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Abstract 

Behrouz Madahian. M.S. The University of Memphis. December 2011. System 
Dynamics Modeling for childhood obesity. Major Professor: Ramin Homayouni, 
Ph.D. 

 
      Effective strategies for prevention of obesity, particularly in youths, have been 

elusive since the recognition of obesity as a major public health issue two 

decades ago. In general, obesity is a result of chronic, quantitative imbalance 

between energy intake and energy expenditure, which is influenced by a 

combination of genetic, environmental, psychological and social factors. 

Therefore, a systems perspective is needed to examine effective obesity 

prevention strategies. In this study, a systems dynamics model was developed 

using the data from the Girls health Enrichment Multi-site Studies (GEMS). 

GEMS tested the efficacy of a 2-year family-based intervention to reduce 

excessive increase in body mass index (BMI) in 8-10 year old African American 

girls. First, an optimum model was built by systematically adding variables to fit 

the observed data by regression analysis for 50 randomly selected individuals 

from the cohort. The final model included nutrition, physical activity, and several 

environmental factors. Next, the model was used to compare two intervention 

strategies used in the GEMS study. Consistent with previous reports, we found 

that the two strategies did not affect the BMI increases observed in this cohort. 

Interestingly however, the model predicted that a 10 min increase in exercise 

would decrease BMI in the group receiving behavioral counseling. Our work 

suggests that system dynamics modeling may be useful for testing potential 

intervention strategies in complex disorders such as obesity. 
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Chapter 1 

Introduction 

      System dynamics was created during the mid-1950s by Professor Jay 

Forrester of the Massachusetts Institute of Technology (Meadows ,1972). His 

initial goal was to determine how his background in science and engineering 

could be brought to bear, in some useful way, on the core issues that determine 

the success or failure of corporations. Forrester's insights into the common 

foundations that underlie engineering, led to the creation of system dynamics. 

The creation of System dynamics was triggered, to a large degree, by his 

involvement with managers at General Electric (GE) during the mid-1950s. At 

that time, the managers at GE were puzzled because employment at their 

appliance plants in Kentucky exhibited a significant three-year cycle. The 

business cycle was judged to be an insufficient explanation for the employment 

instability. From hand simulations (or calculations) of the stock-flow-feedback 

structure of the GE plants, which included the existing corporate decision-making 

structure for hiring and layoffs, Forrester was  able to show how the instability in 

GE employment was due to the internal structure of the firm and not to an 

external force such as the business cycle. These hand simulations were the 

beginning of the field of system dynamics (Forrester,1969).  

      During the late 1950s and early 1960s, Forrester and a team of graduate 

students moved the emerging field of system dynamics from the hand-simulation 

stage to the formal computer modeling stage. Richard Bennett created the first 

system dynamics computer modeling language called SIMPLE (Simulation of 
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Industrial Management Problems with Lots of Equations) in the spring of 1958. In 

1959, Phyllis Fox and Alexander Pugh wrote the first version of DYNAMO 

(DYNAmic MOdels), an improved version of SIMPLE, and the system dynamics 

language became the industry standard for over thirty years. Forrester published 

the first, and still classic, book in the field titled Industrial Dynamics in 1961 

(Forrester,1969).  

      From the late 1950s to the late 1960s, system dynamics was applied almost 

exclusively to corporate/managerial problems. In 1968, however, an unexpected 

occurrence caused the field to broaden beyond corporate modeling. John Collins, 

the former mayor of Boston, was appointed a visiting professor of Urban Affairs 

at MIT. The result of the Collins-Forrester collaboration was a book titled Urban 

Dynamics. The Urban Dynamics model presented in the book was the first major 

non-corporate application of system dynamics (Forrester,1969).  The second 

major non-corporate application of system dynamics came shortly after the first.  

      In 1970, Jay Forrester was invited by the Club of Rome to a meeting in Bern, 

Switzerland. The Club of Rome is an organization devoted to solving what its 

members describe as the global crisis that may appear sometime in the future, 

due to the demands being placed on the Earth's carrying capacity (its sources of 

renewable and nonrenewable resources and its sinks for the disposal of 

pollutants) by the world's exponentially growing population. At the Bern meeting, 

Forrester was asked if system dynamics could be used to address the 

predicament of mankind. His answer, of course, was that it could. On the plane 

back from the Bern meeting, Forrester created the first draft of a system 
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dynamics model of the world's socioeconomic system. He called this model 

WORLD1. Upon his return to the United States, Forrester refined WORLD1 in 

preparation for a visit to MIT by members of the Club of Rome. Forrester called 

the refined version of the model WORLD2. Forrester published WORLD2 in a 

book titled World Dynamics (Forrester,1969).  

An Overview of Modeling and Simulation 

      A model is a representation of events and/or things that are real (a case 

study) or artificial. It can be a representation of an actual system, or it can be 

something used in place of the real thing to better understand a certain aspect of 

that thing. The model can depict the system at some point of abstraction or at 

multiple levels of the abstraction, with the goal of representing the system in a 

mathematically reliable fashion. A simulation is an applied methodology that can 

describe the behavior of that system using either a mathematical or a symbolic 

model (Fishwick,1995). Simply, simulation is the imitation of the operation of a 

real-world process or system over a period of time (Banks, 1998). For example, 

simulation can be used to represent the effect of changes in governmental policy 

during a fight with rebels, to analyze the decision-making processes of opposing 

military leaders, or to assess the social network structure of a political leader and 

his/her circle of advisers. 

      Modeling and simulation begins with (1) the development of a computer 

simulation or design based on a model of an actual or theoretical physical 

system, (2) execution of that model on a digital computer, and (3) analysis of the 

output. Modeling and the ability to act-out with those models provide a credible 
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way to understand the complexity and particulars of a real entity (Fishwick,1995). 

From these three steps one can see that modeling and simulation facilitates the 

simulation of a system such as a social network structure and then the testing of 

a hypothesis related to that structure. It is important to note that models are 

driven by data, so the data collection must be done with great accuracy. Once a 

model is created, the analyst can design a fairly well thought out and credible 

hypothesis that digs more deeply into the case study. For example, if one input to 

the model changed, the following might have been the result. Since there may be 

some other influential parameters not included into the model due to lack of data 

or understanding of the model, even that needs to be weighed carefully. 

Simulation is used when a real system cannot be engaged. This may happen 

when the real system (1) might not be accessible, (2) it might be dangerous to 

engage the system, (3) it might be unacceptable to engage the system, or (4) the 

system might simply not exist. To counter these objections, a computer will 

imitate operations of the various real-world facilities or processes. 

      A system is a construct or collection of different elements that together 

produce results not obtainable using the elements alone (Fishwick,1995). The 

elements can include people, hardware, software, facilities, policies, and 

documents: all things required to produce system-level qualities, properties, 

characteristics, functions, behavior, and performance. Importantly, the value of 

the system as a whole is the relationship among the parts. It is becoming widely 

accepted that Modeling and simulation holds a significant place in research and 
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development, due to its inherent properties of modeling, simulating, and 

analyzing (Banks, 1998). 

System 

      A system is a combination of components acting together to perform a 

specific objective (Ogata , 2004). A component is a single functioning unit of a 

system. The concept of a system can be extended to abstract dynamic 

phenomena, such as those encountered in economics, transportation, population 

growth, and biology.     

    A system is called dynamic if its present output depends on past input. If its 

current output depends only on current input, the system is known as static. The 

output of a static system remains constant if the input does not change. The 

output changes only when the input changes. In a dynamic system, the output 

changes with time if the system is not in a state of equilibrium (Sterman, 2000). 

Why Use Modeling and Simulation 

      Modeling and simulation is now being used in a variety of domains, including 

medical modeling, emergency management, crowd modeling, transportation, 

game-based learning, and engineering design, to name a few. Modeling and 

simulation applications are used primarily for analysis, experimentation, and 

training. Analysis refers to an investigation of a model’s behavior. Modeling and 

simulation can be applied in any field where experimentation is conducted using 

dynamic models. This includes all types of engineering and science studies as 

well as social science, business, medical, and education domains. Modeling and 

simulation is often the only tool capable of solving complex problems because it 
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allows for an understanding of system dynamics and includes enabling 

technology, both of which provide a means to explore credible solutions 

(Fishwick,1995). There are also many advantages to modeling and simulations 

(Banks, 1998). Here are some of the processes and results of using modeling 

and simulation (Fishwick,1995):  

1. Compressing and expanding time to allow the user to speed-up or slow-down 

behavior or phenomena to facilitate in-depth research  

2. Understanding why, by reconstructing and examining the scenario closely by 

controlling the system  

3. Exploring possibilities in the context of policies, operating procedures, and 

methods without disrupting the actual or real system  

4. Diagnosing problems by understanding the interactions among variables that 

comprise complex systems 

5. Developing understanding by observing how a system operates rather than 

predicting how it will operate  

6. Preparing for change by answering the “what if” in the design or modification 

of the system 

7. Investing wisely because a simulated study costs much less than the cost of 

changing or modifying a system  
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Chapter 2 

Methods 

System Dynamics 

      System Dynamics is the application of feedback control systems principles 

and techniques to model, analyze, and understand the dynamic behavior of 

complex feedback systems. As stated above, its origins trace back to the 

pioneering work of Jay W. Forrester, whose book Industrial Dynamics (Huang, 

Drewnowski,  Kumanyika, & Glass, 2009) is still a significant statement of 

philosophy and methodology in the field. System Dynamics is aimed at the study 

and analysis of certain kinds of complex systems, known as dynamic feedback 

systems. These are systems characterized by a large number of interrelated 

variables that interact dynamically over time through information-feedback 

structures. Although the words complex, dynamic, and system have been applied 

to all sorts of situations, feedback is the differentiating descriptor here. Indeed, 

feedback processes are seen in System Dynamics to hold the key to structuring 

and clarifying relationships within such systems and in understanding their 

dynamic behavior.      

      System dynamics deals with the mathematical modeling of dynamic systems 

and response analyses of such systems with a view toward understanding the 

dynamic nature of each system and improving the system's performance. 

Response analyses are frequently made through computer simulations of 

dynamic systems. The analysis and design methods of system dynamics can be 
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applied to mechanical, electrical, and hydraulic systems, as well as non-

engineering systems, such as economic systems and biological systems  

System Dynamics models help trace the patterns of behavior of a dynamic 

system to its feedback structure. In the System Dynamics view, feedback 

structures are seen as intrinsic in real systems. As such feedback is the structure 

that makes a system adapt over time (Richardson,1991). Moreover, System 

Dynamics models are continuous, they do not model discrete events, rather they 

"view separate events and decisions as riding on the surface of an underlying 

tide of policy, pressures, and dynamic pattern".  

      Building a causal model is an iterative process in which the modeler 

quantitatively formulates feedback relationships between elements of a given 

system that he is able to identify. A typical feedback-rich model can consist of 

several dozens to several hundreds of equations. The model goes through 

various stages of expansion and reduction until a minimal feedback structure is 

identified which is capable of simulating a predefined reference mode of the 

systemic problem under study. Testing a model's behavior against historical data 

and verifying its robustness can be a daunting procedure (Forrester & Senge, 

1996). The feedback loop is the basic building block of a complex feedback 

structure and as such the basic unit of analysis and communication of system 

behavior (Waldrop,1992). The endogenous perspective of a dynamic system 

may be the single most characteristic and significant feature of the field. 

Feedback loops have either positive or negative polarities. This polarity indicates 
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whether a loop has the tendency to reinforce or to counterbalance a change in 

one or more of its loop elements (Waldrop,1992). 

      The basic concept of feedback has a wide range of applications in 

engineering fields such as fluid, temperature, centrifuge, and steam pressure 

regulations over centuries. But, it needed the utilization of the computer to 

become accepted and serve as modeling discipline also for other areas than 

engineering.   Most succinctly, feedback is the transmission and return of 

information. For example, a feedback system exists whenever an action taker will 

later be influenced by the consequences of his or her actions. More generally, 

feedback refers to the situation of X affecting Y and Y in turn affecting X, perhaps 

through a chain of causes and effects. One cannot study the link between X and 

Y and, independently, the link between Y and X and predict how the system will 

behave. Only the study of the whole system as a feedback system will lead to 

correct results. 

Ultimate Goal of System Dynamics Modeling 

      Models are approximations of events, real events as in case studies, or 

artificial events as in use-case studies. Analysts create models from data; 

therefore, research for the event or details that go into a case study must be 

accurate to ensure that the model is sound. With a reliable model, analysts can 

develop a hypothesis or research question that requires observation of the 

model. The model is observed via simulation, and the simulation can be modified 

and repeated. Often, models include systems or collections of different elements 

that together produce results not obtainable by the elements alone. The analyst 
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then conducts an analysis of the simulations to draw a conclusion or to verify and 

validate the research. The ability to apply visualization facilitates the 

communication or presentation of the model, the simulation, and the conclusions 

drawn. All of this is learning by doing.  

      Ultimately, the purpose in applying System Dynamics is to facilitate 

understanding of the relationship between the behavior of a complex system over 

time and its underlying feedback structure. For this, system dynamicists rely on 

computer simulation. Even though the dynamic implications of isolated loops 

such as those discussed above may be reasonably obvious, the interconnected 

feedback structures of real problems are often so complex that the behavior they 

generate over time can usually be traced only by simulation. Computer 

simulation is particularly suited to the study of continuous systems, in which 

system variables change not in discrete jumps but continuously over time. This is 

a characteristic of all living systems, which by definition are in constant flux. Yet, 

because of the complexity and expense of continuous measurements, most 

experimental studies such as human energy expenditure studies have relied on 

discrete, rather than continuous, measurement protocols.  

      This can be a serious limitation, because a negative finding (e.g., finding no 

association between low energy expenditure and subsequent weight gain) may 

simply mean that the timing of the measurements did not coincide with the period 

of reduced/ increased energy expenditure (Saltzman & Roberts,1995).  

      In addition to handling dynamic complexity and permitting continuous 

measurements, simulation-type models make “perfectly” controlled 
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experimentation possible. In the model system, unlike real systems, the effect of 

changing one factor can be observed while all other factors are held unchanged. 

Internally, the model provides complete control of the system (Sterman, 2000). 

Mathematical Modeling of Dynamic Systems 

       System dynamics deals with the mathematical modeling of dynamic systems 

and response analyses of such systems with a view toward understanding the 

dynamic nature of each system and improving the system's performance.  

Mathematical modeling involves descriptions of important system characteristics 

by sets of equations. By applying physical laws to a specific system, it may be 

possible to develop a mathematical model that describes the dynamics of the 

system. Such a model may include unknown parameters, which must then be 

evaluated through actual tests. Sometimes, however, the physical laws 

governing the behavior of a system are not completely defined, and formulating a 

mathematical model may be impossible. If so, an experimental modeling process 

can be used. In this process, the system is subjected to a set of known inputs, 

and its outputs are measured. Then a mathematical model is derived from the 

input-output relationships obtained (Ogata , 2004). 

Simplicity of Mathematical Model Versus Accuracy of Results of Analysis 

      In attempting to build a mathematical model, a compromise must be made 

between the simplicity of the model and the accuracy of the results of the 

analysis. It is important to note that the results obtained from the analysis are 

valid only to the extent that the model approximates a given physical system. In 

determining a reasonably simplified model, we must decide which physical 
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variables and relationships are negligible and which are crucial to the accuracy of 

the model. To obtain a model in the form of linear differential equations, any 

distributed parameters and nonlinearities that may be present in the physical 

system must be ignored. If the effects that these ignored properties have on the 

response are small, then the results of the analysis of a mathematical model and 

the results of the experimental study of the physical system will be in good 

agreement. Whether any particular features are important may be obvious in 

some cases, but may, in other instances, require physical insight and intuition. 

Experience is an important factor in this connection. Usually, in solving a new 

problem, it is desirable first to build a simplified model to obtain a general idea 

about the solution. Afterward, a more detailed mathematical model can be built 

and used for a more complete analysis (Ogata, 2004). 

Basic Approach to System Design 

      System design refers to the process of finding a system that accomplishes a 

given task (Ogata, 2004). In general, the design procedure is not straightforward 

and will require trial and error. The basic approach to the design of any dynamic 

system necessarily involves trial-and-error procedures. Moreover, the features of 

the components may not be precisely known. Thus, trial-and-error techniques are 

almost always needed. Design procedures. Frequently, the design of a system 

proceeds as follows: One begins the design procedure knowing the 

specifications to be met and the dynamics of the components, the latter of which 

involve design parameters. The specification may be given in terms of both 

precise numerical values and vague qualitative descriptions. (Engineering 
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specifications normally include statements on such factors as cost, reliability, 

space, weight, and ease of maintenance). It is important to note that the 

specifications may be changed as the design progresses, for detailed analysis 

may reveal that certain requirements are impossible to meet. Next, the engineer 

will apply any applicable synthesis techniques, as well as other methods, to build 

a mathematical model of the system. Once the design problem is formulated in 

terms of a model, then the designer carries out a mathematical design that yields 

a solution to the mathematical version of the design problem. With the 

mathematical design completed, the engineer simulates the model on a 

computer to test the effects of various inputs and disturbances on the behavior of 

the resulting system. If the initial system configuration is not satisfactory, the 

system must be redesigned and the corresponding analysis completed. This 

process of design and analysis is repeated until a satisfactory system is found. 

Then a prototype physical system can be constructed. 

      It should be noted that the process of constructing a prototype is the reverse 

of mathematical modeling. The prototype is a physical system that represents the 

mathematical model with reasonable accuracy. Once the prototype has been 

built, the designer tests it to see whether it is satisfactory. If it is, the design of the 

prototype is complete. If not, the prototype must be modified and retested. The 

process continues until a satisfactory prototype is obtained. One must always 

keep in mind that the model he or she is analyzing is an approximate 

mathematical description of the physical system and it is not the physical system 

itself. In reality, no mathematical model can represent any physical component or 
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system precisely. Approximations and assumptions are always involved. Such 

approximations and assumptions restrict the range of validity of the mathematical 

model. The degree of approximation can be determined only by experiments. So, 

in making a prediction about a system's performance, any approximations and 

assumptions involved in the model must be kept in mind. The basic approach to 

the design of any dynamic system necessarily involves trial-and-error 

procedures. Also, the features of the components may not be precisely known. 

Thus, trial-and-error techniques are almost always needed (Ogata ,2004).  

Mathematical Modeling Procedure 

      The procedure for obtaining a mathematical model for a system can be 

summarized as follows (Ogata, 2004): 

1. Draw a schematic diagram of the system, and define variables. 

 2. Using physical laws, write equations for each component, combine 

them according to the system diagram, and obtain a mathematical model. 

 3. To verify the validity of the model, its predicted performance, obtained 

by solving the equations of the model, is compared with experimental 

results. 

 If the experimental results deviate from the prediction to a great extent, the 

model must be modified. A new model is then derived and a new prediction 

compared with experimental results. The process is repeated until satisfactory 

agreement is obtained between the predictions and the experimental results. 
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System Analysis 

      System analysis means the investigation, under specified conditions, of the 

performance of a system whose mathematical model is known (Cannon, 1967). 

The first step in analyzing a dynamic system is to derive its mathematical model. 

Since any system is made up of components, analysis must start by developing a 

mathematical model for each component and combining all the models in order 

to build a model of the complete system. Once the latter model is obtained, the 

analysis may be formulated in such a way that system parameters in the model 

are varied to produce a number of solutions. The analyst then compares these 

solutions and interprets and applies the results of his or her analysis to the basic 

task. It should always be remembered that deriving a reasonable model for the 

complete system is the most important part of the entire analysis. Once such a 

model is available, various analytical and computer techniques can be used to 

analyze it. The manner in which analysis is carried out is independent of the type 

of physical system involved-mechanical, electrical, hydraulic, and so on.  In the 

next section we take a look at some major modeling techniques and briefly 

explain their properties. 

 Agent-based Modeling 

      The aim of agent-based (or individual-based) modeling is to look at global 

consequences of individual or local interactions in a given space. Agents are 

seen as the generators of emergent behavior (Holland,1999) in that space. 

Interacting agents, though driven by only a small set of rules which govern their 

individual behavior, account for complex system behavior whose emergent 
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dynamic properties cannot be explained by analyzing its component parts. In 

Holland's words, "The interactions between the parts are nonlinear; so the overall 

behavior cannot be obtained by summing the behaviors of the isolated 

components. Said another way, there are regularities in system behavior that are 

not revealed by direct inspection of the laws satisfied by the components 

(Holland,1999). Emergence, thus, is understood as the property of complex 

systems where "much (is) coming from little" (Holland & Miller,1991). Emergence 

is the focal point of what now is called the theory of Complexity. Agent-based 

models consist of a space, framework, or environment in which interactions take 

place and a number of agents whose behavior in this space is defined by a basic 

set of rules and by characteristic parameters. Models can be spatially explicit, 

i.e., agents are associated with a specific location from which they may or may 

not be able to move.  

      Not all models need to be spatially explicit (i.e., the location does not play a 

role such as in simulations of networks). Individual-based models are a subset of 

multi-agent systems which includes any computational system whose design is 

fundamentally composed of a collection of interacting parts. For example an 

"expert system" might be composed of many distinct bits of advice which interact 

to produce a solution. Individual-based models are distinguished by the fact that 

each "agent" corresponds to autonomous individuals in the simulated domain. 

Certainly, cellular automata (CA) are similar to spatially explicit, grid-based, 

immobile individual based systems. However, CAs are always homogenous and 

dense (all cells are identical) whereas a grid-based individual-based model might 
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occupy only a few grid cells, and more than one distinct individual might live on 

the same grid. The philosophical issue is whether the simulation is based on a 

dense and uniform dissection of the space (as in a CA), or based on specific 

individuals distributed within the space. Agent-based models' resulting emergent 

dynamic behaviors can be linked with those of other models forming an even 

higher level of complexity and emerging behaviors. In summary, Complexity 

Theory is the "science of emergence" (Waldrop,1992), and agent-based models 

are a key element for modeling emergent phenomena.  

     An agent-based model (ABM) (also sometimes related to the term multi-agent 

system or multi-agent simulation) is a class of computational models for 

simulating the actions and interactions of autonomous agents (both individual or 

collective entities such as organizations or groups) with a view to assessing their 

effects on the system as a whole. ABMs are also called individual-based models 

(Tarik, Dietrich, & Christian, 2009). The models simulate the simultaneous 

operations and interactions of multiple agents, in an attempt to re-create and 

predict the appearance of complex phenomena. The process is one of 

emergence from the lower (micro) level of systems to a higher (macro) level. As 

such, a key notion is that simple behavioral rules generate complex behavior. 

This principle, known as K.I.S.S. ("Keep it simple stupid") is extensively adopted 

in the modeling community. Another central principle is that the whole is greater 

than the sum of the parts. Individual agents are typically characterized as 

boundedly rational, assumed to be acting in what they perceive as their own 
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interests, such as reproduction, economic benefit, or social status, using 

heuristics or simple decision-making rules. 

     Agent-based modeling and simulation (ABMS) is a new approach to modeling 

systems comprised of autonomous, interacting agents. ABMS promises to have 

far-reaching effects on the way that businesses use computers to support 

decision-making and researchers use electronic laboratories to support their 

research. Some have gone so far as to contend that ABMS is a third way of 

doing science besides deductive and inductive reasoning. Computational 

advances have made possible a growing number of agent based applications in 

a variety of fields. Applications range from modeling agent behavior in the stock 

market and supply chains, to predicting the spread of epidemics and the threat of 

bio-warfare, from modeling consumer behavior to understanding the fall of 

ancient civilizations, to name a few (Richardson,1991).  

      As long as rules are known or can be discovered by some sort of 

observation, the modeling and testing of such emergent structures is a relatively 

straightforward process. However, once the reverse direction of study is 

employed, that is, a complex aggregate behavior of a system has been 

observed, and now its agents and the rules by which they interact shall be 

identified, the process can be anything but straightforward. "Discovering" agents 

and rules and then building a model which in turn is capable of mimicking the 

previously observed dynamic behavior can be a very tedious avenue of research. 

ABMS has its direct historical roots in the notion that “systems are built from the 

ground-up,” in contrast to the top-down systems view taken by Systems 
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Dynamics. In System Dynamics modeling the feedback loop is the unit of 

analysis as seen earlier. Dynamic systems are deductive, in that they are 

described by their feedback structure at an aggregate level. That is, individual 

agents or events do not matter much in System Dynamics models, since the 

dynamics of the underlying structures are seen as dominant. Feedback 

structures, for example in social-science fields of study, can become subject to 

controversy since perspectives on a problem and perceptions thereof may differ 

widely. 

System Dynamics Modeling 

      As opposed to the concept of emergence and agent based modeling whose 

roots can be traced back to the 1970s, the scientific concept of feedback which is 

at the core of System Dynamics modeling is significantly older as Richardson 

demonstrates in his book on Feedback Thought (Richardson,1991). The 

underlying concept of feedback is its loop structure, or the notion of circular 

causality. Thinking in circles, and particularly, circular reasoning has been 

considered flawed by mainstream Western science throughout the last couple of 

centuries. It is worthwhile to recall, how traditional science establishes causality: 

"(1) the cause precedes the effect in time, (2) there is an empirical correlation 

between them, and (3) the relationship is not found to be the result of some third 

variable" (Babbie, 1998). Only relationships satisfying all three criteria are 

recognized as causal by traditional research. This strict distinction and isolation 

of cause and effect has served science well as long as relatively simple (and 

linear) systems of relationships were studied. 
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Vensim Software 

      Vensim is simulation software made by Ventana Systems, Inc (Eberlein & 

Peterson, 1992). Its purpose is to help companies to find an optimal solution for 

various situations that need analysis and where it's necessary to find out all 

possible results of future implementation or decision.    The Vensim is a visual 

modeling tool that allows you to conceptualize, document, simulate, analyze, and 

optimize models of dynamic systems (Eberlein & Peterson, 1992). Vensim 

provides a simple and flexible way of building simulation models from causal loop 

or stock and flow diagrams.  

      By connecting words with arrows, relationships among system variables are 

entered and recorded as causal connections. And thus, defining the relationships 

and the models and running the simulation has been made so easy using 

Vensim. Vensim is able to simulate dynamic behavior of systems, that are 

impossible to analyze without appropriate simulation software, because they are 

unpredictable due to many influences, feedback etc. It helps with causality loops 

identification and finding leverage points. Simulated situations may come from 

different sectors such as economics, business, science, social sector, 

environment etc. We used Vensim PLE version 5.9e for windows. The software 

can be downloaded from   http://www.vensim.com/freedownload.html. 
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Causal Tracing 

      Causal Tracing enables fast and accurate analysis of model dynamics. 

During construction of a model and while analyzing an existing model, it is useful 

to discover what things are causing other things to change.  Looking in one 

direction, you can discover which variables cause a particular variable to 

change.  Looking in the other direction, you can discover which variables are 

changed (or used) by a particular variable.  The variable under study is called the 

"workbench variable. Causal Tracing is a powerful method of following the 

causes or uses of a variable (or its behavior) throughout a model. Model 

structure is traced with tree diagrams. Model behavior is traced with Strip 

Graphs. Causal Tracing makes it far easier to thoroughly explore and debug a 

complex model. Vensim’s unique approach to model analysis greatly speeds 

understanding of model behavior. A dataset stores the dynamic behavior of all 

variables in the model for later viewing and analysis. Multiple simulations 

(experiments) can be performed and stored to allow comparison of behavior 

resulting from different conditions.  

Tree Diagram 

      The Tree Diagram analysis tool creates output windows showing a tree of 

causes branching off the workbench variable.  The Causes Tree Diagram shows 

the causes of a variable; the Uses Tree Diagram shows the uses of a variable.  

Tree Diagrams show causes and uses up to two variables distant (the default 

setting).  You can continue to trace the causes (or uses) of a variable throughout 
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a model by selecting a new workbench variable to trace and again clicking on the 

Causes Tree analysis tool.  

Tracing Behavior 

      Model behavior can be difficult to analyze quickly, especially when trying to 

discover exactly which variables and feedback loops are contributing certain 

components of behavior to a particular variable. By creating Causes Strip graph 

understanding the behavior of variables and causal relationships between them 

has become easier.  

Optimization  

      Vensim's optimizer provides fast calibration of models and discovery of 

optimal solutions Validation of the integrity of a model rests in part on comparing 

model behavior to time series data collected in the "real world."  When a model is 

structurally complete and simulates properly, calibration of the model can 

proceed to fit the model to this observed data.  Dynamic models are often very 

sensitive to the values of constant parameters.  If you want to calibrate your 

parameters so the model behavior matches observed data, you may need to 

experiment with thousands of combinations of different parameter values.  

Vensim calibration makes this procedure automatic.  You specify which data 

series you want to fit and which parameters you want to adjust. Then Vensim 

automatically adjust parameters to get the best match between model behavior 

and the data.  There are no limits on the numbers of parameters to adjust or data 

series to fit. This feature exists in Vensim Professional.  
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Subscripting (Arrays)  

      Vensim features a powerful subscripting language for constructing very 

advanced arrayed models. A simple model structure can be disaggregated to 

show detail complexity. Each subscripted structure can be individually 

customized with different constants, multiple equations, subscript functions (such 

as summing over elements of a subscript), and up to eight dimensions of 

subscripts. Multiple sub ranges make it easy to construct and analyze subsets of 

an array. 

The Power of Vensim  

     Nothing is easier than Vensim for creating customized causal loop or stock 

and flow diagrams. Vensim is very efficient for building accurate simulation 

models of dynamic feedback systems.  

 Building Models  

      With Vensim, you can customize diagrams with different colors, fonts, 

symbols, arrows, and pipes. Variable names can appear alone, or inside or 

outside of boxes, circles, hexagons, and other shapes. You can create multiple 

views in one model with each view containing a portion of the total model 

structure. An Equation Editor helps you build the equations for a simulation 

model. Vensim can create and simulate models with hundreds of thousands of 

variables. Vensim has many built-in functions including user defined Lookups, 

logical operators, random number generators, continuous and discrete delays, 

forecasts, scientific functions, and customizable Vensim macros and external 

functions (Eberlein & Peterson, 1992).   



24 

 

Simulation 

      Vensim contains a highly efficient simulation engine providing fast simulation 

times and allowing storage of huge datasets. Vensim can also be run over a 

network allowing multiple users to interact with a single model. Vensim can use 

external data series as exogenous inputs to drive a model or to compare against 

data from simulation runs. You can create external data in text editors, or import 

from (or export to) database and spreadsheet applications.  

The Vensim family of software runs on Windows (95/98/ Millennium /NT /2000 

/XP/ Vista) and the Power Macintosh running System 7 or higher (in Classic 

mode under OSX). Vensim requires 8 MB of memory and 8 MB of disk space for 

a full installation. A demonstration version of Vensim is available free for either 

Windows or Macintosh (Eberlein & Peterson, 1992). Vensim is available in 

several configurations to fit different modeling needs.  

Vensim PLE (Personal Learning Edition) 

      Helps you get started with building system dynamics and systems thinking 

models. Vensim PLE is free for educational or personal use and can be 

downloaded from their website.  

Vensim Professional  

      Allows you to use subscripting for easy handling of detail complexity, 

contains a text editor, and has optimization capabilities including model 

calibration and policy optimization.  
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Vensim DSS  

     Vensim DSS enables you to create management flight simulators for models, 

to customize Vensim by defining macros or external functions, and to link to other 

programming software through the Vensim DLLs.  

Obesity 

      Obesity is a term used to describe body weight that is much greater than 

what is healthy. If you are obese, you also have a much higher amount of body 

fat than is healthy or desirable. Adults with a body mass index (BMI, calculated 

as weight in kilograms divided by height in meters squared) between 25 kg/m2 

and 30 kg/m2 are considered overweight. Adults with a BMI greater than or equal 

to 30 kg/m2 are considered obese. Anyone who is more than 100 pounds 

overweight or who has a BMI greater than or equal to 40 kg/m2 is considered 

morbidly obese. Over nutrition in the form of unusual fatness has been 

recognized over the ages and in all societies. In the past, fatness was usually 

seen as a sign of health, wealth, and/or fertility. Today we know that obesity 

tends to be accompanied by a number of adverse health risks, and obese 

individuals are too often viewed as figures either of fun or of dislike. Yet, for all 

the health disadvantages and social criticism, obesity and overweight are 

developing in epidemic proportions in the westernized developed world. We 

recognize this epidemic in the need to enlarge and reinforce seats in theatres 

and airplanes and in the need for change in clothing styles and sizes.  

      The extent to which the high prevalence of adult obesity has its origins in 

childhood obesity is widely debated. The question remains unanswered but it is 
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clear that, along with increasing obesity in adults, there is increasing obesity in 

children at all ages. We are not short of theories for the development of obesity in 

children but we seem powerless to control the increase – leading to great 

concerns for future adult health (Flegal et al., 2006). Childhood obesity has now 

become the most prevalent nutritional disease in developed countries. For 

example, the prevalence of obesity, defined as a body mass index (BMI) equal to 

or above the 95th centile for children of the same age and sex, now affects 10–

15% of children and adolescents in the United States (Flegal et al., 2006). In 

assessing fatness an important distinction needs to be made between childhood 

and adulthood – children grow in size, so that body measurement cut-offs for 

fatness have to be adjusted for age and in adolescence for maturation as well. 

For this reason, the assessment of adiposity in childhood and adolescence 

differs from its assessment in adults (Parsons, Power, Logan, & 

Summerbell,1999).  

      When the prevalence of obesity in the United States is compared across 

nationally representative surveys conducted over the last 30 years, the most 

rapid increases in prevalence occurred between 1980 and 1994. The greatest 

increases in body weight have occurred in children and adolescents in the upper 

half of the BMI distribution (Troiano & Flegal, 1998). Stated another way, the 

mean BMI for children of the same age and sex has increased more than the 

median. These observations suggest at least two possibilities. They may suggest 

that the genes that predispose to obesity occur in approximately 50% of the 

population. Alternatively, these observations suggest that the factors that 
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influence the development of obesity are discrete, and act only on half of the 

population (Troiano & Flegal, 1998).  

      Elsewhere in the world, obesity is also increasing rapidly. Nevertheless, the 

world-wide prevalence of obesity is generally lower than the prevalence observed 

among children and adolescents in the United States. The factors that account 

for the rapid changes in prevalence remain unclear. The rapidity of the changes 

in prevalence clearly excludes a genetic basis for the changes, because the gene 

pool remained unchanged between 1980 and 1994. Because obesity can only 

result from an imbalance of energy intake and expenditure, it may be useful to 

review the changes in diet and activity that occurred synchronously with the 

changes in prevalence (Troiano & Flegal, 1998). It should be noted that no data 

yet exists that link obesity to any of the following behaviors. Nevertheless, these 

behavioral shifts offer reasonable and testable hypotheses. 

      For example, in the 1970s, the advent of the microwave oven made it 

possible for children to select and prepare their own meals without parental 

oversight. Likewise, substantial increases have occurred in food consumption 

outside the home. Currently, 35% of a family’s food expenditure in the United 

States is spent on food consumed outside the home. Approximately, 7% to 12% 

of children and adolescents skip breakfast. Few children consume a dietary 

pattern consistent with the food guide pyramid. The consumption of soft drinks 

has almost doubled in the last 15 years. Over 12000 new food products are 

introduced annually in the United States (Clarke & Lauer,1993) . All of these 

dietary factors may increase the difficulty associated with the establishment and 
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maintenance of a healthy body weight. Activity deserves equal attention. Marked 

declines in vigorous physical activity occur in adolescent girls, at a time when 

susceptibility to obesity is heightened (Heath, Pratt, & Warren, 1994). In the 

United States, the number of schools that offer daily physical education has 

declined by almost 30% over the past decade. In addition, the percentage of 

children who watch five or more hours of television daily has increased to 30%. 

Increased numbers of working mothers and a perceived lack of neighborhood 

safety may contribute further to increased levels of inactivity (Clarke & 

Lauer,1993).  

      Until quite recently, obesity in children was viewed as a cosmetic problem. 

The major risks associated with obesity in children and adolescents were those 

consequences that resulted when obesity persisted into adulthood. However, 

more recent experience indicates that significant health risks are associated with 

obesity in childhood. For example, it is recently shown that 65% of overweight 5- 

to 10-year-olds have at least one cardiovascular disease risk factor, such as 

elevated blood pressure or lipid levels, and 25% have two or more risk factors 

(Freedman, Dietz, Srinivasan, & Berenson, 1999). Furthermore, type II diabetes 

mellitus now accounts for up to 30% of new diabetes cases in some paediatric 

clinics, and up to 3% of some paediatric populations, such as Native Americans, 

now suffer from this problem (Freedman et al.,  1999).The overwhelming majority 

of type II paediatric diabetic cases occur in obese patients. To summarize, 

obesity is prevalent, it appears to be increasing and significant effects are 

demonstrable in childhood. Effective treatment of affected children and 
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prevention of obesity in children who are susceptible must become a priority. The 

challenge is how to accomplish both goals. Care for mildly to moderately 

overweight patients will require the service of primary care practitioners, and 

guidelines now exist to enhance these (Barlow & Dietz, 1998). Effective 

treatment for severely obese children is essential and will probably require care 

in specialty clinics. However, effective prevention of obesity in non-overweight 

children may also help reduce body weight in children who are already 

overweight. As with nutritional deficiency diseases, where the addition of iodine 

to salt reduces goiter, or the addition of fluoride to water reduces dental decay, 

environmental modification may represent the most durable, effective and 

cheapest intervention. Nevertheless, until the causes of obesity are better 

understood, the target of the environmental dietary intervention must be based 

on logic rather than science (Barlow & Dietz, 1998). In contrast to dietary 

interventions, efforts that increase physical activity or reduce inactivity appear 

warranted. Although we lack data to demonstrate that such measures effectively 

reduce the incidence of obesity in the population, increased physical activity has 

demonstrated benefit for the comorbidities of obesity, such as hypertension, 

diabetes and hyperlipidemia (Heath, Pratt , & Warren, 1994). Prevention 

presents additional challenges. The epidemic of obesity is not yet viewed with the 

urgency that it demands. Paediatricians are poorly equipped to treat obesity, and 

methods that help primary-care providers target specific behaviors, like 

computer-based interactive questionnaires, are still in a developmental phase. 

Effective means to maintain weight in those who are gaining weight too rapidly or 
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to reduce weight in those who are overweight must be established. Finally, the 

environmental infrastructure necessary to promote physical activity in the many 

settings that affect children must be developed and evaluated. 

Natural History of Adiposity 

      Body fat is made up of fat cells or adipocytes. The changes in fat mass that 

occur in the growing child arise in two separate ways, through changes in the 

number and in the mean size of adipocytes. In infancy, adipocyte enlargement 

contributes most to the increasing fat mass, while after infancy fat mass gain 

arises mainly through cell proliferation (Knittle, Timmers, Ginsberg-fellner, Brown, 

& Katz, 1979). As a result, fat mass rises steeply during the first year and then 

falls again, with a second rise in later childhood. Figure 1 illustrates the pattern 

and also shows how anthropometric indices, like the body mass index, and 

adipose tissue cellularity follow the same age-related trends.  

Measurement of Body Fat 

      An ideal measure of body fat should be accurate, precise, accessible, 

acceptable and well documented. Accuracy and precision mean that the 

measure should be unbiased and repeatable. Accessibility relates to the 

simplicity, cost and ease of use of the method. Acceptability refers in the 

broadest sense to the invasiveness of the measurement and documentation 

concerns the existence of age-related reference values of the measurement for 

clinical assessment. No existing measure satisfies all these criteria. Highly 

accurate reference methods like deuterium dilution or underwater weighing are 
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expensive, and more accessible, cheaper methods based on anthropometry are 

not very accurate (Davies & Cole, 1995).  

 

 

Figure 1. Trends in body mass index through childhood and the corresponding 

trends in adipose tissue cellularity (Knittle, Timmers, Ginsberg-fellner, Brown, & 

Katz, 1979). 
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Anthropometry 

      Anthropometry is the single universally applicable, inexpensive and 

noninvasive method available to assess the size, shape and composition of the 

human body. It reflects both health and nutrition and predicts performance, risk 

factors and survival (DeOnis & Habicht,1996). The most widely used 

measurements to predict fatness are weight and height, and circumferences. 

Percent of Median, Centiles and Z-scores 

      Anthropometry changes with age during childhood. To assess individual 

children, measurements need to be adjusted to compare them with those of other 

children of the same age. In addition, weight may need to be adjusted for height. 

The adjustment is made by comparing the child’s measurement with a suitable 

reference value, obtained either from a chart or table, though computers are now 

simplifying the process. There are three different ways of expressing the adjusted 

anthropometry value: as a percentage of the median, as a centile and as a Z-

score. The percent of median is 100 times the measurement divided by the 

median or mean reference value for the child’s age (or in the case of weight-for-

height, weight divided by the median for the child’s height). For centiles, the 

measurement is plotted on a growth centile chart and the child’s centile 

interpolated from the growth curves. Z-scores are closely related to centiles and 

indicate the number of standard deviations the child’s measurement lie above or 

below the mean or median reference value (Gomez et al.,1956). As an example, 

three proposed cut-offs to define overweight based on age adjusted weight are 
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120% of the median, the 97th centile and + 2 Z-scores respectively. These cut-

offs are all similar to each other, identifying 2–3% of the reference population as 

being overweight. Percent of the median is the simplest of the three forms to 

calculate, and has been in use the longest (Gomez et al., 1956). Centiles are 

easy to read off the chart and are well understood by parents. If the 

measurement is normally distributed, centiles and Z-scores are interchangeable. 

However, often there is no known distribution by which to convert the centiles on 

the chart to Z-scores. This applies particularly to skew data like weight (Gomez et 

al.,1956).  

Body Mass Index 

      The interdependence between weight, height, body mass index and body fat 

is often insufficiently well understood. The body mass index is sometimes 

criticized because of its association with height (O’Dea & Abraham, 1995), yet 

this is only a flaw if the index is required to be uncorrelated with height. From a 

broader perspective the association is actually an advantage, as it flags the 

greater fatness of tall children during adolescence. Recent studies have shown 

high correlations between BMI and percent body fat measured (Daniels, Khoury 

& Morrison,1997). Equally it is important to realize that the body mass index 

cannot be used to demonstrate an association between adiposity and height in 

adolescence – body mass index does not measure adiposity directly. To 

investigate the correlation between adiposity and height a direct measure of body 

fat should be used. The natural history of body mass index is similar to that for 

body fat, a steep rise during infancy with a peak at 9 months of age, followed by 
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a fall until age 6 years and then a second rise, which lasts until adulthood.  Body 

mass index for age percentiles for girls aged 2-20 years is shown in figure 2. 

 

 

Figure 2. Girls Body Mass Index for age percentiles. 
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Adiposity as Proxy for Later Adiposity, Morbidity and Mortality 

Tracking 

      Many studies have examined the persistence (tracking) of adiposity from 

childhood to adulthood, and the literature has recently been reviewed. The 

magnitude of tracking is important when considering treatment or prevention 

strategies. The chance of childhood obesity persisting into adulthood depends on 

the measure of adiposity used, the cut-off used to define obesity and the age of 

initial assessment. However, it is a consistent finding that fatter children are more 

likely than thin children to be obese later in life (Power, Lake, &, Cole,1997). 

There is relatively low tracking from early childhood to adulthood, while fat 

adolescents have a high risk of obesity as adults (Power, Lake &, Cole,1997). 

The point of minimal BMI on the centile chart at about age 6 years (see Figure. 2) 

is known as the adiposity rebound. As a rule, age at adiposity rebound (when the 

BMI begins to rise again from the minimal level) predicts adult BMI but it is 

probably not as good a predictor as the child’s BMI at that age (Whitaker, Pepe, 

Wright, Seidel, & Dietz, 1998). Overall, prediction of adult obesity from child 

adiposity is only moderate.  

Morbidity and Mortality 

       It is important to know if adiposity is associated with current and future 

morbidity and mortality. There have been several studies relating weight–height 

indices to subsequent mortality in children. The weight/height� index was used 

to assess the risk of death in a group of malnourished children. The 

Measurement and definition optimal height power ‘p’ was found to be close to 2. 
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That is, the BMI was a better predictor of early death than the weight-for-height 

Z-score (Prudhon, Briend,  Laurier, & Golden, 1995). Relatively few data are 

available relating BMI to morbidity and mortality in children and adolescents, but 

associations have been found between BMI or change in BMI, and increased 

blood pressure, adverse lipoprotein profile, noninsulin- dependent diabetes 

mellitus and early atherosclerosis lesions (Prudhon, Briend,  Laurier, & Golden, 

1995). Two follow-up studies have examined the association between child BMI 

and adult outcome. In the Harvard Growth Study, overweight girls and boys had 

an increased risk of later obesity-associated morbidity as compared to their lean 

adolescent peers (Must, Dallal, & Dietz,1991). The study also found that those 

who were underweight in childhood had a higher all-cause mortality rate than 

those of average weight. This is consistent with the increased mortality in adults 

associated with both low and high BMI. BMI is the optimal single measure for 

assessing overweight, and the International Obesity Task Force (IOTF) cut-off for 

BMI offers an internationally acceptable definition of overweight and obesity. As 

such it should make inter-study comparisons more valid, and may help identify 

factors responsible for the recent steep rise in child obesity. However, BMI does 

not distinguish between body fat and lean body mass.  

GEMS 

      Memphis Girls health Enrichment Multi-site Studies (GEMS) was a controlled 

trial in which girls were randomly assigned to an obesity prevention or alternative 

intervention. The setting for this intervention was Local community centers and 

YMCAs in Memphis, Tennessee. The participants were chosen from Girls ages 
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8-to-10 years (n=303) who were identified by a parent as African  American and 

had body mass index (BMI) ≥25th percentile for age or one parent with BMI ≥25 

kg/m2. This study was aimed at testing the results of two interventions on body 

mass index (BMI) after two years. Intervention groups were ‘Group behavioral 

counseling’ to promote healthy eating and increased physical activity (obesity 

prevention intervention) or self-esteem and social efficacy (alternative 

intervention). The major results observed in this study is that BMI increased in all 

girls with no treatment effect (obesity prevention minus alternative) at 2 years 

and there were no effects on physical activity. And the study concludes that the 

lack of significant BMI change at 2 years indicates that this intervention alone is 

insufficient for obesity prevention. Effectiveness may require more explicit 

behavioral change goals and a stronger physical activity component as well as 

supportive changes in environmental contexts (Klesges et al., 2007). 
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Chapter 3 

A System Dynamics model for Memphis Girls Health Enrichment Multi-site 

Studies (GEMS) 

      Effective strategies for prevention of obesity, particularly in youths, have been 

elusive since the recognition of obesity as a major public health issue two 

decades ago. In general, obesity is a result of chronic, quantitative imbalance 

between energy intake and energy expenditure, which is influenced by a 

combination of genetic, environmental, psychological and social factors. 

Therefore, a systems perspective is needed to examine effective obesity 

prevention strategies. In this study, a systems dynamics model was developed 

using the data from the Girls health Enrichment Multi-site Studies (GEMS). 

GEMS tested the efficacy of a 2-year family-based intervention to reduce 

excessive increase in body mass index (BMI) in 8-10 year old African American 

girls. First, an optimum model was built by systematically adding variables to fit 

the observed data by regression analysis for 50 randomly selected individuals 

from the cohort. The final model included nutrition, physical activity, and several 

environmental factors. Next, the model was used to compare two intervention 

strategies used in the GEMS study. Consistent with previous reports, we found 

that the two strategies did not affect the BMI increases observed in this cohort. 

Interestingly however, the model predicted that a 10 min increase in exercise 

plus 100 Cal in energy intake would decrease BMI in both groups. Our work 

suggests that system dynamics modeling may be useful for testing potential 

intervention strategies in complex disorders such as obesity. 
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Introduction 

    System Dynamics is the application of feedback control systems principles and 

techniques to model, analyze, and understand the dynamic behavior of complex 

feedback systems. The ultimate purpose in applying System Dynamics is to 

facilitate understanding of the relationship between the behaviors of a complex 

system over time. For this, system dynamics models rely on computer simulation. 

Even though the dynamic implications of simple loops may be reasonably 

obvious, the interconnected feedback structures of real problems are often so 

complex that the behavior they generate over time can usually be traced only by 

simulation. Computer simulation is particularly suited to the study of continuous 

systems, in which system variables change continuously over time. Yet, because 

of the complexity and expense of continuous measurements, most experimental 

studies of human energy expenditure have relied on discrete, rather than 

continuous, measurement protocols. This can be a serious limitation, because a 

negative finding (e.g., finding no association between low energy expenditure 

and subsequent weight gain) may simply mean that the timing of the 

measurements did not coincide with the period of reduced/ increased energy 

expenditure. In addition, system dynamics models make “perfectly” controlled 

experimentation possible. In the model system, unlike real systems, the effect of 

changing one factor can be observed while all other factors are held unchanged.  

     In (Abdel-hamid, 2002), authors developed a system dynamics model to 

investigate the effect of physical activity and diet on weight gain or loss. Thus, 

they approach the modeling of dynamics of obesity from diet and exercise 
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perspective. The importance of residual environments and neighborhoods on 

health and the effectiveness of system dynamics modeling to understand these 

effects on health are addressed in (Amy & Ana, 2005 ). In authors mention the 

need for using multilevel framework in which obesity should be framed as a 

complex system in which behavior is affected by individual-level factors as well 

as socio-environmental factors. 

    The obesity epidemic has grown rapidly into a major public health challenge, in 

the United States and worldwide. The scope and scale of the obesity epidemic 

motivate an urgent need for well-crafted policy interventions to prevent further 

spread and (potentially) to reverse the epidemic. Yet, several attributes of the 

epidemic make it an especially challenging problem both to study and to combat.  

Worldwide, nearly half a billion were overweight or obese in 2002 (Hammond, 

2009). The growth of the obesity epidemic has significant implications for public 

health and health care costs. Obesity in children is also growing rapidly, present-

ing immediate health risks and suggesting the potential for even larger future 

increases in adult obesity unless the epidemic is contained. Both the scope and 

the scale of the obesity epidemic motivate an urgent need for well-crafted 

interventions to prevent further spread and to (potentially) lower current rates of 

overweight and obesity. 

 Although many advances have been made with regard to the basic biology of 

adiposity and behavioral modifications at the individual level, little success has 

been achieved in either preventing further weight gain or maintaining weight loss 

on a population level. To a great extent, this is the result of the complex task of 
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trying to change the way people eat, move, and live, and sustaining those 

changes over time. Historically, obesity research has been conducted within 

individual disciplines. Now, for both scientific inquiry and for public policies, 

obesity should be framed as a complex system in which behavior is affected by 

multiple individual-level factors and socio-environmental factors (i.e. factors 

related to the food, physical, cultural, or economic environment that enable or 

constrain human behavior, or both). These factors are heterogeneous and 

interdependent, and they interact dynamically.  

     This study attempts to demonstrate the utility of System Dynamics modeling 

as a vehicle for controlled experimentation to study and gain insight into the 

complex system of obesity and show the effectiveness of using System 

Dynamics modeling for simulating complex systems such as obesity. In this study 

a System Dynamics model for the GEMS intervention data by using Vensim 

software which includes energy intake, energy expenditure, body weight and 

BMI, and socio environmental subsystems is developed. The system is aim at 

capturing most of the variables and effects involved in the model so that reliable 

simulation results on BMI which are comparable to measurements be obtained. 

Vensim 

    The Vensim (Eberlein & Peterson, 1992) is a visual modeling tool that allows 

you to conceptualize, document, simulate, analyze, and optimize models of 

dynamic systems. Vensim provides a simple and flexible way of building 

simulation models from causal loop or stock and flow diagrams. By connecting 

words with arrows, relationships among system variables are entered and 



42 

 

recorded as causal connections. And thus, defining the relationships and the 

models and running the simulation has been made so easy using Vensim. We 

used Vensim PLE version 5.9e for windows. The software can be downloaded 

from http://www.vensim.com/freedownload.html. 

System Dynamics Model Structure- Core Model 

       Energy intake subsystem.This subsystem includes data on the following 

macro nutrients: carbohydrate, fat, protein, fiber, fatty acids, sugar, and starch 

intake. The data points available for this cohort are the baseline and it is 

expected that each person participating in the study stick to the nutrition data 

available at the baseline.  

       Energy expenditure subsystem.   This subsystem consists of three variables. 

Thermic effect of food (TEF) which is the amount of energy used to process the 

food in the body which is 10% of the energy intake (Abdel-hamid, 2002). The 

second variable is the thermic effect of activity (TEA) which is the energy used 

for carrying out the exercise. The final variable is the resting energy expenditure 

(REE) which is the energy which body requires for maintenance of its biological 

functions and balance.  

       Energy surplus deficit and body weight. The difference between energy 

intake and energy expenditure causes the energy imbalance (energy 

surplus/deficit) in the system. The energy surplus is stored in the body stores. 

Thus, the core model incorporates three subsystems of energy intake, energy 

expenditure, and energy surplus deficit and body weight. Figure 3 demonstrates 

the core model. 
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Figure 3. Core model. 

 

Population Average Simulation 

      Using the model developed, we simulate population average and compare 

the final BMI simulated for the average BMI measured in the population of 303 

individuals. The BMI average is 25.27 and the BMI simulated is 26.8 which 

shows the result obtained is in agreement with the documented data. For doing 
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this simulation we take the mean of each input variable and insert it into the 

model. 

     We used this model for simulation at individual level. The results are not that 

accurate and the model does not fit reasonably to the data. We selected 50 

individuals at random. We ran regression analysis of measured BMI at the end of 

study on simulated BMI. The regression correlation coefficient was 0.57. This 

result is in agreement with the statement we made before that the model does 

not fit the data at individual level. There are many possible explanations to this 

issue. Individuals are very different each coming from different family socio-

environments and may have different genetic and pathological issues and 

different eating and expenditure habits to mention a few. 

     In order to deal with this problem we need to capture as much of this 

variability as possible into the system. To do so, we chose seven environmental 

variables and incorporated them into the model. These variables and their design 

and modification are explained in next section. 

Core Model Plus Environmental Subsystem 

    The environmental subsystem consists of seven variables- fast food density, 

restaurant density, mean fruit vegetable availability, mean fruit vegetable 

accessibility, baseline family support for healthy eating, family income, and 

carryout food eating. All these variables will result in “over eating inclination 

coefficient” which is designed to be between -1 and 1 and directly increase or 

decrease the energy intake input. Demonstrating these variables by xi, the 
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overeating inclination coefficient is build based on formula (1).The negative sign 

is applied when the sum of the seven variables is smaller than zero. 

(1)            )5.0log(*
7

1
=coeficientn inclinatio overeating 2 +± ∑ i

x  

      In order to incorporate the environmental variables into the system all 

variables are normalized using mean and standard deviation for each variables 

obtained from the whole population of 303 based on formula (2). In this formula, 

µi and 	i are mean and standard deviation for the population of each specific 

variable respectively. In this way, the weight for each variable in the system is 

calculated by taking into account the population it is coming from and thus it 

depends on the deviation from the mean of population and standard deviation of 

the population for the desired variable and thus is independent of the units of 

measurement. If we demonstrate overeating inclination coefficient by X and 

baseline energy intake by Y, we obtain the formula (3) for the energy intake used 

in the system. 

)2(                                                                                 
i

ii

i

x
Z

σ

µ−
=  

(3)                                                      X)+(1*Y=intakeenergy   

Figure 4 shows the environment subsystem incorporated into the model. As it 

can been seen from the figure, some of the variables have positive correlation 

with “Overeating inclination coefficient” and some others have negative 

correlation. This fact is shown by positive and negative signs at arrow heads. For 
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instance, fast food density in the neighborhood has positive correlation with 

“overeating inclination coefficient”. That is, if fast food density increases in an 

area it increases the value of “overeating inclination coefficient”. In other words, 

the bigger the normalized value of this variable for an individual the bigger the 

positive effect this variable has on “overeating inclination coefficient”. 

 

 

Figure 4. Environment subsystem. 

 

Core Model Plus Behavioral Variables Fat and Sweet Beverage Preference 

      Even though the values for sugar intake and fat intake are measured in the 

GEMS study, as it is expected, there will be deviation in these values based on 

personal lifestyle and eating habits for each person. Thus, we develop two 

behavioral variables based on data available in GEMS study to target these 

individual differences and varying eating habits for each individual. These two 

variables, “food’s fat content coefficient” and “sweet beverage preference” are 



47 

 

basically built the same way as the seven environmental variables explained in 

previous section. Food’s fat content coefficient is between -1 and 1 and directly 

increase or decrease the food fat intake incorporated into the system for each 

individual. This variable comprised of two variables: 1-low fat food preparation 

and 2- high fat food preparation in the family. In order to incorporate them into 

the system, these variables are normalized based on formula (2). After this 

process, the food’s fat content coefficient is obtained using formula (4). In this 

formula, food fat content coefficient, low fat food preparation and high fat food 

preparation are demonstrated in abbreviation forms FFCC, LFFP, and HFFP 

respectively. 

(4)                       HFFP)(LFFP*0.18=FFCC +  

     Sweet beverage preference is a normalized variable based on formula (2). 

This variable is between -1 and 1 and directly increases or decreases the sugar 

intake based on its deviation from the mean of population. That is, a positive 

deviation (observation bigger than population average for this variable) increases 

the sugar intake and by the same token a negative deviation decreases the 

sugar intake. Thus, final sugar intake, final fat intake and fatty acids intake are 

obtained using formula (5), (6). In these formulas, fat intake, fatty acid intake, and 

sugar intake are nutrient values measured for each individual at baseline. Final 

fat intake, final fatty acid intake, fat intake, fatty acid intake, food fat content 

coefficient, final sugar intake, sugar intake, and sweet beverage preferences are 

abbreviated to FFI, FFAI, FI, FAI, FFCC,FSI, SI, and SBP respectively. 
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(5)                                 FFCC)+(1*FAI)or    (FI=FFAI)or    (FFI

(6)                                                                     SBP)+(1*SI=FSI  

Individual Variability- the Black Box Variable 

      In addition to variables incorporated into the system, there exists a black box 

variable named “individual variability”. This variable, which can take a value 

between -1 and 1, shows the uncertainty in the model and is defined as a fraction 

of energy intake needed to be added to the measured  energy intake in order to 

get final BMI simulated equal to the value of final  BMI measured after 2 years of 

intervention. The formula representing relationship between energy intake and 

individual variability is as represented in formula (7). In this formula, final energy 

intake, energy intake, and individual variability are represented by FEI, EI, and IV 

respectively. In this formula, energy intake is obtained from nutrients intake 

documented for each individual in GEMS study. The value obtained from the 

formula above for individual variability in order to fit the model, is used later in 

analysis of the model. Based on argument above, the closest the individual 

variability to zero the more precise is the model. For example the individual 

variability of 0.1 shows that we need to increase energy intake 10% to adjust 

simulation to match measured results. And thus, 10% of the system has not been 

captured by the model that might be due to other subsystems like genetics that 

are not incorporated into the model. Initially, individual variability is set to zero 

and the final simulated results are documented for further statistical analysis.  

 (7)                                     I.V)+tcoefficienn inclinatio overeating(1*EI=FEI(kcal) +  
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Complete Model 

     The complete model is obtained by putting all the components explained in 

previous sections together. The result of simulations based on this model for 

each individual is obtained for statistical analysis of the model. This model is 

shown in figure 5. In this figure the environment subsystem is just shown by “over 

eating inclination coefficient) due to lack of space. 

Model fitting 

     The metabolic equivalent of task (MET) for four hours is available for each 

individual in the GEMS study. Having this information and setting the resting 

metabolic rate to 1 kcal per each kilogram of body weight in each hour (1 kcal.kg-

1.hr-1) (Ainsworth et al., 2011) for the remaining 20 hours minus activity duration, 

the REE is calculated for each individual based on body weight. We set MET for 

physical activity to be on average 7 for TEA.  Since each gram of fat has 9 kcal of 

energy, the amount of energy required to store one gram of fat in the body is 

approximately 9 kcal. The energy equivalent of protein is 4 kcal per gram. In 

average, this energy surplus/deficit during 730 days is accumulated in the body 

weight variable.  
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Figure 5. Complete Model. 

 
     BMI variable calculates BMI at the end of intervention using individual height 

after two years and final body weight simulated. Based on the population under 

study and fitting the model to the real measured data, the fat mass accumulation 

is designed to be based on 55% of daily energy surplus/deficit. Since protein is 

involved in fat free mass gain the amount of fat free mass gain is dependent on 

the amount of daily protein intake. Thus, by taking into account the population 

under study and fitting of the system for data points, the fat free mass is based 
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on 0.2 of daily energy surplus. Formulas (8) through (11) show the relationship 

between these variables. 

(8)               cal)ficit)/9(ksurplus/deenergy daily *(0.55 =am)FatMass(gr delta  

(9)                             mass)/1000fat  (delta+massfat  initial=)FatMass(kg  

(10)          cal)ficit)/4(ksurplus/deenergy daily *(0.2=mass(gram) freefat  delta  

(11)          mass)/1000 freefat  (delta+mass freefat  initial=mass(kg) freeFat  

As it is apparent from the formulas above, the delta fat free mass and delta fat 

mass can be positive or negative depending on whether there exists an energy 

surplus or deficit which can result in fat mass and fat free mass gain or loss. In 

order to demonstrate the output of simulation using Vensim software, an 

individual is chosen and the dynamics of change in final weight is shown in figure 

6.  



52 

 

 

Figure 6. Dynamics of weight change simulation using vensim software. 

 

Results 

    Much of the research in obesity prevention studies has emphasized one 

aspect of the problem in isolation. For instance, the effect of one type of diet or 

special type of workout on body weight gain/loss is investigated. Even though 

such specific studies are necessary in understanding of any complex systems, 

breaking the system to its micro components and investigating each part is often 

insufficient in understanding the whole picture. Thus, in order to have a complete 

understanding of a complex system it is necessary to be able to put the 

knowledge of individual components into a whole complex system. 
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      The model described here incorporates body weight and BMI, energy intake, 

energy expenditure, and environmental factors subsystems to a model to 

simulate change in the body weight and composition in the two year period of 

GEMS study. In order to develop the model, we start with three main subsystems 

which are energy intake, energy expenditure, and body weight/ BMI subsystem. 

After inserting the values of all variables into the model for each individual, the 

model is simulated. The values of each non-input variables are updated for the 

length of the intervention (on average 730 days) times and the final value of the 

BMI is obtained. We simulated the model at each level of development. Table 1 

gives the result of regression analysis between final BMI measured and 

simulated for the four levels of design. In this table, correlation coefficient and the 

p value for testing H0: there’s no correlation at each level are presented. 

 
Table1 

Regression Analysis of Final BMI at Different Levels of Development 

Model Correlation coefficient P-value 

Core model 0.57 1E-5 

Core model+ fat + sugar  0.70 2E-8 

Core model + Env comp 0.72 5.08E-9 

Complete model 0.83 5.98E-14 

       

      In this table, model levels are ordered from the core model to complete 

model. As was can see, by adding new components to the model correlation 

coefficient between final BMI measured and simulated increases and the line of 



54 

 

regression becomes closer to Y=X and the standard errors of slope and intercept 

decreases. This demonstrates that by adding new components to the model, the 

uncertainty in the model decreases and model captures more of the dynamics 

involved in this system.  

     Figure 7 shows the histogram of individual variability for the complete model. 

The individual variability values plotted here are the fraction of this variable 

required for each individual so that the results of simulation and measured BMI 

are exactly the same. As we can see for 84% of the individuals (42 out of 50) the 

value of individual variability is between -0.1 and 0.1. This result demonstrates 

that uncertainty in the model is very low for 84% of individuals and it 

demonstrates that the system can capture most of the important variables into 

the model and just a small fraction (less than 0.1) cannot be explained by the 

model. Based on Q1-1.5IQR=-0.16 and Q3+1.5IQR=0.16 we have 8 outliers in 

the system that the final BMIs measured and simulated are different. Based on 

µ+3*	=0.54 and µ-3*	=0.5 we’ll obtain 2 outliers.  

      The reason for having outlier in the system can range from error in reporting 

the data like under reporting to pathological issues and genetics which are not 

addressed in the model. In addition to analysis above, we run two tests for the 

slope and intercept in complete model as follows. First, we tested the hypothesis 

of slope=0. By this test we are testing the hypothesis of no association between 

final weight simulated and final weight measured. The p-value obtained for this 

test is 5.98E-14. As we can see, the test result is significant which shows that the 

slope statistically different from zero and there exists a strong association 
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between final BMI measured and simulated. Also the test of intercept=0 is not 

significant in the sense that intercept is not significantly different from zero. The 

95% confidence intervals for slope and intercept are [0.71 1.05] and [-0.88 8.09] 

respectively. The confidence interval for slope contains 1 and the confidence 

interval for intercept includes 0 which support the test results on slope and 

intercept. 

 

 

Figure 7. Individual variability frequency 

                                   

Intervention Study 

     The major result observed in GEMS study is that BMI increased in all girls 

with no treatment effect at 2 years and there were no effects on physical activity 

(Klesges et al., 2007). And the study concludes that the lack of significant BMI 

change at 2 years indicates that this intervention alone is insufficient for obesity 

prevention and suggests that Effectiveness may require more explicit behavioral 
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change goals and a stronger physical activity component as well as supportive 

changes in environmental contexts (Klesges et al., 2007). By comparing the BMI 

simulated and initial BMI, we obtained the same results as in GEMS study and 

our conclusion of no effect is in concordance with no effect due to intervention in 

GEMS study.  

      As stated in introduction, systems dynamics models make “perfectly” 

controlled experimentation possible. That is, we utilize this model to examine the 

effect of changing one factor in the model while all others are held unchanged. In 

this section, we examine the effect of increasing physical activity by steps of 15, 

30, and 45 minutes on BMI in the period of 2 years. In addition, we perform a 

mixed intervention by accompanying 10 min increase in exercise intervention 

with constant reduction of 100 kcal in energy intake and simulate the BMI change 

in period of two years.  The results are shown in table below. In addition, 95% 

confidence intervals for means are shown in table 2. 
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Table 2 

Simulated Exercise Intervention and BMI Change 

Study (N=50) Mean delta BMI after 

2 years 

95% Confidence interval 

for delta BMI 

GEMS (no increase in 

exercise) 

3.04±0.54 [1.94     4.13] 

+15 min exercise simulation 1.77±0.56 [0.63     2.91] 

+30 min exercise simulation 0.55±0.52 [-0.34    1.85] 

+45 min exercise simulation -0.16±0.52 [-1.21      0.88] 

-100 kcal and +10 min 

exercise simulation 

0.84±0.49 [-0.16      1.83] 

 

 
    As we can see from table above, increasing physical activity by 15 minutes 

reduces the increase in BMI in half and increasing physical activity by 45 minutes 

even causes reduction in BMI after the period of two years. Based on the 

simulation results, we can deduce that for the intervention to be successful, 

increasing the physical activity should be considered as one of the main effective 

approaches in reducing the increase in BMI. By looking into the mixed 

intervention study, we can see that the effect of the mixed intervention is almost 

equivalent to the 30 min increase in exercise from table 2. By far, the 30 min 

exercise which may seem a daunting task to lots of individual can be substituted 

by the mixed intervention to obtain the same effect on the BMI. In order to 
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determine interventions which are significantly different from the original 

simulation we perform a t-test between the two populations of BMIs: one being 

the original BMI simulated without any intervention and the other being the 

population of BMIs simulated after introducing the intervention. The result of this 

study is represented in table 3. 

 
Table 3 

Comparing the Simulation Results of Intervention Studies to no Intervention. 

Two-tailed t-test 

Original VS 15 

min intervention 

Original VS 30 

min intervention 

Original VS 45 

min intervention 

Original VS mixed 

Intervention 

0.11 0.004 5.96E-6 0.0039 

 

 
      As we can see the Interventions 30 and 45 minutes exercise and mixed 

intervention have significant effect on final BMI. We compared the simulation 

results for 30 min exercise to 15 min, 45 min, and mixed intervention to see if 

these interventions are statistically significant. The results shown in table 4 

indicate that 30 min exercise intervention is not significantly different from mixed 

intervention. This result verifies our finding in table 2. 
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Table 4 

Comparison of 30 Min Intervention to 15 Min, 45 Min, and Mixed Intervention. 

Two tailed t-test 

15 VS 

mixed 

15 VS 30 15 VS 45 30 VS 

mixed 

30 VS 45 45 VS 

mixed 

0.22 0.2 0.01 0.9 0.23 0.17 

       

 
      We divide the 50 individuals into intervention and alternative group to see if 

there exists a difference in BMI change between these two groups. In this table 

mean BMI change and standard deviation of this mean BMI change is shown for 

each step of simulation. We perform a t-test to obtain the p-value of comparing 

the means for the results of simulations at each step of intervention. The results 

are shown in table 5. 
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Table 5 

Exercise Simulation and BMI Change for Two Intervention Groups 

Exercise 

simulation 

0 min 15 min 30 min 45 min 100 kcal + 

10min 

Int group 

BMI change 

(N=25)  

3.24±0.58 1.9±0.8 0.84±0.77 0.16±0.75 1.11±0.71 

Alter group 

BMI change   

2.4±0.65 0.88±0.88 -0.06±0.85 -0.87±0.81 0.57±0.71 

p-value 0.31 0.287 0.326 0.4 0.18 

    

 
        As explained in GEMS study description, the intervention group was the 

group in which  Group behavioral counseling was performed to promote healthy 

eating and increased physical  activity (obesity prevention intervention) and 

alternative intervention was aimed at increasing self-esteem and social efficacy 

(alternative  intervention). Based on table 3, a constant increase in physical 

activity has an equal impact on BMI change in the alternative group and obesity 

prevention group. By looking into the mixed intervention results, we observe that 

the average BMI gain in the alternative group after period of two years is almost 

half of this gain in intervention group. That’s due to the fact that average energy 

intake in intervention group is around 100 Cal/day more than that of alternative 

group.  
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Discussion  

     Ideally, all studies on food intake and energy expenditure would be carried out 

under natural free-living conditions in which eating and exercise behaviors could 

occur without hindrance and could be measured precisely and accurately. In 

practice, this is not possible because methods for measuring total energy intake 

and expenditure under natural circumstances are often unreliable. On the other 

hand, laboratory-based studies allow the accurate assessment of food intake and 

energy expenditure but under highly artificial circumstances (Abdel-hamid, 2002). 

Accordingly, it is useful to seek other methods for testing and experimentation. 

Simulation-based experimentation provides a viable laboratory tool for such a 

task. In addition to permitting less costly and less time-consuming 

experimentation, simulation-type models make “perfectly” controlled 

experimentation possible. In the model system, unlike the real systems, the effect 

of changing one factor can be observed while all other factors are held 

unchanged. Internally, the model provides complete control of the system.  

      The attribute of the obesity epidemic that makes it an especially challenging 

problem — both to study and to combat— is the huge range in the levels of scale 

involved. Empirical evidence suggests important (and potentially interconnected) 

effects at levels including genes, neurobiology psychology, family structure and 

influences, social context and social norms, environment, markets and public 

policy. Not only do these levels entail very different pathways of effect and 

diverse methodologies for measurement, they are also usually the province of 
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very different fields of science (from genetics to neuroscience to economics and 

political science).  

      We developed the core mode and test it on population average. The results 

obtained are in agreement with documented data in GEMS. At individual level we 

do not have the same accuracy obtained in modeling of population average and 

individuals do not fit well into the model. Testing this model on individuals 

demonstrates lack of important players missing in the system which motivated us 

to build environment component and other variables and incorporate them into 

the system. In order to do so, we needed to find a way of incorporating this range 

of diverse variables with different units of measurement into the system. We 

normalized these variables using population mean and standard deviation for 

each variable. By doing so, we incorporate the effect of each variable as it’s 

deviation from the population mean.  By adding these variables into the model 

and simulating the model for a sample of 50 random individuals, we performed 

regression analysis between final BMI measured and simulated as an indication 

of fitness of the model. We observe that as new variables are added to the 

model, the model fit more closely to the data and we can capture more variations 

that exist at individual level. The complete model developed here fits to the 

measured data well by correlation coefficient of 0.83 (p-value: 5.98E-14). 

     The model we developed here fits to the measured data well by correlation 

coefficient of 0.83 (p-value: 5.98E-14). By adding new environmental 

components, the uncertainty in the model decreases and we can capture more of 

the complex obesity system into the model. Based on the individual variability 
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plot, there exist some outliers that do not fit into the model. The reason for having 

outlier in the system can range from error in reporting the data like under 

reporting to pathological issues and genetics which is not addressed in the 

model. In GEMS data, although dietary intake is not a primary outcome variable, 

this variable is often under reported, particularly in this population. This may 

account for the data points with finals weights simulated much less than the 

amount measured. Still about 17% variation that is not be captured into the 

model. This is due to other important variables not incorporated into the model 

due to lack of data in that area. These variables include and are not limited to 

genetics, pathological issues, and other socio-environmental and psychological 

variables.  
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