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Abstract 

 

Wade, John Benton. M.S. The University of Memphis. December/2011. “Balancing 

Dynamic Strength of Spur Gears Cut by Pinion Cutter Operated at Extended Center 

Distance.” Major Professor: Hsiang H. Lin, Ph.D. 

 

This thesis report presents a design problem on the study of dynamic properties in a spur 

gear system.  The system consists of two in-line spur gears, defined as pinion and gear, 

both cut by a pinion cutter, operated at a center distance greater than standard.  The 

design problem is based upon the published literature.  In this study, the dynamic model 

is created in the computer program Dynamic Analysis of Spur Gear Transmissions 

(DANST).  The program solution contains several outputs.  The primary output of 

concern is the stress at the root of the tooth due to bending caused by the tangential 

component of the tooth load.  The model is optimized by minimizing the difference in 

stress between the pinion and gear.  This optimization occurs for a pinion offset less than 

the static optimization of the stress. 
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Chapter 1 

Introduction 

1.1. Background and Motivation 

Standardization of gear design and components allow for ease of mass production, 

use, and service.  Having standard dimensions and designs of gears simplifies the 

engineering and allows the production of a key component of society to be produced on a 

massive scale.  However, components which are standardized sacrifice optimization 

gained through individual component customization.  Aerospace and automotive 

industries require large numbers of nonstandard gear designs optimized for specific uses, 

which in turn makes mass production of nonstandard gear designs a necessity.  

Conversely, the process of design customization of nonstandard designs increases the 

cost of manufacture, use, and serviceability.  Thus, it is important that the engineer weigh 

the necessity of the design optimization with the cost of the customization.   

For example, a gear pair could be required to operate at a center-to-center distance 

greater than the standard design establishes.  Dynamic affects can also necessitate 

nonstandard gear designs.  Oswald, Townsend, Rebbechi, and Lin (1996) explain that 

dynamic affects generate helicopter cabin noise known to “exceed 100 decibels.”  In 

addition to causing excessive cabin noise, these dynamic effects also cause fatigue and 

wear and have resulted in relative overdesign of parts and components.  Such 

overdesigns, disadvantages, and dynamic effects can negatively impact use (p. 1).   

There are several types of nonstandard gear designs, depending upon the type of 

gear.  As shown by Dudley (1984), there are many techniques for making gears: shaping 

with a cutter, hobbing, milling, shaving, grinding, broaching, punching, casting, and 
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forming.  In this study, shaping with a pinion cutter is the method used (pp. 5.1-5.4).  As 

explained by Mabie and Reinholtz (1987), using a pinion cutter to create nonstandard 

designs has the effect of changing certain key dimensions such as the pressure angle, 

center distance, and tooth profile.  The nonstandard design used in this study is the 

modification of the center distance by withdrawing the pinion cutter a distance, eg, from 

the pinion or gear (referred to as pinion offset, e1, or gear offset, e2, for the remainder of 

this study).  This design is called the “extended center distance” method (pp. 171-172, 

188).   

As Lin, Liou, Oswald, and Townsend (1996) explain, the dynamic effects should 

be accounted for, especially in “the design of high speed gears.”  Their study of 

nonstandard gear designs cut by a hob cutter is carried to this study in the use of the 

pinion cutter (p. 2).  As part of quantifying the dynamic effects, this study also explores 

the static effects, theories, designs, and limitations.  According to several recently 

published works as reviewed by Lin and Liou (1998), the assumptions made for a static 

analysis are ideal conditions, and do not take into account dynamic affects which amplify 

the stress at the root of the tooth (p. 1). 

A nonstandard design can also be used to balance the dynamic stresses in a gear 

assembly.  Though different stress categories exist, it is the stress at the root of the tooth 

that is balanced in the study that follows.  As explained by Mabie, Walsh, and Bateman 

(1983), this dynamic stress considered is due to the moment caused by the tangential 

component of the normal load (p. 188).  Balancing the dynamic stress at the root of the 

tooth optimizes the life and service of the gear assembly. 
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1.2. Literature Review 

The following timeline of dynamic gear design development was provided by Lin 

and Liou (1998).  Under the auspices of the American Society of Mechanical Engineers 

(ASME), dynamic gear studies began in the early 20th century with Lewis and 

Buckingham, investigating the dynamic effects caused by teeth of gears in mesh and 

associated meshing errors (Buckingham, 1931).  As dynamic modeling and studies 

progressed, models were developed involving simplifying the gear teeth into spring and 

mass models with “constant stiffness” and “time varying stiffness” (Cloutier & Tordion, 

1962; Gregory, Harris, & Munro, 1964; Lin & Liou, 1998, pp. 1-3; Tupin, 1953).  

Dynamic studies involving the effects of contact, tooth motion, and the “nonlinearity of 

the tooth pair stiffness” were developed in the third quarter of the 20th century (Cornell 

& Westervelt, 1978; Lin & Liou, 1998, pp. 1-3; Richardson, 1958).  With the 

development of finite element analysis, “lumped mass models,” and the “transfer matrix 

method,” additional dynamic model types became available.  The next steps in dynamic 

study of the gear system involved separate components such as the shaft (Hamad & 

Seireg, 1980; Lin & Liou, 1998, pp. 1-3), dynamic vibrational effects (Iida, Tamura, 

Kikuchi, & Agata, 1980; Lin & Liou, 1998, pp. 1-3), “mass unbalance,” and “periodic 

variation of mesh stiffness and profile errors” (Iwatsubo, Arii, & Kawai, 1984a; Iwatsubo 

et al., 1984b; Lin & Liou, 1998, pp. 1-3).  With the advent of the computer in the late 

twentieth century, complex calculations could be carried out in computing facilities, 

allowing the expansion of the separate modeling types (Lin & Liou, 1998). 

The study that follows incorporates a dynamic model utilized by Oswald, Lin, and 

Delgado (1996b).  The dynamic model is part of a computer program called the Dynamic 
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Analysis of Spur Gear Transmissions (referred to as DANST in the report that follows) 

(p. 1).  The DANST program was coded and written for FORTRAN-90 for this study 

(Microsoft, 1995, computer software).  The DANST program was one of a set of 

computer programs including the Gear Dynamic Analysis Program (GEARDYN) (Boyd 

& Pike, 1987) and GRD (Kahraman et al., 1990) that model dynamic effects within the 

spur gear system (Lim & Singh, 1989).  The dynamic concepts and theory used within 

DANST were developed from static design theory of gears cut by a pinion cutter (Green 

& Mabie, 1980a; Green & Mabie, 1980b; Rogers, Mabie, & Reinholtz, 1990).  Several 

published works exist upon the DANST program and its applications.  A series of studies 

were successfully performed to compare the DANST modeling capabilities to an 

experimental testing rig developed by the National Aeronautics and Space Administration 

(NASA) and U.S. Army Research Laboratory (Oswald & Townsend et al., 1996; Oswald, 

Rebbechi, Zakrajsek, Townsend, & Lin, 1991).  A finite element model was developed 

for comparison to the DANST program using load factoring (Oswald, Lin, Liou, & 

Valco, 1993).  Other published works cover dynamic effects including contact ratio, 

profile modification, and bearing and shaft connections (Lin, Huston, & Coy, 1987; Lin 

& Liou, 1998). 

1.3. Purpose and Objective 

The primary objective of this study is to create a dynamic model of spur gears cut 

by pinion cutter where the stress at the root of the tooth is equalized.  The design problem 

is based upon on a set of published design examples (Green & Mabie, 1980a; Green & 

Mabie, 1980b; Lin et al., 1996; Oswald et al., 1996b; Rogers et al., 1990).  As stated in 

the literature review, this dynamic model makes use of the DANST program as 
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developed by Oswald, Lin, and Delgado (1996a).  A comparative static model is written 

in FORTRAN-90 code (Microsoft, 1995, computer software).  The static model program 

is based upon the works of Green and Mabie (1980b) through a published design example 

and static stress optimization solution (pp. 507-514).  In addition, the works of Colbourne 

(1987) are incorporated in a concurrent study and assumption of tooth fillet radii (pp. 39-

40, 120-121, 133-136, 151, 221-223, 235-237).  The study that follows is meant to 

directly compare with the work of Lin, Liou, Oswald, and Townsend (1996) who 

performed a dynamic study of a gear pair cut by hob cutters (p. 1).  By optimization of 

the offset to produce equal dynamic stress at the root of the tooth, a gear system cut by 

pinion cutter can be chosen which balances a series of parameters for increased service 

life and use. 
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Chapter 2 

Gear Design 

2.1. Review of Gear Fundamentals 

Mabie and Reinholtz (1987) summarize that a set of gears is roughly equivalent to 

two pulleys connected by a belt.  Two pulleys will operate at the same constant velocity 

relative to their dimensions, so long as the belt does not slip.  Gears, which operate on a 

similar principle, are subject to the same relationship, see equation 1.  Figure 1 shows the 

dimensions of this gear system, which includes the pitch point, P, base circle, and 

involute pressure angle, φ.  The forces between the gears are also related as they are 

equal and opposite as shown in figure 2 (pp. 128-131). 

 

 
  

  
 

  

  
 

  

  
 

EQ. 1 

 

 

 

As shown by Mabie and Reinholtz (1987), the shape of a gear tooth is subject to 

certain base equations.  Using figure 3 and figure 4 as guides it is possible to determine 

“the involute pressure angle at any . . . radius on the involute,” as seen in equation 2.  

Moreover, by the same figure, “it is possible to calculate the tooth thickness at any point 

on the involute, given the thickness at some other point” as seen in equation 3 (pp. 132-

134). 

 

 

       
  

  
        

EQ. 2 
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        [
  

    
              ] 

EQ. 3 

 

 

 

In equation 3, the involute function, or “INV,” is as follows in equation 4, where 

φ must be in radians (Mabie & Reinholtz, 1987, p. 134). 

 

 

               EQ. 4 

 

 

 

As explained by Mabie and Reinholtz (1987), a gear pair meshes along the “line 

of action.”  During the course of this movement, between points A and B as seen on 

figure 5, there may be one, or more than one, tooth pair in contact.  In terms of gear 

design, the contact ratio is the “the ratio of the arc of action to the circular pitch.”  This 

contact ratio is commonly defined as the “average number of teeth in contact” (pp. 135-

137), or “the angle through which a gear rotates during one mesh cycle” divided by “the 

angle subtended at the gear center by one tooth” (Colbourne, 1987, p. 83). 

Also as seen in figure 5, the pressure angle is known as the “pressure angle of the 

two gears in mesh” as it is where the “pressure angle of the gears in mesh and the 

involute pressure angles of the two involutes in contact at the pitch point [P are] equal” 

(Mabie & Reinholtz, 1987, p, 137). 

Dudley (1984) defines shaping as “a gear-cutting method in which the cutting tool 

is shaped like a pinion.  The shaper cuts while traversing across the face width and rolling 

with the gear blank at the same time,” see figure 6 as a reference.  Though generating a 

gear with a pinion cutter can result in a nonstandard design, it is a fairly common type of 

“rotating and reciprocating tool” (pp. 5.1-5.4). 
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As introduced in the previous chapter, Mabie and Reinholtz (1987), describe the 

“extended center distance” method as withdrawing the pinion cutter a distance, eg, from 

the gear blank.  This has the general effect of changing the shape of the tooth and 

increasing the gear body as shown in figure 7 (pp. 171-172). 

 

 

 

Figure 1. Base dimensions of a gear assembly (Mabie & Reinholtz, 1987, p. 131). 
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Figure 2. Force body diagram of the gear assembly (Lin & Liou, 1998, p. 29). 
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Figure 3. Involute relationships (Mabie & Reinholtz, 1987, p. 133).  In this figure,  

represents φ. 

 

 

 

 

Figure 4. Base gear dimensions (Mabie & Reinholtz, 1987, p. 135). 
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Figure 5. Dimensions of the gear mesh (Mabie & Reinholtz, 1987, p. 136). 
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Figure 6. Cutting with a pinion cutter (Mabie & Reinholtz, 1987, p. 144). 

 

 

 

Figure 7. Shape of gear tooth and body shown for increasing pinion offset.  This image 

does not include the fillet. 

 

Increasing 

offset of 

pinion 

cutter 
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2.2. Static Model 

Design Assumptions and Dimensions.  As outlined in the introduction, the 

concepts underlying the dynamic model are built upon static design concepts and 

assumptions.  According to Rogers, Mabie, and Reinholtz (1990), tooth stress at the root 

of the teeth in a gear pair are equalized through the following dimensional conditions: “a 

specific minimum contact ratio, . . . the pinion and gear must not be undercut, . . . the 

pinion and gear are to have equal strengths, and . . . the maximum possible depth of cut 

must not be exceeded.”  In order to optimize the design statically, the following 

assumptions are made: “the gear tooth is treated as a cantilever beam with the load 

applied at the tip . . . [and] . . . the entire load is carried by a single pair of teeth” (p. 629).  

Furthermore, Green and Mabie (1980a) explain that the type of pinion cutter and the 

amount of backlash is important in the static model.  As chapter 3 section 2 will show, 

the pinion cutter is a Fellows-type and the backlash is 0.0 inches (p. 491).  Performing 

both a static and dynamic analysis allows for proper comparison and testing between both 

models.  The following equations and relationships provide the means to create a static 

model.  The program created in FORTRAN-90 (Microsoft, 1995, computer software) that 

performs these calculations is shown in appendix A. 

According to Mabie and Reinholtz (1987), the challenges to the spur gear design 

cut by pinion cutter involve modified pitch circles and pressure angles.   Thus, it is 

necessary to perform several calculations that are important for both a static and dynamic 

design (pp. 187-188).  In order to find the static stress due to bending caused by the 

tangential component of the tooth load at the base of the gear (Mabie et al., 1983, p. 188), 

Green and Mabie (1980a and 1980b) developed the following relationships.  A further 
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description can be found in their works, which can be found in the bibliography.  First, a 

series of dimensions are found, which are shown primarily in figure 8 but also figures 9 

and 10. 

 

 

 

Figure 8. Dimensions between gears.  In this figure,  represents φ (Green & Mabie, 

1980a, p. 497). 

 

 

 

  
      (

        

  
) 

EQ. 5 
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φg' is the operating pressure angle between gears (Green & Mabie, 1980a; 

Oswald, Lin, & Delgado, 1996a).  In this equation, φc is the standard cutting pressure 

angle of pinion cutter, C is the standard center distance between gears, and C' is the 

operating center distance between gears (Green & Mabie, 1980a). 

 

 

    
     

    
 

EQ. 6 

 

 

 

Csg is the standard center distance between gear and pinion cutter (Green & 

Mabie, 1980b).  In this equation, Nc is the number of teeth of the pinion cutter, Ng is the 

number of teeth in the appropriate gear (Green & Mabie, 1980a), and Pd is the diametral 

pitch (Mabie & Reinholtz, 1987). 

 

 

   
 

  
        

EQ. 7 

 

 

 

pb is the “base pitch” (Green & Mabie, 1980b, p. 508). 

 

 

         [
(     )    

    (      )
] 

EQ. 8 

 

 

 

φgg is the gear generating pressure angle (Green & Mabie, 1980b). 

 

 

    
  

     
 (      ) 

EQ. 9 
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Rgg is the gear generating pitch radius (Green & Mabie, 1980b). 

 

 

   
 

    
 

EQ. 10 

 

 

 

tc is the tooth thickness of pinion cutter at the standard pitch radius (Mabie & 

Green, 1980a). 

 

 

              EQ. 11 

 

 

 

In this equation, Rbg is the base circle of pinion cutter.  Rbc can be found in a 

similar manner (Green & Mabie, 1980b).  In this equation, Rg is the standard radius of the 

respective gear (Green & Mabie, 1980a). 

 

 

    
                   (              )

       
 

EQ. 12 

 

 

 

tgg is the tooth thickness of gear on the gear generating pitch radius (Green & 

Mabie). 

 

 

  
  

                   (              )

      
 

 
EQ. 13 

   

 
      (              
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tg' is the tooth thickness of gear on operating pitch radius (Green & Mabie, 

1980a). 

 

 

  
  

   

      
 
 

EQ. 14 

 

 

 

Rg' is the operating pitch radius (Green & Mabie, 1980a; Oswald et al., 1996a). 

 

 

   
           

  

  
 

EQ. 15 

 

 

 

R0g' is the operating outside gear radius (Green & Mabie, 1980b).  In this 

equation, kt is the factor for tooth type.  For the study that follows, kt is 1.0 (Green & 

Mabie, 1980a, p. 495). 

 

 

  
     

  
 

EQ. 16 

 

 

 

For “coarse pitch gears,” the clearance, c, is given in accordance with AGMA 

201.02 (American Gear Manufacturers Association, 1974; Green & Mabie, 1980a, p. 

495; Mabie & Reinholtz, 1987, p. 147).  The numerator value, 0.250, is the “tooth 

clearance ratio.”  This ratio is used in the input for the DANST program (Oswald et al., 

1996b, p. 2). 

The input for the DANST program also requires the “cutter addendum ratio” 

(Oswald et al., 1996b, p. 2).  As the pinion cutter is a gear with standard proportions, 
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Mabie and Reinholtz suggest the use of AGMA 201.02 for the determination of this ratio, 

1.00 (American Gear Manufacturers Association, 1974; Mabie & Reinholtz, 1987, p. 

147). 

 

 

      
     

       EQ. 17 

 

 

 

ht is the depth of cut (Green & Mabie, 1980b).   

 

 

   
     

     EQ. 18 

 

 

 

Rdg' is the operating gear dedendum radius (Green & Mabie, 1980b). 

 

 

        (
   

   
 ) 

EQ. 19 

 

 

 

ψg is shown in figure 8 (Green & Mabie, 1980b). 

 

 

   
   

     
               

   

     
  

EQ. 20 

 

 

 

αg is shown in figure 8 (Green & Mabie, 1980b), and ‘tag,’ which is the gear tooth 

thickness at addendum or top of gear (Green & Mabie, 1980a, p. 496), can be found by 

means of equation 21. 
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  EQ. 21 

 

 

 

         EQ. 22 

 

 

 

βg is the angle of application . . . of the normal tooth load Fn” as is shown in figure 

8 (Green & Mabie, 1980b, p.509). 

As explained by Green and Mabie (1980a) the following dimension, θg, is defined 

by whether the base radius of the gear is less than or equal to the operating dedendum 

radius of the gear, or if the base radius of the gear is greater than the operating dedendum 

radius.  Figures 9 and 10 highlight the following dimensions that are to be found (pp. 

497-499). 

According to Green and Mabie (1980a), for the case where the base radius of the 

gear is less than or equal to the operating dedendum radius of the gear, the following 

dimensional calculations apply (pp. 497-499). 

 

 

   
   

     
  

   

     
                 

EQ. 23 

 

 

 

         (
  

   
         ) 

EQ. 24 

 

 

 

The dimension φdg is shown in figure 9 (Green & Mabie, 1980a). 
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Figure 9. Case used when the base radius of the gear is less than or equal to the operating 

dedendum radius of the gear.  The image is magnified for clarity.  In this figure,  

represents φ (Green & Mabie, 1980a, p. 498). 
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Figure 10. The case used when the base radius of the gear is greater than the operating 

dedendum radius.  The image is magnified for clarity.  In this figure,  represents φ 

(Green & Mabie, 1980a, p. 498). 
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For the case where the base radius of the gear is greater than the operating 

dedendum radius, the following dimensional calculation applies (Green & Mabie, 1980a). 

 

 

   
   

     
         

EQ. 25 

 

 

 

         
     EQ. 26 

 

 

 

The dimension tdg is the tooth thickness of gear at the dedendum radius (Green & 

Mabie, 1980a), and can be found by means of equation 23, or approximated by the 

combination of equations 23 and 25. 

Once θg is found, the following dimensions, from figures 9 and 10, are used to 

find the stress factor, Sg, which Mabie and Green (1980a and 1980b) use to establish a 

balanced system in terms of static stress at the root of the tooth (p. 497-505). 

 

 

       
         EQ. 27 

 

 

 

Xag is the vertical length from the gear center to tip of the gear tooth, for clarity 

see figures 9 and 10 (Green & Mabie, 1980a). 

 

 

       
         EQ. 28 

 

 

 

Xdg is the vertical length from the gear center to the bottom of the gear tooth, for 

clarity see figures 9 and 10 (Green & Mabie, 1980a). 
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         EQ. 29 

 

 

 

hg is the horizontal thickness of the gear tooth, for clarity see figures 9 and 10 

(Green & Mabie, 1980a). 

 

 

           EQ. 30 

 

 

 

dg is the vertical height of the gear tooth as is shown in figures 9 and 10 (Green & 

Mabie, 1980a). 

 

 

   
           

(  )
  

EQ. 31 

 

 

 

Backlash Dimension.  As explained by Green and Mabie (1980a) the preceding 

calculations balance stress while assuming that backlash is zero.  However, in a 

successive works by Rogers et al. (1990) the authors developed an equation that involves 

backlash, B, with the following variables: Nc, Ng, φc, Pd, C, C', B, and eg (p. 625).  The 

definitions of these variables can be found in the previous sections or the list of 

terminology. 

 

 

              (     )          EQ. 32 
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This equation provided by the authors Rogers et al. (1990) is essentially a 

function of several dependent gear dimensions, including offset and backlash (p. 625).  

For example, if Nc, N1, N2, φc, φg1, φg', Pd, C, C', B, and e1 are known, e2, the distance the 

pinion cutter is offset from gear 2, can be solved for. 

 

 

        
 

(     )
 [            (     )          

EQ. 33 

 

 (     )        
  

      

  
] 

 

 

 

Using equation 33 and solving the involute function, results in φg2.  Once φg2 is 

known, e2 can be found from equation 8. 

Static Tooth Stress.  In the previous sections, a stress factor was found that 

represented the stress at the root of the tooth due to bending caused by the tangential 

component of the tooth load, σsg (Green & Mabie, 1980a; Mabie et al., 1983). 

 

 

    
               

   (  )
  

EQ. 34 

 

 

 

This relationship is further explained through DANST program (Oswald et al., 

1996) and by Mabie and Reinholtz (1987).  Knowing equation 31 and 34 and 

understanding the angle of the load, βg, between Fn and Ft as seen in figures 9 and 10 

allows calculation of the stress from an applied input torque, Tf1 (p. 179). 
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EQ. 35 

 

 

 

Ftg is the horizontal component of load normal to tooth, Fn (Green & Mabie, 

1980a). 

 

 

    
   

      
 

EQ. 36 

 

 

 

Fng is the load normal to tooth and is also defined as W (Green & Mabie, 1980a). 

 

 

    
      

  
 

EQ. 37 

 

 

 

σsg is the resulting stress (Green & Mabie, 1980a). 

2.3. Gear Tooth Fillet Dimensions 

Pinion Cutter Tooth Tip Dimensions.  One of the primary differences between 

the static and dynamic model is the inclusion of geometry at the root of the tooth.  This 

location is where the stress under consideration occurs.  This geometrical dimension is 

the fillet radius of curvature, ρf.  Essentially, this radius of curvature acts as a stress riser 

or reducer.   

Colbourne (1987) formulates the cutter tooth tip geometry in the following 

manner.  The following dimensions are directly related to the following schematic (pp. 

133-136). 
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Figure 11. “Pinion cutter tooth tip geometry.”  In this figure,  represents φ (modified 

from Colbourne, 1987, p. 134). 

 

 

 

       
  

  
   

EQ. 38 

 

 

 

R0c is the outer radius of the pinion cutter (Green & Mabie, 1980a), where Rc is 

the radius of pinion cutter (Green & Mabie, 1980a). 

 

 

   
          EQ. 39 

 

 

 

RTc' is the polar coordinate of Ac' as seen in figure 11, where rcT is the radius of 

curvature of pinion cutter tooth tip.  The optimization of rcT is discussed at the end of this 



27 

 

section.  The value chosen for the study that follows is 0.0, which is discussed in further 

detail in chapter 3, section 2 (Colbourne, 1987, pp. 133-136). 

 

 

            EQ. 40 

 

 

 

The DANST program requires the “cutter edge radius ratio,” RCEG, which takes 

into account the rcT value (Oswald et al., 1996b, p. 2). 
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EQ. 41 

 

 

 

φhc is the “profile angle of Ahc” as seen in figure 11 (Colbourne, 1987, pp. 133-

136). 

 

 

    
   

       
 

EQ. 42 

 

 

 

Rhc is the “polar coordinate of Ahc” as seen in figure 11 (Colbourne, 1987, pp. 

133-136). 

 

 

    
  

    
                

EQ. 43 

 

 

θhc is the “polar coordinate of Ahc” as seen in figure 11 (Colbourne, 1987, pp. 

133-136). 
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            EQ. 44 

 

 

 

γhc is the “angle . . . with the tooth center-line . . . tangent to the tooth profile at 

Ahc” as seen in figure 11 (Colbourne, 1987, pp. 133-136). 

 

 

  
                          EQ. 45 

 

 

 

  
                          EQ. 46 

 

 

 

xc' and yc' are the “Cartesian coordinate[s] . . . of point Ac' ” as seen in figure 11 

(Colbourne, 1987, pp. 133-136).  Moreover, according to Colbourne (1987) the above 

relationships can determine the maximum pinion cutter tooth tip radius, rcT, by 

determining where yc' is negligibly positive or zero (pp. 133 – 136). 
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) 

EQ. 47 

 

 

 

θc' is the polar coordinate of xc', yc' as seen in figure 11 (Colbourne, 1987, pp. 

133-136). 

Gear Fillet Dimensions.  In order to transition from the pinion cutter tooth tip 

that cuts the gear to the cut fillet of the gear, a series of initial dimensions are needed.  

The first dimension needed is the standard circular pitch, Ps (Colbourne, 1987, pp. 39-

40). 
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EQ. 48 

 

 

 

    
 

    
             

EQ. 49 

 

 

 

tsg is the tooth thickness of a gear at the standard pitch circle (Colbourne, 1987, p. 

151). 
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EQ. 50 

 

 

 

φc' is the operating cutting pressure angle between pinion cutter and gear.  

According to Colbourne (1987), once INV φc' is known, φc' can be found (p. 120).   

 

 

   
       

      
 

 
EQ. 51 

 

 

 

Cc is the appropriate center distance between gear and cutting pinion (Colbourne, 

1987, pp. 120-121).   

 

 

   
  

     

     
 

EQ. 52 

 

 

 

Rcc' is the radius of the cutting pitch circle of the pinion cutter relative to the gear 

(Colbourne, 1987, pp. 120-121).  
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EQ. 53 

 

 

 

R0 is the length relationship between “two cutting pitch circles” (Colbourne, 

1987, p. 237). 

In order to complete the dimensions of the gear fillet, Colbourne (1987) outlines 

the following steps corresponding to figure 12.  Additionally, the following dimensions 

can represent any point along the fillet.  The bottom and top of the fillet dimensions of 

each gear when cut by pinion cutter are found during the static analysis (pp. 221, 235-

237). 

 

 

 

Figure 12. Cutting of the gear by pinion cutter.  In this figure,  represents φ (modified 

from Colbourne, 1987, p. 222). 
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EQ. 54 

 

 

 

As explained by Colbourne (1987), αf is the angle between Ac' and the “line of 

centers” (p. 221).  The maximum and minimum angle value of αf corresponds to the top 

and bottom of the fillet.  According to standard gear theory, the minimum angle, αf, is 

0.0, which corresponds to the bottom of the fillet.  Also, φc' must be in radians in this 

relationship (pp. 221-224).   

 

 

      
     

         EQ. 55 

 

 

 

       
         EQ. 56 

 

 

 

ζ' and η' represent the coordinates of point Ac' (Colbourne, 1987, pp. 221-222). 

 

 

    √(  )  (  )  EQ. 57 

 

 

 

         EQ. 58 

 

 

 

Once Ac' is found, s and s' establish the relationship between points Ac' and Ac.  

Using s and s', the coordinates of Ac can be found: ζ and η (Colbourne, 1987, pp. 221-

222). 
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    EQ. 59 

 

 

 

  
 

  
    

EQ. 60 

 

 

 

         
  EQ. 61 
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EQ. 62 

 

 

 

βct is the “angle . . . through which the [pinion cutter] tooth center-line” turns, and 

βgt is the “angle . . . through which the [cut gear] tooth center-line” turns (Colbourne, 

1987, p. 223). 
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EQ. 63 
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EQ. 64 

 

 

 

R and θR represent the polar coordinate where point Ac on the pinion cutter meets 

the gear (Colbourne, 1987, p. 223). 
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) 

EQ. 65 
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As shown by Colbourne (1987), φm is a particular angle relevant to the mesh.  

This dimension is required to find the radius of curvature of the gear fillet, ρf, at any point 

along the fillet.  At the bottom of the gear tooth fillet, the angle, φm, corresponds to an 

angle of 90˚, a value not within the domain of the basic tangent function (pp. 222, 235-

236). 

Finally, the magnitude of the fillet radius of curvature, ρf, can be obtained 

(Colbourne, 1987, p. 237). 
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          (     )
 

EQ. 66 

 

 

 

2.4. Transition from Static to Dynamic Model 

The next step in the modeling process is to transition from the static to the 

dynamic model.  The static model input is done interactively, before and during the 

operation of the program.  In order to facilitate the transition, the static model outputs two 

separate files in a .txt format.  One file is for comparison with the DANST program and 

its output, and an example of this output can be found in appendix B.  The other file 

output by the static model is meant as an input to the DANST program.  An example of 

the input files can be found in appendix C, which is modeled on and explained by Oswald 

et al. (1996b, pp. 1-3, 5-6).  With the appropriate input file, and certain interactive input 

from the user, the DANST program can be run.  Once the DANST program outputs the 

appropriate file, this can be compared to the static model output.  Figure 13 outlines the 

process in a simple flow chart.  As stated previously, both programs are meant to be run 

in FORTRAN-90 (Microsoft, 1995, computer software). 
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Figure 13. Flow chart of calculations steps for optimization study 

 

 

2.5. Dynamic Model 

Design Assumptions and Dimensions.  As introduced in chapter 1, a static 

analysis is an ideal model that does not account for several dynamic factors.  As 

explained by Dudley (1984), the tooth load can be shared by pairs of gear teeth, and does 

not always occur at the tip of the tooth (p. 2.10).  Several published works explain that 

the dynamic effects occur due to differences in stiffness as the teeth of the gear assembly 

enter and leave mesh.  This variable stiffness causes and is caused by variations in 

dimensions, load, deflection, and transmission error.  In addition to stiffness, the dynamic 

model incorporates damping, friction, and deflection within the gear assembly.  The 

resulting dynamic effects occur locally on the teeth and globally within the gear system, 

and have the general effect of amplifying tooth stress (Lin & Liou, 1998; Oswald & 

Townsend et al., 1996). 

Input Variables: diametral pitch, cutting pressure angle, 

operating center distance, number of teeth, pinion cutter 

radius, face width, torque, offset or backlash 

Perform static analysis 
Output static 

results and 

assembly 

dimensions 

Create file to pass to 

dynamic analysis, 

DANST 

Perform dynamic analysis 

Output dynamic 

results and 

assembly 

dimensions 
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For these reasons, the DANST program developed by Oswald, Lin, and Delgado 

(1996b) is employed for the dynamic model (p. 1).  The dynamic model in the DANST 

program is shown in figure 14, and is defined by Oswald et al. (1996b) as follows:   

DANST is a FORTRAN computer program for static and dynamic analysis of 

spur gear systems.  The program can be used for parametric studies to predict the 

static transmission error, dynamic load, tooth bending stress and other properties 

of spur gears as they are influenced by operating speed, torque, stiffness, 

damping, inertia, and tooth profile.  (p. 1) 

Lin and Liou (1998) explain that the “model has four degrees of freedom and 

consists of gears, input device, output device, and two . . . shafts as shown in figure 14.  

The dynamic behavior of meshing gears could be considered as a periodic forced 

function.”  The variation of the torque, stiffness, and damping during the time interval of 

the teeth mesh pair act as “excitation terms to the equation of motion” (pp. 34-40). 

 

 

 

Figure 14. Physical dynamic model (Lin & Liou, 1998, p. 5). 

As explained by Lin and Liou (1998), “pure rolling occurs if two friction disks 

rotate in contact without slipping.  However, for the case of two involute gear teeth 
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meshing with each other, the meshing action is a combination of rolling and sliding” (p. 

8). 

As can be seen in figure 15 from the Lin and Liou (1998), arc XY on gear two 

and arc AB on gear must both move over each other and slide to maintain the same 

position in mesh.  This relationship results in equation 67, and with the supplementary 

equations and relationships, equation 74 can be derived (pp. 8-12). 

 

 

 

Figure 15. Combination of rolling and sliding (Lin & Liou, 1998, p. 10). 
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EQ. 67 

 

 

 

   
    

   
 

EQ. 68 

 

 

 

   
      

   
 

EQ. 69 

 

 

 

ωg is the angular velocity of the appropriate gear in radians per unit time, where V 

is the “pitch-line velocity of gears” (Lin & Liou, 1998, p. 12) and Rpg is the pitch radius 

of the appropriate gear (Colbourne, 1987, p. 26). 

 

 

  
         

  
 

      

  
 

EQ. 70 

 

 

 

N is the speed of driving gear in revolutions per unit time (Lin & Liou, 1998). 
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RCg is the “radius of curvature of [the] gear” at “any radius of gear tooth profile,” 

where rg is “any radius of gear tooth profile” (Lin & Liou, 1998, p. 11) and Rbg is the base 

radius of gear (Green & Mabie, 1980b). 
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                 EQ. 73 

 

 

 

φc is the standard cutting pressure angle of pinion cutter, or general cutting 

pressure angle (Green & Mabie, 1980a). 

Using the following relationships derived by the authors (Lin & Liou, 1998), 

equation 67 becomes equation 74 (pp. 8-12). 
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EQ. 74 

 

 

 

Deflection of the Gears and Gear Teeth.  In the static analysis, deflection is not 

taken into account.  As stated by Lin and Liou (1998, p. 12), in the dynamic analysis, the 

dynamic model takes into account deflection due to the applied load from the pinion 

torque.  From Cornell and Westervelt (1978, pp. 69-76), Lin and Liou (1998) utilized the 

following relationship.  The “deflection is based on a combination of the deflection of the 

tooth as a cantilever beam, local contact compression, and fillet and tooth foundation 

flexibility effects” (p. 12).  Of these, contact is nonlinear.  In order to quantify the 

cumulative deflection, the dynamic model assumes the gear tooth as a “non-uniform 

cantilever beam” and the tooth is broken into a series of elements along an “effective 

length,” l0 located by subscripts “i” and “j.”  Each of these segments is then subject to 

basic principles of mechanics (Lin & Liou, 1998, pp. 12-13). 

In the dynamic model, a choice must be made between plane stress, a wide gear 

and tooth, or plane strain, a narrow gear and tooth.  For the dynamic study that follows, 

the face width of the model is 1.0 inch.  Equation 75 shoes that the face width dimension 
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is much greater than dimensions perpendicular to the plane.  Because of this reasoning, 

the gear is considered to be a wide gear and the assumption is made that the dynamic 

model is held under plane strain conditions.  In equation 75, Fw is the face width, and ν is 

Poisson’s ratio (Cornell & Westervelt, 1978; Lin & Liou; MacDonald, 2007).  Other 

dimensions will be defined in chapter 3.   

 

 

For plane strain,   

 
   

which means 
   

 

    
 

EQ. 75 

 

 

 

 

Figure 16. A graphical depiction of the dynamic deflection model (Lin & Liou, 1998, p. 

13). 
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According to Lin and Liou (1998), the following equation is for deflection caused 

by the horizontal component of the applied load between the teeth, Wj COS βj (pp. 14-

15).  
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EQ. 76 

 

 

 

For equation 76 and those that follow, Ti is the “thickness of segment I,” Ee is the 

“effective Young’s modulus of elasticity,” Lij is “the distance from j to i,” Wj is the 

applied load, and Ii is the “moment of inertia of segment I” (Lin & Liou, 1998, p. 14).  

For a reference of these and related dimensions, refer to figure 16. 

The following equation is for deflection caused by the bending moment, Mij (Lin 

& Liou, 1998). 
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EQ. 77 
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Deflection caused by shear is defined in the following manner (Lin & Liou, 

1998). 
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EQ. 78 
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G is the shear modulus and Ai is the “cross sectional area of segment i” (Lin & 

Liou, 1998, p. 15). 

The next relationship is for deflection caused by axial loading of Wj SIN βj (Lin 

& Liou, 1998). 
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EQ. 79 

 

 

 

The cumulative deflection and deformation for a segment due to loading with the 

plane strain assumption is as follows (Lin & Liou, 1998). 
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Expanded, equation 80 becomes equation 81 (Lin & Liou). 
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As described by Lin and Liou (1998), deflection at the “fillet and tooth foundation 

flexibility” (pp. 16-19) depends greatly upon the dimensions of the fillet and the 

application of the load.  Furthermore, Cornell and Westervelt (1978) state that “the fillet 
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angle,” γf, should be 55 degrees for a low contact ratio, which is the case with this 

dynamic model (pp. 69-76). 

As shown by Lin and Liou (1998), for a plane strain model, or a gear with a large 

face width, the following deflections of the fillet and foundation, qf, can be added directly 

due to the “superposition principle” as shown in equations 82 to 84.  The following 

detail, figure 17, describes the dimensions of the following deflection equations (pp. 18-

19). 

 

 

(  )   (   )   (   )   EQ. 82 

 

 

 

qf is the total deflection of tooth fillet, where qfb is the “deflection at and in the 

direction of load due to beam compliance of fillet” and qfe is the “deflection due to 

foundation effects” (Lin & Liou, 1998, p. 18). 
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Figure 17. Schematic relating to “fillet and tooth foundation flexibility” (Lin & Liou, 

1998, p. 19). 
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EQ. 84 
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According to Lin and Liou (1998, p. 20) and Tavakoli and Houser (1985, pp. 529-

535) contact between gear teeth can be modeled under the same assumption as two 

cylinders.  The work by Tavakoli and Houser (1985) shows that (qL)ij or the contact 
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“deflection is caused by line-contact and compression deformation.”  Equation 85 is the 

result of this author’s work, where Eg is Young’s Modulus for the given gear (pp. 529-

535). 
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EQ. 85 

 

 

 

As explained by Lin and Liou (1998) The cumulative deflection of each segment 

is defined as (qT)j, which is the summation of deflection caused by the applied load, 

(qW)ij, bending moment, (qM)ij, and contact deflection, (qL)ij, is shown as equation 86 (pp. 

20-21). 
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EQ. 86 

 

 

 

Lin and Liou then explain that the load, Wj, divided by the deflection, (qT)j, 

provides the stiffness for each segment, (KG)J.  Moreover, the “total stiffness can be 

summed to determine the average tooth meshing stiffness, (KG)avg (pp. 20-21). 
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EQ. 87 
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EQ. 88 
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Lin and Liou (1998) provide the following relationship:   

Because the mass of a rotating gear body is theoretically concentrated at the 

radius of gyration, the deflection reference used in this study is assumed to be at 

this radius.  The theoretical deflection and stiffness of the gear teeth will be 

affected by changing the mass moment of inertia and the geometry of the gear 

body.  (p. 21) 

Transmission Error and Load Sharing.  Lin and Liou (1998) define 

transmission error “as the departure of a meshed gear pair from a constant angular 

motion.  Transmission error may [also] be defined as the [instantaneous] deviation of the 

following gear from an ideal nominal value.”  The authors proceed to state the main 

causes for transmission error: “tooth spacing error, sE; tooth profile error, pE, and run out 

error and combined deflection of meshing teeth, dE” (Lin & Liou, 1998, pp. 23-24). 
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EQ. 89 

 

 

 

Furthermore, k is the “mating tooth pairs in sequence,” and P = 0 for k = 1 or P = 

1 if k ≠ 1.  Subscript represents the appropriate gear (Lin & Liou, 1998, p. 23). 

As the mating of each tooth pair as a patterned relationship, the load is shared 

among each pattern of mated teeth, as seen in the following equation described by the 

authors (Lin & Liou, 1998). 
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EQ. 91 

 

 

 

For equation 91, CR represents the contact ratio (Lin & Liou, 1998). 

The load applied to each tooth can be solved, simultaneously, by equations 89, 90, 

and 91, and which “tooth pairs are still in contact” (Lin & Liou, 1998, p. 24). 

Friction between Gear Teeth.  According to Oswald et al. (1996b, p. 3), the 

primary friction method used by the authors is the relationship derived by Buckingham 

(1949).  The following formulas are based upon “empirical” methods, similar to methods 

developed by Buckingham.  Once found, the friction, Tf, in approach and recess, as seen 

in figure 5, can be added to the dynamic system (Buckingham, 1949; Lin & Liou, 1998, 

pp. 24-26). 
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EQ. 92 

 

 

 

And: 
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In equation 92, 93, and 94, f is the “average coefficient of friction,” fa is the 

“average coefficient of friction of approach,” and fr is the “average coefficient of recess” 

(Buckingham, 1949).  Vs is the “sliding velocity” (Lin & Liou, 1998, p. 12). 

Inertia and Stiffness Effects.  As summarized by Lin and Liou (1998), the “polar 

mass moment of inertia, stiffness of shaft, and stiffness of connected masses” are part of 

the governing, dynamic equations (p. 31).  Oswald et al. (1993) used the following 

assumption: “The gears [were assumed] to be solid steel disks equal to the pitch diameter. 

. . .  No allowance for gear shaft inertia [was made].”  This assumption allows the 

derivation of Jg, the polar mass moment of inertia of the gears (p. 5).  Values for the input 

inertia, output inertia, input shaft torsional stiffness, and output shaft torsional stiffness 

used by Oswald et al. (1996b) are also used for this study (p. 4). 

 

 

               
     EQ. 95 

 

 

 

Damping Effects.  The damping model of the gears used in the dynamic study is 

described by Lin and Liou (1998).  “The mathematical description of damping is . . . 

complicated,” so equations 96 and 97 approximate the “damping factor” (pp. 40-41).  For 

the dynamic analysis, a gear damping ratio, ξGg, of 0.10, is used.  The damping ratios are 

“expressed as a fraction of critical damping.”  This value was stated by the authors as an 

average of the range of the range 0.03 to 0.17 found by Kasuba and Evans (1981, pp. 

398-409) and Wang and Cheng (1981, pp. 177-187).  In combination with the gear 

damping ratio, and stiffness, base radius, and polar moment of inertia for each gear tooth, 

the damping coefficient of gear tooth mesh, CGg, can be found (Lin & Liou, 1998, p. 41). 
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EQ. 97 

 

 

 

Damping of the shafts is described by Lin and Liou (1998) in equations 98 and 

99.  For the dynamic analysis, a shaft damping ratio, ξS, of 0.005 is used, which Lin and 

Liou (1998) established from Hahn (1969).  In combination with the shaft damping ratio, 

shaft stiffness, and polar moment of inertia for the gear tooth, motor, and load, the shaft 

damping coefficient, CS, can be found (Lin & Liou, 1998, pp. 40-41). 
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EQ. 98 
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EQ. 99 

 

 

 

Dynamic Equations of Motion.  The dimensions and conditions put forth by the 

static analysis and Lin and Liou (1998) display the complexity of the gear system, which 

involves inertia, stiffness, damping, friction, torque, deflection, and load transmission 
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error across various elements of the system.    In order to reduce the complexity, the 

system is broken up into a “number of lumped masses connected elastically.”  Moreover, 

the following assumptions are made in the dynamic model employed within DANST.  

First, “damping . . . due to material . . . and . . . lubrication . . . is expressed as a constant 

damping coefficient.”  Second, “the differential equations of motion are expressed along 

the theoretical line of action.  Third, “the reference point for tooth deflection is assumed 

to be located along the tooth centerline at the radius gyration of the gear body.”  The 

equation model can be graphically described by figure 14 and figure 18 (pp. 34-40). 

 

 

 

Figure 18. Dynamic model and specific variables (Lin & Liou, 1998, p. 36). 

 

 

According to Lin and Liou (1998), the governing equations are as follows (p. 37). 
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In general, J represents the “mass moments of inertia” of the gears, motor, or load.  

C represents the “damping coefficients” of the gears or shafts.  K represents the stiffness 

of the gears or shafts.  T represents the torque of the motor, the load, or the friction 

between the gears.  The subscript refers to the appropriate gear, shaft, or module (Lin & 

Liou, 1998, pp. 35-38).  θ,  ̇, and  ̈ are the angular displacement, velocity, and 

acceleration, respectively (Lin et al., 1987, p. 3).  For a list of terms of these equations 

and those that follow, refer to chapter 2 or the list of terminology. 

According to Lin and Liou (1998), the equations of motion also require 

convergence relationships and conditions relating to tooth location.  Since the governing 

equations of motion are nonlinear, they are solved simultaneously by numerical methods.  

In order to begin the first step of the numerical process, initial conditions of angular 

displacement and velocity are required (pp. 34-40).  Lin and Liou (1998) explain the 

initial values as follows: 

Starting values are obtained through preloading the input shaft with the output 

shaft fixed.  The preload torque is the static design torque carried by the system.  

The equations of motion are linearized by dividing the mesh into many equal 

intervals.  Those equations are solved by an iteration technique incorporating the 

nominal initial values.  At each step Xn and Vn need to be compared respectively 

with the initial value X0 and V0 to confirm the iteration convergence. . . . The 

same steps are repeated by averaging the initial and calculated values of angular 

displacement Xn, and angular velocity Vn, as the new initial values of [the] next 

period, respectively.  (pp. 38-39) 
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The convergence relationships described Lin and Liou (1998) are shown in 

equations 104 and 105 (pp. 38-39). 

 

 

|     |          EQ. 104 

 

 

 

|     |          EQ. 105 

 

 

 

In order to solve the equations of motion, the following conditions exist, each of 

which results in a “specific dynamic condition.”  When the gears are in contact, the 

following equation 106 exists which represents the “relative dynamic displacement 

between gear one and gear two.”  This results in equation 107 and 108, since the load is 

equally shared among the tooth pair (Lin & Liou, 1998, p. 39). 
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Wdg is the dynamic load on the given gear tooth (Lin & Liou, 1998). 

When the gears loose contact, the following conditions 109 and 110 exist.  This 

results in equation 111, since the load is lost (Lin & Liou, 1998). 
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                EQ. 109 

 

 

 

|             |    EQ. 110 

 

 

 

      EQ. 111 

 

 

 

When the gears are in contact on the non-load side, the following conditions 112 

and 113 exist.  This results in equation 114 and 115, since the load is equally shared 

among the tooth pair (Lin & Liou, 1998). 
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Lin and Liou (1998) also describe how the dynamic equations of motion, 

equations 100 to 103, can be used to find the “undamped natural frequencies” of the 

system.  This is done by removing the “damping and excitation terms” from the system.  

In order to “facilitate the solution [of] eigenvalues,” (KG)avg, which is defined in 
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equations 87 to 88, is used in the undamped equations of motion.  Once the matrix is set, 

as shown in equation 116, it can be solved numerically (pp. 41-42). 

 

 

 
 

EQ. 116 

 

 

 

Dynamic Stress.  For the dynamic analysis, the stress at the fillet can be found 

from equation 117, as described by Lin and Liou (1998, pp. 43-46) and found by 

Heywood (1952) and continued by Cornell (1981, pp. 447-459).  Equation 117 combines 

the tooth dimensions, deformations, and relevant characteristics found by solution of the 

equations of motion.  Moreover, σj is the stress used in this study.  In equation 117, ν is 

1/4 and rf is the fillet radius.  Moreover, γs is 30 degrees for this study.  For a further 

description of the dimensions and variables in equation 117, see the nomenclature and 

figure 19 (Lin & Liou, 1998, pp. 43-46). 
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Figure 19. Dimensions relating to dynamic stress from studies by Heywood (1952) and 

Cornell (1981, pp. 447-459). 

 

 

 

Dynamic Factoring.  Lin and Liou (1998) stated that as part of the dynamic 

analysis, the DANST program presents a “non-dimensional” dynamic factor.  The 
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dynamic load factor is a “ratio of maximum dynamic load to total applied load, and the 

dynamic stress factor, which is the ratio of maximum dynamic stress to maximum static 

stress” (pp. 45-48).  
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Chapter 3 

Results and Discussion 

3.1. Overview of the Parametric Study 

As stated in previous chapters, the introduction, dynamic effects in a spur gear 

assembly become increasingly important as the speed within the system increases.  These 

dynamic affects often exceed the static affects, and are the source of gear wear, noise, and 

vibration (Lin et al., 1996).  Using the DANST program, a parametric study can be 

performed whereby certain dimensions and values are held constant, while other 

parameters are varied, and certain output is measured.   

The design of both the static and dynamic model is shown in chapter 2.  

According to Lin et al. (1996), and Green and Mabie (1980a), an increase in the standard 

center distance does not directly equal the total pinion and gear offset, as e1 and e2 are 

independently related but cannot be found separately.  Often, e1 is set as a known variable 

and e2 is found from e1.  It follows that the difference in stress cannot be directly 

equalized by any direct equation.  By a parametric study, with certain dimensions set, the 

static or dynamic stress difference can be minimized for both pinion and gear. 

The following gear design problem follows dimensions and methods developed 

by Lin et al. (1996) and Green and Mabie (1980b). 

3.2. Design Dimensions and Variables 

Green and Mabie (1980b) define the base variables used in study.  The diametral 

pitch, Pd, is 10.0 (p. 507).  As explained by Mabie and Reinholtz (1987), the diametral 

pitch is found by dividing the number of teeth by the pitch diameter.  Though this results 

in dimensions of teeth per inch, it is standard gear design practice that units are not 
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assigned (p. 143).  Set by Green and Mabie (1980b), the pressure angle, φ, is taken to be 

20.0 degrees.  This is also the pressure angle cut by the pinion cutter, φc.  In certain steps, 

the two are the same and interchangeable during the study.  The center distance extension 

above standard is 0.10 inches, which results in an operating center distance, C', of 3.100 

inches.  The number of teeth of the pinion and gear, N1 and N2, are 20 and 40 teeth, 

respectively.  The pitch radius of the pinion cutter, Rc, is 2.0 inches.  The backlash, B, is 

set as 0.0 (p. 507).  Though the DANST program (Oswald et al., 1996b) has the 

capability of modeling “various combinations of tooth profiles” (p. 1), in this study, the 

teeth are of a “standard, full depth” dimension, where k = 1 (Green & Mabie, 1980a, p. 

495) and are of a coarse pitch (Rogers et al., 1990, p. 633). 

The dimensions relating to the dynamic affects are set by Lin, Liou, Oswald, and 

Townsend (1996).  In this model, the input torque is set as 480 inch-pounds (p. 3). 

The face width is chosen to be 1.0 inch.  This is set to make a plain strain model, 

and to provide a simple load per inch calculation within the model.  The rotational speed 

is set between 1000 and 30,000 revolutions per minute to provide a range which covers 

two of the system natural frequencies of the design as is described in table 2 and table 3.  

An increment of 146.0 rpm provides 199 data points in this range.  The radius at the tip of 

the pinion cutter, rcT, is set at 0.0.  As shown by equation 40, this results in a RCEG value 

of 0.0.  From information deduced from Colbourne (1987), a small value for rcT results in 

a small radius of curvature for the cut gear fillet.  Correspondingly, this results in a large 

stress concentration at the root of the tooth.  The value, rcT, set to 0.0 results in a 

conservative or maximum stress design (pp. 133-136). 
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In this parametric study, e1 is set in a range from 0.0 to 0.077 inches.  An 

increment of 0.001 inches provides 77 data points for this range.  Similar to Lin, Liou, 

Oswald, and Townsend (1996) this range of e1 is predefined so that no undercutting 

occurs and the teeth do not end in a point at the tip (p. 3). 

 

 

Table 1. Design dimensions and variables 

Tooth type: Coarse pitch, full depth, involute tooth   

Pinion cutter type: Fellows-type cutter 

 Diametral pitch 10.0 

Pressure angle [degree] 20.0 

Center distance extension [inch] 0.100 

Number of teeth, (pinion/gear) 20/40 

Backlash [inch] 0.0 

Pinion cutter radius [inch] 2.0 

Face width [inch] 1.0 

Input torque [inch-pound] 480.0 

Radius at tip of pinion cutter tooth [inch] 0.0 

Young's modulus [psi] 30000000 

Input and output inertia [lb-in-s^2] 0.100/0.124 

Input and output shaft torsional stiffness [lb-in-s^2] 150000.0 

Pinion offset range [inch] 0.000 to 0.077 

Rotational speed range [rpm] 1000 to 30000 

Static tooth load [pound/inch] 510.8 

(Green & Mabie, 1980a, p. 491; Green & Mabie, 1980b, pp. 507-508; Lin et al., 1996, p. 

3; Oswald et al., 1996b, pp. 4-6; Rogers et al., 1990, p. 633). 

 

 

 

As explained by Lin et al. (1996), the following equation, given in terms of 

number of teeth of gears, operating and cutting pressure angles, and diametral pitch, was 

used to obtain the offset for the driven gear, e2, for gears cut by a hob cutter (p. 2). 
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EQ. 118 
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To change the design from a hob cutter to a pinion cutter complicates the design.  

In order to find the offset of the driven gear cut by a pinion cutter, e2, equation 33, shown 

in chapter 2 (Rogers et al., 1990), is used, incorporating the dimensions and variables 

shown previously and in table 1. 

With these design dimensions and variables set, according to table 1 and equation 

33, a relationship can be established between pinion offset [inch], e1, and gear offset 

[inch], e2.  This relationship is shown in equation 119, with a correlation, or r
2
 value, of 

approximately 1.0. 

 

 

           (  )
                   EQ. 119 

 

 

 

For a backlash of 0.0 inches and the dimensions provided in table 1, the gear 

assembly is statically balanced when the pinion offset, e1, is 0.0631 inches and the gear 

offset, e2, is 0.0419 inches.  These values result in a stress at the root of the tooth due to 

bending caused by the tangential component of the tooth load that is closely equal in both 

pinion and gear, approximately 14,000 psi (Green & Mabie, 1980b; Mabie et al., 1983). 

3.3. Dynamic Stress and System Resonance 

The following results from the DANST program are shown in figures 20 through 

27.  The data comprises of more than 15,000 data points: 77 increments in the pinion 

offset range and 199 in the gear assembly rotating speed range as described in chapter 3 

section 2.  This data is shown as one-dimensional plots as stress versus the pinion offset 

or rotating speed axes, and a two-dimensional and three-dimensional contour plot with all 

three axes: stress, pinion offset, and rotating speed. 
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Each of the figures shows an important aspect of the dynamic design.  As 

developed by Lin et al. (1987), the system as a whole contains certain natural 

frequencies, also called critical speeds or resonances that work to excite the system and 

produce amplified stress conditions.  The analytical experimentation of the authors 

showed that the dynamic amplification caused near these critical speeds produced “tooth 

separation.”  The resulting dynamic loads produced at these speeds result in greater gear 

wear and damage.  The findings by the authors are further supported by the literature (p. 

5). 

Furthermore, analytical experimentation performed by the Lin, Huston, and Coy 

(1987) revealed the existence of secondary dynamic effects, “a nonlinear effect of the 

time varying tooth stiffness” called “parametric resonance” (p. 5).  These secondary 

effects were further defined in Nafeh and Mook (1987).  Finally, as the speed increases 

past the critical speeds, the dynamic effects smooth and diminish (Lin et al., 1987). 

From the figures, the system resonances are seen, as is the general trend as the 

pinion offset increases.  High ridges and valleys can be seen in the contour plots.  Figures 

20, 21, 22, and 23 show the maximum dynamic stress and system resonances experienced 

by the pinion during rotation and contact.   
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Figure 20. Pinion dynamic stress, shown by pinion offset [inch], e1, with maximum 

dynamic stress [ksi] versus gear assembly rotating speed [rpm].  Offset for e1, 0.077 

inches, shows the number of data points. 
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Figure 21. Pinion dynamic stress, shown by gear assembly rotating speed [rpm], with 

maximum dynamic stress [ksi] versus pinion offset [inch], e1.  Rotating speed 23776 rpm 

shows the number of data points. 
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Figure 22. Two-dimensional plot of pinion dynamic stress [ksi] on gear assembly 

rotating speed [rpm] and pinion offset [inch], e1, a dashed line shows where the stress at 

the root of the pinion and gear tooth is statically balanced. 
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Figure 23. Three-dimensional plot of pinion dynamic stress [ksi] on gear assembly 

rotating speed [rpm] and pinion offset [inch], e1. 
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Figure 24. Gear dynamic stress, shown by pinion offset [inch], e1, with maximum 

dynamic stress [ksi] versus gear assembly rotating speed [rpm].  Offset for e1, 0.077 

inches, shows the number of data points. 
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Figure 25. Gear dynamic stress, shown by gear assembly rotating speed [rpm], with 

maximum dynamic stress [ksi] versus pinion offset [inch], e1.  Rotating speed 23776 rpm 

shows the number of data points. 
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Figure 26. Two-dimensional plot of gear dynamic stress [ksi] on gear assembly rotating 

speed [rpm] and pinion offset [inch], e1, a dashed line shows where the stress at the root 

of the pinion and gear tooth is statically balanced. 
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Figure 27. Three-dimensional plot of gear dynamic stress [ksi] on gear assembly rotating 

speed [rpm] and pinion offset [inch], e1. 
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Table 2. Natural frequency and prediction of system resonance of pinion 

Pinion - Driver - Gear-1 

Natural Frequency of 

Pinion 
System Resonance 

Pinion 

Offset 
Index  Fn Index 

Percen-

tage of 

Index 

Fn 

Index 

Percen-

tage of 

Index Fn 

Parametric 

of Index 

Percen-

tage of 

Index 

Fn 

  3 4 3 3 4 4 Para-4 4 

[inch] [rpm] [rpm] [rpm] [%] [rpm] [%] [rpm] [%] 

0.000 2580 24828 2314 89.7% 22316 89.9% 8952 36.1% 

0.010 2581 25095 2314 89.7% 22754 90.7% 8592 34.2% 

0.019 2581 25364 2460 95.3% 23046 90.9% 8738 34.4% 

0.029 2582 25500 2460 95.3% 23192 90.9% 8738 34.3% 

0.039 2582 25666 2606 100.9% 23630 92.1% 8738 34.0% 

0.048 2582 25650 2606 100.9% 23776 92.7% 8446 32.9% 

0.058 2582 25669 2606 100.9% 24068 93.8% 8446 32.9% 

0.067 2582 25486 2752 106.6% 23776 93.3% 8446 33.1% 

0.077 2581 25273 2606 101.0% 23630 93.5% 8446 33.4% 

 

 

 

Table 3. Natural frequency and prediction of system resonance of gear 

Gear - Driven - Gear 2 

Natural 

Frequency of 

Pinion 

System Resonance 

Pinion 

Offset 
Index Index 

Percentage 

of Index 

Fn 

Parametric 

of Index 

Percentage 

of Index Fn 

  4 4 4 Para-4 Para-4 

[inch] [rpm] [rpm] [%] [rpm] [%] 

0.000 24828 22316 89.9% 8300 33.4% 

0.010 25095 22754 90.7% 8446 33.7% 

0.019 25364 23046 90.9% 8446 33.3% 

0.029 25500 23192 90.9% 8446 33.1% 

0.039 25666 23630 92.1% 8592 33.5% 

0.048 25650 23776 92.7% 8446 32.9% 

0.058 25669 24068 93.8% 8592 33.5% 

0.067 25486 23776 93.3% 8446 33.1% 

0.077 25273 23630 93.5% 8446 33.4% 
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Figure 20 directly shows the resonance and excitation experienced by the pinion 

throughout the speed range.  The largest resonance is shown as a high ridge, and the 

accompanying parametric resonance which precedes it is seen as the next highest point.  

At lower speeds, below 7,000 rpm, minor resonance echoes exist, as well as the second 

resonance of the system as seen with the small spikes in stress seen at about 2,500 rpm.  

As is expected, the dynamic affects begin to decrease after resonance, followed by a 

valley of low stress. 

Figure 21 shows the same dynamic stress of the pinion from the perspective of the 

pinion offset.  This figure shows the general trend of an increase in stress for an increase 

in pinion offset.  Once again, the system resonances and valleys are seen.  The resonances 

are shown as black lines and the valleys are shown as gray lines.  For low values of 

pinion offset, the smaller resonance is at a lower stress than the valleys preceding other 

resonance peaks.  As can be seen in figure 20, there are a series of peaks and valleys 

between the smaller resonance and the parametric resonance.  This is because the effects 

of resonance echoes interfere with and surpass primary resonances. 

Figure 22 is a contour plot of figures 20 and 21, showing the maximum pinion 

dynamic stress plotted against pinion offset and rotational speed.  In this figure, the 

decrease in stress for a decrease in pinion offset can be seen.  An area of low dynamic 

effects, or valley, also exists after the parametric resonance.  A dashed line indicates the 

location of statically balanced gear system by stress at the root of the pinion and gear 

tooth as found by Mabie and Green (1980b). 

Figure 23 is a three-dimensional contour plot of figure 22.  Many of the trends 

discussed in figures 20, 21, and 22 are shown in general in this figure. 
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Next, maximum dynamic stress plots relating to the gear are presented.  Figure 24 

directly shows the resonance and excitation experienced by the gear throughout the speed 

range.  The largest resonance is shown as a high ridge, and the accompanying parametric 

resonance which precedes it is seen as the next highest point.  Again, below 7,000 rpm, 

minor resonance echoes exist.  However, the second resonance of the system is 

completely surpassed by the largest resonance and preceding echoes.  Once again, the 

dynamic affects begin to decrease and smooth after resonance, followed by a valley of 

low stress. 

Figure 25 shows the same dynamic stress as figure 24 of the gear from the 

perspective of the pinion offset, with system resonances and valleys.  The resonances are 

shown as black lines and the valleys are shown as gray lines.  Opposite to the general 

trend of the pinion in figure 21, the stress decreases with increasing pinion offset.  Also, 

the trend in stress of the gear is approximately 1.5 times greater than that of the pinion. 

Figure 26, which is similar to figure 22, is a contour plot of figures 24 and 25, 

showing the maximum gear dynamic stress plotted against pinion offset and rotational 

speed.  The greater stress trend seen in figure 25 has the effect of reducing the appearance 

of valleys that are seen in figure 22.  A dashed line indicates the location of statically 

balanced gear system as found by Mabie and Green (1980b). 

Figure 27 is a three-dimensional contour plot of figure 26.  Many of the trends 

discussed in figures 24, 25, and 26 are shown in general in this figure. 

Figures 20 through 27 show the resonance of the gear system for both pinion and 

gear.  The general shape and trend of the stress patterns agree with results obtained by 

Lin et al. (1996) for spur gears cut by hob cutter operated at an extended center distance 
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(pp. 3-5).  As stated for the figures, the actual resonance for each offset of the pinion can 

vary by more than 1,000 rpm.  From the data, with the aid of the figures, tables 2 and 3 

are developed for the pinion and gear.  These tables show the calculated natural 

frequencies by index, based upon the eigenvalues of the dynamic equations of motion, as 

calculated by equation 116.  Against this is shown the actual system resonance by index, 

with a fractional percentage, of the relevant system resonance.  The natural frequency and 

system resonance indexes begin at three.  Though the DANST program indicates natural 

frequencies occurring at 0.0 and 535 rpm, indexes one and two respectively, the chosen 

range of rpm for the design omits these indexes.  The range is chosen in part because 

numerical error, or noise, is created by two natural frequency indexes set close together.  

Table 2 shows the system resonance for index three, but table 3 does not show system 

resonance for index three.  This is due to the fact that the preceding echoes for the largest 

system resonance, index four, overshadow that of index three.  This noise created by 

index four makes it difficult to obtain index three.   

The system resonance for index four of both pinion and gear, the largest 

resonance, occurs just above 90% of the natural frequency of the system.  The system 

resonance for index three for the pinion occurs from 90% to above 100% of the natural 

frequency of the system.  The larger variance in index three for the pinion is due to the 

noise created by index four.  Lin et al. (1987) also found that the dynamic effects did not 

occur directly at critical speeds (p. 5).  This finding agrees with Kubo (1981), which 

found the maximum dynamic effects occur at 90% (pp. 201-206). 

Parametric resonance exists for index four of the pinion and gear, which agrees 

with findings by Lin et al. (1987, p. 5) and Nafeh and Mook (1987) that also verifies their 
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existence.  According to Nafeh and Mook (1987, ch. 5), the secondary effects occur “at 

about one-half of the critical speed.”  However, for this design, the parametric resonance 

for pinion and gear occurs at approximately 34% of index four.  The difference between 

these findings may be attributed to dimensions and variables within the system (Lin et al., 

1987, p. 5). 

As explained in chapter 2 section 5, a dynamic factor can be applied between the 

dynamic and static output.  In this study, the dynamic factor for the load is between 1.822 

and 0.978.  For the majority of the pinion offset and rotational speed considered, the 

dynamic effects amplify the maximum load the teeth experience.  The marginal reduction 

occurs at high pinion offset, 0.074 to 0.077 inches, in the valley preceding the largest 

resonance, 11,512 to 12,096 rpm. 

3.4 Dynamic Stress Optimization 

It is the primary objective of this report to show the optimum pinion offset for a 

dynamic model where tooth stress is balanced between gear and pinion.  The static model 

is based upon the works of Green and Mabie (1980a; 1980b).  According to Green and 

Mabie, the static stress of each tooth is balanced at a pinion offset of 0.0631 inches and 

gear offset of 0.0419 inches. 

In order to find the optimum pinion offset, and gear offset chosen by equation 33, 

the minimum difference in maximum dynamic stress at the root of the tooth between 

pinion and gear is found.  This is done by subtracting the maximum dynamic stress of the 

gear from that of the pinion and taking the absolute of this difference.  Figure 28 shows 

the absolute difference between the pinion and gear, where the valley represents the 

optimum pinion offset value.  Figure 28 also shows the pinion offset where the stress at 
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the root of the tooth of pinion and gear is statically balanced.  Figure 29 shows the pinion 

offset where the stress at the root of the teeth is balanced statically and dynamically.  

Essentially, the valley in figure 28 is the pinion offset optimization line shown in figure 

29.  This pinion offset optimization in figure 29 is best represented by data points 

showing the amount of pinion offset required for a given rotational speed.  However, 

considering the volume of data available in this study, data points are shown at a reduced 

interval of 438 rpm with a line connecting the reduced number of data points. 

 

 

 

Figure 28. Flat contour plot of absolute stress difference [ksi] between pinion and gear, 

against pinion offset [inch], e1 and rotating speed [rpm], a dashed line represents where 

the tooth root stresses are statically balanced. 
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Figure 29. Dynamic stress equalization, the pinion offset [inch], e1, where both dynamic 

and static stress for pinion and gear are approximately equal for a given rotational speed 

[rpm].  The solid line represents the pinion offset and rotational speed where the dynamic 

root tooth stress is balanced, and data points are shown at intervals of 438 rpm for clarity.  

Actual data intervals are 146 rpm.  The dashed line represents the pinion offset and 

rotational speed where root tooth static stress is balanced. 
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drops in pinion offset optimization occur due to system resonances.  However, even 

though the gear assembly may be optimized for this region, and the maximum dynamic 

stresses equalized, operating near the resonance is not recommended.  The general shape 

within figure 29 agrees with figure 30 from Lin et al. (1996).  Though the optimization 

shown by figure 29 shows the pinion offset should be reduced, not increased, as 

described by Lin et al.  This difference in pinion offset optimization may be due to the 

dimensional differences of the design problem considered (pp. 3-6).  As far as a design 

consideration, sections of figure 29 show, for a range of rotational speeds, what the 

optimum offset is in terms of pinion offset. 

 

 

 

Figure 30. “Determining pinion hob offset to balance dynamic tooth strength of pinion 

and gear at different speeds” (Lin et al., 1996, p. 5). 
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3.5. Root Fillet Radius as Cut by Pinion Cutter 

The radius of curvature at the root of the tooth is the region of interest in this 

study.  Since the stress being considered is the stress at the root of the tooth, the radius of 

curvature at that location directly influences the stress by its shape.  In essence, the larger 

the radius of curvature is, the lower the stress is, and vice versa.   

According to Colbourne (1987), “the minimum radius of curvature in the gear 

tooth fillet, when the gear is cut by a pinion cutter, is larger than when the gear is cut by 

the hob” (p. 240).  This means that the stress at the root of the tooth would result in a 

higher, more conservative stress design when cut by a hob.  According to Colbourne, the 

minimum radius is at the bottom of the fillet.  In an example provided by the author, the 

radius of curvature for a gear cut by pinion cutter is 1.235 times greater than the radius of 

curvature cut by a hob cutter.  Though Colbourne states that the maximum stress exists 

over a large portion of the fillet, the author generalizes that the maximum stress in the 

fillet is more likely to occur towards the top of that fillet.  However, Colbourne suggests a 

trial by error or graphical approach: find the stress “at a number of points along the fillet, 

and chose the [maximum] value” (Colbourne, 1987, pp. 239-240, 251-252). 

As shown in chapter 2 section 5, Lin and Liou (1998, pp. 43-44) describe an 

approach established by Heywood (1952) and continued by Cornell (1981, pp. 447-459) 

for calculating the location of maximum stress.  Figure 19 outlines this methodology, and 

the stress resulting from this location is given by equation 117 (Lin & Liou, 1998, pp. 43-

44).  This equation is used in the DANST program (Oswald et al., 1996).  According to 

Oswald, Rebbechi, Zakrajsek, Townsend, and Lin (1991) in the DANST program the 

“tooth root geometry [was] created by a standard hob” (p. 6). 



78 

 

The radius of curvature used in the dynamic model, the radius cut by a hob where 

the stress is at a maximum, is plotted against the range of the radii of curvature that 

would be cut by a pinion cutter for pinion and gear in figures 31 and 32.  The figures 

agree with the statement by Colbourne (1987), that the radius of curvature for that cut by 

a hob is less than that cut by a pinion cutter (pp. 239-240). 

 

 

 

Figure 31. Comparison of fillet radius of curvature for pinion at the bottom and the top of 

the fillet when cut by pinion cutter to the fillet radius of curvature when cut by hob cutter 

where the stress due to moment is at a maximum.  The top data set shows the number of 

data points used.  Dashed lines show the range of dynamic optimization (heavy dash) and 

the static optimization (light dash). 
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Figure 32. Comparison of fillet radius of curvature for pinion at the bottom and the top of 

the fillet when cut by pinion cutter to the fillet radius of curvature when cut by hob cutter 

where the stress due to moment is at a maximum.  The top data set shows the number of 

data points used.  Dashed lines show the range of dynamic optimization (heavy dash) and 

the static optimization (light dash). 
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Chapter 4 

Conclusion 

This study represents an extension of the work performed by Lin et al. (1996).  

The dynamic model within DANST program can model a design of spur gears set at an 

extended center distance that are cut by pinion cutter.  This dynamic model minimizes the 

difference in stress at the root of the teeth, where the stress is caused by the moment 

created by the tangential component of the tooth load (Mabie et al., 1983).  The results 

provided by the model agree well with the literature, and highlight the importance of 

dynamic modeling in gear design.  Several conclusions can be drawn from the results and 

discussion. 

1. The dynamic affects serve to amplify the stresses within the gear system. 

2. In terms of minimizing the stress at the root of the tooth, the dynamic 

optimization of the system may be different than that of the static optimization. 

3. For dynamic minimization of the stress difference at the root of the teeth, the 

offset of the pinion cutter on the pinion needs to be reduced and the offset of the pinion 

cutter on the gear needs to be increased.  This results in shorter pinion teeth and longer 

gear teeth. 

4. The assumption for fillet radii cut by a hob, instead of a pinion cutter, results in 

a safer, more conservative design. 

These conclusions are based upon a series of assumptions and limitations in the 

dynamic model. 

1. Since a gear design involves multiple parameters, some parameters must be 

chosen, fixed, or approximated.  Thus, the problem statement given in chapter 3 is for a 
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specific design provided by various sources in the literature.  Certain assumptions are 

required, such as using plane strain (Cornell & Westervelt, 1978; Lin & Liou, 1998; 

MacDonald, 2007), standard tooth profile (Rogers et al., 1990), no undercutting (Lin et 

al., 1996; Rogers et al., 1990), approximate damping coefficients (Lin & Liou, 1998), and 

non-transverse motion (Lin & Liou, 1998).  Though a series of supported, conservative 

assumptions are made in rf (Colbourne, 1987, p. 237; Lin & Liou, 1998) and rcT 

(Colbourne, 1987, pp. 133-136), actual manufacturing techniques provide different 

results that are not as conservative. 

2. The dynamic stress being balanced in this study is that due to moment caused 

by the tangential load (Mabie et al., 1983).  However, other stress categories exist, such 

as the stress at the tooth contact point, as can be seen in figure 38 in appendix D.  

Moreover, though equal tooth strength is beneficial for component life, the designer 

should always design for gear wear and fatigue. 

3. As shown in chapter 3, the actual location of primary and parametric resonance 

is greatly dependent upon the gear model and design.  Resonance interference as found in 

this study should be of concern to the designer.  Moreover, the designer should 

understand that dynamic effects may continue outside of the rotational speed ranges 

considered in this study. 

4. As shown in chapter 1 in the literature review, a series of past tests have been 

performed to verify the accuracy of the DANST program (Oswald & Townsend et al., 

1996; Oswald et al., 1993; Oswald et al., 1991).  However, the designer should be aware 

that specific testing or inspection should be performed for any design based upon this 

dynamic, analytical model. 
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It is important to note that dimensions play a key aspect in this design, from the 

rotational speed to the size and tooth number of the gear.  Each design being different, it 

is important to perform design checks against the general trends shown in this study.  

With an optimized design and balanced stresses, the resulting gear system will have less 

wear and damage, and will have a longer service life. 
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Appendix A 

Static Code as Written in FORTRAN 

The following code has been modified so as to fit appropriately in this document.  

Certain formatting, indentation, tabs, and spacing, must be removed for accurate program 

execution.  The code is meant to be run in FORTRAN-90 (Microsoft, 1995, computer 

software). 

!----------! 

 PROGRAM STATC 

! 

!-----This is the rough draft program intended to 

! and built upon the work of Green and Mabie 

! 

!-----This particular can give a  

! range of values of stress factors for a domain 

! of offset values of "delta" C. 

! 

!-----"p" represents prime in the following calculations 

! 

 INTEGER DecB, N1I, N2I, NcI 

 REAL Ad1, Ad2, ALPHA1, ALPHA2, BETA1, BETA2, B, B0, Btemp, C  

 REAL CdstEx, Cp, Cratio, Cstddist, Cstd(2), D1, D2, Dc 

 REAL Ded1, Ded2, Do1p, Do2p, E(2), estar1, estar2, etotal 

 REAL FaceW, Fnf1, Fnf2, Ftf1, H1  

 REAL H2, Ht, I1, I2, invPHIc, invPHId1, invPHId2, invPHIg1  

 REAL invPHIg2, invPSI1, invPSI2, k, Loadin, Mp, N(2)   

 REAL Nc, P, Pb, PHIc, PHIcD, PHId1, PHId2, PHIg1  

 REAL PHIg2, PHIo, PHIoD, Pi, PSI1, PSI2, Ro1p, Ro2p  

 REAL R(2), Rb(2), Rd1p, Rd2p, Rg(2)  

 REAL Rbc, Rc, Roc, Rp1, Rp2, RPM1, RPM2, RPMi, S1, S2, Stress1 

 REAL Stress2, Ta1, Ta2, Td1, Td2, Tc, Tg1, Tg2, Tp1, Tp2  

 REAL THETA1, THETA2, Torq, Xa1, Xa2, Xd1, Xd2 

 CHARACTER OUTF*12 

!-----Placeholders for optimizing Pinion Cutter Edge Radius 

 INTEGER M 

 REAL An, Bn, Diff, GAMMAhc, PHIhc, Rhc 

 REAL SgnFct, THETAhc, TOL, Rcp, Rct, RctMax, Ycp 

!-----Placeholders for calculating tooth fillet radius 

 INTEGER i 

 REAL ALPHAB(2), ALPHAT(2) 

 REAL BETAcB(2), BETAcT(2), BETAgB(2), BETAgT(2)   

 REAL Cc  

 REAL Ec, ETApB(2), ETApT(2), ETAB(2), ETAT(2) 

 REAL INVPHIcp 

 REAL PHIB(2), PHIcp, PHImesh, PHIT(2), Ps 

 REAL RBot(2), RHOfB(2), RHOfT(2), Rpcc, RT(2), R0 

 REAL SpB(2), SpT(2), SB(2), ST(2) 

 REAL THETAcp, THETArB(2), THETArT(2), Tsg(2) 

 REAL Xcp 
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 REAL ZETApB(2), ZETApT(2), ZETAB(2), ZETAT(2) 

! 

!-----Data input 

! 

 PRINT*, 'Input pinion cutter radius, in:' 

 READ*, Rc 

 Dc = Rc*2.0 

 PRINT*, 'Input diametral pitch:' 

 READ*, P 

 PRINT*, 'Input number of pinion (gear 1) teeth:' 

 READ*, N(1) 

 PRINT*, 'Input number of gear (gear 2) teeth:' 

 READ*, N(2) 

 PRINT*, 'Input operating center distance, in:' 

 READ*, Cp 

 PRINT*, 'Input face width, in:' 

 READ*, FaceW 

 k = 1.0 

 Pi = ACOS(-1.0) 

 PRINT*, 'Input cutting pressure angle, deg:' 

 READ*, PHIcD  

 PHIc = PHIcD*Pi/180.0 

 PRINT*, 'Input torq, in-lb:' 

 READ*, Torq 

 ![2 and 9] 

 PRINT*, 'Input initial gear velocity, RPM:' 

 READ*, RPM1 

 PRINT*, 'Input final gear velocity, RPM:' 

 READ*, RPM2  

 RPMi = 1+(RPM2-RPM1)/200.0 ![7] 

! 

!-----Data input for offset 

! 

 Cstddist = (N(1)+N(2))/(2.0*P) ![2] 

 CdstEx = Cp - Cstddist 

 PHIo = ACOS(Cstddist*COS(PHIc)/Cp) 

 PHIoD = PHIo*180.0/Pi ![2 and 6] 

! 

 PRINT*, 'Input pinion (gear 1) offset, in:' 

 READ*, E(1) 

 PRINT*, 'Input gear (gear 2) offset, in:' 

 READ*, E(2)  

 Ec = 0.0 !Pinion "profile shift", calculation not in force ![1] 

! 

PRINT*, 'Output File Name ?' 

READ(*,'(a)') OUTF 

OPEN(11,file=OUTF,status='unknown') 

 OPEN(UNIT=12, FILE='IntFile.TXT', STATUS='OLD') 

! 

!-----Preliminary calculations 

! 

! "Required Dimensions of the standard gears 

!  and cutter" [3] 

! 

 20   Nc = Dc*P ![3] 

  etotal = E(1) + E(2) ![2] 

 Cstd(1) = (N(1)+Nc)/(2.0*P) 
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 Cstd(2) = (N(2)+Nc)/(2.0*P) 

 Pb = (Pi/P)*COS(PHIc) 

 Tc = Pi/(2.0*P) 

 R(1) = (N(1))/(2.0*P) 

 R(2) = (N(2))/(2.0*P) 

 Rbc = Rc*COS(PHIc) 

 Rb(1) = R(1)*COS(PHIc) 

 Rb(2) = R(2)*COS(PHIc) ![3] 

 Cratio = 0.25 

 C = Cratio/P ![6] 

 Roc = Rc + k/P + C ![2] 

! 

!-----"Proportions of nonstandard gears" [3] 

! 

!-----Calculation of PHIg2 

! Calculation of E(2), gear offset, based upon beginning knowledge 

of backlash [3, 9, and 4] 

! 

 PHIg1 = ACOS(((N(1)+Nc)*Pb)/(2.0*Pi*(Cstd(1)+E(1)))) 

 ![3] 

 30   PRINT* 

 PRINT*, 'Do you know the gear assembly backlash?' 

 PRINT*, 'Enter 0 for yes or 1 for no' 

PRINT*, '**Input of backlash will override value for gear (E(2)) 

offset**' 

 READ*, DecB 

 IF (DecB.EQ.0) THEN 

  PRINT* 

  PRINT*, 'Enter Backlash value: ' 

  READ*, B 

  PRINT*, 'Calculating gear (E(2)) offset.'  

Btemp = ( (2.0*Nc*(TAN(PHIc)-PHIc))-((Nc+N(1))*(TAN(PHIg1)-

PHIg1))+((N(1)+N(2))*(TAN(PHIo)-PHIo))-((B*P*Cstddist)/(Cp)) 

)/(Nc+N(2)) 

  PHIg2 = SOLINV(Btemp) 

  E(2) = ( (N(2)+Nc)*Pb )/( 2.0*Pi*COS(PHIg2) )-Cstd(2) 

  ![3 and 9] 

  etotal = E(1) + E(2)  

  ![2] 

 ELSEIF (DecB.EQ.1) THEN 

  PRINT* 

  PRINT*, 'Resuming calculation with backlash unknown' 

  PRINT*, 'gear (E(2)) offset remains unchanged' 

  PHIg2 = ACOS(((N(2)+Nc)*Pb)/(2.0*Pi*(Cstd(2)+E(2))))  

  ![3] 

 ELSE !(DecB.NE.1.OR.2) 

  PRINT* 

PRINT*, 'Incorrect decision value entered, asking question 

again.' 

  PRINT* 

  GOTO 30 

 ENDIF 

 Rg(1) = N(1)/(N(1)+Nc)*(Cstd(1)+E(1)) 

 Rg(2) = N(2)/(N(2)+Nc)*(Cstd(2)+E(2)) ![3] 

! 

!-----"Minimum offset that will prevent undercutting" [2] 

! 
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estar1 = sqrt(Roc**2.0-Rb(1)**2.0+Rb(1)*((N(1)+Nc)/Pi)*Pb)-

Cstd(1) 

estar2 = sqrt(Roc**2.0-Rb(2)**2.0+Rb(2)*((N(2)+Nc)/Pi)*Pb)-

Cstd(2) ![2] 

 IF (E(1).LT.estar1) THEN 

  PRINT*, 'Offset for pinion (gear 1) exceeds minimum offset' 

  PRINT*, 'Resetting pinion (gear 1) offset to minimum' 

  PRINT* 

  E(1) = estar1 

  GOTO 20 !Jump back to reset preliminary calculations 

 ENDIF 

 IF (E(2).LT.estar2) THEN 

  PRINT*, 'Offset for gear (gear 2) exceeds minimum offset' 

  PRINT*, 'Resetting gear (gear 2) offset to minimum' 

  PRINT* 

  E(2) = estar2 

  GOTO 20 !Jump back to reset preliminary calculations 

 ENDIF 

! 

!-----"Involute functions of cutter pressure 

!  angle and of generating pressure angles" [3] 

! 

 invPHIc = TAN(PHIc) - PHIc 

 invPHIg1 = TAN(PHIg1) - PHIg1 

 invPHIg2 = TAN(PHIg2) - PHIg2 ![3] 

! 

!-----"Tooth thickness of the pinion and gear on their 

!  respective generating pitch circles" [3] 

! 

 Tg1 = (Pb-Tc*COS(PHIc)-2.0*Rbc*(invPHIc-invPHIg1))/(COS(PHIg1)) 

Tg2 = (Pb-Tc*COS(PHIc)-2.0*Rbc*(invPHIc-invPHIg2))/(COS(PHIg2)) 

![3] 

! 

!-----"Outside radii, depth of cut, and dedendum radii" [3] 

! 

 Ro1p = Cp-R(2)-E(2)+k/P 

 Ro2p = Cp-R(1)-E(1)+k/P 

 Do1p = Ro1p*2.0 

 Do2p = Ro2p*2.0 

 Ht = Ro1p+Ro2p-Cp+C 

 Rd1p = Ro1p-Ht 

 Rd2p = Ro2p-Ht ![3] 

! 

!-----"Stress factor for the pinion" [3] 

! 

 PSI1 = ACOS(Rb(1)/Ro1p) 

 invPSI1 = TAN(PSI1) - PSI1 

 ALPHA1 = Tg1/(2.0*Rg(1))+invPHIg1-invPSI1 

 BETA1 = PSI1-ALPHA1 

 IF (Rb(1).LE.Rd1p) THEN !Case 1 

  PHId1 = ACOS(Rg(1)/Rd1p*COS(PHIg1)) 

  invPHId1 = TAN(PHId1)-PHId1 

  THETA1 = Tg1/(2.0*Rg(1))+invPHIg1-invPHId1 

  Xa1 = Ro1p*COS(ALPHA1) 

  Xd1 = Rd1p*COS(THETA1) 

  D1 = Xa1 - Xd1 

  H1 = 2.0*Rd1p*SIN(THETA1) 
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  S1 = (6.0*D1*COS(BETA1))/H1**2.0 

 ELSE !(Rb(1).GT.Rd1p) Case 2 

  THETA1 = (Tg1)/(2.0*Rg(1))+invPHIg1 

  Xa1 = Ro1p*COS(ALPHA1) 

  Xd1 = Rd1p*COS(THETA1) 

  D1 = Xa1-Xd1 

  H1 = 2.0*Rd1p*SIN(THETA1) 

  S1 = (6.0*D1*COS(BETA1))/(H1**2.0) 

 ENDIF ![3] 

 Ta1 = 2.0*ALPHA1*Ro1p 

 Td1 = 2.0*Rd1p*THETA1 ![2] 

 Rp1 = Rb(1)/COS(PHIo) 

 Ad1 = Ro1p - Rp1 

 Ded1 = Rp1 - Rd1p ![2 and 6] 

! 

!-----"Stress factor for the gear' [3] 

! 

 PSI2 = ACOS(Rb(2)/Ro2p) 

 invPSI2 = TAN(PSI2)-PSI2 

 ALPHA2 = (Tg2)/(2.0*Rg(2))+invPHIg2-invPSI2 

 BETA2 = PSI2-ALPHA2 

 IF (Rb(2).LE.Rd2p) THEN !Case 1 

  PHId2 = ACOS(Rg(2)/Rd2p*COS(PHIg2)) 

  invPHId2 = TAN(PHId2)-PHId2 

  THETA2 = Tg2/(2.0*Rg(2))+invPHIg2-invPHId2 

  Xa2 = Ro2p*COS(ALPHA2) 

  Xd2 = Rd2p*COS(THETA2) 

  D2 = Xa2 - Xd2 

  H2 = 2.0*Rd2p*SIN(THETA2) 

  S2 = (6.0*D2*COS(BETA2))/H2**2.0 

 ELSE !(Rb(2).GT.Rd2p) Case 2 

  THETA2 = (Tg2)/(2.0*Rg(2))+invPHIg2 

  Xa2 = Ro2p*COS(ALPHA2) 

  Xd2 = Rd2p*COS(THETA2) 

  D2 = Xa2-Xd2 

  H2 = 2.0*Rd2p*SIN(THETA2) 

  S2 = (6.0*D2*COS(BETA2))/(H2**2.0) 

 ENDIF ![3] 

 Ta2 = 2.0*ALPHA2*Ro2p 

 Td2 = 2.0*Rd2p*THETA2 ![2] 

 Rp2 = Rb(2)/COS(PHIo) 

 Ad2 = Ro2p - Rp2 

 Ded2 = Rp2 - Rd2p ![2 and 6] 

! 

!-----Calculating tooth thickness (t') of a gear on a running 

! pitch circle [2] 

! 

Tp1 = (Pb-Tc*COS(PHIc)-2.0*Rbc*(invPHIc-

invPHIg1))/(COS(PHIo))+(2.0*Rb(1)*(invPHIg1-(TAN(PHIo)-

PHIo)))/(COS(PHIo)) 

Tp2 = (Pb-Tc*COS(PHIc)-2.0*Rbc*(invPHIc-

invPHIg2))/(COS(PHIo))+(2.0*Rb(2)*(invPHIg2-(TAN(PHIo)-

PHIo)))/(COS(PHIo)) 

 ![2] 

! 

!-----Calculating additional values for comparison 

! to dynamic analysis [5 and 6] 
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! 

 Ftf1 = Torq/Rb(1) 

 Fnf1 = Ftf1/COS(BETA1) 

 Stress1 = S1*Fnf1/FaceW 

 Fnf2 = Ftf1/COS(BETA2) 

 Stress2 = S2*Fnf2/FaceW ![5 and 6] 

 Loadin = Ftf1/FaceW !Static Tooth Load per inch 

! 

!-----Calculating backlash [9] 

! 

B = Cp/(P*Cstddist)*(2.0*Nc*invPHIc-(Nc+N(1))*invPHIg1-

(Nc+N(2))*invPHIg2+(N(1)+N(2))*(TAN(PHIo)-PHIo)) 

 B0 = 0.0 !AN INPUT TO THE DANST PROGRAM ADDS TO INHERENT BACKLASH 

 ![9] 

! 

!-----Calculating contact ratio [9] 

! 

Mp = N(1)*SQRT((Cp-R(2)-E(2)+k/P)**2.0-Rb(1)**2.0)/(2.0*Pi*Rb(1)) 

+ N(1)*SQRT((Cp-R(1)-E(1)+k/P)**2.0-Rb(2)**2.0)/(2.0*Pi*Rb(1)) 

- (N(1)*Cp*SIN(PHIo))/(2.0*Pi*Rb(1))  

 ![9] 

! 

!-----Calculating pinion (Gear 1) and gear (Gear 2) inertia [8] 

! 

 I1 = (Pi*Rp1**4.0*FaceW*0.284)/(2.0*386.4) 

 I2 = (Pi*Rp2**4.0*FaceW*0.284)/(2.0*386.4) ![8] 

! 

!-----Calculating MAXIMUM cutter tooth tip geometry [1, 2, and 3] 

! 

 M = 0 

 An = 0.0 

 Bn = Tc 

 TOL = 10.0**(-5.0) 

 Diff = Bn-An 

 40 IF (M.LE.100.AND.Diff.GT.TOL) THEN 

  RctMax = (An+Bn)/2.0 

  !Calculate dimension value  

  Rcp = Roc - RctMax 

  PHIhc = ATAN((SQRT(Rcp**2.0-Rbc**2.0)+RctMax)/(Rbc)) 

  Rhc = Rbc/COS(PHIhc) 

  THETAhc = Tc/(2.0*Rc)+(TAN(PHIc)-PHIc)-(TAN(PHIhc)-PHIhc) 

  GAMMAhc = PHIhc - THETAhc 

  Ycp = Rhc*SIN(THETAhc) - RctMax*COS(GAMMAhc) 

  IF (Ycp.EQ.0.0) THEN  

   PRINT*, 'Exact numerical solution found.' 

   GO TO 41 

  ENDIF 

  SgnFct = Ycp / ABS(Ycp) 

  IF (SgnFct.GT.0.0) THEN 

   An = RctMax 

  ELSEIF (SgnFct.LT.0.0) THEN 

   Bn = RctMax 

  ELSE !(SgnFct.EQ.0.0) 

PRINT*, 'PROGRAM ERROR AT PINION CUTTER EDGE 

CALCULATION,' 

   PRINT*, 'INCORRECT SIGN FUNCTION.' 

   STOP 
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  ENDIF 

  Diff = Bn-An 

  M = M+1 

  GO TO 40 

 ENDIF 

 41 PRINT* ![1, 2, and 3] 

! 

!-----Calculating tooth fillet radius [1] 

! 

 50   WRITE(*,'(1X,A,F6.4,A)') 'The MAXIMUM tooth cutter tip radius is: 

', RctMax, ' in' 

 PRINT* 

 PRINT*, 'What value do you wish to use for Rct?' 

 PRINT*, 'Enter a value from 0.0 up to Rct' 

 READ*, Rct 

 IF (Rct.LT.0.0.OR.Rct.GT.RctMAX) THEN 

  PRINT*, 'Rct value chosen is outside the acceptable limit' 

  PRINT* 

  GOTO 50 

 ENDIF 

 Rcp = Roc - Rct !Perform similar calculations as previous section 

 PHIhc = ATAN( (SQRT(Rcp**2.0-Rbc**2.0)+Rct)/(Rbc) ) 

 Rhc = Rbc/COS(PHIhc) 

 THETAhc = Tc/(2.0*Rc)+(TAN(PHIc)-PHIc)-(TAN(PHIhc)-PHIhc) 

 GAMMAhc = PHIhc - THETAhc 

 Xcp = Rhc*COS(THETAhc) - Rct*SIN(GAMMAhc) 

 Ycp = Rhc*SIN(THETAhc) - Rct*COS(GAMMAhc) 

 THETAcp = ATAN(Ycp/Xcp) 

 Ps = Pi/P 

 DO 55 i=1,2 

  Tsg(i) = 0.5*Pi*1.0/P + 2.0*E(i)*TAN(PHIc) 

INVPHIcp = ( TAN(PHIc)-PHIc ) - 1/(2.0*Cstd(i)) * (Ps-

Tsg(i)-Tc) 

  PHIcp = SOLINV(INVPHIcp) 

  PHImesh = PHIcp 

  Cc = (Rb(i)+Rbc) / COS(PHImesh) 

  Rpcc = ( Nc*Cc )/( N(i)+Nc ) 

  R0 = ( N(i)*Nc*Cc )/( N(i)+Nc )**2.0 

! 

!-----------Top of fillet 

! 

  ALPHAT(i) = ACOS( Rbc/Rcp ) - PHImesh 

  ZETApT(i) = Rpcc - Rcp*COS(ALPHAT(i)) 

  ETApT(i) = -1.0*Rcp*SIN(ALPHAT(i)) 

  SpT(i) = -1.0*SQRT( (ZETApT(i))**2.0+(ETApT(i))**2.0 ) 

  ST(i) = SpT(i) - Rct 

  ZETAT(i) = (ST(i)/SpT(i))*ZETApT(i) 

  ETAT(i) = (ST(i)/SpT(i))*ETApT(i) 

  BETAcT(i) = ALPHAT(i) - THETAcp 

  BETAgT(i) = -1.0/R(i) * ( Rc*BETAcT(i)+0.5*Ps ) 

  RT(i) = SQRT( (Rg(i)+ZETAT(i))**2.0+(ETAT(i))**2.0 ) 

  THETArT(i) = ATAN( ETAT(i)/(Rg(i)+ZETAT(i)) ) - BETAgT(i) 

  PHIT(i) = ATAN(ZETAT(i)/ETAT(i)) 

RHOfT(i) = Rct + ( Rct+ST(i) )**2.0 / ( R0*SIN(PHIT(i))-

(Rct+ST(i)) ) 

! 

!-----------Bottom of fillet 
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! 

  ALPHAB(i) = 0.0 

  ZETApB(i) = Rpcc - Rcp*COS(ALPHAB(i)) 

  ETApB(i) = -1.0*Rcp*SIN(ALPHAB(i)) 

  SpB(i) = -1.0*SQRT( (ZETApB(i))**2.0+(ETApB(i))**2.0 ) 

  SB(i) = SpB(i) - Rct 

  ZETAB(i) = (SB(i)/SpB(i))*ZETApB(i) 

  ETAB(i) = (SB(i)/SpB(i))*ETApB(i) 

  BETAcB(i) = ALPHAB(i) - THETAcp 

  BETAgB(i) = -1.0/R(i) * ( Rc*BETAcB(i)+0.5*Ps ) 

  RBot(i) = SQRT( (Rg(i)+ZETAB(i))**2.0+(ETAB(i))**2.0 ) 

  THETArB(i) = ATAN( ETAB(i)/(Rg(i)+ZETAB(i)) ) - BETAgB(1) 

  PHIB(i) = Pi/2.0 

RHOfB(i) = Rct + ( Rct+SB(i) )**2.0 / ( R0*SIN(PHIB(i))-

(Rct+SB(i)) ) 

55    CONTINUE ![1] 

! 

!-----End of calculations 

!         

!-----Print error messages 

! 

 IF (Ta1.LE.0.0.OR.Ta2.LE.0.0) THEN 

  PRINT* 

  PRINT*, 'ERROR: Negative addendum tooth thickness' 

  PRINT*, '       > Pinion or gear teeth are pointed' 

  PRINT* 

  STOP 

 ENDIF 

 IF (B.LT.-0.00005) THEN 

  PRINT* 

PRINT*, 'ERROR: Gear assembly inherent backlash is less 

than zero' 

  PRINT*, '       > Interference will occur' 

  PRINT* 

  STOP 

 ENDIF 

! 

!-----Output [2, 3, and 6] 

! 

 PRINT*,    '          GEAR SET SUMMARY' 

 PRINT*,    '--------------------------------------' 

 PRINT* 

 WRITE(*,'(1X,A,F10.4)')  'Diametral Pitch:  ', P 

 WRITE(*,'(1X,A,F10.4,A)')'Radius of Cutter:  ',  

Rc, ' in' 

 WRITE(*,'(1X,A,F10.4)')  'Number of Teeth in Cutter: ', Nc 

 WRITE(*,'(1X,A,F10.4,A)')'Standard Pressure Angle: ',  

PHIcD, ' deg' 

 WRITE(*,'(1X,A,F10.4,A)')'Operating Pressure Angle: ',  

PHIoD, ' deg' 

WRITE(*,'(1X,A,F10.4,A)')'Pinion Cutter Tooth Tip Radius:’, 

Rct, ' in' 

 WRITE(*,'(1X,A,F10.4,A)')'Standard Center Distance:’,  

Cstddist, ' in'  

 WRITE(*,'(1X,A,F10.4,A)')'Operating Center Distance: ',  

Cp, ' in' 

 WRITE(*,'(1X,A,F10.4,A)')'Total Offset:               ',  
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etotal, ' in' 

 WRITE(*,'(1X,A,F10.4)')  'Standard Tooth Type:        ', k 

 WRITE(*,'(1X,A,F10.4,A)')'Backlash:                   ', B, ' in' 

 WRITE(*,'(1X,A,F10.4,A)')'Face Width:                 ',  

FaceW, ' in' 

 WRITE(*,'(1X,A,F10.4,A)')'Torque:                     ',  

Torq, ' in*lb' 

 WRITE(*,'(1X,A,F10.4,A)')'Starting Speed:             ',  

RPM1, ' rpm' 

 WRITE(*,'(1X,A,F10.4,A)')'Ending Speed:               ',  

RPM2, ' rpm' 

 WRITE(*,'(1X,A,F10.4,A)')'Tooth Load (fillet):        ',  

Loadin, ' lb/in' 

 WRITE(*,'(1X,A,F10.4)')  'Contact Ratio:              ', Mp 

 PRINT* 

 PRINT*,     'Pinion     Gear' 

 PRINT* 

 WRITE(*,'(1X,A,F11.4,4X,F11.4)')  'Teeth Number:          ',  

N(1), N(2) 

 WRITE(*,'(1X,A,F11.4,4X,F11.4,A)')'Addendum:              ',  

Ad1, Ad2, ' in' 

 WRITE(*,'(1X,A,F11.4,4X,F11.4,A)')'Dedendum:              ',  

Ded1, Ded2, ' in' 

 WRITE(*,'(1X,A,F11.4,4X,F11.4,A)')'Clearance              ',  

C, C, ' in' 

 WRITE(*,'(1X,A,F11.4,4X,F11.4,A)')'Addendum Radius:       ',  

Ro1p, Ro2p, ' in' 

 WRITE(*,'(1X,A,F11.4,4X,F11.4,A)')'Operating Pitch Radius:',  

Rp1, Rp2, ' in' 

 WRITE(*,'(1X,A,F11.4,4X,F11.4,A)')'Base Radius:           ',  

Rb(1), Rb(2), ' in' 

 WRITE(*,'(1X,A,F11.4,4X,F11.4,A)')'Dedendum Radius:       ',  

Rd1p, Rd2p, ' in' 

 WRITE(*,'(1X,A,F11.4,4X,F11.4,A)')'Generating Pitch Rad.: ',  

Rg(1), Rg(2), ' in' 

 WRITE(*,'(1X,A,F11.4,4X,F11.4,A)')'Addendum Tooth Thick.: ',  

Ta1, Ta2, ' in' 

 WRITE(*,'(1X,A,F11.4,4X,F11.4,A)')'Generating Pitch Thick:',  

Tg1, Tg2, ' in' 

 WRITE(*,'(1X,A,F11.4,4X,F11.4,A)')'Operating Pitch Thick.:',  

Tp1, Tp2, ' in' 

 WRITE(*,'(1X,A,F11.4,4X,F11.4,A)')'Op. Dedend. Tooth Th.: ',  

Td1, Td2, ' in' 

 WRITE(*,'(1X,A,F11.4,4X,F11.4,A)')'Gear Inertia:          ',  

I1, I2, ' lb*in*s^2' 

 WRITE(*,'(1X,A,F11.4,4X,F11.4,A)')'Offset:                ',  

E(1), E(2), ' in' 

 WRITE(*,'(1X,A,F11.4,4X,F11.4,A)')'Stress Factor:         ',  

S1, S2, ' /in' 

 WRITE(*,'(1X,A,F11.4,4X,F11.4,A)')'Fillet (Tooth) Stress: ',  

Stress1, Stress2, ' psi' 

 WRITE(*,'(1X,A,F11.4,4X,F11.4,A)')'Standard Pitch Radius: ',  

R(1), R(2), ' in' 

 WRITE(*,'(1X,A,F11.4,4X,F11.4,A)')'Top Filt Curvature Rad:',  

RHOfT(1), RHOfT(2), ' in' 

 WRITE(*,'(1X,A,F11.4,4X,F11.4,A)')'Btm Filt Curvature Rad:',  

RHOfB(1), RHOfB(2), ' in' 
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 PRINT* 

 PRINT*, '**ALWAYS CHECK AND COMPARE STATIC AND DYNAMIC OUTPUT**' 

!-----Print to file 11, user named file 

 WRITE(11,'(A)')    '          GEAR SET SUMMARY' 

 WRITE(11,'(A)')    '-------------------------------------' 

 WRITE(11,'(A)')    ' ' 

 WRITE(11,'(1X,A,F10.4)')  'Diametral Pitch:           ', P 

 WRITE(11,'(1X,A,F10.4,A)')'Radius of Cutter:          ',  

Rc, ' in' 

 WRITE(11,'(1X,A,F10.4)')  'Number of Teeth in Cutter: ', Nc 

 WRITE(11,'(1X,A,F10.4,A)')'Standard Pressure Angle:   ',  

PHIcD, ' deg' 

 WRITE(11,'(1X,A,F10.4,A)')'Operating Pressure Angle:  ',  

PHIoD, ' deg' 

 WRITE(11,'(1X,A,F10.4,A)')'Pinion Cutter Tooth Tip Radius:     ', 

Rct, ' in' 

 WRITE(11,'(1X,A,F10.4,A)')'Standard Center Distance:  ',  

Cstddist, ' in'  

 WRITE(11,'(1X,A,F10.4,A)')'Operating Center Distance: ',  

Cp, ' in' 

 WRITE(11,'(1X,A,F10.4,A)')'Total Offset:              ',  

etotal, ' in' 

 WRITE(11,'(1X,A,F10.4)')  'Standard Tooth Type:       ', k 

 WRITE(11,'(1X,A,F10.4,A)')'Backlash:                  ', B, ' in' 

 WRITE(11,'(1X,A,F10.4,A)')'Face Width:                ',  

FaceW, ' in' 

 WRITE(11,'(1X,A,F10.4,A)')'Torque:                    ',  

Torq, ' in*lb' 

 WRITE(11,'(1X,A,F10.4,A)')'Starting Speed:            ',  

RPM1, ' rpm' 

 WRITE(11,'(1X,A,F10.4,A)')'Ending Speed:              ',  

RPM2, ' rpm' 

 WRITE(11,'(1X,A,F10.4,A)')'Tooth Load (fillet):       ',  

Loadin, ' lb/in' 

 WRITE(11,'(1X,A,F10.4)')  'Contact Ratio:             ',  

Mp 

 WRITE(11,'(A)')        ' ' 

 WRITE(11,'(A)')        'Pinion      Gear' 

 WRITE(11,'(A)')        ' ' 

 WRITE(11,'(1X,A,F11.4,4X,F11.4)')  'Teeth Number:          ',  

N(1), N(2) 

 WRITE(11,'(1X,A,F11.4,4X,F11.4,A)')'Addendum:              ',  

Ad1, Ad2, ' in' 

 WRITE(11,'(1X,A,F11.4,4X,F11.4,A)')'Dedendum:              ',  

Ded1, Ded2, ' in' 

 WRITE(11,'(1X,A,F11.4,4X,F11.4,A)')'Clearance              ',  

C, C, ' in' 

 WRITE(11,'(1X,A,F11.4,4X,F11.4,A)')'Addendum Radius:       ',  

Ro1p, Ro2p, ' in' 

 WRITE(11,'(1X,A,F11.4,4X,F11.4,A)')'Operating Pitch Radius:',  

Rp1, Rp2, ' in' 

 WRITE(11,'(1X,A,F11.4,4X,F11.4,A)')'Base Radius:           ',  

Rb(1), Rb(2), ' in' 

 WRITE(11,'(1X,A,F11.4,4X,F11.4,A)')'Dedendum Radius:       ',  

Rd1p, Rd2p, ' in' 

 WRITE(11,'(1X,A,F11.4,4X,F11.4,A)')'Generating Pitch Rad.: ',  

Rg(1), Rg(2), ' in' 
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 WRITE(11,'(1X,A,F11.4,4X,F11.4,A)')'Addendum Tooth Thick.: ',  

Ta1, Ta2, ' in' 

 WRITE(11,'(1X,A,F11.4,4X,F11.4,A)')'Generating Pitch Thick:',  

Tg1, Tg2, ' in' 

 WRITE(11,'(1X,A,F11.4,4X,F11.4,A)')'Operating Pitch Thick.:',  

Tp1, Tp2, ' in' 

 WRITE(11,'(1X,A,F11.4,4X,F11.4,A)')'Op. Dedend. Tooth Th.: ',  

Td1, Td2, ' in' 

 WRITE(11,'(1X,A,F11.4,4X,F11.4,A)')'Gear Inertia:          ',  

I1, I2, ' lb*in*s^2' 

 WRITE(11,'(1X,A,F11.4,4X,F11.4,A)')'Offset:                ',  

E(1), E(2), ' in' 

 WRITE(11,'(1X,A,F11.4,4X,F11.4,A)')'Stress Factor:         ',  

S1, S2, ' /in' 

 WRITE(11,'(1X,A,F11.4,4X,F11.4,A)')'Fillet (Tooth) Stress: ',  

Stress1, Stress2, ' psi' 

 WRITE(11,'(1X,A,F11.4,4X,F11.4,A)')'Standard Pitch Radius: ',  

R(1), R(2), ' in' 

 WRITE(11,'(1X,A,F11.4,4X,F11.4,A)')'Top Filt Curvature Rad:',  

RHOfT(1), RHOfT(2), ' in' 

 WRITE(11,'(1X,A,F11.4,4X,F11.4,A)')'Btm Filt Curvature Rad:',  

RHOfB(1), RHOfB(2), ' in' 

! 

!-----Print to file 12: "IntFile.TXT" ![7] 

! 

 NcI = INT(Nc) 

 N1I = INT(N(1)) 

 N2I = INT(N(2))  

 WRITE(12,'(A)')   'Intermediate File                                      

! Job Identification' 

 WRITE(12,'(A)')   '===> Cutter Geometry' 

 WRITE(12,'(A,F6.4,A)')  '2       ', E(1), '          

! Hob offset code (0=None, 1=Offset 

2=Cutter); Offset Amount' 

 WRITE(12,'(F4.1,4X,F4.1,A)') P, PHIcD, '            

! Diametral Pitch, Pressure Angle 

(deg)' 

 WRITE(12,'(I2,A)')  NcI, '  

! Number of cutter teeth (Shaper 

cutter)' 

 WRITE(12,'(A)')   '1.000 1.000           

! Cutter Addendum Ratio (A/DP)' 

 WRITE(12,'(A)')   '0.0 0.0             

! Cutter edge radius ratio 

(RCEG/DP)' 

 WRITE(12,'(A)')    '===> Gear Geometry' 

 WRITE(12,'(I2,7X,I2,A)')      N1I, N2I, '             

! Number of teeth' 

 WRITE(12,'(F6.4,4X,F6.4,A)') Do1p, Do2p, '        

! Outside Diameters' 

 WRITE(12,'(F4.2,4X,F4.2,A)') Cratio, Cratio,'            

! Tooth Clearance Ratios (C/DP)' 

 WRITE(12,'(F4.2,4X,F6.4,A)') FaceW, B0, '          

! Face Width (in), Backlash (in)' 

 WRITE(12,'(A)')    '===> Center dist., Std. or spread  

cntr.' 

 WRITE(12,'(A)')    '1                       
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! Center Distance Code (0=Standard 

1=Extended CD)' 

 WRITE(12,'(F5.3, A)')   CdstEx , '                   

! Center Distance Extension (in)' 

 WRITE(12,'(A)')    '===> Gear Material Data' 

 WRITE(12,'(A)')    '30.E6     30.E6         

! Youngs Modulus' 

 WRITE(12,'(A)')    '0.3       0.3           

! Poissons Ratio' 

 WRITE(12,'(A)')    '===> Operating Parameters' 

 WRITE(12,'(F6.2,A)')   Torq, '                  

! Input Torque (lb-in)' 

 WRITE(12,'(F6.0,4X,F6.0,A)') RPM1, RPM2, '        

! Starting Speed, Ending Speed 

(rpm)' 

 WRITE(12,'(F6.0,A)')  RPMi, '                  

! Speed Increment (rpm)' 

 WRITE(12,'(A)')    '1                       

! Lubrication Code (1=Buckingham, 

2=EHD)' 

 WRITE(12,'(A)')    '1                       

! Damping Code (0=No Damping, 

1=Damping & Friction)' 

 WRITE(12,'(A)')    '0.1                     

! Gear Mesh Damping Coefficient' 

 WRITE(12,'(A)')    '===> Inertia and Stiffness Data' 

 WRITE(12,'(A)')    '0.100 0.124           

! Input and Output Inertia' 

 WRITE(12,'(F7.5,1X,F7.5,A)') I1, I2, '         

! Gear-1 and Gear-2 Inertia' 

 WRITE(12,'(A)')    '150000. 150000.         

! Input and Output Shaft Torsional 

Stiffness' 

 WRITE(12,'(A)')    '===> Solution & Modif. Codes  

(See Notes)' 

 WRITE(12,'(A)')    '2                       

! Solution Code (1|2 

static,dynamic,negative=rigid)' 

 WRITE(12,'(A)')    '0                       

! Modification Code (-1 to 4 

conv,none,lin,para1/2,digi)' 

 WRITE(12,'(A)')    '0 0               

! Modification Length (Start) on 

Gear 1 & 2' 

 WRITE(12,'(A)')    '0 0               

! Amount of Modification on Gear 1 

& 2' 

 WRITE(12,'(A)')  '===> Plot Control Codes (See Notes)' 

 WRITE(12,'(A)')  ' 0         ! Profile Modification Chart' 

 WRITE(12,'(A)')  ' 0         ! Tooth Deflection Curves' 

 WRITE(12,'(A)')  ' 0         ! Static Transmission Error' 

 WRITE(12,'(A)')  ' 0         ! Dynamic Transmission Error' 

 WRITE(12,'(A)')  ' 0         ! Static Tooth Load' 

 WRITE(12,'(A)')  ' 0         ! Dynamic & Static Tooth Load' 

 WRITE(12,'(A)')  ' 0         ! Static Tooth Stiffness' 

 WRITE(12,'(A)')  ' 0         ! FFT of Static Transmission Error' 

 WRITE(12,'(A)')  ' 0         ! FFT of Dynamic Tooth Load' 
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 WRITE(12,'(A)')  ' 0         ! Friction Coefficient' 

 WRITE(12,'(A)')  ' 0         ! Friction Torque' 

 WRITE(12,'(A)')  ' 0         ! Dynamic Stress' 

 WRITE(12,'(A)')  ' 0         ! Dynamic Factor Speed Survey' 

 WRITE(12,'(A)')  '===> Printer-Plot Output Device Code' 

 WRITE(12,'(A)')  ' 0         ! 0=VGA, 1=EPSON FX-8*, 2=HP LJ,  

3=Post Script File, 4=Auto CAD 

File' 

 WRITE(12,'(A)')  '*** Notes:' 

 WRITE(12,'(A)')  '   >>> Solution Control Code - - - -' 

 WRITE(12,'(A)')  '      1=Static Analysis   2=Dynamic Analysis' 

 WRITE(12,'(A)')  '      Negative (-1 or -2) --> Suppress  

Extended Tooth Contact' 

 WRITE(12,'(A)')  '   >>> Modification code (-1 to 4) - - - -' 

 WRITE(12,'(A)')  '     -1=Conventional Relief    0=Involute, No  

Mod. 1=Linear Modification' 

 WRITE(12,'(A)')  '      2=Parabolic Type 1 Mod.  3=Parabolic  

Type 2 Mod.  4=Digitized Mod.' 

 WRITE(12,'(A)')  '   >>> Plot Control Code (0 to 3) - - - -' 

 WRITE(12,'(A)')  '      0=no output   1=Printer Plot   2=Plot  

File 3=Both Plot & Plot File' 

      PRINT* 

 PRINT*, 'End of program STATIC.' 

 END 

! 

!----------! 

!==========! 

! 

 REAL FUNCTION SOLINV(Soltn) 

! 

! This function contains the 

! half interval method 

! It solves the involute function 

! (invA = Soltn, solve for 'A') 

! 

 INTEGER i 

 REAL An, Bn, TOL, Diff, Mo, FctMo, SgnFct, Soltn 

! 

 i = 0 

 An = 0.0 

 Bn = 3.14/2 

 TOL = 10.0**(-5.0) 

 Diff = Bn-An 

 10   IF (i.LE.100.AND.Diff.GT.TOL) THEN 

  Mo = (An+Bn)/2.0 

  !Function 

  FctMo = TAN(Mo)-Mo 

  IF (FctMo.EQ.Soltn) THEN  

   PRINT*, 'Exact numerical solution found.' 

   GO TO 20 

  ENDIF 

  SgnFct = (FctMo-Soltn) / ABS(FctMo-Soltn) 

  IF (SgnFct.GT.0.0) THEN 

   Bn = Mo 

  ELSEIF (SgnFct.LT.0.0) THEN 

   An = Mo 

  ELSE !(SgnFct.EQ.0.0) 
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   PRINT*, 'PROGRAM ERROR, INCORRECT SIGN FUNCTION.' 

   STOP 

  ENDIF 

  Diff = Bn-An 

  i = i+1 

  GO TO 10 

 ENDIF 

 20   SOLINV = Mo 

 RETURN 

 END 

! 

!==========! 

!::::::::::! 

! 
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Appendix B 

Example Output of Static Program 

          GEAR SET SUMMARY 

------------------------------------------------- 

  

 Diametral Pitch:                       10.0000 

 Radius of Cutter:                       2.0000 in 

 Number of Teeth in Cutter:             40.0000 

 Standard Pressure Angle:               20.0000 deg 

 Operating Pressure Angle:              24.5802 deg 

 Pinion Cutter Tooth Tip Radius:          .0000 in 

 Standard Center Distance:               3.0000 in 

 Operating Center Distance:              3.1000 in 

 Total Offset:                            .1050 in 

 Standard Tooth Type:                    1.0000 

 Backlash:                                .0000 in 

 Face Width:                             1.0000 in 

 Torque:                               480.0000 in*lb 

 Starting Speed:                      6000.0000 rpm 

 Ending Speed:                        6000.0000 rpm 

 Tooth Load (fillet):                  510.8053 lb/in 

 Contact Ratio:                          1.3698 

  

                          Pinion           Gear 

  

 Teeth Number:              20.0000        40.0000 

 Addendum:                    .1248          .0702 in 

 Dedendum:                    .0952          .1498 in 

 Clearance                    .0250          .0250 in 

 Addendum Radius:            1.1581         2.1369 in 

 Operating Pitch Radius:     1.0333         2.0667 in 

 Base Radius:                 .9397         1.8794 in 

 Dedendum Radius:             .9381         1.9169 in 

 Generating Pitch Rad.:      1.0210         2.0210 in 

 Addendum Tooth Thick.:       .0510          .0725 in 

 Generating Pitch Thick:      .1940          .1747 in 

 Operating Pitch Thick.:      .1854          .1392 in 

 Op. Dedend. Tooth Th.:       .2216          .2279 in 

 Gear Inertia:                .0013          .0211 lb*in*s^2 

 Offset:                      .0631          .0419 in 

 Stress Factor:             22.8868        22.8889 /in 

 Fillet (Tooth) Stress:  14186.2600     13174.6900 psi 

 Standard Pitch Radius:      1.0000         2.0000 in 

 Top Filt Curvature Rad:      .0863          .1012 in 

 Btm Filt Curvature Rad:      .0096          .0099 in 
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Appendix C 

Example Output for Dynamic Program Input 

The following is an example of the static program output for input into the 

DANST program.  The following code has been modified so as to fit appropriately in this 

document.  Certain formatting, indentation, tabs, and spacing, must be removed for 

accurate program execution.   

Intermediate File                                ! Job Identification 

===> Cutter Geometry 

2        .0631         ! Hob offset code (0=None, 1=Offset 2=Cutter); 

Offset Amount 

10.0    20.0           ! Diametral Pitch, Pressure Angle (deg) 

40                     ! Number of cutter teeth (Shaper cutter) 

1.000 1.000            ! Cutter Addendum Ratio (A/DP) 

0.0 0.0              ! Cutter edge radius ratio (RCEG/DP) 

===> Gear Geometry 

20       40            ! Number of teeth 

2.3161    4.2738       ! Outside Diameters 

 .25     .25           ! Tooth Clearance Ratios (C/DP) 

1.00     .0000         ! Face Width (in), Backlash (in) 

===> Center dist., Std. or spread cntr. 

1                      ! Center Distance Code (0=Standard 1=Extended  

CD) 

 .100                  ! Center Distance Extension (in) 

===> Gear Material Data 

30.E6     30.E6        ! Youngs Modulus 

0.3       0.3          ! Poissons Ratio 

===> Operating Parameters 

480.00                 ! Input Torque (lb-in) 

 1000.    30000.       ! Starting Speed, Ending Speed (rpm) 

  146.                 ! Speed Increment (rpm) 

1                      ! Lubrication Code (1=Buckingham, 2=EHD) 

1                      ! Damping Code (0=No Damping, 1=Damping & 

Friction) 

0.1                    ! Gear Mesh Damping Coefficient 

===> Inertia and Stiffness Data 

0.100 0.124            ! Input and Output Inertia 

 .00132  .02106        ! Gear-1 and Gear-2 Inertia 

150000. 150000.    ! Input and Output Shaft Torsional Stiffness 

===> Solution & Modif. Codes (See Notes) 

2                      ! Solution Code (1|2 

static,dynamic,negative=rigid) 

0                      ! Modification Code (-1 to 4 

conv,none,lin,para1/2,digi) 

0 0                ! Modification Length (Start) on Gear 1 & 2 

0 0                ! Amount of Modification on Gear 1 & 2 

===> Plot Control Codes (See Notes) 

 0                     ! Profile Modification Chart 

 0                     ! Tooth Deflection Curves 
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 0                     ! Static Transmission Error 

 0                     ! Dynamic Transmission Error 

 0                     ! Static Tooth Load 

 0                     ! Dynamic & Static Tooth Load 

 0                     ! Static Tooth Stiffness 

 0                     ! FFT of Static Transmission Error 

 0                     ! FFT of Dynamic Tooth Load 

 0                     ! Friction Coefficient 

 0                     ! Friction Torque 

 0                     ! Dynamic Stress 

 0                     ! Dynamic Factor Speed Survey 

===> Printer-Plot Output Device Code 

 0       ! 0=VGA, 1=EPSON FX-8*, 2=HP LJ, 3=Post Script File, 4=Auto  

CAD File 

*** Notes: 

   >>> Solution Control Code - - - - 

      1=Static Analysis   2=Dynamic Analysis 

      Negative (-1 or -2) --> Suppress Extended Tooth Contact 

   >>> Modification code (-1 to 4) - - - - 

     -1=Conventional Relief 0=Involute, No Mod. 1=Linear Modification 

      2=Parabolic Type 1 Mod. 3=Parabolic Type 2 Mod. 4=Digitized Mod. 

   >>> Plot Control Code (0 to 3) - - - - 

      0=no output 1=Printer Plot 2=Plot File 3=Both Plot & Plot File 
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Appendix D 

Finite Element Model 

D.4.1. Overview and Model Type 

Finite element modeling, as defined by Macdonald (2007), “divides the domain of 

interest into a finite number of simple sub-domains and uses [varying] concepts to 

construct an approximation of the solution over the collection of sub-domains.”  The 

author further elaborates that the finite element method is encapsulated by equation 120, 

which relates force, {F}, to stiffness, [K], and displacement, {U}.  However, for a 

“dynamic analysis and nonlinear analysis,” velocity, { ̇}, and acceleration, { ̈}, must be 

taken into account with consideration of the mass, [M], and damping, [C] within the 

system.  This is encapsulated by equation 121 (pp. 4, 73-75).  A further description can 

be found in the literature. 

 

 

{ }  [ ]  { } EQ. 120 

 

 

 

{ }  [ ]  { ̈}  [ ]  { ̇}  [ ]  { } EQ. 121 

 

 

 

As can be seen by the relationships described through equations 120 and 121, a 

finite element model can be described statically or dynamically.  Dynamically, a model 

can be solved implicitly or explicitly.  Macdonald (2007) describes the implicit solution 

in the following manner:   

The current nodal displacement . . . is a function of time derivatives of . . . nodal 

acceleration and velocity . . . which are also unknown.  Consequently the implicit 

method iterates . . . a solution for the nodal displacements and its time derivatives 
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in order to solve the equation.  This requires . . . solving simultaneous equations 

and hence inverting the large system of matrices.  (p. 246) 

The implicit solution method completely solves equation 121 in several stages for 

current and future “steps.”  Consequently, this type of solution is more precise than the 

explicit solution method.  However, dynamic contact conditions, which are found in the 

current model, can destabilize the solution process (Macdonald, 2007, pp. 243-245). 

Macdonald (2007) describes the strength of the explicit model as following 

“Newton’s Second Law, F = ma.”  The explicit solution method solves equation 121 

based upon current and past steps.  However, the explicit solution is not as precise as the 

implicit solution, and precise measurements are required for the current model.  The 

explicit “solution time is essentially based upon the size of the smallest element in the 

mesh;” thus, smaller element mesh would require more computational power (pp. 245-

247).  Macdonald (2007) describes the explicit solution in the following manner:   

The current nodal displacement is a function of the nodal displacement, velocity, 

and accelerations from the previous time step.  Since this information is already 

known a diagonal mass matrix can be used and the global equation is a system of 

linear algebraic equations which can be solved without using simultaneous 

equations.”  (p. 246) 

Unfortunately, both dynamic solution methods are still computationally 

expensive, the implicit solution more so than the explicit solution.  As found by Lee 

(2009), a quasi-static procedure can be used to simplify the dynamic model.   

Quasi-Static is a condition that refers to forces or displacements which vary or 

change slowly with time. A force is considered to vary slowly if the frequency of 

variation is much lower than the lowest natural frequency of the system.  (p. 30) 

In essence, the quasi-static model considers the dynamic model is a series of sub 

models.  In terms of the spur gear dynamic model, the pinion and gear can be rotated 

through a mesh cycle, simulating the motion of the assembly (Lee, 2009, pp. 29-31)   The 
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statements made by Lee (2009, pp. 29-31) agree, in part, with those of MacDonald 

(2007).  According to Macdonald, a static solution does not consider dynamic effects and 

assumes the “load and boundary conditions remain constant over the course of the 

solution or change relatively slowly” (pp. 236-239). 

At 6,000 rpm, the dynamic effects, according to the DANST program, are 

minimal and the speed is far away from the natural frequencies.  Moreover, with the 

dynamic load factor calculated by the DANST program, general dynamic effects can be 

taken into account by a static model.  In order to minimize changing load and boundary 

conditions, the quasi-static gear assembly model is broken down into a series of 

individual frames at a specific rotation.  For this finite element model and analysis, 

ABAQUS/CAE 6.9-EF1 is used.  As the stress within the gear tooth is a combination of 

many different components, Von Mises stress, as calculated within ABAQUS, is used 

during the course of this study (Van der Zijp, 2009, ABAQUS program).  With the 

dynamic load factor as described by Lin and Liou (1998), the quasi-static, finite element 

model is built in several sub models providing an alternative, simplified model to the 

dynamic solution (pp. 45-48). 

D.4.2. Model Construction 

The information provided in chapter 3, section 2, and table 1 provides the basis 

for the finite element model.  In order to simplify the model, a specific pinion and gear 

offset is chosen, 0.0631 inches and 0.0419 inches, respectively, values which are from the 

works of Green and Mabie (1980b, p. 508).  The rotational speed is set at 6000 rpm, as 

given by the example files from DANST manual (Oswald et al., 1996b, p. 5). 
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The output created by the static model following the works of Green and Mabie 

(1980a, p. 506; 1980b, pp. 507-514), supplies several dimensions.  In order to create the 

involute profile, an assumption is made that the curve is a continuous arc.  This 

assumption is made, in part, from figure 3 (Mabie & Reinholtz, 1987, p. 133).  Knowing 

the tooth thickness, ta, is a curve along a circle with a certain radii, Ra, an involute curve 

can be created from equation 123, see figure 33. 

 

 

Since             (    ) where γa is in radians EQ. 122 

 

 

 

Then 
   

   

 
 (

  
    

) 
EQ. 123 

 

 

 

The fillet radius is found through equations 39 through 66 in chapter 2 section 3 

as described by Colbourne (1987, pp. 39-40, 120-121, 133-136, 151, 221-223, 235-237).  

Since the radius of curvature at the top of the fillet is much larger than that at the bottom 

of the fillet, the latter is used in the finite element model (Colbourne, 1987, pp. 239-240). 

The pinion and gear are three-dimensional parts; however, the dimensions of the 

tooth, such as its thickness and height, are much less than thickness of the spur gear, a 

face width of 1.0 inch.  Since the perpendicular thickness dimensions is much greater, the 

plane strain assumption can be used, according to MacDonald (2007).  Based upon this 

assumption, the pinion and gear can be modeled as a two-dimensional instance (pp. 116-

118). 
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Figure 33. Base dimension sketch in ABAQUS program (Van der Zijp, 2009). 

 

 

A spur gear contains cyclic geometry, being the base is a circle and the teeth are 

arranged in circular pattern upon that base.  Macdonald (2007) described individual 

features, such as the teeth, can be removed if they are “far away from expected stress 

concentrations or load paths” (pp. 188-191).  In a preliminary study, a de-featured model 

consisting of only one tooth for a spur gear with point loads at the tip is created and 

compared to a full model with a point load at the tip of one tooth.  These preliminary 
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studies show a stress difference of 0.1%.  Moreover, the results of the preliminary study 

indicate that a distance of one full tooth away from the tooth carrying load is sufficient.  

Additional studies showing similar results support the following concept that the gear 

tooth acts against a larger, and comparatively rigid, body.  The percent difference 

between the full body and de-featured model body is 2.8%.  Thus, teeth not carrying load 

can be de-featured and the finite element model is simplified. 

The boundary conditions of the pinion and gear are related to the center bore, key, 

and shaft that run through the center of each.  Modeling the center boundary condition of 

the pinion and gear as a point would, in essence, create a point load and complicate other 

parts of the finite element model, such as creating distortion within the element mesh 

with.  Thus, a center hole is made in the pinion and gear, and the boundary condition is 

built upon this central key.  The assumption that a model having a distance of one full 

tooth away from the loaded teeth is accurate is also part of the boundary condition.  With 

the central hole and pie shaped region of the model, as seen in figure 35, a rigid body tie 

interaction is created between the edge lines and the central vertex of the pinion or gear.  

As shown in section 1 of this appendix, describing the quasi-static model, the pinion 

vertex is modeled as pinned and the gear vertex is modeled as fixed.  Thus, this creates a 

pinned body for the pinion, which is under load, and a fixed body for the gear, which 

experiences the load. 

The second interaction, which is standard surface-to-surface contact, is the contact 

between two separate surfaces or assembly instances, the pinion and gear (Van der Zijp, 

2009, ABAQUS program).  The contact is described as having finite sliding, which, 

according to Lee (2009), allows for the continual adjustment between changing master 
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and slave surfaces (p. 46).   In order to simplify the finite element model, the surface 

property is modeled as frictionless and damping is not included.  An intermediate study 

shows that a coefficient of friction up to 1.0 leads to a maximum difference in stress of 

3.1%.  Also, the model assumes lubrication.  The master surface is chosen to be the gear, 

and the slave surface is chosen to be the pinion, as is shown in figure 36.  In order to 

initiate the model, a negligible overlap is required, which is approximately one quarter of 

an element in length.  This being the case, adjustment allowance is allowed within the 

ABAQUS finite element model; however, this means that the slave surface or assembly, 

the pinion, is moved (Van der Zijp, 2009, ABAQUS program).  Since the pinion is 

modeled as pinned, this reduces residual stresses. 

The partitioning and mesh of the model is based upon the work of Brauer (2004).  

This mesh mapping and partitioning favors the shape and symmetry of the tooth profile, 

root, and body, as can be seen in figure 34.  The mesh mapping also indicates general 

regions of interest (pp. 1868-1871).  The primary region of interest in this study is at the 

fillet at the base of the tooth.  As explained by Colbourne (1987), the stresses at the base 

of the tooth are cause by the moment produced by the tangential part of the applied force 

and the smaller compressive force produced by the radial part of the applied force.  

Though the unloaded side of the tooth that is in compression will have a greater stress at 

the tooth root, the side of the tooth that is in tension is of greater concern to the engineer.  

This is because the “tensile stress . . . is found to cause fatigue cracks” (pp. 248-249).  

Thus, the region of interest is the root of the tooth that is in tension, the side where 

contact occurs.   
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Figure 34. Preliminary mesh model by Brauer (2004, p. 1870). 

 

 

The finite element model pinion and gear instances are constructed based upon 

the dimensional input of zero backlash, which means there is neither space nor 

interference between the teeth.  Due to the approximations provided by the ABAQUS 

mesh modeling software and the geometric instance input, minor interference occurs 

between the teeth of the pinion and gear (Van der Zijp, 2009, ABAQUS program).  This 

is overcome by adding an offset on the pinion tooth equal to the interference, 0.004 

inches, where the pinion tooth where contact does not occur. 

Further refinement in the model includes the choice of an element orientation, 

distribution, bias, and type.  As indicated by figure 34, bias should be oriented towards 

the edge (Brauer, 2004).  The element type is confined to tetrahedral or quadrilateral.  

The Structured Technique, Minimize Mesh Transition Algorithm is chosen in ABAQUS 

to aid in reducing the element distortion.  For model simplicity, the standard element 

library, linear element type, and reduced integration techniques are used with the plane 

strain assumption already discussed.  The resulting element is a 4-node bilinear plane 
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strain quadrilateral, reduced integration, hourglass control.  The resulting mesh is shown 

through a convergence study in the following section (Van der Zijp, 2009, ABAQUS 

program). 

Load is applied to the finite element model as a moment placed upon the central 

vertex of the pinion.  The dynamic model created by DANST outputs a dynamic load 

factor of 1.173.  Thus, a static torque of 480 in-lb would become 563.04 in-lb for a 

dynamic finite element model.  This load path follows the pinion, through the contact 

condition, into the gear and gear body.  The resulting solution displays the stress as 

described in section 1 of this appendix. 

 

 

 

Figure 35. Instance partitions, pinion is shown.  Note that the model is de-featured to 

only certain, key teeth (Van der Zijp, 2009, ABAQUS program). 
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Figure 36. Interactions between pinion (top) and gear (bottom).  The red highlight 

indicates the master surface, and the purple highlight indicates the slave surface.  Rigid 

body tie constraints are also shown for both pinion and gear (Van der Zijp, 2009, 

ABAQUS program). 

 

 

 

D.4.3. Mesh Convergence Study 

As stated in the previous section, the region of interest exists at the tooth fillet on 

the side where contact occurs.  Additionally, the mesh convergence study requires a 

standard with which to be compared, before the quasi-static model is run.  To create this 
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standard, the general finite element model is first compared to the static assumptions 

made by Rogers, Mabie, and Reinholtz (1990).  Multiple tooth contact is ignored, and the 

pinion and gear are rotated such that full load is applied at the tip.  For the pinion, this 

results in a stress of 14,186 psi at the root of the tooth and 13,175 psi for that of the gear 

(p. 629).  Based upon a series of preliminary models, and the partitioning by Brauer 

(2004), the following partitioning and element bias patterns are set as shown in figure 37 

and tables 4 and 5.   

Using the element bias and spacing on figure 37, a mesh convergence study is 

performed.  To reduce computational requirements, the instance opposite to the instance 

under study is set to the lowest global element size, 0.013 inches.  For example, for table 

4, which is a convergence study of the pinion, the gear element size is set at the minimum 

while the pinion mesh is optimized. 

The element size and bias chosen are shown in underline in tables 4 and 5.  These 

mesh dimensions are then applied to the quasi-static finite element model, where the 

pinion and gear are rotated through a full mesh cycle where the factored, dynamic load is 

applied. 
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Figure 37. Image of element size and bias.  This image is the result of the mesh 

convergence study for the pinion as shown in table 4 (Van der Zijp, 2009, ABAQUS 

program). 
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Table 4. Mesh convergence study of the pinion 

Pinion 

Moving 

towards the 

edge of the 

tooth 

General size 

of elements 

General size 

of elements 

within the 

tooth 

Main region 

of Interest: 

fillet radius 

Von Mises 

stress, not 

averaged 

Percent 

Difference 

Bias, 

Number of 

elements per 

given length 

General 

element size 

Number of 

elements 

along tooth 

height 

Number of 

elements 

along fillet 

Loaded 

Tooth Side 

[psi] 

% 

2, 10 0.0130 30 1 9093 -35.9% 

2, 15 0.0113 45 2 10820 -23.7% 

2, 20 0.0097 60 2 12052 -15.0% 

2, 25 0.0080 75 3 13150 -7.3% 

2, 30 0.0063 90 3 13809 -2.7% 

2, 35 0.0047 105 4 14474 2.0% 

 

 

 

Table 5. Mesh convergence study of the gear 

Gear 

Moving 

towards the 

edge of the 

tooth 

General 

size of 

elements 

General size 

of elements 

within the 

tooth 

Main region 

of Interest: 

fillet radius 

Von Mises 

stress, not 

averaged 

Percent 

Difference 

Bias, 

Number of 

elements per 

given length 

General 

element 

size 

Number of 

elements 

along tooth 

height 

Number of 

elements 

along fillet 

Loaded 

Tooth Side 

[psi] 

% 

2, 10 0.0130 30 1 10506 -20.3% 

2, 15 0.0113 45 2 12763 -3.1% 

2, 20 0.0097 60 2 14311 8.6% 

 

 

 

D.4.4. Results and Discussion 

From the model description and construction, the pinion and gear are rotated 

through a complete cycle of tooth pair interaction.  Shown in figure 39 is the stress at the 

root of the tooth due to bending [ksi] against the rotation of the pinion [inch].  Figure 38 
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shows the stress contour.  As discussed previously, the stress method used is Von Mises 

stress, with no averaging within the elements (Van der Zijp, 2009, ABAQUS program).  

Since the ratio of gear to pinion is 2:1, the corresponding gear rotation of the gear is half 

that of the pinion, but in the opposite direction. 

As shown in figure 39, the maximum stress of the pinion and gear due to bending 

of the applied load at the base of the tooth is 19 ksi and 12 ksi respectively.  According to 

the corresponding dynamic model performed in DANST, the stress for the pinion and 

gear is 19 ksi each.  The finite element model provides a good comparison for the pinion 

stress, but the difference of the gear stress is approximately 37%. 

 

 

 

Figure 38. Stress contour map (Van der Zijp, 2009, ABAQUS program). 
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Figure 39. Stress [ksi] against pinion rotation [degree] of pinion and gear. 

 

 

Several factors may be contributing to these errors: dimensional simplification, 

the contact between the teeth, and mesh stiffness.  Several dimensions were assumed 

during the creation of the model.  The fillet radius, as explained in the previous section, is 

approximated by using the radius at the bottom of the fillet according to equation 66.  

However, equation 66 can take into account any change in radius along the fillet.  

Moreover, as shown by Colbourne (1987, pp. 239-240) and equation 117 (Cornell, 1981; 

Heywood; Lin & Liou, 1998), the fillet radius can change over the course of the fillet.  

Since the radius of curvature directly influences stress concentration, the assumption 

made may not be adequate.  Second, the involute was assumed to be a continuous arc 

from the outer radius, R0g', to the dedendum radius, Rdg', excluding the fillet which is 

added subsequently.  This assumption may be an oversimplification. 
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As explained and derived in chapter 2, the stiffness of the system is related to the 

deflection and deformation globally and locally.  The deformation is affected if the 

system is not adequately modeled at the contact regions, in transferring the load from the 

teeth to the gear body, or in the gear body due to the related constraints.  Moreover, 

contact is nonlinear, which may require a more complex model than the one in this study.  

Changes in deformation due to stiffness may permit or prevent tooth contact to early or 

late during the mesh cycle.  Also, assuming that the system can be defined as linear 

elastic may not be adequate. 

Several items pertain to contact within the ABAQUS program, involving friction, 

damping, and sliding, all of which have been omitted for simplicity in the finite element 

model.  Moreover, to create a stable model, a marginally small piece of each instance 

must overlap, since the model is load controlled.  The resulting contact is either one or a 

pair of point loads, and concentrated loads can create model instability (Van der Zijp, 

2009, ABAQUS program). 
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