure of the paper, and also establishes the bulk of the terminology and

notation used, saving those major and nonstandard definitions for their first

appearances later in the work.

In Chapter 2, we provide explanation and history of the Turán problem,

defining extremal numbers and graphs precisely. We give an overview of the

known results, including milestones such as Turán’s Theorem itself, Theorem

2.1.2 in this work, as well the Erdős-Stone Theorem, Theorem 2.1.3 in this

dissertation, which determines the asymptotics of the extremal function for all

graphs of chromatic number at least three. We then discuss the difficulties of

finding extremal numbers for bipartite graphs, and survey the known results and

major conjectures in the area. In particular, there is an extensive discussion of the

extremal numbers for trees, and thus the Erdős-Sós Conjecture, as this result will

be important to the results in Chapter 3.

Chapters 3 and 4 are joint work with Nathan Kettle, at the University of

Cambridge. In this Chapter, we discuss the natural question of forbidding several

disjoint copies of a graph. In particular, Theorem 3.1.2 determines the maximum

number of edges in a graph without k vertexndisjoint copies of the path on three

vertices, answering in the positive a conjecture of Gorgol. We then prove the
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corresponding result when forbidding k vertex disjoint copies of the path on l

vertices, for l > 3; this is Theorem 3.1.4.

Chapter 3 continues with a proof of the extremal numbers for forests of a

certain kind; those which we call equibipartite forests; this is Theorem 3.2.1. A

careful definition of equibipartite forests is given in Chapter 3. It should be noted

that our proof is inductive, and relies on the validity of the Erdős-Sós conjecture

for those trees in the forest. In particular, for forests of paths, this is given by the

Erdős-Sós, and so in this and many other cases, Theorem 3.2.1 holds without

qualification.

In Chapter 4, we start out with a discussion of the hypergraph Turán

problem, and again give an overview of known results. We then give definitions of

several different notions of paths in hypergraphs, and state some earlier results

giving extremal numbers for assorted paths. Building on this, we give the extremal

numbers for k vertex disjoint linear paths in Theorem 4.5.2, and give tight bounds

on the extremal number for k vertex disjoint loose paths of the same length in

Theorem 4.3.1. We then extend these results to forests consisting of k paths of

different length in Theorem 4.4.1 and Theorem 4.5.4. As a peculiarity of the result

which we use as our base case, Theorem 4.2.4, we are only able to give tight

bounds in the results for loose paths, and do not prove the exact result. For linear

paths, we are able to determine these exactly.

Chapter 5 is joint work with Karen Johannson, now at the University of

Cambridge, and Steven Kalikow at the University of Memphis. In this chapter, we

define two notions of stationary processes: random Markov processes and

uniform martingales. It was shown by Steven Kalikow in 1990 that for a binary

alphabet, any uniform martingale is also a random Markov process. The reverse

implication is clear, and we discuss this as well. In Section 5.2 we state Kalikow’s

result, and we give a reformulation of Kalikow’s proof in the binary alphabet case,
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this allows us to introduce some notation and techniques that will be used heavily

later. In Section 5.3, we state and prove the corresponding result on any finite

alphabet.

1.2 Notation

Throughout, we follow the notation which is most widely accepted. For

graph theoretic notation we follow primarily Bollobás [5]. We review the most

commonly used terminology and notation in this section.

We use N to denote the natural numbers, {1, 2, . . .}, and for n ∈ N, we use

[n] = {1, 2, . . . , n} to denote the set of the first n natural numbers. We also use Z

for the set of all integers, and Z− for the set of negative integers. Similarly, Z≤0 is

used for the set of non-positive integers. We will not delve into such issues, but

we assume the ZFC axioms of set theory and the Peano axioms for arithmetic on

the natural numbers. Given a set X, we use X(k) to denote all the k element

subsets of X; we will call a set of size k a k-set.

We use the the standard “big-oh” notations O(·),Θ(·),Ω(·), o (·) for growth

of functions. Namely, f(n) = O(g(n)) if and only if there exists constants C, n0

such that for each n� > n0, |f(n�)| ≤ C |g(n�)|. A function f(n) = Ω(g(n)) if and

only if there exists C, n0 such that for each n� > n0, |f(n�)| ≥ C |g(n�)|. A function

f(n) = Θ(g(n)) if and only if it is O(g(n)) and Ω(g(n)). We say that f = o (g(n)) if

and only if for each � > 0, there exists n0 such that for every n > n0,

|f(n)| ≤ � |g(n)|. Finally, f(n) ∼ g(n) if and only if limn→∞

f(n)
g(n) = 1.

A graph G is an ordered pair (V (G), E(G)), where V (G) and

E(G) ⊆ V (G)(2) are the vertex set and edge set of G, respectively. Throughout,

unless otherwise stated, a graph named G is assumed to be on vertex set V = [n]

and edge set E.

A hypergraph is the natural generalization of graphs when edges are

allowed more than two elements; formally, a hypergraph H = (V,E) is an ordered
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pair, where V is again the vertex set, and E ⊆ P(V ) \ {∅}. Throughout Chapter 4,

we will restrict to a particular class of hypergraphs, which are defined as follows:

an r-uniform hypergraph is an ordered pair (V (H), E(H)), where V (H) and

E(H) ⊆ V (H)(r) are again the vertex and edge sets of H. We will refer to these

often as r-graphs, and note that a 2-graph is a graph. Where the case r = 2 gives

the standard definition for graphs, we may give definitions only for r-hypergraphs.

A subgraph of an r-uniform hypergraph G is an r-uniform hypergraph G�

such that V (G�) ⊆ V (G) and E(G�) ⊆ V (G�)(r) ∩ E(G). Two hypergraphs G and H

are isomorphic if there exists a bijection f : V (G) �→ V (H) such that

{v1, . . . , vr} ∈ E(G) if and only if {f(v1), . . . , f(vr)} ∈ E(H). When G and H are

isomorphic, we write G ∼= H. We say that G contains H if there exists a subgraph

of G which is isomorphic to H; in this case we write G ⊆ H. If H �⊆ G, then G is

H-free.

For a subset U ⊆ V (G), we use G[U ] to denote the graph induced by the

vertices of U . That is, G[U ] has vertex set U , and edge set E(G) ∩ U (2).

For a vertex v in a graph G, the open neighborhood of v, denoted NG(V ),

is the set of all vertices which share an edge with v; that is,

NG(V ) := {u ∈ V (G) : u �= v, {u, v} ∈ E(G)}. We will often refer to this simply as

the neighborhood of v, and will supress the G in the notation when it is clear from

the context. The degree of a vertex v ∈ G is the size of its open neighborhood in

G; we denote this dG(v); here too, we will usually suppress the G when it is clear

from the context. A graph G is called k-regular if the degree of every vertex in G is

precisely k.

A set U ⊆ V (G) is independent if it induces no edges. A bipartite graph is

a graph G whose vertex set can be written as a disjoint union of two independent

sets. Similarly, a graph has chromatic number k if its vertex set can be partitioned
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into k disjoint independent sets, but not into k − 1 disjoint independent sets. We

refer to a set of edges as independent if no two edges share an endpoint.

We use G ∪H to denote the disjoint union of two r-graphs; that is,

V (G ∪H) = V (G) ∪ V (G), and E(G ∪H) = E(G) ∪ E(H). Similarly, we use k ·G

to denote k vertex disjoint copies of G. We write G+H for the join of G and H,

the graph obtained from G ∪H by adding all edges between vertices of G and

vertices of H; formally, V (G+H) = V (G) ∪ V (H) and

E(G+H) = E(G) ∪ E(H) ∪ {{x, y} : x ∈ G, y ∈ H}. Kt denotes the complete

graph on t vertices, the graph with all possible edges, while Et denotes the empty

graph with t vertices with no edges. By Mt, we refer to a maximal matching on t

vertices; that is, the graph on t vertices consisting of
�
t

2

�
independent edges. We

use Kr(t) to denote the complete r-partite graph with t vertices in each class, and

Ks,t to denote the complete bipartite graph with s vertices in one class and t in the

other.

A path in a graph G is a sequence of distinct vertices v1, . . . , vk such that

{vi, vi+1} ∈ E(G) for each i ∈ [k − 1]. Such a path is of length k − 1, but is on k

vertices; we denote it by Pk, and note that in this we differ from many texts. An

odd path is a path on an odd number of vertices, and an even path is a path on an

even number of vertices.

For hypergraphs, the notion of paths is less trivial; for this reason we delay

their definition until Chapter 4. A cycle of length k is a path on k vertices whose

end vertices are adjacent; formally, v1, . . . , vk is a cycle if {vi, vi+1} ∈ E(G) for

each i ∈ [k − 1], and {v1, vk} ∈ E(G).
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Chapter 2. Turán Theory, History and Basics

2.1 History

Extremal problems are those which deal with the largest, smallest, or

otherwise optimal structures with some constraint. Perhaps the earliest published

example of extremal graph theory is that of Mantel’s Theorem (see, e.g., [5]).

Appearing originally in 1906, Mantel’s Theorem says that among all triangle free

graphs, the complete balanced bipartite graph contains the largest number of

edges. Later, Eszter Klein demonstrated a construction giving a lower bound on

the maximum number of edges in a C4 free graph (communicated by Erdős in [9].

In 1940, Pál Turán proved that the graph on n vertices which has no Kr as

a subgraph and the largest number of edges is the complete (r − 1)-partite graph

on n vertices which is ‘as balanced as possible’ [34, 35]. This is now known as the

Turán graph Tr−1(n), and is illustrated in Figure 2.1. Mantel’s Theorem is the first,

and Turán’s Theorem the second, in a broad type of questions which ask, in a

general sense, “Which graph on n vertices containing no copy of a fixed subgraph

has the largest number of edges?”. We now define Turán numbers precisely.

Definition 2.1.1. The Turàn number, or extremal number, of a graph G is defined

as: ex(n,G) := max {|E(H)| : |V (H)| = n,G �⊆ H}. A graph H is called extremal

for G, or simply extremal when G is clear from the context, if is H-free and has the

maximum number of edges; that is, H �⊆ G, |V (H)| = n, and |E(H)| = ex(n,G).

We use HEx(n,G) to denote the family of n-vertex graphs which are extremal for

G.
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Fig. 2.1. The Turán Graph T3(15).

We now state Turán’s milestone result, which in many ways was the

starting point of a great amount of interest and work in the area [34, 35].

Theorem 2.1.2. For each value of r and n, the following holds.

ex(n,Kr) = |E (Tr−1(n))|

≤
�
1− 1

r − 1

�
n2

2

Further, for all n the unique extremal graph is the Turán graph Tr−1(n), and we

have equality in the second line when r|n.

While Theorem 2.1.2 determines the unique extremal graph forbidding Kr,

it should be noted that in general, there is no reason to think that there is a unique

extremal graph of a given size. Thus we use Ex(n,G) to denote the family of

n-vertex extremal graphs for G, and as well use HEx(n,G) to denote a graph

which is extremal for G and on n vertices. When this extremal graph is not unique,

statements involving HEx(n,G) are valid regardless of the choice

HEx(n,G) ∈ Ex(n,G).
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The next milestone in the advancement of Turán theory was a result of

Paul Erdős and Arthur Stone; this theorem determines asymptotically the

extremal number for the complete r-partite graph with t vertices in each class

[11]. Further, as any r-chromatic graph is contained in Kr(t) for large enough t,

but not in Kr−1(t), this determines the asymptotic extremal number for any

r-chromatic graph. As a consequence, this theorem is often referred to as the

“fundamental theorem of extremal graph theory”. Somewhat later, 1966, Erdős

and independently Simonovits gave a stability version of this result; that is, any

graph which is Kr(t)-free and has nearly the maximum number of edges is almost

Tr(n) [31, 10]. We give the Erdős-Stone theorem here [11].

Theorem 2.1.3.

ex(n,Kr(t)) =
r − 2

r − 1

�
n

2

�
+ o

�
n2
�
;

As a consequence, we have that for any graph G,

ex(n,G) =
χ (G)− 2

χ (G)− 1

�
n

2

�
+ o

�
n2
�
.

For graphs of chromatic number 3 and higher, this is somewhat the end of

the road; while it is still possible to determine the extremal number of a graph

exactly, the Erdős-Stone Theorem gives the asymptotic behavior. Further,

determining extremal numbers exactly is quite difficult in general.

2.2 Bipartite Graphs

For a bipartite graph G, Theorem 2.1.3 gives us very little information about

even the asymptotic behavior the extremal number for bipartite graphs. Indeed, for

bipartite graphs this gives only that ex(n,G) = 2−2
2−1

�
n

2

�
+ o (n2) = o (n2). In general,

exact extremal numbers are known for very few bipartite graphs, and even the

asymptotics of ex(n,G) are known only for a few classes of bipartite graphs.
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2.2.1 Bipartite Graphs with Cycles

Indeed for bipartite graphs which are not trees, the only results known give

Turán densities, not exact results. Although the focus of Chapter 3 will be

extensions of the results for trees in Section 2.2.2, we discuss these here for

completeness.

Kövari, Sós and Turán proved a general upper bound on the extremal

numbers for complete bipartite graphs, showing that

ex(n,Ks,t) ≤ 1
2

s
√
t− 1n2−1/s + o

�
n2−1/s

�
[24]. This upper bound is quite simple;

given a Ks,t free graph G = (V,E), this bound is implied by the inequality
�

v∈V

�
d(v)
s

�
≤ (t− 1)

�
n

s

�
. Zoltán Füredi improved this in 1996 to give a bound of

ex(n,Ks,t) ≤ 1
2

s
√
t− s+ 1n2−1/s + o

�
n2−1/s

�
[15]. This was recently improved by

Nikiforov in [28] via an elegant spectral radius argument to the following bound.

ex(n,Ks,t) ≤
1

2
s
√
t− s+ 1n2−1/s +

1

2
(s− 1)n2−2/s +

1

2
(s− 2)n.

The bound above is generally believed to give the correct term, but there

exist constructions with a matching Ω(n2−1/s) edges in only a few cases. Paul

Erdős, Alfréd Rényi, and Vera T. Sós, and independently Brown, proved the first

such result, showing that ex(n,K2,2) =
1
2n

3/2 + o
�
n3/2

�
in 1966 [13, 7]. In the same

paper, Brown further showed that ex(n,K3,3) =
1
2n

5/3 + o
�
n5/3

�
.

Füredi also gave a bound matching construction in the case of K2,t,

showing that ex(n,K2,t) =
1
2

√
t− 1n3/2 + o

�
n3/2

�
[14]. The only remaining known

cases are when one bipartite class is much larger than the other. For t ≥ s! + 1,

Kóllar, Rónyai, and Szabó showed that ex(n,Ks,t) ≥ cs,tn2−1/s [22]; this

construction was modified by Alon, Rónyai, and Szabo to give the same bound

whenever t ≥ (s− 1)! + 1 [1].
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The only other non-tree bipartite graphs for which the extremal numbers

are known are cycles of length four, six, and ten. For completeness, we state

these here as well. In 1974, Bondy and Simonovits proved an upper bound on the

extremal numbers for all even cycles, showing that for all t, ex(n,C2t) ≤ 100tn1+1/t

[6]. Constructions matching the Bondy-Simonovits bound exist only for k = 2, 3, 5.

The case k = 2 is the same as the case K2,2 mentioned in the previous

paragraph; the construction forbidding the hexagon was given by Benson in 1966

[4], while the result for C10 was proven by Wenger in 1991 [36]. It is worth noting

that Wenger’s algebraic construction also gave new optimal constructions for both

C4, C6 as well.

We note that all of these constructions are quite complicated, and rely

primarily on building graphs based on algebraic hypersurfaces in finite fields. As

such, the constructions are valid not for any n, but typically for n which are an

appropriate multiple of a prime or which are of a certain form. Regardless, these

exist for infinitely n and are thus sufficient to give the asysmptotic results stated.

The careful reader may have noted that the cycle of length eight is missing

from the above list of results. It is known that c1n6/5 ≤ ex(n,C8) ≤ c2n5/4, for some

constants c1, c2; the lower bound comes from constructions of Benson and

Singleton [4, 33], while the upper bound is a recent result due to Keevash,

Sudakov, and Verstraëte [21].

2.2.2 Trees

The extremal numbers for trees seem to be as hard as in the non-tree

bipartite case. However, the following well known result due to Erdős and Gallai,

gives a tight bound on the extremal number for paths of any length. We will use

this as the base case of our induction in the proof of Theorem 3.1.4, and thus we

state it carefully here [12].

Theorem 2.2.1. For any n, l ∈ N, ex(n, Pl) ≤ l−2
2 n.
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· · ·

Fig. 2.2. HEx(n, P6).

The above theorem, proven in 1959, was the earliest of the bipartite

extremal numbers to be determined. We note that the bound in Theorem 2.2.1 is

attained by taking disjoint copies of Kl−1 as in Figure 2.2; this extremal

construction is unique as long, and gives a tight result whenever n is divisible by

l − 1.

We note that a path can be viewed as an extreme kind of tree - l − 2

vertices have degree two, and the two leaves of course have degree one. The

opposite extreme is the star - one central vertex of degree l − 1, and the other

l − 1 vertices are leaves; we denote such a star by Sl. Forbidding the star Sl is, in

fact, simply imposing a maximum degree condition, and so ex(n, Sl) ≤ l−2
2 n. This

bound is tight, with the extremal graphs being all (l − 2)-regular graphs. Legend

has it that Vera T. Sós presented the proofs of these two results to her graph

theory class in Budapest in 1962, and left the following conjecture as a homework

problem; by now, this is known as the notoriously difficult Erdős-Sós Conjecture.

Conjecture 2.2.2. For any tree T on l vertices, ex(n, T ) ≤ l−2
2 n.

In 2008, a proof of the conjecture was announced for very large trees by

Ajtai, Komlós, Simonovits, and Szemerédi. For small trees, however, the

conjecture is largely open. There is a sequence of results in the direction of the

full theorem for smaller trees. We present a representative sample of these

results here, which is certainly only the tip of the iceberg. Dobson established the

11



conjecture for graphs of large girth; we state this theorem as an example of those

partial results which exist.

Theorem 2.2.3. If T is a tree on l vertices, and G is a graph with girth at least five

and minimum degree δ ≥ l

2 , then G contains T . Thus Conjecture 2.2.2 holds if the

maximum number edges is taken over all T -free graphs of girth at least five.

Similarly, Saclé and Woźniak [29] proved that whenever G is a graph with

at least l−2
2 n edges and no C4, G contains any tree on l vertices. In 2005,

McLennan [25] proved the Erdős-Sós bound for trees of diameter at most four.

The Erdős-Sós Conjecture has also been proven for caterpillars; this result

is attributed to Perles in [27]. Later, Sidorenko [30] showed that the Erdős-Sós

Conjecture holds for trees of order l containing a vertex which is the parent of at

least l−1
2 leaves. Many more partial results related to the Erdős-Sós Conjecture

exist; see for example [2, 37].

12



Chapter 3. Turán Theory for Disconnected Graphs

The work in this Chapter is joint with Nathan Kettle at the University of

Cambridge.

While the above theorems do not require that the forbidden graph be

connected, they are typically thought of in this context. It is a natural question to

consider forbidding multiple disjoint copies of a graph, or forbidding disconnected

graphs. Theorem 2.1.3 still applies to these graphs, and so for graphs of

chromatic number at least three the asymptotic behavior is the same. In [26] and

[32] respectively, first Moon and then Simonovits showed that for large n, the

extremal graph forbidding p ·Kr is Kp−1 + Tr−1(n− p+ 1). While Moon’s result

gives this, it was not noted this way in his work. Simonovits independent paper

expresses this result in the Turán context. We note that this is strictly larger than

the number of edges in a graph forbidding only one copy of the complete graph.

Recently, Gorgol [17] proved upper and lower bounds on the extremal

number for forbidding several vertex-disjoint copies of an arbitrary connected

graph. We determine this number for paths of length 3 in Section 3.1.1, longer

paths in Section 3.1.2, and for forests of equibipartite trees in Section 3.2.1.

3.1 Extremal Numbers for Disjoint Paths

Gorgol [17] noted that for any connected graph G on v vertices, and for any

positive integers n, k such that n ≥ kv, the graph HEx(n− kv + 1, G) ∪Kkv−1 does

not contain k ·G. This is because Kkv−1 simply does have enough vertices to

contain k copies of G, and thus contains at most k − 1, and by definition

HEx(n− kv + 1, G) is G-free; thus their union contains at most k − 1 copies of G.

13



· · ·

Kkv−1

HEx(n− vk + 1, G)

Fig. 3.1. Construction A.

· · ·

Kk−1

HEx(n− k + 1, G)

Fig. 3.2. Construction B.

Similarly, HEx(n− k + 1, G) +Kk−1 is k ·G-free as well. Indeed, by the

definition of HEx(n− k + 1, G), any copy of G must contain at least one vertex

from the small complete graph, and since this complete graph contains only k − 1

vertices, and so HEx(n− k + 1, G) +Kk−1 can contain at most k − 1 copies of G.

We shall refer to these two constructions as Construction A and Construction B,

respectively.

3.1.1 Paths of Length Three

We start by looking at graphs with no disjoint paths on three vertices. The

extremal case here is slightly different than for longer paths, but the proof

introduces the main ideas we shall use in proving the result for all paths. Further,

it serves as an introduction to the general tools needed for our results on forests,

without getting extremely technical. Applying the constructions mentioned

previously to the case where G is the path on three vertices, and noting that the

second construction has strictly more edges for large enough n, Gorgol obtained
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the following bound on ex(n, k · P3) [17]. We again remind the reader that

throughout Pl refers to the path on l vertices; in order to avoid any ambiguity, we

will avoid referring to the length of a path.

ex(n, k · P3) ≥






�
3k−1
2

�
+
�
n−3k+1

2

�
, for 3k ≤ n < 5k − 1,

�
k−1
2

�
+ (n− k + 1)(k − 1) +

�
n−k+1

2

�
, for n ≥ 5k − 1.

(3.1)

Gorgol conjectured that for large enough n, Construction B is optimal for

large n, and thus that the second bound in Equation (3.1) gives the correct value

of ex(n, k · P3). In [17], she proved that this holds for k = 2, 3. Our first result

shows that the second construction is indeed best possible for any k and large

enough n. In fact, Theorem 3.1.4 and Theorem 3.2.1 show that a similar extremal

structure holds for a much wider family of graphs.

Before stating the result for multiple copies of Pl, we give the following

trivial lemma which will be used a the base case of our induction in Theorem

3.1.2.

Lemma 3.1.1. If G is a graph on n vertices which contains no P3, then G contains

at most �n

2 � edges; that is, ex(n, P3) =
�
n

2

�
.

Proof. The proof is immediate; if G contains no P3, then no vertex can have

degree ≥ 2, and so G consists of independent edges, giving ex(n, P3) ≤
�
n

2

�
.

Clearly this maximum number of edges is obtained by a perfect matching when n

is even and a matching leaving one vertex uncovered when n is odd, as in Figures

3.3, 3.4, respectively.

Theorem 3.1.2 (B., Kettle [8]). For n ≥ 7k, the following holds.

ex(n, k · P3) =
�
k−1
2

�
+ (n− k + 1)(k − 1) +

�
n−k+1

2

�
.
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· · ·

Fig. 3.3. HEx(n, P3), n even.

· · ·

Fig. 3.4. HEx(n, P3), n odd.

Further, there is a unique graph for which this bound is attained, namely

Kk−1 +Mn−k+1, as in Figures 3.5, 3.6. As mentioned in the description of

Construction B in a more general context, this graph does not contain k disjoint

copies of P3, since each P3 must contain at least one vertex from the

(k − 1)-clique.

Proof. We proceed by induction on k. The case k = 1 is covered by Lemma 3.1.1.

For the induction step, suppose G is a graph on n vertices, with

m > ex(n, k · P3) =
�
k−1
2

�
+ (n− k + 1)(k − 1) +

�
n−k+1

2

�
edges, n ≥ 7k, and which

contains no k · P3. The number of edges incident to any P3 in G must be at least:

· · ·

Kk−1

· · ·
Mn−k+1

Fig. 3.5. HEx(n, k · P3), n− k odd.
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· · ·

Kk−1

· · ·
Mn−k+1

Fig. 3.6. HEx(n, k · P3), n− k even.

m− ex(n− 3, (k − 1) · P3) (3.2)

≥
�
k − 1

2

�
+ (n− k + 1)(k − 1) +

�
n− k + 1

2

�
+ 1

−
�
k − 2

2

�
− (n− k − 1)(k − 2)−

�
n− k − 1

2

�
(3.3)

= n+ 2k − 3. (3.4)

Otherwise, the graph induced by the vertices not on this P3 contains

(k − 1) · P3 by induction, since m− n+ 2k − 3 ≥ ex(n− 3, (k − 1) · P3). Taking the

union of this (k − 1) · P3 and the initial P3, which are disjoint by their construction,

we are able to show that G does contain k · P3, a contradiction.

By the induction hypothesis, since for n in this range

m > ex(n, k · P3) ≥ ex(n, (k − 1) · P3), we can find k − 1 vertex-disjoint copies of P3

in our graph. Since each P3 is incident to at least n+ 2k − 3 edges, each must

contain a vertex of degree at least (n+ 2k − 3)/3. Taking such a high degree

vertex from each P3 gives us a set U of k − 1 vertices each of degree at least

(n+ 2k − 3)/3.

Now, assume that G [V \ U ] contains P3. Then, we can still construct

another k − 1 copies of P3, each centered on a vertex from U , as long as each

17



vertex in U has degree large enough to ensure it is connected to at least two

vertices not contained on any of the preceding k − 1 copies of P3. That is, we can

construct k − 1 copies of P3 as long as (n+ 2k − 3)/3 ≥ 3k − 1. For n ≥ 7k,

(n+ 2k − 3)/3 ≥ (7k + 2k − 3)/3 = 3k − 1, and so we are able to construct our

(k − 1) · P3. Thus it must be the case that G [V \ U ] contains no P3, and so by

Lemma 3.1.1, |E (G [V \ U ])| ≤ ex(n− k + 1, P3) =
�
n−k+1

2

�
, and so G has at most

�
k−1
2

�
+ (n− k + 1)(k − 1) +

�
n−k+1

2

�
edges, a contradiction.

The above proof shows that Construction B is extremal for n ≥ 7k. No

construction is known giving a better bound for n ≥ 5k − 1, where Construction B

first has more edges than Construction A, and we conjecture that the above

example is optimal in this range. We note that the bound on n in Theorem 3.1.2

comes from guaranteeing that our collection of large degree vertices has large

enough degree that we can construct k − 1 non-intersecting copies of P3 from this

set, and that the bound on n is tight at this step.

3.1.2 Longer Paths

In the proof of Theorem 3.1.2, in order to find a P3 it was enough to find a

vertex of degree two. To find subsequent copies of P3, it sufficed to find vertices of

large degree; this is what is happening in the part of the proof surrounding (3.2),

(3.3) . In a slightly more general sense, we will use collections of vertices with

large shared neighborhood in order to ‘build’ copies of a fixed graph. This idea is a

crucial tool in the proofs of both Theorem 3.1.4 and Theorem 3.2.1, and in fact will

even be a primary tool in the hypergraph Turán problems discussed in Chapter 4.

We formalize this notion for graphs in Lemma 3.1.3. The proof is straightforward,

but having this Lemma as a standalone tool will be extremely useful.

18



Lemma 3.1.3. Let G be a graph on n vertices with m edges, t ∈ N, and let F1, F2

be arbitrary graphs. Letting r = |V (F1)| and m� = m− ex(n− r, F2)−
�
r

2

�
, if

F1 ∪ F2 �⊆ G, any F1 in G contains t vertices with shared neighborhood of size at

least

n� ≥ m� − (n− r) (t− 1)

(r − t+ 1)
�
r

t

�

Proof. Assume that there is some copy of F1 inside G, say on vertex set U . Since

G doesn’t contain F1 ∪ F2, clearly G [V \ U ] contains no F2. Thus G[V \ U ]

contains at most ex(n− r, F2) edges. Since there are at most
�
|V (F1)|

2

�
=

�
r

2

�
edges

with both endpoints in U , it must be that U has at least

m− ex(n− r, F2)−
�
r

2

�
= m� edges to V \ U .

Define n0 to be the number of vertices in V \ U with neighborhood of size

at least t in U ; that is, n0 = |{v ∈ V \ U : |NU(v)| ≥ t}|. Since U has at most

n0r + (n− r − n0) (t− 1) edges to V \ U , n0r + (n− r − n0) (t− 1) ≥ m�, and so

n0 ≥ m
�−(n−r)(t−1)

r−t+1 . Trivially, there are only
�
r

t

�
subsets of size t in F1. Putting these

together, we see that some subset has shared neighborhood of size

n� ≥ m
�−(n−r)(t−1)

r−t+1 /
�
r

t

�
, as claimed.

The proof of Lemma 3.1.2 also required the value of ex(n, P3) as the base

case of the induction; for longer paths, Theorem 2.2.1 plays this role, giving that

ex(n, Pl) ≤ l−2
2 n. In the next theorem, we show that a construction similar to

Construction B, namely a split graph, is optimal when forbidding k disjoint copies

of a longer path. This Theorem is joint work with Nathan Kettle, and appears in [8].

Theorem 3.1.4 (B., Kettle [8]). For k ≥ 2, l ≥ 4, and n ≥ 2l + 2kl
��

l

2

�
+ 1

� �
l

� l
2�
�
,

ex(n, k · Pl) =

�
k
�
l

2

�
− 1

2

�
+

�
k

�
l

2

�
− 1

��
n− k

�
l

2

�
+ 1

�
+ cl,

where cl = 1 if l is odd, and cl = 0 if l is even.
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· · ·

K
k� l

2�−1

· · ·

P2 + E
n−k� l

2�−1

Fig. 3.7. HEx(n, k · Pl) = G(n, k, l), l odd.

The extremal graph here is G(n, k, l) := Kt + En−t, with a single edge

added to the empty class when l is odd, and t = k
�
l

2

�
− 1, as seen in Figures 3.7,

3.8 respectively. We note that the result above for k · Pl for l ≥ 4 does not match

the earlier result for k · P3 in Theorem 3.1.2; this is primarily due to the difference

in the structure of the extremal graphs for the base cases.

Remark: It should be noted that for paths of even lengths, the above bound can

be proven, and the extremal structure determined, via a paper of Balister, Győri,

Lehel, and Schelp as a consequence of a theorem regarding the maximal number

of edges in a connected graph containing no path of some fixed length [3]. One

can, of course, divide a long path into many short even paths, and this allows one

to deduce our Theorem 3.1.4 from their Theorem 1.3; for odd length paths this

result gives a nonoptimal number of edges due to parity issues. In both the even

and odd cases, deducing this precisely from the Balister, Győri, Lehel, Schelp

result is nontrivial; in particular, determining the extremal structure is quite

difficult. This extremal number within connected graphs was also determined

earlier by Kopylov in 1977, but the approach in the proof given there did not give

the extremal structure [23]. Regardless, this proof uses very different methods,

and was discovered independently.
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· · ·

K
k� l

2�−1

· · ·

E
n−k� l

2�+1

Fig. 3.8. HEx(n, k · Pl) = G(n, k, l), l even.

Proof. We proceed by induction on k, starting with the base case, k = 2.

Let G be a graph with |V (G)| = n ≥ 2l + 4l
��

l

2

�
+ 1

� �
l

� l
2�
�
,

���E
G

��� ≥
�2� l

2�−1
2

�
+
�
2
�
l

2

�
− 1

� �
n− 2

�
l

2

�
+ 1

�
+ cl, and which contains no 2 · Pl.

For n ≥ l2, |E(G)| is then greater than ex(n, Pl), and so G contains a Pl on vertex

set U , say.

Using Lemma 3.1.3 with F1 = Pl, F2 = Pl, and

m =
�2� l

2�−1
2

�
+
�
2
�
l

2

�
− 1

� �
n− 2

�
l

2

�
+ 1

�
+ cl, some elementary simplifications

show that any Pl contained in G must have at least
�
l

2

�
vertices sharing a

neighborhood of size at least

n� =
m− ex(n− l, Pl)−

�
l

2

�
− (n− l)

��
l

2

�
− 1

�
��

l

2

�
+ 1

� �
l

� l
2�
�

≥
�2� l

2�−1
2

�
+
�
2
�
l

2

�
− 1

� �
n− 2

�
l

2

�
+ 1

�
��

l

2

�
+ 1

� �
l

� l
2�
�

+
cl − (n− l)

�
l

2 − 1
�
−
�
l

2

�
− (n− l)

��
l

2

�
− 1

�
��

l

2

�
+ 1

� �
l

� l
2�
�

≥
�
1− cl

2

�
(n− l)

��
l

2

�
+ 1

� �
l

� l
2�
� (3.5)
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Fig. 3.9. Flattening a Hypergraph.

For n in our range, (3.5) is at least 2l. Thus we have that for any Pl ⊂ G, we

can find
�
l

2

�
vertices with shared neighborhood of size at least 2l.

We now create an
�
l

2

�
-uniform hypergraph H with V (H) = V (G) as follows:

for any Pl ⊆ G, we find a subset U � of
�
l

2

�
vertices with a large common

neighborhood, as guaranteed above, and add U � as an edge in H. We now flatten

this hypergraph to form a simple graph G� on the same vertex set, with uv ∈ E(G�)

whenever u and v are contained in the same hyperedge.

Since vertices adjacent in G� were in a common edge of H, this means

they have large common neighborhood in G. Therefore, a path of length
�
l

2

�
in G�

lets us find a path of length l in G, simply by following edges from each vertex on

the G� path, to the common neighborhood with the next vertex on the G� path, and

from this common neighborhood to the next vertex on the G� path; following this

pattern, we obtain a path in G which is twice as long as the one in G�. More

formally, as n� ≥ 2l, if G� contains 2 · P� l
2�, we can choose distinct common

neighbors for each pair of consecutive vertices in these paths, and distinct

neighbors for the end vertices, giving us 2 · Pl in G. Thus since 2 · Pl �⊆ G, G�

cannot contain 2 · P� l
2�; this is seen in Figure 3.10.

We further note that certainly two disjoint hyperedges in H give rise to two

such disjoint paths. Thus every pair of edges in H intersect; such a hypergraph is
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· · · v1, v2, . . . , v� l
2�

�
i
N(vi)

Fig. 3.10. Building a path from vertices with large shared neighborhood.

called intersecting. We will further call a hypergraph k-intersecting if every pair of

edges intersect in at least k vertices.

Claim A If there exists X ⊆ V (H), with |X| = t <
�
l

2

�
, and such that X contains

some vertex from each edge in H, then |E(G)| < |E(G(n, 2, l))|.

Indeed, assume X is such a set. By the construction of H, since

H[V (H) \X] contains no hyperedges, G[V (G) \X] contains no Pl, and so

Theorem 2.2.1 tells us that

|E(G)| ≤
�
t

2

�
+ t(n− t) +

l − 2

2
(n− t) ≤

�
2

�
l

2

�
− 3

2

�
n.

Recall that

|E (G (n, 2, l)) | =
�
2
�
l

2

�
− 1

2

�
+

�
2

�
l

2

�
− 1

��
n− 2

�
l

2

�
+ 1

�
+ cl

≥
�
2

�
l

2

�
− 1

�
n− l2,

and so as n > 2l2, |E(G)| < |E (G (n, 2, l))|. Thus Claim A holds.

Now, assume we have at least 2
�
l

2

�
vertices contained in edges of H, but

without 2 · P� l
2� in G�. We will now show that no two hyperedges can intersect in

only a single vertex.

If E1, E2 ∈ E(H) with E1 ∩ E2 = {x}, then |E1 ∪ E2| = 2
�
l

2

�
− 1 vertices,

and so H contains an edge E3 not contained in their union. We may assume that
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x
e1 e2

e3

Fig. 3.11. Case 1, in the proof of Theorem 3.1.4.

e1 e2

e3

x
e1 e2

e3

Fig. 3.12. Case 2, in the proof of Theorem 3.1.4.

this edge intersects E1 ∪ E2 outside {x}; if no such edge exists, we are done by

Claim A applied to the set {x}. Without loss of generality, E3 ∩ E1 �⊆ E2.

Let us consider two cases.

Case 1: E3 ∩ (E2 \ E1) �= ∅. Then we can find a cycle in G� through all the vertices

in E1 ∪ E2. Since we have at least 2
�
l

2

�
vertices in edges of G�, there is at least

one other vertex adjacent to this cycle. This gives us a path of length 2
�
l

2

�
, and

so G� contains 2 · P� l
2�.

Case 2: E3 ∩ (E2 \ E1) = ∅. Then there at least one vertex y ∈ E3 \ (E1 ∪ E2), and

so we can form one P� l
2� in (E1 \ {x}) ∪ {y} and a disjoint P� l

2� entirely inside E2;

again, in this case G� contains 2 · P� l
2�.

We now have that H is an intersecting hypergraph, with at least 2
�
l

2

�

vertices contained in its edges, and with no two edges intersecting in a unique
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vertex; H is then 2-intersecting. The edge set of H is nonempty, so pick an edge

E, and any vertex in x ∈ E. Since each edge in H intersects E in at least two

vertices, any edge in H intersects E \ {x}, a set of size
�
l

2

�
− 1. No such set of

vertices exists by Claim A.

Thus we now know that all edges of H are contained in a set A of vertices

with |A| ≤ 2
�
l

2

�
− 1, and hence by construction any Pl in G contains at least

�
l

2

�

vertices from A. We define three more sets of vertices as follows:

B =

�
x ∈ G \ A | dA(x) ≥

�
l

2

��
,

C =

�
x ∈ G \ A |

�
l

2

�
> dA(x) > 0

�
,

D = {x ∈ G \ A | dA(x) = 0} .

Certainly D can contain no Pl, since every Pl meets A. Thus the number of

edges entirely within D is at most l−2
2 |D| by Theorem 2.2.1.

We now claim that every vertex x ∈ B ∪ C is the end vertex of a Pl in G,

with alternate vertices in A, which also misses any given y1, y2 ∈ B ∪C. Since x is

adjacent to some y ∈ A, and y is contained in some hyperedge E, as long as

n� > |A|+
�
l

2

�
+ 2, we can find

�
l

2

�
vertices in (B ∪ C) \ {x, y1, y2} adjacent to all

vertices in E, allowing us to find such a Pl. This is the “path building” discussed

early in a vague form and illustrated in Figure 3.10.

Further, no vertex in D can have degree more than 1 to B ∪ C. Indeed,

assume uv, uw are both edges with u ∈ D, and v, w ∈ B ∪ C. We can find a Pl

leaving v, that misses w, with alternate vertices in A. This gives a Pl starting at w

with only
�
l

2

�
− 1 vertices from A, as in Figure 3.13. A vertex in B ∪ C with degree

2 to B ∪C allows us to create a path in the same way, so our graph contains none
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A

B C D

Fig. 3.13. Building a path off a degree two vertex in D.

A

B C D

Fig. 3.14. Building a path with an edge inside B.

of these; in either case, this is a contradiction since every Pl contains at least
�
l

2

�

vertices from A by construction.

Similarly, if l is even, an edge inside B allows us to create a Pl using only
�
l

2

�
− 1 vertices from A, as in Figure 3.14, so in this case B must be empty. If l is

odd, since every vertex in B is adjacent to vertices in every edge of H, then the

existence of two disjoint edges in B allows us to create a Pl with only
�
l

2

�
− 1

vertices from A. A single edge does not create this problem, however; this is

where odd/even distinction and the cl in the theorem arises.

We’ve now counted edges between B and C and between B ∪ C and D

respectively, and counted the edges inside each of B, C, and D. We can use the
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degree conditions in their definitions to bound the number of edges from A to B,

C, and D. Putting all of these together, we see that

|E(G)| ≤
�
|A|
2

�
+ (n− |A|− |C|− |D|) |A| (3.6)

+

�
1 +

�
l

2

�
− 1

�
|C|+

�
1 +

l − 2

2

�
|D|+ cl,

=

�
|A|
2

�
+ (n− |A|) |A|+

��
l

2

�
− |A|

�
|C|+

�
l

2
− |A|

�
|D| (3.7)

As any Pl in G contains at least
�
l

2

�
vertices of A, and G contains some Pl

by Theorem 2.2.1, |A| ≥
�
l

2

�
. If |A| =

�
l

2

�
, then |D| ≤ n− |A|, and so whenever

n > |A|+ 2,

|E(G)| ≤
�
|A|
2

�
+ (n− |A|)|A|+ cl

2
(n− |A|) + cl

=

�
|A|+ 1

2

�
+ (n− |A|− 1)(|A|+ 1) + (

cl
2
− 1)(n− |A|− 1) +

3

2
cl

In fact, |A|+ 1 ≤ 2
�
l

2

�
− 1, and so |E(G)| ≤ |G(n, 2, k)|.

If |A| >
�
l

2

�
, the coefficients of |C| and |D| in (3.6) are negative, and so

|E(G)| is maximized when both C and D are empty. This gives the bound on

|E(G)| as claimed. Further, since C and D must be empty to attain this bound, it

also shows that the extremal graph is in fact G(n, 2, l) = K2� l
2�−1 + E

n−2� l
2�+1 with

an extra edge in the empty class for odd l, as in the statement of the theorem.

We have now established a second base case, k = 2. Somewhat

surprisingly, the inductive step is easy to show. Establishing the case k = 2 from

Theorem 2.2.1 is difficult largely because of the significant differences between

the extremal graphs for k = 2, k = 1. For k ≥ 2, establishing the case k + 1 from

the case k is relatively easy, since the extremal graph for k + 1 contains the

extremal graph for k; thus the use of Lemma 3.1.3 gives us precisely the number
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of common neighbors which is most useful, and establishes precisely the

structure of the rest of the graph.

We now prove the induction step; thus let k ≥ 3, and assume that the

theorem holds for k� < k. Let G be a graph on n vertices with

m ≥
�
k
�
l

2

�
− 1

2

�
+

�
k

�
l

2

�
− 1

��
n− k

�
l

2

�
+ 1

�
+ cl

edges, which does not contain k · Pl. This graph does contain some Pl, by

Theorem 2.2.1, and again by Lemma 3.1.3 we can find
�
l

2

�
vertices with shared

neighborhood of size at least

n� =

�
k� l

2�−1
2

�
+
�
k
�
l

2

�
− 1

� �
n− k

�
l

2

�
+ 1

�
��

l

2

�
+ 1

� �
l

� l
2�
�

+
cl − ex(n− l, (k − 1) · Pl)−

�
l

2

�
− (n− l)

��
l

2

�
− 1

�
��

l

2

�
+ 1

� �
l

� l
2�
�

=

�
k� l

2�−1
2

�
+
�
k
�
l

2

�
− 1

� �
n− k

�
l

2

�
+ 1

�
��

l

2

�
+ 1

� �
l

� l
2�
�

+
cl −

�(k−1)� l
2�−1

2

�
−
�
(k − 1)

�
l

2

�
− 1

� �
n− l − (k − 1)

�
l

2

�
+ 1

�
��

l

2

�
+ 1

� �
l

� l
2�
�

+
−cl −

�
l

2

�
− (n− l)

��
l

2

�
− 1

�
��

l

2

�
+ 1

� �
l

� l
2�
� .

The equality here is valid since for n in our range,

n− l ≥ 2l + 2l(k − 1)
��

l

2

�
+ 1

� �
l

� l
2�
�
. Simplifying, we see that this is equal to
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n+ k
�
l

2

�2 − 3
2

�
l

2

�2
+ clk

�
l

2

�
− 5+4cl

2

�
l

2

�
− 2cl��

l

2

�
+ 1

� �
l

� l
2�
�

≥ n− l��
l

2

�
+ 1

� �
l

� l
2�
� .

Further, for the values of n under consideration, we have n� ≥ 2kl. Write U

for the set of vertices given by Lemma 3.1.3.Then G [V \ U ] is a graph on n−
�
l

2

�

vertices, and at least ex(n−
�
l

2

�
, (k − 1) · Pl) edges. If we can find (k − 1) · Pl,

then since n� ≥ kl, we can find another Pl in G disjoint from these k − 1, as before.

Thus we do not have k − 1 disjoint copies of Pl in G[V \ U ], so by the inductive

hypothesis, |E (G [V \ U ])| = ex(n−
�
l

2

�
, (k − 1) · Pl). Thus

G [V \ U ] = G
�
n−

�
l

2

�
, k − 1, l

�
, and so G = G(n, k, l).

The above proof shows that our construction is optimal for n = Ω(kl
3
22l).

We conjecture that this construction is optimal for n = Ω(kl). We also note a

comparison between Theorem 3.1.4 for even paths and Theorem 2.2.1: certainly

if one forbids k · P2l, then one is also forbidding P2kl. Thus an easy upper bound

on ex(n, k · P2l) is ex(n, P2kl). The difference between this bound and the precise

result established above is relatively small, (kl − 1)(kl2 ). In particular, it is not

dependent on n for fixed k and l, despite the enormous difference between the

extremal graphs.

3.2 Trees

Throughout the following section, we need an analogue of Lemma 3.1.1 as

a starting point. For longer paths, we used the Erdős-Gallai result, Lemma 2.2.1.

The analogous result for trees is the Erdős-Sós Conjecture discussed in Section

2.2.2.
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3.2.1 Forests of Equibipartite Trees

Our proof of Theorem 3.1.4 can be adapted to work on a significantly

larger class of graphs. A key element of our proof was finding a set of vertices

which intersected every long path in at least half its vertices. This continues to be

an essential idea, and thus we restrict ourselves to trees which have the same

number of vertices in each vertex class, when viewed as a bipartite graph. This

restriction also provides a great deal of information on how such trees can embed

into our claimed extremal graphs. We call such trees equibipartite, and a forest in

which each component is an equibipartite tree is called an equibipartite forest.

Clearly any equibipartite tree or equibipartite forest has an even number of

vertices.

If we allow ourselves the considerable benefit of assuming that Erdős-Sós

holds for all equibipartite trees, we can determine the extremal number for any

equibipartite forest, for large n. Somewhat suprisingly, there is a not insignificant

difference in the structure of the extremal graph and thus in the extremal number

depending on whether the forest admits a perfect matching. We note that the

restriction to equibipartite trees is not artificial; as evidenced by both the result for

odd paths and for stars of any size, the result does not hold for trees which have

different sized partitions in their bipartite classes. This theorem is also joint work

with Nathan Kettle.

Theorem 3.2.1 (B., Kettle [8]). Let H be an equibipartite forest on 2l vertices

which is comprised of at least two trees. If the Erdős-Sós Conjecture holds for

each component tree in H, then for n ≥ 3l2 + 32l5
�
2l
l

�
,

ex(n,H) =






�
l−1
2

�
+ (l − 1)(n− l + 1), if H admits a perfect matching

(l − 1)(n− l + 1) otherwise.
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· · ·

El−1

· · ·

En−l+1

Fig. 3.15. Extremal graph for an equibipartite forest with no perfect matching.

· · ·

Kl−1

· · ·

En−l+1

Fig. 3.16. Extremal graph for an equibipartite forest with a perfect matching.

The extremal graphs here are Kl−1 + En−l+1 for any forest with a perfect

matching, and El−1 + En−l+1 for any forest with no perfect matching, as in Figures

3.16, 3.15. To prove the eventual extremal number for equibipartite trees as in

Theorem 3.2.1, we do not need the full strength of the Erdős-Sós Conjecture; in

fact, it suffices to know that ex(n, T ) ≤ |T |−2
2 n+ o(n) for any of the equibipartite

trees T ⊆ H. In this case, however, the bound on n for which the result holds is

worse. We also note that in order to avoid the complication of many lower order

terms, the bound on n in the statement of the theorem has not been optimized.

Before proving Theorem 3.2.1, we will need the following structure lemmas

for equibipartite trees, Lemma 3.2.2. These lemmas also give some intuition into
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x

y x y

Fig. 3.17. Lemma 3.2.2, for a tree with a perfect matching.

x

y
x y

Fig. 3.18. Lemma 3.2.3, for a tree with no perfect matching.

why the distinction between forests with and without perfect matchings occurs.

The partitions discussed in the lemmas are illustrated in Figures 3.17, 3.18.

Lemma 3.2.2. Let H be a equibipartite tree on 2l vertices. If H contains a perfect

matching, then every partition of V (H) into two classes of different sizes is such

that the larger class induces at least one edge.

Proof. If H contains a perfect matching, M ⊆ E(H), then for any partition of V (H)

into nonequal classes, |V1| < |V2|, the number of edges in M which meet V1 is at

most |V1| < l, and so some edge lies inside V2.

Lemma 3.2.3. Let H be a equibipartite tree on 2l vertices. If H does not contain a

perfect matching, then there exists a partition of V (H) into two classes of different

sizes such that the larger class induces no edges and the smaller class induces

exactly one edge.
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Proof. Consider H as a bipartite graph with bipartition V (H) = (A,B). Since H

contains no perfect matching, there is a set S ⊆ A for which Hall’s condition (see,

e.g., [5]) fails; namely |N(S)| < |S|. If we take S minimal, then H[S ∪N(S)] is

connected, as otherwise one of its components would fail Hall’s condition.

Consider H[(A \ S) ∪ (B \N(S))]. Each component of this graph is joined

to N(S) by a single edge. Since the union of these components has larger

intersection with B than with A, at least one of the components does. Let C be

such a component, and let xy be the unique edge between C and N(S), with

x ∈ C and y ∈ N(S).

Now consider the partition (C, V (H) \ C). Then taking the set of vertices

Vx,y which are in the same bipartite class as x in C or in the same bipartite class

as y in V (H) \ C as one class of our new partition, and V (H) \ Vx,y as the other

forms a partition of V (H) with exactly one edge in Vx,y, and none in V (H) \ Vx,y.

Since our tree is equibipartite, |Vx,y ∩ (V (H) \ C)|+ | (V (H) \ Vx,y) ∩ C| = l.

By our definition of C, |Vx,y ∩ C| < | (V (H) \ Vx,y) ∩ C|. By construction, each of

the sets Vx,y ∩ (V (H) \ C), (V (H) \ Vx,y) ∩ C, and Vx,y ∩ C are nonempty. Then

|Vx,y| = |Vx,y ∩C|+ |Vx,y ∩ (V (H)\C)| < |(V (H)\Vx,y)∩C|+ |Vx,y ∩ (V (H)\C)| = l,

and so our partition is an unbalanced partition with no edges in the larger class

and exactly one edge in the smaller class, as claimed.

Proof of Theorem 3.2.1. We again proceed by induction, using the Erdős-Sós

Conjecture as our base case. Here we avoid the difficulty in going from the case

of a forest with only a single tree to a forest with two trees that was present for

paths since we are restricting ourselves to equibipartite trees.

Let H have components H1, H2, . . . , Hk, each on 2l1, 2l2, . . . , 2lk vertices

respectively, and G be a graph on n vertices with m edges which does not contain
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H, and with m ≥ (l − 1)(n− l + 1). Without loss of generality, l1 ≤ li, for each i.

For notational ease, we also define H � = H2 ∪ . . . ∪Hk and l� = |H�|
2 = l − l1.

As n ≥ l2, m ≥ ex(n,H �) by induction (or Erdős-Sós, if H � is a tree), and so

we can find a copy of H � ⊆ G. As in the proof of Lemma 3.1.3, for any copy of H �

we can bound from below the size of the set E � of edges between H � and G \H �

by m−
�
2l�

2

�
− ex(n− 2l�, H1). By the Erdős-Sós Conjecture, this is at least

(l − 1) (n− l + 1)−
�
2l�

2

�
− (n− 2l�) (l1 − 1) ≥ l�n− 3l2.

Consider the set of vertices X = {v ∈ G \H � : |N(v) ∩H �| ≥ l�}. Then

2l� |X|+ (l� − 1) (n− 2l� − |X|) ≥ |E �| ≥ l�n− 3l2.

Thus |X| ≥ n−3l2

l�+1 . As there are only
�
2l�

l�

�
sets of l� vertices in H �, we can

find a set A of l� vertices in H � with at least n� = n−3l2

(l�+1)(2l�l� )
common neighbors. By

our assumption on n, n� ≥ 32l3.

Interchangine the roles of H1 and H �, for any H1 we similarly bound from

below the size of the set E1 of edges between H1 and G \H1 by

m−
�
2l1
2

�
− ex(n− 2l1, H �). Note that n− 2l1 is much larger than needed in the

condition of the inductive hypothesis, and so

|E1| ≥ (l − 1) (n− l + 1)−
�
2l1
2

�
− (n− 2l1 − l� + 1) (l� − 1)−

�
l� − 1

2

�

≥ l1n− 3l2. (3.8)

With this in mind, we define the following set of vertices which are not in A,

but which are still of large degree:
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B =

�
w ∈ G | w �∈ A and dG(w) ≥

n− 3l2

l1 + 1

�

Now, any copy of H1 in G must contain at least l1 vertices from A ∪B, as

otherwise the sum of the degrees of vertices in H1 is less than

(l1 + 1) n−3l2

l1+1 + (l1 − 1)n, contradicting (3.8) above.

As a rough bound on the number of edges in G, we note that if G contained

more than 2ln edges, we can find a copy of H � by induction (or by the Erdős-Sós

Conjecture if H � is a single tree). Removing this copy of H � leaves a graph on

n− 2l� vertices with more than 2l1n ≥ 2l1 (n− 2l�) edges, since each vertex is of

course adjacent to at most n edges. Again by Conjecture 2.2.2, we can find a

copy of H1. Thus our graph can have at most 2ln edges.

This means that for any c > 0, there are at most 4ln
c

vertices of degree at

least c. Choosing c = 8ln
n� =

8l(l�+1)(2l
�

l� )n
n−3l2 , there are at least n

�

2 common neighbors of

A with degree at most c. Since n ≥ 6l2, c ≤ 16l (l� + 1)
�
2l�

l�

�
. Then since n

�

2 ≥ l�, we

can find a copy of H � with l� vertices in A and the other l� vertices having degree at

most c.

Since this copy of H � is incident to at least l�n− 3l2 edges, any vertex in A

has degree at least

l�n− 3l2 − l�c− (l� − 1) (n− 1) (3.9)

≥ n− 3l2 − l�c

= n− c�.
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There are at most 4ln
c

= n
�

2 vertices of degree at least c, and at most l�c�

vertices not adjacent to all of A. Since

n− 3l2

l1 + 1
− n�

2
≥ n− 3l2

2 (l1 + 1)
≥ 16l4

�
2l

l

�
> l�c�,

by the definition of B each vertex x ∈ B is adjacent to a vertex y which is adjacent

to all of A and such that dG(y) ≤ c.

This condition on the vertices in B enables us to find, for each x ∈ B, a

copy of H � from which l� − 1 of the vertices have small degree, and whose

intersection with B contains x as a leaf. Further, we can find a set U of l� − 1

vertices of degree at most c which are each adjacent to all of A, so for any z ∈ A,

G [(U ∪ {x} ∪ {y} ∪ (A \ {z}))] is a graph on 2l� vertices which contains a copy of

Kl�,l�−1 with an extra vertex x adjacent to some vertex in the larger set.

We can find a copy of H � in this by letting a leaf of H � correspond to x, and

so as in (3.9), every vertex in B must have degree at least n− c�. If B contained at

least l1 vertices, they would have common neighborhood of size at least

n− l1c� ≥ l, allowing us to find H1 in G[V (G) \ A], and again as the common

neighborhood of A is of size at least 2l, we can find a disjoint copy of H �, giving a

copy of H in G. Thus |B| ≤ l1 − 1, and so |A ∪ B| ≤ l� + l1 − 1 = l − 1.

We now define two more sets of vertices as follows:

D = {x ∈ G \ (A ∪B) | dA∪B(x) ≥ l1} ,

E = {x ∈ G \ (A ∪B) | dA∪B(x) < l1} .

We note that any vertex not in A ∪ B which is adjacent to all of A is in D,

and thus |E| ≤ l�c�. There can be no H1 in E, so the number of edges in E is at

most (l1 − 1) |E| by Erdős-Sós. We now claim that no vertex v ∈ D can have a

neighbor y ∈ D ∪ E. Indeed, we can find a set U of l1 − 1 vertices in A ∪B
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adjacent to v since each vertex in A ∪B has degree at least n− c�. Further, we

can find W ⊆ (D ∪ E) \ {v, y} consisting of l1 − 1 vertices adjacent to all of U . As

before we can find a copy of H1 on U ∪W ∪ {v, y} with only l1 − 1 vertices from

A ∪ B; a contradiction. Thus all edges in G[D ∪ E] are in E.

Letting |A ∪ B| = t, we bound the number of edges in G by

�
t

2

�
+ t (n− t− |E|) + (l1 − 1) |E|+ (l1 − 1) |E| (3.10)

=

�
t

2

�
+ t (n− t) + (2l1 − 2− t) |E| .

If t < l − 1, then since |E| ≤ l�c� the number of edges in G is at most
�
t

2

�
+ t (n− t) + 2l1l�c� < (l − 1) (n− l + 1), for n ≥ 2l2c� + l2, and hence

|A ∪ B| = l − 1.

The common neighborhood of A∪B has size at least n− (l− 1)− (l− 1)c�,

as each vertex in A ∪ B is adjacent to all but c� vertices in G. Thus we can find a

copy of Kl−1,n−(l−1)(c�+1) ⊆ G, where the smaller class is A ∪B. If H does not

contain a perfect matching, then by Lemma 3.2.3 we can partition the vertices into

unequal sets X,Y , the larger of which is empty, and the smaller of which contains

exactly one edge. This is clearly present in G if A ∪ B contains an internal edge.

Counting all edges in G, we see that by (3.10),

|E(G)| ≤ (l − 1)(n− l − 1)− (l − 2l1 + 1)|E|+ CH ,

where CH =
�
l−1
2

�
if H admits a perfect matching, and CH = 0 otherwise. As l1 is

minimal, (l − 2l1 + 1) > 0, and so the number of edges is maximized when

|E| = 0.

It is unlikely that the bound on n in Theorem 3.2.1 is optimal. Determining

the minimal value of n for which this construction is optimal remains an open
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question. We have not carefully analyzed the best possible bound on n from our

proof, but it is not significantly better than as stated. We conjecture that the given

construction is for even fairly small values of n, but we are unaware of better

constructions for anything but extremely small (i.e. linear in l) n.
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Chapter 4. Turán Theory for Hypergraphs

4.1 Background

We can extend the notion of Turán numbers in a very natural way to the

case of hypergraphs; in fact, there are several logical ways to do this. As before,

we will want the extremal number for a hypergraph H to be the largest number of

edges in an n vertex hypergraph. However, we will restrict ourselves to the case

where H is an r-uniform hypergraph, as allowing the extremal number to count

edges of different sizes somehow obscures the true extremal structure. With this

in mind, we define the Turán numbers for hypergraphs as follows.

Definition 4.1.1. The r-uniform hypergraph Turán Number of an r-uniform

hypergraph H� is defined as the following.

exr(n,H�) = max{|E(H)| : |V (H)| = n,H� �⊆ H}.

Similarly, when H� is a family of hypergraphs, this maximum is taken over all

graphs not containing any member of H� as a subgraph.

In general, Turán theory for r-uniform hypergraphs with r ≥ 3 is much less

developed than the theory outlined in Chapter 2 for 2-graphs. In the same paper in

which Turán proved Theorem 2.1.2, he posed the natural question of determining

exr(n,Kr

t
), where Kr

t
denotes the complete r uniform graph on t vertices [34].

This problem remains open in all cases for r > 2, even up to asymptotics.

Unlike in the case for r = 2, graphs, it is not immediately clear that exr(n,·)

(nr)
is

monotone. Thus at the outset, it is unclear even whether the asymptotic behavior
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of exr(n,H�) is well defined. However, Katona, Nemetz and Simonovits in 1964

[19] showed via a simple and elegant averaging argument that, in fact,

limn→∞

exr(n,H�)

(nr)
, the Turán density of H�, does exist in general for fixed H�. We

present their result and short proof here.

Theorem 4.1.2. For any r-uniform hypergraph H,
exr(n,H)

(nr)
is monotone

decreasing, and so the Turán density πr (H) := limn→∞

exr(n,H)

(nr)
exists.

Proof. Let 1 ≤ h < n and consider an H-free hypergraph F on n vertices which is

extremal for H. Choose H ⊆ [n](h) uniformly at random. Then
��H(r) ∩ F

�� ≤ exr(h,H) for all such H. Further, E
���H(r) ∩ F

��� is |F| times the

probability that a fixed F ∈ [n](r) is in H(r); that is, |F|
�
h

r

�
/
�
n

r

�
. Thus

|F|
�
h

r

�
/
�
n

r

�
= exr(n,H)

�
h

r

�
/
�
n

r

�
≤ exr(h,H). Dividing by

�
h

r

�
gives the result as

desired.

As one might guess from the subtlety in proving even the existence of

hypergraph Turán densities, determining extremal numbers precisely for

hypergraphs is extremely difficult indeed. Part of the difficulty lies in the fact that

for many classes of hypergraphs, the conjectured families of extremal

hypergraphs are very large; thus proving extremal results involves a great many

cases. For paths, however, we are lucky enough to have some results. We collect

them in the following section, and build on them in the following sections.

4.2 Extremal numbers for Hyperpaths

We note first that unlike in the case of graphs, there is no obvious definition

of a path. In a graph, knowing that an edge intersects two vertices gives full

information about the edge; this is of course not true in r-graphs, for r ≥ 3. Thus

we give three different definitions of paths; we present these from most general to

most specific. The first of these is due to Berge.
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Fig. 4.1. Two 4-uniform loose paths, each on 3 edges.

Fig. 4.2. A 4-uniform linear path on 3 edges.

Definition 4.2.1. A Berge path of length l in an r-uniform hypergraph is a family

of edges {F1, . . . , Fl} along with a family of vertices {v1, . . . , vl+1} such that for

each i ∈ {1, . . . , l}, vi, vi+1 ∈ Fi.

Definition 4.2.2. A loose path of length l in an r-uniform hypergraph is a family of

edges {F1, . . . , Fl} such that Fi ∩ Fj �= ∅ iff |i− j| = 1, as seen in Figure 4.1. We

use P (r)
l

to denote the family of r-uniform loose paths on l edges.

Definition 4.2.3. A linear path of length l in an r-uniform hypergraph is a family of

edges {F1, . . . , Fl} such that |Fi ∩ Fj| = 1 if |i− j| = 1, and |Fi ∩ Fj| = ∅ otherwise,

as seen in Figure 4.2. We use P(r)
l

to denote an r-uniform linear path on l edges.

The following results were proven by Füredi, Jiang, and Seiver [16].

Theorem 4.2.4. Let r ≥ 3, l ≥ 1. Then for n sufficiently large, we have

exr(n,P (r)
l

) =

�
n− 1

r − 1

�
+

�
n− 2

r − 1

�
+ . . .+

�
n− t

r − 1

�
+ cl,

where t =
�
l+1
2

�
− 1, and cl = {l is even}.

The unique extremal family consists of all the r-sets in [n] which meet some

fixed set S of t vertices, plus one additional r-set disjoint from S when l is even.
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Theorem 4.2.5. Let r ≥ 4, l ≥ 1. Then for n sufficiently large, we have

exr(n,P
(r)
l
) =

�
n− 1

r − 1

�
+

�
n− 2

r − 1

�
+ . . .+

�
n− t

r − 1

�
+ dl,

where t =
�
l+1
2

�
− 1, and dl =






0, for l odd,

�
n−t−2
r−2

�
, for l even.

For l odd, the unique extremal family consists of all the r-sets in [n] which

meet some fixed set S of t vertices. For l even, we have these edges plus all the

r-sets in [n] \ S containing some two fixed elements not in S.

There is a significant difference between these theorems that may be

overlooked by the casual reader: Theorem 4.2.4 is valid for 3-uniform

hypergraphs, while Theorem 4.2.5 only applies to 4-uniform and higher

hypergraphs. Because of this difference, and since we use these theorems as the

base case of our induction in both Theorem 4.3.1 and Theorem 4.5.2, this

distinction will appear in our theorems as well. Füredi, Jiang, and Seiver

conjecture [16] that Theorem 4.2.5 holds for r = 3, and if this is true then our

methods will immediately give Theorem 4.5.2 for r = 3 as well.

4.3 Multiple Loose Paths of Fixed Length

We abuse notation slightly, and let k · P (r)
l

⊆ H denote the event that H

contains k vertex disjoint loose paths. We note that this does not require the

paths to be isomorphic.

Theorem 4.3.1 (B., Kettle). Let r ≥ 3, l ≥ 3, k ≥ 1, and n sufficiently large. Then

letting t = k
�
l+1
2

�
− 1, cl = {l is even}, any graph on at least

�
n−1
r−1

�
+ . . .+

�
n−t

r−1

�
+ cl

edges contains k vertex disjoint loose paths each of length l. For ease of notation,

we define f(n, r, k, l) =
�
n−1
r−1

�
+ . . .+

�
n−t

r−1

�
+ cl.

We note that the graph on n vertices in which each edge is incident to at

least one of a specified set S of t vertices, along with a single edge disjoint from S
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when l is even, gives a graph with exactly f(n, r, k, l) and without k vertex disjoint

paths of length l.

Proof. The case k = 1 is provided by 4.2.4. We proceed by induction on k; thus

assume that k ≥ 2, and that H is a hypergraph on n vertices and with

|E(H)| = m > f(n, r, k, l). Since f(n, r, k, l) > f(n, r, 1, l), for n large enough, we

can find at least one loose path inside H.

Consider one of these loose paths, say on vertex set P . Certainly

|E(V (H) \ P )| ≤ f(n− |P |, r, k − 1, l), or else by induction, the graph on V (H) \ P

contains (k − 1) · P (r)
l

; these along side the loose path on P form k · P (r)
l

.

Letting NP denote the number of edges of H incident to vertices in P , we

have that

NP ≥ m− f(n− |P |, r, k − 1, l) (4.1)

> f(n, r, k, l)− f(n− (l + 1), r, k − 1, l) (4.2)

=

�
l+1
2

�
nr−1

(r − 1)!
+O(nr−2) (4.3)

We now focus on counting sets of vertices which can be used to easily

‘finish’ edges started by vertices in P . With this in mind, for every set R of r − 1

vertices from V (H) \ P , we define

AR = {e ∈ E (H) : R ⊆ e and e \R ∈ P} .

We now break the (r − 1) subsets of V (H) \ P into two sets, dependent on

the size of their respective AR:

A =

�
R ∈ (V (H) \ P )(r−1) : |AR| ≤

�
l + 1

2

�
− 1

�
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B =

�
R ∈ (V (H) \ P )(r−1) : |AR| ≥

�
l + 1

2

��

Counting edges entirely contained in P and the edges incident to the sets

A, B defined above, we have that

NP ≤
�
|V (P )|

2

��
n

r − 2

�
+

��
l + 1

2

�
− 1

�
|A|+ |V (P )| |B| , (4.4)

≤
�
|V (P )|

2

��
n

r − 2

�
+

��
l + 1

2

�
− 1

��
n

r − 1

�
+ rl|B|. (4.5)

By comparison of the upper and lower bounds on NP , (4.3) and (4.5), we

have that

|B| ≥
n
r−1

(r−1)! +O(nr−2)

rl
. (4.6)

To each set R ∈ B we associate a set of
�
l+1
2

�
vertices from AR arbitrarily.

From (4.6), we see that some set of
�
l+1
2

�
vertices is chosen many times; here

‘many’ is at least:

nr−1

(r − 1)!rl
�
|V (P )|

� l+1
2 �

� +O(nr−2) (4.7)

≥ nr−1

(r − 1)!rl
�

rl

� l+1
2 �

� +O(nr−2). (4.8)

Thus each loose path found in H has a set of
�
l+1
2

�
vertices which have

many common edge finishing (r − 1) sets in the rest of the graph.

Let U be such a set of
�
l+1
2

�
vertices. Since

|E (V (H) \ U)| > f(n−
�
l+1
2

�
, r, k − 1, l), we can find (k − 1) · P (r)

l
on vertices

inside V (H) \ U , say on vertex set W . By (4.8), we can pick one of U ’s edge

finishing sets which is disjoint from both W and the rest of U . Repeating this
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l −
�
l+1
2

�
times gives us a loose path which is disjoint from W , and thus we have

constructed k · P (r)
l

.

This gives us the desired upper bound on exr(n, k · P (r)
l

), and we note that

this bound is attained by the graph formed by taking all edges incident to a set of

k
�
l+1
2

�
− 1 vertices, and an extra disjoint edge when l is even.

4.4 Multiple Loose Paths of Different Lengths

Building on the results above for loose paths, we are able to apply methods

similar to those used in Chapter 3 to give bounds on extremal numbers for

multiple loose paths of different lengths. We note some ambiguity in the base

case: instead of forbidding a particular loose path of length l the family of loose

paths of length l is forbidden; thus, as in the previous theorem, we are not able to

guarantee the existence of a particular loose path of a given length, only that

some l-edge loose path exists.

Theorem 4.4.1 (B., Kettle). Let r ≥ 3, k ≥ 2, and n sufficiently large. For any

l1, . . . , lk ≥ 3, letting t =
�

i∈[k]

�
li+1
2

�
− 1, cl = {any lk is even}, any graph on at least

�
n−1
r−1

�
+ . . .+

�
n−t

r−1

�
+ cl edges contains k vertex disjoint loose paths of lengths

l1, . . . , lk, respectively. For ease of notation, we define

h(n, r, {l1, . . . , lk}) =
�
n−1
r−1

�
+ . . .+

�
n−t

r−1

�
+ cl.

We again note that the hypergraph on n vertices in which each edge is

incident to a specified set S of t vertices, along with a single edge disjoint from S

when one of the paths is even, gives a graph with exactly h(n, r, {l1, . . . , lk}) and

without k vertex disjoint paths of the specified lengths.

Proof. The case k = 1 is provided by 4.2.4. We proceed by induction on k; thus

assume that k ≥ 2, and that H is a hypergraph on n vertices and with

|E(H)| = m > h(n, r, {l1, . . . , lk}). If any of the li is even, we rearrange the list so

that l1 is even.
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Since h(n, r, {l1, . . . , lk}) > h(n, r, l1), for n large enough, we can find at

least one loose path on l1 vertices inside H. Consider one of these l1-paths, say

on vertex set P . Certainly |E(V (H) \ P )| ≤ h(n− |P |, r, {l2, . . . , lk}), or else by

induction, the graph on V (H) \ P contains l2 · . . . · lk; these along side the loose

path on P form k · P (r)
l

.

Letting NP denote the number of edges of H incident to vertices in P , we

have that

NP ≥ m− h(n− |P |, r, {l2, . . . , lk}) (4.9)

≥ h(n, r, {l2, . . . , lk})− h(n− (l + 1), r, {l2, . . . , lk}) (4.10)

=

�
l1+1
2

�
nr−1

(r − 1)!
+O(nr−2) (4.11)

We now focus on counting sets of vertices which can be used to easily

‘finish’ edges started by vertices in P . With this in mind, for every set R of r − 1

vertices from V (H) \ P , we define

AR = {e ∈ E (H) : R ⊆ e and e \R ∈ P} .

We now break the (r − 1) subsets of V (H) \ P into two sets, dependent on

the size of their respective AR:

A =

�
R ∈ (V (H) \ P )(r−1) : |AR| ≤

�
l1 + 1

2

�
− 1

�

B =

�
R ∈ (V (H) \ P )(r−1) : |AR| ≥

�
l1 + 1

2

��
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Counting edges entirely contained in P and the edges incident to the sets

A, B defined above, we have that

NP ≤
�
|V (P )|

2

��
n

r − 2

�
+

��
l1 + 1

2

�
− 1

�
|A|+ |V (P )| |B| , (4.12)

≤
�
|V (P )|

2

��
n

r − 2

�
+

��
l1 + 1

2

�
− 1

��
n

r − 1

�
+ rl|B|. (4.13)

By comparison of the upper and lower bounds on NP , (4.11)) and (4.13),

we have that

|B| ≥
n
r−1

(r−1)! +O(nr−2)

rl
. (4.14)

To each set R ∈ B we associate a set of
�
l1+1
2

�
vertices from AR arbitrarily.

From (4.14), we see that some set of
�
l1+1
2

�
vertices is chosen many times; here

‘many’ is at least:

nr−1

(r − 1)!rl
�
|V (P )|

� l+1
2 �

� +O(nr−2) (4.15)

≥ nr−1

(r − 1)!rl
�

rl

� l+1
2 �

� +O(nr−2). (4.16)

Thus each loose path found in H has a set of
�
l1+1
2

�
vertices which have

many common edge finishing (r − 1) sets in the rest of the graph.

Let U be such a set of
�
l+1
2

�
vertices. Since

|E (V (H) \ U)| > h(n−
�
l+1
2

�
, r, {l2, . . . , lk}), we can find k vertex disjoint loose

paths of appropriate lengths on vertices inside V (H) \ U , say on vertex set W . By

(4.16), we can pick one of U ’s edge finishing set which is disjoint from both W and

the rest of U . Repeating this l1 −
�
l1+1
2

�
times gives us a loose path which is

disjoint from W , and thus we have constructed our k disjoint loose paths..
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4.5 Multiple Linear Paths

We shall need the following result due to Keevash, Mubayi, and Wilson

(Theorem 1.3 in [20]), which gives an upper bound on the number of edges in a

hypergraph where no two edges intersect at exactly one vertex.

Theorem 4.5.1. Let H be an r-uniform hypergraph on n vertices with no singleton

intersection, where r ≥ 3. Then

|E (H)| ≤
�

n

r − 2

�
.

We now state our result for the case of linear paths.

Theorem 4.5.2 (B., Kettle). Let r ≥ 4, l ≥ 3, k ≥ 2, and n sufficiently large. Then

letting t = k
�
l+1
2

�
− 1, dl =






0, for l odd,

�
n−t−2
r−2

�
, for l even.

, any graph on n vertices with

at least
�
n−1
r−1

�
+ . . .+

�
n−t

r−1

�
+ dl edges contains k vertex disjoint linear paths each

of length l.

For ease of notation, we define a(n, r, k, l) =
�
n−1
r−1

�
+ . . .+

�
n−t

r−1

�
+ dl.

We note that the hypergraph on n vertices in which each edge is incident to

a specified set S of t vertices, along with all edges disjoint from S containing some

two fixed elements not in S when k is even, gives a graph with exactly a(n, r, k, l)

and without k vertex disjoint paths of length l. We note that for approximately the

first half of the proof, this is identical to the proof for loose paths. The difference

arises in the last steps, where we are building a linear path out of common

neighborhoods. Instead of simply taking any two intersecting edges, as in the

case for loose paths, we need to find edges which intersect appropriately for

building linear paths.

Proof. The case k = 1 is provided by 4.2.4. We proceed by induction on k. Let

k ≥ 2, and let H be a hypergraph on n vertices and with |E(H)| = m > a(n, r, k, l).
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Since a(n, r, k, l) > a(n, r, 1, l), for n large enough, we can find at least one linear

path inside H.

Consider one of these linear paths, say on vertex set P . Certainly

|E(V (H) \ P )| ≤ a(n− |P |, r, k − 1, l), or else by induction, the graph on V (H) \ P

contains (k − 1) ·P(r)
l

; these along side the linear path on P form k ·P(r)
l

.

Letting NP denote the number of edges of H incident to vertices in P , we

have that

NP ≥ m− a(n− |P |, r, k − 1, l) (4.17)

≥ a(n, r, k, l)− a(n− (r − 1)l − 1, r, k − 1, l) (4.18)

=

�
l+1
2

�
nr−1

(r − 1)!
+O(nr−2) (4.19)

Again we focus on counting sets of vertices which can be used to build

edges started by vertices in P . For every set R of r − 1 vertices from V (H) \ P ,

we define

AR = {e ∈ E (H) : R ⊆ e and e \R ∈ P} .

We now classify the (r − 1) subsets of V (H) \ P into two sets based on the

size of their respective AR:

A =

�
R ∈ (V (H) \ P )(r−1) : |AR| ≤

�
l + 1

2

�
− 1

�

B =

�
R ∈ (V (H) \ P )(r−1) : |AR| ≥

�
l + 1

2

��
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Counting the edges lying entirely on vertices in P along with edges incident

to A, B defined above, we have that

NP ≤
�
|V (P )|

2

��
n

r − 2

�
+

��
l + 1

2

�
− 1

�
|A|+ |V (P )| |B| , (4.20)

≤
�
|V (P )|

2

��
n

r − 2

�
+

��
l + 1

2

�
− 1

��
n

r − 1

�
+ rl|B|. (4.21)

By comparison of the upper and lower bounds on NP , (4.19) and (4.21), we

have that

|B| ≥
n
r−1

(r−1)! +O(nr−2)

rl
. (4.22)

To each set R ∈ B we now associate a set of
�
l+1
2

�
vertices from AR

arbitrarily. From (4.22), we see that some set of
�
l+1
2

�
vertices is chosen many

times; here ‘many’ is again at least:

nr−1

(r − 1)!rl
�
|V (P )|

� l+1
2 �

� +O(nr−2) (4.23)

≥ nr−1

(r − 1)!rl
�

rl

� l+1
2 �

� +O(nr−2). (4.24)

Thus each linear path found in H has a set of
�
l+1
2

�
vertices which have

many common edge finishing (r − 1) sets in the rest of the graph.

Remark: It is at this point that the proof differs from the proofs for loose paths.

Let U be such a set of
�
l+1
2

�
vertices. Since

|E (V (H) \ U)| > a(n−
�
l+1
2

�
, r, k − 1, l), we can find (k − 1) ·P(r)

l
on vertices

inside V (H) \ U , say on vertex set W .
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By (4.8), since

nr−1

(r − 1)!rl
�

rl

� l+1
2 �

� +O(nr−2) ≥
�

n

r − 2

�
, (4.25)

we can find two r − 1 sets from those edge finishing sets which are disjoint

from both W and the rest of U . For the case of loose paths, this was enough to

construct our paths. For the case of linear paths, however, we need edges which

intersect in precisely one vertex. However, by the inequality in (4.25), we have

enough of these r − 1 sets that by Theorem 4.5.1, we can find among these edge

finishing sets two which intersect in exactly one vertex. This is precisely the

structure we need to build linear paths, and for n large enough removing these

sets from our pool still leaves us enough to apply the Keevash, Mubayi, Wilson

result again, and so repeating this l −
�
l+1
2

�
times gives us a linear path which is

disjoint from W ; thus we have constructed k ·P(r)
l

.

We further note that as all r-uniform linear paths of length l are isomorphic,

we have the following immediate corollary.

Corollary 4.5.3 (B., Kettle). Let r ≥ 4, l ≥ 3, k ≥ 1, and n sufficiently large. The

following holds.

exr(n, k ·P(r)
l
) = a(n, r, k, l).

Further, by modifiying the above proof in exactly the same manner as was

used to prove Theorem 4.4.1 based on the proof of Theorem 4.3.1, we obtain the

following result for multiple linear paths of varying lengths. The modifications

necessary are identical to those differences found between the two theorems for

loose paths; thus we omit it here.
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Theorem 4.5.4 (B., Kettle). Let r ≥ 4, k ≥ 2, l1, . . . , lk ≥ 3, and n sufficiently large.

Setting t =
�

i∈[k]

�
li+1
2

�
− 1 and

dl =






0, for l odd,

�
n−t−2
r−2

�
, for l even

,

the following holds.

exr(n,P
(r)l1 · . . . ·P(r)lk) =

�
n− 1

r − 1

�
+ . . .+

�
n− t

r − 1

�
+ dl.

The upper bound is given by the discussed modification above, the lower

bound is given by the hypergraph on n vertices in which each edge is incident to

at least one of a specified set S of t vertices, along with all edges disjoint from S

containing some two fixed elements not in S when one of the lk is even.
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Chapter 5. Doubly Infinite Words

This chapter is joint work with Steven Kalikow and Karen Johannson.

In this chapter, we discuss two notions of doubly stationary processes on

doubly infinite words. In particular, we show that any uniform martingale is a

random Markov process. These two notions were shown to be equivalent for a

two letter alphabet by Steven Kalikow in 1990 [18]. In Section 5.1, we discuss first

a little bit of background and the relevant definitions are given. Then in Section

5.2, we give a slightly reformulated version of Kalikow’s proof, before extending

this to finite alphabets in Section 5.3.

5.1 Definitions

We let A be any set, and let Ω = AZ. We call A the alphabet, and Ω the set

of doubly infinite words on alphabet A. For each ω = (ωj)j∈Z ∈ Ω, and each i ∈ Z,

we define Xi (ω) = ωi.

Given an alphabet A, set of doubly infinite words Ω, a sigma algebra A,

and a probability measure P on A, we will investigate the triple (Ω,A,P). Such a

triple is called a stationary process if for i, j ∈ Z, r ∈ N, and a0, . . . , ar ∈ A,

P (Xi = a0 ∧Xi+1 = a1 ∧ · · · ∧Xi+r = ar)

= P (Xj = a0 ∧Xj+1 = a1 ∧ · · · ∧Xj+r = ar) .

That is, a triple is a stationary process if the law of cylinder sets in the word is

independent of its location within the word. In general, we use {Xi}i∈Z to

represent an element of Ω chosen at random according to the probability measure
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P. The stationary property of the process allows us to focus simply on the law of

ω0; since the process is invariant under shifts, the distribution here defines the

whole process.

For a given word ω ∈ Ω, we call (wi)i∈Z− ∈ AZ− the past, or whole past, of

w0. Similarly, we call (w−i)
−1
i=−m

the m-past of X0. To ease notation, we will write,

for example, P
�
X0 = ω0 | (Xi)

−1
−m = (ωi)

−1
−m

�
as shorthand for

P (X0 = ω0 | X−1 = ω−1, . . . , X−m = ω−m). We now define two particular families of

stationary processes.

Definition 5.1.1. A stationary process (Ω,A,P) on alphabet A is called a uniform

martingale if for each � > 0, there exists an N ∈ N such that for all m ≥ N and

each sequence (wi)i∈Z− ∈ AZ− , the following holds almost surely.

��P
�
X0 = ω0 | (Xi)

−1
−m

= (ωi)
−1
−m

�
− P (X0 = ω0 | (Xi)i<0 = (ωi)i<0)

�� < �.

Thus if a process is a uniform martingale, the probability measure on ω0

given the whole past can be approximated arbitrarily close by a measure which

only looks at the m-past, for m large enough.

Definition 5.1.2. A stationary process (Ω,A,P) is called a random Markov

process if there exists an independent stationary process (Ω�,A�,P�) on alphabet

Z+ and a coupling P̂ of Ω and Ω�,
�
((Xi, Li))i∈Z : Xi ∈ A,Li ∈ Z+

�
, such that L0 is

independent of {Xi : i < 0} and so that the following holds.

P̂
�
X0 = ω0 | (Xi)

−1
−n

= (ωi)
−1
−n

∧ L0 = n
�
= P̂ (X0 = ω0 | (Xi)i<0 = (ωi)i<0 ∧ L0 = n) .
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We call the coupled Li the look back time for Xi, for each i ∈ Z. This is

since if the process is a random Markov process, one need know only L0 and then

look at the L0-past to determine the law of X0 exactly.

5.2 Two Letter Alphabets

The following theorem is due to Steven Kalikow, and states the equivalence

of random Markov processes and Uniform martingales, for two letter alphabets.

We present a reformulation of Kalikow’s proof here; the ideas are similar to those

used in the proof of Theorem 5.3.1 for finite alphabets, and this reformulation

uses similar notation to that used later in order to give a sketch of the proof for

larger alphabets.

Theorem 5.2.1. Any stationary process,
�
{0, 1}Z,A,P

�
, which is a uniform

martingale is also a random Markov process.

Proof. Let (Ω,A,P) be a uniform martingale. We will in fact show that for any

sequence (pi)i≥0 ⊆ (0, 1) with
�

i≥0 pi = 1, we can choose a sequence of rapidly

increasing look back times (ni)i≥0 so that P� (L0 = ni) = pi, and for all other

k ∈ N \ {ni}i≥0, P� (L0 = k) = 0. Having done so, will have shown that Ω is a

random Markov process.

Since (Ω,A,P) is a uniform martingale, we can choose n0 large enough

that for any m ≥ n0 and for each ω ∈ Ω,

��P
�
X0 = ω0 | (Xi)

−1
−m

= (ωi)
−1
−m

�
− P (X0 = ω0 | (Xi)i<0 = (ωi)i<0)

�� < 1

3
.

We now will define what amounts to a table of what the associated

probabilities ought to be for a given word and amount of past; we define this

naı̈vely, and then show that it has the desired properties.
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For each n ≥ n0 and each ω ∈ Ω, if P
�
X0 = 1 | (Xi)

−1
−n = (ωi)

−1
−n

�
≥ 1

2 , we

define

P (ω, n) = sup
ω�:(ω�

i)
−1
−n=(ωi)

−1
−n

P (X0 = 1 | (Xi)i<0 = (ω�

i
)i<0) .

If P
�
X0 = 1 | (Xi)

−1
−n = (ωi)

−1
−n

�
< 1

2 , we define

P (ω, n) = inf
ω�:(ω�

i)
−1
−n=(ωi)

−1
−n

P (X0 = 1 | (Xi)i<0 = (ω�

i
)i<0) .

We take a moment to explain the above definitions, as the notation

somewhat obscures the simple idea at play. Both the infimum and supremum are

taken over all words which agree with ω for the n-past. We define the sequence

P (ω, n) in this way so that if P
�
X0 = 1 | (Xi)

−1
−n = (ωi)

−1
−n

�
≥ 1

2 , the values of

P (ω, n) remain bounded away from 0; if P
�
X0 = 1 | (Xi)

−1
−n = (ωi)

−1
−n

�
< 1

2 , the

values of P (ω, n) remain bounded away from 1. We note to the reader that

whenever one encounters P
�
·, (ωi)

−1
−n

�
, it is best thought of as ‘· given the n0-past’.

This view makes the intuition as to what is happening in this proof, and many in

the area, much clearer.

Remark: The above definition of P (ω, n) will need some modification in the

proof for finite alphabets.. This will be the primary difficulty in the finite alphabet

case, and is where much of the complication in the proof occurs. The modification

of the P (·, n) function will ensure that it still remains bounded away from both 0

and 1.

By the choice of n0, in the first case P (ω, n) ≥ 1
6 for all n ≥ n0, and by

definition P (ω, n) is decreasing for n ≥ n0. That is,

1

6
≤ · · · ≤ P (ω, n0 + 2) ≤ P (ω, n0 + 1) ≤ P (ω, n0).
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In the second case, P (ω, n) is bounded above by 5
6 for all n, and is

increasing for n0. That is,

P (ω, n0) ≤ P (ω, n0 + 1) ≤ P (ω, n0 + 2) ≤ · · · ≤ 5

6
.

We now define (ni)i>0 recursively. Since (Ω,A,P) is a uniform martingale,

we can find ni large enough that for every ω,

|P (ω, ni)− P (ω, ni+1)| <
pi+1

6
�

j≤i
pj
.

With these definitions in place, we will now show that we can find a

coupling P̂ of Ω and ((ni)i≥0)Z which satisfies the following property.

P (ω, n) = P̂ (X0 = 1 | ω−1, . . . ,ω−ni and L0 ≤ ni) . (5.1)

Since we wish L0 to be independent of (Xi)i<0, (5.1) is the same as

P (ω, n) =
P̂ (X0 = 1 and L0 | ω−1, . . . ,ω−ni)

P̂ (L0 ≤ ni)
.

To define this coupling, we first define another function T (·, ·) based on

P (·, ·), so that

T (w, ni) = P̂(X0 = 1 | ω−1, . . . ,ω−ni and L0 = ni). (5.2)

Indeed, define T (ω, n0) = P (ω, n0), and for i ≥ 1, define T (ω, ni) so that

piT (w, ni) =

�
�

j≤i−1

pj

�
P (ω, ni−1)−

�
�

j≤i

pj

�
P (ω, ni)

57



We note that

P̂ (X0 = 1 | ω) =
�

i≤0

P̂ (X0 = 1 and L0 = ni | ω)

=
�

i≥0

piT (ω, ni)

= p0P (ω, n0) +
�

i≥1

��
�

j≤i

pj

�
P (ω, ni)−

�
�

j≤i−1

pj

�
P (ω, ni−1)

�

= lim
i→∞

�
�

j≤i

pj

�
P (ω, ni)

= P(X0 = 1 | ω).

Thus P and P̂ agree on all cylinder sets in Ω, and thus 5.2 defines a

propability measure that is a couple of Ω and ({ni}i≥0)Z, as long as

0 ≤ T (ω, ni) ≤ 1.

To show that T (ω, ni) ∈ [0, 1], we consider two cases.

Case 1: Suppose that P
�
X0 = 1 | (ωi)

−1
−n0

�
≥ 1

2 . We have already that

P (ω, ni−1) ≥ P (ω, ni) ≥ 1
6 . Since P (ω, ni) is a convex combination of T (ω, ni) and

P (ω, ni−1), certainly T (ω, ni) ≤ P (ω, ni) ≤ 1. For the lower bound, we note that

piT (ω, ni) =

�
�

j≤i

pj

�
P (ω, ni)−

�
�

j≤i−1

pj

�
P (ω, ni−1)

= piP (ω, ni)−
�

�

j≤i−1

pj

�
(P (ω, ni−1)− P (ω, ni))

≥ pi
1

6
−
�

�

j≤i−1

pj

�
pi

6
�

j≤i−1 pj
= 0.

Thus in this case, T (ω, ni) ∈ [0, 1] as claimed.
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Case 2: Suppose P
�
X0 = 1 | (ωi)

−1
−n0

�
< 1

2 . By definition,

P (ω, ni−1) ≤ P (ω, ni) ≤ 5
6 , and so by convexity we get the upper bound. As in the

first case, we have that

piT (ω, ni) = piP (ω, ni) +

�
�

j≤i−1

pj

�
(P (ω, ni)− P (ω, ni−1)

≤ pi
5

6
+

�
�

j≤i−1

pj

�
pi

6
�

j≤i−1 pj

≤ pi.

Therefore we have that in all cases, T (ω, ni) ∈ [0, 1], and so the measure

given by 5.2 is indeed a coupling. Thus we have shown (Ω,A,P) is a random

Markov process, as claimed.

5.3 Finite Alphabets

With Steven Kalikow and Karen Johannson, we proved the natural

extension of Theorem 5.2.1. We state and prove this result here. While the proof

is similar in overall structure to the proof in the two letter case, there are a number

of subtleties which do not arise in the binary alphabet case.

Theorem 5.3.1. Let k ≥ 2, A = [k], and Ω = AZ. If (Ω, A,P) is a uniform

martingale, then Ω is a random Markov process.

Proof. As before, let (pi)i≥0 be a sequence of nonnegative real numbers, with
�

i≥0 pi = 1. We will construct a sequence of lookback times (ni)i ≥ 0 such that Ω

is a random Markov process with P(L0 = ni) = pi.

Ω is a uniform martingale, and so we can choose n0 large enough so that

for all m ≥ n0 and every ω ∈ Ω, the following holds.

��P
�
X0 = ω0 | (Xi)

−1
−m

= (ωi)
−1
−m

�
− P (X0 = ω0 | (Xi)i<0 = (ωi)i<0)

�� < 1

k2
.
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Now, fix ω and consider for each a ∈ A the quantity

P
�
X0 = a | (Xi)

−1
−n0

= (ωi)
−1
−n0

�
. By reordering the alphabet, we may assume

without loss of generality the following.

P
�
X0 = 1 | (Xi)

−1
−n0

= (ωi)
−1
−n0

�
≤ P

�
X0 = 2 | (Xi)

−1
−n0

= (ωi)
−1
−n0

�

≤ · · · ≤ P
�
X0 = k | (Xi)

−1
−n0

= (ωi)
−1
−n0

�
(5.3)

We note here that since we have only a k letter alphabet, and we have

arranged the letters so that P
�
X0 = k | (Xi)

−1
−n0

= (ωi)
−1
−n0

�
is the largest

probability, we have that P
�
X0 = k | (Xi)

−1
−n0

= (ωi)
−1
−n0

�
≥ 1

k
≥ 2

k2
. Now, let

l ∈ [0, . . . , k − 1] be such that the following holds.

P
�
X0 = l | (Xi)

−1
−n0

= (ωi)
−1
−n0

�
<

2

k2
≤ P

�
X0 = l + 1 | (Xi)

−1
−n0

= (ωi)
−1
−n0

�

We note here that if l = 0, then we have that for all a ∈ A,

P
�
X0 = a | (Xi)

−1
−n0

= (ω)−1
−n0

�
≥ 2

k2
; that is, all letters occur with relatively high

probability. This will cause no difficulties.

Now, for every a ∈ A \ {k} and each n ≥ n0, we will define a function

Pa(ω, n) as in the proof of Theorem 5.2.1; the primary difference in the proof will

come in examining the properties of Pa(ω, n), and showing that it gives rise to the

proper coupling. We also note that we won’t define Pk(ω, n); this lines up with the

two letter case, where we defined only one P function. With this in mind, we

define P in two parts as follows. For a ∈ [1, l], we define

Pa(ω, n) = sup
ω�:(ω�

i)
−1
−n=(ωi)

−1
−n

P (X0 = a | (Xi)i<0 = (ω�

i
)i<0) .
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For a ∈ (l, k − 1], we define

Pa(ω, n) = inf
ω�:(ω�

i)
−1
−n=(ωi)

−1
−n

P (X0 = a | (Xi)i<0 = (ω�

i
)i<0) .

We define the sequence Pa(ω, n) in this way so that if in the first case the

values of P (ω, n) remain bounded away from 0, while in the second case the

values of Pa(ω, n) remain bounded away from 1.

We note that by the choice of n0, if a ∈ [1, l], then Pa(ω, n) is increasing in n

for n ≥ n0, and bounded above by 3
k2

; that is,

Pa(ω, n) ≤ Pa(ω, n+ 1) ≤ · · · ≤ 3

k2
=

2

k2
+

1

k2
.

Similarly, if a ∈ (l, k − 1], then Pa(ω, n) is decreasing in n for n ≥ n0 and

bounded below by 1
k2

; that is,

Pa(ω, n) ≥ Pa(ω, n+ 1) ≥ · · · ≥ 1

k2
=

2

k2
− 1

k2
.

Now, we are prepared to define the remaining lookback times. Indeed,

since (Ω,A,P) is a uniform martingale we can define (ni)i≥1 recursively so that for

all ω and all a ∈ A,

|Pa(ω, ni+1)− Pa(ω, ni)| <
pi

k3
�

j≤i−1 pj
.

We now let (Ω�,P�) be an independent stationary distribution on alphabet

{ni}i≥0 with P�(L0 = ni) = pi.

The goal now is to show that there is a coupling P̂ of (Ω,A,P) and (Ω�,P�)

with the desired property that for each a ∈ [1, k − 1], each ω ∈ Ω, and each i ∈ N,

Pa(ω, ni) = P̂ (X0 = a | ω−1,ω−2, . . . ,ω−ni and L0 ≤ ni) .
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Note that by the choice of n0,

�

a∈[k−1]

Pa(ω, ni) ≤
�

a∈[k−1]

�
P (X0 = a | ω−1, . . . ,ω−n0) +

1

k2

�

= 1− P (X0 = k | ω−1, . . . ,ω−n0) + (k − 1)
1

k2

≤ 1− 1

k
+

k − 1

k2

= 1− 1

k2
. (5.4)

We now define, as before, the function Ta(ω, n). Indeed, define for each

a ∈ [k − 1], Ta(ω, n0) = Pa(ω, n0), and for i ≥ 1, define Ta(ω, ni) such that the

following holds.

piTa(ω, ni) +

�
�

j<i

pj

�
Pa(ω, ni−1) =

�
�

j≤i

pj

�
Pa(ω, ni).

This defines our table function every except at k; thus we define Tk(ω, ni) to

be the ‘left over’ probability. That is,

Tk(ω, ni) = 1−
�

a∈[k−1]

Ta(ω, ni).

Ideally, we would like to define the coupling P̂ so that

P̂ (X0 = 1 | ω−1, . . . ,ω−ni and L0 = ni) = Ta(ω, ni). As before, Ta(ω, ni) is defined

in such a way that this will be true given that Ta(ω, ni) ∈ [0, 1]. It suffices to show

that for each a ∈ [k − 1], Ta(ω, nI) ≥ 0, and that
�

a∈[k−1] Ta(ω, ni) ≤ 1. For the first

part, we consider two cases.

Case 1: For a < l, Pa(ω, ni−1) is a convex combination of Ta(ω, ni) and Pa(ω, ni).

Since Pa(ω, ni) ≤ Pa(ω, ni−1), then Ta(ω, ni) ≥ Pa(ω, ni−1 ≥ 0 by its definition.
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Case 2: For a ≥ l, Pa(ω, ni−1) ≥ Pa(ω, ni). Thus by the definition of the ni’s and

the choice of l, we have that

piTa(ω, ni) =

�
�

j≤i

pj

�
Pa(ω, ni)−

�
�

j<i

pj

�
Pa(ω, ni−1)

= piPa(ω, ni)−
�
�

j<i

pj

�
(Pa(ω, ni−1)− Pa(ω, ni))

≥ pi
1

k2
−
�
�

j<i

pj

�
pi

k3
�

j≤i−1 pj

= pi

�
1

k2
− 1

k3

�
= pi

k − 1

k3
> 0.

Now consider Tk(ω, ni). By definition, Tk(ω, ni) ≤ 1; it remains to show that

this is nonnegative. Note first that for a > l, Pa(ω, ni)− Pa(ω, ni−1) ≤ 0 since

Pa(ω, ·) is decreasing here. Then we have that for each i ∈ N,

pi
�

a∈[k−1]

Ta (ω, ni) = pi
�

a∈[k−1]

Pa(ω, ni) +

�
�

j<i

pj

�
�

a∈[k−1]

(Pa(ω, ni)− Pa(ω, ni−1))

≤ pi
�

a∈[k−1]

Pa(ω, ni) +

�
�

j<i

pj

�
�

a∈[l]

(Pa(ω, ni)− Pa(ω, ni−1))

≤ pi

�
1− 1

k2

�
+

�
�

j<i

pj

�
�

a∈l

pi
k3

�
j∈[i−1] pj

≤ pi

�
1− 1

k2

�
+ k

1

k3
= pi.
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Since pi > 0,
�

a∈[k−1] Ta(ω, ni) ≤ 1. Thus defining the probability on Ω× Ω�

by

P̂ (X0 = a | ω−1,ω−2, . . . ,ω−ni and L0 = ni) = Ta(ω, ni)

indeed gives a coupling, as it agrees with P on all cylinder sets of Ω, and hence on

all measurable sets of Ω.
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