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Abstract 
 
Yi Gu, Ph.D., The University of Memphis, August 2011, “Optimization and Management 

of Large-scale Scientific Workflows in Heterogeneous Network Environments: From 

Theory to Practice”. Major Professor: Prof. Qishi Wu 

    Next-generation computation-intensive scientific applications feature large-scale 

computing workflows of various structures, which can be modeled as simple as linear 

pipelines or as complex as Directed Acyclic Graphs (DAGs). Supporting such computing 

workflows and optimizing their end-to-end network performance are crucial to the 

success of scientific collaborations that require fast system response, smooth data flow, 

and reliable distributed operation. 

    We construct analytical cost models and formulate a class of workflow mapping 

problems with different mapping objectives and network constraints. The difficulty of 

these mapping problems essentially arises from the topological matching nature in the 

spatial domain, which is further compounded by the resource sharing complicacy in the 

temporal dimension. We provide detailed computational complexity analysis and design 

optimal or heuristic algorithms with rigorous correctness proof or performance analysis. 

We decentralize the proposed mapping algorithms and also investigate these optimization 

problems in unreliable network environments for fault tolerance. 

    To examine and evaluate the performance of the workflow mapping algorithms before 

actual deployment and implementation, we implement a simulation program that 

simulates the execution dynamics of distributed computing workflows. We also develop a 

scientific workflow automation and management platform based on an existing workflow 

engine for experimentations in real environments. The performance superiority of the 

proposed mapping solutions are illustrated by extensive simulation-based comparisons 

with existing algorithms and further verified by large-scale experiments on real-life 

scientific workflow applications through effective system implementation and 

deployment in real networks. 



Chapter 1

Introduction

1.1 Overview

Advances in supercomputing technology are expediting the transition in various basic

and applied sciences from traditional laboratory-controlled experimental methodologies to

modern computational paradigms involving complex numerical model analyses and large-

scale simulations of physical phenomena, chemical reactions, climatic changes, and bi-

ological processes, as illustrated in Fig. 1.1. Such computation-based simulations and

analyses have become an essential research and discovery tool in next-generation scien-

tific applications and are producing colossal amounts of simulation data, on the order of

terabyte at present and petabyte or even exabyte in the predictable future. Other scientific

data of similar scales generated in broad science communities include real-world envi-

ronmental observations such as satellite climate data [1] and multimodal sensor data, and

high-throughput experimental measurements such as Spallation Neutron Source [2] and

Large Hadron Collider [3]. Both computation and computing needs in these scientific ap-

plications have gone far beyond the capability of traditional solutions based on standalone

PCs, and have driven the rapid deployment of a wide variety of system resources including

high-performance computing facilities, data repositories, experimental facilities, network

infrastructures, storage systems, and display devices across the nation and around the globe.

These massively distributed resources must be pooled together to produce unprecedented

data collections, simulations, visualizations, and analyses.

1



Astrophysics

Computational biology

Climate research

Flow dynamics

Computational materials

Fusion simulation

Neutron sciences

Nanoscience

Figure 1.1: Impact of supercomputing on various scientific applications.

On the one hand, the e-science based on computational techniques with diverse physi-

cal, chemical, climatic, and biological models typically entails domain-specific computing

solutions with multifarious performance requirements. On the other hand, the resources

generally serve a large user base over wide-area networks and thus exhibit an inherent

dynamic nature in their accessibility, availability, capacity and reliability. Therefore, the

success of these extreme-scale scientific applications requires effective and efficient end-

to-end solutions for geographically distributed users to transfer, process, visualize, analyze,

and synthesize the data (raw data, intermediate results, or final outputs) in heterogeneous

network environments for collaborative research. Fortunately, the ready availability of

tremendous computational resources enables the development of robust problem-solving

environments where large-scale, collaborative, computationally intensive applications can

be set up, executed, and managed. No longer confined to just one fast machine, this work

has moved to include a collection of large clusters – some with tens to hundreds of thou-

sands of processor cores, grids (e.g., TeraGrid) with a dozen sites and 100K+ processors,

2



and supercomputers with up to 200K processors (i.e., IBM BlueGene/L and BlueGene/P,

Cray XT5, and Sun Constellation). Effectively utilizing these high-performance comput-

ing resources presents a great opportunity for significant progress in a number of scientific

fields.

1.2 Problem Statements

The computing tasks of these scientific applications commonly feature complex workflows

consisting of many computing modules1 with intricate inter-module execution dependen-

cies. The execution of these modules typically involves the invocation of many diverse

distributed computing tools or services for collaborative data analysis and knowledge dis-

covery [4, 60, 111, 126]. Supporting such distributed computing workflows in heteroge-

neous network environments and optimizing their end-to-end performance are crucial to

ensuring the success of mission-critical distributed e-science applications and maximizing

the utilization of networked resources.

We consider two types of large-scale distributed computing workflow applications:

• Unitary processing applications where a single dataset is processed through the

entire workflow. Typical examples include an interactive parameter update on a re-

mote visualization system that triggers a number of individual processing subtasks

for data filtering, isosurface extraction, geometry rendering, image compositing, and

final display.

• Sequential processing (or streaming) applications where a series of datasets con-

tinuously flow through the entire workflow. Typical examples include a video-based

real-time monitoring system for detecting criminal suspects that performs feature

extraction and detection, facial reconstruction, pattern recognition, data mining and

identity matching on continuously captured images.

1In some context, a computing module is also referred to as a subtask, an activity, a stage, a job, or a

transformation.
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In unitary processing applications, we consider the performance metric of end-to-end de-

lay or latency; while in streaming applications, we consider the metric of frame rate2 or

throughput. A general optimization goal is to achieve Minimum End-to-end Delay (MED)

for fast system response in the former and achieve Maximum Frame Rate (MFR) for

smooth data flow in the latter.

A special case of workflows consists of computing modules that are to be executed in

a sequential (linear) order in distributed environments with heterogeneous resources un-

der different network constraints. We categorize the mapping problems for such pipeline-

shaped workflows in distributed environments into six classes with two mapping objectives,

i.e., MED and MFR, and three network constraints on node reuse:

1. MED with No Node Reuse (MED-NNR),

2. MED with Contiguous Node Reuse (MED-CNR),

3. MED with Arbitrary Node Reuse (MED-ANR),

4. MFR with No Node Reuse (MFR-NNR),

5. MFR with Contiguous Node Reuse (MFR-CNR),

6. MFR with Arbitrary Node Reuse (MFR-ANR).

Here, “contiguous node reuse” means that multiple consecutive modules along the pipeline

may run on the same node, and “arbitrary node reuse” imposes no restriction on node

reuse. Note that in the MED problems of unitary processing pipelined applications, the

resources of a node are not shared even if multiple modules are mapped on it (i.e., node

reuse) because only one module is running at any time point; while in the MFR problems

of streaming pipelined applications, the resources of a reused node are shared by multiple

concurrent modules executing on it with a sequence of datasets that need to be processed.

2Frame rate is the final data production rate at the last module in the workflow.
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The workflows of many other applications have more complex structures that are often

modeled as Directed Acyclic Graphs (DAGs), where each vertex represents a computing

module and each directed edge represents a communication and execution dependency. A

general workflow consisting of a large number of computing modules may have very com-

plex execution dependencies that must be satisfied. In our workflow execution model, each

module is considered as an autonomous computing agent: it receives data as input from

one or more preceding modules, executes a predefined processing routine on the aggregate

input data, and sends the results as output to one or more succeeding modules. We assume

that neither can a module start the execution until all the needed input datasets arrive nor

send out the results until the execution is successfully completed.

We consider the network environment as an overlay computer network consisting of

heterogeneous computer sites or nodes interconnected by disparate network links. Depend-

ing on the network infrastructure, the topology of an overlay network may be complete as in

the case of the Internet based on layer-3 IP routing, or not as in the case of most dedicated

research testbed networks using layer-1 or 2 circuit/lambda switching or MPLS/GMPLS

tunneling techniques. Note that even in Internet environments, the network topology may

not be always complete because the network connectivity or facility accessibility could be

largely affected by firewall settings on either routers or end systems. We would also like

to point out that computer nodes are of different processing capabilities and network links

are of different transfer properties in terms of bandwidth and minimum link delay in most

wide-area networks. We assume that the bottlenecks of overlay links (i.e., path bandwidths)

reside on the backbone, not on its edge, and are independent of each other.

The DAG-structured workflow mapping/scheduling problem has been extensively stud-

ied in the literature [25, 37, 56, 73, 75, 116, 123, 128, 129, 142], and is known to be NP-

complete in a general sense [73] as well as some simplified cases [142] such as the map-

ping of linear pipelines, or restricted cases [128] such as the assignment of tasks with one

or two time units on only two processors. We generalize the workflow mapping problem
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with two different objectives: select an appropriate set of heterogeneous computer nodes

in the overlay network of an arbitrary topology and assign each computing module in the

workflow to one of those selected nodes to achieve (i) MED for fast system response in

unitary processing applications with a single dataset and (ii) MFR for smooth data flow

in streaming applications with time-series datasets. We further investigate the problem of

optimizing the workflow end-to-end performance under fault-tolerant constraints.

1.3 Main Approaches

The workflow performance in terms of end-to-end delay or frame rate is determined by

module execution time on computer nodes and data transfer time over communication links.

The difficulty of these workflow mapping problems essentially arises from the topologi-

cal matching nature in the spatial domain, which is further compounded by the resource

sharing complicacy in the temporal dimension. We construct analytical cost models for

computing workflows and computer networks, and formulate workflow mapping as a class

of optimization problems based on different objectives and network constraints.

In linear computing pipeline mappings, we prove that MED-ANR can be solved in

polynomial time; while the other five problems are NP-complete, among which we further

prove that all NP-complete problems, except MFR-ANR, cannot be approximated by any

constant factor (unless P = NP). We propose a set of mapping algorithms, named Efficient

Linear Pipeline Configuration (ELPC), in which an optimal solution based on dynamic

programming is designed for MED-ANR, and a heuristic approach is designed for each of

the NP-complete problems [79–81, 84, 140, 142, 147, 149].

In general DAG-structured workflow mappings, for unitary processing applications, we

first propose an efficient algorithm to compute the exact end-to-end delay of a mapped

workflow with arbitrary node reuse and then develop a new workflow mapping algorithm

Recursive Critical Path (RCP) based on a recursive optimization procedure to minimize the

latency. For streaming applications, we first conduct a rigorous workflow stability analysis
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and then develop a new Layer-oriented Dynamic Programming (LDP) solution based on

topological sorting to identify and minimize the global bottleneck time [78, 83, 144]. We

construct the cost models for workflows and networks subject to probabilistic node and link

failures, and rigorously prove that the bi-objective optimization problem, i.e., MED/MFR

and minimal failure rate, cannot be approximated within one constant factor. Consequently,

we convert this problem to a reliability-constrained delay minimization or throughput maxi-

mization problem, and adapt the original RCP and LDP mapping algorithms to calculate the

latency or throughput in a distributed manner under a given reliability constraint [82, 139].

For performance evaluation and comparison, we implement the proposed mapping so-

lutions as well as four existing mapping algorithms, namely Greedy A∗ [121], Stream-

line [26], DLS [125] and Greedy. We also develop a lightweight multi-threaded simulation

program, Simulation of Dynamic Execution of Distributed Systems (SDEDS), to simulate

the dynamic execution process of distributed systems with data execution on computer

nodes and data transfer along network links before actual deployment and experimenta-

tion [141, 146]. We design and implement a generic Scientific Workflow Automation and

Management Platform (SWAMP) and conduct experiments on two real-life scientific work-

flow applications [145, 150], i.e., analysis of measurement data from the Spallation Neu-

tron Source (SNS) at Oak Ridge National Laboratory [2] and Climate Modeling (CM) at

Brookhaven National Laboratory [5]. We conduct an extensive set of experiments on sim-

ulated and real-life workflows and networks, and both simulation and experimental results

illustrate the performance superiority of our proposed algorithms over the existing ones.

1.4 Dissertation Organization

The rest of the dissertation is organized as follows:

• In Chapter 2, we conduct a comprehensive survey of related work on workflow map-

pings in the literature;

7



• In Chapter 3, we present analytical cost models of workflow and network components

as well as two performance metrics, and formulate mapping optimization problems;

• In Chapter 4, we investigate the complexity of linear computing pipeline mappings,

and provide rigorous NP-completeness proofs and design optimal or heuristic algo-

rithms to solve these mapping problems;

• In Chapter 5, we tackle the mapping problems of general DAG-structured workflows

and optimize their end-to-end performance under fault-tolerance constraints;

• In Chapter 6, we introduce the framework and design principles of SDEDS;

• In Chapter 7, we present the development of a workflow management system, SWAMP;

• In Chapter 8, we describe environmental settings and implementation details, and

conduct extensive comparison-based performance evaluations;

• In Chapter 9, we conclude our work and discuss future research directions and efforts.

1.5 Main Contributions

This dissertation has made the following contributions to the fields of workflow mapping

and scientific computing:

1. We consider a more realistic workflow model of dependent subtasks that better de-

scribes real-life scientific workflow applications;

2. We consider a more general network model of arbitrary topology with heterogeneous

computer nodes and network links;

3. We consider a commonly used multi-port model where one node can receive, process

and send data simultaneously;
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4. We consider unknown time cost for module execution and data transfer until a map-

ping scheme is found;

5. We investigate resource sharing dynamics among concurrent module executions and

data transfers;

6. We provide exhaustive problem categorization and complexity analysis for mapping

problems as well as the non-approximability proofs;

7. We provide a rigorous stability analysis for streaming applications with time-series

datasets being processed;

8. We investigate workflow optimization problems under fault-tolerance constraints;

9. We propose a set of efficient and effective optimal and heuristic mapping algorithms

for both pipelined and DAG-structured workflows, and further decentralize the map-

ping process to facilitate the scalability of the mapping problems;

10. We conduct an extensive set of workflow mapping experiments in both simulated

and wide-area networks with real-life workflow applications for model validation

and performance valuation.

9



Chapter 2

Background Survey and Related Work

2.1 Computing Workflow Optimization

Many parallel and distributed applications in science and engineering fields face a major

performance optimization problem of mapping or scheduling computing workflows with

complex execution dependencies in distributed environments. This workflow mapping or

scheduling problem has attracted a great deal of attention from researchers in various disci-

plines [26,29,31,33,38,44,47,48,56,75,92,105,116,117,123,128,129,135] and continues

to be the focus of distributed computing due to both its theoretical significance and prac-

tical importance. There are two types of optimization problems for distributed computing

tasks: one is to assign the component subtasks in a workflow to an appropriate set of com-

puter nodes, which is referred to as workflow mapping, and the other is to decide the order

and resource share (i.e., fair, proportional or priority-based, etc.) of independent subtask

executions on a specific node or processor, which is referred to as task scheduling.

In the early years when shared network resources were still scarce, many research ef-

forts were focused on workflow mapping on multiprocessors that are considered as iden-

tical/homogeneous resources [29, 75, 98]. Over the years, workflow mapping problems in

heterogeneous environments have been increasingly identified and investigated by many

researchers to facilitate a much larger scope of collaborations among different institutes
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and domains across wide-area networks [37, 38, 58, 90, 117]. However, some of these ef-

forts consider independent tasks in the workflows [41] or assume fully-connected computer

networks, such as HEFT [128], which may not be sufficient to model the complexity of real

applications.

Recently, with the pervasive deployment of networked resources based on grid infras-

tructures, a significant amount of efforts have been devoted to workflow mapping or task

scheduling in grid environments under different mapping and resource constraints. The

grid environments provide compositional programming and execution models to enable the

resource interactions that support large-scale scientific applications by supplying the mech-

anisms to access, aggregate, and manage the network-based infrastructure of science [92].

Such grid-based scientific applications include data analysis for the Large Hadron Collider

(LHC) supported by the Worldwide LHC Computing Grid (WLCG) [6], climate modeling

supported by the Earth System Grid (ESG) [7], and NASA’s National Airspace Simulation

supported by the Virtual National Airspace Simulation (VNAS) grid [92, 108]. Other grid

initiatives and projects such as Open Science Grid (OSG) [8], TeraGrid, ASKALON [135],

Critical Path [116], GridFlow [44], Nimrod/G [42], Globus Toolkit [69, 70], Pegasus [57]

and Condor/DAGMan [55,71] (please see [9] for a more complete list) provide toolkits and

middleware to deploy grid computing systems and several visualization applications were

built using these services. Note that the execution model in the workflow mapping problem

we consider differs from Condor/DAGMan: each module in our model only has one copy

running on the mapping node, while Condor/DAGMan may dispatch multiple copies of

each module to different nodes at the same time.

Several mapping-related studies are closely related to the pipeline mapping problems

we consider. Particularly, in [37], Benoit et al. presented the mapping of computing

pipelines onto different types of fully connected networks with identical processors and
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links (fully homogeneous platforms), with identical links but different processors (com-

munication homogeneous platforms), or with different processors and links (fully hetero-

geneous platforms). Their problems map each module or stage (including receiving, pro-

cessing, and sending) to one node in a serial manner, and assume receiving, processing

and sending should not be executed simultaneously which is defined as a one-port model.

In [65], three local search heuristic algorithms are employed to solve the problem of find-

ing a sequence of pipelined multiprocessor tasks on a processor and a proper mapping of

tasks to the processors that are already being sequenced. Chatterjee et al. proposed a hi-

erarchical end-to-end analysis technique that decomposes a very complex heterogeneous

multi-resource scheduling problem into a set of single-resource scheduling problems with

well-defined interactions [46]. Choi et al. proposed an approach to optimally configure

sessions in programmable networks by converting the session configuration problem to

the problem of finding a shortest path in a special layer-constructed graph [49]. The NP-

completeness of this problem was further studied considering the capacity constraints of

each link and node and a heuristic solution using extended Dijkstra’s algorithm was pro-

posed in [50].

Many other research efforts have been devoted to general DAG-structured workflow

mappings. Foggia et al. introduced an adequate representation of the search space and

process, and pruned unprofitable search paths in the search space to reduce the mapping

complexity [66]. Ullmann [130] and Schmidt et al. [120] proposed a backtracking algo-

rithm to reduce the size of the search space using different structures. VF2, a more recent

algorithm based on a depth-first search strategy, was developed by Foggia et al. [52] to

reduce the complexity. Note that most theoretical graph mapping problems consider exact

mapping such that each module in the task graph is mapped to one node and each node in

the network graph cannot be assigned more than one module.
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In the past few years, many researchers have developed static scheduling algorithms1 on

multiprocessors that are considered as identical resources. Kwok et al. proposed Dynamic

Critical-Path (DynCP) scheduling algorithm [98] to map task graphs with arbitrary com-

putation and communication costs to a multiprocessor system with an unlimited number of

identical processors in a fully-connected network. Based on DynCP, two CP and priority

based algorithms were proposed by Ma et al. to schedule workflows with parameter-sweep

tasks on global grids [105], where the application is optimized by pipelining the subtasks

and dispatching each of them to well-selected resources. Another two algorithms based

on DynCP were proposed by Rahman et al. for efficient mapping of tasks by calculating

the CP in the workflow at each step and assigning a priority to each subtask on the CP to

achieve an earlier completion [116], and McCreary et al. for determining the DynCP after

each subtask is scheduled, allowing the partial schedule on a processor to change during the

scheduling process [107]. A workflow mapping scheme for streaming data, Streamline, is

designed in [26] to improve the performance of graph mapping for streaming applications

with various demands in distributed environments, which places a coarse-grain dataflow

graph on available grid resources. Most of these workflow mapping or task scheduling

problems in grid environments assume complete networks with heterogeneous resources.

Similar mapping problems were also studied in the context of services and business

process management workflows [100, 102, 119, 143], sensor networks [121] and bioinfor-

matics workflows such as Taverna project [113]. Wu et al. tackled the problem of mapping

workflow-structured web service compositions to heterogeneous environments and opti-

mizing their performance in [143]. Saha et al. aimed to combine and compress a set of

workflows such that computation can be minimized in [119]. Sekhar et al. proposed an

optimal algorithm for mapping subtasks to a large number of sensor nodes based on an A∗

algorithm in [121]. A greedy version of the A∗ algorithm was proposed to reduce the com-

plexity of the original optimal solution accounting for the limited energy of each sensor

1The scheduling decision in a static scheduling algorithm is made before the program or task executes

and remains unchanged during execution.
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node. A distributed data stream processing middleware, System S, was developed in [74],

and a scheduler for resource allocation, SODA [136]. An optimization scheme for fusing

compile-time operators into run-time software units, COLA [96], were proposed to sup-

port the S system. Note that the physical nodes they used to execute processing elements

are in a tightly connected cluster environment (i.e., fully-connected), while we consider an

arbitrary topology in a more loosely coupled network environment.

2.2 Classification of Workflow Mapping Algorithms

The workflow mapping algorithms can be categorized along different dimensions. For ex-

ample, based on the time when the mapping is performed, these algorithms can be divided

into two subclasses, i.e., static algorithms [44, 99], where the entire mapping scheme of

a given workflow is produced before the actual workflow starts execution, and dynamic

algorithms [71, 113], where the mapping of each module is determined on the fly at run-

time. Also, based on the mapping methodology, these algorithms can be roughly classified

into five categories [106, 128]: (i) Graph-based methods [52, 110]. Among the traditional

graph mapping problems in theoretical aspects of computing, subgraph isomorphism is

known to be NP-complete [73], while the complexity of graph isomorphism still remains

open. Many special cases of the graph isomorphism problem under different topology con-

straints on the mapped (tasks or workflows) or mapping (network) graphs can be solved

in polynomial time, including isomorphism between planar graphs [88] and bounded va-

lence graphs [104]. (ii) List scheduling techniques, in which the most commonly used

is critical path method [98, 105, 116]. (iii) Clustering algorithms [38, 75], which assume

an unlimited number of processors and thus are not very feasible for practical use. (iv)

Duplication-based algorithms [27, 40, 117], most of which are of a prohibitively high time

complexity. (v) Guided random search methods such as genetic algorithm [29, 133] and
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simulated annealing [124], where additional efforts are often required to determine an ap-

propriate termination condition and usually there is no performance guarantee.

2.3 Existing Workflow Simulation Tools and Workflow Man-

agement Systems

The management of large-scale scientific workflows in heterogeneous computing environ-

ments is a crucial task that determines the overall application performance. There exist

a large number of research efforts on the design and development of efficient and user-

friendly workflow simulation tools or real-life workflow management systems. These tools

or systems are often used to test or execute workflows in simulated or real network en-

vironments. Due to space limit, we are not able to provide an exhaustive enumeration

of existing tools or systems. The following listing is not meant for competition as each

workflow system, for either simulation or real execution, has its own design goals for eval-

uation, modeling, or management, and hence leads to different user experiences in terms

of performance, convenience, flexibility and reliability.

2.3.1 Workflow Simulation Tools

There exist a number of simulation tools that are designed to study the behavior of dis-

tributed systems and investigate the performance of distributed algorithms. Such tools

include ChicSim [118] and OptorSim [34] for studying data replication on grids, as well

as PlanetSim [72] and PeerSim [91] for simulating P2P applications. We provide below a

brief description of two widely adopted simulation tools, SimGrid and GridSim.
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(1) SimGrid

SimGrid is a C language-based toolkit developed by H. Casanova, A. Legrand and M.

Quinson et al. for simulating distributed applications on distributed platforms [45]. It is

designed for the study of distributed systems and algorithms for large-scale platforms, using

a low-level network simulation approach that approximates the behavior of TCP networks

and decreases simulation costs by orders of magnitude when compared to packet-level sim-

ulation [132]. SimGrid has three key features [45]: (i) a scalable and extensible simulation

engine that implements several validated simulation models; (ii) high-level user interfaces

for geographically distributed researchers or users to quickly prototype simulations either

in C or in Java; and (iii) Application Programming Interfaces (APIs) for advanced devel-

opers to design and implement distributed applications.

SimGrid also has some limitations: it is restricted to a single scheduling entity and

time-shared systems, which makes it difficult to simulate multiple user requirements, ap-

plications, and schedulers, each with its own policies. Moreover, many network resources

in Grid environments are space-shared machines and need to be supported during actual

workflow execution.

(2) GridSim

GridSim is a Java-based discrete-event Grid simulation toolkit developed by R. Buyya et al.

It was initially intended for grid economy, and later became used for general distributed

resource management and scheduling in Grid environments [43]. It supports primitives

for application composition, information services for resource discovery, and interfaces

for assigning application tasks to resources and managing their execution, which could

be used to model and simulate Grid schedulers for performance evaluation of scheduling

algorithms or heuristics on various classes of parallel and distributed computing systems

such as clusters, Grids, P2P networks, etc. GridSim toolkit extends the ideas in existing

systems and overcomes the aforementioned limitations in SimGrid.
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The developers mentioned several future efforts in their work [43]: (i) Develop a better

network model to support the application model with tasks collaborating and exchanging

partial results among themselves in a P2P fashion. (ii) Strengthen the network model by

supporting various types of networks with different static and dynamic configurations and

cost-based quality of services. (iii) Enhance the resource models by interfacing with off-

the-shelf storage I/O simulators.

2.3.2 Workflow Management Systems

We provide a brief overview of some widely used workflow management systems imple-

mented and deployed in real network environments.

(1) Condor/DAGMan/Stork

The Condor project [10], a specialized workload management system for compute-intensive

jobs, began in 1988 under the lead of Prof. M. Livny. Condor provides a job queueing

mechanism, scheduling policy, priority scheme, resource monitoring, and resource man-

agement. Condor places serial or parallel jobs into a queue after users submit them, chooses

when and where to run the jobs based upon a policy, carefully monitors their progress, and

ultimately informs the users upon completion. Condor has expanded its focus from exe-

cuting jobs on local clusters of computers to running jobs in distributed grid environments

(i.e., Globus, NorduGrid, Oracle, etc.), which is named Condor-G.

In the late 1990s, the Directed Acyclic Graph Manager (DAGMan) was built on Condor

to allow users to submit large workflows involving many jobs with execution dependency

to Condor, and automate the submission and management of complex workflows with a

focus on reliability and fault tolerance [53].

Note that Condor/DAGMan has a centralized execution model where the output of each

module is sent back to the submitter for forwarding to its succeeding modules. This cen-

tralized model may introduce prohibitively large data traffics in the network, especially for
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data-intensive workflows with many computing modules. To accommodate distributed re-

source allocation and storage, Stork, a scheduler for data placement activities in the Grid

was developed to facilitate the queuing, scheduling and optimization of data placement

jobs, and to provide a level of abstraction between user applications and underlying data

transfer and storage resources [97].

With a combination of Condor, DAGMan and Stork, users can create, submit, execute

and monitor large-scale complex workflows in a distributed manner in a grid environment.

(2) Pegasus

Pegasus, which stands for Planning for Execution in Grids, developed by E. Deelman et al.,

takes an abstract description of a workflow and finds appropriate data and Grid resources to

execute the workflow [54,57]. Users can use Chimera to construct abstract workflows [68]

or write the code by themselves. Chimera takes the partial workflow descriptions as inputs

which describe the logical input files, the logical transformations and their parameters, as

well as the logical output files produced by these transformations. The current system is

semi-dynamic since the workflows are fully mapped to their concrete form when they are

submitted to Pegasus. The fully dynamic mode of mapping workflows can be implemented

by combining the technology of Pegasus and Condor’s workflow executer, DAGMan. Pe-

gasus enables scientists to focus on their domain research and design workflows at the

application level without the need of considering the actual execution environments.

(3) Kepler

Kepler is a java-based application developed and maintained by the cross-project collabo-

ration, who is designed to help domain scientists, analysts, and computer programmers to

easily create, execute, and share models and analyses across a broad range of scientific and

engineering disciplines [11, 103].
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Kepler provides a Graphical User Interface (GUI) and a run-time engine that can ex-

ecute workflows either in GUI or from a command line. Kepler Manager is designed as

an actor that resides in the Kepler framework. A constant string actor in Kepler is used to

represent an abstract module in the workflow. The name of an executable module corre-

sponding to an abstract module is set in the “value” property in each constant string actor.

Kepler saves the abstract workflow in an XML file, and the Kepler Manager takes this ab-

stract workflow in XML format as input and generates the DAG and submit files, which are

then transferred to the Web Server Manager.

Using Kepler’s GUI and processing components, scientists with little background in

computer science can create executable scientific workflows for accessing scientific data

and running analysis tools on the retrieved data.

(4) ASKALON

ASKALON, developed by the group of Prof. T. Fahringer at the University of Innsbruck

in Austria, is a grid application development and computing environment, whose ultimate

goal is to hide the low-level grid environment from application users [127]. In ASKALON,

users can compose grid workflow applications using a graphical workflow composition and

modeling service based on UML, or programmatically describe workflows using XML-

based Abstract Grid Workflow Language (AGWL) at a higher level of abstraction. The

AGWL representation of a workflow is submitted to the ASKALON Web Services Re-

source Framework (WSRF) specification for scheduling and execution in grid environ-

ments.

(5) Taverna/myGrid

myGrid is a project funded by the United Kingdom’s e-Science Programme since 2001 to

build middleware to support workflow-based in silico experiments in biology [113, 127].

myGrid’s workflow execution and development environment, Taverna, links and executes all

19



kinds of heterogeneous open services. Taverna is an application that eases the use and inte-

gration of molecular biology tools and databases available on the web, especially web ser-

vices. It allows bioinformaticians to construct workflows or pipelines of services through

GUI to perform a range of different analyses, such as sequence analysis and genome anno-

tation [89]. myGrid components are Taverna plug-ins and services.

(6) Sedna

Sedna is a Business Process Execution Language (BPEL)-based environment for visual

scientific workflow modeling [127], which provides language abstractions in addition to

those used in BPEL in order to simplify the modeling of scientific workflows and hide the

complexity of underlying technologies and middleware.

(7) SWAMP

We designed and developed a Condor/DAGMan-based generic Scientific Workflow Au-

tomation and Management Platform (SWAMP), which contains a set of easy-to-use com-

puting and networking toolkits for application users to conveniently assemble, execute,

monitor, and control workflows in distributed network environments [145, 150].

SWAMP provides a web-based user interface for users to remotely configure, dispatch,

monitor and control workflows. It also features a special workflow mapper as an opti-

mization engine, which automatically maps abstract workflows to real networks to achieve

optimal end-to-end performance based on real-time network status measurements. We con-

ducted an extensive set of performance evaluation and comparison in SWAMP using both

simulated workflow and network data as well as real-life ones. The design and implemen-

tation details are provide in Chapter 7.
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Chapter 3

Mathematical Models and Problem

Formulation

In this chapter, we construct cost models for computing modules and dependency edges

in a general workflow, and computer nodes and network links in a computer network to

facilitate a mathematical formulation of scientific workflow mapping problems.

3.1 Cost Models of Computing Workflows and Computer

Networks

We model the workflow as a Directed Acyclic Graph (DAG) Gw = (Vw,Ew), |Vw| = m,

where vertices represent computing modules starting from module w0 and ending at mod-

ule wm−1. The dependency between a pair of adjacent modules wi and w j is represented

by a directed edge ei, j ∈ Ew between them. Module w j receives a data input from each

of its preceding modules and performs a predefined computing routine whose complexity

is modeled as a function λw j
(·) on the aggregate input data size zw j

. The complexity of a

module is an abstract quantity that not only depends on the computational complexity of

the algorithm defined in the module but also the implementation details such as the specific

data structures used in the program. To make the complexity function general, we do not

specify the data aggregation method in our model, which, in a real application, could be
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simply replaced by a specific aggregation function determined by the particular algorithm

implemented in that computing module. For example, we perform a simple summation

operation for data aggregation in our later simulated workflows. Once the routine is ex-

ecuted successfully in its entirety, module w j sends a different data output to each of its

succeeding modules. We assume that a module cannot start its execution until all input

data required by this module arrive. For a workflow with multiple source or destination

modules, we could convert it to this model by inserting a virtual start or end module of

complexity zero connected to all source or destination modules with zero-sized output or

input data transfers.

We model the computer network as an arbitrary weighted graph Gc = (Vc,Ec), consist-

ing of |Vc| = n nodes interconnected by |Ec| overlay links. We use a normalized variable

pi to represent the overall processing power of node vi without specifying its detailed sys-

tem resources, which combines a variety of host factors such as processor frequency, bus

speed, memory size, I/O performance, presence of co-processors etc. A statistical approach

to performance modeling and prediction is detailed in [137]. The link li, j between nodes

vi and v j has Bandwidth (BW) bi, j and Minimum Link Delay (MLD) di, j. We specify a

pair of source and destination nodes (vs,vd) to run the start module w0 and the end module

wm−1, respectively, and further assume that module w0 serves as a data source without any

computation to supply all initial data needed by the application and module wm−1 performs

a terminal task (e.g., display) without any further data transfer. This is based on the consid-

eration that the system knows where the raw data is stored and where an end user is located

before a workflow executes in an existing network.

The computational complexity of a module together with the incoming data size deter-

mines the number of floating operations (flops) to complete the computing routine defined

in that module. The actual module execution time also depends on the capacity of system

resources, i.e., overall processing power, deployed on the selected network node as well as

their availability during runtime.
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We further introduce the following notations for module/edge assignment and time cost

of module execution and data transfer.

• xwv,∀w ∈Vw,v ∈Vc: if module w is mapped to node v, xwv = 1; otherwise, xwv = 0.

• yel,∀e ∈ Ew, l ∈ Ec: if edge e is mapped to link l, yel = 1; otherwise, yel = 0.

• ts
w, t

f
w, ∀w ∈Vw: execution start and finish times of module w.

• ts
ei, j

, t
f
ei, j , ∀ei, j ∈ Ew: transfer start and finish times of dependency edge ei, j from

module wi to w j.

We consider the following conditions on workflow mapping and execution dynamics.

1. Single-node and single-link mapping:

∑
v∈Vc

xwv = 1, ∀ w ∈Vw, and ∑
l∈Ec

yel = 1, ∀ e ∈ Ew.

2. Module execution precedence: ts
w j
≥ t

f
ei, j , ∀ w j ∈Vw, ei, j ∈ Ew.

3. Data transfer precedence: ts
ei, j
≥ t

f
wi
, ∀ wi ∈Vw, ei, j ∈ Ew.

Condition 1 requires each module/edge to be mapped to only one node/link. Condition 2

ensures that a computing module cannot start execution until all its required input data

arrive, and Condition 3 ensures that a dependency edge cannot start data transfer until its

preceding module finishes execution.

We use Texec(wi,v j) to represent the execution time of module wi on node v j, which is

computed as the module’s total computation requirements divided by the node processing

power:

Texec(wi,v j) =

t
f
wi

∑
t=ts

wi

αi(t) ·δwi
(t)

p j

, ∀ wi ∈Vw, v j ∈Vc, (3.1.1)

where αi(t)= ∑
wi∈Vw:(t

f
wi
−t)(t−ts

wi
)≥0

xwiv j
. The amount of partial module execution completed

during time interval [t, t+∆t] when αi(t) remains unchanged is denoted by δwi
(t)=

p j

αi(t)
∆t,

and λwi
(zwi

) =
t

f
wi

∑
t=ts

wi

δwi
(t) is the total computational requirement of computing module wi.
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Similarly, we use Ttran(ei, j, lh,k) to represent the data transfer time of dependency edge

ei, j over network link lh,k, which is computed as the transferred data size divided by the

bandwidth plus MLD:

Ttran(ei, j, lh,k) =

t
f
ei, j

∑
t=ts

ei, j

βi, j(t) ·δei, j(t)

bh,k
+dh,k, ∀ ei, j ∈ Ew, lh,k ∈ Ec, (3.1.2)

where βi, j(t) = ∑
ei, j∈Ew:(t f

ei, j
−t)(t−ts

ei, j
)≥0

yei, jlh,k . The amount of partial data transfer completed

during time interval [t, t + ∆t] when βi, j(t) remains unchanged is denoted by δei, j(t) =

bh,k

βi, j(t)
∆t, and zei, j =

t
f
ei, j

∑
t=ts

ei, j

δei, j(t) is the total data transfer size of dependency edge ei, j.

Note that αi(t) in Eq. 3.1.1 denotes the constant number of concurrent modules for

module wi on node v j during time interval [t, t +∆t], and βi, j(t) denotes the number of

concurrent data transfers for data zi, j transferred over network link lh,k during time interval

[t, t +∆t]. For MED of unitary processing applications, in the case of no node reuse (i.e.,

one-to-one mapping), α(t) ≡ 1 and β (t) ≡ 1, and in the case of arbitrary node reuse, we

have α(t)≥ 1 and β (t)≥ 1 when CPU cycles or link bandwidths are shared by concurrent

independent modules or data transfers; while for MFR of streaming applications, even in

the case of only dependent modules mapped on the same node, we still have α(t)≥ 1 and

β (t)≥ 1 because computing and networking resources could be shared by multiple depen-

dent modules and edges that are processing and transferring different instances of input

datasets. Note that in the special case of DAG-structured workflows, i.e., linear pipelines,

α(t) ≥ 1 and β (t) ≥ 1 only happens in the contiguous/arbitrary node reuse in streaming

applications. Due to the dynamics in concurrent workload on nodes and concurrent traffic

over links, both α(t) and β (t) are time-varying in nature and their distributions generally do

not exist in a continuous form, which renders standard mathematical solvers inapplicable.

We develop an efficient algorithm in Chapter 5.2 for exact delay calculation by determining

the values of α(t) and β (t) at discrete times and incorporate it into the proposed workflow

mapping algorithms. We tabulate the parameters defined in the cost models in Table 3.1.
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Table 3.1: Parameters in the cost models and problem formulation.
Parameters Definitions

Gw = (Vw,Ew) computing workflow

m the number of modules in the workflow

wi the i-th computing module

ei, j dependency edge from module wi to w j

zi, j transferred data size of dependency edge ei, j

zwi
aggregated input data size of module wi

λwi
(·) computational complexity of module wi

Gc = (Vc,Ec) computer network

n the number of nodes in the network

vi the i-th network or computer node

vs source node

vd destination node

pi processing power of node vi

li, j network link between nodes vi and v j

bi, j bandwidth of link li, j

di, j minimum link delay of link li, j

xwv binary indicator if module w is mapped to node v

yel binary indicator if edge e is mapped to link l

ts
w, t

f
w execution start and finish times of module w

ts
ei, j

, t
f
ei, j transfer start and finish times of edge ei, j

Texec(w,v) execution time of module w on node v

α(t) number of concurrent modules on node v during ∆t

δw(t) amount of partial module execution completed during ∆t

Ttran(e, l) data transfer time of edge e over link l

β (t) number of concurrent data transfers over link l during ∆t

δe(t) amount of partial data transfer completed during ∆t

3.2 Performance Metrics

3.2.1 End-to-end Delay

End-to-end Delay (ED), or latency, is the total completion time of the entire workflow from

the time when the original input dataset is fed into the first module to the time when the

final result is generated at the last module. This is an important performance metric in

time-critical applications, especially for unitary processing applications.
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Once a mapping scheme is determined, ED is calculated as the total time cost incurred

on the CP, i.e., the longest path in the DAG. We denote the set of contiguous modules

on the CP that are allocated to the same node as a “group”, and refer to those modules

located on the CP as “critical” modules and others as “branch” or “non-critical” modules.

A general mapping scheme divides the CP into q (1 ≤ q ≤ m) contiguous groups gi, i =

0,1, · · · ,q− 1 of critical modules and maps them to a network path P of not necessarily

distinct q nodes, vP[0],vP[1], · · · ,vP[q−1] from source vs = vP[0] to destination vd = vP[q−1].

The ED of a mapped workflow is calculated as:

TED (CP mapped to a path P of q nodes) = Texec +Ttran =
q−1

∑
i=0

Tgi
+

q−2

∑
i=0

Te(gi,gi+1)

=
q−1

∑
i=0



 ∑
j∈gi, j≥1





t
f
w j

∑
t=ts

w j

α j(t)·δw j
(t)

pP[i]







+
q−2

∑
i=0





t
f

e(gi,gi+1)

∑
t=ts

e(gi,gi+1)

βe(gi,gi+1)
(t)·δe(gi,gi+1)

(t)

bP[i],P[i+1]
+dP[i],P[i+1]



,

(3.2.1)

where e(gi,gi+1) denotes the dependency edge from group gi to gi+1 mapped to link

lP[i],P[i+1] between nodes vP[i] and vP[i+1].

3.2.2 Frame Rate

Frame Rate (FR) or throughput, i.e., the reciprocal of the global Bottleneck Time (BT)

of the workflow, is the data production rate at the last module which is the most criti-

cal performance metric for streaming applications that process multiple (e.g., time-series)

datasets. The bottleneck time TBT is the longest time unit among all module execution and

data transfer times, which could be either on a computing module or a dependency edge,

defined as:

TBT(Gw mapped to Gc) = max
wi∈Vw,e j,k∈Ew

vi′∈Vc,l j′,k′∈Ec

(

Texec(wi,vi′),

Ttran(e j,k, l j′,k′)

)

= max
wi∈Vw,e j,k∈Ew

vi′∈Vc,l j′,k′∈Ec















t
f
wi

∑
t=ts

wi

αi(t)·δwi
(t)

pi′
,

t
f
e j,k

∑
t=ts

e j,k

β j,k(t)·δe j,k
(t)

b j′,k′
+d j′,k′















.

(3.2.2)
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We assume that the inter-module communication cost on the same node is negligi-

ble. Since the execution start time of a module depends on the availability of all its input

datasets, the modules assigned to the same node may not run simultaneously. The same is

also true for concurrent data transfers over the same network link.
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Chapter 4

Linear Pipeline Optimization

In this chapter, we formulate and categorize the pipeline mapping problems into six classes

with two optimization objectives, i.e., Minimum End-to-end Delay (MED) and Maximum

Frame Rate (MFR), and three mapping constraints, i.e., No Node Reuse (NNR), Contigu-

ous Node Reuse (CNR) and Arbitrary Node Reuse (ANR). We propose a set of mapping

algorithms, Efficient Linear Pipeline Configuration (ELPC), in which a polynomial-time

optimal solution based on Dynamic Programming (DP) is designed for MED-ANR and

heuristics are designed for the rest five problems, which are proved to be NP-complete.

4.1 Problem Categorization and Complexity Analysis

4.1.1 Problem Categorization

For both MED and MFR, we consider three different types of mapping constraints as

shown in Fig. 4.1: (i) NNR, where a node on the selected network path P executes ex-

actly one module; (ii) CNR, where multiple contiguous modules along the pipeline are

allowed to run on the same node; and (iii) ANR, where multiple modules, either contigu-

ous or non-contiguous, are allowed to run on the same node. We category the pipeline

mapping problems into six constrained versions and further investigate their complexities,

i.e., MED/MFR-NNR, MED/MFR-CNR, and MED/MFR-ANR. These mapping problems

and their complexity analysis are tabulated in Fig. 4.2.
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Figure 4.1: Three network constraints on pipeline mappings.

We show that MED/MFR-NNR/CNR are NP-complete by reducing to them from the

problem of finding two vertex-disjoint paths in a directed graph, which also allows us

to prove that these problems cannot be approximated by any constant factor, unless P =

NP [81]. For ANR, the difficulty of finding disjoint paths does not occur any more since

the mapping scheme can reuse some computer nodes that are mapped by previous modules.

Indeed, MED-ANR is close to the shortest-path problem and we are able to develop a

polynomial-time optimal solution to this problem using a dynamic programming-based

procedure. Resource sharing adds an additional level of complicacy to MFR-ANR, whose

NP-completeness is proved by reducing to it from the Widest path with Linear Capacity

Constraints (WLCC) problem [151].
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Figure 4.2: Complexity analysis of six mapping problems.

4.1.2 NP-completeness Proof for MED/MFR-NNR/CNR

We first define pipeline mapping with MED/MFR-NNR/CNR as decision problems:

Definition 1. Given a linear computing pipeline with m modules, a directed weighted com-

puter network G and a bound T , does there exist a mapping scheme that maps the pipeline

to the network under the constraint of NNR or CNR, such that the ED or BT does not

exceed T ?

Note that here we consider BT, the reciprocal of FR, to make the problem definitions

uniform among these four problems.

Theorem 1. MED/MFR-NNR/CNR are NP-complete.

Proof. We use a reduction from DISJOINT-CONNECTING-PATH (DCP) [73], which is

NP-complete even when restricting to two paths in the case of directed graphs (2DCP) [67].

The problems clearly belong to NP: given a division of the pipeline into q groups and a

path P of q nodes, we can compute the ED or BT in polynomial time using Eqs. 3.2.1

or 3.2.2, and check if the bound T is satisfied. We prove their NP-hardness by showing that

2DCP ≤p MED/MFR-NNR/CNR.

Consider an arbitrary instance I1 of 2DCP, i.e., a network graph G=(V,E), n= |V | ≥ 4

and two disjoint vertex pairs (x1,y1), (x2,y2) ∈ V 2. We ask if G contains two mutually

vertex-disjoint paths, one going from x1 to y1, and the other going from x2 to y2. We can

create the following instance I2 of our mapping problems (MED/MFR-NNR/CNR). The

pipeline consists of m = 2n+1 modules and the computational complexity of each module
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Figure 4.3: Reduction from 2DCP problem.

wi is λwi
(z) = 1 for 0 ≤ i ≤ 2n, i 6= n and λwn

(z) = n2. In other words, only module wn

has a much higher complexity than all other modules. The network consists of |V |+ 1+

(n−1)(n−2) nodes and |E|+n(n−1) links, and is constructed as follows: starting from

graph G, we add a new node t, which is connected to G with an incoming link from y1

to t, and an outgoing link from t to x2. We also add 0+ 1+ 2+ · · ·+ (n− 2) additional

nodes between y1 and t and their corresponding links to connect y1 to t through a set of

n−1 paths of length l (in terms of the number of nodes excluding two end nodes y1 and t),

0≤ l ≤ n−2, as shown in Fig. 4.3.

Similarly, additional nodes and links are added between t and x2 so that there exist a set

of n−1 paths of length l, 0≤ l ≤ n−2, between nodes t and x2. The processing capability

of each node v j ∈ V ′ in the new graph G′ = (V ′,E ′) is set to p j = 1 except for node t,

whose computing power is set to be n2, which is much higher than all other nodes. All link

bandwidths are set to be sufficiently high so that transfer time between nodes is ignored

compared to computing time. The source and destination nodes vs and vd are set to be x1

and y2, respectively. We ask if we can achieve an ED that does not exceed TMED = 2n+1

or BT that does not exceed TMFR = n. Obviously, this instance transformation can be done

in polynomial time.
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We show that given a solution to I1, we can find a solution to I2 of four mapping

problems. Let qi be the length of the path from xi to yi (including two end nodes), i = 1,2.

We have 2≤ qi ≤ n for both paths, and paths are vertex-disjoint. The mapping solutions are

derived in two cases under different mapping constraints, i.e., NNR and CNR, as follows:

(1) Steps to derive mapping solutions for NNR

1. We map the first q1 modules starting from module w0 one-to-one onto q1 nodes of

the path from x1 to y1 with NNR. Thus, w0 is mapped on the source node x1 = vs and

wq1−1 is mapped on node y1.

2. We map the next n− q1 modules from wq1
to wn−1 along the pipeline one-to-one

onto a path between y1 and t (excluding two end nodes y1 and t) of length n−q1 with

NNR. There must exist such a mapping path since 0 ≤ n− q1 ≤ n− 2. Obviously,

each of the first n modules from w0 to wn−1 incurs a delay of 1.

3. We map module wn with a complexity of n2 to the fast node t, which also incurs a

delay of n2/n2 = 1.

4. Similar to the first n modules, we map the last n modules from wn+1 to w2n one-to-

one onto the path of length n− q2 from t to x2 (excluding two end nodes) and then

on the path of length q2 from x2 to y2 (including two end nodes) with NNR. Each of

the last n modules also incurs a delay of 1.

(2) Steps to derive mapping solutions for CNR

1. Same as Step 1 in the case of NNR, we map the first q1 modules starting from module

w0 one-to-one onto q1 nodes of the path from x1 to y1 with NNR, where each module

incurs a delay of 1 (excluding module wq1−1).

2. We map all of the next n−q1 modules from wq1
to wn−1 along the pipeline to node

y1, together with module wq1−1, where each module incurs a delay of 1
(1/(n−q1+1)) =

n−q1 +1 due to resource sharing.
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3. Same as Step 3 in the case of NNR, we also map module wn with a complexity of n2

to the fastest node t, which incurs a delay of n2/n2 = 1.

4. Similar to the first n modules, we map all of n− q2 modules in the last n modules

starting from wn+1 to node x2, and then map the last q2 modules one-to-one onto the

path of length q2 from x2 to y2 (including two end nodes) with NNR. Each module

on node x2 incurs a delay of 1
(1/(n−q2+1))

= n− q2 + 1 due to resource sharing and

each of the modules mapped on the path from x2 to y2 (excluding those mapped on

x2) incurs a delay of 1.

Obviously, the above derived mapping solutions meet the requirements of NNR/CNR since

we use the solution to I1: two paths from x1 to y1 and from x2 to y2 are disjoint, so either

no node is reused or only contiguous modules are mapped to the same node (either y1 or

x2). For MED problems, since each module incurs a delay of 1 with no resource sharing

and there are 2n+1 modules in total, the ED of this mapping solution is 2n+1≤ TMED in

both NNR and CNR; while for MFR problems: (i) in the case of NNR, since all modules

have an identical delay of 1, the BT of the entire pipeline is 1≤ n = TMFR; (ii) in the case

of CNR, all modules incur an identical delay of 1 except those mapped on nodes y1 and x2,

where each module on node y1 has a delay of n−q1 +1 and each module on node x2 has

a delay of n− q2 + 1 because of resource sharing. The BT of the entire pipeline is either

n− q1 + 1 ≤ n− 2+ 1 < n = TMFR if q1 ≤ q2, or n− q2 + 1 ≤ n− 2+ 1 < n = TMFR if

q1 > q2. Therefore, we find a valid solution to I2 of all four mapping problems.

Reciprocally, if I2 has a solution, we show that I1 also has a solution. We prove that

the mapping of I2 has to be of a similar form as the mapping described above (or similar

but with CNR in some instances of the problem), and thus that there exist disjoint paths

x1 → y1 and x2 → y2. This property comes from the fact that node t must be used in the

mapping. Indeed, if node t is not used to process module wn, this module will incur a delay

of n2, thus the ED will be at least n2 +4 (each of 4 nodes, i.e., x1, y1, x2, and y2, incurs a

delay of 1), which is larger than the total delay bound TMED = 2n+ 1, and also becomes
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the bottleneck with cost larger than the bound TMFR = n. Since the ED of I2 is less than

2n+ 1, or the BT is less than or equal to n, module wn must be mapped on node t in the

solution to I2. Note that the only way to reach node t involves using one of the n−1 paths

going from y1 to t. Thus, there is at least one module mapped on y1. Let wn1
be the last of

these modules: n1 < n, and wn1+1 is not mapped on y1. Similarly, all paths departing from

t go through x2, thus there is at least one module mapped on x2. Let wn2
be the first of these

modules: n2 > n, and wn2−1 is not mapped on x2. Moreover, source and destination nodes

x1 and y2 are also used, since w0 is mapped on x1 and w2n is mapped on y2. Therefore, the

entire mapping scheme is made up of the following three segments: (i) modules w0 to wn1

are mapped on a path between x1 and y1 (including two end nodes); (ii) modules wn1+1 to

wn2−1 are mapped on a path between y1 and x2 (excluding two end nodes) going through t;

and (iii) modules wn2
to w2n are mapped on a path between x2 and y2 (including two end

nodes). Since only contiguous modules along the pipeline can be deployed on the same

node, or NNR is performed at all in this mapping, nodes in both paths x1→ y1 and x2→ y2

should be distinct, and they are connected only by edges in G according to the construction

of I2. Thus, we find two disjoint paths, which constitute a solution to I1. 2

Theorem 2. Given any constant ε > 0, there exists no ε-approximation to the MED/MFR-

NNR/CNR problems, unless P = NP.

Proof. Given ε , assume that there exists a ε-approximation to one of the four problems.

Let I1 be an instance of 2DCP (see proof of Theorem 1). We build the same instance I2

as in the previous proof, except for the speed of the fast node t and the computational

complexity of module wn, both of which are set to be εn2 instead of n2.

We use the ε-approximation algorithm to solve this instance I2 of our problem, which

returns a mapping scheme of ED or BT Talg such that Talg ≤ εTopt, where Topt is the optimal

ED or BT. Then we prove that we can solve 2DCP in polynomial time. We need to differ-

entiate the cases of ED and FR (the reciprocal of BT) as follows:
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(1) MED problems

1. If Talg > ε(2n+ 1), then Topt > 2n+ 1 and there does not exist two disjoint paths;

otherwise, we could achieve a mapping of ED equal to 2n+ 1. In this case, 2DCP

has no solution.

2. If Talg ≤ ε(2n+1), we must map wn on t; otherwise, it would incur a delay of εn2 >

ε(2n+1) ≥ Talg, which conflicts with the condition. Hence, the mapping is similar

to the one described in the proof of Theorem 1, and we conclude that 2DCP has a

solution.

(2) MFR problems

1. If Talg > εn, then Topt > n and there does not exist two disjoint paths; otherwise, we

could achieve a mapping of frame rate equal to n. In this case, 2DCP has no solution.

2. If Talg ≤ εn, we must map wn on t; otherwise, it would incur a delay of εn2 > εn ≥

Talg, which conflicts with the condition. Hence, the mapping is similar to the one

described in the proof of Theorem 1. We conclude that 2DCP has a solution.

Therefore, in both cases, if 2DCP has a solution in polynomial time, then P = NP, which

establishes the contradiction and proves the non-approximability result. 2

Because of the arbitrary node reuse, the non-approximability result is not directly ap-

plicable to MFR-ANR. We conjecture that MFR-ANR can be approximated, for instance

by modifying classical bin-packing approximation schemes [30].

4.1.3 NP-completeness Proof for MFR-ANR

The NP-completeness proof for MFR-ANR is based on the Widest path with Linear Ca-

pacity Constraints (WLCC) problem, which is shown to be NP-complete in [151]. An

LCC-graph is a three-tuple (G = (V,E),C,b), where the capacity of each link e ∈ E is a
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variable xe, and (C,b) represent a set of m linear capacity constraints Cx≤ b, C is a 0-1 co-

efficient matrix of size m×|E|, x is a |E|×1 vector of link capacity variables, and b∈ Rm is

a capacity vector. Each link e ∈ E has a capacity c(e) ≥ 0. Given an LCC-graph (G,C,b),

the width ω(P) of a path P = (e1,e2, · · · ,ek)⊂ G is defined as the bottleneck capacity xBN

subject to xe j
= 0, ∀e j /∈ P, Cx ≤ b, and xe1

= xe2
= · · · = xek

= xBN. We define WLCC

as a decision problem: Given an arbitrary instance (G = (V,E),C,b) of WLCC, two nodes

vs,vd ∈V and a positive integer K ≤Max{bi}, does there exist a path P from vs to vd whose

width, i.e., bottleneck capacity xBN, is no less than K?

We first define pipeline mapping with MFR-ANR as a decision problem:

Definition 2. Given a linear computing pipeline with m modules, a computer network G

and a bound B, does there exist a mapping scheme that maps the pipeline to the network

under the constraint of ANR, such that the FR (the reciprocal of the BT) is no less than B?

Theorem 3. MFR-ANR is NP-complete.

Proof. For a given solution to an instance of MFR-ANR, we can go through the entire path

to calculate the MFR and check if it satisfies the bound in polynomial time, which means

that MFR-ANR ∈ NP. We prove its NP-hardness by showing that WLCC ≤p MFR-ANR.

Given an arbitrary instance I1 in WLCC, in which there are several LCCs among the

links, as shown in Fig. 4.4, we can transform it into an instance I2 of MFR-ANR, i.e.,

I1 ∈WLCC⇒ I2 = F(I1) ∈ MFR-ANR, where F(·) is a polynomial-time transforma-

tion function. We first construct a pipeline that consists of |V | identical modules w, whose

computational complexity is denoted as a function λw(·) of the same input data size z. We

then make a copy of the entire topology of G and denote it as graph G′ = (V ′,E ′), where

V ′ = V and E ′ = E. Any vertex v ∈ V in G not on a constrained link and any link e ∈ E

in G not in constraints (C,b) remain unchanged in V ′ and E ′, respectively, including the

capacity of each link. We consider three types of LCCs:

(1) Case 1 of adjacent LCC: If there are η constrained links within one LCC that are all

adjacent, their corresponding vertices in V ′ are bundled together and replaced with a virtual
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Figure 4.4: An example of the LCC-graph.

node vvir, which contains the same number of self-loops as that of contiguously adjacent

constrained links defined in the LCC. The computing power p of the virtual node is set to

λw(z) · γ , where γ is the LCC capacity. For example, in Fig. 4.4, the links e1,2, e2,3 and e3,4

have an LCC xe1,2 + xe2,3 + xe3,4 ≤ γ1 among them, so we have η = 3 and γ = γ1;

(2) Case 2 of nonadjacent LCC: If there are ζ constrained links within one LCC that

are all nonadjacent, their corresponding vertices in V ′ are bundled together and replaced

with a virtual node vvir. The computing power p of the virtual node is again set to λw(z) · γ ,

where γ is the LCC capacity. For example, in Fig. 4.4, the links ei+1,i+2 and e j+2, j+3 have

an LCC xei+1,i+2
+ xe j+2, j+3

≤ γ2 between them, so we have ζ = 2 and γ = γ2;

(3) Case 3 of mixed LCC: This is a combination of the first two cases. The correspond-

ing vertices in V ′ of all adjacent and nonadjacent constrained links within one LCC are

bundled together and replaced with a virtual node vvir, whose properties (self-loops and

computing power) are treated the same way as in the first two cases.

Furthermore, the computing power of all other nodes is set to infinity. The newly con-

structed graph G′ with one adjacent LCC and one nonadjacent LCC is shown in Fig. 4.5.

Finally, we select a bound B = K. Obviously, this construction process can be done in

polynomial time. The question for MFR-ANR is: does there exist a mapping path P′ from

v′s to v′d in G′ that provides frame rate no less than B?
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Figure 4.5: LCC-graph replaced with virtual nodes.

We show that given a solution to WLCC problem, we can find a solution to the MFR-

ANR problem. Suppose that there exists a path P from vs to vd in G of width no less than

K. We first identify a path P′ in G′ corresponding to path P in G, and then sequentially map

the modules in the pipeline onto the nodes along the path P′ from v′s to v′d , with the first

module mapped onto source node v′s and the last module mapped onto destination node v′d .

Between v′s and v′d , we sequentially map each module onto a regular node along the path,

and when a virtual node is encountered, we have three different mapping schemes:

(1) Case 1 of adjacent LCC: If this virtual node is converted from η adjacent constrained

links, among which η ′ (η ′ ≤ η) links are on path P, we map η ′ contiguous modules to it;

(2) Case 2 of nonadjacent LCC: If this virtual node is converted from ζ nonadjacent

constrained links, among which ζ ′ (ζ ′ ≤ ζ ) links are on path P, we map one module to it

every time when the path passes through it for total ζ ′ times;

(3) Case 3 of mixed LCC: If this virtual node is converted from both adjacent and

nonadjacent constrained links, we map modules to it according to a combination of the

mapping strategies for virtual nodes converted from either a single adjacent LCC or a single

nonadjacent LCC as specified in the first two cases.

Any remaining contiguous modules are mapped onto the non-virtual destination node

v′d . If the destination node v′d itself is a virtual node in G′, we can create a special node with

infinite computing power and connect the destination node v′d to it with infinite bandwidth
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on the link. This special node is then considered as the new destination node to run the last

module and all remaining unmapped modules. We consider the following four cases:

Case 1: where the maximum capacity of path P is not on any LCC link: the frame rate

in G′ is equal to the corresponding maximum capacity in G. Therefore, path P′ from v′s to

v′d in G′ provides frame rate that is no less than K = B;

Case 2: where the maximum capacity of path P is on one of the adjacent LCC links:

we calculate the frame rate on the virtual node in G′ as 1/(λw(z)/
p

η ′ ). After plugging in

p = λw(z) · γ , the frame rate becomes: 1/(λw(z)/
λw(z)·γ

η ′ ) = γ
η ′ . In WLCC problem, the

bottleneck bandwidth xBN of the widest path P has the following inequality: K ≤ xBN ≤
γ
η ′

since all constrained links share the capacity γ . Hence, the corresponding mapping path P′

from v′s to v′d in G′ provides frame rate at
γ
η ′ ≥ K = B;

Case 3: where the maximum capacity of path P is on one of the nonadjacent LCC links:

we calculate the frame rate on the virtual node in G′ as 1/(λw(z)/
p

ζ ′
). After plugging in

p = λw(z) · γ , the frame rate becomes: 1/(λw(z)/
λw(z)·γ

ζ ′
) = γ

ζ ′
. In WLCC problem, the

bottleneck bandwidth xBN of the widest path P has the following inequality: K ≤ xBN ≤
γ
ζ ′

since all constrained links share the capacity γ . Hence, the corresponding mapping path P′

from v′s to v′d in G′ provides frame rate at
γ
ζ ′
≥ K = B;

Case 4: where the maximum capacity of path P is on one of the mixed LCC links: we

calculate the frame rate on the virtual node in G′ as 1/(λw(z)/
p

η ′+ζ ′
). After plugging in

p = λw(z) · γ , the frame rate becomes: 1/(λw(z)/
λw(z)·γ
η ′+ζ ′

) = γ
η ′+ζ ′

. In WLCC problem, the

bottleneck bandwidth xBN of the widest path P has the following inequality: K ≤ xBN ≤

γ
η ′+ζ ′

since all constrained links share the capacity γ . Hence, the corresponding mapping

path P′ from v′s to v′d in G′ provides frame rate at
γ

η ′+ζ ′
≥ K = B.

Therefore, we conclude that the mapping path P′ is the solution to the instance I2 of

MFR-ANR problem.

Now we show that if there is a solution to MFR-ANR problem, we can also find a solu-

tion to WLCC problem in polynomial time. Given a path P′ from v′s to v′d in G′ with frame
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rate≥ B, we first identify a corresponding path P in G. We also consider the following four

cases:

Case 1: where the frame rate is incurred on a network link in G′, the corresponding link

in G has the bottleneck bandwidth of the widest path in WLCC;

Case 2: where a virtual node converted from an adjacent LCC incurs the frame rate

as: 1/(λw(z)/
p

η ′ ) = 1/(λw(z)/
λw(z)·γ

η ′ ) = γ
η ′ ≥ B, the corresponding path P in G has the

bottleneck bandwidth xBN = γ
η ′ ≥ B = K of the widest path in WLCC;

Cases 3 and 4: where the solution derivation steps are very similar to those in case 2,

except for replacing η ′ with ζ ′ and η ′+ζ ′, respectively.

Therefore, we conclude that path P in G from vs to vd is the solution to the instance I1

of WLCC problem. 2

4.2 Optimal and Heuristic Algorithm Design

4.2.1 Optimal Solution to MED-ANR

For unitary processing applications, our goal is to minimize the ED incurred on nodes and

links from source to destination to achieve the fastest response. Since a single dataset is

processed and there is only one module being executed at any particular time point, nodes

can be reused but are not shared concurrently among different modules mapped on the

same node. We present a DP-based polynomial-time optimal solution to solve MED-ANR

and provide its correctness proof.

Let T
j−1

ED (vi) denote the MED with the first j modules mapped to a path from the source

node vs to node vi in the network. We have the following recursion leading to the final

solution T m−1
ED (vd):

T
j−1

ED (vi)
j=2 to m,vi∈Vc

= min







T
j−2

ED (vi)+
λw j−1

(z j−2, j−1)

pi

min
vu∈pre(vi)

(

T
j−2

ED (vu)+
λw j−1

(z j−2, j−1)

pi
+

z j−2, j−1

bu,i
+du,i

)






, (4.2.1)
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where pre(vi) denotes the set of preceding (incident) neighbor nodes of node vi, with the

base condition computed as:

T 1
ED(vi)

vi∈Vc, and vi 6=vs

=







λw1
(z0,1)

pi
+

z0,1

bs,i
+ds,i, if ls,i ∈ Ec

+∞, otherwise
(4.2.2)

on the second column of a 2D table as shown in Fig. 4.6, where modules are listed in order

along the horizontal axis and nodes are arranged along the vertical axis, constructed by a

typical DP-based method.
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Figure 4.6: Construction of 2D table based on DP.

Every cell T
j−1

ED (vi) in the 2D DP table represents an optimal mapping solution that

maps the first j modules in the pipeline to a path between the source node vs and node

vi in the network. In MED-ANR, each cell is calculated from the intermediate mapping

results up to its preceding nodes or itself, which are stored in its left column T
j−2

ED (·). The
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pseudocode of this algorithm is presented in Alg. 1, whose complexity is determined by

the number of steps needed to fill out the 2D DP table as shown in Fig. 4.6. Since we have

total m modules to map in the pipeline, for each module we consider n computer nodes in

the network, and for each node we consider all of its preceding nodes, the complexity of

filling out the 2D DP table is O(m×|Ec|), where |Ec| is the number of links in the network,

which is upper bounded by n×n.

Algorithm 1 Optimal solution to MED-ANR

Input: A linear computing pipeline with m modules, a heterogenous network Gc = (Vc,Ec),
where |Vc| = n, and a pair of nodes (v0,vn−1) in Vc, representing source vs and destination

vd , respectively.

Output: MED of the pipeline mapped onto a selected network path P from vs to vd .

1: Initialize the 1st column of the 2D table: T[0][0] = 0.0,T[i][0]= NULL, i = 1,2, . . . ,n−1;

2: for all nodes vi from i = 0 to n−1 with only two modules w0 and w1 do

3: if ls,i ∈ E then

4: Calculate MED for cell T[i][1] in the 2nd column as the base condition;

5: else

6: T[i][1] = ∞;

7: for all modules w j from j = 2 to m−2 do

8: for all nodes vi from i = 0 to n−1 do

9: if module w j−1 is mapped to node vi then

10: Map module w j to node vi, calculate total delay D1;

11: else

12: for all possible mapped preceding nodes pre(vi) directly connected to vi do

13: Map module w j to node vi, calculate total delay D(pre(vi));
14: Choose the minimum delay among all preceding nodes of vi: D2 =

min(D(pre(vi)));
15: T[i][ j] = min(D1,D2);
16: if module wm−2 is mapped to node vn−1 then

17: Map module wm−1 to node vn−1, calculate total delay D′1;

18: else

19: for all possible mapped preceding nodes pre(vn−1) directly connected to vn−1 do

20: Map module wm−1 to node vn−1, calculate total delay D(pre(vn−1));
21: Choose the minimum delay among all preceding nodes of vn−1: D′2 =

min(D(pre(vn−1)));
22: T[n−1][m−1] = min(D′1,D

′
2);

23: return T[n−1][m−1] as the final MED.
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Theorem 4. The DP-based solution defined in Eq. 4.2.1 to MED-ANR is optimal.

Proof. At each recursive step, there are only two sub-cases, the minimum of which is

chosen as the MED to fill in a new cell T
j−1

ED (vi): (i) In sub-case 1, we run the new module

on the same node running the last module in the previous mapping subproblem T
j−2

ED (vi).

In other words, the last two or more modules are mapped to the same node vi. Therefore,

we only need to add the computing time of the last module on node vi to the previous total

delay, which is represented by a horizontal incident link from its left neighbor cell in the

2D table. (ii) In sub-case 2, the new module is mapped to node vi and the last node vu in a

previous mapping subproblem T
j−2

ED (vu) is one of the neighbor nodes of node vi, which is

represented by a slanted incident link from a neighbor cell on the left column to node vi. In

Fig. 4.6, a set of neighbor nodes of node vi are enclosed in a cloudy region in the previous

column. We calculate the ED for all possible mappings using slanted incident links of

node vi and choose the minimal one, which is further compared with the one calculated in

sub-case 1 using the horizontal incident link from the left neighbor cell.

The minimum of these two sub-cases is selected as the MED for the partial pipeline

mapping to a path between nodes vs and vi. Since each cell provides an optimal partial

solution to a subproblem and mapping a new module does not affect the optimality of

any previously computed partial solutions. Thus, DP-based procedure provides an optimal

solution to MED-ANR. 2

4.2.2 Heuristic Algorithms for NP-Complete Problems

We develop heuristic solutions by adapting the optimal DP-based method for MED-ANR to

the NP-complete MED mapping problems with some necessary modifications. The heuris-

tics for MED-NNR/CNR are similar to that defined in Eq. 4.2.1 except that (i) in MED-

CNR, we skip the cell of a neighbor node (slanted incident link) in the left column whose

solution (path) involves the current node to ensure a loop-free path, and (ii) in MED-NNR,

we further skip the immediate left neighbor cell (horizontal incident link) to ensure that the
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current node is never reused. Such path backtracking and cell exclusion reflect the heuristic

nature of these algorithms since those skipped cells may lead to the actual optimal solution.

For streaming applications, we use 1/T
j−1

BT (vi) to denote the MFR with the first j mod-

ules mapped to a network path from source node vs to node vi in the computer network,

and the following recursion leads to the final solution T m−1
BT (vd):

T
j−1

BT (vi)
j=2 to m,vi∈V

= min





















max





T
j−2

BT (vi),
αiλw j−1

(z j−2, j−1)

pi



 ,

min
vu∈pre(vi)









max









T
j−2

BT (vu),
αiλw j−1

(z j−2, j−1)

pi
,

βu,iz j−2, j−1

bu,i
+du,i





































(4.2.3)

with the base condition computed as:

T 1
BT(vi)

vi∈V, and vi 6=vs

=







max(
fw1

(z0,1)

pi
,

z0,1

bs,i
+ds,i) , if ls,i ∈ Ec

+∞ , otherwise
(4.2.4)

on the second column of the 2D table and we have T 0
BT(vs) = 0. Note that αi denotes the

number of modules assigned to node vi and βu,i denotes the number of datasets transferred

over the link between nodes vu and vi. In MFR-NNR, we have α = 1 and β = 1.

The steps for filling out the 2D table for MFR problems are similar to those for their

corresponding MED problems but differ in the following aspects: at each step, we ensure

that the computing power of reused nodes be equally shared and calculate the bottleneck

of the path instead of the total delay. These solutions are heuristic in nature because (i)

in MFR-CNR/ANR, the share of resources affects the optimality of previously computed

partial solutions, and (ii) in MFR-NNR, when a node has been used by all its neighbor

nodes at previous mapping steps, this heuristic algorithm may not be able to find an optimal

solution if this node is the only one leading to the destination node or obtain a suboptimal

solution if there are multiple nodes leading to the destination. Based on our extensive

experiments, we would like to point out that the occurrences of unsuccessful mapping
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solutions due to backtracking are quite rare and all these heuristics achieve satisfactory

mapping performance on a large number of simulated pipelines and networks with different

problem scales.
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Chapter 5

DAG-structured General Workflow

Optimization

In this chapter, we investigate the mapping optimization problems with more complicated

workflow structure, i.e., intricate inter-module dependencies, conduct a rigorous analysis of

stability for streaming applications, and present heuristic algorithms to optimize workflow

end-to-end performance. We further propose the distributed version of the mapping algo-

rithms and adapt them to the faulty network environments under fault-tolerant constraint.

5.1 Problem Categorization and Complexity Analysis

In general DAG-structured workflow mappings, modules may have multiple incoming or

outgoing dependencies, which impose multiple constraints on data arriving or sending

times. Hence, the general workflow scheduling is more challenging compared to linear

pipelines, which is known to be NP-complete in general scenarios [73], even in some sim-

plified cases [142] such as the mapping of linear pipelines, or restricted cases [128] such as

the assignment of tasks with one or two time units on only two processors.

As shown in Fig. 5.1, we systematically categorize the workflow mapping problems into

a number of classes based on different mapping objectives, mapping constraints, resource

share constraints, network topology constraints, resource constraints and fault-tolerance
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Figure 5.1: Problem categorization of general workflow mappings.

constraints. MED and MFR are two most important end-to-end performance metrics con-

sidered in many practical distributed systems. Workflow applications for MED take a one-

time dataset as input and aim to minimize the ED for fast system response, e.g., an inter-

active view operation in scientific visualization; while for MFR, a sequence of datasets are

continuously fed into the computing workflow to produce a smooth flow of final results,

e.g., an online simulation producing time-series datasets to simulate a constantly evolving

phenomenon. Depending on the nature of the computation, the topology of the network,

and the availability of the required software/hardware resources, computer nodes may or

may not be used for executing multiple modules. The resource constraints are posed by the

wide variety of network environments with either homogeneous or heterogeneous commu-

nication links and computer nodes. Fault tolerance and recovery mechanism have become

more and more important in today’s large-scale collaborative computing infrastructures.

5.2 Exact End-to-end Calculation (extED)

We investigate the problem of mapping general DAG-structured workflows to networks to

optimize the end-to-end workflow performance. Obviously, the design and evaluation of a

workflow mapping algorithm rely on an accurate calculation of module execution time on

each node and data transfer time over each link for any given mapping scheme. Note that if

multiple modules are mapped onto the same node (i.e., node reuse), the node’s computing
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resource is shared in a fair manner by concurrent modules on that node1. Similarly, the

bandwidth of a network link is equally shared by concurrent data transfers over the same

link2. The time cost calculation is a complicated task because determining the exact num-

ber of concurrent module executions on a node or concurrent data transfers over a link at

different time intervals is not trivial. In unitary processing applications, multiple indepen-

dent modules mapped on the same node may not necessarily share computing resources if

their execution times do not overlap due to different arrival times of their input data, while

in streaming applications, multiple dependent modules mapped on the same node may run

concurrently to process different instances of input data. Here, “independent” means that

there does not exist a dependency path between two modules in the workflow. The diffi-

culty of this mapping problem essentially arises from the topological matching nature in

the spatial domain, which is further compounded by the resource sharing complicacy in the

temporal dimension if multiple modules are deployed on the same node.

5.2.1 An Example of Resource Share

We shall use a simple numerical example to illustrate the complexity of resource sharing in

a workflow with five modules and six dependency edges mapped onto a network consisting

of four nodes and five links. As shown in Fig. 5.2, modules w0 and w4 are mapped to the

source node vs and destination node vd , respectively, and three independent intermediate

modules w1, w2 and w3 are mapped to node v1. In the workflow, the number above each

module is the module’s computational requirement (CR) and the number on each edge

is the data size (DS) transferred along that edge. Similarly, in the network, the number

below each node is the node’s processing power (PP) and the number on each link is the

link’s bandwidth (BW). Here, we consider module execution time defined as CR
PP/CM

and

1The fair share of CPU cycles is supported by many modern Operating Systems that employ a round-robin

type of CPU scheduling algorithm.
2The fair share of link bandwidths is supported by the wide use of TCP-friendly transport protocols in

wide-area networks.
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Figure 5.2: An example of workflow mapping.

data transfer time defined as DS
BW/CD

, where CM and CD denote the number of concurrent

module executions and data transfers, respectively.

The resource sharing dynamics in the above example is illustrated in Fig. 5.3, where the

numerical expression above each line is the partial time cost of either a module execution

or a data transfer. When the workflow execution begins, module w0 sends out data of 1, 2,

and 3 units at the same time to w1, w2 and w3, respectively. Since the data size of edge e0,1

is of 1 unit and link ls,1 is shared equally by 3 concurrent data transfers at the beginning, it

takes 3 (i.e., 1
1/3

) time units to transfer the data to w1. At time point 3, w1 finishes receiving

the data and starts its execution on node v1 with an exclusive use of the resource (i.e., 6
3/1

)

until time point 5 when module w2 also starts to execute on node v1 in a fair share manner

(i.e., 1.5
3/2

). The data of edges e0,2 and e0,3 are still moving together over link ls,1 between

time points 3 and 5 (i.e., 1
1/2

), and after that only edge e0,3 is using link ls,1 to transfer the

rest of the data (i.e., 1
1/1

). After time point 6, all data transfers are completed and modules

w1, w2 and w3 are running concurrently on node v1 with equally shared resources (i.e.,

1.5
3/3

). Module w2 finishes execution first and starts its data transfer to module w4 at time

point 7.5, and meanwhile, node v1 is shared by two modules between time points 7.5 and
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Figure 5.3: Time serial analysis of resource sharing dynamics.

9.5 (i.e., 3
3/2

), after which module w1 also finishes execution. Module w4 finishes receiving

data from modules w2, w1, and w3 at time point 8.5, 10.5, and 11.5, respectively. Module

w4 starts execution on node vd when it receives all required inputs from three preceding

modules and its execution time is 1 unit (i.e., 3
3/1

). Therefore, the total end-to-end delay of

the mapped workflow is 12.5 units, which is calculated along the longest path.

5.2.2 Algorithm Design

We observe that the number of shared modules in above example keeps changing for each

of the independent modules/edges mapped on the same node/link, and therefore will pose

a demand for a systematic way to calculate the ED.

In unitary processing applications, when multiple modules are deployed on the same

node, only those without dependency could run concurrently and share CPU resources in

a fair manner, so is the case for bandwidth share. Moreover, those modules with partially

overlapped execution times do not share CPU resources during the entire period since they

might have different start and end times, which, in turn, depend on the execution times of

their preceding modules as well as the associated data transfer times. While for streaming
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applications, we assume they always share because node or link resources could be shared

by multiple modules or edges that are processing or transferring different instances of in-

put datasets on the same node or over the same link, and hence we only consider FR or

throughput. For an accurate estimation of ED, the exact number of concurrently running

modules and transferred datasets must be determined at each time interval.

We identify an independent set of modules mapped to the same node to calculate the

exact number of concurrent modules. Note again that two modules are considered “in-

dependent” if there does not exist any path between them in the workflow, which could

be quickly verified by a Breadth-First Search algorithm. We consider three basic types

of independent sets: fully-independent, partially-independent with intra-node dependency,

and partially-independent with inter-node dependency, which are defined below. Other sets

could be the combinations of any two or three of these basic types.

Definition 3. Fully-Independent Set (FIS) is a set of modules mapped to the same node

where there is no path between any pair of modules.

Definition 4. Partially-Independent Set with Intra-node Dependency (PIS-IntraD) is a set

of modules mapped to the same node where at least one pair of modules have a path

between them and at least one pair of other modules do not have any path between them.

Definition 5. Partially-Independent Sets with Inter-node Dependency (PIS-InterD) are two

sets of independent modules mapped to two different nodes with cross execution depen-

dency such that the upstream modules on one dependency path and the downstream mod-

ules on another dependency path are mapped to the same node.

These three basic types of independent sets are visualized in Fig. 5.4, where mod-

ules within a circle or an ellipse denote the independent or partially independent modules

mapped on that node. In Fig. 5.4(a), each module mapped onto node vi is independent of

any other modules on the same node. In Fig. 5.4(b), modules wg and wt are dependent but

they are both independent of module wh, so is the case for modules wl and wu. Fig. 5.4(c)
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Figure 5.4: Three types of independent sets of modules mapped to the same node: (a) FIS,

(b) PIS-IntraD, (c) PIS-InterD.

illustrates PIS-InterD between nodes vh and vk in a workflow where modules wu and wt de-

pend on modules wg and wl , respectively. Modules wu and wl are mapped to the same node

vh and modules wg and wt are mapped to another node vk. In Fig. 5.4(c), even though the

modules on each node are independent of each other, they may or may not run concurrently.

We ignore data transfer times for simplicity and consider five possible cases:

• If t
f
wu ≤ ts

wl
, modules wg and wu finish execution before module wl starts, and hence

no resource sharing;

• If t
f
wg ≤ t

f
wl

, module wu shares resource with wl , and no resource sharing between

modules wg and wt ;

• If t
f
wl
≤ t

f
wg, module wg shares resource with wt , and no resource sharing between

modules wu and wl;

• If t
f
wt ≤ ts

wg
, modules wl and wt finish execution before module wg starts, and hence

no resource sharing;

• If t
f
wg = ts

wt
or t

f
wl
= ts

wu
, no resource sharing.

No matter which type of independent sets (FIS, PIS-IntraD, or PIS-InterD) the mapping

might result in, we can calculate the exact ED (extED) of a mapped workflow by adding up
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all the time cost components (module execution and data transfer) along the CP as shown

in Eq. 3.2.1.

Before the extED calculation, we preprocess the workflow and network by replacing

each dependency edge in the workflow Gw with a virtual module whose computational

requirement is equal to the corresponding transferred data size and replacing each mapped

network link with a virtual node whose processing power is equal to the corresponding BW.

By doing so, we only need to consider module execution times on nodes in the resultant

virtual workflow Gw
′ and network Gc

′. Here, we ignore the MLD for simplicity.

For a given mapping scheme, we employ a well-known polynomial-time longest path

algorithm to find the CP since the CP is essentially the longest path in a DAG, which largely

depends on the accurate calculation of each time components in the mapped workflow. The

key strategy of the extED calculation reflects the dynamics in resource sharing at runtime.

For each module, we first calculate its independent set (IDS), in which all modules are in-

dependent of the current module, and then recompute the number of its concurrent modules

on the same node every time when one of the following conditions is met: (a) one concur-

rent module finishes execution; and (b) one module in the IDS of the current module starts

execution. The details of the extED calculation are provided in Alg. 2.

Considering execution dependency, we always start from the set ready(Vm
′) of all cur-

rently “ready” modules in the workflow for every “while” loop in line 11. A module is

in the “ready” state when all its preceding modules finish execution. We then compute a

set est(ready(Vw
′)) (a subset of set ready(Vw

′)) of earliest start modules from the “ready”

set as shown in line 12. We consider the following two possible scenarios for module

wi ∈ est(ready(Vw
′)) in the extED algorithm:

1. Lines 14-15, |ids(wi)| == 0: Since wi does not have any independent modules, its

execution time is directly computed.

2. Lines 16-30, |ids(wi)| > 0: If any module in ids(wi) is “ready”, we find a set set1

of earliest start modules from all “ready” modules in {ids(wi)∪wi} and estimate
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Algorithm 2 extED(Gw
′, Gc

′, f )

Input: A converted workflow graph Gw
′ = (Vw

′,Ew
′), a converted network graph Gc

′ =
(Vc
′,Ec

′), and a mapping scheme f : wi→ vh, wi ∈Vw
′ and vh ∈Vc

′.

Output: The extED of the mapped workflow.

1: ts(set): the set of start times of all modules in the set;

2: t f (set): the set of finish times of all modules in the set;

3: ids(w): the independent set of module w on the same node (excluding w);

4: |set|: the number of modules in the set;

5: est(set) = {w| w ∈ set and ts
w = min(ts(set))};

6: ready(set) = {w| w ∈ set and w is “ready”};
7: for all module wi ∈Vw

′ do

8: Find ids(wi);
9: Set wi as “un f inished”;

10: Set w0 as “ready”;

11: while exist “un f inished” modules ∈Vw
′ do

12: Find set0 = est(ready(Vw
′));

13: for all module wi ∈ set0 do

14: if |ids(wi)|== 0 then

15: Calculate Texec(wi) and set wi as “ f inished”;

16: else

17: Find set1 = {w| w is “ready” & w ∈ est(ids(wi)∪wi)};
18: Estimate t f (set1);
19: set2 = {w | w ∈ ids(wi) & /∈ set1, ts(w)< min(t f (set1)), and w is “ready” and

“un f inished”};
20: if |set2|> 0 then

21: for all module w j ∈ set1 do

22: Calculate partial amount of datasets finished by module w j from ts(set1)
to min(ts(set2));

23: Update the new ts
w j

= min(ts(set2));
24: else

25: for all module w j ∈ set1 do

26: if t
f
w j

== min(t f (set1)) then

27: Calculate Texec(w j) and set w j as “ f inished”;

28: else

29: Calculate partial amount of datasets finished by module w j from ts(set1)
to min(t f (set1));

30: Update the new ts
w j

= min(t f (set1));
31: Mark all ready modules as “ready”;

32: Compute the CP based on the time components Texec(wi) for all wi ∈Vw
′;

33: return TED(CP) of the mapped workflow.
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the finish time of each module in set1 under the assumption that all those modules

are running concurrently during the entire execution. We would like to point out

that the above merely provides an estimate because the assumption may not always

hold. In fact, these modules will finish at different times in most cases. Based on this

estimate, we check the value of set2 defined in line 19:

(a) |set2| > 0 means that at least one module, which is in ids(wi) but not in set1,

starts to execute before any module in set1 finishes execution. We calculate

the partial amount of datasets finished by each module in set1 until one of the

modules in set2 starts execution, which corresponds to δw(t) in Eq. 3.1.1, and

then reset the start times of those partially finished modules in set1 to be the

start time of the first started module in set2.

(b) |set2| == 0 means that all modules, which are in ids(wi) but not in set1, do

not start to execute until at least one module in set1 finishes execution. We

calculate the partial amount of datasets finished by each module in set1 until

the first one finishes execution, and then reset the start times of those partially

finished modules in set1 to be the finish time of the first finished module in set1.

3. Line 31: Check if any previously unready modules become ready.

Note that the values of α(t) and β (t) are updated at each time step before the partial module

execution and data transfer time is calculated (e.g., in lines 22 and 29). According to lines

11, 13, 21 and 25, the time complexity of calculating accurate module execution time is

O(m′3), where m′ is the number of modules in the converted workflow Gw
′.

5.3 Mapping Solution to MED

The workflow mapping problem with arbitrary node reuse for MED is formally defined as

follows:
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Definition 6. Given a DAG-structured computing workflow Gw = (Vw,Ew) and a hetero-

geneous computer network Gc = (Vc,Ec), we wish to find a mapping scheme that assigns

each computing module to a network node such that the mapped workflow achieves:

MED = min
all possible mappings

(TED) . (5.3.1)

Note that MED is the minimum sum of time components along the CP. The NP-

completeness of the DAG scheduling problem rules out any polynomial optimal solu-

tions [116]. We develop a heuristic approach using a RCP algorithm that recursively

chooses the CP based on the previous round of calculation and maps it to the network

using a DP-based procedure until the mapping results converge to an optimal or subopti-

mal point or a certain termination condition is met. For example, the difference in mapping

performance between two contiguous rounds is less than a preset threshold.

We significantly improve this algorithm by designing and incorporating a new non-

critical module mapping scheme based on A∗ Search algorithm and Beam Search algorithm.

Moreover, we also provide a decentralized version of the RCP algorithm to accommodate

the large-scale applications and versatile resource platforms.

5.3.1 Recursive Critical Path (RCP) Algorithm

As shown in Fig. 5.5, the key idea of the proposed RCP algorithm is described as follows:

1. Assume the network topology to be complete with homogeneous computer nodes and

network links, and determine the initial module execution and data transfer times.

Thus, we only need to consider the workflow for time cost calculation;

2. Find the CP of the workflow with initial time cost components using a longest path

algorithm, defined as FindCriticalPath(Gw,w0,wm−1);

3. Remove the assumption on resource homogeneity and connectivity completeness,

and map the current CP to the actual network using the optimal pipeline mapping
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Figure 5.5: Map a CP in the workflow to a path in the computer network.

algorithm based on a DP-based procedure for MED with arbitrary node reuse as

proposed in Chapter 4.2.1, defined as MapCriticalPath(P,Gc,vs,vd);

4. Map non-critical/branch modules that are not on the CP in the workflow using a

greedy approach, defined as MapNonCriticalModules(P,Gw,Gc,vs,vd);

5. Compute a new CP using the updated mapping scheme and calculate the new MED.

Steps 2-5 are repeated until a certain condition is met, for example, the difference between

a new MED resulted from the current mapping and an old MED resulted from the previous

mapping is less than a preset threshold. The pseudocode of the RCP mapping algorithm

for MED is given in Alg. 3. The complexity of the RCP algorithm is O(k(m+ |Ew|) ·

|Ec|), where m represents the number of modules in the workflow, |Ew| and |Ec| denote

the number of dependency edges in the workflow and communication links in the network,

respectively, and k is the number of iterations where CPs are calculated and mapped.

57



Algorithm 3 RCP(Gw,Gc,vs,vd)

1: MED0 = MEDmax = MaxValue;

2: Create Gc
∗ by assuming resource homogeneity and connectivity completeness in Gc;

3: Calculate initial time cost components for Gw
1 based on Gc

∗;

4: Find a CP P1;

5: MED1(Gw
1) = ∑(Texec(P1)+Ttran(P1));

6: i = 1;

7: while |MEDi−MEDi−1| ≥ T hreshold do

8: Call MapCriticalPath(Pi,Gc,vs,vd) to map the modules on CP Pi to network Gc;

9: Call MapNonCriticalModules(Pi,Gw
i,Gc,vs,vd) to map the modules not on CP to

network Gc;

10: i = i+1;

11: Calculate new time cost for Gw
i with the current mapping;

12: Fina a new CP Pi;

13: MEDi(Gw
i) = ∑(Texec(Pi)+Ttran(Pi));

14: return MEDi(Gw
i).

Critical Path Calculation

We employ a well-known polynomial longest path (LP) algorithm to find the CP since the

CP is essentially the LP in a DAG in terms of MED. The CP is selected with the nodes

whose earliest start time (EST) is equal to their corresponding latest start time (LST). The

EST is calculated by the LP that starts from the source to the current node, while the LST

is obtained from the shortest path (SP) that is back calculated from the destination to the

current node, defined as follows, respectively:

EST (wi) =







0, if wi = w0

min
w j∈pre(wi)

(

EST (w j)+ c(w j,wi)
)

, otherwise
(5.3.2)

LST (w j) =







EST (wm−1), if w j = wm−1

max
w j∈pre(wi)

(

LST (wi)− c(w j,wi)
)

, otherwise
(5.3.3)

where pre(wi) is the set of preceding modules of module wi and c(w j,wi) is the total time

cost from module w j to module wi. For the sake of completeness, we give the pseudocode

in Alg. 4 for finding a CP P in Gw.
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Algorithm 4 FindCriticalPath(Gw,w0,wm−1)

1: for all modules wi, i = 0,1, . . . ,m−1 do

2: Initialize the ESTi = 0 and LSTi = ∞;

3: for all modules wi, i = 0,1, . . . ,m−1 do

4: Calculate and update ESTi using the LP;

5: for all modules wi, i = m−1, . . . ,1,0 do

6: Calculate and update LSTi using the SP;

7: for all modules wi, i = 0,1, . . . ,m−1 do

8: if ESTi == LSTi then

9: Add module wi to CP P;

10: return P.

Critical Path Mapping

We adapt the optimal pipeline mapping algorithm proposed in Chapter 4.2.1 to the CP

mapping problem, which uses a 2D table to fill out the final result column-by-column

from the substructure. Every cell T
j−1

ED (vi) in the table represents the MED of an optimal

mapping solution that maps the first j modules on the CP to a path between the source node

vs and node vi in the network. Each cell is calculated from the intermediate mapping results

up to its adjacent nodes or itself, which are stored in its left column T
j−2

ED (·). For details of

the mapping algorithm, please refer to Chapter 4.2.1.

Non-critical/Branch Module Mapping

We design a recursive priority-based greedy algorithm to schedule branch modules not lo-

cated on the CP. We first insert all critical modules into a queue Q. At step i, a module

wi is dequeued from Q and its succeeding modules are assigned to certain nodes in the

following way: (i) Sort all unmapped succeeding modules USM(wi) of module wi in a

decreasing order according to their computation and communication requirements. The

modules requiring more computations and communications are assigned higher priorities.

(ii) Map all unmapped modules w ∈USM(wi) with decreasing priorities onto either node

v(wi) that runs module wi or one of its succeeding nodes with the minimum module exe-

cution time or data transfer time. (iii) Insert modules w ∈USM(wi) to the end of Q. The
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above procedure is recursively performed until Q is empty so that all modules in the work-

flow are assigned to the network nodes. The pseudocode in Alg. 5 describes the procedure

of function MapNonCriticalModules().

Algorithm 5 MapNonCriticalModules(P, Gw, Gc, vs, vd)

1: Insert all modules on CP P into a queue Q in the same order as they appear on P;

2: i = 0;

3: while Q 6= /0 do

4: wi = the first module in Q;

5: Remove wi from Q;

6: v(wi) = the node in GC that runs wi;

7: SN(v(wi)) = a set of succeeding nodes of node v(wi);
8: USM(wi) = a set of unmapped succeeding modules of module wi sorted in a deceas-

ing order according to computation and communication requirements;

9: for all modules w ∈USM(wi) do

10: Map module w to node v(wi) and calculate time cost C1;

11: for all nodes v ∈ SN(v(wi)) do

12: Map module w to node v;

13: Select the node vmin with minimum cost C2;

14: Select either v(wi) or vmin with cost C = Min(C1,C2);
15: Insert module w into the end of Q;

16: i = i + 1;

17: return the entire mapping assignment;

If there is only one module mapped onto one node, we can directly calculate the module

execution time. However, if multiple modules are deployed on the same node, the resource

is shared among those concurrent modules and the same rule is also applied to bandwidth

share. The extED calculation in Chapter 5.2 is designed to calculate the sharing dynamics

during execution.

5.3.2 Improved Recursive Critical Path (impRCP) Algorithm

The previous experiments have shown that the mapping performance of RCP largely relies

on non-critical module mapping. Thus, we improve the RCP algorithm by designing and

incorporating a new non-critical module mapping scheme, referred to as impRCP, based on

A∗ Search and Beam Search to replace the original naive greedy approach. A∗ is a best-first
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graph search algorithm that features a path with the least cost from a given source node to

a destination node represented by the cost function f (x) = g(x)+ h(x), which consists of

two cost components: (i) a path cost function, denoted as g(x), computed from the source

node to the current node, which may or may not be optimal, and (ii) an admissible heuristic

estimation function, denoted as h(x), of the cost from the current node to the destination

node. We further employ the Beam Search algorithm to reduce the search complexity of the

A∗ algorithm by exploring only a predetermined number ρ of least-cost paths in the search

tree in the solution space, instead of searching all feasible paths, assuming that the optimal

solution is most likely to be found on these paths. An appropriate value of ρ can be decided

by an empirical method or based on the actual situation of the application. The pseudocode

of the non-critical module mapping algorithm is provided in Alg. 6, whose complexity is

O(ρ ·m · n · |Ew|), where ρ is the predefined beam width in the Beam Search algorithm, m

and |Ew| are the number of modules and edges in the workflow, respectively, and n is the

number of nodes in the network.

Algorithm 6 impRCP-NonCriticalModMapping(P, Gw, Gc)

Input: A computing workflow Gw = (Vw,Ew), |Vw|=m, a computer network Gc = (Vc,Ec),
|Vc|= n, and a mapped CP P.

Output: Entire mapping scheme for MED.

1: Insert mapped modules on the CP into a queue Q in a sequential order;

2: while Q 6= /0 do

3: Remove wi from the head of Q;

4: Prioritize all unmapped direct succeeding modules of wi from high to low by com-

putational requirements, denoted as pri(suc(wi));
5: for all w j ∈ pri(suc(wi)) from high to low do

6: Calculate f (w j) = g(w0,w j)+ h(w j,wm−1) based on A∗ and Beam Search algo-

rithms;

g(w0,w j) = the total time cost of mapped modules from w0 to w j + the execution

time of w j on vk;

h(w j,wm−1) = the total time cost of ρ least-cost paths from w j to wm−1 mapped

from vk to vd based on a greedy procedure;

7: Select the node that produces f (w j)min to map module w j;

8: Q← w j;
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5.3.3 Decentralized RCP (disRCP) Algorithm

Workflow mapping has been traditionally done in a centralized manner. However, as com-

puting, networking, and storage resources are continuously developed and deployed around

the world, maintaining the global resource information at a central location becomes pro-

hibitively expensive, and in the worst case, the resource status might have already changed

even before the central server gets to run the mapping algorithm. Therefore, the scalability

requirement for workflow mapping in large-scale networks calls for a distributed solution.

Moreover, a distributed workflow mapping algorithm is able to confine the changes of a

mapping scheme in a local area and therefore obviate the need of reproducing and rede-

ploying the entire mapping scheme in the global scope if only a small portion of nodes or

links break down.

The original RCP algorithms are centralized algorithms that require a central server.

The central server must have full knowledge of the computing workflow and computer net-

work in terms of topology and parameters, based on which, it calculates the best mapping

scheme for mapping the workflow to the network. Collecting the global status information

and maintaining it at a central location could be prohibitively expensive if not at all pos-

sible, especially in shared wide-area networks with unpredictable system dynamics. We

propose a distributed version of the RCP algorithm, referred to as disRCP, where each

node only needs to identify and exchange information with its neighbor nodes. Each node

maintains four local tables:

• Workflow Table (WT) is an m×m 2D table that stores entire workflow topology and

parameters.

• Neighbor Node Table (NNT) is an array with a varying length between 1 and n that

stores neighbor nodes.

• Critical Module Mapping Table (CMMT) is an array with a varying length between

1 and m that stores partial mapping results of all critical modules on the current node.
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• Branch Module Mapping Table (BMMT) has the same size as CMMT and stores the

temporary mapping results for non-critical modules mapped on the current node.

Since we assume that a branch/non-critical module cannot be mapped on a node which has

already been selected for mapping a critical module to ensure the ED performance of the

CP, CMMT and BMMT will not be used simultaneously on the same node. Each mapping

node also maintains two variables, namely EST and LST for each of the modules mapped

on that node, which are used in the CP calculation.

At the initialization stage, the workflow information is sent to each neighbor node in

the network and stored in the WT. Each node sends out a “HELLO” message containing

its own node ID to all its neighbors in the network. Once a node receives such a message,

it appends its own node ID at the end of the message and sends it back to the sender.

Upon the receiving of a reply message, the node updates the neighbor information in its

NNT including node ID, computing power, link BW and MLD between them. All other

parameters are set to be NULL initially. The workflow mapping process starts at the source

node and the decentralizing procedure of disRCP is described as follows.

Finding CP

During this stage, the CP of the workflow is computed based on the previous round of

mapping scheme stored in the CMMT or BMMT of each mapping node. Starting from

the source node vs on which the first module w0 is mapped, each mapping node sets the

EST to be 0 and calculates the total time cost (transfer time ts,i and module execution time

ti) to reach each of its succeeding modules wi using Eq. 5.3.2 and sends the results in a

message to the corresponding succeeding nodes. After receiving this message, the node

updates the corresponding ESTs of its mapped modules and computes the total time cost

for succeeding neighbor modules. This process is repeated until the destination node vd

is reached. Here, a node has two options for updating ESTs: (i) if the EST of the current

succeeding module is NULL, set the EST to be the received value; (ii) otherwise, compare
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the received value and the original one, and set the EST to be the minimum. Similarly, the

LSTs of the mapped modules on each mapping node can be computed using Eq. 5.3.3 in a

reversed direction from the destination node to the source node.

To identify the critical modules to compose the CP, the source node sends a message to

all its succeeding nodes querying “I have the critical module w0; who has the succeeding

critical module mapped?” Each succeeding node compares the ESTs and LSTs of all its

mapped modules. If node v j finds a mapped module wi with the same EST and LST, it

replies to the source node with a message saying “my node ID is j; I have the critical

module wi mapped”, and meanwhile sends a message to each of its own succeeding nodes

querying “I have the critical module wi; who has the succeeding critical module mapped?”

This query-reply process is repeated until the last module wm−1 on the destination node vd

is reached. At this point, the CP has been completely established in the network. Note that

an original CP in the workflow is obtained on each node by only considering the workflow

under the assumptions of network completeness and resource homogeneity.

The nodes on the CP compute the critical module execution time and data transfer

time, and send the results to the succeeding node along the CP for integration. The MED is

finally produced on the destination node and compared to the MED of the mapping scheme

determined in the previous round. If the termination condition is met, the mapping process

stops; otherwise, a new mapping round is performed.

Mapping CP

We adapt the optimal pipeline mapping algorithm based on a DP procedure in Chapter 4.2.1

for MED with arbitrary node reuse by developing a distributed mapping process. The

centralized DP procedure employs a 2D table on the central server, where the modules are

listed in order along the horizontal dimension and the nodes are arranged along the vertical

dimension. A cell in the table represents an optimal mapping solution that maps the first

modules in the pipeline (i.e., CP) to a network path between the source and the current node
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in the network. The value of each cell is calculated from the intermediate mapping results

up to its preceding nodes or itself.

In the disRCP algorithm, the CMMT on each node corresponds to an entire row of the

DP table in Fig. 4.6, which stores the partial result for each critical module mapped on the

current node. At the beginning, the CMMTs are all initialized to be NULL. The first cell

of the CMMT on the source node vs with the first module mapped is filled out and the ED

is set to be 0. The rest of the procedure starts from the second module on the CP:

• Each node repeatedly checks its CMMT to find the first NULL cell to fill starting

from the second cell.

• If the NULL cell is the second one in the CMMT, go to the next step directly; oth-

erwise, map the current module on itself and compute the ED based on the partial

mapping result in the preceding cell of the CMMT on the current node. Fill in the cell

with ED and the current mapping node ID. This is corresponding to the horizontal

arrows in each row in Fig. 4.6.

• Send a message to all of its preceding neighbor nodes querying “Is the corresponding

preceding cell in the CMMT on any node not NULL?” If yes, the neighbor node

replies to the current node with the partial mapping result in that cell. The current

node then maps the current module on itself and computes the ED based on each of

the partial mapping results received. It compares the EDs and selects the minimum

one among them, which is further compared with the one in the current cell of the

CMMT on the current node. The minimum one is selected to fill in the current cell

of the CMMT on the current node and update the preceding mapping node ID. This

is corresponding to the slanted arrows across different rows in Fig. 4.6.

The above steps are repeated until the last cell of the CMMT on the destination node vd

is filled out. The mapping results of the critical modules can be retrieved by backtracking

from the destination node.
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Mapping Non-critical Modules

Here, we describe the decentralized process of the priority-based non-critical module map-

pings. Each critical node with critical module(s) mapped performs the following:

• Assign the priority to the unmapped succeeding modules of each critical module

based on WT (modules with higher computation and transmission demands have

higher priorities);

• Map those unmapped succeeding modules, from high to low priority, to one of its

succeeding neighbor nodes with the minimum ED considering resource share;

• Send a message to update the BMMT on each mapping neighbor node.

After the receiving of this message, a node without critical modules mapped follows the

same process as a critical node except for one difference in Step (ii): it not only maps to its

succeeding neighbor nodes, but also itself, and selects the minimum one as the final result.

All the branch modules are mapped on the nodes eventually. The mapping scheme of the

entire workflow is then stored in the CMMTs and BMMTs on those corresponding nodes.

The condition in the step of finding CP is checked to continue or terminate the mapping

process.

5.4 Mapping Solution to MFR

The workflow mapping problem with arbitrary node reuse for MFR is formally defined as

follows:

Definition 7. Given a DAG-structured computing workflow Gw = (Vw,Ew) and a hetero-

geneous computer network Gc = (Vc,Ec), we wish to find a mapping scheme that assigns

each computing module to a network node such that the mapped workflow achieves:

MFR = max
all possible mappings

(

1

TBT

)

. (5.4.1)
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Note that MFR is achieved by identifying and minimizing the time TBT on a global

bottleneck, one module execution time component or one data transfer time component,

among all possible mappings. We maximize FR to produce the smoothest data flow in

streaming applications when datasets are continuously generated and fed into the work-

flows.

We conduct a rigorous workflow stability analysis and develop a Layer-oriented Dy-

namic Programming (LDP) solution based on topological sorting to identify and minimize

the global BT, for which, a distributed version is provided as well.

5.4.1 Workflow Stability Analysis

Besides the difficulty of end-to-end performance optimization, many runtime performance

issues also remain open due to the complex execution dependencies between computing

modules, which are further complicated by the highly random network, host, and user dy-

namics in distributed environments. Before developing mapping algorithms for MFR, we

need to determine whether or not a distributed workflow can stabilize and predict how

long it takes to stabilize. A module stabilizes if it reaches a steady state where outputs are

produced at a constant rate, and the entire workflow system stabilizes if the last module sta-

bilizes and produces final outputs at a constant rate. Such stability performance guarantee

is particularly important for streaming applications that require MFR for achieving smooth

data flow.

Without loss of generality, we first convert the data transfer time of each dependency

edge to a virtual module execution time as we did in Chapter 5.2.2, where we replace each

dependency edge in the computing workflow with a virtual module whose computational

requirement is equal to the corresponding transferred data size and replace each mapped

network link with a virtual node whose processing power is equal to the corresponding BW.

As such, no data transfer time needs to be considered.
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In streaming applications, even dependent modules mapped to the same node could

run concurrently to process different instances of input datasets continuously entering the

workflow. We assume that the computing resources of one node are shared by all the

modules mapped to it in a fair manner, and further convert the workflow mapping problem

with arbitrary node reuse to an equivalent mapping problem with no node reuse (i.e., one-

to-one mapping) by dividing a reused node to several virtual nodes with the processing

power divided by the number of modules on that node. Again, we use Gw
′(Ew

′,Vw
′) to

represent the resultant workflow. We have Theorem 5 on the stability of a one-to-one

mapped workflow processing time-series input datasets in streaming applications.

Theorem 5. A one-to-one mapped workflow stabilizes after max(Ti) time steps, where Ti

is the execution time of module wi ∈Vw
′.

Proof. The entire workflow system will stabilize if we can prove that any module stabilizes

at a certain point when all its preceding (incident or input) modules stabilize, since the

system execution starts from the first module, which does not have any input dependency

and hence is always in steady state. For convenience, we introduce the following notations:

• sni: the first stable dataset sequence number after which module wi produces outputs

at a constant rate.

• sti: the stable time step (interval) between two adjacent outputs produced by module

wi in steady state.

• twi, k: the time point when module wi finishes processing the k-th dataset.

• Tj: the execution time cost of module w j.

• pre(w j): the set of preceding modules of module w j (i.e., modules that are incident

to module w j).

For the first dataset, we have tw j,1 = max
wi∈pre(w j)

(twi,1) + Tj. For the rest datasets k >

1, since the module execution starting time depends on both the completion time of the
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Figure 5.6: Illustration of steady state analysis.

previous dataset on module w j and the latest arrival time of the current dataset among all

preceding modules, we have

tw j,k = max(tw j,k−1, max
wi∈pre(w j)

(twi,k))+Tj. (5.4.2)

Suppose that we obtain sni and sti for each of these preceding module wi, wi ∈ pre(w j).

The largest steady state dataset sequence number snx and the largest steady state time step

sty among all preceding modules are defined as: snx = max
wi∈pre(w j)

(sni) and sty = max
wi∈pre(w j)

(sti),

respectively. Obviously, starting from dataset sequence number snx+1, all preceding mod-

ules produce outputs at their own constant rates. For module w j, we consider two cases:

• Case 1 when sty≤ Tj: The bottleneck time is the execution time of module w j, hence

sn j = 1 and st j = Tj.

• Case 2 when sty > Tj: According to Eq. 5.4.2, the time when w j finishes processing

dataset snx+r, r≥ 0, can be calculated as tw j,snx+r =max(tw j,snx+r−1, max
wi∈pre(w j)

(twi,snx+r))+

Tj. Since the bottleneck time is the execution time of the slowest preceding mod-

ule, we have tw j,snx+r = max
wi∈pre(w j)

(twi,snx+r)+Tj = max
wi∈pre(w j)

(twi,snx
+ r · sti)+Tj. As

shown in Fig. 5.6, after dataset snx + r is completed, the preceding module wy with

the largest stable time step sty will always be the latest (slowest) one to send any new
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dataset to module w j. We derive that module w j stabilizes with st j = sty after the

dataset sequence number snx + r, where r =

⌈

max
wi∈pre(w j)

(

twi,snx−twy,snx

sty−sti

)

⌉

.

From the above two cases, we conclude that the stable time step of module w j is

st j = max(Tj, max
wi∈pre(w j)

sti). (5.4.3)

If we recursively apply Eq. 5.4.3 to the entire workflow until we reach the last module, we

obtain the stable time step of the workflow system as: stsystem = max(Ti), wi ∈ Vw
′, which

essentially is the global bottleneck time of the entire workflow. 2

5.4.2 Layer-oriented Dynamic Programming (LDP) Algorithm

We develop a Layer-oriented DP algorithm, referred to as LDP, which maps a topologically

sorted computing workflow to a computer network for MFR by identifying and minimizing

the global BT. We introduce the following notations to facilitate the description of our

mapping algorithm:

• pre(w j) denotes the set of preceding modules of module w j (i.e., modules that are

incident to module w j;

• Vone−mapping(pre(w j)) represents the set of nodes that make up one possible mapping

of those modules in pre(w j);

• suc(vi) denotes the set of succeeding nodes of node vi;

•
⋂

for all v∈Vone−mapping(pre(w j))
(suc(v)) is an intersection operation that finds the set of com-

mon succeeding nodes, denoted as Vcandidate(w j), corresponding to one particular

mapping;

•
⋃

for all mappings

represents a union operation on those common succeeding nodes of all

possible mapping combinations.
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Let Ti, j (0 ≤ i ≤ n− 1, 0 ≤ j ≤ m− 1) denote the global BT of a topologically sorted

workflow from module w0 to w j mapped to a network from node v0 to vi. We have the

following recursion leading to the final solution Tn−1,m−1 by filling out a two-dimensional

(2D) DP table:

Ti, j

j=1 to m−1, and vi∈
⋃

for all mappings
(Vcandidate(w j))

=

max
wu∈pre(w j),
0≤h≤n−1
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(5.4.4)

The base condition, i.e., T0,0 = 0.0, is determined by the assumption that the first module

be mapped to the source node and not perform any computing. Note that Eq. 5.5.6 may

not fill up all the cells in the DP table due to the module dependency and network topology

constraints.

The key idea of LDP is to first sort a DAG-structured workflow in a topological order

and then map computing modules to network nodes on a layer-by-layer basis, while taking

into consideration both module dependency in the hworkflow and node connectivity in the

network. As illustrated in Fig. 5.7, in a topologically sorted workflow, modules with the

same number of hops on their longest paths from the source module vs are placed in the

same layer, where there does not exist any dependency. We further sort the modules in

the same layer based on their priority, which is determined by their computational require-

ments, i.e., the most “needy” module has the highest priority.

We use a 2D DP table to record the intermediate mapping result at each step where

a module is mapped layer-by-layer to a strategically selected network node. For a better

clarity, we decompose the table into several separate tables, each of which represents one
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Figure 5.7: Layered workflow in a topological sorting.

topological layer, and calculate the columns corresponding to those modules sorted by their

priorities on each layer. Fig. 5.8 illustrates the mapping procedure of LDP for the workflow

mapping problem shown in Fig. 5.7. In Fig. 5.8, the horizontal coordinates represent the

sequence numbers of topologically sorted modules (using the priority to break a tie within

the same layer), and the vertical coordinates represent the labels of network nodes starting

from the source node vs to the destination node vn−1.

The pseudocode of LDP is provided in Alg. 7. The workflow is topologically sorted

in line 3. In lines 5-8, we select an unmapped module w j with the highest priority on the

current layer, find all its preceding modules pre(w j) and one possible set of their mapping

nodes Vone−mapping(pre(w j)), and determine the set of common succeeding nodes of all

nodes v ∈Vone−mapping(pre(w j)) using an intersection operation. For the mapping of mod-

ule w j, LDP considers all possible combinations of mapping nodes Vone−mapping(pre(w j))

for the set of preceding modules. If a module in pre(w j) has (i) only one succeeding
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Algorithm 7 LDP(Gw, Gc, vs, vd)

Input: A workflow graph Gw = (Vw,Ew), |Vw|=m, a network graph Gc = (Vc,Ec), |Vc|= n,

a pair of source and destination nodes (vs, vd).

Output: MFR of the workflow.

1: pre(vi): the set of preceding nodes of node vi;

2: v(w j): the node to which module w j is mapped;

3: Topologically sort workflow Gw into Gw
′ of l layers: layk, k = 0, 1, · · · , l−1;

4: for all layer layk, k = 1, 2, · · · , l−1 do

5: for all “unmapped” module w j ∈ layk do

6: Select w j with the highest priority pri(w j);
7: Find pre(w j) and Vone−mapping(pre(w j));
8: Find set Vcandidate(w j) of candidate nodes for module w j;

9: Tx, j = MAX DOUBLE;

10: for all node vi ∈
⋃

for all mappings

(

Vcandidate(w j)
)

do

11: for all module wu ∈ pre(w j) do

12: h = node ID of v(wu);
13: if h 6= i then

14: T = max



Th,u,
t

f
eu, j

∑
t=ts

eu, j

βu, j(t)·δeu, j (t)

bh,i
+dh,i,

t
f
w j

∑
t=ts

w j

α j(t)·δw j
(t)

pi



;

15: else

16: T = max



Th,u,
t

f
w j

∑
t=ts

w j

α j(t)·δw j
(t)

ph



;

17: if Ti, j < T then

18: Ti, j = T ;

19: if Tx, j > Ti, j then

20: Tx, j = Ti, j;

21: x = i;

22: return MFR of the workflow;

module, we consider all available nodes in the current column to map this module; (ii)

more than one succeeding modules, we select the node that results in the minimum BT

for mapping this module to ensure mapping feasibility. In lines 10-21, we map module w j

to each of those candidate mapping nodes and compute their corresponding global BTs.

The complexity of this algorithm depends on the number of “all possible combinations for

Vone−mapping(pre(w j))”, and could lead to an expensive search process in some extreme

cases, which necessitates a greedy version of LDP to reduce the complexity.
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In LDP, at each step, the node considers all possible combinations of the mapping nodes

for the preceding modules to determine their common succeeding (candidate) nodes that

can be used to map the current module in each column, which could be computationally

intensive especially when there are a large number of combinations. To reduce the search

complexity, we propose Greedy LDP, which selects the best node in each column that

yields the minimum global BT for mapping the current module, hence filling one cell only

in each column as shown in Fig. 5.8. In Greedy LDP, we recursively calculate the minimum

bottleneck of the sub-solution that maps the subgraph (a partial workflow) consisting of the

current module w j and all the modules before the current layer to the network until the

last module wm−1 is mapped to the destination node vd , which is represented by the right

bottom cell in the DP table. The complexity of Greedy LDP is O(l · n · |Ew|), where l is

the number of layers in the topologically sorted workflow, n is the number of nodes in the

network, and |Ew| is the number of edges in the workflow.

5.4.3 Decentralized LDP (disLDP) Algorithm

The disLDP algorithm does not require a central server to collect the global information,

which is distributed among individual nodes. Each node maintains three local tables:

• Local Resource Table (LRT), which stores the neighbor connectivity information of

the current node;

• Sorted Workflow Table (SWT), which stores the modules in the workflow sorted in a

topological order together with their dependencies;

• Local Mapping Table (LMT), which stores the local mapping information of the

current node during the mapping process.

In the initialization phase, the workflow information is sent to all the nodes and stored

in their SWT. Both LRT and LMT on each node are set to be NULL. To obtain the neigh-

bor connectivity information, each node broadcasts a “hello” message to the network and
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updates its own LRT upon the receipt of its direct neighbors’ messages. The LMT of node

vi is essentially the i-th row in the 2D DP table combining all the layers together in Fig. 5.8,

where each cell stores (i) the temporary bottleneck time TBT under the current partial map-

ping scheme and (ii) the incident dependencies from the preceding nodes, on which the

preceding modules are mapped.
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Figure 5.9: Decentralizing the mapping process of disLDP.

The decentralized mapping process starts from the source node to which the first mod-

ule is mapped. As the base condition, for the first module, the first cell of the LMT on

each node is set to be NULL, except for the source node where the first cell of the LMT is

set to be zero. Once the mapping process begins, each node repeatedly checks its LMT to

locate the next unfilled cell. To illustrate this process, let us consider node vi, i ∈ [1,n−1],

which needs to fill out the j-th cell, j ∈ [1,m−1], in its LMT (i.e., map the j-th module on

node vi). Suppose that module w j has two preceding modules wh and wk in the workflow.

In Fig. 5.9, node vi sends a query to all its upstream neighbors (including vi itself) asking

“who has wh mapped” and a similar query asking for the mapping node of module wk. The

node that has either wh or wk mapped on it sends vi a reply message that carries information

on the h-th or k-th cell in its LMT. Upon the receipt of all reply messages, vi considers the

following three cases:
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1. there is no reply at all to either query;

2. there is only one reply to each of the queries;

3. there are multiple replies to either one query or both queries.

Case 1 means that none of its upstream nodes has either wh or wk or both mapped. In

this case, module w j cannot be mapped to node vi because the module dependency is not

satisfied, and node vi simply sets the j-th cell in its LMT to be NULL. Case 2 means that

if module w j is mapped to node vi, there is only one option to map its preceding modules

wh and wk. In this case, node vi calculates the temporary global bottleneck time TBT based

on the partial mapping solution from the preceding node(s) on which modules wh and wk

are mapped, and updates the j-th cell in its LMT using the calculated TBT as well as the

dependencies. Case 3 means that there are multiple options to map modules wh and wk

if module w j is mapped on node vi. In this case, node vi considers all possible mapping

combinations for modules wh and wk, and for each mapping option Vone−mapping(pre(w j)),

node vi performs a similar calculation as in Case 2. Once all mapping options have been

considered, node vi compares the temporary bottlenecks of all these mapping combinations

of modules wh and wk, and then selects the minimum one to fill in the j-th cell of its

LMT. Each node progressively fills out its corresponding row of cells along the horizontal

direction in the 2D DP table by computing the BT of each partial mapping scheme that

ends at the current node. Note that some queried cells of the LMTs on the upstream nodes

may not have already been filled out when a query is sent. However, after several rounds

of queries, the mapping process eventually reaches the last module and then all the cells of

the LMT on each node in the network must have been either filled out or marked as NULL.

The final mapping scheme for MFR can be established in the network by backtracking

the nodes’ LMTs, starting from the destination node: it sends a message containing the

module sequence number to each of its preceding nodes recorded in the (m−1)-th cell of its

LMT, and those preceding nodes then check the mapping information in the corresponding
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cells of their LMTs and send messages to their preceding nodes. This backtracking process

continues until the source node (or the first module) is reached. Once the mapping is

completely determined in the network and the modules are deployed on the selected nodes,

the workflow can start execution immediately.

We decentralize Greedy LDP based on a similar decentralization process used for LDP.

The only difference between them is that in Case 3 of Greedy disLDP, node vi does not

need to consider all mapping combinations for those preceding modules. Instead, it selects

the best one for each preceding module to calculate the current cell, which significantly

speeds up the search process. Here, the “best one” refers to the computer node that incurs

the minimum global bottleneck time among all possible mapping nodes for executing the

preceding module under consideration.

5.5 Workflow Optimization under Fault-tolerance Constraint

5.5.1 Overview

In network environments especially with resource sharing, node and link failures are in-

evitable and may have a detrimental impact on the workflow performance. Fault tolerance

in workflow mapping/scheduling has been the focus of research in the literature [35,59,76,

86], and several approaches have been proposed including task duplication and checkpoint-

restart. Task duplication is a commonly adopted conservative approach where each task is

replicated multiple copies and executed on different nodes to minimize the probability of

failures [35, 76, 117]. However, this approach significantly increases network traffic and

requires more computing resources. Alternatively, a checkpoint-restart approach avoids

task duplication by automatically checkpointing the process and restarting it when a failure

occurs [28, 39]. Unfortunately, this approach may also increase extra overhead and slow

down the execution by the restart mechanism. These approaches consider either remedy
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or recovery in the case of resource failures during the course of workflow execution. Or-

thogonal to the above ones, another approach focuses on finding a good mapping scheme

that allocates tasks with or without precedence constraints to relatively more reliable ma-

chines [61, 62, 94, 95, 122]. This mechanism attempts to minimize the chance of failure

occurrences early in the workflow mapping phase, which is the focus of our work.

Note that a mapping scheme that achieves maximum reliability may lead to an unbear-

ably long execution time. These conflicting requirements make it extremely challenging

to tackle the problem of optimizing multiple objectives simultaneously [36, 63, 76, 85].

Some existing research efforts only consider one single objective, either latency minimiza-

tion [125] or reliability maximization [95]. For multi-objective optimization problems, a

commonly used strategy is to either combine multiple objectives into a single criterium, or

optimize one objective while treating others as constraints. One solution using the combi-

nation approach was presented in [62], where the failure cost function is incorporated into

an existing compile time. Another solution using the constrained approach was proposed

in [36] to optimize latency under throughput and reliability constraints.

We construct the cost models for workflows and networks subject to probabilistic node

and link failures, and rigorously prove that the bi-objective optimization problem cannot be

approximated within one constant factor. Considering the Pareto dominance with two po-

tentially conflicting objectives, we further convert this problem to a reliability-constrained

optimization problem. The rapid increase in the workflow and network scale discourages

centralized management and aggravates node and link failures, which necessitates the de-

centralization of mapping solutions with fault tolerance for practical deployment. We adapt

the proposed disRCP and disLDP workflow mapping solutions in Chapters 5.3 and 5.4, re-

spectively, to the workflow mapping problems under a given reliability constraint.
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5.5.2 Fault Models

We further define the fault models for workflow mapping in faulty computer networks

based on the fault-free models described in Chapter 3. We consider both nodes and links as

resources denoted by R=Vc∪Ec = {ri|i= 0,1, · · · ,n+ |Ec|−1}. In a faulty network where

each resource ri ∈ R may fail at a certain probabilistic rate, we assume that the number of

failure occurrences of resource ri in a certain time span follows a Poisson distribution and

the probability that ri is functional (or reliable) during a time period t is modeled by an

exponential function:

P(ri, t) = e−ci·t , (5.5.1)

where coefficients ci are nonuniform due to the heterogeneity of nodes and links. Con-

versely, the failure probability of ri during a time period t is:

1−P(ri, t) = 1− e−ci·t. (5.5.2)

Our fault model assumes that: (i) resources are fail-silent and subject to transient failures,

and (ii) resource failures at different locations are statistically independent. Although Pois-

son process is widely used to model the failures in faulty systems [62,76], it may not always

reflect the actual failure dynamics. However, the work in [114] shows that this assumption

is reasonable and results in practically useful mathematical models [62].

The reliability R of a workflow denotes the probability that all mapping nodes and links

are functional during execution such that the workflow completes successfully:

R = ∏
ri∈R

P(ri, t). (5.5.3)

A mapping scheme is fault-free if no node or link fails during execution, i.e., R = 1, which

is a very strong condition and is not may not always be achievable in a large, shared,

distributed, and heterogeneous environment. A small portion of resources are allowed to

fail due to some fault-tolerance mechanisms, such as task replication [35,76,86]. Hence, we

consider the Overall Failure Rate (OFR), denoted by F = 1−R, which is the probability
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that the entire workflow breaks down due to the failure of any individual node or link. We

assume independent and nonuniform failure rates for both nodes and links.

5.5.3 Non-approximability of Bi-objective Mapping Problems

We first provide a brief introduction to the approximation factor for mono-objective and

multi-objective problems.

Definition 8. For mono-objective optimization, S is an ε-approximation solution to a prob-

lem I for minimizing or maximizing the value/cost function f (x), if and only if the follow-

ing inequalities hold:

f ∗(I )≤ f (S)≤ ε · f ∗(I ), when ε > 1,

ε · f ∗(I )≤ f (S)≤ f ∗(I ), when ε < 1,

where f ∗(I ) is the optimal (minimum or maximum) value of f (x) among all the solutions

to I .

For multi-objective optimization, the definition is extended in order to take into account

multiple value/cost functions. A solution S is an ε = (ε0,ε1, · · · ,εi)-approximation of a

problem I for minimizing or maximizing the functions f (x) = ( f0(x), f1(x), · · · , fi(x)), if

and only if for ∀i, the following inequalities hold:

f ∗i (I )≤ f (S)≤ εi · f ∗i (I ), when εi > 1,

εi · f ∗i (I )≤ f (S)≤ f ∗i (I ), when εi < 1,

where f ∗i (I ) is the minimum or maximum value of fi(x) among all the solutions of I .

We present the non-approximability result of the original bi-objective mapping problem

for maximizing FR and reliability. A similar proof can be found in [63], where they tackled

a problem of minimizing makespan and maximizing reliability, which is similar to the

problem of optimizing MED and OFR in our problem definition.
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Theorem 6. The bi-objective problem of maximizing both FR and reliability is non-approximable

within one constant factor.

Proof. We consider a simple problem with only one module with computational require-

ments λ (z) in the workflow, and two nodes v1 and v2 with computing power p1 = λ (z) and

p2 = κ ·λ (z), κ ∈R+, and coefficient c2 = κ2 ·c1 in the network. There exist two mapping

solutions to this problem instance.

• S1: map the module to v1, resulting in MFR1 = 1/(λ (z)/p1) = 1, R1 = P(r1, t1) =

e−c1·(λ (z)/p1) = e−c1 ;

• S2: map the module to v2, resulting in MFR2 = 1/(λ (z)/p2) = κ , R2 =P(r2, t2) =

e−c2·(λ (z)/p2) = e−c1·κ .

Note that S1 is optimal for reliability while S2 is optimal for MFR. MFR2/MFR1 = κ ,

which leads to infinity. Thus, S1 is not a constant factor approximation solution in this case.

Similarly, R1/R2 = ec1(k−1), which also leads to infinity, thus S2 is not a constant factor

approximation solution, either. Therefore, neither of these two solutions can approximate

both objectives within one constant factor. 2

Theorem 6 justifies the necessity of converting the original bi-objective workflow map-

ping problem to a constrained mono-objective workflow mapping problem.

5.5.4 Problem Formulation and Approaches

We investigate a bi-objective mapping problem to optimize ED/ FR and reliability. Due to

the Pareto dominance with these two potentially conflicting objectives, we convert it to a

reliability-constrained delay/throughput optimization problem:

Definition 9. Given a DAG-structured computing workflow Gw = (Vw,Ew), a heteroge-

neous faulty computer network Gc = (Vc,Ec) where each node or link is associated with a

certain failure rate, and a bound F on the OFR, we wish to find a workflow mapping scheme
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such that the mapped workflow achieves MED/MFR under the reliability constraint F ≤F,

represented as:

min
all possible mappings

TED, such that F ≤ F; or (5.5.4)

max
all possible mappings

(

1

TBT

)

, such that F ≤ F. (5.5.5)

We tackle these two optimization problems by modifying and adapting the disRCP and

disLDP algorithms to the faulty network environment.

As for MED of unitary processing applications, we propose a distributed heuristic ap-

proach, Recursive Critical Path with Fault-tolerance Constraint (disRCP-F ), which is

similar to RCP in the fault-free environments except that the partial OFR is checked against

the global constraint at each DP step as we select an appropriate computer node to map the

current module. If the partial failure rate is larger than the bound F, we recalculate the cur-

rent mapping and search for an alternative node that satisfies the bound to map the module.

As for MFR of streaming applications, we modify the Eq. 5.5.6 in Chapter 5.4 as fol-

lows to facilitate the BT calculation under OFR constraint.

Ti, j
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where, F j and Fu are the partial OFRs after and before the current module w j is mapped

to the selected node vi, respectively. We present a distributed heuristic algorithm, Layer-

oriented Dynamic Programming with Fault-tolerance Constraint (disLDP-F ) to achieve

MFR under a given OFR bound and further implement a Greedy version, referred to as

Greedy disLDP-F . disLDP-F is similar to disLDP except that we consider the satisfaction

of the partial OFR during the mapping node selection.

Note that the value of partial OFRs will be compared at each mapping step by both

disRCP-F and disLDP-F during the mapping process. The relation between the partial

OFRs after and before mapping the current module is defined by Lemma 1, which is used

to update the partial OFR at each step.

Lemma 1. Given module w j mapped to node vi, its preceding module wu ∈ pre(w j)mapped

to node vh (i 6= h), and the partial OFRs F j and Fu calculated after and before mapping

the current module w j to node vi, the following equation holds between F j and Fu:

F j = 1− (1−Fu) ·P(lh,i, t) ·P(vi, t) (5.5.7)

Proof. According to the partially mapped workflow Gw
′ and the definition of OFR in

Eq. 5.5.3, we denote the partial OFR before mapping module w j to node vi as:

Fu = 1−Ru = 1− ∏
from w0to wu, ri∈R

P(ri, t). (5.5.8)

After module w j is mapped to node vi, the failure probabilities of node vi and link lh,i need

to be taken into consideration, and the current OFR rate is calculated as:

F j = 1−R j = 1−

(

∏
from w0 to wu, ri∈R

P(ri, t)

)

·P(lh,i, t) ·P(vi, t). (5.5.9)

Therefore, we have the relation

F j = 1− (1−Fu) ·P(lh,i, t) ·P(vi, t) (5.5.10)

by replacing ∏
from w0 to wu, ri∈R

P(ri, t) in Eq. 5.5.10 with 1−Fu based on Eq. 5.5.8. 2
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In faulty network environments, if a computer node or a network link fails, a central-

ized mapping algorithm has to recompute and redeploy the entire mapping scheme, which

could be prohibitively expensive and result in irresponsiveness of the system. The proposed

distributed mapping algorithms under fault-tolerance constraint provide a highly scalable

and adaptive solution in response to rapid status changes in large-scale networks because

each node only requires its neighbor information during the mapping process and mapping

recalculation is confined in a local area where a node or a link fails.

85



Chapter 6

Simulation of Dynamic Execution of

Distributed Systems (SDEDS)

In this chapter, we design and implement a simulation program to visually simulate dy-

namic workflow execution in distributed heterogeneous environments using a graphical

user interface.

6.1 Overview

Due to the enormous scale of applications and structural complexity of workflows as well

as the massive distribution, vast diversity, and high dynamics of system resources, imple-

menting and deploying a large-scale distributed collaborative application in a real wide-area

network environment is formidably expensive, time-consuming, and labor-intensive. Note

that configuring, running, and managing hundreds or even thousands of computing jobs

with intricate dependencies on various computer nodes across different network domains

would be a tremendously tedious and daunting task if not at all possible. Moreover, since

the resources and users in collaborative applications are typically distributed in multiple or-

ganizations and regions with their own administrative policies and restrictions, such as grid

environments, it is extremely challenging to evaluate the performance of distributed com-

puting tasks and validate the effectiveness and robustness of workflow mapping algorithms
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in a repeatable and controllable manner. Performance modeling and simulation-based anal-

ysis provide a highly cost-effective way to (i) design, evaluate, and tune workflow systems,

and (ii) investigate and refine workflow specifications and module functionalities.

Among the work on the development of automated distributed workflow simulation

and management systems, closely related to ours is the GridSim program developed by

Buyya et al. to model and simulate distributed resource management and scheduling for

grid computing, which supports modeling and simulation of heterogeneous grid resources

(both time- and space-shared), users, and application models [43]. Hatzis et al. proposed

the DSS tool for the simulation of distributed systems and protocols through communicat-

ing finite state machine, in which the computer system is specified as a process that receives

a sequence of input signals in some constrained order and performs a set of actions after

receiving the input signals based on both the current and previous inputs [87]. NEST is a

graphical environment designed by Dupuy et al. for distributed networked system simula-

tion and rapid prototyping [64], which enables users to develop and test distributed systems

and protocols (from crude models to actual system code) within simulated network scenar-

ios. NEST allows users to modify and reconfigure the simulation during the execution to

study the dynamic response of a distributed system to failures or burst-loads. Bajaj et al.

proposed a multi-protocol network simulator, VINT, to meet various simulation needs in

the network research community by providing a rich environment for experimentation at

low cost [32]. Racherla et al. developed PARSIT that performs simulation and evalu-

ates the performance of dynamically reconfigurable systems [115]. Combined with their

earlier work DYRECT, PARSIT simulates parallel and distributed systems and provides

architectural mapping of application programs onto the major categories of architectures.

Unger et al. presented and analyzed experimental results for the algorithms optimizing ser-

vice response time in a community using a simulation tool in comparison with optimization

algorithms [131], where the point-to-point response time is optimized for each client node

in the network. Meftali et al. designed a SOAP-based distributed simulation environment
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for system-on-chip design [109]. In [77], Gonzalez et al. proposed a simulation tool to

design and implement distributed control architectures for managing large-scale discrete

event systems. Each of the aforementioned simulation systems has its own language, de-

sign suite, software structure, target application domain, and the systems vary widely in

their execution models and the kinds of components they coordinate.

There exist a number of complex commercial or open-source simulation tools, which

are designed mainly for general-purpose network applications, and unfortunately cannot

adequately model distributed control architectures and predict the performance constraints

that these distributed architectures impose on the system [77]. To overcome these limi-

tations, we propose a lightweight multi-threaded simulation program, Simulation of Dy-

namic Execution of Distributed Systems (SDEDS) [141, 146], based on realistic cost mod-

els to simulate the dynamic execution process of distributed systems with data execution

on computer nodes and data transfer along network links. The proposed simulation sys-

tem measures end-to-end latency or data frame rate of a mapped workflow to evaluate the

network performance of various workflow mapping schemes in distributed environments

through numerical comparison with theoretical calculations and experimental results col-

lected in real network environments. This simulation program can also be used for tuning

QoS metrics [112] of a specifically designed workflow management system before its real

deployment. We would like to point out that SDEDS is not meant to compete with or re-

place any existing network simulators, but provide a simulation-based formal method that

enables us to quickly and accurately validate the accuracy of cost models and evaluate

the performance of workflow scheduling or mapping schemes in distributed heterogeneous

network environments.
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6.2 System Design

SDEDS takes two graphs and one mapping scheme as input: (i) a DAG that represents

a virtual workflow consisting of a set of computing modules with intricate inter-module

dependencies, (ii) an arbitrary directed weighted graph that represents an overlay network

consisting of a set of computer nodes interconnected with network links, and (iii) a work-

flow mapping scheme that assigns each computing module to a computer node. Based

on the mapping scheme, SDEDS overlays the virtual computing workflow on the computer

network in a Graphical User Interface (GUI), and visually illustrates the dynamic execution

process: module execution is visualized by filling an object and data transfer is visualized

by moving the object along a communication link in the network. Each computing module

in the workflow is designed as an autonomous agent performing three activities: receiving

data from its preceding module(s), performing a predefined computing routine, and send-

ing results to its succeeding module(s), which are simulated and coordinated by multiple

threads. Furthermore, SDEDS is able to simulate workflow execution in different types of

network environments with and without background traffic and workload.

6.2.1 SDEDS Framework

The framework of SDEDS is shown in Fig. 6.1, where we define one class for each of these

four components: computing module, dependency edge, computer node, and network link.

The design details of these structures are described as follows:

• Computing Module Structure: Each module has a static attribute table that con-

tains its attribute data including module ID, computational complexity (CC), a list of

input/output edges (IE/OE), aggregate input data size, total number of CPU cycles,

and ID of the node to which the current module is assigned. The dynamic informa-

tion including the number of CPU cycles left to execute, arrival time of input data,

and departure time of output data, is also maintained during simulation.
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Figure 6.1: The framework of SDEDS.

• Dependency Edge Structure: Similarly, each edge has a static attribute table that

contains its attribute data including edge ID, transferred datasets, preceding mod-

ule(s), succeeding module(s), and ID of the network link to which the current edge

is assigned. The dynamic information including the number of bytes left to trans-

fer for the current dataset and availability of new data from its preceding module is

maintained during simulation.

• Computer Node Structure: Each node has a static attribute table that contains its at-

tribute data including node ID, processing power (PP), a list of input/output network

links (IL/OL), and a list of modules that are assigned to the current node. The node

also keeps track of the set of modules that are concurrently running and allocates an

equal share of computing resources (processing power) to them during simulation.
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• Network Link Structure: Similarly, each link has a static attribute table that con-

tains its attribute data including link ID, link bandwidth, MLD, preceding node, suc-

ceeding node, and a list of dependency edges that are assigned to the current link.

The link also keeps track of the set of edges that are concurrently transferring and

allocates an equal share of network resources (i.e., bandwidth) to them during simu-

lation.

The mapping scheme overlays the virtual workflow on the underlying computer net-

work with the objective to optimize the end-to-end workflow performance in terms of MED

for unitary processing applications or MFR for streaming applications with time-series in-

put datasets.

6.2.2 Dynamics Control

Each module in a workflow is designed as an autonomous agent, which performs three

activities: receiving data from its preceding module(s), processing data, and sending re-

sults to its succeeding module(s), which are simulated using three threads, RecvThread,

ProcThread, and SendThread, as shown in Fig. 6.2.
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Figure 6.2: Multithreading design for computing modules.

RecvThread checks for arrival of incoming data on the incident edges from its pre-

ceding modules. If all input data arrive, it sends a “DATA READY FOR PROC” signal

to ProcThread. If ProcThread is currently idle, it first calculates the needed processing
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time based on the data size, computational complexity, number of concurrent modules and

available computing resource of the assigned node at the present time, and then simulates

the data processing by calling a sleep function. Meanwhile, it registers itself on the under-

lying node for the use of computing resources. It wakes up at a certain rate to check the

node sharing status and updates the amount of left execution time accordingly. Upon suc-

cessful completion of data processing, ProcThread sends a “DATA READY FOR SEND”

signal to SendThread and removes itself from the list of concurrently running modules

on the node. Once receiving a signal from ProcThread, SendThread starts simulating the

data transfer process along each outgoing edge based on the output data size, number of

concurrent data transfers, and available link communication resource at the present time.

Similarly, the transfer time is also dynamically updated by checking the number of con-

current datasets transferred over the same link during simulation. Upon completion of data

transfer, SendThread sends a “DATA ARRIVED” signal to RecvThread of the dependency

edge leading to the succeeding module. These three threads can run concurrently when

multiple instances of input datasets are continuously fed into the system.

Note that multiple independent modules assigned to the same node may or may not

run concurrently to share the node’s CPU cycles, depending on their different start times

when they receive all the input datasets. Similarly, multiple edges assigned to the same

link may or may not transfer data concurrently to share the link bandwidth, depending on

start times of different data transfers. In SDEDS, the node and link sharing is constantly

monitored to provide appropriate computing and communication resources to concurrent

module executions and data transfers, respectively.

6.3 Graphical User Interface Implementation

The Graphical User Interface (GUI) of the SDEDS simulator is implemented in Visual

C++, which uses .NET components for rich graphical display and enhanced event control.
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The overlaid workflow on the network is drawn in a .NET PictureBox, and the entire GUI

is designed and built on the core simulation functions presented in Chapter 6.2.

Figure 6.3: A runtime simulation example of a small-scale workflow application.

In the GUI, the user can select a computing workflow, a computer network, and a map-

ping scheme, and draw computer nodes and overlaid modules on the display as shown in

Fig. 6.3. The workflow mapping algorithms are implemented in C/C++ and incorporated

into SDEDS for computing mapping schemes. When a simulation starts, the GUI retrieves

status information from the workflow periodically to update and repaint the graph. Both the

retrieval function during the runtime of a simulation and the repaint function are called by a

.NET Timer object. The user is also provided the functionality to select and edit the display

properties of nodes and modules. Each dataset processed by a module is represented by a

small rectangle, and the module execution is denoted by filling out the rectangle and the
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data transfer is illustrated by moving the rectangle along a network link. However, these

animations can be disabled to reduce the visualization overhead for a higher simulation ac-

curacy. We design two main window views: one is the display of the topologically sorted

workflow, and the other is a two-dimensional plot of MFR during the course of workflow

execution, where x axis represents the time step and y axis represents the accumulated

number of completed datasets.

A small-scale running example is provided in Fig. 6.3 to illustrate the system execution

dynamics. In the main window, each circle represents a computer node in the network

and each square within a circle represents a computing module in the workflow mapped

to this node: modules 0 and 1 are mapped to nodes 0 and 1, respectively, modules 2 and

3 are mapped to node 3, and modules 4 and 5 are mapped to node 5. Network links are

purposefully not shown in the figure for a clear view of workflow mapping.
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Chapter 7

Scientific Workflow Automation and

Management Platform (SWAMP)

In this chapter, we develop and deploy a workflow automation and management system for

end users to conveniently construct, execute, display and monitor workflow applications,

where they can focus more on their domain reseach and leave the execution details to the

system.

7.1 Overview

A plethora of frameworks and tools have been developed for generating, refining, and

executing scientific workflows. Such efforts include P-GRADE [93], Pegasus [57], Ke-

pler [103], Condor/DAGMan [12], Gridbus [13], SimGrid [45], Taverna project [89], Grid-

Sim [43], Triana [51], Java CoG Kit [101], Sedna [134], ASKALON [135] and other grid

systems such as Open Science Grid (OSG) [8] as well. Each workflow or grid system

has its own language, design suite, and software components, and the systems vary widely

in their execution models and the kinds of components they coordinate [56]. Some sys-

tems attempt to provide general-purpose workflow functionalities while others are more

geared toward specific applications and are optimized to support specific component li-

braries. These existing workflow or grid systems have a primary design goal to provide
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services or infrastructures for coordinated application interoperation, distributed job sub-

mission, or large data transfer, but generally there lacks a comprehensive workflow solution

that integrates workflow mapping schemes for end-to-end performance optimization. Fur-

thermore, most systems using a batch scheduler are not inherently capable of supporting

streaming applications that require computational steering, which is a critical activity in

explorative sciences where the parameter values of an online simulation or a computing

module must be changed and determined on a realistic time scale.

We design and develop a generic Scientific Workflow Automation and Management

Platform (SWAMP) [145, 150], which contains a set of easy-to-use computing and net-

working toolkits for application scientists to conveniently assemble, execute, monitor, and

control complex computing workflows in distributed network environments. SWAMP is

a Condor/DAGMan-based workflow system that automates and manages scientific work-

flows in network environments through a web-based user interface. SWAMP features

a flexible workflow mapper where a third-party workflow mapping algorithm could be

plugged in. In the current version, we integrate the proposed mapping algorithms for

MED and MFR into the workflow mapper in place of Condor’s default mapping scheme to

achieve the better end-to-end performance. We conduct two real case study of the work-

flows for Spallation Neutron Source [2] datasets and Climate Modeling [5] datasets to show

the efficacy of the proposed platform.

This is a DOE-funded three-year team-based project, where I am a key participate. My

main responsibility in this project is to develop a workflow mapper for SWAMP to optimize

workflow performance by incorporating my own workflow mapping schemes based on rig-

orous algorithm design and performance analysis. This mapper unit significantly improves

the overall network performance of workflow applications compared to existing mapping

methods.
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7.2 System Design

The current SWAMP framework shown in Fig. 7.1 consists of the following functional

components: (a) Kepler and Kepler Manager, (b) Web Server, Web Server CGI, and Web

Server Manager, (c) DAGMan and DAGMan Manager, (d) Workflow Repository, (e) Net-

work and System Information Management, (f) Workflow Mapper, and (g) Workflow Ex-

ecution. These components interact with each other to accomplish the tasks of workflow

generation, mapping, execution, monitoring, visualization, and steering. Within SWAMP,

a user can use either a graphical web interface or the GUI of Kepler to compose abstract

workflows. The Kepler Manager converts the abstract workflow in XML format to DAG

format, and sends these workflow description files including a meta-workflow and a list

of component workflows to the Web Server Manager. The Web Server provides a vi-

sual management interface for workflow selection, dispatch, monitoring, and steering. A

meta-workflow file may contain one component workflow with a single-input dataset or

more with multiple (e.g., time-series) input datasets. A user can select those component

workflows of interest, configure their parameter settings, and dispatch them for execution

through a web browser.

Upon the receival of an abstract workflow from the Web Server, the DAGMan Man-

ager invokes the Workflow Mapper to map the abstract workflow to the real network based

on the availability and capability of computer nodes collected by the Network and System

Information Management component. The mapped abstract workflow is then submitted

to Condor or Condor-G, which extracts executable modules and source datasets from the

workflow repository and composes them into an executable workflow. The mapped exe-

cutable workflow is dispatched to the real network for execution. The workflow execution

status information as well as the final results are collected and sent on the fly to the Web

Server Manager for display on the web page. Based on the displayed results, the user

may reset the value of a command argument for those steerable computing modules and

re-dispatch them. The details of the design and the implementation are provided as below.
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Figure 7.1: SWAMP framework: functional components, control and data flow.

7.2.1 Workflow Generation

In addition to the GUI of Kepler, SWAMP provides a graphical toolkit for visual construc-

tion of abstract workflows on a unified web interface, which generates DAG and submit

files required by Condor DAGMan. As shown in Fig. 7.2, the web interface for workflow

composition consists of a menu bar, workplace, and help window. Users can drag and drop

modules in the workplace and edit their parameters required for execution. This web inter-

face also supports the creation of a meta-workflow in XML for easy human interpretation

and machine parsing. A meta-workflow describes a list of component workflows that can

be submitted as a full set, subset, or individually depending on the needs of the user.
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Figure 7.2: The web interface for visual abstract workflow composition.

7.2.2 Workflow Selection, Dispatch and Result Display

We use AJAX web technology to display all workflow layouts that belong to a particular

meta-workflow and the user may select one or more component workflows for immediate

dispatch in a batch mode. The web component acts as a client and transmits user-selected

workflows in succession to the DAGMan Manager, which then proceeds to process and

dispatch the workflows to the Condor environment. The interactions between the web site

and the DAGMan Manager are accomplished through a socket-based protocol model.

Each component workflow eventually generates an output. The ability to view and

manage the output as soon as it is produced is valuable to users for result interpretation.

The web interface allows immediate visualization of results as they are transferred directly

from the condor environment to the Web Server along the course of workflow execution.
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Figure 7.3: Condor pool architecture.

7.2.3 DAGMan Manager

The DAGMan Manager essentially serves as a portal to the Condor batch system. The main

goal of the Condor Portal is to simplify the process of workflow submission and execution.

The DAGMan Manager listens on a predefined port and establishes socket connections

with the Web Server Manager and Kepler Manager. The DAGMan Manager sends the

corresponding module configuration files to the Web Server Manager after receiving the

workflow information from the Kepler Manager.

The SWAMP system allows users to submit jobs by using a specified repository, which

stores all the input data as well as the existing output data. The SWAMP system also allows

users to submit jobs by using a shared file system to directly access input and output files.

In the latter case, the job or module must be able to access the data files from any machine

on which it is deployed through either NFS or AFS. The SWAMP system provides access

to the Condor’s own native mechanisms for grid computing as well as other grid systems.

Fig. 7.3 shows a local Condor pool architecture. Each execution node in the SWAMP

condor pool accepts a new job only if the load of the system is not too high and there is

enough memory available for efficient execution. The jobs are submitted to the “schedd”
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Figure 7.4: The execution procedure of SWAMP in grid environments.

process, which stores them in a permanent storage and advertises their needs. The “startd”

process on an execution node advertises its resources to the “collector” process. The “ne-

gotiator” process regularly fetches these advertisements (ClassAds) from the “collector”

and “schedd”, and assigns jobs to execution nodes. For every such association, a shadow

and a starter process are created and all further communications take place between these

two entities.

Fig. 7.4 shows the execution procedure of SWAMP in grid environments. In order to

submit jobs to grid resources, the submit machine needs to apply for a certificate from a

trusted Certificate Authority (CA) for authentication. The submit machine with all grid

software installed and configured manages the jobs running on the grid. Before running

jobs on the grid, we need to ensure that the submit machine is able to obtain the correct user

proxy, which is presented to remote grid sites during authentication. Condor-G stages data

and submits jobs to the Gatekeeper at a remote grid site. Globus GRAM on the Gatekeeper

authenticates users, sends jobs to the local resource manager such as Condor, PBS, and

Fork, and notifies users of job statuses. The execution machines run the jobs and notify the

local resource managers of job statuses.
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Each workflow supported by SWAMP has an output module that runs after all other

user jobs are completed. The main task of this output module is to send the final results

to the Web Server. Instead of creating a separate daemon, we add this extra module as

part of the DAG workflow to avoid checking the Condor log files or invoking Condor’s

management command in the polling mode.

7.2.4 Network and System Information Management

SWAMP discovers the information of networking and computing resources by querying

the Network and System Information Management component. The Resource Monitoring

subcomponent interacts with network performance modeling tools such as the One-Way

Active Measurement Protocol (OWAMP) [14] and Bandwidth Control (BWCTL) [15] pro-

vided by Internet2 to monitor the statuses of networking resources such as link delay and

available link bandwidth. It can also interact with information services such as the Globus

Monitoring and Discovery Service (MDS) [16], OSG Resource and Site Validation (RSV)

system [17], and any other information services to discover available computing resources

and their characteristics such as the number of CPUs, CPU frequency, queueing length,

available disk space, and so on. In order to improve the performance of large data trans-

fer in wide-area networks, the Resource Monitoring subcomponent queries the aforemen-

tioned information services to locate and employ available data movement services such

as GridFTP [18], Reliable File Transfer (RFT) [19], Storage Resource Broker (SRB) [20],

Storage Resource Management (SRM) [21], and OSCARS [22].

7.2.5 Workflow Mapper

The efficiency of the SWAMP system largely depends on the performance of mapping

schemes that map computing workflows to network nodes in Condor, which is determined
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by the Condor job dispatch scheme. The mapping scheme currently employed by the Con-

dor scheduler works as a matchmaker of ClassAds. Condor schedules job dispatch by

matching the requests for both machine ClassAds and job ClassAds.

SWAMP provides a better mapping performance by incorporating new mapping schemes

into the Condor negotiator daemon. One unique feature of SWAMP is the incorporation

of a specially-designed mapping engine that automatically maps abstract workflows to un-

derlying networks to achieve better end-to-end performance based on the above real-time

network and system status measurements. This mapping engine is built upon a set of work-

flow mapping methods developed through mathematical performance modeling and rigor-

ous algorithm design. Here, we incorporate the workflow mapping solutions proposed in

Chapter 5 to achieve the better performance during execution.

Note that Condor/DAGMan has a centralized execution model where the output of each

module is sent back to the submitter for forwarding to its succeeding modules. This cen-

tralized model may introduce prohibitively large data traffics in the network, especially

for data-intensive workflows with many computing modules. We realize a completely dis-

tributed execution model by adopting Stork in SWAMP for direct inter-module data transfer

using GridFTP. The workflow execution status information as well as the final results are

collected and sent on the fly to the Web Server Manager for display on the web page.

Based on the displayed results, the user may reset the value of a command argument in

those steerable computing modules and re-dispatch them into the network. SWAMP can be

also deployed in the grid environment to provide optimal performance in high-bandwidth

high-latency networks.

7.2.6 Data Provenance Tracking

Data management in heterogeneous networks such as OSG [8] is a key part of the architec-

ture and service of the common infrastructure. Large-scale scientific applications have led

to unprecedented levels of data collection, which make it very difficult to keep track of the
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data generation history. Data provenance provides information about the derivation history

of data starting from its original sources. It enables scientists to verify the correctness of

their simulations and reproduce them if necessary. SWAMP provides provenance informa-

tion related to the execution of workflow modules by analyzing the log files of the Condor

system. This information contains the execution environment of each module such as the

execution location, execution time, and execution output.

7.3 Two Real Use Cases

In order to conduct experiments on SWAMP using real-life workflows and investigate the

superior performance of the proposed workflow mapping solutions, we collaborate with

the scientists at the national laboratories and execute the real-life workflow applications in

SWAMP system for their research.

7.3.1 Spallation Neutron Source (SNS) Workflows

A Brief Introduction to SNS Workflow

The U.S. Department of Energy’s Spallation Neutron Source (SNS) is the world’s most

powerful facility for pulsed neutron scattering science. This one-of-a-kind facility provides

the most intense pulsed neutron beams in the world for scientific research and industrial

development. SNS was built by a partnership of six U.S Department of Energy laboratories.

One important computing task of SNS is to analyze data from the inelastic scatter-

ing instruments deployed at the SNS experimental facility located at Oak Ridge National

Laboratory (ORNL). As shown in Fig. 7.5, this data analysis process includes two main

computing modules, i.e., data rotation and data rebinning. The process focuses on mul-

tiple energy transfer slices from reduced experimental datasets that contain multiple runs,

each corresponding to a certain rotation angle at the time of acquisition. The datasets must

be rotated according to the corresponding goiniometer settings and converted to reciprocal
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Figure 7.5: SNS data analysis process.

lattice coordinates via the orientation (UB) matrix application. The output is rebinned

to place all data on the same final grid with the result of the data analysis process on one

energy slice being a file containing 3D histogram information. This file can be used for fur-

ther data analysis or rendered to produce frames for visual inspection. The process needs

to be repeated for each energy slice generated during the preceding data reduction stage.

SNS Workflow Structure

The SNS experimental dataset used in this study contains 160 energy slices, each of which

contains 61 runs of reduced data. For each energy slice, we create a separate component

workflow that rotates the data of 61 runs in parallel and then performs a concatenation

operation on the rotated data. The rebinning result of the concatenated data is eventually

converted to an image file, which is sent to the Web Server Manager for display on the web

user interface.

There are 160 component workflows in total for the SNS experimental dataset. To

manage these component workflows, we create a workflow meta file in XML format that

contains a list of component workflow names and other related information. As shown in
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Figure 7.6: SNS workflow structure.

Fig.7.6, each component workflow consists of five modules, namely “rotate”, “concate-

nate”, “rebin”, “convert”, and “send”, which read and process 61 source data files for a

specific energy slice with a different rotation angle.

A source data file contains a list of voxels, one for each detector pixel that has non-zero

content, which must be rotated first according to the goiniometer settings. This is achieved

by multiplying each voxel by a rotation matrix. Once all the data files have been rotated,

they are concatenated into one single file for rebinning, which requires the minimum and

maximum extents of three axes and the size (width) of the bins along each axis that are

desired. The output of the current rebinning procedure is an ASCII text file, which is first

converted to a VTK file [23] and then to the final image file using the VisIt command [24]

executed by a Python script. Once all image files are generated and received by the Web

Server Manager, the user is provided with a function to produce a movie out of these images

at the convenience of one mouse click on the web interface.
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Figure 7.7: SNS workflow generation.

SNS Workflow Generation

The SNS dataset requires generating 160 workflows to process 160 energy slices, each of

which contains 61 runs. Since it is very inconvenient for users to manually create such

a large number of workflows using Kepler’s GUI, we develop a special program, named

SNSWorkflow, to automatically generate the DAG and submit files for 160 component

workflows according to the source datasets. Each component workflow consists of 5 mod-

ules: rotation, concatenation, rebinning, image conversion, and an additional output mod-

ule that sends the final output .png image file to the Web Server Manager.

The SNS source datasets are organized in the following way: under the dataset di-

rectory, there are 61 sub-directories corresponding to different rotation angles, each of

which holds 160 energy slice files for a specific rotation angle. SNSWorkflow iteratively

reads all the directories, fetches the file names of all the source data, and generates the

workflow based on the structure of the given source dataset. A rotation module takes 61

source data file names as input arguments. Each of the input data comes from one of the

61 sub-directories. These arguments are placed in the submit file of the “rotate” module.

SNSWorkflow also generates the submit files for other modules. Besides the workflow

DAG and submit files, a workflow meta file in XML format is also created to describe the

entire set of component workflows. As shown in Fig. 7.7, the user can use the web-based

GUI to specify the data location and the rotation angle file to generate the required SNS

workflow files. This capability of workflow generation based on a unified web interface is
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Figure 7.8: SNS workflow selection and dispatch.

currently under development and will be made generic for different applications.

Once the workflow meta file is generated, the user can select one or more SNS compo-

nent workflows to be dispatched immediately in a batch mode, as shown in Fig. 7.8. The

test network environment contains about 10 regularly configured Linux boxes distributed

at University of Memphis.

SNS Workflow Result Display

Each SNS workflow eventually generates one image. The web interface has been designed

to allow immediate visualization of images as they are transferred from the Condor envi-

ronment to the Web Server Manager along the course of workflow execution. Our web

component can work with many different data formats in concert to create a more mean-

ingful visual output. For illustration purposes, a list of SNS image files are displayed in
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Figure 7.9: SNS workflow image files.

Fig. 7.9 and the final image for a rebinned energy slice is shown in Fig. 7.10.

We also provide the user the ability to create videos from a sequence of image files in

an intuitive interface that allows for selection and arrangement of image files into frames

of a video, as shown in Fig. 7.11. The user can select a group of image files and create a

video using the selected files as individual frames in the video. Videos can be created and

displayed on-screen without leaving the website or refreshing the page. All user-generated

data such as videos or graphs are stored for later access/playback through a sortable table.

7.3.2 Climate Modeling (CM) Workflows

A Brief Introduction to CM Workflows

To cope with the high computational expense associated with evaluating new parameteri-

zations using a complete atmospheric general circulation model, climate researchers have
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Figure 7.10: The final image of a rebinned slice.

developed a highly flexible and computationally inexpensive single column modeling envi-

ronment for the investigation of parameterized physics targeted for global climate models.

In particular, this framework is designed to facilitate the development and evaluation of

physical parameterizations for the NCAR Single column Community Atmosphere Model

(SCAM).

We represent SCAM as a workflow with time-series input data that can be executed

using SWAMP in grid environments with GridFTP-enabled inter-module data transfer. For

each combination of available physics packages, data to be used, and experiment controls,

we treat it as a dispatch of one SCAM workflow. There are a varying number of workflow

dispatches for the SCAM experiment depending on different combinations of parameter

selections. As shown in Fig. 7.12, each SCAM workflow consists of fourteen modules. The
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Figure 7.11: Create a movie out of a sequence of images generated by component work-

flows.
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Figure 7.12: SCAM workflow structure.
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Figure 7.13: SCAM workflow generation.

SCAM workflow uses csh script as a master control, NCAR Command Language (NCL)

script to process data and produce plots, and ghostscript to convert the postscript image

format to web-ready format (e.g., jpeg, png). We developed a program to automatically

generate DAG and submit files for the climate modeling workflow. As shown in Fig. 7.13,

all the combinations of parameters are gathered from the web input and passed into the

SCAM model through a startup file.

SWAMP provides a web-based interface to automate and manage the SCAM work-

flow execution and uses a special site-level workflow mapper to optimize its end-to-end

performance on OSG. Fig. 7.14 shows the executable SCAM workflow structure where a

solid line represents a data flow and a dotted line represents a control flow. Several auxil-

iary modules are added to the SCAM workflow to stage in data, executable, and libraries

required by the modules and remove the data used/produced by modules at the remote sites.
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Figure 7.14: SCAM executable workflow structure.

Figure 7.15: A gallery of final images generated by the SCAM workflow.
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Each SCAM workflow eventually generates a number of images. A gallery of final

images for one SCAM workflow are provided on the web interface for a visual examination,

as shown in Fig. 7.15.
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Chapter 8

Performance Evaluation and

Comparison

In this chapter, we conduct an extensive set of performance evaluation and comparison of

the proposed mapping algorithms for both pipeline- and DAG-structured workflows using

theoretical calculation, simulation, and real-life workflow applications. For performance

comparison purposes, we also adapt and implement several existing workflow mapping

algorithms on the same platform. The experimental results illustrate the performance su-

periority of our mapping solutions over others in terms of MED, MFR, and OFR.

8.1 Implementation Details and Experimental Settings

We first describe the implementation details for both simulations and experiments, includ-

ing theoretical parameters and physical environments.

The computational complexity of a module in the workflow is an abstract quantity that

does not only depend on the computational complexity of the algorithm in the module but

also the implementation details such as the specific data structures used in the program. We

assume that the first module in the workflow performs nothing but transfer raw data on the

designated source node to its succeeding neighbor node(s). The partial result produced by

an intermediate module serves as input data to its succeeding modules in the workflow. The

node processing power is another abstract quantity that characterizes the general computing
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capability of a computer node, which is primarily determined by the processor frequency,

memory size, and bus speed.

For each mapping problem, we designate a source node and a destination node to run

the first module and the last module of the workflow. This is based on the consideration that

the system knows where the raw data are stored and where an end user is located before

performing workflow mapping in an existing network.

8.1.1 Simulations

All proposed workflow mapping algorithms are implemented in C/C++. For performance

comparison in pipeline mapping, the simulations are conducted on a Windows XP PC

equipped with a 3.0 GHz CPU and 3.0 Gbytes memory; while for DAG-structured work-

flow mapping, the simulations are conducted on a Windows 7 desktop PC equipped with

Intel Core 2 Duo CPU E7500 of 2.92 GHz and 3.0 GB memory.

We develop a separate program to generate simulation datasets by randomly varying

the parameters of workflows and networks within a suitably selected range of values, rep-

resented by a four-tuple (m, |Ew|, n, |Ec|): m modules and |Ew| edges in the workflow, and

n nodes and |Ec| links in the network. For a given problem size, we randomly vary the

module complexity and data size within a suitably selected range and create the workflow

topology using the following steps:

1. Lay out all modules sequentially along a pipeline;

2. For each module, add an input edge from a randomly selected preceding module and

add an output edge to a randomly selected succeeding module (note that the first

module only needs output and the last module only needs input);

3. Randomly pick up two modules from the pipeline and add a directed edge between

them (from left to right) until we reach the given number of edges.
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Here, the workflow topology could be either a pipeline and a DAG, depending on m and

|Ew|:

• If m = |Ew|+1, only execute Step 1;

• If m < |Ew|+1, execute all three steps;

• Otherwise, return an error message.

To create a network with arbitrary topology, we first start with a complete network and

then randomly pick up a link for removal until we reach the given number of links. If the

removal of a link results in a disconnected network, we will keep this link and repeat the

random link selection until we find a valid removal operation. Similarly, we randomly vary

the BW and MLD within a suitably selected range.

8.1.2 Experiments

In the experiments, we set up a wide-area network testbed consisting of 12 PC workstations

with different hardware configurations in terms of CPU frequency, memory size, and disk

space. The CPU frequency of these computers, which is the most important hardware

parameter, falls in a range between 1.2 GHz and 3.4 GHz.

We employ a linear regression method to estimate the effective bandwidth and MLD

of a network link [148], and also deploy some daemon nodes in the network to monitor,

estimate and measure system resources in real time. If a significant change is detected,

those daemons will report the change and trigger a rerunning of the mapping algorithms to

find a new mapping scheme.

In the network testbed, we create an arbitrary network topology by configuring a dif-

ferent firewall setting on each computer and using the Linux traffic control command “tc”

to allocate a different bandwidth along each overlay link. We deploy a Condor/DAGMan-

based workflow management system, SWAMP, in the network testbed to evaluate the per-

formance of different mapping algorithms.
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8.2 Algorithms for Comparison

For comparison purposes, we adapt, modify and implement four existing workflow map-

ping heuristics to both MED and MFR problems, namely Greedy A∗ [121], Streamline [26],

Dynamic Level Scheduling [125] and Greedy. Note that these algorithms might fail to find a

feasible mapping solution due to the dependency in the workflows and topology restrictions

in the networks.

8.2.1 Greedy A∗ Algorithm

A static allocation scheme based on A∗ algorithm was proposed by Sekhar et al. [121],

which maps subtasks onto a large number of sensor nodes. No resource share is considered

for multiple subtasks concurrently running on the same node since the module execution

time and data transfer time are pre-computed. If the energy constraint and processing

capability are considered, the execution of the A∗ algorithm itself could drain the resources

of a sensor node. A greedy A∗ algorithm, which is specifically designed to reduce the

complexity of the A∗ algorithm, explores only the least-cost path of the search tree in the

solution space, instead of searching all feasible paths, assuming that the optimal solution

is most likely to be found on this path. The complexity of the greedy A∗ algorithm is

O(m2 + kn(m− k)), where m is the number of modules, n is the number of sensor nodes,

and k is the number of modules in the independent set.

8.2.2 Streamline Algorithm

Agarwalla et al. proposed a grid scheduling algorithm, Streamline, for graph-structured

dataflow scheduling in a network with n resources and n×n communication links [26]. The

Streamline algorithm considers application requirements in terms of per-stage computation

and communication needs, application constraints on co-location of stages (node reuse),

and availability of computation and communication resources. Two parameters, rank and
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blevel, are used to quantitate these features: rank calculates the average computation and

communication cost of a stage, and blevel estimates the overall remaining execution time

of a data item after being processed by a stage. Based on these two parameters, the stages

are sorted in a decreasing order of resource needs and the nodes are sorted in a decreasing

order of resource availability. This scheduling heuristic works as a global greedy algorithm

that expects to maximize the throughput of an application by assigning the best resources

to the most needy stages in terms of computation and communication requirements at each

step. The complexity of this algorithm is O(mn2), where m is the number of modules in the

workflow and n is the number of nodes in the network.

8.2.3 Dynamic Level Scheduling Algorithm

Dynamic Level Scheduling (DLS) [125] is a compile-time scheduling strategy that accounts

for inter-processor communication overheads when mapping precedence graphs onto mul-

tiple processor architectures. The complexity of DLS is O(n3 +n2 p · f (p)), where n is the

number of nodes (the same as the modules in our cost models), p is the number of proces-

sors, and the function used to route a path between two given processors on the targeted

architecture is O( f (p)). The DLS algorithm uses the classic list scheduling formulation

where nodes are assigned priorities, placed in a list, and sorted in order of decreasing pri-

ority. Whenever a processor is available, the algorithm assigns it the first ready node in the

list for execution, and delete the node and the processor from the priority list and the avail-

able processor list, respectively. If the list of ready nodes is empty, or the set of available

processors is exhausted, the global time clock is incremented until new ready nodes come

or some processors finish execution of their assigned tasks and are available once again.
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8.2.4 Naive Greedy Algorithm

A greedy algorithm iteratively obtains the greatest immediate gain based on certain local

optimality criteria at each step, which may or may not lead to the global optimum. We de-

sign a heuristic mapping scheme based on a naive greedy algorithm that calculates the ED

or FR of mapping a new module to the current node or one of its succeeding neighbor nodes

and chooses the optimal one based on computation and communication cost. This greedy

algorithm makes a module mapping decision at each step only based on the current infor-

mation without considering the effect of this local decision on the mapping performance in

later steps. The complexity of this algorithm is O(|Ew| · |Ec|), where |Ew| is the number of

dependency edge in the workflows and |Ec| is the number of links in the computer network.

8.3 Performance Evaluation for Linear Pipelines

We perform pipeline mapping experiments under 20 different random problem sizes us-

ing ELPC, Streamline, and Greedy, by varying the mapping constraints, respectively. The

measured execution time of these algorithms varies from milliseconds for small-scale prob-

lems to seconds for large-scale ones. A set of typical performance measurements in terms

of MED and MFR collected in 20 different cases are tabulated in Table 8.1 and Table 8.2

for comparison. Note that we omit |Ew| in the second column because |Ew| = m− 1 in

pipeline-shaped workflows.

The relative performance differences among these three algorithms observed in other

cases are qualitatively similar. In unitary processing applications that minimize ED for fast

response, we allow network nodes to be reused but there is only one module executing on

a selected node at any time, while in streaming applications that identify and minimize the

bottleneck node or link for the smoothest data flow, node reuse will cause resource sharing

by a subsequent module allocated to a used node and hence affect the optimality of module

mapping carried out in the previous steps in the 2D DP table.
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Table 8.1: Performance comparisons of MED among three algorithms under different con-

straints in pipeline mapping.
Prb m, n, |Ec|, MED-ANR (milliseconds) MED-CNR (milliseconds) MED-NNR(milliseconds)

Idx ELPC Greedy Streamline ELPC Greedy ELPC Greedy Streamline

1 4, 6, 29 33.31 33.31 36.44 89.59 105.86 90.12 89.91 103.15

2 6, 10, 86 52.65 58.97 92.08 85.80 111.19 122.83 246.57 340.11

3 10, 15, 207 95.69 95.69 226.96 97.28 139.83 204.82 220.37 439.11

4 13, 20, 376 106.02 147.43 144.48 96.84 96.85 227.39 252.50 557.03

5 15, 25, 597 144.12 144.12 174.37 153.66 219.68 349.35 378.49 548.19

6 19, 28, 753 166.76 166.76 267.88 128.20 128.21 341.78 362.34 931.62

7 22, 31, 927 196.26 196.26 255.04 175.71 181.26 439.21 485.46 925.35

8 26, 35, 1180 194.02 194.02 340.13 205.62 214.21 495.95 528.09 727.95

9 30, 40, 1558 247.92 247.92 505.91 228.67 263.58 551.77 586.55 1346.74

10 35, 45, 1963 309.66 309.66 495.82 255.64 271.54 664.16 712.59 1424.02

11 38, 47, 2153 284.01 284.01 451.73 281.68 401.21 699.79 776.09 1148.48

12 40, 50, 2428 320.03 320.03 377.18 385.86 609.92 716.60 811.62 1161.81

13 45, 60, 3520 361.32 361.32 630.51 394.91 452.03 864.32 924.21 1592.16

14 50, 65, 4155 386.21 386.21 537.89 436.48 486.37 881.78 920.12 2094.98

15 55, 70, 4820 417.29 417.29 949.11 557.42 682.77 960.48 1050.60 1584.84

16 60, 75, 5540 421.76 751.70 834.16 548.25 571.79 1087.21 1232.20 2127.81

17 75, 90, 7990 599.00 599.00 729.48 658.31 706.55 1392.05 1503.61 3206.72

18 80, 100, 9896 648.79 674.36 979.86 744.00 753.38 1564.58 1673.24 3248.07

19 90, 150, 22326 700.54 744.47 1340.25 746.07 805.52 1484.32 1594.28 2811.84

20 100, 200, 39790 752.46 760.73 2057.51 789.81 850.87 1552.42 1604.69 3325.08

Table 8.2: Performance comparisons of MFR among three algorithms under different con-

straints in pipeline mapping.
Prb m, n, |Ec|, MFR-ANR ( f rames/second) MFR-CNR ( f rames/second) MFR-NNR( f rames/second)

Idx ELPC Greedy Streamline ELPC Greedy ELPC Greedy Streamline

1 4, 6, 29 22.10 10.97 4.75 11.36 11.36 33.47 10.97 28.15

2 6, 10, 86 36.50 36.50 26.31 48.54 39.19 47.93 36.50 6.19

3 10, 15, 207 63.33 59.31 4.18 60.15 54.06 54.33 24.81 6.10

4 13, 20, 376 76.01 56.67 26.50 54.21 12.58 56.67 30.44 5.68

5 15, 25, 597 36.98 35.33 26.23 51.25 46.18 37.64 5.07 8.48

6 19, 28, 753 48.92 48.92 48.90 54.21 50.07 48.92 19.77 3.21

7 22, 31, 927 67.95 53.74 57.82 49.52 32.62 47.62 25.85 6.51

8 26, 35, 1180 61.52 57.90 47.41 21.42 14.61 38.70 30.95 10.33

9 30, 40, 1558 96.49 57.90 13.63 40.61 6.13 52.51 32.13 2.42

10 35, 45, 1963 36.46 36.46 27.17 32.19 7.70 36.46 24.09 3.65

11 38, 47, 2153 45.09 15.18 45.09 61.45 57.86 45.09 24.97 7.69

12 40, 50, 2428 27.43 27.43 27.42 60.57 55.57 27.43 25.65 8.07

13 45, 60, 3520 61.01 49.53 55.24 34.34 32.25 52.59 18.61 4.62

14 50, 65, 4155 89.65 59.70 56.56 52.50 16.99 43.92 10.61 2.10

15 55, 70, 4820 50.80 50.80 35.45 40.97 34.13 50.80 22.20 5.85

16 60, 75, 5540 94.00 53.82 45.19 50.23 49.92 43.41 25.19 3.95

17 75, 90, 7990 15.35 15.35 15.35 50.52 50.02 15.35 29.04 1.17

18 80, 100, 9896 32.60 28.90 32.59 54.25 32.38 32.60 18.32 6.96

19 90, 150, 22326 88.95 55.49 24.47 56.07 41.54 55.63 35.58 6.52

20 100, 200, 39790 84.94 55.98 20.68 56.86 34.31 56.70 18.35 4.86
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Figure 8.1: Performance comparison for

MED-NNR.
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Figure 8.2: Performance comparison for

MFR-NNR.

For a visual comparison, we plot the performance measurements of MED and MFR

produced by these three algorithms under different constraints in Figs. 8.1, 8.2, 8.3, 8.4,

8.5, and 8.6, respectively. We observed that ELPC exhibits comparable or superior per-

formances over the other two algorithms in all the cases we studied. We did not compare

with Streamline in the case of contiguous node reuse because Streamline does not allocate

the resources by the modules’ sequence number so we may not know the previous module

when the current one is being allocated.

Since the MED represents the total delay from source to destination, a larger problem

size with more network nodes and computing modules generally (not absolutely, though)

incurs a longer mapping path resulting in a longer end-to-end delay, which explains the

increasing trend in Figs. 8.1, 8.3, and 8.5. The MFR, the reciprocal of the bottleneck in

a selected path, is not particularly related to the path length, and hence the performance

curves in Figs. 8.2, 8.4, and 8.6 lack an obvious increasing or decreasing trend in response

to varying problem sizes.
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Figure 8.3: Performance comparison for

MED-CNR.
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Figure 8.4: Performance comparison for

MFR-CNR.
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Figure 8.5: Performance comparison for

MED-ANR.
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Figure 8.6: Performance comparison for

MFR-ANR.
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8.4 Performance Evaluation for DAG-structured Work-

flows

We conduct extensive performance evaluations and comparisons for the proposed mapping

algorithms using either simulated workflows and networks or simulated workflows and

real networks. The comparisons for real-life workflows and real networks are presented in

Chapter 8.6 on the evaluation of the SWAMP system using two use cases.

8.4.1 Performance Evaluation of extED

To verify the accuracy of the extED algorithm, we compare our extED solution with three

other approaches for a given mapping scheme:

• appED: An approximate estimate used in [138], where the number of concurrently

running modules on any node is assumed to be the total number of independent

modules mapped on that node;

• simED: A simulation-based measurement using the SDEDS simulation program in [146],

which takes two graphs as input: a DAG that represents a workflow and an arbi-

trary directed weighted graph that represents a network. Based on a given mapping

scheme, SDEDS overlays the computing workflow on the computer network, and

visually illustrates the dynamic execution process;

• expED: An experimental result measured in the real computer network environment

using SWAMP.

We randomly generate 10 workflow instances with different topologies and sizes as

shown in Table 8.3, where the network parameters are not provided because we use one

testbed with 10 computer nodes and 88 network links but different network topologies by

configuring the firewall settings on the nodes. In each test case, we first run the impRCP
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algorithm to compute a mapping scheme, based on which, we calculate the theoretical val-

ues of extED and appED. Then, we simulate the execution of the corresponding workflow

in SDEDS and also deploy it through SWAMP for execution in the real network under the

same mapping scheme. We collect the simED and expED measurements in SDEDS and

SWAMP, respectively.

Table 8.3: ED comparison among extED, simED, expED and appED.

Prb Workflow Size End-to-end Delay (seconds)

Idx m, |Ew| extED simED expED appED

1 4, 5 187.54 203.91 204 271.55

2 6, 10 298.65 299.03 304 298.65

3 10, 18 384.80 402.96 410 517.71

4 15, 30 698.67 710.72 707 1677.02

5 22, 44 1273.26 1290.94 1373 2279.31

6 30, 62 1327.83 1342.20 1405 2626.25

7 35, 70 1390.05 1484.06 1586 2966.77

8 40, 78 1406.47 1490.00 1513 2381.61

9 45, 96 1581.13 1663.38 1689 3340.16

10 50, 102 1748.04 1801.48 1828 4100.91

We tabulate the ED calculations or measurements in Table 8.3 and plot the correspond-

ing performance curves in Fig. 8.7. We observe that the proposed extED is very close to

the SDEDS-based simED and SWAMP-based expED, which indicates:

• the accuracy of the extED calculation,

• the validity of the cost models,

• the accuracy of the objective functions, and

• the correctness of the SDEDS and SWAMP implementation.

The slight discrepancy is mainly caused by the visualization and system overhead in SD-

EDS and SWAMP. The appED is larger than the extED in most cases because in the approx-

imation solution, for each module, we use the number of all mapped modules on the node
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Figure 8.7: Performance comparison among extED, simED, expED and appED results.

to denote the number of concurrent module executions on that node at all times. However,

the appED requires much less execution time, especially in large problem sizes, and hence

could be applied to applications that do not require a high level of accuracy but a prompt

response. Note that the expED results are measured in the unit of seconds due to the time

resolution in the Condor log files of SWAMP. Due to the limited availability of physical

computer resources, the problems of large scales are not tested in real networks.

8.4.2 Performance Evaluation for MED Algorithms

RCP

We investigate the robustness of the RCP mapping algorithm by randomly generating 10

test cases with different problem sizes, for each of which, we randomly generate 20 prob-

lem instances and run four mapping algorithms on them, namely RCP, Greedy A∗, Stream-

line, and Greedy. We then calculate and plot the mean value and standard deviation over

20 instances for each problem size in Fig. 8.8. Note that the value range along y axis is
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Figure 8.8: Mean and standard deviation of MED performance of four algorithms.

from 0 to 90 seconds for Naive Greedy while it falls between 0 and 25 seconds for others.

We observed that RCP achieves the best MED performance in a statistical sense with the

smallest standard deviation, which demonstrates the performance robustness and optimiza-

tion stability of RCP in achieving MED in various workflows and networks of disparate

topologies and different scales.

In order to investigate the convergence property of RCP, we plot the MED optimiza-

tion curve collected over 8 recursions for one large problem size with 100 modules and

200 nodes in Fig. 8.9, where x axis represents recursion steps and y axis represents the

corresponding MED measurements. The significant performance improvement in the first

recursion is due to the fact that the algorithm’s optimization process starts from an initial
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Figure 8.9: MED performance optimization curve of RCP algorithm.

state that assumes uniform resources. In each recursion, the CP calculated in the previous

recursion is guaranteed by the optimal pipeline mapping algorithm to have a reduced ED.

However, the branch modules mapping may change the CP, hence resulting in variations in

the performance optimization curve. The optimization process converges to a certain point

where the CP remains the same as the previous recursion. These optimization patterns are

typical and those observed in other cases are qualitatively similar.

impRCP

To evaluate the mapping performance of the proposed impRCP algorithm [137] and the

original RCP algorithm in [138], we randomly generate 40 problem cases (40 pairs of

simulated workflows and networks), indexed from 1 to 40 by varying the topology and

problem size (m, |Ew|, n, |Ec|) from (4, 6, 6, 29) to (55, 124, 70, 4820).

For a visual performance comparison, we plot in Fig. 8.10 the MED performance mea-

surements in these 40 problem cases ranging from small to large scales collected from (i)

the proposed impRCP mapping solution that uses A∗- and Beam Search-based algorithms
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Figure 8.10: MED comparison between impRCP and RCP.

for non-critical module mapping and uses extED for ED calculation, and (ii) the origi-

nal RCP algorithm that uses a greedy approach for non-critical module mapping and uses

extED for ED calculation. We observe that the average MED speedup of impRCP (A∗ +

Beam Search + extED) over RCP (Greedy + extED) is around 6% in these cases. Here,

we define the speedup of solution A over solution B as |B−A
B
| × 100% (this definition of

speedup is applied to the rest of the evaluation). In small problem sizes, all of these algo-

rithms tend to find or approach the optimal mapping schemes and hence their differences

are not significant. The slight variation in the curves is caused by the random assignment

of different parameter values in a given problem size. For simplicity, the value of ρ used in

the simulations is set to be 2. Note that the h(x) part becomes a greedy approach if ρ = 1

and an exhaustive search if ρ is equal to the total number of paths from the current step to

the destination.

To further illustrate the superiority of the proposed impRCP mapping solution, we also

compare it with other three graph-mapping algorithms, namely Greedy A∗, Streamline, and

Greedy. The MED measurements of 15 problem sizes indexed from 1 to 15 are tabulated
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Table 8.4: MED measurements of four algorithms.

Prb Prb Size MED (seconds)

Idx m, |Ew|, n, |Ec| impRCP GreedyA∗ Streamline Greedy

1 10, 18, 15, 207 1.15 1.61 1.65 1.94

2 15, 30, 25, 597 1.53 1.86 1.78 1.59

3 19, 36, 28, 753 1.96 2.71 2.72 3.03

4 26, 50, 35, 1180 1.85 2.79 4.00 2.56

5 30, 62, 40, 1558 3.56 5.06 5.22 4.45

6 35, 70, 45, 1963 4.05 4.37 5.79 7.02

7 38, 73, 47, 2153 4.62 5.78 6.89 6.92

8 40, 78, 50, 2428 2.01 2.97 3.13 2.71

9 45, 96, 60, 3520 3.64 5.13 5.92 5.17

10 50, 102, 65, 4155 2.80 5.12 4.37 4.82

11 55, 124, 70, 4820 4.49 6.86 6.63 7.46

12 75, 369, 90, 7990 15.41 18.25 20.53 17.92

13 80, 420, 100, 9896 19.81 25.04 26.20 22.71

14 90, 500, 150, 22346 24.01 28.83 28.18 25.84

15 100, 660, 200, 39790 24.79 34.71 29.78 26.62

in Table 8.4 and plotted in Fig. 8.11, respectively. We observe that the impRCP algorithm

consistently outperforms all other mapping algorithms and the average MED speedup over

the other algorithms is around 10% in the cases we studied.

Note that the Greedy A∗ algorithm is different from the A∗ algorithm used for non-

critical module mapping. In [121], a Greedy A∗ approach is used to map the subtasks of a

DAG-structured workflow onto a large number of nodes while in our work, the A∗ algorithm

is only used for non-critical module mapping and the mapping scheme is produced by a

recursive CP mapping procedure. The performance improvements of impRCP over other

algorithms become more significant as the workflow and network sizes increase, which is

the trend of real-life scientific applications and rapidly growing network environments.

We conduct another set of performance comparison in Table 8.5 for impRCP with one

more workflow mapping/scheduling algorithm, DLS. We randomly generate15 workflow

mapping problems indexed from 1 to 15 from small to large scales, for each of which, we
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Figure 8.11: MED comparison among four algorithms.

run these five mapping algorithms. We observe that the proposed impRCP algorithm con-

sistently outperforms the other methods in comparison in the above two sets of comparisons

we conducted.

disRCP-F

In the evaluation of disRCP-F in faulty network environments, we set the OFR bound F

to be 5%, i.e., the OFR of each calculated mapping scheme must be less than 5%.

The MED measurements in 18 problem sizes under the fault-tolerance constraint of

5% are tabulated in Table 8.6. We observe that the algorithms in comparison fail to find

feasible mapping solutions in some cases (such missing solutions are marked as “—–”). In

most cases, disRCP-F is able to find a feasible solution for the mapping problem with a

satisfied OFR and consistently exhibits the best performance in terms of MED among all

the algorithms in comparison. Moreover, the Greedy A∗, Streamline and Greedy algorithms

are more likely to find invalid mappings because they do not take network topology into

consideration.
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Table 8.5: MED comparison among five algorithms.

Prb Prb Size MED (seconds)

Idx m, |Ew|, n, |Ec| impRCP DLS GreedyA∗ Streamline Greedy

1 4,6,6,29 0.64 0.65 0.65 0.65 0.65

2 6,10,10,86 1.08 1.12 1.10 1.08 1.12

3 10,18,15,207 1.53 1.54 1.55 1.56 1.54

4 13,24,20,376 1.06 1.10 1.17 1.23 1.13

5 15,30,25,597 1.22 1.35 1.42 1.69 1.34

6 19,36,28,753 1.77 1.80 1.81 2.87 1.82

7 22,44,31,927 1.99 2.03 2.08 2.18 2.08

8 26,50,35,1180 2.52 2.53 2.71 3.59 2.74

9 30,62,40,1558 2.48 2.52 2.58 5.00 2.60

10 35,70,45,1963 2.80 2.92 2.82 4.13 2.92

11 38,73,47,2153 3.32 3.35 3.38 5.66 3.39

12 40,78,50,2428 3.31 3.33 3.64 4.59 3.33

13 45,96,60,3520 4.55 4.57 5.06 6.18 4.58

14 50,102,65,4155 3.27 3.30 3.47 6.87 3.47

15 55,124,70,4820 7.89 7.93 8.01 9.42 7.95

For a visual comparison, we remove those problem cases with invalid mapping solu-

tions (those 5 cases whose cells with “—–” in Table 8.6), and plot the performance curves

in Fig. 8.12. The slight variations in Fig. 8.12 are due to the fact that the network topolo-

gies and parameters of different problem sizes are randomly generated for the simulated

workflows and networks. Therefore, a larger problem size may not always incur a longer

delay, which also depends on the module complexity, node computing power, and mapping

scheme. However, a larger problem size involves more computing modules and depen-

dency edges, which more likely lead to a longer completion time.

8.4.3 Performance Evaluation for MFR Algorithms

LDP

We investigate the MFR performance of the Greedy LDP algorithm in comparison with the

Greedy A∗, Streamline, and Greedy algorithms using a large set of simulated workflows
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Table 8.6: MED measurements of four algorithms with F=5%.

Prb Prb Size MED (seconds)

Idx m,|Ew|,n,|Ec| disRCP-F Greedy A∗ Streamline Greedy

1 4,6,6,28 0.5659 0.5902 0.5902 0.5902

2 6,10,10,88 0.6630 0.8839 0.8905 0.8839

3 10,18,15,207 1.6848 1.8997 1.8884 2.1225

4 13,24,20,379 1.7745 2.0556 1.9698 2.3033

5 15,30,25,599 1.4719 1.8476 1.8705 1.8673

6 19,36,28,755 2.8010 3.2754 3.0622 3.1373

7 22,44,31,928 2.9538 3.3653 3.7297 3.3780

8 26,50,35,1188 3.0240 3.8249 3.5387 3.8861

9 30,62,40,1557 4.6191 4.6878 4.8902 5.0372

10 35,70,45,1978 3.3974 3.7288 3.5518 4.1925

11 38,73,47,2160 6.9154 —– 7.2445 7.0181

12 40,78,50,2448 5.6532 6.1811 —– 6.6803

13 45,96,60,3537 4.4895 5.0692 4.7644 5.7309

14 50,102,65,4158 4.7687 6.1577 5.4772 5.8479

15 55,124,70,4828 6.6224 7.8459 8.0041 8.8298

16 60,240,75,5549 12.3642 —– —– —–

17 75,369,90,8009 14.3729 —– —– —–

18 80,420,100,9897 16.1632 19.6071 19.0434 —–

Figure 8.12: MED comparison under fault-tolerance constraint F=5%.
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Table 8.7: MFR measurements of four algorithms in comparison.

Prb Prb Size MFR ( f rames/second)

Idx m, |Ew|, n, |Ec| Greedy LDP Greedy A∗ Streamline Greedy

1 4, 6, 6, 29 1.025 0.980 0.980 0.980

2 6, 10, 10,86 1.854 1.201 1.201 1.201

3 10, 18, 15, 207 1.544 1.325 1.072 1.325

4 13, 24, 20, 376 1.716 —— 1.048 ——

5 15, 30, 25, 597 1.724 1.259 0.684 1.154

6 19, 36, 28, 753 1.116 1.050 0.668 ——

7 22, 44, 31, 927 1.692 —— 1.164 1.674

8 26, 50, 35, 1180 0.946 0.774 0.734 0.801

9 30, 62, 40, 1558 1.393 0.972 0.780 0.736

10 35, 70, 45, 1963 0.812 —— —— 0.677

11 38, 73, 47, 2153 0.863 0.683 0.502 0.675

12 40, 78, 50, 2428 1.461 1.230 0.730 1.217

13 45, 96, 60, 3520 0.885 0.800 —— 0.752

14 50, 102, 65, 4155 1.911 1.145 1.191 0.774

15 55, 124, 70, 4820 0.836 0.593 0.569 ——

16 60, 240, 75, 5540 0.521 0.392 0.391 0.396

17 75, 369, 90, 7990 0.373 0.238 —— 0.241

18 80, 420, 100, 9896 0.333 0.205 0.220 0.205

19 90, 500, 150, 22346 0.417 0.278 0.318 0.364

20 100, 660, 200, 39790 0.317 0.187 0.190 0.263

and networks of various scales. The MFR measurements in 20 mapping problems of vari-

ous sizes and topologies indexed from 1 to 20 are tabulated in Table 8.7. We observe that

Greedy LDP outperforms the other methods in all these cases. Since Greedy LDP con-

siders both module dependency and network connectivity in workflow mapping, it is more

likely to produce a valid mapping scheme (a mapping scheme is valid, feasible, or success-

ful if both dependency and connectivity constraints are satisfied). Since both Greedy A∗

and Streamline are designed for complete networks without considering any topology con-

straint on mapping, they may miss certain feasible mapping solutions when two dependent

modules are mapped to two nonadjacent nodes. This problem can also occur in Greedy

when the last selected node does not have a link to the destination node. In Table 8.7, the

MFR measurement in an invalid mapping scheme is crossed out using “—–”.
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Figure 8.13: MFR measurements among four algorithms.

For an extensive comparison, we recompute those invalid mapping results using new

randomly generated instances with the same problem size but different topologies and pa-

rameters. We plot the MFR measurements produced by these four algorithms in Fig. 8.13,

where we observe that Greedy LDP consistently exhibits comparable or superior MFR per-

formances over the other three algorithms, and the average MFR speedup over the other

algorithms is around 25%. Since MFR is not particularly related to the problem size, these

performance curves lack an obvious increasing or decreasing trend in response to increas-

ing problem sizes. The slightly decreasing trend in Fig. 8.13 is due to the fact that a node

or a link in larger problem sizes is more likely to be shared by more concurrent module

executions or data transfers.

To further investigate the robustness of the proposed Greedy LDP algorithm, we ran-

domly generate Ntotal = 500 problem cases of simulated workflows and networks with var-

ious topologies and sizes, and then run Greedy LDP as well as the other three algorithms

for workflow mapping. For each algorithm, we count the number Nvalid of valid mapping

results and plot the mapping success rate in Fig. 8.14, which is defined as the ratio of

135



Greedy LDP Greedy A* Streamline Greedy
0  

20%

40%

60%

80%

100%

P
e
rc

e
n
ta

g
e
 o

f 
v
a
lid

 m
a
p
p
in

g
 r

e
s
u
lt
s

Figure 8.14: Success rate in 500 random test cases.

Nvalid

Ntotal
×100%. We observe that Greedy LDP has a success rate around 98% while the other

three algorithms have a success rate around 80%. These measurements indicate that Greedy

LDP has a stable mapping performance due to its consideration of module dependency and

network connectivity during workflow mapping.

disLDP-F

In these experiments, we set F to be 6% in all cases, which means that the OFR of each

calculated mapping scheme must be less than 6%.

1) Simulated Workflows Mapped to Simulated Networks

We conduct an extensive set of workflow mapping experiments for MFR using a large

number of simulated computing workflows and computer networks. We randomly create

20 problem sizes from small-scale to large-scale, for each of which, 10 problem instances

of the same size with different workflow and network topologies and parameters are gen-

erated. We apply Greedy disLDP-F and other three mapping algorithms in comparison to
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Figure 8.15: MFR comparison based on simulated workflows and simulated networks un-

der the OFR constraint F=6%.

each problem instance and calculate the mean values of MFR in each problem size. The

MFR measurements in 20 problem sizes under the fault-tolerance constraint of 6% are plot-

ted in Fig. 8.15, which shows that the Greedy disLDP-F algorithm outperforms all other

algorithms and its throughput speedup ranges from 15% to 60%. The slightly decreasing

trend is due to the fact that a node or a link in larger problem sizes is more likely to be

shared by more concurrent module executions or data transfers. Note that larger problem

sizes with more nodes and links are more likely to have higher failure rates.

For a visual illustration, we plot in Fig. 8.16 different mapping schemes produced by

these four algorithms in the smallest problem instance with 4 modules and 6 nodes. In this

problem instance, Streamline and Greedy obtain the same mapping scheme, and disLDP-

F outperforms Greedy A∗ in terms of MFR with the same OFR of 0.07%. In most of

the larger problem instances, these algorithms produce different mapping schemes. We

also observe that some algorithms in comparison are not able to produce feasible mapping

solutions in some cases. In all the cases we studied, disLDP-F has found feasible mapping
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Figure 8.16: Mapping schemes produced by four algorithms in the first problem instance

with 4 modules and 6 nodes.

solutions with a satisfied OFR and consistently exhibits the best performance in terms of

MFR.

To illustrate the performance superiority of disLDP-F in terms of OFR, we run these

four algorithms on another set of 10 randomly generated problem instances of different

sizes and collect both MFR and OFR measurements as tabulated in Table 8.8, which shows

that Greedy disLDP-F also achieves the highest FRs and the lowest OFRs in all these

cases. We observe that larger problem sizes with more nodes and links are more likely

to suffer from lower FRs and higher OFRs, which is consistent with the failure pattern

observed in practical systems.

To further investigate the robustness of Greedy disLDP-F , we randomly generate

Ntotal = 1500 test cases of simulated workflows and networks with different topologies

and sizes, and then run these mapping algorithms, for each of which, we count the number
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Table 8.8: MFR (frames/second) and OFR (%) measurements under the OFR constraint

F=6%.
Prb Prb Size Greedy disLDP-F Greedy A∗ Streamline Greedy

Idx m, |Ew|, n, |Ec| MFR OFR MFR OFR MFR OFR MFR OFR

1 15, 30, 25, 599 1.9089 0.29 1.8194 0.33 1.2882 0.32 1.4822 0.31

2 19, 36, 28, 755 1.5342 0.34 1.3289 0.38 1.4673 0.44 0.9880 0.39

3 26, 50, 35, 1188 1.8427 0.49 1.1989 0.61 1.2502 0.55 1.2133 0.54

4 35, 70, 45, 1979 1.4578 0.73 0.7848 0.76 1.4267 0.77 1.2969 0.75

5 40, 78, 50, 2448 1.1257 0.89 0.7454 0.91 1.0722 0.96 0.8945 0.95

6 45, 96, 60, 3539 1.1319 0.94 0.7019 1.04 0.7161 1.05 1.1043 1.02

7 50, 102, 65, 4158 0.6758 1.11 0.3418 1.22 0.4612 1.27 0.2418 1.22

8 75, 369, 90, 8009 0.3272 3.28 0.3018 3.34 0.2880 3.33 0.2448 3.30

9 90, 500, 150, 22348 0.3517 4.24 0.2750 4.42 0.2227 4.45 0.3058 4.43

10 100, 660, 200, 39799 0.3087 5.33 0.2886 5.38 0.1768 5.44 0.1869 5.51

Nvalid of valid mapping results and plot in Fig. 8.17 the mapping success rate, which is

defined as
Nvalid

Ntotal
×100%. We observe that Greedy disLDP-F has a mapping success rate of

about 98% while that of the other algorithms is below 50%. These measurements indicate

that Greedy disLDP-F has a stable mapping performance due to its consideration of both

module dependency and network connectivity in the mapping process.

2) Simulated Workflows Mapped to and Executed in Real Networks

We create 10 simulated workflow instances with different workflow sizes from small to

large scales by varying the number of computing modules and dependency edges. To make

these simulated workflows executable in real networks, we implement each simulated mod-

ule using a real program with the same complexity as defined for that module. We execute

these simulated computing workflow instances through the SWAMP workflow engine in

the real wide-area network testbed using different mapping schemes generated by Greedy

disLDP-F , Greedy A∗, Streamline and Greedy, respectively.

For each workflow instance, we execute it in the SWAMP system for 10 times, and

calculate the mean value of the performance measurements to denote the MFR of that

workflow instance. The experimental results in terms of MFR are tabulated in Table 8.9 and

also plotted in Fig. 8.18. We observe that Greedy disLDP-F algorithm produces the best

MFR results among all these algorithms in comparison while satisfying the OFR constraint.
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Figure 8.17: Mapping success rate in 1500 test cases under the OFR constraint F=6%.

Table 8.9: Experimental results of simulated workflows executed in the SWAMP system.

Prb Workflow Size MFR ( f rames/minute)

Idx m, |Ew| Greedy disLDP-F Greedy A∗ Streamline Greedy

1 10, 18 2.143 1.875 2.000 1.463

2 13, 24 2.142 2.069 1.429 1.154

3 15, 30 1.333 0.952 0.779 0.750

4 22, 44 2.222 0.690 0.845 1.224

5 30, 62 1.500 0.923 0.706 0.480

6 35, 70 1.463 0.811 1.277 1.250

7 40, 78 0.952 0.638 0.321 0.682

8 45, 96 0.632 0.462 0.522 0.287

9 50, 102 0.652 0.500 0.377 0.448

10 60, 240 0.373 0.267 0.211 0.291
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Figure 8.18: MFR comparison based on simulated workflows executed in real networks

using SWAMP.

Although the workflow topology is randomly generated and the input data size is also

randomly assigned, a larger workflow is still more likely to produce a smaller MFR. This

is due to the fact that a larger workflow may have more concurrent module executions on

the same node and more concurrent data transfers over the same link, which conforms to

the decreasing trend observed in Fig. 8.18.

8.5 Performance Evaluation of SDEDS

We conduct an extensive set of simulations and experiments to evaluate the correctness and

accuracy of SDEDS using a large number of workflows with different structures (linear

pipelines and DAG-structured workflows) and computer networks with various sizes from

small to large scales.

For pipeline mapping, we consider two objectives, i.e., MED and MFR, and three map-

ping constraints, i.e., NNR, CNR and ANR. For MED, we theoretically calculate the exact

ED of a pipeline using Eq. 3.2.1 for a given mapping scheme since there is no resource
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sharing; while for MFR, the theoretical calculation using Eq. 3.2.2 provides an approxi-

mate data rate due to the resource sharing of multiple concurrent modules mapped on the

same node processing different datasets that are continuously fed into the system.

For DAG-structured workflow mapping, we provide both approximate and exact ED

calculation based on theoretical analysis with a unitary-input dataset, and compare the the-

oretically calculated MFR and the SDEDS simulator for workflows with sequential-input

datasets. We also conduct workflow experiments in real networks for comparison-based

performance evaluation.

Performance Evaluation of Pipeline Mappings

For each mapping objective and constraint, we run 20 pipeline simulation experiments of

different problem sizes indexed from 1 to 20. In each experiment, we collect MED or MFR

performance measurements and compare them with those theoretical calculations based on

our analytical cost models and objectives. The MED performance comparisons for pipeline

mapping are plotted in Figs. 8.19(a), 8.20(a), and 8.21(a), and the MFR measurements are

plotted in Figs. 8.19(b), 8.20(b), and 8.21(b), under three different mapping constraints.

The x axis represents the index of problem cases ranging from small scales with several

modules and nodes to large ones with hundreds of modules and nodes, and the y axis

represents the theoretical calculations and simulation results in terms of MED or MFR.

We observe that the performance curves from the simulations match very well the the-

oretical calculations for pipeline mapping, which strongly indicates the validity of our an-

alytical cost models, the accuracy of our objective functions, and the correctness of our

SDEDS implementation. The slight discrepancy between the simulation and theoretical re-

sults is mostly caused by the host system dynamics including the context switch overhead

between multiple threads and limited resolution of the system sleep time.
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Figure 8.19: MED and MFR performance comparison between theoretical calculations and

simulation results for pipeline mapping with NNR.
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Figure 8.20: MED and MFR performance comparison between theoretical calculations and

simulation results for pipeline mapping with CNR.
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Figure 8.21: MED and MFR performance comparison between theoretical calculations and

simulation results for pipeline mapping with ANR.

Performance Evaluation of DAG-structured Workflow Mappings

In view of the complexity of DAG-structured workflow mapping, we conduct an in-depth

investigation into the performance evaluation of MED and MFR in three aspects, i.e., SD-

EDS simulation, theoretical calculation, and a real network deployment using SWAMP.

1) Comparison with Theoretical Calculation

For MED in unitary processing applications, we randomly generate 20 mapping prob-

lems by varying the topology and size of computing workflows and computer networks,

indexed from 1 to 20 as shown Table 8.10. We apply RCP to each problem case and calcu-

late the corresponding mapping scheme. We measure the SDEDS-based simulation results

(simMED) using the obtained mapping scheme and compare them with two theoretical cal-

culations under same mapping scheme: (i) appMED: an approximate ED estimation used

in [138], where the number of shared modules on any node is assumed to remain constant

during the entire course of workflow execution, and (ii) extMED: an exact ED calculation

proposed in [137] that counts the accurate number of modules concurrently running on the

same node.
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Table 8.10: MED and MFR measurements between theoretical calculation and simulation

program.

Prb Prb Size MED (seconds) MFR ( f rames/second)

Idx m, |Ew|, n, |Ec| extMED simMED appMED appMFR simMFR

1 4, 6, 6, 29 0.405 0.440 0.405 0.8761 0.9014

2 6, 10, 10, 86 0.806 1.165 1.578 0.8843 0.9343

3 10, 18, 15, 207 1.603 1.781 5.720 0.9037 1.0000

4 13, 24, 20, 376 1.167 1.262 5.772 1.4538 1.5274

5 15, 30, 25, 597 0.967 1.245 6.265 1.4159 1.5274

6 19, 36, 28, 753 1.558 1.801 9.174 1.3227 1.3646

7 22, 44, 31, 927 3.404 4.015 10.682 1.0891 1.1940

8 26, 50, 35, 1180 1.470 1.603 12.280 1.0308 1.1469

9 30, 62, 40, 1558 3.583 5.459 15.797 0.7190 0.8590

10 35, 70, 45, 1963 3.553 3.892 16.705 0.5225 0.6263

11 38, 73, 47, 2153 4.588 5.011 19.773 0.6211 0.6702

12 40, 78, 50, 2428 3.069 3.383 19.459 0.9505 1.0775

13 45, 96, 60, 3520 3.854 4.226 22.470 0.7010 0.7374

14 50, 102, 65, 4155 4.746 5.189 28.257 0.8190 1.0127

15 55, 124, 70, 4820 7.160 8.364 57.643 0.4741 0.6055

16 60, 240, 75, 5540 12.701 14.178 100.763 0.2228 0.2590

17 75, 369, 90, 7990 16.225 17.810 137.845 0.3764 0.4545

18 80, 420, 100, 9896 19.824 24.395 190.369 0.4494 0.4863

19 90, 500, 150, 22346 28.441 30.010 240.589 0.3079 0.3471

20 100, 660, 200, 39790 29.767 30.390 334.483 0.2940 0.3104

We tabulate the MED performance measurements in these 20 problem cases in Ta-

ble 8.10, and plot the corresponding performance comparison curves in Fig. 8.22(a). We

observe that simMED matches extMED very well in all the cases we studied, which again

indicates the validity of our cost models, the accuracy of our objective functions, and the

correctness of the SDEDS implementation. The SDEDS simulator provides a more ac-

curate representation of the actual number of shared modules or edges on the same node

or link during runtime, hence producing more accurate simMED in performance estima-

tion than appMED. We also observe that in the small problems, e.g., cases 1 to 14, the

differences between appMED and extMED are not as significant as in those large ones

where extMED is only about 10% of appMED because appMED uses the largest number

of shared modules, i.e., the total number of independent modules mapped on the same node,
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Figure 8.22: Performance comparison among extMED, simMED and appMED results for

workflow execution: (a) full range, (b) partial range.

in its calculation without considering sharing dynamics. For a clearer visual comparison,

the MED performance curves in Fig. 8.22(a) are re-plotted in Fig. 8.22(b) with a partial

performance range.

For MFR workflows, we use the total number of modules on a node to calculate re-

source sharing since even dependent modules may execute concurrently on different in-

stances of input datasets. We refer to this theoretical calculation of MFR as theMFR and

the MFR produced by the SDEDS simulator as simMFR. The MFR performance measure-

ments from theoretical calculations and SDEDS in another set of 20 simulated computing

workflows and computer networks, indexed from 1 to 20, are also tabulated in Table 8.10.

Note that these workflow mapping instances for MFR have different parameters and topolo-

gies from those for MED, but their workflow and network sizes remain the same. For visual

comparison, we plot the performance curves of theMFR and simMFR in Fig. 8.23, where

we observe that the SDEDS-based simMFR results match very well the theoretical cal-

culations of theMFR, which indicates the validity of our analytical cost models and the

correctness of the SDEDS implementation for streaming applications with sequential pro-

cessing datasets. The slight discrepancy between simMFR and theMFR is due to the fact
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Figure 8.23: MFR performance comparison between simMFR and theMFR for workflow

execution.

that the simulator reflects the actual number of concurrent module executions on a node

during runtime.

2) Comparison with Real Network Experiments

We further conduct workflow experiments for MED using the Condor/DAGMan-based

SWAMP system deployed in a local network testbed environment for performance evalu-

ation. Particularly, we consider two different types of network environments for workflow

experiments:

• Stable network environments without background traffic and workload: We set up

a relatively stable local network testbed environment consisting of 10 workstations

located at the University of Memphis. These computers have different hardware con-

figurations in terms of CPU frequency, memory size, and disk space, where the most

important hardware parameter, CPU frequency, falls in a range between 1.2 GHz and

3.4 GHz. During the workflow experiments, we only run workflow modules and a

minimal set of required kernel-level processes on each computer. We create an arbi-

trary network topology by configuring a different firewall setting on each computer
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and using the Linux traffic control command “tc” to allocate a different bandwidth

along each overlay link.

• Dynamic network environments with background traffic and workload: We use the

same local network testbed environment but with regular user applications and pro-

duction network traffic. In order to simulate such background traffic and workload, in

SDEDS, we use a Poisson distribution to model the arrival rate of other data transfers

or user processes, whose duration follows a normal distribution. The parameters of

these distributions are empirically determined based on the historical user and system

data collected in the real network environment.

We randomly generate a set of 10 workflow instances with different topologies and sizes

as shown in Table 8.11. Note that all the workflow experiments are conducted in the same

network with 10 workstations as described above but with different network topologies

constructed using different firewall settings. The RCP algorithm is executed to find a map-

ping scheme for MED in each of these test cases. For the workflow experiments without

background traffic and workload, we calculate or measure extMED, simMED, expMED

and appMED; while for those with background traffic and workload, we measure simMED

and expMED for comparison. Please note that the performance comparison for MED with-

out background traffic is the same as the one in Table 8.3 and Fig. 8.7 in Chapter 8.4.1. For

the sake of completeness, we include it here as well but present it in a different format.

We tabulate the MED performance comparison in Table 8.11 and plot the corresponding

performance curves in Figs. 8.24(a) and 8.24(b). We observe that SDEDS-based simMED

matches SWAMP-based expMED very well in stable network environments and achieves

a reasonable level of simulation accuracy in dynamic network environments. These mea-

surements show that the SDEDS simulator not only reflects the resource sharing dynamics

among multiple concurrent computing modules but also the interactions between comput-

ing modules and background processes in shared production networks. We also observe
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that the MED measurements in dynamic network environments are in general larger than

those in stable network environments. Note that the expMED results are measured in the

unit of seconds due to the time resolution in the Condor log files of SWAMP.

Table 8.11: Performance comparison of MED without/with background traffic and work-

load.
Prb Workflow Size Without (seconds) With (seconds)

Idx m, |Ew| extMED simMED expMED appMED simMED expMED

1 4, 5 187.54 203.91 204 271.55 291.72 314

2 6, 10 298.65 299.03 304 298.65 329.69 467

3 10, 18 384.80 402.96 410 517.71 427.37 547

4 15, 30 698.67 710.72 707 1677.02 1254.14 1302

5 22, 44 1273.26 1290.94 1373 2279.31 1521.24 1646

6 30, 62 1327.83 1342.20 1405 2626.25 1725.25 1965

7 35, 70 1390.05 1484.06 1586 2966.77 1831.49 2050

8 40, 78 1406.47 1490.00 1513 2381.61 1840.86 2071

9 45, 96 1581.13 1663.38 1689 3340.16 1926.30 2051

10 50, 102 1748.04 1801.48 1828 4100.91 2110.55 2458

We conduct a similar set of 10 workflow experiments for MFR in the same testbed net-

work. The Greedy LDP algorithm is executed to compute the mapping scheme in each of

these 10 cases. Again, we run SDEDS-based simulations (simMFR) and SWAMP-based

experiments (expMFR) in a stable network environment without background traffic and

workload, and a dynamic network environment with background traffic and workload. The

MFR measurements in these 10 cases are tabulated in Table 8.12 and plotted in Figs. 8.25(a)

and 8.25(b) for visual comparison. We observe that simMFR achieves a very high level

of simulation accuracy in both stable (compared to both theoretical calculations and real

network experiments) and dynamic (compared to real network experiments) network envi-

ronments. We would like to point out that SDEDS achieves a relatively better simulation

accuracy for MFR than for MED in dynamic environments because MFR is only deter-

mined by the individual time on the bottleneck node or link while MED is affected by the

accumulative time of all the modules along the critical path. Hence, the system overhead

and background workload have a more significant impact on MED than MFR.
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Figure 8.24: Performance comparison among extMED, simMED, expMED and appMED

results for workflow execution: (a) in a stable network environment without background

traffic and workload, (b) in a dynamic network environment with background traffic and

workload.

Table 8.12: Performance comparison of MFR without/with background traffic and work-

load.
Prb Workflow Size Without ( f rames/second) With ( f rames/second)

Idx m, |Ew| theMFR simMFR expMFR simMFR expMFR

1 4, 5 2.6372 2.7605 2.6027 2.0370 2.1571

2 6, 10 3.9558 4.1845 3.6803 2.9830 2.7407

3 10, 18 1.4834 1.5070 1.3745 0.9120 0.8237

4 15, 30 2.3735 2.5633 2.2421 1.3270 1.4463

5 22, 44 0.9494 0.9861 0.9377 0.6860 0.6331

6 30, 62 0.8477 0.8734 0.8254 0.6510 0.6340

7 35, 70 0.9494 0.9807 0.8921 0.6280 0.6716

8 40, 78 0.6781 0.7056 0.6451 0.5260 0.4286

9 45, 96 1.1868 1.2988 1.1698 0.8740 0.7964

10 50, 102 0.7912 0.8106 0.7399 0.4280 0.4597
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Figure 8.25: Performance comparison among theMFR, simMFR and expMFR results for

workflow execution: (a) in a stable network environment without background traffic and

workload, (b) in a dynamic network environment with background traffic and workload.

8.6 Performance Evaluation for SWAMP

To further investigate the superiority of the proposed mapping solutions, we conduct com-

prehensive experiments on two real-life workflow applications through SWAMP in real

network environments.

8.6.1 Performance Comparison Using Spallation Neutron Source (SNS)

Workflow

The data analysis process in SNS experiments includes two main computing modules, i.e.,

data rotation and data rebinning. The SNS experimental dataset used in this study contains

160 energy slices, each of which contains 61 runs of reduced data as shown in Fig. 7.6. For

each energy slice, we create a separate workflow that rotates the data of 61 runs in parallel

and then performs a concatenation operation on the rotated data.

To obtain an accurate performance estimation, we run each SNS module with a certain

input data size z on every computer node and measure its execution time t. The time

cost coefficient λ per data unit for the module on that particular node is calculated as
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t
z
, which is stored in a 2D table with rows representing modules and columns representing

computer nodes. Each module execution is repeated 10 times on every node and the average

execution time is used to compute λ . Since there are 61 input files (runs) available in each

energy slice, we choose a different number of input files in each experiment to control the

input data size. Table 8.13 lists the number of input files and its corresponding data sizes

used in 10 SNS workflow experiments.

Table 8.13: Input data sizes in 10 SNS experiments.

Idx of prb sizes 1 2 3 4 5 6 7 8 9 10

Number of runs 6 12 18 24 30 36 42 48 54 60

Data size (MB) 9 18 27 36 45 54 63 72 81 90

To investigate the MED performance in unitary processing applications, we run a single

component SNS workflow with 10 different input data sizes shown in Table 8.13 and mea-

sure its MED using the proposed impRCP algorithm and the Condor/DAGMan’s default

mapping scheme. Since the default Condor/DAGMan uses a centralized data forward-

ing mechanism, we adopt Stork in SWAMP to implement a distributed execution model

for impRCP. The MED measurements plotted in Fig. 8.26 show that impRCP consistently

achieves a smaller MED than default Condor/DAGMan. The differences between these two

methods are not significant for small input data sizes because Stork itself runs as an indi-

vidual job and introduces extra overhead during file transfer, but the advantage of impRCP

becomes more obvious for large input data sizes because impRCP optimizes the entire

workflow mapping and avoids redundant file transfers between execution and submission

nodes in Condor/DAGMan.

Since Condor/DAGMan is not inherently capable of supporting streaming processing

of continuous input datasets, for MFR experiments, we link the 160 component SNS work-

flows together (160 energy slices) to form a virtual workflow as shown in Fig. 8.27, where
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Figure 8.26: MED comparison between impRCP and the Condor default mapping.

each module in the previous component workflow is connected to its corresponding mod-

ule in the succeeding component workflow using a virtual control flow edge denoted by a

dashed arrow. When the current module finishes executing the current dataset, it sends the

output along the horizontal data flow edge (a solid arrow) to its succeeding module in the

same component workflow, and also sends a signal through the vertical control flow edge to

the corresponding module in the succeeding component workflow. When the correspond-

ing module receives the signal, it starts executing the next dataset immediately if all of its

input data arrive, and the same is applied to the rest of the modules in the workflows.

We run SNS streaming experiments using the same data sizes in Table 8.13 to compare

the MFR measurements of the proposed Greedy LDP algorithm with those of the other

workflow mapping algorithms. The performance curves produced by Greedy LDP, Greedy

A∗ and Greedy are plotted in Fig. 8.28. There is no performance curve for Streamline

because it cannot find a feasible mapping scheme in some cases due to its failure to consider

the constraints on module dependency and network connectivity. We observe that Greedy

LDP outperforms the other two algorithms in comparison in all the cases we studied. Since
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Figure 8.27: Virtual SNS workflow structure for streaming processing.

we use the same workflow structure and mapping scheme for different input data sizes

(which is different from the simulation settings), a larger data size obviously results in a

longer MED and a smaller MFR, which explains the increasing and decreasing trends in

Figs. 8.26 and 8.28, respectively.

8.6.2 Performance Comparison Using Climate Modeling (CM) Work-

flow

We apply impRCP to a large-scale scientific application on Climate Modeling (CM) at

Brookhaven National Laboratory, whose goal is to facilitate the development and evalua-

tion of physical parameterizations for the NCAR Single column Community Atmosphere
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Figure 8.28: MFR comparison among Greedy LDP, Greedy A∗ and Greedy.

Table 8.14: Input data sizes in 10 SCAM experiments.

Problem Index 1 2 3 4 5 6 7 8 9 10

No of days 2 4 6 8 10 12 14 16 18 20

Model (SCAM) [5]. We represent SCAM as a workflow and execute it using SWAMP in

grid environments with GridFTP-enabled inter-module data transfer. The SCAM work-

flows use the Intensive Observing Period (IOP) data that provide transient forcing infor-

mation to SCAM physics. Since there are 20 days of IOP data available in March 2000,

we choose a different number of days in each experiment to control the input data size.

Table 8.14 lists the number of days used in 10 SCAM workflow experiments.

We run SCAM experiments using the data sizes in Table 8.14 to compare the MED mea-

surements of the proposed impRCP algorithm with the Random and Round Robin workflow

mapping algorithms. The Random algorithm assigns each SCAM module to one of the 12

PC workstations randomly while the Round Robin algorithm assigns these SCAM mod-

ules in a round-robin manner. The performance curves produced by impRCP, Random and
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Figure 8.29: MED comparison between impRCP, Random, and Round Robin.

Round Robin are plotted in Fig. 8.29. We observe that impRCP outperforms the other two

algorithms in all 10 SCAM workflow experiments. Since there is only one climate model-

ing workflow structure, the same mapping scheme is produced for different input data sizes

(which is different from the simulation setting) in the same network environment. A larger

data size is generally more likely to have a longer execution time, resulting in a larger de-

lay, which explains the overall increasing trend in each curve. A few irregulars might have

been caused by system and network dynamics at the time of experiments. Here, we also

adopt Stork in SWAMP to implement a distributed execution model for impRCP.

Since Condor is not inherently capable of supporting streaming processing of multiple

continuous datasets, for MFR experiments, we link 100 SCAM workflows together to form

a virtual workflow as shown in Fig. 8.30, where each module in the previous component

workflow is connected to its corresponding module in the succeeding component workflow

with a virtual control flow edge denoted by a dashed arrow. When the current module fin-

ishes executing the current dataset, it sends the output along the horizontal data flow edge (a

solid arrow) to its succeeding module in the same workflow, and also sends a signal through
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the vertical control flow edge to the corresponding module in the succeeding component

workflow. When the corresponding module receives the signal, it starts executing the next

dataset immediately, and the same is applied to the rest of the modules in the workflows.

We run SCAM streaming experiments using the data sizes in Table 8.14 to compare the

MFR measurements of the proposed Greedy LDP algorithm with the Random and Round

Robin workflow mapping algorithms, whose performance curves are plotted in Fig. 8.31.

We observe that Greedy LDP also outperforms the other two algorithms in all the experi-

ments.
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Chapter 9

Conclusion and Future Work

9.1 Conclusion

The objective of our work in this dissertation is to conduct a thorough investigation into the

optimization of the end-to-end performance of large-scale distributed scientific workflows

in heterogeneous network environments from both theoretical and practical perspectives.

We constructed cost models of computing workflows and computer networks to quan-

titate the characteristics of workflows modeled as simple as linear pipelines or as complex

as DAG-structured workflows. We formulated a comprehensive set of workflow mapping

problems and provided rigorous complexity analysis as well as NP-completeness and non-

approximability proofs. We proposed and implemented optimal and heuristic solutions to

optimize the end-to-end performance for fast system response in unitary processing appli-

cations and smooth data flow in sequential processing applications. We considered fault

tolerance and adapted the proposed solutions to optimize workflow performance in unreli-

able networks. We designed and implemented a simulation program, SDEDS, to simulate

dynamic execution of workflows before real network deployment. We also developed and

deployed a workflow automation and management system, SWAMP, to help users construct

and execute workflows and monitor their executions. The superiority of the proposed work-

flow mapping solutions is demonstrated by an extensive set of performance comparisons

with existing workflow mapping algorithms through both simulations and experiments.

159



9.2 Future Work

Workflow mapping/scheduling problems have been the focus of research for years, and

have attracted more and more attention from researchers as the scale and data volume

of workflows rapidly increase. The research presented in this dissertation focuses on the

optimization of large-scale scientific workflows with intricate inter-module dependencies

and resource sharing dynamics.

In the current cost models, we used a normalized quantity to represent the processing

power and bandwidth for simplicity. However, a single constant is not always sufficient

to describe node computing and link transfer capabilities, which highly depend on the

type and availability of system and network resources, and could be time-varying in a

dynamic environment. It is of our future interest to investigate sophisticated cost models to

characterize real-time node and link behaviors in dynamic network environments.

An accurate calculation of resource sharing dynamics is critical to workflow optimiza-

tion. Besides fair share, we will conduct an analysis of on-node scheduling where the exe-

cution order among concurrent modules needs to be determined during execution. We will

explore and apply other resource sharing strategies such as proportional and priority-based

ones to further improve the workflow performance.

In the current RCP algorithm, the CP mapping is done separately without considering

resource sharing, which may cause the mapping path to more likely fall on nodes with

more resources. The quality of the branch modules mapping scheme also affects the overall

optimization performance.

As for fault tolerance, besides minimizing the failure probability by providing a strate-

gically computed workflow mapping scheme, we would also like to consider some remedy

or recovery mechanisms to sustain the workflow execution process in case of failures.

We will further improve the SWAMP system in terms of efficiency, functionality, sta-

bility, and user-friendliness, and work with more science groups to conduct more real-life

experiments.
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[76] A. Girault, É . Saule, and D. Trystram. Reliability versus performance for critical

applications. JPDC, 69(3):326–336, 2009.

[77] O. Gonzalez, W.J. Davis, F.G. Gonzalez, and W.J. Davis. A new simulation tool for

the modeling and control of distributed systems. Society for Computer Simulation

International, 78(9):552–567, 2002.

[78] Y. Gu and Q. Wu. Maximizing workflow throughput for streaming applications in

distributed environments. In Proc. of the 19th Int. Conf. on Comp. Comm. and Net.,

Zurich, Switzerland, August 2010.

[79] Y. Gu and Q. Wu. Optimizing distributed computing workflows in heterogeneous

network environments. In Proc. of the 11th Int. Conf. on Distributed Computing and

Networking, Kolkata, India, Jan. 3-6 2010.

[80] Y. Gu, Q. Wu, A. Benoit, and Y. Robert. Brief announcement: Complexity analysis

and algorithm design for optimal pipeline configuration in distributed network envi-

ronments. In Proc. of the 28th Annual ACM SIGACT-SIGOPS Symp. on Principles

of Distributed Computing (PODC), Calgary, Canada, Aug. 10-12 2009.

[81] Y. Gu, Q. Wu, A. Benoit, and Y. Robert. Optimizing end-to-end performance of

distributed applications with linear computing pipelines. In Proc. of the 15th Int.

Conf. on Para. and Dist. Sys., Shenzhen, China, Dec. 8-11 2009.

[82] Y. Gu, Q. Wu, X. Liu, and D. Yu. Improving throughput and reliability of distributed

scientific workflows for streaming data processing. In Proc. of the 13th Int. Conf. on

High Performance Computing and Communications, Banff, Canada, Sep. 2-4 2011.

[83] Y. Gu, Q. Wu, and N.S.V. Rao. Analyzing execution dynamics of scientific work-

flows for latency minimization in resource sharing environments. In Proc. of the 7th

IEEE World Congress on Services, Washington DC, Jul. 4-9 2011.

168



[84] Y. Gu, Q. Wu, M. Zhu, and N.S.V. Rao. Complexity analysis of pipeline map-

ping problems in distributed heterogeneous networks. International Journal of Dis-

tributed Sensor Networks, 5(1), 2009.

[85] F. Guirado, A. Ripoll, C. Roig, and E. Luque. Optimizing latency under throughput

requirements for streaming applications on cluster execution. J. of Cluster Comput-

ing, pages 1–10, 2005.

[86] K. Hashimito, T. Tsuchiya, and T. Kikuno. Effective scheduling of duplicated

tasks for fault-tolerance in multiprocessor systems. IEICE Tran. on Info. and Sys.,

85(3):525–534, 2002.

[87] K. Hatzis, C. Papanikolaou, G. Pentaris, P. Spirakis, and B. Tampakas. DSS: A tool

for simulation of distributed systems and protocols through communicating finite

state machines. Technical report, CTI Internal Report, 1994.

[88] J. Hopcroft and J. Wong. Linear time algorithm for isomorphism of planar graphs.

In Proc. of the 6th Annual ACM Symp., Theory of Computing, pages 172–184, 1974.

[89] D. Hull, K. Wolstencroft, R. Stevens, C. Goble, M. Pocock, P. Li, and T. Oinn. Tav-

erna: a tool for building and running workflows of services. Nucleic Acids Research,

34:729–732, 2006. http://www.taverna.org.uk.

[90] E. Ilavarasan and P. Thambidurai. Low complexity performance effective task

scheduling algorithm for heterogeneous computing environments. J. of Computer

Sciences, 3(2):94–103, 2007.

[91] M. Jelasity, A. Montresor, G.P. Jesi, and S. Voulgaris.

[92] W.E. Johnston. Computational and data grids in large-scale science and engineering.

J. of Future Generation Computer Systems, 18(8):1085–1100, 2002.

[93] P. Kacsuk, Z. Farkas, G. Sipos, A. Toth, and G. Hermann. Workflow-level parameter

study management in multi-Grid environments by the P-GRADE Grid portal. In Int.

Workshop on Grid Computing Enviornments, 2006.

169



[94] S. Kartik and C.S.R. Murthy. Improved task-allocation algorithms to maximize relia-

bility of redundant distributed computing systems. IEEE Trans. Reliability, 44:575–

586, 1995.

[95] S. Kartik and C.S.R. Murthy. Task allocation algorithms for maximizing reliability

of distributed computing systems. IEEE Trans. Computers, 46(6):719–724, 1997.

[96] R.M. Khandekar, K.W. Hildrum, S. Parekh, D. Rajan, J.L. Wolf, K.-L. Wu, H. An-

drade, and B. Gedik. Cola: Optimizing stream processing application via graph

partitioning. In Proc. of the 10th ACM/IFIP/USENIX Int. Conf. on Middleware,

pages 308–327, 2009.

[97] T. Kosar and M. Livny. Stork: making data placement a first class citizen in the grid.

In Proc. of 24th IEEE Int. Conf. on Distributed Computing Systems, Tokyo, Japan,

Mar. 2004.

[98] Y. Kwok and I. Ahmad. Dynamic critical-path scheduling: An effective technique

for allocating task graph to multiprocessors. IEEE Trans. on Parallel and Distributed

Systems, 7(5):506–521, May 1996.

[99] Y. Kwok and I. Ahmad. Static scheduling algorithms for allocating directed task

graphs to multiprocessors. ACM Computing Surveys, 31(4):406–471, Dec. 1999.

[100] D. Kyriazis, K. Tserpes, A. Menychtas, I. Sarantidis, and T. Varvarigou. Service se-

lection and workflow mapping for Grids: an approach exploiting quality-of-service

information. J. of Concurrency and Computation: Practice and Experience, 21(6),

April 2009.

[101] G. Laszewski and M. Hategan. Workflow concepts of the Java CoG Kit. Journal of

Grid Computing, 3(3-4):239–258, 2005.

[102] C. Lin, S. Lu, X. Fei, D. Pai, and J. Hua. A task abstraction and mapping approach

to the shimming problem in scientific workflows. In Proc. of the IEEE Int. Conf. on

Services Computing, pages 284–291, Bangalore, India, 2009.

170
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