
University of Memphis University of Memphis 

University of Memphis Digital Commons University of Memphis Digital Commons 

Electronic Theses and Dissertations 

11-26-2011 

Binning Metagenomic Data by CSSR Binning Metagenomic Data by CSSR 

Rekha Bhaskarabhatla 

Follow this and additional works at: https://digitalcommons.memphis.edu/etd 

Recommended Citation Recommended Citation 
Bhaskarabhatla, Rekha, "Binning Metagenomic Data by CSSR" (2011). Electronic Theses and 
Dissertations. 357. 
https://digitalcommons.memphis.edu/etd/357 

This Thesis is brought to you for free and open access by University of Memphis Digital Commons. It has been 
accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of University of 
Memphis Digital Commons. For more information, please contact khggerty@memphis.edu. 

https://digitalcommons.memphis.edu/
https://digitalcommons.memphis.edu/etd
https://digitalcommons.memphis.edu/etd?utm_source=digitalcommons.memphis.edu%2Fetd%2F357&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.memphis.edu/etd/357?utm_source=digitalcommons.memphis.edu%2Fetd%2F357&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:khggerty@memphis.edu


 

 

BINNING METAGENOMIC DATA BY CSSR 

By 

Rekha Bhaskarabhatla 

 

 

 

A Thesis 

Submitted in Partial Fulfillment of the 

Requirements for the Degree of 

Master of Science 

 

Major: Biology 

 

 

 

The University of Memphis 

December 2011 

 

 

 

 

 



ii 

 

ACKNOWLEDGEMENTS 

I would like to thank my major professor, Dr. Tit-Yee Wong for his continued and patient 

support throughout the work of this thesis. His guidance has been truly invaluable and 

has helped me to pursue my career aspirations. I would like to thank other members of 

the Advisory committee, Dr. King-Thom Chung and Dr. Lih-Yuan Deng, for their 

guidance and support. My sincere thanks to Dr. Max Garzon, for providing me with 

continuous feedback and also helping me with Perl and Matlab software. 

I feel very grateful to my mom, Hemalatha and dad, Nagaraju for their love and support 

and also for standing by me through all the highs and lows of my life. Finally, I owe it to 

my wonderful brother, Rakesh Sharma, without whose emotional support completing my 

thesis looked nearly impossible. 

 

 

 

 

 

 

 

 

 

 

 

 

 



iii 
 

ABSTRACT 

Bhaskarabhatla, Rekha. MS. The University of Memphis. December 2011. Binning 

Metagenomic Data by CSSR. Major Professor: Dr. Tit-Yee Wong. 

 

 

Metagenomics is the study of microbes in their natural environments without the 

need for isolation and lab cultivation. The DNA fragments obtained from sequencing of a 

sample of mixed species requires taxonomic characterization called binning.  My 

research concerns binning of metagenomic data using a novel approach. Each genomic 

sequence was codified based on their Cistronic Stop Signal Ratio (CSSR) values. Since 

the genic CSSR values of phylogenetically related organisms often share a definable 

pattern, a neural network was trained to recognize the genic CSSR patterns of known 

species. The trained neural network was then used to cluster the CSSR values from the 

metagenomic data. To show the validity of this method, a total of 15,000 genic CSSR 

values were calculated from five different bacterial species. The data was randomly 

mixed and a neural network was used to recognize the originality of these genes, based 

on their unique CSSR values. Result showed that better than 95% of the genes were 

correctly binned to the rightful species. The metagenomic sequences from the fecal 

samples of 124 individuals were reanalyzed based on the CSSR - neural network method 

by training the genic values of a set of known enteric bacteria. The resulting clusters were 

discussed. 
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1. BACKGROUND AND SIGNIFICANCE 

Microbes are the oldest form of life on earth. They were the only life form on 

earth for about the last 2 billion years (Kapur & Jain, 2003). Although too small to be 

seen by the naked eye, they have remained the driving force behind all life forms on earth 

(New, T. H. E., 2007). Microorganisms form the critical components of the Earth‟s 

biosphere through recycling the various elements and making them available to all other 

forms of life. Without these recycling activities of microorganisms, all the elements 

would be fixed and life on earth would not continue (Staley, J. T., Castenholz, R. W., 

Colwell, R. R., Holt, J. G., Kane, M. D., Pace, N. R., Salyers, A. A., et al., 1997).  

Microbes are the most abundant and diverse form of life. Their diversity exceeds 

the biodiversity of plants and animals by several folds and is largely unknown (Hoff, K. 

J., Tech, M., Lingner, T., Daniel, R., Morgenstern, B., & Meinicke, P., 2008). Over the 

last few centuries, a huge number of bacterial species in or on humans have been 

observed under the microscope. Only recently, the idea of interdependence of microbes 

and humans is now becoming clear. The term „microbial community‟ refers to the 

complex microbial ecosystems that are ubiquitous. Although microbial community is 

often considered to play an important role in our daily function, our understanding in 

microbial communities is limited by the lack of suitable tools and methodologies.  The 

number of microbial cells that colonize human body has been estimated to exceed our 

own cell number by tenfold (New, T. H. E., 2007). This indicates that the number of 

unique genes that these microbes encode outnumber the number of genes in our own 

genome by at least 100 fold (Ley, R. E., Peterson, D. A., & Gordon, J. I., 2006; Qin, J., 

Li, R., Raes, J., Arumugam, M., Burgdorf, K. S., Manichanh, C., Nielsen, T., et al., 
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2010). However, less than one percent of the estimated trillions of microbial species in 

their natural habitats are culturable (New, T. H. E., 2007). Thus, only a tiny pool of their 

genes is accessible using the culture dependent methods. The remaining 99 plus percent 

is left inaccessible. In his book “Evolution by Association”, Jan Sapp provides numerous 

examples of interactions between microbes and their hosts (Sapp, J., 1994). It becomes 

clear that the survival of all living organisms of higher orders is highly dependent on the 

microbes they harbor.  Some scientists even describe humans and other “higher animals” 

as „superorganisms‟ in which our body and a large number of different organisms coexist 

as one (Goodacre, R. 2007; Proal, A. D., Albert, P. J., & Marshall, T., 2009). The 

complex and dynamic microbiota inside and around our body plays a crucial role in many 

basic bodily processes. The association of microbes with our body has shown to have 

profound influence on human development, physiology, nutrition and immunity 

(Backhed, F., Ley, R. E., Sonnenburg, J. L., Peterson, D. A., & Gordon, J. I., 2005; 

Hooper, L. V., Midtvedt, T., & Gordon, J. I., 2002; Qin et al., 2010). Changes, either in 

the number or composition of these microbial communities may lead to diseases like 

inflammatory periodontitis (Cobb, C. M., 2008) and gastrointestinal disturbance 

(Khachatryan, Z. A., Ktsoyan, Z. A., Manukyan, G. P., Kelly, D., Ghazaryan, K. A., & 

Aminov, R. I., 2008). Hence, studying the dynamic and variable nature of the microbial 

community in our body may contribute to better diagnosis, and treatment of diseases 

(Yang, B., Peng, Y., Leung, H. C.-M., Yiu, S.-M., Chen, J.-C., & Chin, F. Y.-L., 2010). 

To fully understand how our body functions, it is important to understand the 

number and types of microbes associated with ouSr human body. Traditional methods for 

studying microbes focused on isolating and analyzing single species in pure culture. 
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However, analyzing individual cultures in their pure forms would not provide the 

information needed to understand the interactions and dynamics between these microbes 

at the various niches (organs/tissues, etc.) of their host. Recent advances in molecular 

sequencing techniques allow scientists to reveal the identities of many otherwise non-

culturable microbes in our body. Metagenomics is one of the novel techniques that could 

revolutionize our understanding of the unexplored microbial communities. In other 

words, metagenomics is a science of microbial community. It is a way of looking 

simultaneously at all the genomes in a microbial community as a whole and study how 

these might interact and influence each other‟s activities in serving collective functions 

(New, T. H. E., 2007).  Hence, Metagenomics can be defined as “the application of 

modern genomics techniques to the study of communities of microbial organisms directly 

in their natural environments, bypassing the need for isolation and lab cultivation of 

individual species.”  (Chen, K., & Pachter, L., 2005). 

The field of Metagenomics incorporates molecular biology and genetics to study 

the microbes directly in their natural environments (Havre, S. L., Webb-Robertson, B.-J., 

Shah, A., Posse, C., Gopalan, B., & Brockman, F. J., 2005). The knowledge from the 

study of microbial communities plays a key role in sustaining global life support systems. 

Exploration, evaluation and exploitation of microbial diversity are essential for scientific, 

industrial and social development (Kapur & Jain, 2003). 

 Using Metagenomics to explore the vast microbial communities residing in our 

body would provide an understanding of both beneficial and harmful microbes and thus 

helpful in diagnosing and treating new and emerging disease problems. Recent studies on 

human microbiota have revealed that many non-infectious diseases, such as obesity, are 
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associated with change in the microbial populations in the human gut (New, T. H. E., 

2007; Turnbaugh, P. J., Hamady, M., Yatsunenko, T., Cantarel, B. L., Duncan, A., Ley, 

R. E., Sogin, M. L., et al., 2009). Metagenomic studies have also proclaimed that the 

metabolites released by some of the microbes in our body interfere with the gene 

expression of genes associated with autoimmune disease (Proal et al., 2009). 

Currently, the study of microbial community by metagenomic analysis involves 

mainly four steps.  (i) Direct isolation of genomic fragments from the natural 

environments by methods such as random PCR to generate many fragments. These 

fragments are then cloned, and gene libraries are constructed. (ii) Sequencing using the 

recent sequencing technologies like pyrosequencing, reversible termination reactions. (iii) 

Binning related fragments to their corresponding species; and (iv) Further analysis of 

these fragments.  

Recent technological advances have allowed the processing of steps (i) and (ii) to 

leap forward rapidly and cheaply. A bacterial genome can now be sequenced in days with 

less than $3,000. A metagenomic sample containing hundreds, if not thousands of 

millions of gene fragments can now be obtained from an environmental sample 

inexpensively. However, grouping and annotating these fragments (steps (iii) and (iv)) 

are still labor intensive, inefficient, and costly.  

Binning can be defined as “the process of association between sequence data and 

contributing species (or higher level taxonomic groups).” (Kunin, V., Copeland, A., 

Lapidus, A., Mavromatis, K., & Hugenholtz, P., 2008). In other words, binning is the 

classification of the contigs (generated from the first step in metagenomic process) into 

major groups of bacteria, then to subgroups and then to species sometimes. The analysis 
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of metagenomic sequences without taxonomic assignment will always provide a 

superficial and an incomplete view (Pignatelli, M., Aparicio, G., Blanquer, I., Hernández, 

V., Moya, A., & Tamames, J., 2008).   

Binning plays a key role in a metagenomic process because of two main reasons. 

Firstly, sequencing of genetic material from the natural environments results in large 

highly fragmented datasets and hence, it would be wise to first classify them before any 

further analysis is made. Secondly, as bacterial communities are of high complexity with 

thousands of species present, binning makes analysis more smooth and straightforward 

(Kislyuk, A., Bhatnagar, S., Dushoff, J., & Weitz, J. S., 2009). The other reasons why 

binning would be essential are (i) for better understanding of the community dynamics 

like species-species interaction. (ii) to predict the outcome and the impact on the 

environment (such as obesity) (iii) to provide evidences in key issues in the evolution and 

changes of community, such as the extent of horizontal gene transfer or barriers shaping 

the species (Pignatelli et al., 2008). 

The current methods to investigate the microbial community diversity can be 

broadly divided into three categories: the number of species in a community could be 

estimated based on the number of unique 16SrRNA sequences in that community, 

whereas the ratios of individual species within the community could be estimated base on 

the ratios of similar sequences, and the ratios of specific biomarkers or motifs found in 

the samples. The common drawback for all these methods is failure to account for 

phenomena like gene recombination that result in gene redundancy, and horizontal gene 

transfer. Additionally, each method has its own backlogs. In case of biomarker-based 

approaches, the major drawback is that the resolution of the biomarker genes is either too 
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high or too insensitive in reflecting the diversity. For example, a bacterium often has 

multiple 16SrRNA genes. The resolution of 16SrRNA sequence between 

phylogenetically similar organisms is poor. Besides, this monophasic approach could not 

truly represent the total genome diversity of the population. 

Binning based on a certain short sequence of oligonucleotide markers is a 

powerful technique to bin phylogenetically related species. However, when the 

community becomes more complex, the commonly shared markers usually diminish.  

Also oligonucleotide based searches assume that the oligonucleotide distribution is 

uniform across the bacterial genome. This assumption is not satisfied biologically since 

gene-coding, RNA-coding and non-coding regions, leading and lagging strands of 

replication and genomic islands resulting from horizontal gene transfer can all exhibit 

distinct oligonucleotide distributions (Kislyuk et al., 2008). 

In case of sequence similarity based approaches, multiple sequence alignment 

requires pervious knowledge of the samples for adjusting the weight factors. This often 

induces bias when originals in a sample, such as those in a metagenomic data, are 

unclear. Additionally, as the size of a set of metagenomic data is usually very large, large 

computational time is needed. In view of these problems, a powerful method that could 

overcome these problems is required.  

My research concerns a novel approach using CSSR – neural network model in 

binning the metagenomic data. The following objectives briefly describe the materials, 

methods and the flow of my research. 
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2. STATEMENT OF OBJECTIVES 

The objective of my research is to assess the possibility to codify individual 

cistrons based on their unique Cistronic Stop Signal Ratio (CSSR) values and use a 

conventional statistical method, such as neural network, to bin individual cistrons by their 

phylogenetic origins. Specifically,  

1. A Perl script would be written to convert a cistron sequence in FASTA format into its 

corresponding CSSR values.  

2. A set of five known bacterial species would be selected and the CSSR values of each 

of their cistrons will be calculated.  

3. A neural network would be trained to recognize and distinguish the genic CSSR 

values of the above species.  

4. The optimal conditions of the neural network in binning genic CSSR values would be 

selected and the percentage of confidence would be defined.  

5. A suitable metagenomic data set will be selected. Criteria for suitability would be 

based on the quality of the data, the number of contigs, the number of confirmed 

ORFs, the published references.  

6. Use the optimal model established from objective (4) for the binning the metagenomic 

sequence data.   

7. The resulting binning of the metagenomic data would be compared with the published 

results.  

 

 



8 
 

3. MATERIALS AND METHODS 

Bacterial Genome Downloaded 

Most of the required bacterial genomes were downloaded from JCVI-CMR 

website (http://cmr.jcvi.org/tigr-scripts/CMR/CmrHomePage.cgi). A few others were 

downloaded from EMBL and BGI websites. The downloaded genomic files are in 

FASTA format (Table 1). Each FASTA file is a text-based format that begins with a 

single line description of each gene, followed by several lines of the nucleotide sequence. 

The description for every gene begins with a „>‟ symbol followed by the gene id, gene 

name and organism name. The organism name is enclosed within flower braces, „{„„}‟. 

The following table presents an example of a gene in FASTA format. 

 

Table 1.   

Example of a gene sequence in FASTA format downloaded from JCVI-CMR website. 

 

>BF0001 putative SpoU rRNA methylase family protein {Bacteroides fragilis 

NCTC9343} 

ATGCGAAAATTGAAAATAACCGAGCTGAACCGGATAAGTATAGAAGAGTTTA

AAGAAGCTGATAAATTGCCTTTAGTTGTAGTGTTGGACGATATACGGAGTTTG

CATAATATCGGTTCTGTGTTTCGTACGGCAGATGCTTTCCGGATTGAATGTAT

TTATCTGTGTGGAATTACGGCTACTCCTCCCCATCCCGAGATGCATAAGACAG

CTTTGGGAGCCGAGTTTACAGTGGATTGGAAGTATGTTAATAACGCAGTTGA

AACGGTTGATAACCTCCGGAGTGAAGGATATGTGGTATACTCTGTCGAACAG

GCGGAAGGGAGTATCATGTTGGATGAGTTAACACTGGACCGTTCGAAGAAAT

ATGCTGTAGTTATGGGAAATGAAGTAAAAGGAGTGCAGCAGGAGGTTATTGA

CCATTCGGATGGTTGTATTGAAATTCCCCAATATGGCACAAAACATTCATTGA

ATGTATCGGTAACAGCAGGAATTGTGATCTGGGATTTATTTAAAAAGTTGAA

ATAG 

 

 

 

http://cmr.jcvi.org/tigr-scripts/CMR/CmrHomePage.cgi
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Cistronic Stop Signal Ratio (CSSR)  

Cistrons are the protein-coding genes. In a genome, each cistron is represented by 

a series of codons, which in turn is a set of three nucleotides able to code for a specific 

amino acid. An open reading frame (ORF) is the protein-coding sequence of DNA that 

starts with a start codon and ends with a stop codon. According to the universal genetic 

code, the start codon is ATG, although alternate codons such as GTG, CTG, and TTG are 

occasionally used by bacteria as start codons. The stop codons are TAA, TAG, and TGA. 

There are three different reading frames in any string of DNA. The first reading frame is 

the real sequence that starts with a start codon and ends with a stop codon. The second 

and third reading frames are the series of triplets of nucleotides that start from the second 

and third nucleotide of a gene, respectively.  

The stop codons occurring in the first reading frame are the Real Stop Codons 

(RSC) and they terminate protein synthesis. When the stop codons are found in the 

second and third reading frames of a protein-coding gene, they are considered as the 

Premature Stop Codon (PSC). These PSC do not terminate the protein synthesis instead, 

act as stop signals. They truncate protein synthesis only in case of frame shift mutations. 

We classified the stop signals into nine groups based on their nucleotide sequences 

and by their locations on a cistron.  The “Cistronic Stop Signals” (CSS) of a gene is 

defined as a series of nine scalars in which each scalar is the frequency of a particular 

stop signal in a particular reading frame of a cistron.  For example, consider the following 

hypothetical cistron composed of 11 codons:   

 

ATG, GTA, AGG, ATA, AT T, GAG, GTA, GCC, GGT, GAT, TAA 
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The CSS of this gene is represented by the following CSS series:  

1, 0, 0, 2, 1, 0, 0, 0, 2. 

 

The first, second, and third scalars of the above series represent the number of 

TAA (=1), TAG (=0) and TGA (=0) stop signals found on the first reading frame of this 

gene. The fourth, fifth and sixth scalars represent the number of TAA (=2), TAG (=1) 

and TGA (=0) stop signals (single-underline) found on the second reading frame of this 

gene. The seventh, eighth, and nineth scalars are the number of TAA (=0), TAG (=0), 

and TGA (=2) stop signals (double-underline) found on the third reading frame of this 

gene.  Obviously, the value of each scalar of the CSS is directly influenced by the length 

of the cistron. In order to compare the stop signal profiles of genes of various lengths, the 

genic CSS value was normalized to generate a partition series, termed “Cistronic Stop 

Signals Ratio” (CSSR). 

CSSR Calculator in Perl 

The code for CSSR Calculator was initially developed in C language and was 

rewritten in Perl, an interpreted language. Perl was used as it has extremely powerful 

string handling features and sophisticated regular expressions that make handling and 

scanning the large amounts of sequence contained in gene files very easy. Perl programs 

used for CSSR calculation were developed on Perl Express 2.5, an integrated 

development environment containing multiple tools for writing running and debugging 

Perl programs. Perl Express is free and open source software when installed. The CSSR 

Calculator program requires only one input, the source folder directory. This contains the 
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bacterial genomic files in FASTA format. The program automatically creates a 

destination folder directory named „Output‟. 

The program picks up every gene from every file and scans for „>‟ symbol. It then 

scans for and picks the content between„{„„}‟, which is the organism name and assigns 

this name to the output file. This is followed by the CSSR calculation. However 

sometimes due to errors in sequencing, certain ambiguous letters (other than „A‟, „G‟, „T‟ 

and „C‟) occur in the gene sequence. These ambiguous letters will be randomly replaced 

by the program by using criteria suggested by NCBI (Table2) 

(http://www.ncbi.nlm.nih.gov/blast/fasta.shtml). 

 

Table 2.  

Table to replace ambiguous letters that occur in the gene sequence.  

Original Replacement 

 

R 

Y 

K 

M 

S 

W 

B 

D 

H 

V 

N 

 

 

 

 

 

 

G or A 

T or C 

G or T 

A or C 

G or C 

A or T 

G or T or C 

G or A or T 

A or C or T 

G or C or A 

A or G or C or T 

 

 

 

http://www.ncbi.nlm.nih.gov/blast/fasta.shtml
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Once the gene is cleared off the ambiguous letters, the occurrence of each start 

codon is calculated in each reading frame. Finally, the ratio is calculated in all three 

reading frames and the output data is stored in four files, namely: „X.txt - CSSRGene‟; 

„X.txt - CSSRNonGene‟;  „X.txt - Gene‟; and  „X.txt - Nongene‟, where „X‟ represent the 

name of the species. The Gene files are genes with only one reading frames whereas the 

Non-Gene files contain genes with multiple reading frames. Non-gene data is not 

included in subsequent calculation. The CSSR files contain the converted CSSR values of 

each gene in the genome whereas the latter two files retain the DNA sequences of the 

genome in FASTA format.  All the output files are stored in the destination folder.   

Feed Forward Neural Network (FFNN) Classifier 

Neural networks are computational models that mimic the functional aspects of a 

biological brain. A neural network in which the information always moves one direction, 

from input layer to the output layer through the hidden layers, is called a feed-forward 

neural network. Input layer is the layer where the inputs are given. The calculations are 

made in the hidden layer and the output layer represents the output from the neural 

network. Figure 1 is the diagrammatic representation of a simple feed forward neural 

network with one hidden layer. 
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Figure 1. A simple feed forward neural network with one hidden layer. 

 

 

One of the most important applications of feed forward neural networks is 

classification. Hence, this tool in conjunction with CSSR can be used for successfully 

binning gene fragments. The code for feed forward neural network model was 

implemented in Matlab. Matlab is a high-performance language that integrates 

computation, visualization and programming in an easy-to-use environment. It has 

several user-defined functions that can be used to create complex programs and can be 

easily applied to large datasets. The Matlab code was written on MATLAB 7.0.  A feed 

forward neural network classifier was created with a specified number of hidden layers.  

The type of learning used in the program was of „supervised‟ type. In this type, 

the network is trained with a labeled set of training data which is then applied to the 

query data. For a set of training data made up of N input/output examples:  
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T = {(xi,di)    
  

where   xi = input vector of the i
th

 example 

             di = desired (target) response of the i
th

 example 

             N = sample size 

 

 

 

For a given set of training sample T, the parameters (like synaptic weights) of 

neural networks can be modified in such a way that the actual output yi of a neural 

network for a given xi is close enough to di  (Haykin, S., 1999). The mean square error 

(E(n)) can be adjusted so as to achieve the performance goal (Haykin, 1999).  

 

E(n) = 
 

 
          

   
2   

 

This classifier model requires two inputs – a file containing training data and 

another containing testing data. The training data comprises of the CSSR values of genes 

and the genomic sequences are labeled according to the species they originate from. The 

training set is divided into two groups – positive group and negative group. Half of the 

training set consists of positive group and the other half comprising of negative group. 

Each group has CSSR values of genes arising from different set of organisms and the 

genes are labeled accordingly. The testing data comprises of CSSR values from the 

metagenomic data set. The program then trains the model using the training set and tests 
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it for the testing set. The output is a text file reporting the number and percentage of 

positive as well as negative predictions. 

To optimize this model, three different architectures were used, Architectures I 

(Figure 1), II (Figure 2) and III (Figure 3) with one, two, and three hidden layers 

respectively.  

 

 

Figure 2. Architecture II with two hidden layers. 
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Figure 3. Architecture III with three hidden layers. 

 

Random Gene Selector 

To select the genes randomly from a genomic file, a code was written in Perl. The 

program requires two inputs, source folder directory and „Gene Number‟-a text file 

indicating the number of genes to be picked up. Each genome has a unique number of 

genes to be picked up and hence, a sequence of numbers indicating the number of genes 

to be picked is given as a text file after the folder name. The source folder directory 

contains all the genomic text files from the genes are to be picked up. These files are 

named after the organism name. These text files are in the FASTA format. The output of 

the program is in a destination folder directory.  

The program picks up each file from the source folder directory and calculates the 

total number of genes in each one of these files. The program scans for „>‟ symbol 

through the whole file and increments the count every time it find this symbol. This is 

because the genes in FASTA format start with a „>‟ symbol. Once, the total number of 
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genes is calculated in each of these files, it picks up the respective number from the other 

input text file – „Gene Number‟. Then it randomly selects genes based on this number. 

The output is put into the destination folder directory in the form of text file (also named 

after the organism name). 

Cluster Tool 

Cluster analysis of the desired genomes was done using „Cluster 2.11‟ software 

tool from Eisen Lab (http://rana.lbl.gov/EisenSoftware.htm). This software can be 

downloaded and used free of charge. It performs a variety of types of cluster analysis 

including hierarchical clustering, self-organizing maps (SOMs), k-means clustering and 

principal component analysis. 

Proof of Concept 

„Cross validation‟ was performed with known example sequences to find if the 

CSSR in combination with FFNN classifier model is able to distinguish between 

sequences of known organisms. „Cross validation‟ is a technique in which a known 

example set of training data is fed to network in two subsets (Haykin, 1999). The first 

subset is used to train the network and the second subset, the validation subset is used to 

evaluate the performance of the model. Once the above step is completed, the network is 

trained with the actual training set and tested for the test data not seen before. This 

technique helps finding the optimal number of hidden layers in the network and the best 

number of epochs to be performed for efficient binning. 

For this, the sequences to be binned were taken from five known organisms. The 

organisms under study were Escherichia coli K12-MG1655 (EC), Salmonella enterica 

Paratyphi ATCC9150 (SE), Shigella boydii Sb227 (SB), Pseudomonas aeruginosa PAO1 

http://rana.lbl.gov/EisenSoftware.htm
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(PA), Rickettsia typhi Wilmington (RT). EC, SE and SB are the enteric bacteria (closely 

related species) and therefore their CSSR values would be similar. PA is a soil bacterium 

and RT is an intracellular parasite. These are distantly related to the previous ones and 

their CSSR values would be quite different. 

The method involves the following five main steps: (i) Random selection of genes 

from these organisms using partition function and calculation of the CSSR values. (ii) 

Division of the data into training and testing sets. (iii) Training the neural network with 

the training set. (iv)Testing it for the testing set (validation subset). (v) Analysis of the 

results. 

The method is described in detail as follows. The FFNN classifier requires 

training and testing set. As mentioned above, training and testing sets comprise genes 

from known organisms and are prepared separately. The genomes of organisms under 

consideration are downloaded from JCVI-CMR website. From these genomic files, genes 

are randomly selected using partition function.  

 

The number of genes for training and testing sets is determined separately as 

follows: 

 

Number of genes to be selected for training set = [(number of genes in a particular 

organism) ÷ (total number of genes in all the all organisms in training set)] × (Number of 

genes considered for training set)] 
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Number of genes to be selected for testing set = [(number of genes in a particular 

organism) ÷ (total number of genes in all the all organisms in testing set)] × (Number of 

genes considered for testing set) 

 

In this way, the number of genes to be selected for training and testing sets is 

calculated. Genes are then selected randomly using Random Gene Selector program, 

based on this number. Two experiments were designed to test if CSSR in combination 

with feed forward neural networks can successfully bin genes from known organisms. 

Selection of a Metagenomic Dataset 

The microbiota of the human intestine is composed of 100 trillion viable bacteria, 

representing 100 or more different species (Mitsuoka, T., 1992). They have a profound 

influence on human health and disease as mentioned earlier. The changes in the microbial 

populations in our gut may lead to bowel diseases, obesity and others unexpected effects 

(Proal et al., 2009; Turnbaugh et al., 2009). 16S ribosomal RNA gene (rRNA) sequence-

based methods revealed that gut bacteria of mostly related to two bacterial divisions, the 

Bacteroidetes and the Firmicutes. Together, they constitute over 90% of the known 

phylogenetic categories and dominate the distal gut microbiota (Eckburg, P. B., 2006; 

Qin et al., 2010). My research concerns binning a selected metagenomic dataset using 

CSSR Calculator and FFNN Classifier Model. Several metagenomic datasets on gut 

bacteria are now available in the Genome Projects website. Out of many research papers 

published on gut microbiome, the following paper was chosen. 

A human gut microbial gene catalogue established by metagenomic sequencing 

(JJ Qin et al. Nature 464, 59-65 (2010) doi:10.1038/nature08821) 
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In this paper, a metagenomic dataset of 576.7 Gb was generated from the fecal 

samples of 124 European individuals. An average of 4.5 Gb of sequence was generated 

for each sample. The Illumina read assembly was performed for each sample 

independently, then all the unassembled reads were pooled for another round of 

assembly. ORF‟s were predicted in each of the contigs set, and were merged by removing 

redundancy. The non-redundant gene set was used in the further analysis. Essentially all 

(99.1%) of the genes are of bacterial origin, the remainder being mostly archaeal, with 

only 0.1% of eukaryotic and viral origins (Qin et al., 2010).  

At the depth of sequencing, they found that around 40% of the gene pool from 

each individual is shared. Each individual harbors at least 160 bacterial species. Out of 

which 57 species were common to >90% of individuals. Among them, major portion of 

the bacterial genes belonged to members of Bacteroidetes and 

Dorea/Eubacterium/Ruminococcus groups and also Bifidobacteria, Proteobacteria and 

streptococci/lactobacilli groups (Qin et al., 2010).  

The contigs and gene set generated in this paper are available to download from 

the EMBL (http:///www.bork.embl.de/~arumugam/Qin_et_al_2010/) and  

BGI (http://gutmeta.genomics.org.cn) websites. 

This was chosen as reference paper because of the following reasons: (i) the 

sample (from 124 individuals) is sufficiently diverse to draw a reasonable conclusion. (ii) 

the ORFs generated are huge and long enough for the analysis to be accurate. Around 3.3 

million ORF‟s were generated with an average length of 704 bp. This length is sufficient 

for getting a good CSSR profile. (iii) A list of major groups of bacteria were included that 

can be used to verify the binning result from CSSR-FFNN Classifier model.   

http://www.bork.embl.de/~arumugam/Qin_et_al_2010/
http://gutmeta.genomics.org.cn/
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Having selected a metagenomic dataset, the next step would be to bin this dataset 

using CSSR-FFNN Classifier model. This requires the preparation of both testing and 

training sets. 

Training Set  

Various studies on gut microbiota as well as the study currently chose indicate 

that a major portion of gut microbiota belongs to classes, Bacteroidia and Clostridia. 

Within Bacteroidia, most of them belonged to genus Bacteroides. Likewise, within 

Clostridia, most of them belonged to genera – Clostridium, Eubacterium, Ruminococcus 

and Dorea (Eckburg, 2006; Qin et al., 2010; Vaughan, E. E., Schut, F., Heilig, H., 

Zoetendal, E. G., De Vos, W. M., & Akkermans, A. D. L., 2005). Hence, the training set 

has been chosen to have CSSR values calculated from four genera namely, Bacteroides, 

Eubacterium, Ruminococcus and Dorea. The genus Clostridium was not taken into 

consideration since it was found the CSSR values of genes of this particular genus are 

highly diverse and hence, selection of genes might require further analysis. 

Different species within each of these four genera were selected (Figure 4) and 

the complete reference genomes of these species were downloaded. Few of them were 

downloaded from JCVI-CMR site and the others from the EMBL and BGI sites. The 

detailed taxonomic information of these selected species was obtained from NCBI site 

(http://www.ncbi.nlm.nih.gov/guide/taxonomy/).  Initially, the CSSR values of genomes 

for the selected species were calculated using the CSSR Calculator. These values were to 

cluster these organisms using the „Cluster 2.11‟ tool. All the species of a particular genus 

form a cluster. 

 

http://www.ncbi.nlm.nih.gov/guide/taxonomy/
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Figure 4. Cluster Analysis of species from four key intestinal genera. 

 

The first step in preparation of the training set would be selection of genes from 

each of these species mentioned above. The genomic files are in FASTA format. The 

genes from these files were selected randomly by „Random Gene Selector‟ program. The 

genomic files of all the species were placed in a source folder directory and the number 

of genes to be picked was given in the „Gene Number.txt‟ file. The program then picks up 

genes from the respective files and places the output in an output folder directory. The 

number of genes picked from each genus was equal to ensure equal representation of all 

four genera in the training set.   



23 
 

 

The genes from all the output were mixed and randomized and then was given as 

input to the „CSSR Calculator‟. The output file consists of CSSR values of all the genes 

selected for the training set. Since the training is unsupervised, the genes were finally 

labeled according to the genus of their origin. This formed the training set. 

Testing Set 

The testing set comprised of the CSSR values of gene fragments from the 

metagenomic dataset. Firstly, the fragments of the metagenomic dataset were checked for 

ORF‟s. In other words, for each fragment the number of stop codons in the first reading 

frame was calculated. Only those fragments for which this number is equal to one were 

selected. Fragments for which this number is less than or greater than one were discarded. 

After filtering, testing data of about 1.38Gb was generated. The filtered fragments were 

then given as input to the „CSSR Calculator‟. The output is the CSSR values of gene 

fragments that formed the testing set. 

Working Model 

FFNN Classifier Model is based on a feed-forward type of network and hence has 

only two outputs as mentioned earlier. In other words, the testing set can be classified 

only either positive or negative. However, the training set consists of four groups labeled 

according to their genus of origin. Hence, the testing set (metagenomic fragments) should 

also be classified into four groups. With FFNN Classifier Model the work becomes more 

laborious and time consuming. Therefore, a search was made for an online tool that can 

classify the testing data into more than two groups in a much lesser time. Among the 

several tools available, „Neural Tools 5.5‟ was selected as it suited our needs. This works 

on Microsoft Excel. This would make training easier for as the output from „CSSR 
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Calculator‟, the CSSR value of a gene is a series of nine scalars. Also, this tool 

automatically gives the percent probability of a particular gene fragment being classified 

into a particular group. Moreover, the time required for classification is far less. 

Before applying directly to metagenomic dataset, an initial testing was done. It was tested 

on the data from experiment 2 (Figures 7 & 8) of the „proof of concept‟ section. The 

result was similar to that got from „FFNN Classifier Model‟ and was much better as it 

also indicates the percent probability or percent confidence level. With the same training 

and testing datasets, FFNN Classifier model as well as Neural Tools software gave 

almost the same result. Therefore, Neural Tools was used for binning the metagenomic 

data. 

The first step in binning the metagenomic data would be to train the Neural Tools 

with the training data. For this, the CSSR values of the labeled training data will be 

loaded on a Microsoft Excel sheet. CSSR is a series of nine scalars as mentioned earlier 

and will be loaded in the first nine columns of the Excel sheet. The last column (10
th

 

column) will consist of the label indicating the genus of origin of a particular gene 

fragment. This forms the training set and the Neural Tools model will be trained with this 

data. 

Once the training is done, the model will be tested for the testing data prepared 

from metagenomic gene fragments. In a similar manner to training data, testing data is 

also CSSR values of gene fragments as a series of nine scalars. These nine scalars will be 

loaded on the Excel sheet and tested for predictions. The model then predicts and gives a 

percent confidence for each gene fragment binned. The results will then be obtained and 

analyzed. 
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4. RESULTS 

Binning Genes from Known Bacterial Species 

A: Training Escherichia coli vs. all others. The training set for training the 

FFNN Classifier consists of two groups – positive group and negative group, as 

mentioned earlier. In the first experiment, the CSSR value of genes from Escherichia 

coli, one of the three closely related bacteria (enteric group) were put into the positive 

group and the CSSR value of genes from all the others into the negative group (Figure 5). 

When the FFNN Classifier was tested with the testing data, the binning efficiency 

of the model (with the three architectures) was about 80% (Figure 6). 

 

  

 

 

    

 

 

 

Figure 5. (Training A) Pie diagram showing five different bacteria. Uncolored as positive 

group and colored as negative group.  
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Figure 6. (Training A) Result from FFNN Classifier for three different architectures. 

 

B : Training Enterics (Escherichia/ Shigella/ Salmonella) vs. Non-Enterics 

(Pseudomonas/ Rickettsia). When the CSSR value of genes from enteric group - EC, SE, 

SB were pooled and  put into the positive group and the CSSR value of genes from the 

other bacteria (PA and RT) were put into the negative group (Figure 7), the binning 

efficiency increased to as high as 96% (Figure 8). 
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Figure 7. (Training B) Pie diagram showing five different bacteria. Uncolored as positive 

group and colored as negative group.   

 

 

    

  

Figure 8. (Training B) Result from FFNN Classifier for three different architectures. 
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Initial Testing With Neural Tools Software 

The result from the initial testing of the Neural Tools software for enteric group 

(EC, SE, SB) and the other group (PA, RT) is indicated in Figure 9 and Figure 10 

respectively. When tested for around 1100 genes from enteric group, the Neural Tools 

software could classify all of them correctly into enteric group with a confidence level 

greater than 50%. Most of them were classified with a confidence level greater than 90%. 

From the graph, out of 1100 genes tested, 970 genes were classified with a confidence 

level greater than 90%. Also, more than 1050 (96% of total testing genes for enteric 

group) were classified with greater than 70% confidence level. 

 

 

 

 

Figure 9. Number of genes classified as enteric group by Neural Tools software. 
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From this, it is clear that the Neural Tools software is very efficient in binning 

genes from known genomes. Also, high percentage of genes (with confidence level > 

90%) form the core genes of the enteric group and hence, the software could classify 

them with such high confidence level. Very few of them (genes with confidence level 

>60%) might be genes acquired from other genomes or outside through phenomenon like 

horizontal gene transfer and are not representative of the core genes of the enteric group. 

 

 

 

 

Figure 10. Number of genes classified as belonging to PA, RT groups by Neural Tools 

software. 
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predicted correctly with a confidence level greater than 50%. Out of 770, around 520 of 

them were classified into that group with a confidence level greater than 90% indicating 

that they form the core genes representing group PA, RT. Around 735 genes (94.9% of 

the total testing genes for group PA and RT) were classified with a  confidence of greater 

than 70%. The remaining genes might be the non-representative or the genes from 

horizontal gene transfer. However, the number of genes with a confidence level greater 

than 90% has decreased when compared to the above graph (Figure 9). This is because 

the bacteria in the first group (enteric) belong to the family and are very closely related 

and hence have many core genes in common. In the second case, group containing genes 

PA and RT do not belong to same family and hence might have less core genes in 

common. Therefore, the Neural Tools software binned high percentage of genes with a 

confidence level of greater than 90% into the enteric group (Figure 9) when compared to 

those to group containing PA and RT (Figure 10). The same testing data with FFNN 

Model had 95% correct predictions (Figure 8) with a confidence level of 50%.  

Binning Metagenomic Dataset 

After training the Neural Tools with the labeled training data representing the four 

different bacterial genera, the model was tested with the testing data generated from the 

metagenomic dataset. The testing data was binned into four groups, namely Bacteroides 

group, Dorea group, Ruminococcus group and Eubacterium group. Percent confidence 

level was predicted for each gene fragment. There were more than 3,00,000 gene 

fragments in the testing dataset. Out of them, 27.35% were binned to Bacteroides group; 

8.31% were binned to Dorea group; 29.31% were to Ruminococcus group; 35.01% were 
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binned to Eubacterium group (Figure 11) with confidence levels ranging from 20 – 

100%. 

 

 

 

Figure 11. Percentage of genes belonging to each group. 
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Figure 12. Number of genes binned into Bacteroides group with varied confidence 

levels. 
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Figure 13. Number of genes binned into Bacteroides group within different narrow 

ranges of confidence levels. 
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Figure 14. Number of genes binned into Dorea group with varied confidence levels. 
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Figure 15. Number of genes binned into Dorea group within different narrow ranges of 

confidence levels. 
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Figure 16. Number of genes binned into Ruminococcus group with varied confidence 

levels. 
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Figure 17. Number of genes binned into Ruminococcus group within different narrow 

ranges of confidence levels. 
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was the highest. The results are summarized in Figure 18. 
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Figure 18. Number of genes binned into Eubacterium group with varied confidence 

levels. 
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Figure 19. Number of genes binned into Eubacterium group within different narrow 

ranges of confidence levels. 
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5. DISCUSSION 

The intestinal microbiota plays a key role in the maintenance of host health, 

providing energy, nutrients and protection against invading organisms (Woodmansey, E. 

J., 2007). Hence, novel molecular technologies have been increasingly used to study 

these complex communities and their interaction with their host (Vaughan et al., 2005). 

In the present study, attempts were made to see if CSSR can be used as a biomarker in 

binning metagenomic data. 

The two experiments initially conducted to evaluate the binning efficiency of the 

model proved that the CSSR can be used as a biomarker in binning genes from known 

organisms. In the first experiment (Training Escherichia coli vs all others - Figures 5 & 

6), as the CSSR values of the closely related organisms are similar and since one of the 

closely related bacteria was put into one group, it was difficult for the model to 

differentiate between them. However, the result yielded an acceptable efficiency. In the 

second case (Training Enterics vs Non-enterics - Figures 7 & 8), the efficiency increased 

because CSSR-FFNN model could readily differentiate between the groups as the 

differences of their CSSR values are large. This suggested that a this model could be used 

to differentiate distantly related bacteria. Hence, this model was further used to work on 

the metagenomic data. 

The initial success in using CSSR as binning tool for known genes from known 

organism lead us to develop a more complex scheme to example some available 

metagenomic data of human guts. Among the body sites colonized by the community of 

microbes, the human gut harbors the greatest number and highly diversified bacteria 

(Sears, C. L., 2005). Several studies were conducted by many researchers to explore this 
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complex microbiota and all of them have certain common conclusions indicating the key 

intestinal genera. At birth, humans become colonized with facultative aerobes including 

Streptococci  spp. and Escherichia coli but, at the critical juncture of weaning, there is a 

dramatic shift in the flora with obligate anaerobes, particularly Bacteroides species, 

becoming significant (Hooper,  L. V. 2004; Sears, 2005). The dominant fecal flora of 

healthy adults consists of mainly Bacteroides and Eubacterium spp. (Mitsuoka, 1992). 

Zeotendal et al. (1998) observed that the most dominant bands in the TGGE 

profile comprised of sequences from undescribed bacterial species and found three 

species with greatest similarities to Ruminococcus obeum, Eubacterium halii and 

Fusobacterium prausnitzii were dominant in all the individuals investigated. Simmering 

et al. (1999) reported that each human individual tested had his or her 

specific Eubacterium ramulus strain, reinforcing that fact the Eubacterium spp. is 

dominant in healthy individuals . In another study with fecal samples from three healthy 

adults, Eckburg (2006) indicated that phyla - Firmicutes and Bacteroidetes dominated the 

gut flora. Moreover, most of them were novel and 95 % of the Firmicutes sequences were 

members of Clostridia class (Eckburg, 2006). A recent study of distal human intestine 

also revealed that three genera – Bacteroides, Clostridium and Eubacterium, each 

comprise nearly 30% of bacteria in fecus and the mucus overlying the intestinal 

epithelium (Backhed et al., 2005). The reference paper used for the current study 

indicates that the prominent gut species were the members of Bacteroidetes and 

Dorea/Eubacterium/Ruminococcus groups and also bifidobacteria, proteobacteria and 

streptococci/lactobacilli groups (Qin et al., 2010). 
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Bacteroides species utilize a wide variety of carbon sources and are known to 

play a key role in the digestion of majority of polysaccharides occurring in the human 

colon (Gibson, G. R. 1991; MacFarlane, G. T., & Salyers, A. A., 1984).  Eubacterium 

and Ruminococci species are known to be involved in fermentative metabolism 

(Zoetendal et al., 1998). Another investigation on human fecal flora identified a novel 

uncultured bacterium which was found to be a nearest relative of Eubacterium 

formicigenerans and was designated a species of a novel genus namely, Dorea 

longicatena gen. nov. (Taras, D., Simmering, R., Collins, M. D., Lawson, P. A., & Blaut, 

M., 2002). 

Based on the above mentioned studies it is clear that members of Firmicutes and 

Bacteroidetes are dominant in the intestinal microbiota. Within these phyla, the Clostridia 

and Bacteroides classes dominate the gut flora. Within these classes, four key genera – 

Bacteroides spp., Eubacterium spp., Ruminococcus spp., Dorea spp. were picked for 

further analysis. The genera Eubacterium, Ruminococcus and Dorea are within 

Clostridales. Another genus, Clostridium, was also found to be dominant by many studies 

(Woodmansey, 2007). However, this was not taken into consideration in the present 

study as it was found that this genus is highly diversified and their genome CSSR values 

were also very diverse. This shouldn‟t be surprising as the criteria for grouping of 

clostridial species are often loosely defined. Clostridium is often considered as 

paraphyletic, with species appearing in multiple locations within a phylogenetic tree 

(Sneath, P., 1984).  This indicates that many clostridia appearing in clades apart from the 

type strain are clearly misclassified.  It should be noted that, a „species‟ is often defined 

based on few morphological characteristics, pathogenicity and source of isolation. 
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16SrRNA sequence analysis is based on sequence similarity of one particular gene. 

Hence, certain genera are usually very diverse as they are based on only certain 

characteristics. In the current study, the CSSR of a genome is the average of CSSR values 

of all genes in the genome. Hence, there is no bias in selection of genes and all genes are 

considered in defining a species. Hence, the current method will be more effective in 

binning gene fragments from a metagenomic dataset. However, further investigation is 

required to study and understand the diversity of genera like Clostridium, in order to 

prepare the training set required for binning.  The following table indicates the relative 

percentage of each genus binned using CSSR – FFNN Model (Table 3). 

 

Table 3.  

 Relative percentage of each genus in the selected metagenomic dataset. 

Percent 

confidence level Bacteroides Dorea Ruminococcus Eubacterium 

>90 0.31 0.05 0.02 0.28 

>80 0.48 0.14 0.3 0.67 

>70 0.6 0.22 0.5 10.18 

>60 5.6 0.32 1.3 11.41 

>50 6.03 0.64 9.99 19.2 

>40 17.17 1.26 11.12 27.22 

>30 26.77 6.25 21.85 34.55 

>20 27.36 8.31 29.31 35.01 
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Figure 20. Relative abundance of each genus in the selected metagenomic dataset. 

 

 

With reference to the confidence level, as the percent confidence decreases the 

number of genes assigned to a particular genus was found to increase. Several 

conclusions can be made from the above graph (Table 3 & Figure 20).  

One of them is that the genes above a confidence level of 90% or 80% might be 

the genes from the same species considered in the training set. The following statements 

explain the reasons for the above conclusion. The confidence level >90% or >80% 

indicates that the CSSR values of these genes (under >90% or >80%) is very similar to 

those of the genes in the training set. Hence, probably these genes are from the same 
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species that are considered for the training set. For further illustration, the graph of the 

Eubacterium group is almost constant for a range of confidence from >90% to >80%. 

This indicates that these genes in the metagenomic dataset have very similar CSSR 

values to those of the Eubacterium spp. genes considered in the training set. Hence, the 

genes from metagenomic dataset above confidence 90% or 80% might be genes from the 

same species of Eubacterium used in the training set. The CSSR values of genes in the 

training set representing Eubacterium genus, are from three species namely - 

Eubacterium halii, Eubacterium siraeum and Eubacterium ventriosum. Hence, these 

genes above confidence level 90% or 80% might be from these three species. 

Second conclusion with regard to the confidence level is that as the confidence 

level decreases, the genes from the metagenomic dataset under that particular confidence 

level might be genes from related species or genera or family. The following statements 

support this. There is a steep increase in the number of genes from confidence level 

>80%  to >70% and remains almost constant till >60% incorporating lot many genes 

from the metagenomic dataset. Since the CSSR values of genes from species under the 

same genus are very similar and are seen to cluster together, (Figure 4) these genes from 

>80% to >60% might be from other species under the same genus not considered in the 

training set. The number of genes from confidence level >60% to >30% exponentially 

increase and becomes constant later. This indicates that these genes might be from other 

genera under the same family like Anaerofustis (Eubacteriaceae) or from genera closely 

related to Eubacterium genus like Clostridium and Lactobacilli from other families. For 

example, some strains of Eubacterium aerofaciens are very similar to strains of 

Streptococcus intermedius, which is also one of the major genera found in human gut 
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(Moore, W. E. C. & Holdeman, L. V., 1974). Hence, these might be genes from 

Streptococcus genus. However, further analysis is required to confirm this. Another 

round or rounds of training and binning with different training sets is needed to explore 

further. 

Third conclusion is that these genes from confidence level >60% to >30% might 

be completely novel, uncultured and having close characteristics to Eubacterium spp. 

They might also be genes that might have been acquired by unknown bacteria from 

Eubacterium spp. by phenomenon like horizontal gene transfer and hence, have a 30% or 

so similarity in CSSR values of the genes or gene sequence. Hence, a major conclusion is 

that CSSR can also be used a biomarker to predict genes from novel bacteria having 

certain characteristics similar to known genomes. Similar conclusions can be made upon 

observing graphs for other genera namely, Ruminococcus, Bacteroides, and Dorea.  

Fourth conclusion is that the shape of the graph with regard to confidence level 

indicates the diversity of a particular species. Unlike Eubacterium group, the graph for 

genera Ruminococcus and Bacteroides groups is almost constant till about >70% 

confidence level. This indicates that the CSSR values or the stop signal ratio of these 

genes is conserved. Hence, the species under these genera are more conserved than those 

under genus, Eubacterium. This forms the fourth major conclusion that the Eubacterium 

genus is more diverse than other genera. The graph of genus Dorea is more conserved as 

the graph is almost constant till a confidence level above 40%.  

Dorea genus as mentioned above was derived from Eubacterium genus and is 

very closely related to Eubacterium formicigenerans. Also, the number of genes 

associated with Dorea group is very less when compared to the number of genes 
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associated with other genera. As the genes associated with its closest relative are already 

separated, less number of genes is associated with genus Dorea. This leads to another 

major conclusion that CSSR can also be used as a biomarker in binning phylogenetically 

closely related organisms.  

On the whole, genera – Eubacterium, Bacteroides and Ruminococcus are more 

abundant which is in concordant with many studies mentioned above (Backhed, 2005; 

Mitsuoka, 1992; Qin et al., 2010; Simmering et al., 1999; Zoetendal et al., 1998). The 

overall numbers may not exactly match with those of the previous studies. This is 

because several factors, both intrinsic such as GI tract location or genetic background and 

extrinsic factors such as diet and health influence the overall numbers of microbes in the 

gut intestinal flora (Vaughan, 2005). The following example explains this.  

According to the result obtained from binning, Eubacterium spp. was found to be 

the most abundant among other genera. Previous research reported Eubacterium spp. to 

be the second most abundant genus after the Bacteroides spp. (Woodmansey, 2007). The 

difference in numbers depends upon the age of the individuals from which the fecal 

samples are collected. It was observed previously that the Eubacterium spp. increase in 

elderly volunteers compared to their younger counterparts (Woodmansey, E. J., 

McMurdo, M. E. T., Macfarlane, G. T., & Macfarlane, S., 2004). The age of the 

volunteers from which the samples were collected was not mentioned in the selected 

reference paper. Hence, it can be assumed that there might be more elderly volunteers 

than younger ones and this accounts for the difference in the exact overall increase in 

Eubacterium spp. compared to Bacteroides spp.  
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Also in the selected reference paper, it was mentioned that the fecal samples were 

collected from healthy, over-weight and obese individual adults. This might also be 

another reason because, previous studies propose that the number of Bacteroidetes in 

obese people is far less when compared to lean people (Turnbaugh et al., 2009). The 

converse is true in case of Firmicutes. Furthermore, no microbial community on the 

biosphere has been sampled to completion. The biases in the current sampling method 

and its inability to distinguish live from dead organisms may also contribute to the 

difference in the overall populations of different species. 

At a confidence level greater than 80%, very less percentage of total metagenomic 

data was binned to these four genera indicating the presence of many novel species. This 

further concludes that there is a very vast and highly diverse gut microbiota to be 

explored with thousands of bacterial species present which is in concordant with the 

previous studies (Mitsuoka, 1992).  

With the above mentioned evidences, it can be concluded that CSSR is an 

efficient biomarker in binning metagenomic data with a much lesser effort and time when 

compared to other binning methods. However, as the number of types of microbes or 

bacteria increase in the dataset, the binning accuracy decreases. Further rounds of binning 

and analysis are required in order to bin to a specific species level and to find the exact 

overall numbers of each species in a particular metagenomic dataset. Moreover, there is 

no particular tool that can successfully solve the metagenomic binning problem. Always, 

a proper combination of two or more effective tools would help to come to a definitive 

conclusion. 
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