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Abstract

Ceci, Shaun Joshua. Ph.D. The University of Memphis. August, 2011. Navier-
Stokes flow for a fluid jet with a free surface. Major Professor: Thomas Hagen.

The three-dimensional Navier-Stokes flow of a viscous fluid jet bounded by a

moving free surface under isothermal conditions and without surface tension is

considered. The fluid domain is assumed to be periodic in the axial direction and

initially axisymmetric. A local-in-time existence and regularity result is proven

for the full governing equations using a contraction argument in an appropriate

function space. Here a Lagrangian specification of the flow field is employed

in order to mitigate the difficulties involved in dealing with an evolving fluid

domain. It is also shown that the associated linear problem gives rise to an

analytic semigroup of contractions on the space of divergence-free Lebesgue-square-

integrable vector fields.
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1 Introduction

Central to the study of fluid dynamics are the Navier-Stokes equations (NSE) —

nonlinear partial differential equations (PDE) which govern the motion of fluids

under quite general conditions and which are used to model everything from the

air flow around an airplane to the movement of stars inside galaxies. Despite

being essentially the simplest equations which describe the motion of a fluid, the

NSE are fundamentally difficult to study from a mathematical perspective. This

is evidenced by the long-standing open question, now a Clay Millennium Prize

problem, of global existence and smoothness for solutions of the NSE on all of R3

for initial data of arbitrary size. The situation is even more challenging when one

considers that real-world applications require that the NSE be solved on a limitless

range of fluid domains where they must be coupled with often nontrivial boundary

conditions.

An important example of such boundary conditions arises in the study of

“moving free-boundary” fluid flow — a rich and challenging class of problems

dealing with flows which have an evolving interface, of a priori unknown shape

and position, with another fluid (e.g., air). Since the space occupied by the fluid

is constantly changing in response to the flow variables, the fluid domain is itself

an unknown in free boundary problems (in this dissertation, the phrase “free

boundary" always refers to a moving free-boundary). Modeling free boundary flow

involves coupling the NSE with free surface boundary conditions which govern

the interaction of the dominant forces shaping the interface between fluids. In its

simplest form, the free surface boundary condition balances viscous forces in the

fluid with the external pressure being applied to the fluid’s interface. However,

more general and physically accurate forms incorporate the often significant effects

due to surface tension. Simple examples of free boundary flows include the coating
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of a wire as it is withdrawn from a bath of molten plastic, the breakup of a liquid

jet into droplets, and the spreading of a viscous fluid (e.g., honey) as it is poured

onto a rigid surface.

One particularly interesting area of investigation involves the important but not

well understood multiple-scale problems of how free boundary models governing

bulk flow (i.e., three-dimensional NSE) scale down to the simplified models which

govern flow in “thin” fluid domains. In the cases of liquid sheets and jets, these

models are often referred to as thin-film and thin-filament approximations and are

obtained from the NSE by using the assumption of thinness to reduce the number

of spatial dimensions required to describe the flow to two and one respectively;

examples include Yeow’s equations for film casting [45] and the Matovich-

Pearson equations for fiber spinning [17, 22]. Such models play central roles in

quantitatively describing the free surface when numerical computations using

the full three-dimensional NSE are cost-prohibitive. Perhaps more significantly,

these models can be used to identify stabilizing/destabilizing factors and can often

capture the exact form of a solution as the fluid approaches breakup (Fig. 1) — a

phenomenon, induced by cohesive properties (e.g., surface tension effects) of the

liquid, which is encountered in nature as well as in various industrial applications.

Problems involving free boundary flow in thin domains stand at the forefront of

many cutting-edge scientific pursuits, such as the production of nanoscale fibers and

films.

Fig. 1. The breakup of a liquid jet into droplets [11].
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Experiments and simulations over the last several decades have shown that thin-

filament approximations are often surprisingly accurate in describing the motion

of fluid fibers and jets [5, 10, 35]. Despite the utility and longevity (elements date

back over a hundred years [44]) of these one-dimensional models, there remains no

rigorous mathematical link between thin-filament approximations and the three-

dimensional NSE. Current derivations rely on the use of asymptotic expansions

of flow variables with respect to a small parameter, �, representing the ratio of

a typical radial length scale to a typical axial length scale. While this approach

provides a sophisticated and systematic method for obtaining thin-filament

approximations from the NSE, it is also highly nonrigorous.

One method of establishing a rigorous connection between these two models is

to show that the solutions of the NSE, averaged over the cross-sectional area of the

fiber, converge to the solution of the corresponding thin-filament approximation

as � → 0 (i.e., as the fluid becomes more filament-like). Unfortunately, while

great strides continue to be made in the questions of existence of solutions to thin-

filament approximations (e.g., Hagen and Renardy’s recent proof of global existence

for the Matovich-Pearson equations [14]), currently there appear to be no existence

results for a fluid fiber with a free surface using the full three-dimensional NSE.

In this work, we aim to take a first step in this direction by proving the existence

of local-in-time solutions of the NSE for a fluid jet which is assumed to be axially

periodic.

1.1 A Survey of Existence Results for Free Boundary Problems

Free boundary flow modeled by the three-dimensional NSE has been studied most

thoroughly in three settings: an isolated (and bounded) mass of fluid, multiple

fluids contained in a bounded domain, and a semi-infinite “ocean” of fluid having

free upper surfaces and fixed bottoms. The problem we consider in this paper
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lies somewhere between the isolated mass and infinite ocean cases. What follows

is a very brief overview of the major work done in each, drawn heavily from the

discussion provided in [25] (this article also reviews the history of multiple fluid

problems which we omit).

In the first class of problem, the motion of an isolated mass of fluid bounded

entirely by a free surface is examined. The seminal works here are due to

Solonnikov who originally showed the existence of unique local-in-time solutions

in Hölder spaces for the problem with external forces present and without surface

tension [27]. Solonnikov subsequently extended this to include arbitrary initial data

and, additionally, showed the global-in-time unique solvability in Sobolev spaces for

the problem taken without external forces and sufficiently small initial data [31].

The latter result was subsequently extended to more general (anisotropic) Sobolev

spaces by Shibata and Shimizu [25].

Local existence in the isolated mass setting with surface tension was first

established (with no external forces and arbitrary initial data) by Solonnikov [29].

Solonnikov then extended this to global existence for small initial data and initial

domain close to a sphere [30]. He later treated the addition of the self-gravitational

force, obtaining first a local existence and uniqueness result [33] and eventually

a global existence and uniqueness result [32]. Solonnikov’s initial local existence

result, obtained in Sobolev-Slobodetskii spaces, was ultimately brought to Hölder

spaces by Moglilevskĭı and Solonnikov [19]. An alternative approach to proving

local existence and uniqueness for the problem, using semigroup theory, was later

provided by Schweizer under the assumption of small initial data [24].

Work on the semi-infinite domain problem was pioneered by Beale who proved

the local and small-data global existence of solutions when surface tension was

not considered [7]. Beale, Allain, Sylvester, Tani, and Tanaka later extended these

results to include surface tension effects, more general initial fluid domains, and
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higher regularity [3, 4, 8, 36, 37, 38]. Teramoto subsequently adapted Beale’s

techniques to gain similar results for a free surface problem involving axisymmetric

flow down the exterior of a solid vertical column of sufficiently large radius [42].

More recently, Nishida, Teramoto, and Yoshihara obtained a global existence

and uniqueness result (for sufficiently small data) when the fluid was taken to be

horizontally periodic [20].

1.2 The Fluid Jet Free Boundary Problem

In this work, we discuss the local-in-time existence and regularity of solutions of

the three-dimensional viscous flow of a fluid jet bounded by a free surface under

isothermal conditions and without surface tension. The fluid is assumed to be

viscous, Newtonian, and homogeneous (we assume unit density for simplicity).

As in [42], the fluid domain is assumed to be periodic in the axial direction and

initially axisymmetric. The periodic boundary condition is chosen because it leads

to a simpler functional setting and avoids all axial boundary layer difficulties

while retaining the primary mathematical challenges of the problem. In addition,

it can be a natural assumption to make in the thin-filament setting, such as in

the numerical simulation of drop dynamics on the beads-on-string structure for

viscoelastic fluid jets [16].

We take as our general strategy the approach developed by Beale in [7] and

summarized in Section 4.2. It is important, however, to note that while this

scenario appears similar to the problem considered in [42], there are key differences

which require novel ideas beyond Beale’s techniques. In particular, unlike the fluid

domains under consideration in [3, 4, 7, 8, 42], we do not have a stationary surface

opposite the free surface to which we can assign a Dirichlet boundary condition

(i.e., a condition fixing the value of the unknown function on a portion of the

boundary). Foremost among the consequences of not having such a condition
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are the loss of general applicability of the Poincaré inequality, a fundamental

tool in the analysis of PDE, and the loss of invertibility of the linear differential

operator (analogous to the classical Stokes operator) central to the study of the full

nonlinear problem. Moreover, where Teramoto is able to exploit axisymmetry and

cylindrical coordinates to reduce his problem to two dimensions, the same approach

introduces significant challenges in the fluid jet case since the NSE in cylindrical

coordinates have singular coefficients when the axis at r = 0 is contained in the

fluid domain.
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2 Statement of the Problem

2.1 Initial Fluid Domain

We take as our initial fluid domain (the space occupied by the fluid at t = 0) the

infinite cylinder along the a3-axis,

Ω∞ =
�
(a1, a2, a3) ∈ R3 : a21 + a

2
2 < κ

2
�
,

with free surface

∂Ω∞ =
�
(a1, a2, a3) ∈ R3 : a21 + a

2
2 = κ

2
�
.

We restrict our attention to flow which is periodic in the a3 direction, hence we are

interested primarily in functions of the form

f =
�

n

f̂n(a1, a2)e
2πina3/� ∈ H

k

loc(Ω∞),

with f̂n ∈ H
k(D), where D is the open disc of radius κ < 1 and � is the period in

the a3 direction. Here H
k denotes the standard Sobolev space W

k,2 (see Appendix

A.1). In practice however, we will find it more convenient to work with functions

over a single period. It is natural then to interpret a3-periodic functions on Ω∞ as

living on a solid torus. We take T ⊂ R3 to be the toroid image of Ω∞ under the

transformation

Φ : (a1, a2, a3) �→
�
(a1 + κ+ 1) cos

�
2πa3
�

�
, (a1 + κ+ 1) sin

�
2πa3
�

�
, a2

�
.

It should be clear that Hk(T ) is isomorphic to the space of functions of interest.

While T is a natural choice for the domain given the periodic setting, we prefer to
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work in the physical space occupied by Ω∞. To this end, we notice that Φ|D×[0,�) is

a C
∞ diffeomorphism onto T (Fig. 2) and consider the bounded set

Ω = D× (0, �)

with Lipschitz boundary

∂Ω = SF ∪ Γ0 ∪ Γ�,

where SF = ∂D × (0, �),Γ0 = D × {0}, and Γ� = D × {�}. Although Ω �= D × [0, �),

we choose to denote the diffeomorphism Φ|D×[0,�) by ΦΩ for the sake of simplicity.

While the use of Ω in place of Ω∞ does give rise to minor technical issues (as

opposed to T ) concerning the regularity of functions as you approach the “artificial”

corners in the boundaries, most of these problems can be dealt with by temporarily

exchanging Ω for a larger subset of Ω∞. As such we will occasionally find a use for

the set

Ωn = D× (−n�, n�).

2.2 List of Quantities

We begin with a brief word about notation. Throughout the text, scalar and

vectorial quantities will be designated using roman and bold typefaces respectively.

Moreover, it is assumed that the i
th component of a vectorial quantity is denoted

using the same letter as the vector, written in a roman typeface, with subscript i

(e.g., α = (α1,α2,α3)T ). Unless otherwise specified, vectorial quantities denote
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Fig. 2. The diffeomorphism ΦΩ maps D× [0, �) to T .

column vectors. Partial derivatives with respect to time are generally denoted by

Dt =
∂

∂t
, D

k

t
=

∂
k

∂tk

where k ∈ N. In a slight abuse of notation, we also often employ the dot notation u̇

in place of Dtu to enhance readability. While this is typically reserved for denoting

ordinary time derivatives, the distinction will rarely be important here. Partial

derivatives taken with respect to a single spatial coordinate are denoted by

Di =
∂

∂ai
, D

k

i
=

∂
k

∂a
k

i

where k ∈ N and i ∈ {1, 2, 3}. For mixed partial derivatives involving spatial

coordinates, we will find it useful to make use of the multi-index notation for
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partial derivatives: for a multi-index α = (α1,α2, . . . ,αn), αi ∈ N0, of order |α| =

α1 + α2 + · · ·+ αn, we define

Dα =
∂
α1

∂a
α1
1

∂
α2

∂a
α2
2

· · · ∂
αn

∂aαn
n

.

To mitigate the difficulties in dealing with flow in an (a priori unknown)

evolving domain, we will find it useful to change from the usual Eulerian

specification of the flow field (coordinate perspective) to the more convenient

Lagrangian specification (fluid parcel perspective). The distinction is simple: in

an Eulerian specification, flow variables (such as the velocity of a fluid parcel)

are functions of time and current position whereas, in a Lagrangian specification,

flow variables are functions of time and original position within the (fixed) initial

domain. In other words, instead of focusing on a specific point a ∈ R3 and

finding the velocity of whatever fluid parcel (if any) is currently located there, a

Lagrangian formulation allows one to focus on a specific point in the initial domain,

a0, and track the velocity of the fluid parcel originating there as it follows its

trajectory.

While the Eulerian formulation is generally preferred for fixed domains, it is

problematic for domains with moving boundaries as the coordinates where fluid

is present are subject to change as time progresses. In contrast, the Lagrangian

formulation provides a means of obtaining a fixed domain for such problems. This

conveniently avoids the problem of having to “locate” the a priori unknown evolving

free surface since the fluid parcels present on the free surface at time t are the same

parcels initially lying on the free surface. While new challenges are introduced when

changing to a Lagrangian specification, the benefits of obtaining a fixed domain

outweigh the consequences in this case.

10



To change specifications we make use of a “trajectory” map (a priori unknown)

which yields the position of a fluid parcel at time t given the parcel’s initial location

in Ω. For some T > 0 and all t ∈ (0, T ), we have:

Ω(t), where Ω(0) = Ω, the domain occupied by the fluid at time t,

SF (t), where SF (0) = SF , the free surface of the fluid at time t,

y(t, ·) : Ω → Ω(t), the fluid parcel trajectory, and

x(t, ·) : Ω → R3, where x(t, ·) = y(t, ·)− I(·), the fluid parcel displacement.

The following quantities are assumed constant and nonnegative:

P0, the ambient pressure,

µ, the fluid viscosity, and

g, the acceleration due to gravity.

In addition, we have the Eulerian flow variables:

u(t, ·) : Ω(t) → R3, the fluid velocity,

p(t, ·) : Ω(t) → R, the fluid pressure, and

n(t, ·) : ∂Ω(t) → R3, the outward unit normal vector.

Their respective Lagrangian counterparts are given by

v(t, ·) : Ω → R3, where v(t, ·) = u(t,y(t, ·)),

q(t, ·) : Ω → R, where q(t, ·) = p(t,y(t, ·))− P0, and

�n(t, ·) : ∂Ω → R3, where �n(t, ·) = n(t,y(t, ·)).
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Note that q is not precisely the Lagrangian fluid pressure, but rather its difference

with the ambient pressure. One consequence of converting the governing equations

to the Lagrangian specification is the introduction of a priori unknown quantities

involving derivatives of the trajectory map y. We denote these by

Λ(t, a) : Ω → R, where Λ =
�
λi,j(t, a)

�
= (∇y)−1 =





D1y1 D1y2 D1y3

D2y1 D2y2 D2y3

D3y1 D3y2 D3y3





−1

.

These arise because of the relationship Djvi =
�3

k=1 DjykDyk
ui, from which it

follows that ∇ui = (∇y)−1∇vi. Note that the Jacobian matrix of a vector (e.g.,

∇y) is often defined as the transpose of the matrix used above. For convenience we

also abbreviate the following sets:

G = (0, T )× Ω and

∂GF = (0, T )× SF .

2.3 Governing Equations

Depending on the assumptions we make about certain inherent properties of the

fluid, the equations governing fluid flow can take on a range of forms. In this

work, we will restrict our consideration to fluids which are viscous, homogeneous,

incompressible, and Newtonian. For the reader who is unfamiliar with fluid

dynamics, we will now take a moment to briefly describe the meaning of these

various properties.

A viscous fluid is one which displays resistance to stress and nearly all real

fluids (except for matter in the so-called superfluid state) can be classified as such.

Viscosity is defined as the ratio of stress to strain rate for a fluid; it can be thought
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of as a measure of the internal friction of a fluid, describing how resistant it is to

flow. All other things being equal, where low viscosity fluids (e.g., water) are “thin”

and flow quickly, high viscosity fluids (e.g., honey) are “thick” and flow slowly.

A homogeneous, incompressible fluid is simply one which has constant density.

The distinction between Newtonian and non-Newtonian fluids, however, is a bit

more technical: a Newtonian fluid is one which exhibits a strain rate which is

proportional to stress. A Newtonian fluid can thus be understood as a fluid with

constant viscosity whose strain rate vanishes with stress. The latter condition is

required to exclude materials like Bingham plastic which exhibits constant viscosity

yet behaves like a solid at low stresses.

Assuming that the fluid has unit density and that gravity is the only external

body force acting on the fluid, the Navier-Stokes equations take the form

u̇+ (u ·∇)u− µ∆u+∇p = g e3 on Ω(t) (2.1)

∇ · u = 0 on Ω(t) (2.2)

in the Eulerian specification. Here e3 denotes the third standard basis vector in

R3. Equations (2.1) and (2.2) are simply the descriptions of the conservation of

momentum and mass, respectively, for an arbitrary fluid parcel in Ω(t). In order

to properly correlate the evolution of the free surface to that of the fluid velocity,

we require that, for each t ∈ (0, T ), the trajectory mapping satisfy

Ω(t) = y(t,Ω) (2.3)

ẏ(t) = u(t,y) on Ω. (2.4)
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To this we add the initial conditions

u(0, ·) = u0(·) on Ω (2.5)

y(0, ·) = I(·) on Ω (2.6)

as well as free surface and periodic (in a3) boundary conditions

pni − µ

3�

j=1

(Djui +Diuj)nj = P0ni for i ∈ {1, 2, 3} on SF (t) (2.7)

pp(t, ·) ∈ H
s−1
loc (Ω∞)

xp(t, ·) ∈ (Hs

loc(Ω∞))3

up(t, ·) ∈ (Hs

loc(Ω∞(t)))3






with s ≥ 2 (2.8)

where (·)p denotes the a3-periodic extension of (·). The free surface condition (2.7)

assumes that the dominant forces governing the evolution of SF are the viscous

forces within the fluid jet. In particular, the cohesive effects due to surface tension

are not considered. When working with the free surface condition, we will often

find it useful to abbreviate the vector given by the left-hand side of (2.7), taken

with n = n(0, ·), by

S(u, p) =
�
pni(0, ·)− µ

3�

j=1

(Djui +Diuj)nj(0, ·)
�3

i=1
.

We also define the tangential part of a vector field f on ∂Ω, where f ∈ (L2(∂Ω))3 for

example, as

ftan = f − (f · n(0, ·))n(0, ·).

To avoid working in the unknown evolving domain Ω(t), we rewrite the

Eulerian quantities using their Lagrangian counterparts and obtain the following
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reformulation of the NSE (2.1) and (2.2):

v̇i − µ

3�

j,k,m=1

λj,kDk(λj,mDmvi) +
3�

k=1

λi,kDkq = gδ3,i for i ∈ {1, 2, 3} on G (2.9)

3�

j,k=1

λj,kDkvj = 0 on G. (2.10)

Here δi,j denotes the Kronecker delta. Notice that the nonlinear (in u) term (u·∇)u

from (2.1) is canceled out in the reformulation; this is an additional benefit of the

Lagrangian specification. We also point out that where (2.3) is a condition that

must be satisfied in the Eulerian specification, after the reformulation, it simply

becomes a formula for recovering Ω(t) once the trajectory is known. Condition (2.4)

can be restated more succinctly as

ẋ = v on G. (2.11)

Next, we update the initial conditions

v(0, ·) = u0(·) on Ω (2.12)

x(0, ·) = 0 on Ω (2.13)

and the free surface condition

q�ni − µ

3�

j,k=1

(λj,kDkvi + λi,kDkvj)�nj = 0 for i ∈ {1, 2, 3} on ∂GF .

Notice, however, that we can obtain an equivalent free surface boundary condition

by replacing �n with any outward normal vector (i.e., not necessarily a unit vector)

to y(t, SF ). In fact, this replacement corresponds to simply multiplying through
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the above equation by the magnitude of this outward normal vector. With this

in mind, we now construct a normal vector which will significantly simplify our

analysis of the nonlinear problem in Chapter 6. For orthogonal unit tangent vectors

to SF , we take τ 1 = e3 and τ 2 = κ
−1(a2,−a1, 0)T . Now (∇y)τ 1 and (∇y)τ 2 are

orthogonal tangent vectors to y(t, SF ) and hence

N = ∇yτ 1 ×∇yτ 2

is an outward normal vector to the surface. Moreover, N is such that N(0, ·) =

n(0, ·). We will ultimately discover that N (and hence |N|) is continuous in time

and space, so that multiplication by |N| does not alter the free surface condition in

the L
2 setting. The free surface condition we consider is then given by

qNi − µ

3�

j,k=1

(λj,kDkvi + λi,kDkvj)Nj = 0 for i ∈ {1, 2, 3} on ∂GF . (2.14)

Finally, we obtain the updated periodic boundary conditions

qp(t, ·) ∈ H
s−1
loc (Ω∞)

xp(t, ·),vp(t, ·) ∈ (Hs

loc(Ω∞))3





on (0, T ) with s ≥ 2. (2.15)

The main result of this work, Theorem 4.1, demonstrates that the nonlinear

problem (2.9)–(2.15) has a solution, (v, q), for any compatible initial data u0.

Moreover, the length of time, T , that the solution is guaranteed to remain valid

is dependent only on u0. Provided that such a solution is sufficiently regular, we

will demonstrate that it can be transformed into a solution of the original problem

(2.1)–(2.8).
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3 Preliminary Topics

In this chapter, we introduce the fundamental objects relevant to this work

and discuss some of their important properties. We also give an existence and

uniqueness result for Laplace’s equation with mixed Dirichlet-periodic boundary

conditions that arises several times in later chapters. However, it is assumed that

the reader is familiar with the standard Lebesgue and Sobolev spaces (a brief

overview can be found in Appendix A.1) which will be used throughout.

3.1 Notation and Definitions

In this work, C and C0, C1, C2, . . . denote generic positive constants where,

in particular, C can change from instance to instance in a given proof. The

dependence of these constants on any important quantities will be made explicit

in each case, but they can always be assumed to be independent of T (this is

particularly important in Chapter 6 where constants need to remain fixed when

T is modified). Note that while the letter C will also be used to denote spaces

of continuous functions, the intended meaning will always be obvious from the

context.

Given a spatial domain U ⊂ R3, we strive to obey the following notational

conventions for arbitrary function spaces X(U).

Primary domain: X = X(Ω)

Vanishing on SF : 0
X = {u ∈ X : u = 0 on SF}

Vanishing up to SF : c
X = {u ∈ X : dist(supp u, SF ) > 0}

Vector field: X(U) = (X(U))3

Tensor field: (X(U))m×n = {(ui,j)1≤i≤m, 1≤j≤n : ui,j ∈ X(U)}

Divergence-free: Xσ(U) = {u ∈ X(U) : ∇ · u = 0}
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Here the vector and tensor fields are equipped with the Euclidean and Frobenius

norms respectively. Similarly, given a time interval I ⊂ R in addition to a spatial

domain U ⊂ R3, we employ the following conventions for arbitrary function spaces

Y (I × U).

Primary domain: Y = Y (G)

Vanishing on SF : 0
Y = {u ∈ Y : u(t, ·) = 0 on SF}

Vanishing up to SF : c
Y = {u ∈ Y : dist(supp u(t, ·), SF ) > 0}

Vector field: Y(I × U) = (Y (I × U))3

Tensor field: (Y (I × U))m×n = {(ui,j)1≤i≤m, 1≤j≤n : ui,j ∈ Y (I × U)}

Divergence-free: Yσ(I × U) = {u ∈ Y(I × U) : ∇ · u = 0}

Since we will be working with Hilbert spaces primarily, it is important to note

that the subspaces created from Hilbert spaces in this way will be closed (and

hence Hilbert spaces themselves). In particular, for subspaces of the form 0
X or

Xσ, this can be shown easily using the fact that the kernels of continuous operators

are closed. We also note that for 0
X to be well-defined in general, we require that

X ⊂ H
s where s > 1/2 (see Theorem B.2). To keep the notation simple, if a

function space already has a subscript, its divergence-free subspace will be denoted

by simply adding a σ to the existing subscript. For example, Ccσ would be used

in place of (Cc)σ. Spaces not following these conventions will be explicitly defined

in each instance. We now introduce the spaces fundamental to this text; though

each assumes Ω as its spatial domain, the extension to Ωn is obvious. For the set

of functions on Ω whose a3-periodic extensions are continuously differentiable and
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bounded on Ω∞ we simply take

C
k

p =

�
u|Ω : u =

∞�

n=−∞
ûn(a1, a2)e

2πina3/� ∈ C
k
�
Ω∞

�
�

where ûn ∈ C
k(D) necessarily. Similarly, we define C

∞
p (or C

k,α

p ) to be the set

of all such functions which are bounded and smooth (or Hölder continuous with

exponent α) on Ω∞. Special care must be taken, however, in attempting to obtain

a useful characterization of the set of functions on Ω whose a3-periodic extensions

are weakly differentiable on Ω∞ (see Appendix A.1 to recall the definition of a weak

derivative). It is not enough to take functions of the form
�

n
ûne

2πina3/� ∈ H
k since

regularity inside Ω does not imply the same regularity for its periodic extension

to Ω∞; additional conditions must be established in order for regularity to be

preserved across the artificial boundary at Γ0/Γ�. It is straightforward to show (see

Lemma 3.4) that the following space provides such a characterization:

H
k

p =

�
u =

∞�

n=−∞
ûn(a1, a2)e

2πina3/� ∈ H
k(Ω) : ûn ∈ H

k(D) and �u�Hk
p
< ∞

�

for k ∈ N0, where the series converges with respect to � · �Hk and

�u�Hk
p
=

� ∞�

n=−∞

k�

m=0

(2πn)2m

�2m−1
�ûn�2Hk−m(D)

�1/2

. (3.16)

This is a Hilbert space (see Lemma 3.2) when equipped with the inner product

(u, v)Hk
p
=

∞�

n=−∞

k�

m=0

(2πn)2m

�2m−1
(ûn, v̂n)Hk−m(D). (3.17)
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For s ∈ R+, we define H
s

p using complex interpolation (see Appendix A.2). For all

0 < β < 1, u ∈ H
k+1
p , the norms on the interpolation spaces satisfy

C1�u�Hk
p
≤ �u�

H
k+β
p

≤ C2�u�Hk+1
p

and �u�
H

k+β
p

≤ C3�u�1−β

Hk
p
�u�β

H
k+1
p

where C1, C2, and C3 are positive constants depending on β. Note that, throughout

the text, we typically use r and s to denote non-integer regularity and k when we

restrict ourselves to integer regularity.

Let us now briefly discuss an auxiliary space which will prove instrumental to

our analysis. In variational approaches to solving the NSE (such as the one pursued

in this work), a key result is the Helmholtz decomposition of L2 which allows

any function in L
2 to be uniquely decomposed into the sum of a divergence-free

function and a gradient (see [26] for an excellent introduction). This provides us

with an orthogonal projection (often referred to as either the Helmholtz or Leray

projection) from L
2 onto the subspace, {u ∈ L

2 : ∇ · u = 0,n · u|∂Ω = 0},

consisting (essentially) of divergence-free vectors. Note here that, as n ·u|∂Ω denotes

a generalized trace, this space is particularly well-suited to problems coupled with

Dirichlet boundary conditions. Applying this projection to (2.1) would allow us to

both remove the troublesome pressure term (which, as a gradient, vanishes under

this orthogonal projection) from (2.1) and also to incorporate the equation (2.2)

into the underlying function space. It is standard practice to use techniques like

this in an attempt to solve initially for the velocity independently of the pressure.

The associated pressure is then determined in a second step.

Taking our lead from Beale in [7], we pursue a slightly different decomposition of

L
2 owing to the nonstandard boundary conditions under consideration in this work.

In particular, to incorporate a3-periodicity along with the divergence-free condition
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into the auxiliary space, we choose our decomposition so that L2 is projected onto

H
0
pσ. For convenience, we set

P
s = H

s

pσ.

Notice that these spaces neglect to include both the free surface condition

and a generalized trace condition (as opposed to the standard decomposition).

The generalized trace condition has been removed for its lack of relevance to

our boundary conditions; its inclusion would unnecessarily restrict the space of

functions under consideration. While we will introduce a space that incorporates

the free surface condition momentarily, we do not want to include this condition in

the projection space P
0 itself as it would make finding a characterization for the

orthogonal complement untenable.

The free surface boundary condition, as something which relates the value of the

velocity to that of the unknown pressure along SF , cannot be fully incorporated

into the definition of any space of prospective velocity functions. However, since

the pressure only enters the balance of forces across the free surface in the normal

direction, the need for the tangential part of S(v, q) to vanish on SF is a condition

which depends solely on the velocity. Therefore, we define

V
s = {v ∈ P

s : Stan(v) = 0 on SF}.

We must also define spaces which ensure that our solutions have adequate

regularity with respect to time. We do this using the so-called Lebesgue-Bochner

spaces (see Appendix A.1 for a brief description) which treat functions of time

and space as time-parameterized collections of functions of space which are

parameterized by time. For a time interval I, the set of functions on I × Ω whose

a3-periodic extensions are r-times weakly differentiable with respect to time and
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s-times weakly differentiable with respect to space (on Ω∞) is given by

H
r,s

p (I × Ω) = H
r(I;H0

p) ∩H
0(I;Hs

p).

Of particular interest, given the form of the NSE, are functions with half as much

regularity in time as in space. We denote such spaces by

K
s

p(I × Ω) = H
s/2,s
p (I × Ω).

3.2 The Periodic Spaces

Most of the results in this section seek to relate, in various ways, Hk

p to H
k. This

is certainly a worthwhile endeavor as it will frequently allow us to leverage the

power of standard Sobolev theory in our analysis involving the a3-periodic spaces.

We begin by showing that � · �Hk
p

and � · �Hk are equivalent norms on H
k

p and are

actually equal for k ∈ {0, 1}.

Lemma 3.1. There exists C > 0, depending only on k, such that C�f�Hk ≤

�f�Hk
p
≤ �f�Hk for all f ∈ H

k

p . In particular, for k ∈ {0, 1} we have:

(i) �f�Hk
p
= �f�Hk for all f ∈ H

k

p .

(ii) (f, f̃)Hk
p
= (f, f̃)Hk for all f, f̃ ∈ H

k

p .
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Proof. First we consider the case where k = 0. Let f ∈ H
0
p. Applying Fubini and

the Lebesgue Monotone Convergence Theorem, we have

�f�2
L2 =

�

Ω

�
�

n

f̂ne
2πina3/�

��
�

m

f̂me
−2πima3/�

�

=

�

Ω

�

n

�

m

f̂nf̂me
2πi(n−m)a3/�

=

�

Ω

�

j

�
�

m

f̂j+mf̂m

�
e
2πija3/�

= �

�

D

�

m

|f̂m|2

= �

�

m

�

D
|f̂m|2

= �f�2
H0

p
.

Now let f ∈ H
k

p where k ≥ 1. In this case,

�f�2
Hk

p
= �

�

n

k�

m=0

����

�
2πin

�

�m

f̂n

����
2

Hk−m(D)

= �

�

n

k�

m=0

�

|α|≤k−m

αi∈{1,2}

����

�
2πin

�

�m

Dαf̂n

����
2

L2(D)

=
k�

m=0

�

|α|≤k−m

αi∈{1,2}

�Dm

3 Dαf�2H0
p
.

If k = 1, then this simplifies to

�D3f�2L2 +
�

|α|≤1
αi∈{1,2}

�Dαf�2L2 =
�

|α|≤1
αi∈{1,2,3}

�Dαf�2L2 = �f�2
H1 .
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Otherwise, we have (for some C depending on k) both

C �f�2
Hk =

�

|β|≤k

βi∈{1,2,3}

C �Dβf�2L2 ≤
k�

m=0

�

|α|≤k−m

αi∈{1,2}

�Dm

3 Dαf�2H0
p
= �f�2

Hk
p

and

�f�2
Hk

p
=

k�

m=0

�

|α|≤k−m

αi∈{1,2}

�Dm

3 Dαf�2H0
p
≤

�

|β|≤k

βi∈{1,2,3}

�Dβf�2L2 = �f�2
Hk .

Finally, having shown (i), part (ii) follows immediately from the polarization

identity.

Our first application of this result justifies the earlier assertions that H
k

p

equipped with the discussed norm and inner product forms a Hilbert space.

Lemma 3.2. Let k ≥ 0. Then H
k

p is a Hilbert space when equipped with (3.16),

(3.17). In particular, H
0
p = L

2
.

Proof. First we show that H
k

p is complete with respect to the � · �Hk
p

norm. Let

(fj) ∈ H
k

p be Cauchy. It is straightforward to show that for each n ∈ Z, (f̂j)n ∈

H
k(D) is Cauchy. Since H

k(D) is complete, for each n there is f̂n ∈ H
k(D) such

that (f̂j)n → f̂n. We want to show that the construction f =
�

n
f̂ne

2πina3/� ∈ H
k

p

and fj → f in the H
k

p norm. Since (fj) is Cauchy, we can construct a subsequence

(gm) such that

�gm+1 − gm�Hk
p
<

1

2m
.

Then we have both (ĝm)n → f̂n in H
k(D) and

�
m
�gm+1 − gm�Hk

p
< ∞. Consider

the function F = g1 +
�

m
(gm+1 − gm) = limm→∞ gm from the � · �L2-completion of
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H
k

p . Now since Ω = [0,κ)× [0, 2π)× (0, �) in cylindrical coordinates, we have

L
2 =

�
�

n∈Z3

f̂(n)e(2πin1r/κ)+(in2θ)+(2πin3a3/�) :
�

n∈Z3

|f̂(n)|2 < ∞
�

⊂ H
0
p.

This means that we can set F =
�

n
F̂ne

2πina3/� and apply Lemma 3.1 to obtain

�gm − F�2
L2 = �gm − F�2

H0
p
= �

�

n

���(ĝm)n − F̂n

���
2

L2(D)
.

Since �gm − F�2
L2 → 0, this implies that for each n, (ĝm)n → F̂n in L

2(D) and hence

F = f . It follows that F̂n ∈ H
k(D), so that �F�Hk

p
is well-defined. Then

�F�Hk
p
≤ �g1�Hk

p
+

∞�

m=1

�gm+1 − gm�Hk
p
< ∞.

Therefore f = F ∈ H
k

p . That fj → f in the H
k

p norm follows from choosing

j,m large enough so that �fj − f�Hk
p
≤ �fj − gm�Hk

p
+ �gm − f�Hk

p
< ε. Thus

H
k

p is complete with this norm. It is now not difficult to see that (3.17) is an inner

product associated with the � · �Hk
p

norm (making H
k

p a Hilbert space).

Now that we have shown that H
k

p possesses all the structure we could have

hoped for, we move on to a useful characterization for H
k

p in terms of Hk. Note

that in this dissertation, restriction operators of the form f |X are generally meant

in the sense of trace (see the discussion preceding Theorem B.2).

Lemma 3.3. For k ≥ 1, we have the characterization H
k

p = {f ∈ H
k : Dj

3f |Γ�
=

D
j

3f |Γ0 for all 0 ≤ j ≤ k − 1}.

Proof. The equality H
0
p = L

2 follows from the discussion in the proof of Lemma 3.2,

so we let k ≥ 1. Let Xk = {f ∈ H
k : Dj

3f |Γ�
= D

j

3f |Γ0 for all 0 ≤ j ≤ k − 1}.

That H
k

p ⊂ Xk is obvious so it suffices to show that the reverse inclusion holds. We
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proceed by induction in k. Let k = 1 and f ∈ X1. Since f,Djf ∈ L
2 for 1 ≤ j ≤ 3,

there exist f̂n, (ĝj)n ∈ L
2(D) such that

f =
�

n

f̂ne
2πina3/�, Djf =

�

n

(ĝj)ne
2πina3/�

with

�f�2
L2 = �

�

n

�f̂n�2L2(D) < ∞, �Djf�2L2 = �

�

n

�(ĝj)n�2L2(D) < ∞.

For convenience, we set ĝj,n = (ĝj)n. Let ϕn ∈ C
∞
c (D) be chosen arbitrarily and

consider ϕ = ϕne
2πina3/� ∈ c

C
∞
p . For j = 1, 2 we have

(Djf,ϕ)L2 =

�

SF

fϕnj +

�

Γ�

fϕnj +

�

Γ0

fϕnj − (f,Djϕ)L2

=

�

Γ�

fϕ · 0 +
�

Γ0

fϕ · 0− (f,Djϕ)L2

= −(f,Djϕ)L2

(Djf,ϕ)H0
p
= −(f,Djϕ)H0

p

�(ĝj,n,ϕn)L2(D) = −�(f̂n, Djϕn)L2(D).
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Since ϕn ∈ C
∞
c (D) was arbitrary, this implies that ĝj,n = Dj f̂n. Moreover, since

ĝj,n ∈ L
2(D), we obtain f̂n ∈ H

1(D). In the case that j = 3 we have

(D3f,ϕ)L2 =

�

SF

fϕn3 +

�

Γ�

fϕn3 +

�

Γ0

fϕn3 − (f,D3ϕ)L2

=

�

Γ�

fϕ−
�

Γ0

fϕ− (f,D3ϕ)L2

= (f |Γ�
− f |Γ0 ,ϕ|Γ0)L2(D) − (f,D3ϕ)L2

= −(f,D3ϕ)L2

(D3f,ϕ)H0
p
= −(f,D3ϕ)H0

p

�(ĝ3,n,ϕn)L2(D) = −�

�
f̂n,

2πin

�
ϕn

�

L2(D)

(ĝ3,n,ϕn)L2(D) =

�
2πin

�
f̂n,ϕn

�

L2(D)
.

Since ϕn ∈ C
∞
c (D) was arbitrary in a dense subset of L2(D), ĝ3,n = 2πin

�
f̂n. It

now follows that f ∈ H
1
p, since it is straightforward to verify that

�
n
f̂ne

2πina3/�

converges to f in H
1 and

�f�2
H1

p
= �

�

n

�f̂n�2H1(D) +

�
2πn

�

�2

�f̂n�2L2(D)

= �

�

n

�f̂n�2L2(D) + �D1f̂n�2L2(D) + �D2f̂n�2L2(D) +

����
2πin

�
f̂n

����
2

L2(D)

= �f�2
L2 + �

�

n

�ĝ1,n�2L2(D) + �ĝ2,n�2L2(D) + �ĝ3,n�2L2(D)

= �f�2
H1 < ∞.

For the inductive step we now let f ∈ Xk+1. As we saw in the base case, it is

sufficient to show that (i) fn ∈ H
k+1(D) and (ii) for all |α| ≤ k + 1, αi ∈ {1, 2, 3},

ĝα,n =

�
2πin

�

�b

Dβf̂n
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where Dαf =
�

n
ĝα,ne

2πina3/� in L
2, βi ∈ {1, 2}, and Dα = D

b

3Dβ. However, since

f ∈ Xk = H
k

p we have already that fn ∈ H
k(D) and (ii) holds for all |α| ≤ k.

Therefore we take α such that |α| = k + 1 and consider two cases:

Case 1 : Suppose Dα �= D
k+1
3 . Then Dβ = DjDγ where |γ| ≤ k and j ∈ 1, 2.

Taking ϕ as in the base case,

(Dαf,ϕ)L2 = −(Db

3Dγf,Djϕ)L2

�(ĝα,n,ϕn)L2(D) = −�

��
2πin

�

�b

Dγ f̂n, Djϕn

�

L2(D)

.

Thus ĝα,n = Dj

�
2πin
�

�b
Dγ f̂n =

�
2πin
�

�b
Dβf̂n and f̂n ∈ H

k+1(D).

Case 2 : Suppose Dα = D
k+1
3 . Taking ϕ as before,

(Dαf,ϕ)L2 =

�

Γ�

D
k

3fϕ−
�

Γ0

D
k

3fϕ− (Dk

3f,D3ϕ)L2

= (Dk

3f |Γ�
−D

k

3f |Γ0 ,ϕ|Γ0)L2(D) − (Dk

3f,D3ϕ)L2

= −(Dk

3f,D3ϕ)L2

�(ĝα,n,ϕn)L2(D) = −�

��
2πin

�

�k

f̂n,
2πin

�
ϕn

�

L2(D)

(ĝα,n,ϕn)L2(D) =

��
2πin

�

�k+1

f̂n,ϕn

�

L2(D)

.

Thus ĝα,n =
�
2πin
�

�k+1
f̂n and the claim follows.

Finally, we verify that H
k

p provides an appropriate setting for the a3-periodic

problem on Ω∞. More precisely, we show that H
k

p is exactly the set of functions on

Ω whose a3-periodic extensions reside in H
k

loc(Ω∞), as desired.

Lemma 3.4. Let Ψ : L2(T ) → L
2(Ω) be defined by Ψf = f ◦ Φ. Then Ψ|Hk(T ) is an

isomorphism from H
k(T ) onto H

k

p (Ω).
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Proof. Since Φ is C
∞ and periodicity is obviously preserved we immediately obtain

Ψ(Hk(T )) ⊂ H
k

p . It is then simple to show that Ψ is injective with surjectivity

following from the fact that Φ−1
Ω is C

∞.

3.3 Laplace’s Equation

Several times in the course of this work, we will seek to show that certain quantities

are uniquely determined. In following the general approach established by Beale,

we will see that, just as in [7], many of these quantities can be cast as solutions

of a particular problem involving Laplace’s equation. Adapting the boundary

conditions to reflect periodicity and the absence of a fixed bottom surface, the

relevant problem in our setting takes the form

∆u = f in Ω, u = 0 on SF , D
k

3u|Γ�
= D

k

3u|Γ0 for k ∈ {0, 1} (3.18)

where f ∈ H
s−2
p is given.

Before we move on to discussing the particulars of this problem, it is imperative

that we understand the various types of “solutions” possible for boundary value

problems when considered in a Sobolev setting. Let us consider the generic problem

Lu = f , where L is some differential operator and f is a given function. To simplify

our discussion and illustrate the main differences in solution types, we speak rather

broadly now and ignore many details regarding the underlying domain, boundary

conditions, and so forth. First, we consider a function u to be a strong solution of

Lu = f provided that it satisfies this equation in L
2
loc. Thus a strong solution u

must have sufficient regularity to ensure that the appropriate weak derivatives all

lie in L
2
loc. While the general notion of a strong solution is much broader than the

one stated here (including, for instance, functions satisfying the equation in other

L
p spaces), we do not concern ourselves with anything but the L

2 setting in this
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work. Note that we will usually refer to u as a solution, omitting the word “strong”

except when we want to draw the reader’s attention and enhance the distinction

with solutions of a different type.

In contrast to a solution, a classical solution of the problem must satisfy Lu = f

in the sense of classical derivatives. It should be clear that any classical solution of

the problem is also a solution. Additionally, we will often speak of weak solutions

to a problem like Lu = f . The definition of a weak solution is specific to each

problem, but generally involves using integration by parts on Lu = f to obtain a

weaker reformulation (often called a variational formulation) which makes sense for

u with less regularity than would be required of a solution. Any function satisfying

this variational formulation of the problem is then termed a weak solution of the

original problem.

As an example, suppose that u ∈ H
2(U) is a solution of the problem ∆u = f on

U , u = 0 on ∂U , where U is a smooth, bounded domain and f ∈ L
2(U) is given.

To find a variational formulation of this problem, we begin by multiplying through

the Laplace equation by a function v (which we will eventually restrict to the space

of potential weak solutions) and integrating. Performing integration by parts on the

left-hand side then yields

−(∇u,∇v)L2(U) + (∇u, v · n)L2(∂U) = (f, v)L2(U)

where n is the outward unit normal on ∂U . This equation makes sense for all

u, v ∈ H
1(U) but does not incorporate the fact that we want u to vanish on the

boundary. We therefore seek to include this condition in the underlying space

itself by considering u, v ∈ H
1
0 (U). Since v now vanishes on the boundary, the

above equation simplifies further and we define a weak solution of the problem

∆u = 0 on U , u = 0 on ∂U , to be any u ∈ H
1
0 (U) satisfying the variational
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formulation (∇u,∇v)L2(U) = −(f, v)L2(U) for all v ∈ H
1
0 (U). Since most of the

variational formulations of problems found in this work can be obtained through

nearly identical means, we will generally refrain from defining a weak solution

in each instance. When the variational formulation of a problem is not obvious

(e.g., when the free boundary condition S(v, q) = 0 is included), we will derive it

explicitly. While the above work implies that any solution is also a weak solution,

the converse need not be true since the integration by parts generally requires that

u ∈ H
2(U).

The following result, analogous to Lemma 2.8 from [7], demonstrates that (3.18)

has a unique solution and provides an estimate for it in terms of the inhomogeneity

f . The proof given below, however, does not draw from the associated proof in [7].

Lemma 3.5. For f ∈ H
s−2
p , s ≥ 2, there is a unique solution u ∈ 0

H
s

p of

∆u = f on Ω.

Additionally, there exists C > 0, independent of f , such that

�u�Hs
p ≤ C�f�

H
s−2
p

.

Proof. Let f =
�

n
f̂ne

2πina3/�. We first consider the boundary-value problem,

Lnu = −f̂n on D with u = 0 on ∂D, where Ln and its associated sesquilinear form

(Bn : H1
0 (D)×H

1
0 (D) → C) are given by

Lnu = −∆u+

�
2πn

�

�2

u

Bn[u, v] = (∇u,∇v)L2(D) +

�
2πn

�

�2

(u, v)L2(D).
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It is well-known that Bn is continuous and coercive on H
1
0 (D), thus we can apply

Lax-Milgram (Theorem B.5) to obtain a unique weak solution, ûn ∈ H
1
0 (D). The

construction u =
�

n
ûne

2πina3/� is then our candidate for the solution of the

boundary-value problem in Ω. We now restrict our discussion to the case when

s = k ∈ Z. Given the regularity of ∂D we can immediately conclude that each

ûn ∈ H
k(D) is a strong solution. Our goal is to show that u ∈ H

k

p . First we obtain

some preliminary estimates for ûn where n �= 0:

Bn[ûn, ûn] = (−f̂n, ûn)L2(D)

�∇ûn�2L2(D) +

�
2πn

�

�2

�ûn�2L2(D) ≤ �f̂n�L2(D)�ûn�L2(D)

�ûn�L2(D) ≤
�

�

2πn

�2

�f̂n�L2(D).

Notice that from this estimate we can conclude

�

n

�
2πn

�

�2k

�ûn�2L2(D) ≤
�

n

�
2πn

�

�2(k−2)

�f̂n�2L2(D) ≤ �f�2
H

k−2
p

< ∞.

This gives us an estimate on the lowest order terms in the H
k

p -norm. For the

highest order terms, standard elliptic regularity theory (e.g., see [13], p. 323)

provides an estimate of the form

�ûn�Hk(D) ≤ C1�f̂n�Hk−2(D),

though the constant C1 here generally depends on the coefficients (and hence n) of

Ln. However, upon closer inspection of the proof of this result (e.g., in [13]) we find

that we can use our above estimates on �ûn�L2(D) in place of the usual L∞ estimate

32



on the coefficient (2πn/�)2 of Ln. This ultimately allows C1 to be chosen

independently of n. Therefore

�

n

�ûn�2Hk(D) ≤ C
2
1

�

n

�f̂n�2Hk−2(D) ≤ C
2
1�f�2Hk−2

p (Ω)
< ∞.

Finally, we must show that the intermediate order terms in the H
k

p -norm are

also summable. Exploiting complex interpolation between H
0(D) and H

k(D) and

Young’s inequality we obtain for each 0 < m < k

�

n

�
2πn

�

�2m

�ûn�2Hk−m(D) ≤
�

n

�
2πn

�

�2m �
�ûn�m/k

L2(D)�ûn�1−m/k

Hk(D)

�2

≤ C2

�

n

�
2πn

�

�2m(k−2)/k

�f̂n�2m/k

L2(D)�f̂n�
2(k−m)/k
Hk−2(D)

≤ C2

�

n



m

k

��
2πn

�

�2m(k−2)/k

�f̂n�2m/k

L2(D)

�k/m

+
k −m

k

�
�f̂n�2(k−m)/k

Hk−2(D)

�k/(k−m)
�

= C2

�

n

m

k

�
2πn

�

�2(k−2)

�f̂n�2L2(D) +
k −m

k
�f̂n�2Hk−2(D)

≤ C3�f�2Hk−2 .

Thus u ∈ 0
H

k

p with �u�2
Hk

p
≤ C4(k+1)�f�2

H
k−2
p

which completes the proof for integer

values of s. Interpolation then provides the remaining cases.

3.4 The Modified Helmholtz Projection

We finish off this chapter by turning our attention to the projection space P
0.

Since P
0 is a closed subspace of L2, L2 can be written as L

2 = P
0 ⊕ (P0)⊥. Thus,

for any f ∈ L
2, f can be uniquely decomposed as f = f1 + f2 where f1 ∈ P

0

and f2 ∈ (P0)⊥. This decomposition will be a cornerstone of our analysis of the
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linearized problem in Chapter 5. However, before we can take full advantage of

this tool, we need to obtain a more useful description of the elements residing

in (P0)⊥. The following characterization provides us with the exact form of the

decomposition.

Lemma 3.6. The orthogonal complement of P
0

in L
2

has the characterization

(P0)⊥ = {∇q : q ∈ 0
H

1
p}.

Proof. Let Y = {∇q : q ∈ 0
H

1
p}. It is sufficient to show two things: (i) Y is

closed in L
2 so that Y = (Y⊥)⊥, and (ii) P0 = Y

⊥. In order to prove (i), we will

first need to show that the orthogonal complement of X = 0C∞
pσ

�·�L2 in L
2 has the

characterization X
⊥ = {∇q : q ∈ H

1
p}. Let q ∈ H

1
p,u ∈ X. There exist uk ∈ 0

C
∞
pσ

such that uk → u in L
2. Integration by parts yields

(∇q,u)L2 = lim
k→∞

(∇q,uk)L2 = lim
k→∞

�

Γ�

quk · e3 +
�

Γ0

quk · (−e3) = 0.

Thus ∇q ∈ X
⊥. Conversely, let w ∈ X

⊥. Then, in particular, (w,u)L2 = 0 for all

u ∈ C
∞
cσ. Thus there exists p ∈ H

1 such that w = ∇p by Theorem B.4(i). Now

consider

u =





0

0

u(a1, a2)




∈ 0

C
∞
pσ

where u ∈ C
∞
c (D) is arbitrary. Then, applying integration by parts, we obtain

0 = (w,u)L2 = (∇p,u)L2

=

�

Γ�

pu · e3 +
�

Γ0

pu · (−e3)

=

�

Γ�

pu−
�

Γ0

pu

= (p|Γ�
− p|Γ0 , u)L2(D) .
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Since u is an arbitrary element of a dense subset of L2(D) by Theorem B.1, this

implies that p|Γ�
= p|Γ0 on L

2(D). Hence p ∈ H
1
p by Lemma 3.3.

With this characterization in hand, we can now prove (i). Let qk ∈ 0
H

1
p such

that ∇qk → f ∈ L
2. Since ∇qk ∈ X

⊥, we have

(f ,u)L2 = lim
k→∞

(∇qk,u)L2 = 0

for all u ∈ X. Hence f ∈ X
⊥ and so there exists p ∈ H

1
p such that f = ∇p. Notice

that for n �= 0

�(q̂k)n − p̂n�2H1(D) ≤ �
2
�

n

��
2πn

�

�2

�(q̂k)n − p̂n�2H1(D)

+
2�

j=1

�Dj((q̂k)n − p̂n)�2L2(D)

�

≤ �
2�∇(qk − p)�2

L2 .

Thus (q̂k)n → p̂n in H
1(D). Since (q̂k)n ∈ H

1
0 (D), a closed subspace of H1(D), we

obtain p̂n ∈ H
1
0 (D) for n �= 0. For n = 0, applying the standard Poincaré inequality

yields a constant C > 0 such that

�(q̂k)0 − (q̂m)0�2H1(D) ≤ C�∇((q̂k)0 − (q̂m)0)�2(L2(D))2 ≤ C�
2�∇(qk − qm)�2L2

which implies that (q̂k)0 converges in H
1
0 (D). Moreover, the limit is necessarily p̂0 +

λ, for some λ ∈ R, since it is readily seen that (q̂k)0 converges to this in the weaker

L
2 norm. Thus f = ∇q where q = p+ λ ∈ 0

H
1
p. Hence Y is closed in L

2.

Finally, we show (ii). Let u ∈ Y
⊥ and ϕ ∈ C

∞
c . Then

0 = (∇ϕ,u)L2 = −
�

Ω

ϕ(∇ · u).
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Hence ∇ · u acts as a bounded linear functional on C
∞
c and can be extended

uniquely to one defined on all of L2 by density. This unique operator must be the

zero functional and thus u ∈ P
0. Conversely, let v ∈ P

0. Since L
2 = Y ⊕Y

⊥, there

are q ∈ 0
H

1
p and ṽ ∈ Y

⊥ such that v = ṽ +∇q. Taking the divergence of both sides

of this equation yields ∆q = 0 and, by Lax-Milgram, q must be the unique solution

of this equation in 0
H

1
p. Thus q = 0 and v = ṽ ∈ Y

⊥. Thus P
0 = Y

⊥ and the claim

follows.

Now that we know precisely how the decomposition works, we can consider the

bounded orthogonal projection associated with it. The projection P : H0
p → P

0 is

defined by P f = f1 where f1 ∈ P
0 is the divergence-free portion of f as described

at the beginning of this section. In Chapter 5, we will apply this to a linearized

version of (2.9) in an effort to solve this equation in a projection space where we

are assured that the divergence-free and a3-periodicity conditions are automatically

satisfied. Before we can do this, however, we need to know whether or not the

projection preserves regularity. The following lemma confirms that the projection

does not affect a function’s regularity.

Lemma 3.7. Suppose s ≥ 0. Then

(i) PH
s

p = P
s

and P |Hs
p : Hs

p → P
s

is bounded.

(ii) P |Ks
p : Ks

p → K
s

p is bounded with norm bounded independent of T .

Proof. (i) First we consider the case where s ≥ 1. For v ∈ H
s

p, we have (I − P )v =

∇φ for some φ ∈ 0
H

1
p. Then for all ψ ∈ 0

H
1
p,

�

Ω

ψ∇ · v =

�

Γ0

ψv · (−e3) +

�

Γ�

ψv · e3 −
�

Ω

∇ψ · v = −
�

Ω

∇ψ ·∇φ.
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We also notice that for any φ
� ∈ 0

H
2
p and ψ ∈ 0

H
1
p,

�

Ω

ψ∆φ
� = −

�

Γ0

ψ∇φ
� · (−e3)−

�

Γ�

ψ∇φ
� · e3 +

�

Ω

ψ∆φ
� = −

�

Ω

∇ψ ·∇φ
�
.

Thus φ is a weak solution of the problem

∆φ = ∇ · v on Ω

φ = 0 on SF

D
k

3φ|Γ�
= D

k

3φ|Γ0 for k ∈ {0, 1}.

This weak solution is unique in 0
H

1
p (which follows easily using Lax-Milgram

(Theorem B.5)) and therefore, by Lemma 3.5, it must actually be a strong solution

(in 0
H

s+1
p ) satisfying

�φ�
H

s+1
p

≤ C�∇ · v�
H

s−1
p

≤ C�v�Hs
p .

Thus (I − P )Hs

p ⊂ H
s

p and (I − P )|Hs
p : Hs

p → H
s

p is bounded. Finally, we observe

that Pv = v− (I −P )v ∈ P
s with the rest of the claim following from boundedness

of I − P . The remaining cases are obtained by interpolation between H
0
p and H

1
p.

(ii) We begin by demonstrating that P commutes with Dt. Let f ∈

H
1((0, T );L2) and denote its decomposition by f = fσ + ∇p. Since Dt commutes

with spatial derivatives, we have Dtfσ ∈ P
0 and hence

DtP f − PDtf = Dtfσ − PDtfσ − PDt∇p = −P∇(Dtp) = 0.

Now take f ∈ K
2k
p where k ∈ N0. If k = 0, then we can use (i) to obtain

�P f�2
K0

p
= 2�P f�2

L2((0,T );L2) = 2

�
T

0

�P f�2
L2 ≤ 2C

�
T

0

�f�2
L2 = C�f�2

K0
p
.
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Otherwise, using (i) and the commutativity of P and Dt yields

�P f�2
K2k

p
= �P f�2

L2((0,T );H2k
p ) + �P f�2

Hk((0,T );L2)

=

�
T

0

�P f�2
H2k

p
+
�

n≤k

�
T

0

�Dn

t
(P f)�2

L2

≤ C

��
T

0

�f�2
H2k

p
+
�

n≤k

�
T

0

�Dn

t
f�2

L2

�

= C�f�2
K2k

p
.

The remaining cases follow by interpolation between the K
2k
p spaces.

Since we have chosen P
0 to include the divergence-free functions whose

generalized trace does not vanish on the boundary, we have modified the

standard Helmholtz decomposition. In particular, we have increased the size of

the underlying projection space and, as a consequence, reduced the size of its

orthogonal complement. This means that applying P to the momentum equation

will not necessarily remove the pressure term as p need not be constant on the free

surface (excluding the possibility that ∇p can be written as ∇q for some q ∈ 0
H

1
p).

However, though P does not fully remove the pressure gradient itself, it does

remove the term’s indeterminacy. That is, the projection of the pressure gradient

will be a quantity whose value is determined completely by the velocity. We save

the details for Chapter 5, but they will rely on the following characterization of the

projections of gradients.

Lemma 3.8. Suppose s ≥ 1. If f ∈ H
s

p, then there is a unique f̃ ∈ H
s

p such that

P (∇f) = ∇f̃ , f |SF = f̃ |SF , and ∆f̃ = 0.
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Proof. Let us first consider the case when s = 1. Since ∇f ∈ L
2 there exists a

unique q ∈ 0
H

1
p such that ∇f = P (∇f) +∇q. Let f̃ = f − q ∈ H

1
p. Then

P (∇f) = ∇(f − q) = ∇f̃ ,

f̃ |SF = (f − q)|SF = f |SF ,

and

∆f̃ = ∇ ·∇(f − q) = ∇ · P (∇f) = 0.

Suppose that there were two such functions, f̃1 and f̃2, satisfying the desired

equations. Then ∇(f̃1 − f̃2) = 0 implies that f̃1 − f̃2 is constant. This constant

must be zero, however, since (f̃1 − f̃2)|SF = 0. Hence f̃ is unique. Now we let

s ≥ 2. In the proof of Lemma 3.7(i), take v = ∇f and let f̃ = f − φ ∈ H
s

p.

Then ∇f = P (∇f) +∇φ implies P (∇f) = ∇f̃ , φ|SF = 0 implies f̃ |SF = f |SF , and

∆φ = ∇ · (∇f) = ∆f implies ∆f̃ = 0 on Ω. Since the difference of any two such

functions, f̃1 and f̃2, must be zero by Lemma 3.5, f̃ is unique. The remaining cases

follow by interpolation.
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4 The Main Result

4.1 Statement

The main result of this work is stated as follows.

Theorem 4.1. Suppose 3 < s <
7
2 . For any u0 ∈ V

s−1
there exists T > 0,

depending on �u0�Hs−1
p

, so that the problem (2.9)–(2.15) has a solution (v, q) with

v ∈ K
s

p, q ∈ K
s−3/2
p (∂GF ), and ∇q ∈ K

s−2
p .

There are a few remarks to be made here. First, observe that for v ∈ K
s

p,

Lemma C.3 implies that

v ∈ H
ε+1/2((0, T );Hs−1−2ε

p )

for all 0 < ε < (s − 1)/2. Localizing in t, it follows that v(0, ·) ∈
�

ε>0 H
s−1−2ε
p .

Hence it is proper to take the initial data u0 in H
s−1
p . Second, notice that ∇q ∈

K
s−2
p does not imply q ∈ K

s−1
p ; although

q ∈ H
0((0, T );Hs−1

p ) ∩H
(s−2)/2((0, T );H1

p)

it is possible that q �∈ H
(s−1)/2((0, T );H0

p). Finally, the interval specified for s arises

from several considerations:

1. The value of s needs to be large enough to define and estimate the

appropriate nonlinear terms in Chapter 6 and also to transform the given

solution into a solution of the original Eulerian problem (although s >

5/2 would suffice for this). Additionally, both the homogeneous and

inhomogeneous linearized problems in Chapter 5 make use of the extra

regularity.
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2. The value of s needs to be small enough that additional compatibility

conditions on u0 are not required (see the discussion at the beginning of

Section 5.2).

The following corollary demonstrates how Theorem 4.1 can be used to obtain a

solution to the original Eulerian problem (2.1)–(2.8), at least in the distributional

sense (i.e., when integrated against smooth functions of compact support).

Corollary 4.2. Suppose 3 < s <
7
2 . For any u0 ∈ V

s−1
there exists T > 0,

depending on �u0�Hs−1
p

, so that the problem (2.1)–(2.8) has a solution (u, p), in the

distributional sense, on (0, T ).

Proof. Let (v, q) be the solution of (2.9)–(2.15) provided by Theorem 4.1. Using

(2.11) and (2.13), the associated displacement map is then given by x =
�
t

0 v so

that y ∈ H
1((0, T );Hs

p). Since s > 3, it now follows from the Sobolev Embedding

Theorem (B.8) that y ∈ C
0,1/2([0, T ];Hs

p) ⊂ C
0,1/2([0, T ];C1,1/2

p ). On the other

hand, from Lemma C.3 we can conclude that v ∈ H
(s−2)/2((0, T );H2

p) so that

y ∈ H
s/2((0, T );H2

p) ⊂ C
1,(s−3)/2([0, T ];C0,1/2

p ). Hence y is a continuous function

whose partial derivatives of first order (both with respect to time and space) are

all Hölder-continuous. In other words, y ∈ C
1(G). Since ∇y(0, ·) = I, the 3 × 3

identity matrix, this implies that ∇y(t, ·) remains invertible for sufficiently small

t. Moreover, it is continuously dependent on t. Provided that ẏ(0, ·) = u0 �= 0, it

follows from the Inverse Function Theorem that y is invertible for sufficiently small

t. Now, for small enough t and b ∈ Ω(t), we can define u(t,b) = v(t,y−1(t,b)) and

p(t,b) = q(t,y−1(t,b)) + P0. It is now readily verified that (u, p) is a solution of

(2.1)–(2.8) in the sense of distributions. Finally, note that in the case of vanishing

initial velocity, (u, p) = (gte3, P0) is a solution of (2.9)–(2.15).
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4.2 Overview of the Proof

Though many significant details differ, we closely follow the general approach

developed by Beale in [7]. To motivate the chapters which follow, we now briefly

outline the application of Beale’s method to our problem.

As is often the case when studying difficult nonlinear problems, we begin by

analyzing the closest linear approximation. Since our goal is to establish a local-

in-time existence result for an initial value problem, we base our approximation

around the nonlinear problem at t = 0. Heuristically, we can argue as follows:

suppose that α = (v, q) is a strong solution of the nonlinear problem (2.9)–

(2.15). Using (2.11) and (2.13), the associated displacement map is then given by

x =
�

t

0 v ∈ H
2((0, T );L2). It now follows from the Sobolev Embedding Theorem

(B.8) that x is continuous with respect to t, hence x ≈ 0 for small t. This implies

that the matrix of conversion factors, Λ = (λi,j(t, a)) = (∇y)−1, is approximately

equal to the 3× 3 identity matrix for small t. This reduces (2.9)–(2.15) to the linear

problem

v̇ − µ∆v +∇q = g e3 on G (4.1)

∇ · v = 0 on G (4.2)

v(0, ·) = u0 on Ω (4.3)

S(v, q) = 0 on ∂GF (4.4)

qp(t, ·) ∈ H
s−1
loc (Ω∞),vp(t, ·) ∈ H

s

loc(Ω∞) on (0, T ) with s ≥ 2. (4.5)

Let us denote the mapping

(v, q) �→ (v̇ − µ∆v +∇q, ∇ · v, v(0, ·), S(v, q))
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by L (the periodic condition will be included in the underlying space). While we

might be tempted to use the solution, α0 = (v0, q0), of Lα0 = (g e3, 0,u0, 0)

to approximate α, this would only guarantee that v0(0, ·) = v(0, ·). A more

useful approximation can be obtained by taking instead the solution of Lα0 =

(g e3, σ,u0, 0) where σ is constructed in such a way that σ(0, ·) = 0 while also

ensuring that v0(0, ·) = v(0, ·), v̇0(0, ·) = v̇(0, ·), and q0(0, ·) = q(0, ·). Setting

α1 = α−α0, the full nonlinear problem can now be rewritten in the form

(L+ F )α1 = g,

where F is a nonlinear operator (to be discussed in Chapter 6) and g depends only

on known quantities (such as α0). We can rearrange this equation and apply the

inverse of L to get the reformulation α1 = L
−1(g − Fα1). Finally, we define an

operator R by Rω = L
−1(g − Fω) and show that it is, when restricted to the

proper subspace, a strict contraction. It then follows from the contraction mapping

principle (Theorem B.9) that R has a fixed point (unique within this subspace), α1,

which yields our desired solution, α = α0 +α1.

The remainder of this work is organized as follows: Chapter 5 is devoted to

developing the understanding of the linear operator L and its invertibility which are

key to this approach. Since L
−1 must be applied to the unknown quantity g − Fα1,

the invertibility of L must be demonstrated for the fully inhomogeneous version of

the problem (4.1)–(4.5). We begin by showing the unique solvability of the (mostly)

homogeneous problem in Section 5.1 and deduce from this the solvability of the

inhomogeneous problem in Section 5.2. In Chapter 6, the full nonlinear problem is

treated. In Section 6.1, we implement the proof outlined above to obtain our main

result and show, additionally, that any two solutions of (2.9)–(2.15) must agree
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for an initial period of time. In Section 6.2, we show that the solution provided by

Theorem 4.1 is axisymmetric provided that the initial data is axisymmetric.
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5 The Linearized Problem

In this chapter we study the properties of the linear differential operator L

discussed in Chapter 4. The primary result of this chapter is Theorem 5.5 which

demonstrates that the problem Lα = β has a unique solution α for general β. We

proceed in a fashion analogous to the one used by Beale in [7], reducing the fully

inhomogeneous problem to the (mostly) homogeneous problem we now consider.

For convenience, in this chapter we abbreviate n(0, ·), the outward unit normal on

Ω, by n.

5.1 The Homogeneous Case

The linear problem under consideration in this section is

v̇ − µ∆v +∇q = f on G (5.1)

∇ · v = 0 on G (5.2)

v(0, ·) = 0 on Ω (5.3)

S(v, q) = 0 on ∂GF (5.4)

qp(t, ·) ∈ H
s−1
loc (Ω∞),vp(t, ·) ∈ H

s

loc(Ω∞) on (0, T ) with s ≥ 2 (5.5)

where f ∈ K
s

p is such that P f(0, ·) = 0. Our first goal is to use the modified

Helmholtz projection P to rewrite the problem (5.1)–(5.5) in a variational form

which has the velocity as its only unknown. First we notice that for any solution

(v, q) of the problem, (5.2) implies v(t) ∈ P
0 for each t. Thus, recalling from the

proof of Lemma 3.7(ii) that P commutes with Dt, applying P to (5.1) yields

v̇ − µP∆v +∇q1 = P f
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where ∇q1 = P∇q (with ∆q1 = 0 on Ω and q1 = q on SF ) by Lemma 3.8.

As mentioned in Section 3.4, this application of P removes the indeterminacy of

the pressure term in the sense that the value of ∇q1 is determined entirely by v.

In fact, more is true: the value of q1 itself is uniquely determined by v. We now

formalize our earlier remarks.

Lemma 5.1. Suppose s ≥ 2 and (v, q) ∈ H
s

p × H
s−1
p satisfies (5.4). Then there

exists a bounded linear operator Q : Hs

p → H
s−1
p mapping v �→ q1 where q1 is the

function provided by Lemma 3.8 with ∇q1 = P∇q.

Proof. To see this, we use the fact that q and q1 agree on the free surface and

observe that (5.4) implies that the normal component of S(v, q) must vanish on SF .

Putting these together,

S(v, q1) · n = 0

3�

i=1

(q1n
2
i
− µ

3�

j=1

(Djvi +Divj)njni) = 0

q1 = 2µ
3�

i,j=1

ninjDjvi

q1 = 2µκ−2
2�

i,j=1

aiajDjvi

on SF . Recall here that κ is simply the radius of Ω. Given v ∈ H
s

p, we note that

f = 2µκ−2
�2

i,j=1 aiajDjvi ∈ H
s−1
p . For s = 2, we can apply Lax-Milgram (Theorem

B.5) as in Lemma 3.5 to obtain the existence of a unique weak solution q1 ∈ H
1
p of
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the problem

∆q1 = 0 on Ω

q1 = f on SF

D
k

3q1|Γ�
= D

k

3q1|Γ0 for k ∈ {0, 1}

with �q1�H1
p
≤ C1�v�H2

p
where C1 > 0 is independent of v. For s ≥ 3, we consider

the problem

∆φ = −∆f on Ω

φ = 0 on SF

D
k

3φ|Γ�
= D

k

3φ|Γ0 for k ∈ {0, 1}

which has a unique solution φ ∈ 0
H

s−1
p , satisfying �φ�

H
s−1
p

≤ C2�∆f�
H

s−3
p

for some

C2 > 0 which is independent of v, by Lemma 3.5. Finally, we set q1 = φ+ f ∈ H
s−1
p

and observe that �q1�Hs−1
p

≤ C2�∆f�
H

s−3
p

+ �f�
H

s−1
p

≤ C3�v�Hs
p . Interpolation

now yields the claim for the remaining values of s. It readily follows that the

constructed operator is linear in v.

We now take the general approach used in semigroup theory by treating (5.1)

as an ordinary differential equation with respect to time whose solution is, for each

value of t, an element of the appropriate function space (Vs) on Ω. If we define an

operator A : Vs → P
s−2 by

Av = −µP∆v +∇Qv,
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the problem (5.1)–(5.5) takes on the form

v̇ + Av = P f on G (5.6)

v(0, ·) = 0 on Ω. (5.7)

Recall that Stan(v) vanishes on SF and both (5.2) and (5.5) are satisfied for all

v ∈ V
s. Furthermore, (5.4) is satisfied since our construction of Q ensures

that the normal component of S(v, q) will also vanish on SF . The operator A is

a modification of the standard Stokes operator, an unbounded linear operator

appearing frequently in partial differential equations in fluid dynamics and

electromagnetics.

To successfully carry out the semigroup approach requires that we gain a

thorough understanding of the operator −A. In particular, we want to know in

which spaces −A is densely defined, whether it is a dissipative and/or closed

operator, and what its spectrum σ(−A) looks like. We will tackle the matter of

determining the spectrum of −A first. Unfortunately, in contrast to the problems

treated in [3, 4, 7, 8, 42], A is not invertible with our boundary conditions

(implying that 0 lies in the spectrum of A); it is not injective since A(v + c) = Av

for any constant vector c (where Dirichlet boundary conditions on v exclude this

possibility, periodic boundary conditions do not). This, combined with the inability

to apply the Poincaré inequality in general, makes the problem of determining the

spectrum more challenging here than in the aforementioned cases. Restricting the

spectrum of A to a sector in the right half of the plane and providing estimates on

the resolvent operator (which immediately translate to similar results for −A), the

following lemma is a key result of this dissertation.
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Lemma 5.2. Let s ≥ 2. Then σ(A) ⊂ {λ ∈ C : |Im(λ)| ≤ Re(λ)}. Moreover, for λ

with |Im(λ)| > Re(λ) and |λ| ≥ ε > 0 the resolvent operator R(λ;A) = (A − λI)−1

satisfies

�R(λ;A)f�Hs
p
≤ C(�f�

H
s−2
p

+ (1 + ε
−1)(|λ|+ 1)(s−2)/2�f�L2) (5.8)

for all f ∈ P
s−2

. Here C > 0 is a constant which is independent of λ, ε, and f .

Proof. Our goal is to show that the resolvent set of A, ρ(A), contains all λ such

that |Im(λ)| > Re(λ). This is accomplished by looking at an equivalent problem:

given f ∈ P
s−2 and λ with |Im(λ)| > Re(λ), find a unique solution (v, q) ∈ V

s ×

H
s−1
p of the problem given by

−µ∆v − λv +∇q = f (5.9)

along with (5.2), (5.4), and (5.5). To see that these are equivalent, suppose that

there exists v ∈ V
s such that (A − λI)v = f . Using our decomposition of L2 there

is a q0 ∈ 0
H

1
p such that ∇q0 = µ(I − P )∆v. Setting q = Qv + q0, we obtain

(5.9). It is now straightforward to verify that (v, q) also satisfies (5.2), (5.4), and

(5.5). Conversely, given a solution (v, q) of the stationary problem we can apply P

to (5.9) to obtain (A − λI)v = f . Hence (A − λI)v = f has a unique solution v if

and only if the problem (5.2), (5.4), (5.5), (5.9) has a unique solution (v, q).

We begin by trying to find a weak solution of the problem (5.2), (5.4), (5.5),

(5.9). As usual, the general approach is to find a way to solve for v first and

then derive the associated q in a second step. To do this, we want to find a weak

formulation of the problem which does not explicitly involve q. Since a solution of

the original problem would lie in V
2, we might naively assume that V1 was the

appropriate setting for the variational formulation; unfortunately, no such space

exists (recall that Vs is only defined for s ≥ 2) as there is simply not enough
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regularity to make sense of the free boundary condition. However, neglecting the

free surface condition in V
2 yields P

2 whose regularity can be relaxed to obtain P
1;

let us take this as the underlying space for our variational formulation. Notice that

for any v ∈ P
1, v satisfies (5.2) and the portion of (5.5) referring to the velocity.

The free surface condition (5.4) is not necessarily satisfied though and will need

to be incorporated into the variational formulation directly. To that end, let us

consider the sesquilinear form �·, ·� : P1 ×P
1 → C defined by

�v,u� = −λ(v,u)L2 +
µ

2

3�

i,j=1

�

Ω

(Djvi +Divj)(Djūi +Diūj). (5.10)
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Now suppose u ∈ H
1
p,v ∈ P

2, q ∈ H
1
p and observe that

�

Ω

(−µ∆v − λv +∇q) · u = −µ

��

Ω

�

i

∆viui

�
− λ(v,u)L2

+

�

∂Ω

q(u · n)−
�

Ω

q∇ · u

= −µ

�
�

i

�

∂Ω

ui(∇vi · n)−
�

Ω

∇ui ·∇vi

�

− λ(v,u)L2 +

�

∂Ω

q(u · n)−
�

Ω

q∇ · u

= µ

�

i,j

�

Ω

DjuiDjvi − λ(v,u)L2 −
�

Ω

q∇ · u

+
�

i

�

∂Ω

ui(qni − µ

�

j

Djvinj)

= �v,u�+
�

∂Ω

S(v, q) · u−
�

Ω

q∇ · u

+ µ

�

i,j

�

∂Ω

uiDivjnj −
�

Ω

DjuiDivj

= �v,u�+
�

∂Ω

S(v, q) · u−
�

Ω

q∇ · u

+ µ

�

i,j

�

Ω

uiDi(Djvj)

= �v,u�+
�

∂Ω

S(v, q) · u−
�

Ω

q∇ · u

+ µ

�

i

�

Ω

uiDi(∇ · v)

= �v,u�+
�

∂Ω

S(v, q) · u−
�

Ω

q∇ · u. (5.11)

Here �v,u� is understood to be the expression given in (5.10) which, of course,

remains perfectly well-defined for u ∈ H
1
p. Notice that the pair (v, q) currently

satisfies (5.2) and (5.5). If we suppose that (v, q) additionally satisfies (5.9) and
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(5.4), then we obtain

(f ,u)L2 =

�

Ω

(−µ∆v − λv +∇q) · u

= �v,u�+
�

Γ�

S(v, q) · u+

�

Γ0

S(v, q) · u

= �v,u�+
�

Γ�

(u3q − µ

�

i

ui(D3vi +Div3))

−
�

Γ0

(u3q − µ

�

i

ui(D3vi +Div3))

= �v,u�.

for all u ∈ P
1. Thus �v,u� = (f ,u)L2 can be seen as a weak formulation of the

full problem which does not involve q. In an effort to apply Lax-Milgram (Theorem

B.5), we verify that the sesquilinear form is both continuous and coercive. Applying

Hölder,

|�v,u�| ≤ |λ| · �v�L2�u�L2 +
µ

2

�

i,j

�

Ω

(|Djvi|+ |Divj|)(|Djui|+ |Diuj|)

≤ |λ| · �v�H1
p
�u�H1

p
+ µ

�

i,j

�Djvi�L2�Djui�L2 + �Djvi�L2�Diuj�L2

≤ |λ| · �v�H1
p
�u�H1

p
+ 2µ

�

i,j

�v�H1
p
�u�H1

p

≤ C�v�H1
p
�u�H1

p
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where C > 0 depends on µ and λ. Hence the sesquilinear form is continuous. That

it is also coercive follows from Korn’s inequality (see Section B.2):

|�v,v�|2 =

�����−λ�v�2
L2 +

µ

2

3�

i,j=1

�

Ω

|Djvi +Divj|2
�����

2

=

�
µ

2

3�

i,j=1

�

Ω

|Djvi +Divj|2 − Re(λ)�v�2
L2

�2

+
�
Im(λ)�v�2

L2

�2 (5.12)

≥ 1

2

�
µ

2

3�

i,j=1

�

Ω

|Djvi +Divj|2 − Re(λ)�v�2
L2 + |Im(λ)| · �v�2

L2

�2

≥ C

��

Ω

3�

i,j=1

|vi|2 +
1

4
|Djvi +Divj|2

�2

≥ C�v�4
H1

p
.

It is also noteworthy that, for Re(λ) ≥ 0, line (5.12) implies

|�v,v�|2 ≥ Im(λ)2�v�4
L2

≥ 1

2
(Im(λ)2 + Re(λ)2)�v�4

L2

≥ 1

2
|λ|2�v�4

L2 . (5.13)

Moreover, the same estimate can be obtained for Re(λ) < 0 since line (5.12) then

expands to something of the form φ + |λ|2�v�4
L2 where φ ≥ 0. (5.13) will prove

to be a crucial inequality when establishing the resolvent estimate (5.8) later in

the proof. Since the sesquilinear form satisfies the conditions of Lax-Milgram, we

obtain a unique weak solution v ∈ P
1 of (5.2), (5.4), (5.5), (5.9) satisfying

�v�H1
p
≤ C�f�L2 .
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We now seek an associated pressure, q, of v. Recall that an associated pressure

need only satisfy (5.9) in the sense of distributions (i.e., when tested against

arbitrary u ∈ C
∞
c

). As with the velocity, we begin by finding a weak formulation

for the pressure. Notice that, for q ∈ H
1
p with (v, q) satisfying (5.4), we obtain from

(5.11) that

�

Ω

q∇ · u = �v,u� − (f ,u)L2 (5.14)

must be satisfied for all u ∈ H
1
p. Using continuity of the sesquilinear form we

obtain immediately that the right-hand side is a bounded linear functional in u,

F : C∞
c → C, which vanishes when ∇ · u = 0. By Theorem B.4(ii), there is a unique

q̃ ∈ L
2 such that

F = ∇q̃ and
�

Ω

q̃ = 0. (5.15)

It is now straightforward to verify that q = −q̃ satisfies (5.9) in the distributional

sense and hence is an associated pressure of v. It is uniquely determined under

the additional condition
�
Ω q = 0, but otherwise is unique only up to a

constant. Having found a weak solution of the problem, we would now like to

demonstrate that it can, in fact, be made into a strong solution. There are two

tasks involved here: showing that v and q have the additional regularity required,

and proving that v and q actually do solve the original formulation of the problem.

Unfortunately, the “artificial” corners in our domain become problematic at this

point because the standard results used to obtain additional regularity up to the

boundary generally require that the domain in question be smooth.

We can sidestep this technical issue by taking advantage of the fact that we

could similarly find a weak solution (v1, q1) of the problem (5.2), (5.4), (5.5), (5.9)

on the larger domain Ω1. Moreover, by choosing q1 such that
�
Ω1

q1 = 0 we can
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ensure that (v1, q1) is simply the periodic extension of (v, q) to Ω1. By Theorem

B.6, (v1, q1) has the additional regularity we seek on compactly contained subsets

of Ω1. Moreover, Solonnikov’s local method of proof of Theorem B.7 can be applied

to (v1, q1) in order to obtain the desired regularity near SF up to and including the

intersections with Γ0/Γ� since these regions occur on a smooth portion of the free

surface on Ω1 (Fig. 3). It follows that vp ∈ H
2
loc(Ω∞) and qp ∈ H

1
loc(Ω∞), hence

v ∈ P
2 and q ∈ H

1
p.

Fig. 3. Regularity up to the boundary is difficult to obtain near any sharp
edges on a domain’s boundary (traced in red). Examining the same functions over
two periods allows us to obtain regularity near both of the problematic edges of Ω
since they now occur on a smooth region of the boundary of Ω1 (traced in blue).

To see that (v, q) provides us with a strong solution of our problem, we only

need to verify that (5.4) and (5.9) are satisfied. Using (5.11), for all u ∈ P
1 we

have

(−µ∆v − λv +∇q − f ,u)L2 =

�

∂Ω

S(v, q) · u =

�

SF

S(v, q) · u. (5.16)

Taking u ∈ 0
C

∞
pσ implies that −µ∆v−λv+∇q−f lies in the orthogonal complement

of 0C∞
pσ

�·�L2 , so that −µ∆v − λv +∇q − f = ∇p for some p ∈ H
1
p (see the proof of
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Lemma 3.6). However, (5.11) now yields

(f ,u)L2 = (−µ∆v − λv +∇(q − p),u)L2

= �v,u�+
�

∂Ω

S(v, q − p) · u−
�

Ω

(q − p)∇ · u

for all u ∈ H
1
p. Restricting u to C

∞
c and exploiting (5.15) reduces this to

�
Ω p∇·u =

0. Integrating by parts, we see that
�
Ω ∇p · u vanishes for arbitrary u ∈ C

∞
c . Since

this is a dense subset of L2, ∇p = 0 and q satisfies (5.9). All that remains is to

show that (5.4), the free surface boundary condition, is also satisfied. From (5.16)

we now immediately obtain �

SF

S(v, q) · u = 0

for all u ∈ P
1. Following the lead of Solonnikov and Ščadilov in [34], we localize to

a neighborhood Σ ⊂ SF and construct u ∈ P
1 such that u|SF = (S(v, q)− (S(v, q) ·

n)n)φ where φ is a smooth nonnegative function vanishing outside Σ. Then

�

SF

S(v, q) · u =

�

Σ

|S(v, q)− (S(v, q) · n)n|2φ

+ (S(v, q) · n)n · (S(v, q)− (S(v, q) · n)n)φ

=

�

Σ

|Stan(v)|2φ

= 0

implies that Stan(v) = 0 on Σ. Since Σ was chosen arbitrarily, we obtain S(v, q) =

(S(v, q) · n)n on SF . Let θ(v, q) = q − 2µκ−2
�

aiajDjvi ∈ H
1
p. Since θ(v, q)|SF =

S(v, q) · n, (5.16) yields

�

∂Ω

θ(v, q)n · u =

�

Ω

∇θ(v, q) · u = 0
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for all u ∈ P
1. By density, ∇θ(v, q) ∈ (P0)⊥ and θ(v, q) = p + ω for some p ∈ 0

H
1
p

and ω ∈ R. Since this implies S(v, q) · n = q − 2µκ−2
�

aiajDjvi = ω on SF ,

we take q
∗ = q − ω and obtain a unique strong solution (v, q∗) ∈ V

2 × H
1
p of the

problem (5.2), (5.4), (5.5), (5.9). It is important to realize that this final step fully

specifies the pressure q
∗; it is now unique in the full sense of the word and no longer

just unique up to a constant.

To further increase regularity, we turn to the standard a priori estimates

of Agmon, Douglis, and Nirenberg (ADN) [2] (see Appendix D of [9] for an

introduction). Since these estimates require that the problem be set on a smooth

domain, we consider the boundary value problem corresponding to (5.2), (5.4),

(5.5), (5.9) which has been remapped to the toroid T using the isomorphism Ψ−1

(see Lemma 3.4):

−µ∆̇w − λw + ∇̇p = g on T (5.17)

∇̇ ·w = 0 on T (5.18)

pm1 − µ(2m1Ḋw1 +m2Dzw1 +m2Ḋw2) = 0 on ∂T (5.19)

pm2 − µ(2m2Dzw2 +m1Ḋw2 +m1Dzw1) = 0 on ∂T (5.20)

m1Ḋw3 +m2Dzw3 +m1D̈w1 +m2D̈w2 = 0 on ∂T (5.21)

where

Ḋ =
xDx + yDy�

x2 + y2
, D̈ =

�
2π

�

�
(xDy − yDx), ∇̇ =





Ḋ

Dz

D̈




,

∆̇ = ∇̇2
, mj = Ψ−1

nj, and gj = Ψ−1
fj.
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Note that the periodic boundary condition is absent here; this property is intrinsic

to the problem on T . Evidently, the transformed quantities (Ψ−1
v,Ψ−1

q
∗) provide

us with a unique solution to the problem (5.17)–(5.21). The system (5.17)–(5.18)

is also readily seen to be uniformly elliptic in the sense of ADN (see Appendix

D of [9]), but verifying that the boundary conditions (5.19)–(5.21) satisfy the

complementing condition, a technical condition required by the ADN theory, is

a tedious affair. Recall that the complementing condition holds if at each point

X0 ∈ ∂T an associated constant coefficient problem has no nontrivial solutions

of the form

w(X) = e
iα·(X−X0)v((X−X0) · ν) (5.22)

where ν is the outward normal to T at X0, α is a nonzero real vector

perpendicular to ν, and v tends to zero exponentially as (X − X0) · ν → ∞ (see

[23]). The constant coefficient problem under consideration is the homogeneous

problem on the half-space (X − X0) · ν < 0 (with boundary (X − X0) · ν = 0)

obtained by evaluating the coefficients of the principal parts of (5.17)–(5.21) at X0.

For convenience, we set

b0 = −µ(b21 + b
2
2 + b

2
3), b1 = (α1 + α2)i/

√
2, b2 = α3i,

b3 = 2πx0(α2 − α1)i/�, c1 =
√
2ν1, c2 = ν3.

Then, without loss of generality we assume that x0 = y0 > 0 and make the

substitutions

ṽj =
b0

µ
vj for j = 1, 2, 3, ṽ4 =

1

µ
v4, ṽ5 = v

�
1 − c1v4, ṽ6 = v

�
2 − c2v4, ṽ7 = v

�
3.
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This reduces the problem to a 7× 7 homogeneous system of first-order linear ODEs

with coefficient matrix





0 0 0 b0c1/µ b0/µ 0 0

0 0 0 b0c2/µ 0 b0/µ 0

0 0 0 0 0 0 b0/µ

−c1 −c2 0 0 −b1 −b2 −b3

1 0 0 b1 0 0 0

0 1 0 b2 0 0 0

0 0 1 b3 0 0 0





.

Given the constraints on v, we restrict ourselves to the eigenvalues with positive

real part, of which there is only one,
�
b0/µ, of algebraic multiplicity 3 and

geometric multiplicity 2; the two linearly independent eigenvectors and one

generalized eigenvector corresponding to this eigenvalue are given by β1,β2,β3
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respectively if b1 = c1 = 0 and �β1,
�β2,

�β3 otherwise, where

β1 =





0

−b3

√
b0µ

c2b0

0

0

−b3µ

c2

√
b0µ





, β2 =





√
b0

0

0

0

√
µ

0

0





, β3 =





0

2b3µ

−c2

√
b0µ

−2b3µ3/2

c2
√
b0

0

3b3µ3/2
√
b0

0





,

�β1 =





−b3

√
b0µ

0

c1b0 + b1

√
b0µ

0

−b3µ

0

c1

√
b0µ+ b1µ





, �β2 =





−(c2b0 + b2

√
b0µ)

c1b0 + b1

√
b0µ

0

0

−(c2
√
b0µ+ b2µ)

c1

√
b0µ+ b1µ

0





, and

�β3 =





√
µ(c21b0 − b

2
1µ− 3b0)

√
µ(c1

√
b0 + b1

√
µ)(c2

√
b0 − b2

√
µ)

−b3µ(c1
√
b0 + b1

√
µ)

2µ(c1
√
b0 + b1

√
µ)

−3µ
√
b0

0

0





.
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Now, with eigenvalues and eigenvectors in hand, we possess all solutions of the form

(5.22) to the aforementioned constant coefficient equations. When we plug these

solutions into the corresponding boundary conditions, we obtain w = 0 after careful

examination. Having verified that the complementing condition holds, we are

finally able to apply the a priori estimates of ADN in [2] yielding Ψ−1
vj ∈ H

s(T ),

Ψ−1
q
∗ ∈ H

s−1(T ) and

�Ψ−1
q
∗�Hs−1(T ) +

3�

j=1

�Ψ−1
vj�Hs(T ) ≤ Cλ

3�

j=1

�Ψ−1
fj�Hs−2(T )

where Cλ > 0 is a constant which depends on λ. Since a quick analysis yields the

existence of positive constants C1 and C2 such that

C1�g�Hk ≤ �Ψ−1
g�Hk(T ) ≤ C2�g�Hk

for all g ∈ H
k

p , we obtain the following estimate in Ω:

�q∗�
H

s−1
p

+
3�

j=1

�vj�Hs
p ≤ C3Cλ

3�

j=1

�fj�Hs−2
p

. (5.23)

Thus (v, q∗) ∈ V
s × H

s−1
p is the unique solution of (5.2), (5.4), (5.5), (5.9) and

σ(A) ⊂ {λ ∈ C : Re(λ) ≥ 0}. Now all that remains is to show that the resolvent

estimate (5.8) is satisfied. From (5.23) we obtain the estimate

�v�2
Hs

p
≤

�
3�

j=1

�vj�Hs
p

�2

≤ 3C2
3C

2
λ
�f�2

H
s−2
p

.
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Thus we have

�v�Hs
p ≤ C4�(A+ I)v�

H
s−2
p

≤ C4

�
�(A− λI)v�

H
s−2
p

+ (|λ|+ 1)�v�
H

s−2
p

�

≤ C5

�
�f�

H
s−2
p

+ (|λ|+ 1)�v�(s−2)/s
Hs

p
�v�2/s

L2

�
(5.24)

where C4 and C5 are positive constants which do not depend on λ. Here we have

used complex interpolation between L
2 and H

s

p
. Finally, we apply Hölder to (5.13)

which yields

�f�L2 ≥ |λ|√
2
�v�L2 . (5.25)

Now let us restrict ourselves to |λ| > ε for arbitrary ε > 0. If s = 2, then (5.24)

and (5.25) yield (5.8) directly. Otherwise, we can apply Young’s inequality to (5.24)

obtain

�v�Hs
p ≤ C5

�
�f�

H
s−2
p

+ C6(|λ|+ 1)s/2�v�L2 +
1

2C5
�v�Hs

p

�

≤ C7

�
�f�

H
s−2
p

+ (|λ|+ 1)s/2�v�L2

�

≤ C8

�
�f�

H
s−2
p

+ (1 + ε
−1)(|λ|+ 1)(s−2)/2�f�L2

�

where C6, C7, and C8 are positive constants which do not depend on λ. Since v =

R(λ;A)f , this completes the proof.

Having completed the lion’s share of the necessary work in Lemma 5.2, we can

now show (with comparative ease) that −A is the infinitesimal generator of an

analytic semigroup of contractions. This will allow us to easily obtain a unique

solution to the abstract Cauchy problem given by (5.6), (5.7). We refer the reader

to [21] for an introduction to semigroup theory.
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Lemma 5.3. The operator −A, with domain V
2
, generates an analytic semigroup

of contractions, J(t), on P
0

with �J(t)� = 1.

Proof. As we seek to apply Lumer-Phillips (Theorem B.10), we begin by showing

that −A is a dissipative. To do this, we must improve (slightly) upon the estimate

provided by (5.25). For λ < 0, we obtain

|(f ,v)L2 | = |�v,v�| = −λ�v�2
L2 +

µ

2

3�

i,j=1

�

Ω

|Djvi +Divj|2 ≥ −λ�v�2
L2 . (5.26)

Dissipativity now follows using the Hölder inequality. Since A + I is surjective by

Lemma 5.2 and P
0 is reflexive (as a Hilbert space), we can apply Lumer-Phillips

to obtain that V2 is dense in P
0 and −A generates a C0 semigroup of contractions,

J(t), on P
0. As the generator of a C0 semigroup of contractions, −A is closed (see

Theorem II.1.4 in [12], for example) and using (5.25) together with Theorem 12.31

from [23] we see that J(t) is actually an analytic semigroup on P
0. Now, since J(t)

is a semigroup of contractions, we have �J(t)� ≤ 1. However, 0 is contained in

the point spectrum of −A (see the discussion preceding Lemma 5.2) which implies

that 1 is contained in the point spectrum of J(t) by the Spectral Mapping Theorem

(Theorem B.11). It then follows from Corollary IV.3.8 in [12] that, for any constant

vector c �= 0, we have J(t)c = c for all t. Hence �J(t)� ≥ 1 and thus �J(t)� = 1 as

required.

With this semigroup result in hand, we are finally ready to solve the

homogeneous linear problem (5.1)–(5.5).
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Theorem 5.4. Let 3 < s ≤ 4, T > 0, and f ∈ K
s−2
p such that P f(0, ·) = 0. Then

the problem (5.1)–(5.5) has a unique solution (v, q) such that v ∈ K
s

p, ∇q ∈ K
s−2
p ,

and q|SF ∈ K
s−3/2
p (∂GF ). Moreover, this solution satisfies

�v�Ks
p + �∇q�

K
s−2
p

+ �q|SF �Ks−3/2
p (∂GF )

≤ C�f�
K

s−2
p

(5.27)

where C is a positive constant which is independent of T and f .

Proof. First we notice that P f ∈ C
0,(s−3)/2([0, T ];P0) by the Sobolev Embedding

Theorem (Theorem B.8). Combining Corollary 4.3.3 and Theorem 4.3.5(iii) from

[21], the abstract Cauchy problem

v̇ + Av = P f

v(0, ·) = 0

has a unique strong solution v ∈ C
1,(s−3)/2([0, T ];P0), with v(t) ∈ V

2 for each

t ∈ [0, T ]. Here we are exploiting the fact that −A is the generator of an analytic

semigroup on P
0. Note that v is a strong solution in the sense of semigroups; that

is, v is differentiable almost everywhere on [0, T ], with v̇ ∈ L
1((0, T );P0), such that

v(0, ·) = 0 and v̇(t) = −Av(t) + P f(t) almost everywhere on [0, T ]. In fact, v is a

classical solution in the semigroup sense since it is continuously differentiable with

respect to time (this differs from the general definition of a classical solution since

the spatial derivatives are still taken in the distributional sense).

To show that v ∈ K
s

p, we reconsider the abstract Cauchy problem (now with a

new unknown variable ṽ) from another perspective. We begin by applying Lemma

C.2(ii) in order to extend P f to K
s−2
p (R × Ω) in such a way that the extension is

bounded independent of T and vanishes for t < 0. Multiplying through the abstract

Cauchy problem by the weight w(t) = e
−t and taking Fourier transforms in t, we
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obtain

Fw(ṽ)(ξ) = (A+ (1 + iξ)I)−1Fw(P f)(ξ).

Since it is clear that Fw(P f)(ξ) ∈ P
s−2, this uniquely defines Fw(ṽ)(ξ) ∈ V

s

by Lemma 5.2. Making use of the Fourier transform characterization of Hs-

spaces for s ∈ R+ (e.g., see [1]) and the fact that Fourier transforms are unitary

transformations, we have

�ṽ�2
Ks

p(R×Ω) ≤ 2
�
�ṽ�2

L2(R;Hs
p)
+ �ṽ�2

Hs/2(R;L2)

�

= 2
�
�Fw(ṽ)(ξ + 1)�2

L2(R;Hs
p)
+ �(1 + ξ

2)s/4Fw(ṽ)(ξ + 1)�2
L2(R;L2)

�

= 2

�

R

�
�Fw(ṽ)(ξ + 1)�2

Hs
p
+ (1 + ξ

2)s/2�Fw(ṽ)(ξ + 1)�2
L2

�
dξ.

Applying the resolvent estimate (5.8) to the first term of the integral, we obtain

�Fw(ṽ)(ξ + 1)�2
Hs

p
≤ C1

�
�Fw(P f)(ξ + 1)�

H
s−2
p

+2(|1 + i(ξ + 1)|+ 1)(s−2)/2�Fw(P f)(ξ + 1)�L2

�2

≤ C2

�
�Fw(P f)(ξ + 1)�2

H
s−2
p

+(
�

1 + (ξ + 1)2 + 1)s−2�Fw(P f)(ξ + 1)�2
L2

�

≤ C2

�
�Fw(P f)(ξ + 1)�2

H
s−2
p

+
�
3
�

1 + ξ2
�s−2

�Fw(P f)(ξ + 1)�2
L2

�

≤ C3

�
�Fw(P f)(ξ + 1)�2

H
s−2
p

+
�
1 + ξ

2
�(s−2)/2 �Fw(P f)(ξ + 1)�2

L2

�
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where C1, C2, and C3 are positive constants which are independent of ξ and f .

Similarly, we can apply estimate (5.25) to the second term of the integral to get

(1 + ξ
2)s/2�Fw(ṽ)(ξ + 1)�2

L2 ≤ 2(1 + ξ
2)s/2|1 + i(ξ + 1)|−2�Fw(P f)(ξ + 1)�2

L2

= 2

�
1 + ξ

2

1 + (1 + ξ)2

�
(1 + ξ

2)(s−2)/2�Fw(P f)(ξ + 1)�2
L2

≤ 6(1 + ξ
2)(s−2)/2�Fw(P f)(ξ + 1)�2

L2 .

Combining these estimates yields

�ṽ�2
Ks

p(R×Ω) ≤ C4

�

R

�
�Fw(P f)(ξ + 1)�2

H
s−2
p

+
�
1 + ξ

2
�(s−2)/2 �Fw(P f)(ξ + 1)�2

L2

�
dξ

= C4

�
�Fw(P f)(ξ + 1)�2

L2(R;Hs−2
p )

+�(1 + ξ
2)(s−2)/4Fw(P f)(ξ + 1)�2

L2(R;L2)

�

= C4

�
�P f�2

L2(R;Hs−2
p )

+ �P f�2
H(s−2)/2(R;L2)

�

≤ C4�P f�2
K

s−2
p (R×Ω)

where C4 > 0 is a constant which is independent of ξ and f . By uniqueness, we

must have v = ṽ|G ∈ K
s

p. We now seek a suitable q so that (v, q) is the unique

solution of (5.1)–(5.5). For fixed t, this amounts to finding a unique q ∈ H
s−1
p such

that

∇q = µ∆v + Av + f − P f on Ω

q = Qv on SF .

Since s > 3, this is easily accomplished by taking the divergence of the first

equation and applying Lemma 3.5. All that remains is to show that (v, q) satisfies
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(5.27). To estimate q we first notice that

∇q = µ(I − P )∆v +∇Qv + (I − P )f .

The only term which we do not yet know how to estimate is ∇Qv. However, since

∆Qv = 0 on Ω and Qv = φ on SF where φ = 2µκ−2
�2

i,j=1 aiajDjvi ∈ H
s−1
p , it

follows from Lemma 3.8 that ∇Qv = P (∇φ). Then by Lemma 3.7,

�∇Qv�
K

s−2
p

= �P (∇φ)�
K

s−2
p

≤ C5�∇φ�
K

s−2
p

≤ C6�v�Ks
p

where C5 and C6 are positive constants. Similarly, since Q was constructed so that

q = Qv on SF ,

�q|SF �Ks−3/2
p (∂GF )

= �Qv|SF �Ks−3/2
p (∂GF )

≤ C7�Qv�
K

s−1
p

≤ C8�v�Ks
p

where C7 and C8 are positive constants. Thus, combining estimates, we obtain

�v�Ks
p + �∇q�

K
s−2
p

+ �q|SF �Ks−3/2
p (∂GF )

≤ C9

�
�v�Ks

p + �f�
K

s−2
p

�

≤ C9

�
�ṽ�Ks

p(R×Ω) + �f�
K

s−2
p

�

≤ C10

�
�h�

K
s−2
p (R×Ω) + �f�

K
s−2
p

�

≤ C11�f�Ks−2
p

where C9, C10, and C11 are positive constants which do not depend on f (or T ).

67



5.2 The Inhomogeneous Case

We now attempt to find a solution (v, q) of the fully inhomogeneous problem

v̇ − µ∆v +∇q = f on G (5.28)

∇ · v = σ on G (5.29)

v(0, ·) = v0(·) on Ω (5.30)

S(v, q) = h on ∂GF (5.31)

qp(t, ·) ∈ H
s−1
loc (Ω∞),vp(t, ·) ∈ H

s

loc(Ω∞) on (0, T ) with s ≥ 2 (5.32)

by reducing it to the homogeneous problem discussed in the previous section. The

details regarding the allowable inhomogeneities (f , σ,v0,h) require some motivation

so we have left them temporarily unspecified. Let us suppose that, in agreement

with the homogeneous case, any solution of the problem (5.28)–(5.32) will be such

that v ∈ K
s

p, ∇q ∈ K
s−2
p , and q|SF ∈ K

s−3/2
p (∂GF ). Using Lemma C.3, it

seems clear that we should be selecting f ∈ K
s−2
p , σ ∈ K

s−1
p , v0 ∈ H

s−1
p , and

h ∈ K
s−3/2
p (∂GF ). However, shortly we will want the quantity σ̇(0, ·) to be well-

defined and taking σ ∈ K
s−1
p would not provide sufficient regularity with respect

to time. To see what can be done, we take a closer look at the divergence operator.

Let j ≤ s

2 where s

2 ∈ N initially. Then, for v ∈ C
∞([0, T ];Hs

p) and φ ∈ 0
H

1
p, we have

�
D

j

t (∇ · v),φ
�
L2 =

�
∇ · (Dj

tv),φ
�
L2 = −

�
D

j

tv,∇φ
�
L2 .

Thus, for each t, we can apply Hölder to obtain

���Dj

t (∇ · v),φ
�
L2

�� ≤ �Dj

tv�L2�φ�H1
p
,
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so that
��Dj

t (∇ · v)
��

0H
−1
p

≤ �Dj

tv�L2 ,

where 0
H

−1
p is the dual space of 0

H
1
p. Now squaring, integrating in time, and

summing over j yields

�∇ · v�2
Hs/2((0,T );0H−1

p ) ≤ �v�2
Hs/2((0,T );L2) ≤ �v�2

Ks
p
. (5.33)

That this inequality actually holds for all v ∈ K
s

p follows from density and extends

to arbitrary s ≥ 2 through interpolation. Thus we see that the divergence operator

is bounded from K
s

p to

�Ks

p = H
s/2((0, T ); 0H−1

p ) ∩ L
2((0, T );Hs−1

p ).

Observe that taking σ ∈ �Ks

p means that σ̇(0, ·) is now a well-defined quantity in
0
H

−1
p . Additionally, we must make sure that the inhomogeneities satisfy certain

compatibility conditions at t = 0. It is important to note that the number of

compatibility conditions required increases with the value of s. As discussed in

Chapter 4, certain considerations require that we take s > 3. Hence the following

compatibility conditions must certainly be imposed on the initial data:

∇ · v0 = σ(0, ·) on Ω, Stan(v0) = htan(0, ·) on SF . (5.34)

However, notice that if s ≥ 7/2, the situation become a little more complicated. It

is readily seen that the value of q at t = 0 on SF is determined by v0 and h(0, ·)

using (5.4). Consequently, the value of v̇(0, ·) is determined at t = 0 on SF by v0,

h(0, ·), and f(0, ·) using (5.1). Now, since S(v, q) and h lie in H
(2s−3)/4((0, T );L2)

generally, s ≥ 7/2 would imply that they were both in H
1((0, T );L2). This would
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mean that the tangential component of (5.4) could be differentiated with respect to

time and evaluated at t = 0 to yield the condition

Dt(Stan(v))(0, ·) = Dt(htan)(0, ·) on SF . (5.35)

Since this involves only quantities whose values are determined by the

inhomogeneities (i.e., v0, v̇(0, ·), and Dt(htan)(0, ·)), (5.35) would have to be

included as an additional compatibility condition. To minimize the number of

compatibility conditions required, we therefore restrict s to the interval (3, 72) and

define

X
s =

�
(v, q) : v ∈ K

s

p, ∇q ∈ K
s−2
p , q|SF ∈ K

s−3/2
p (∂GF )

�

Y
s =

�
(f , σ,v0,h) : f ∈ K

s−2
p , σ ∈ �Ks

p,

v0 ∈ H
s−1
p satisfying (5.34), h ∈ K

s−3/2
p (∂GF )

�
.

Theorem 5.5. The map L : Xs → Y
s

has a bounded inverse for 3 < s <
7
2 .

Proof. Let β = (f , σ,v0,h) ∈ Y
s. We proceed by constructing (in several steps) an

approximation �α ∈ X
s to the desired solution α of Lα = β in such a way that α−

�α must solve a homogeneous problem of the form (5.1)–(5.5). By Theorem 5.4, this

homogeneous problem has a unique solution α∗, implying that α = �α + α∗ solves

Lα = β. Uniqueness easily follows: since the difference of any two such solutions

would solve the fully homogeneous problem Lα = 0, their difference must be zero

by Theorem 5.4.
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We first attempt to find (v1, q1) ∈ X
s such that β1 = L(v1, q1) agrees with β at

time t = 0. That is, we seek (v1, q1) such that

f1(0, ·) = f(0, ·)

σ1(0, ·) = σ(0, ·)

(v0)1 = v0

h1(0, ·) = h(0, ·)

where L(v1, q1) = (f1, σ1, (v0)1,h1). We begin by observing that q1(0, ·) ∈

H
s−5/2
p (SF ) can be defined using the equation

S(v0, q1(0, ·)) · n = h(0, ·) · n

since one can write

q1(0, ·) = µ

3�

i,j=1

(Dj(v0)i +Di(v0)j)njni + h(0, ·) · n.

We extend q1(0, ·) to H
s−2
p using surjectivity of the trace operator (e.g., on T ) and

then again to K
s−2
p . We now want to select v1 ∈ K

s

p such that

v̇1(0, ·) = µ∆v0 −∇q1(0, ·) + f(0, ·)

v1(0, ·) = v0.

That such a v1 exists follows from Lemma C.1(iii). It is now straightforward to

check that β1(0, ·) = β(0, ·).
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We now seek to improve our selection by finding v2 ∈ K
s

p such that L(v2, q1) =

(f2, σ2, (v0)2,h2) satisfies

P f2(0, ·) = P f(0, ·)

σ2 = σ (5.36)

(v0)2 = v0

h2(0, ·) = h(0, ·).

Consider an extension of σ̃ = σ − σ1 to �Ks

p(R × Ω). Taking Fourier transforms, we

have

��|ξ|s/2F(σ̃)(ξ)
��2

L2(R;0H−1
p )

≤
��(1 + ξ

2)s/4F(σ̃)(ξ)
��2

L2(R;0H−1
p )

= �σ̃�2
Hs/2(R;0H−1

p )

so that F(σ̃)(ξ) ∈ L
2(R;Hs−1

p ) and |ξ|s/2F(σ̃)(ξ) ∈ L
2(R; 0H−1

p ). For each ξ ∈ R, we

take F(φ)(ξ) ∈ 0
H

s+1
p to be the unique solution (provided by Lemma 3.5) of

∆F(φ)(ξ) = F(σ̃)(ξ) on Ω

F(φ)(ξ) = 0 on SF

D
k

3F(φ)(ξ)|Γ�
= D

k

3F(φ)(ξ)|Γ0 for k ∈ {0, 1}

which satisfies �F(φ)(ξ)�
H

s+1
p

≤ C�F(σ̃)(ξ)�
H

s−1
p

. It is also noteworthy here that,

in evaluating at t = 0 the corresponding problem obtained by taking inverse

Fourier transforms, σ̃(0, ·) = 0 implies φ(0, ·) = 0 (using Lemma 3.5 once again).

Integrating by parts, we obtain the identity

(∇F(φ)(ξ),∇ψ)
L2 = − (F(σ̃)(ξ),ψ)

L2
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for all ψ ∈ 0
H

1
p. Letting ψ = F(φ)(ξ) and applying Poincaré yields

�∇F(φ)(ξ)�2
L2 ≤ �F(σ̃)(ξ)�0H

−1
p
�F(φ)(ξ)�H1

p
≤ C�F(σ̃)(ξ)�0H

−1
p
�∇F(φ)(ξ)�L2 ,

so that �∇F(φ)(ξ)�L2 ≤ C�F(σ̃)(ξ)�0H
−1
p

. Then

�∇φ�2
Ks

p
≤ �∇φ�2

Ks
p(R×Ω)

≤ 2
�
�∇φ�2

L2(R;Hs
p)
+ �∇φ�2

Hs/2(R;L2)

�

= 2

�
3�

i=1

�Diφ�2L2(R;Hs
p)
+ �Diφ�2Hs/2(R;L2)

�

= 2

�
3�

i=1

�F(Diφ)(ξ)�2L2(R;Hs
p)
+ �(1 + ξ

2)s/4F(Diφ)(ξ)�2L2(R;L2)

�

= 2

��

R
�∇F(φ)(ξ)�2

Hs
p
+ (1 + ξ

2)s/2�∇F(φ)(ξ)�2
L2

�

≤ C

��

R
�F(σ̃)(ξ)�2

H
s−1
p

+ (1 + ξ
2)s/2�F(σ̃)(ξ)�20H−1

p

�

= C

�
�σ̃�2

L2(R;Hs−1
p )

+ �σ̃�2
Hs/2(R;0H−1

p )

�

≤ C�σ̃�2�Ks
p
.

Setting v2 = v1 + ∇φ, it is easy to verify that all four conditions in (5.36) are

satisfied.

Next, we aim to modify the velocity expression in such a way that its divergence

remains unaffected, while allowing the tangential component of the stress on

the free surface to be compatible with h. That is, we seek v3 ∈ K
s

p such that
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L(v3, q1) = (f3, σ3, (v0)3,h3) satisfies

P f3(0, ·) = P f(0, ·)

σ3 = σ

(v0)3 = v0

h3(0, ·) = h(0, ·)

(h3)tan = htan.

This is accomplished by setting v3 = v2 + w where w is given by Lemma C.7 with

b = (h− h2)tan.

Lastly, we seek q2 ∈ K
s−1
p such that L(v3, q2) = (f4, σ,v0,h) where P f4(0, ·) =

P f(0, ·). This can be done by simply taking q2 = q1 + q̃ where q̃ ∈ K
s−1
p is chosen so

that

q̃ = (h− h3) · n on ∂GF , q̃(0, ·) = 0 on Ω.

Such a q̃ exists by Lemma C.1(iii). It is straightforward to see that, at each stage,

vi and qj could be chosen so that they depended on β in a bounded fashion. In

particular,

�(v3, q2)�Xs ≤ C�β�Ys .

The final step is to notice that (v, q) ∈ X
s satisfies L(v, q) = β if and only if (v −

v3, q − q2) solves Lα = (f − f4, 0, 0, 0). The claim now follows from Theorem 5.4 as

discussed at the beginning of this proof.

Recall from our discussion in Chapter 4, that the full nonlinear problem can be

reduced to solving an equation of the form (L + F )α1 = g where F is a certain
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nonlinear operator, g is a given function, and α1 ∈ X
s

0 where

X
s

0 = {(v, q) ∈ X
s : v(0, ·) = v̇(0, ·) = q(0, ·) = 0}.

The ultimate goal is to show that the operator, R, defined by Rα1 = L
−1(g − Fα1)

is a contraction mapping (on some subspace of Xs

0) for small enough T . As such, it

is crucial that we understand the dependence of L−1 (and F ) on T . The following

result demonstrates that the image of Xs

0 under L is given by

Y
s

0 = {(f , σ, 0,h) ∈ Y
s : f(0, ·) = σ(0, ·) = σ̇(0, ·) = h(0, ·) = 0},

the restriction of L to X
s

0 is invertible, and the norms of L and L
−1 on these spaces

remain bounded as T → 0. This last point is vital and follows largely from the

absence of an initial velocity field (relating the norms of v0 and v would generally

depend on T otherwise).

Theorem 5.6. If 3 < s <
7
2 , then LX

s

0 = Y
s

0 and L|Xs
0

is invertible. Both L|Xs
0

and

L
−1|Ys

0
are bounded independent of T .

Proof. That LX
s

0 ⊂ Y
s

0 is immediate. Since L is invertible, it suffices to show that

Y
s

0 ⊂ LX
s

0. Let (f , σ, 0,h) ∈ Y
s

0 and (v, q) = L
−1(f , σ, 0,h) ∈ X

s. Since v(0, ·) = 0,

it follows that q(0, ·) = S(0, q(0, ·)) · n = 0 on SF . This implies that v̇(0, ·) =

−∇q(0, ·) so that v̇(0, ·) ∈ (P0)⊥. However, since (I − P )v̇(0, ·) = −∇q(0, ·), the

identity

(∇q(0, ·),∇ψ)L2 = (∇ · v̇(0, ·),ψ)L2 = (σ̇(0, ·),ψ)L2 = 0

must be satisfied for all ψ ∈ 0
H

1
p (see the proof of Lemma 3.7(i)). Hence ∇q(0, ·) ∈

P
0, which implies that ∇q(0, ·) = v̇(0, ·) = 0. Since q(0, ·) vanishes on SF , it follows

that q(0, ·) = 0 everywhere in Ω. Thus (v, q) ∈ X
s

0 and Y
s

0 ⊂ LX
s

0.
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That L, restricted to X
s

0, is bounded independent of T is simple to verify

directly. As for the restriction of L−1 to Y
s

0, to see that it is bounded independent

of T we must examine the proof of Theorem 5.5. The construction of (v1, q1) is

irrelevant since we can take both components to be identically zero for β ∈ Y
s

0.

Next, we note that σ can be extended to σ̃, in the construction of v2, with bound

independent of T using Lemma C.2. Finally, the estimates obtained from Theorem

5.4 were previously shown to be independent of T .
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6 The Full Nonlinear Problem

With the linearized problem complete, we are finally able to follow through with

the proof of Theorem 4.1. We follow the method employed by Beale in [7]: (i) we

construct an approximation, α0 = (v0, q0), to the desired solution, α = (v, q), in

such a way that their difference, α1 = (v1, q1) = (v, q) − (v0, q0), lies in X
s

0; (ii) we

rewrite the nonlinear problem in the form (L + F )α1 = g, where L is the (linear)

differential operator discussed in Section 5.2 and F is a nonlinear operator; (iii) we

utilize Theorem 5.6 and show that the operator R, defined by Rω = L
−1(g − Fω),

is a strict contraction on a subspace of Xs

0. It then follows from the contraction

mapping principle that R has a unique fixed point (in that subspace) which yields

our desired solution.

6.1 Proof of the Main Result

Proof. Fix T0 > 0 arbitrarily and set G0 = (0, T0) × Ω. Note that while the generic

constants (C,C0, C1, . . . ) used in this proof will frequently depend on T0, they will

always be independent of T ; the dependence of estimates on T will be made explicit

in each case. We begin by constructing β0 ∈ Y
s so that if α0 is the solution of

Lα0 = β0, then it follows that α1 ∈ X
s

0. Here again, α1 is taken to be the

difference between α and α0, where α is the desired solution of the full nonlinear

problem. The difficulty in this construction lies in ensuring that q0(0, ·) = q(0, ·)

and v̇0(0, ·) = v̇(0, ·). To see how this can be accomplished, we first notice that

∇q1(0, ·) = −v̇1(0, ·) (6.1)
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follows from (2.9) and (5.28) provided that (β0)1 = g e3 and (β0)3 = u0. Taking the

divergence of both sides, (6.1) implies

∆q1(0, ·) = −∇ · v̇1(0, ·). (6.2)

This equation is useful because the quantity ∇ · v̇(0, ·) is determined entirely by u0.

We can verify this by differentiating the matrix Λ = (λi,j(t, a)) with respect to t

and evaluating at t = 0 which yields

DtΛ(0, ·) = Dt(∇y)−1(0, ·)

= −(∇y)−1
Dt(∇y)(∇y)−1(0, ·)

= −(∇a)−1∇(ẏ(0, ·))(∇a)−1

= −∇v(0, ·)

= −∇u0. (6.3)

Hence λ̇i,j(0, ·) = −Di(u0)j. Now, differentiating (2.10) with respect to t and

evaluating at t = 0,

3�

k,j=1

(λ̇j,kDkvj + λj,kDkv̇j)(0, ·) = 0

3�

k=1

Dkv̇k(0, ·) =
3�

k,j=1

Dj(u0)kDk(u0)j

∇ · v̇(0, ·) =
3�

k,j=1

Dj(u0)kDk(u0)j.
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Suppose that v0 is chosen so that ∇ · v̇0(0, ·) = σ where σ =
�3

k,j=1 Dj(u0)kDk(u0)j.

Then (6.2) implies ∆q1(0, ·) = 0. If we take (β0)4 = 0, then

q0(0, ·) = 2µκ−2
2�

i,j=1

aiajDj(u0)i = q(0, ·)

on SF (see the beginning of the proof of Lemma 5.1) so that q1(0, ·) = 0 on

SF . Exploiting the uniqueness of solutions, it now follows from Lemma 3.5 that

q1(0, ·) = 0 and hence v̇1(0, ·) = 0 by (6.1). Thus, to show that α1 ∈ X
s

0, it suffices

to prove that (β0)2 ∈ �Ks

p can be chosen such that it is a solution of

φ(0, ·) = 0

φ̇(0, ·) = σ.

The second equation ensures that v0 will satisfy ∇ · v̇0(0, ·) = σ while the first

keeps the problem Lα0 = β0 in agreement with (4.2) at t = 0. Lemma C.1 would

seem to be the obvious way to find φ satisfying these conditions, but observe that

it requires σ ∈ H
s−3
p . At first glance this appears to be a problem since a direct

application of Lemma C.5(ii) only gives σ ∈ H
0
p. However, it is straightforward to

verify that σ = ∇ · (u0 ·∇u0) since ∇ · u0 = 0. It then follows from Lemma C.5(i)

that u0 ·∇u0 ∈ H
s−2
p so that σ ∈ H

s−3
p . Lemma C.1 now provides a φ ∈ K

s

p ⊂ �Ks

p

satisfying the desired conditions.

To help bridge the gap between the nonlinear problem (2.9)–(2.15) and the

linear problem solved by α0, we introduce the approximate trajectory/displacement
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maps “predicted” by α0. We set

x0(t, a) =

�
t

0

v0(τ, a) dτ, x1 = x− x0 =

�
t

0

v1(τ, ·) dτ,

y0(t, a) = x0(t, a) + a, N0 = ∇y0τ 1 ×∇y0τ 2,

N1 = N−N0, Λ0(t, a) = (∇y0(t, a))
−1 = (I +∇x0(t, a))

−1
,

Λ1 = Λ− Λ0, Π0(t, a) = ((π0)i,j(t, a)) = ((λ0)i,j − δi,j) = Λ0(t, a)− I,

where I is the 3 × 3 identity matrix. There is no benefit to defining Π1 since we

already have Λ1 = (Λ − I) − (Λ0 − I). Notice that both Λ1(0, ·) = I − I = 0 and,

using (6.3),

DtΛ1(0, ·) = −∇u0 +
�
(I +∇x0)

−1
Dt(I +∇x0)(I +∇x0)

−1
�
(0, ·)

= −∇u0 +∇ẋ0(0, ·)

= −∇u0 +∇v0(0, ·)

= 0.

Hence our choice of α0 also provides excellent agreement between Λ and Λ0 at

t = 0. We denote by M the linear operator (i.e., acting on X
s with Λ fixed),

analogous to L, formed by (2.9), (2.10), (2.12), and (2.14). Similarly, we use M0 to

denote the linear operator formed using the same equations but with Λ,N replaced

by Λ0,N0, respectively. It is important to note that although M and M0 are linear

as operators, they themselves depend nonlinearly on α and α0 respectively. Setting

L0 = M0 − L and L1 = M − M0, we see that the full nonlinear problem can be
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rewritten as

Mα = (g e3, 0,u0, 0)

(L+ L0 + L1)α = (g e3, 0,u0, 0)

Lα0 + Lα1 + L0α0 + L0α1 + L1α0 + L1α1 = (g e3, 0,u0, 0)

Lα1 + L0α1 + L1α0 + L1α1 = (0,−φ, 0, 0)− L0α0

(L+ F )α1 = g

where F : X
s

0 → Y
s

0 is given by Fα1 = L0α1 + L1α0 + L1α1 and g =

(0,−φ, 0, 0) − L0α0 depends only on known terms. The bulk of our remaining work

will lie in showing that each term in F is actually Lipschitz continuous with respect

to α1 provided that α1 is taken from a fixed, bounded subset of Xs

0. Moreover, we

will prove that each forms a contraction mapping in α1 for sufficiently small T . In

particular, we will see that there exists a constant C > 0, independent of T , such

that

�Fα1 − F �α1�Ys ≤ CT
δ�α1 − �α1�Xs (6.4)

for some δ > 0 (still assuming that α1 and �α1 are taken from a fixed, bounded

subset of Xs

0).

Suppose that F satisfies (6.4) and that we take the closed set B = {α1 ∈ X
s

0 :

�α1 − L
−1
g�Xs ≤ �L−1

g�Xs} as the relevant subset of Xs

0. Note that this is a fixed

and bounded subset of Xs

0 because we can exploit the fact that α0 ∈ X
s

0(G0) to

bound �L−1
g�Xs above by a constant which is independent of T (using techniques

explored in detail over the next several pages). Observe that if we define the map

R : Xs

0 → X
s

0 by Rα1 = L
−1(g − Fα1), then the existence of a fixed point of R

would yield a solution of the full nonlinear problem (2.9)–(2.15). Taking α1 ∈ B
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and applying Theorem 5.6,

�Rα1 − L
−1
g�Xs = �L−1

Fα1�Xs

≤ C1�Fα1�Ys

≤ C2T
δ�α1�Xs

≤ C2T
δ(�α1 − L

−1
g�Xs + �L−1

g�Xs)

≤ C3T
δ�L−1

g�Xs

so that R(B) ⊂ B for sufficiently small T . Here C1, C2, and C3 are positive

constants which do not depend on T . Moreover, R is a contraction on B for the

same T since

�Rα1 −R�α1�Xs = �L−1(Fα1 − F �α1)�Xs

≤ C1�Fα1 − F �α1�Ys

≤ C2T
δ�α1 − �α1�Xs .

Thus we can apply the contraction mapping principle to obtain a unique fixed point

of R in B which yields the desired solution of our nonlinear problem.

All that remains is to show that F indeed satisfies the estimate �Fα1 −

F �α1�Ys ≤ CT
δ�α1 − �α1�Xs for some δ > 0 and for all α1, �α1 taken from a fixed,

bounded subset of Xs

0. Setting s = 3 + 2δ where 0 < δ <
1
4 , we now estimate

the terms arising in the various components of F individually. It should be noted

here that while the operator L1 depends on both α0 and α1, L0 is independent of

α1 (depending only on α0). To avoid repetitive comments, we also note that in

the following claims C,C0, C1, . . . , denote positive constants which may depend on
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T0, but are always independent of T . In particular, C denotes a generic positive

constant which can change from instance to instance.

Claim 1. (L0)1 is a contraction for sufficiently small T , with �(L0α1)1�Ks−2
p

≤

CT
δ�α1�Xs .

Proof of Claim 1. First we notice that the i
th component of (L0α1)1 can be

rewritten, using the entires of Π0, as

((L0α1)1)i = −µ

�

j,k,m

(λ0)j,kDk((λ0)j,mDm(v1)i) + µ

�

k

D
2
k
(v1)i

+
�

k

(λ0)i,kDkq1 −Diq1

= −µ

�

j,k,m

(π0)j,kDk((π0)j,mDm(v1)i)− µ

�

j,m

Dj((π0)j,mDm(v1)i)

− µ

�

j,k

(π0)j,kDjDk(v1)i +
�

k

(π0)i,kDkq1.

The reason that we opt to write terms using Π0 instead of Λ0 has to do with

our need to make repeated use of Lemma C.6(ii). This result is used to split

products, such as (π0)j,mDm(v1)i, into pieces that can be estimated individually

without introducing an unknown dependence on T and relies on both pieces (and

potentially their time derivatives) vanishing at t = 0. Since (L0α1)1 can be written

so that every term contains entries from Π0 and these entries all vanish at t = 0

(unlike those of Λ0), it is only natural to rewrite things in this form.

Our first goal is to show that (π0)j,mDm(v1)i ∈ K
2+2δ
p . To obtain estimates

for Π0, we begin by examining the derivatives of v0 (and subsequently x0). Since

Dm(v0)i ∈ K
2+2δ
p (G0), we have Dm(v0)i ∈ H

2δ((0, T0);H2−2δ
p ) by Lemma C.3. It
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then follows from Lemma C.4 that Dm(x0)i ∈ H
1+δ((0, T );H2−2δ

p ) and

�Dm(x0)i�H1+δ((0,T );H2−2δ
p ) ≤ C1T

δ�Dm(v0)i�H2δ((0,T );H2−2δ
p )

≤ C1T
δ�Dm(v0)i�H2δ((0,T0);H

2−2δ
p )

= C2T
δ (6.5)

for T ≤ T0. This implies that Π0 = −I +
�

n
(−1)n(∇x0)n is well-defined and

�Π0�(H1+δ((0,T );H2−2δ
p ))3×3 ≤

∞�

n=1

C
n−1
0 �∇x0�n(H1+δ((0,T );H2−2δ

p ))3×3

=
�∇x0�(H1+δ((0,T );H2−2δ

p ))3×3

1− C0�∇x0�(H1+δ((0,T );H2−2δ
p ))3×3

≤ C3T
δ
, (6.6)

provided that we take T small enough that �∇x0�(H1+δ((0,T );H2−2δ
p ))3×3 <

min{1
2 ,

1
2C0

}, where C0 is the appropriate constant taken from Lemma C.6(ii).

Finally, we observe that by Lemma C.3(ii), v1 ∈ H
1+δ((0, T );H1

p) with

�v1�H1+δ((0,T );H1
p)
≤ C�v1�K3+2δ

p
,

where C is independent of T . Thus, applying Lemmas C.6(ii) and C.5(i), we obtain

�(π0)j,mDm(v1)i�H1+δ((0,T );L2) ≤ C4�(π0)j,m�H1+δ((0,T );H2−2δ
p )�Dm(v1)i�H1+δ((0,T );L2)

≤ C4�Π0�(H1+δ((0,T );H2−2δ
p ))3×3�v1�H1+δ((0,T );H1

p)

≤ C5T
δ�v1�K3+2δ

p
. (6.7)

To conclude that (π0)j,mDm(v1)i ∈ K
2+2δ
p , we now need to estimate its spatial

derivatives. Since we have Dm(v0)i ∈ H
0((0, T0);H2+2δ

p ), it follows that Dm(x0)i ∈

84



H
1((0, T );H2+2δ

p ) by Lemma C.4. In fact, the Sobolev Embedding Theorem (B.8)

implies that Dm(x0)i ∈ C([0, T ];H2+2δ
p ). To obtain our desired estimate we will now

need to exploit complex interpolation between H
2
p and H

3
p (see Appendix A.2 for

details regarding complex interpolation). First, we notice that

�Dm(x0)i�C([0,T ];H2+2δ
p ) = sup

t∈[0,T ]

����
�

t

0

Dm(v0)i

����
H

2+2δ
p

.

Now, we suppose temporarily that
�

t

0 Dm(v0)i ∈ H
k

p where k ∈ {2, 3}. Applying

Hölder yields

����
�

t

0

Dm(v0)i

����
2

Hk
p

≤
����
�

t

0

Dm(v0)i

����
2

Hk

=
�

|α|≤k

����
�

t

0

DαDm(v0)i

����
2

L2

=
�

|α|≤k

����
�

T

0

χ[0,t]DαDm(v0)i

����
2

L2

≤
�

|α|≤k

���χ[0,t]�L2(0,T )�DαDm(v0)i�L2(0,T )

��2

L2

= �χ[0,t]�2L2(0,T )

����
�

|α|≤k

�DαDm(v0)i�L2

����
2

L2(0,T )

≤ C1t �Dm(v0)i�2L2((0,T );Hk
p )

≤ C1t �Dm(v0)i�2L2((0,T0);Hk
p )

≤ C2t
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where C1 and C2 are positive constants depending on k. If we take Dm(x0)i ∈

C([0, T ];H3
p), then applying Theorem A.1(iv) yields

�Dm(x0)i�C([0,T ];H2+2δ
p ) = sup

t∈[0,T ]

����
�

t

0

Dm(v0)i

����
H

2+2δ
p

≤ sup
t∈[0,T ]

����
�

t

0

Dm(v0)i

����
1−2δ

H2
p

����
�

t

0

Dm(v0)i

����
2δ

H3
p

≤ C sup
t∈[0,T ]

t
1/2

= CT
1/2

. (6.8)

Estimate (6.8) remains valid for all Dm(x0)i ∈ C([0, T ];H2+2δ
p ), since H

3
p is dense in

H
2+2δ
p . Now the approach used to obtain (6.6) can be applied again, this time with

the constant C0 > 0 coming from Lemma C.5(i), to obtain

�Π0�(C([0,T ];H2+2δ
p ))3×3 ≤ C6T

1/2
.

Since Dm(v1)i ∈ H
0((0, T );H2+2δ

p ), Lemma C.5(i) yields

�(π0)j,mDm(v1)i�H0((0,T );H2+2δ
p ) =

��
T

0

�(π0)j,mDm(v1)i�2
H

2+2δ
p

�1/2

≤ C

��
T

0

�(π0)j,m�2
H

2+2δ
p

�Dm(v1)i�2
H

2+2δ
p

�1/2

≤ CT
1/2�Dm(v1)i�H0((0,T );H2+2δ

p )

≤ CT
1/2�v1�K3+2δ

p
. (6.9)

Combining (6.7) and (6.9), we obtain (π0)j,mDm(v1)i ∈ K
2+2δ
p with

�(π0)j,mDm(v1)i�K2+2δ
p

≤ CT
δ�v1�K3+2δ

p
. (6.10)
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The same series of steps can be applied to show that the terms

(π0)j,kDjDk(v1)i, (π0)j,kDk((π0)j,mDm(v1)i), and (π0)i,kDkq1,

all belong to K
1+2δ
p and satisfy the same type of estimate as (6.10). Specifically, we

obtain

�(L0α1)1�K1+2δ
p

≤ CT
δ�v1�K3+2δ

p
+ CT

δ�∇q1�K1+2δ
p

.

Since L0 is linear in α1, the first component is obviously a contraction mapping for

sufficiently small T . �

Claim 2. For any fixed constant K > 0, (L1α0)1 is a contraction in α1 for

sufficiently small T and �α1�Xs ≤ K. In particular, �(L1α0)1 − (�L1α0)1�Ks−2
p

≤

CT
δ�α1 − �α1�Xs for all α1, �α1 bounded as above, where �L1 depends on �α1 in

precisely the same fashion that L1 depends on α1. Here the constant C > 0

depends on K.

Proof of Claim 2. The i
th component of (L1α0)1 can be rewritten as

((L1α0)1)i = −µ

�

j,k,m

λj,kDk(λj,mDm(v0)i) + µ

�

j,k,m

(λ0)j,kDk((λ0)j,mDm(v0)i)

+
�

k

λi,kDkq0 −
�

k

(λ0)i,kDkq0

= −µ

�

j,k,m

(λ1)j,kDk((λ1)j,mDm(v0)i)− µ

�

j,k,m

(λ1)j,kDk((π0)j,mDm(v0)i)

− µ

�

j,k,m

(π0)j,kDk((λ1)j,mDm(v0)i)− µ

�

j,k

(λ1)j,kDjDk(v0)i)

− µ

�

j,m

Dj((λ1)j,mDm(v0)i) +
�

k

(λ1)i,kDkq0
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The approach which led to (6.5) and (6.8) can be used again to obtain

�Dm(x1)i�H1+δ((0,T );H2−2δ
p ) ≤ CT

δ�v1�K3+2δ
p

,

�Dm(x1)i�C([0,T ];H2+2δ
p ) ≤ CT

1/2�v1�K3+2δ
p

.

It is important to note here that since α1 will eventually be restricted to a fixed

bounded set (i.e., �α1�Xs ≤ K for fixed K), we will be able to take T small enough

to ensure that both �Dm(x0)i� < � and �Dm(x1)i� < �, in the appropriate norms,

for any � > 0. Temporarily denoting the space (H1+δ((0, T );H2−2δ
p ))3×3 by �H, we

apply Lemmas C.6(ii) and C.5(i) to get

�Λ1�(H1+δ((0,T );H2−2δ
p ))3×3 = �(∇y)−1 − (∇y0)

−1� �H

= �(∇y)−1(∇y0 −∇y)(∇y0)
−1� �H

=

�����

�
�

n

(−1)n(∇x)n
�
∇x1

�
�

m

(−1)m(∇x0)
m

������
�H

=

�����
�

m,n

(−1)n+m(∇x)n∇x1(∇x0)
m

�����
�H

≤
�

m,n

C
m+n

0 �∇x�n�H�∇x1� �H�∇x0�m�H

≤ �∇x1� �H

�

m,n

C
m+n

0 (�∇x1� �H + �∇x0� �H)
n�∇x0�m�H

≤ �∇x1� �H

�

m,n

C
m+n

0 2n(�∇x1�n�H + �∇x0�n�H)�∇x0�m�H

=
�∇x1� �H

1− C0�∇x0� �H

�
1

1− 2C0�∇x1� �H
+

1

1− 2C0�∇x0� �H

�

≤ C�∇x1� �H

≤ CT
δ�v1�K3+2δ

p
. (6.11)
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Here we have taken T small enough that all of the geometric series converge and

are easily estimated (e.g., � = min{1
2 ,

1
4C0

}). We have also employed the trivial

estimate (a + b)n ≤ 2n−1(an + b
n) for a, b ≥ 0. Since Dm(v0)i ∈ H

1+δ((0, T );L2) by

Lemma C.3(i), the triangle inequality yields

�(λ1)j,mDm(v0)i�H1+δ((0,T );L2) ≤ �(λ1)j,mDm((v0)i − (u0)i)�H1+δ((0,T );L2)

+ �(λ1)j,mDm(u0)i�H1+δ((0,T );L2). (6.12)

We subtract the initial velocity u0 from v0 here so that we will be able to apply

Lemma C.6(ii) in a later step. While this subtraction introduces the second

term on the right side of (6.12), this term is not problematic since u0 is itself

independent of time. In fact, we can find a constant C > 0 such that

�(λ1)j,mDm(u0)i�H1+δ((0,T );L2) ≤ C�Dm(u0)i�L2�(λ1)j,m�H1+δ((0,T );H2−2δ
p ) (6.13)

using the interpolation property for linear operators given in Theorem A.2. Similar

interpolations will be required in the proofs of subsequent claims; here we describe

the manner in which the interpolation property is used, but in later instances we

will leave most of the details to the reader. Using Lemmas C.5(i) and C.6(i), we

can define the linear multiplication operator T : H1((0, T );H2−2δ
p ) → H

1((0, T );L2)

by Tf = fDm(u0)i. Now, for k ∈ {1, 2} and f ∈ H
k((0, T );H2−2δ

p ), we apply
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Lemma C.5(i) to obtain

�fDm(u0)i�2Hk((0,T );L2) =
�

j≤k

�Dj

t (fDm(u0)i)�2L2((0,T );L2)

=
�

j≤k

�
T

0

�

Ω

|Dm(u0)iD
j

tf |2

=
�

j≤k

�

Ω

|Dm(u0)i|2
�

T

0

|Dj

tf |2

=
���Dm(u0)i�f�Hk(0,T )

���
2

L2

≤ Ck�Dm(u0)i�2L2

��� �f�Hk(0,T )

���
2

H
2−2δ
p

= Ck�Dm(u0)i�2L2�f�2
Hk((0,T );H2−2δ

p )
,

where Ck > 0 is a constant depending on k. Hence we immediately obtain

that T and T |
H2((0,T );H2−2δ

p ) are continuous into H
1((0, T );L2) and H

2((0, T );L2),

respectively, and have operator norms bounded above by a positive constant

depending on u0. Let us temporarily set X0 = H
2((0, T );H2−2δ

p ), X1 =

H
1((0, T );H2−2δ

p ), Y0 = H
2((0, T );L2), and Y1 = H

1((0, T );L2). Theorem A.2

then implies that T |
H1+δ((0,T );H2−2δ

p ) is continuous into H
1+δ((0, T );L2) and

�fDm(u0)i�H1+δ((0,T );L2) = �Tf�H1+δ((0,T );L2)

≤ �T�L(H1+δ((0,T );H2−2δ
p );H1+δ((0,T );L2))�f�H1+δ((0,T );L2)

≤ C�T�1−δ

L(X1;Y1)
�T�δL(X0;Y0)�f�H1+δ((0,T );L2)

≤ C�Dm(u0)i�L2�f�
H1+δ((0,T );H2−2δ

p )

for all f ∈ H
1+δ((0, T );H2−2δ

p ), where we have neglected to denote restrictions

in order to enhance readability. Hence (6.13) holds. We can now combine Lemma
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C.6(ii) with (6.13) and (6.11) to obtain

�(λ1)j,mDm(v0)i�H1+δ((0,T );L2) ≤ C1�(λ1)j,m� �H�Dm((v0)i − (u0)i)�H1+δ((0,T );L2)

+ C2�(λ1)j,m� �H

≤ C3T
δ�v1�K3+2δ

p

from (6.12). Here we have temporarily denoted the space H
1+δ((0, T );H2−2δ

p ) by �H

for convenience. The same general approach used to obtain (6.11) is now applied

again to get

�Λ1�(C([0,T ];H2+2δ
p ))3×3 ≤ CT

1/2�v1�K3+2δ
p

.

The estimate analogous to (6.9) can also be found as before and from this it follows

that

�(λ1)j,mDm(v0)i�K2+2δ
p

≤ CT
δ�v1�K3+2δ

p
. (6.14)

The same line of reasoning can now be used to show that all but the first term in

((L1α0)1)i belong to K
1+2δ
p and satisfy an estimate of the form (6.14). The first

term, on the other hand, satisfies

�(λ1)j,kDk((λ1)j,mDm(v0)i)�K1+2δ
p

≤ CT
δ�v1�K3+2δ

p
(1 + �v1�K3+2δ

p
).

Here the two v1 norms arise as a result of the estimation of the two λ1 terms

individually. However, since we will eventually restrict ourselves to α1 lying in a

fixed bounded set, the above estimate is equivalent to one of the form (6.14). To

see that the (L1α0)1 is a contraction in α1 in this setting, we take α1 and �α1 from
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a fixed bounded set and observe that

Λ1 − �Λ1 = (Λ− Λ0)− (�Λ− Λ0)

= Λ− �Λ

= (∇y)−1 − (∇�y)−1

= −(∇y)−1(∇y −∇�y)(∇�y)−1

= −(∇y)−1∇(y1 − �y1)(∇�y)−1

where the quantities with the tilde ∼ correspond to �α1 in the obvious way. This

allows us to estimate differences of terms involving Λ1 and �Λ1 (in the various

norms) by �Λ1 − �Λ1� ≤ CT
δ�v1 − �v1�K3+2δ

p
. Adding and subtracting to compare

terms from Λ1 and �Λ1, we can conclude

�(L1α0)1 − (�L1α0)1�K1+2δ
p

≤ CT
δ�v1 − �v1�K3+2δ

p

so that (L1α0)1 is a contraction in α1 for sufficiently small T and �α1�Xs ≤ K. �

It readily follows from the techniques/estimates used in the proofs of Claims

1 and 2 that (L1α1)1 also satisfies Claim 2 under the same conditions. We now

move on to the second component of F which deals with the conservation of mass

equations.

Claim 3. (L0)2 is a contraction for sufficiently small T , with �(L0α1)2� �Ks
p
≤

CT
δ�v1�Ks

p .

Proof of Claim 3. First we observe that

(L0α1)2 =
�

j,k

(λ0)j,kDk(v1)j −∇ · v1 =
�

j,k

(π0)j,kDk(v1)j
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and note that the estimate (6.9) directly applies. All that remains is to estimate

the product (π0)j,kDk(v1)j in H
3/2+δ((0, T ); 0H−1

p ).

Since v1(0, ·) = v̇1(0, ·) = 0, we can use Lemma C.2(ii) to extend v1 to (0, T0)

with norm bounded independent of T . Combining this with (5.33), we find

�Dk(v1)j�H3/2+δ((0,T ),0H−1
p ) ≤ �Dk(v1)j�H3/2+δ((0,T0),0H

−1
p )

≤ C�(v1)j�Hs/2((0,T0);H0
p)∩H0((0,T0);Hs

p)

≤ C�v1�Ks
p .

By Lemma C.3(ii), we have Dk(v1)j ∈ H
1((0, T );H2δ

p ) with �Dk(v1)j�H1((0,T );H2δ
p ) ≤

C�v1�Ks
p . Hence we can apply (6.6) and Lemmas C.6(ii) and C.5(i) to obtain

�(π0)j,kDk(v1)j�H1((0,T );H2δ
p ) ≤ CT

δ�v1�Ks
p .

We now estimate the terms arising from differentiating this product with respect

to time. Since Dk(v̇1)j ∈ H
1/2+δ((0, T ); 0H−1

p ), the same approach used above,

modified slightly to use Lemma C.5(iii), yields

�(π0)j,kDk(v̇1)j�H1/2+δ((0,T );0H−1
p ) ≤ CT

δ�v1�Ks
p .

Notice that the condition v̇1(0, ·) = 0 is necessary to obtain this estimate. Next

we try to estimate terms of the form (π̇0)j,kDk(v1)j in the same space. Since

Dk(ẋ0)j = Dk(v0)j ∈ K
2+2δ
p (G0), we have both Dk(ẋ0)j ∈ H

1/2+δ((0, T0);H1
p)

by Lemma C.3(ii) and Dk(x0)j ∈ H
1/2+δ((0, T0);H2+2δ

p ) by Lemma C.4.

Since Π̇0 = −Λ0∇ẋ0Λ0, it follows from Lemmas C.5(i) and C.6(i) that Π̇0 ∈

(H1/2+δ((0, T0);H1
p))

3×3.
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While it would seem that we are now ready to estimate (π̇0)j,kDk(v1)j in the

usual fashion, the fact that Π̇0(0, ·) = −∇ẋ0(0, ·) = −∇u0 means that we

cannot apply Lemma C.6(ii) directly. However, with the appropriate addition and

subtraction, Lemmas C.6(ii) and C.5(iv) can be applied to split the product up as

desired:

�(π̇0)j,kDk(v1)j� �H ≤ �((π̇0)j,k +Dj(u0)k)Dk(v1)j� �H + �Dj(u0)kDk(v1)j� �H

≤ C1�(π̇0)j,k +Dj(u0)k�H1/2((0,T );H1
p)
�Dk(v1)j�H1/2((0,T );H2δ

p )

+ C2�Dj(u0)k�H1
p
�Dk(v1)j�H1/2+δ((0,T );L2). (6.15)

Here we have temporarily denoted the space H
1/2+δ((0, T ); 0H−1

p ) by �H for

convenience. We have also used the estimate

�fDj(u0)k�H1/2+δ((0,T );0H−1
p ) ≤ C�Dj(u0)k�H1

p
�f�H1/2+δ((0,T );L2), (6.16)

which holds for all f ∈ H
1/2+δ((0, T );L2) and can be obtained using Theorem A.2

in a similar fashion to the one detailed in the proof of Claim 2. Unfortunately, the

second term in (6.15) can not be estimated in the usual way; ordinarily we are able

to obtain our estimates’ dependence on T from whichever function is multiplied

onto v1, yet here u0 is completely independent of T . To get around this, we observe

that since Dk(v̇1)j ∈ H
0((0, T );H2δ

p ) by Lemma C.3(ii), we can rewrite Dk(v1)j as

the integral (in time) of Dk(v̇1)j and apply Lemma C.4 to get

�Dk(v1)j�H1/2+δ((0,T );H2δ
p ) = �Dk(v1)j�H1−(1/2−δ)((0,T );H2δ

p )

≤ CT
1/2−δ�Dk(v̇1)j�H0((0,T );H2δ

p )

≤ CT
1/2−δ�v1�Ks

p . (6.17)
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Now both terms in (6.15) can be estimated easily, yielding

�(π̇0)j,kDk(v1)j�H1/2+δ((0,T );0H−1
p ) ≤ CT

1/2−δ�v1�Ks
p .

The inequality in the claim follows trivially. As with the first component, linearity

of L0 in α1 now implies that the second component is a contraction mapping for

sufficiently small T . �

Claim 4. Under the hypotheses of Claim 2, (L1α0)2 is a contraction in α1 for

sufficiently small T , with �(L1α0)2 − (�L1α0)2� �Ks
p
≤ CT

δ�α1 − �α1�Ks
p where α1, �α1

are taken as in Claim 2.

Proof of Claim 4. As before, we note that

(L1α0)2 =
�

j,k

(λ1)j,kDk(v0)j.

Since the estimate analogous to (6.9) directly applies, we need only estimate the

product in H
3/2+δ((0, T ); 0H−1

p ). Then, adding and subtracting so as to exploit

Lemma C.6(ii),

�(λ1)j,kDk(v0)j�H1((0,T );L2) ≤ �(λ1)j,kDk((v0)j − (u0)j)� �H + �(λ1)j,kDk(u0)j� �H

≤ C1�(λ1)j,k�H1((0,T );H2−2δ
p )�Dk((v0)j − (u0)j)� �H

+ C2�Dk(u0)j�H2δ
p
�(λ1)j,k�H1((0,T );H2−2δ

p )

≤ C3T
δ�v1�Ks

p .
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Here we have temporarily denoted the space H
1((0, T );L2) by �H for convenience.

We have also used the estimate

�fDk(u0)j�H1((0,T );L2) ≤ C2�Dk(u0)j�H2δ
p
�f�

H1((0,T );H2−2δ
p ),

valid for all f ∈ H
1((0, T );H2−2δ

p ), which is a simple application of Lemma C.5(i).

Applying the same approach as that leading to (6.17), we see that

�Dk(x1)j�H1/2+δ((0,T );H2+2δ
p ) ≤ CT

1/2−δ�v1�Ks
p .

Similarly, the steps that led to (6.11) can now be used to show that

�Λ1�(H1/2+δ((0,T );H2+2δ
p ))3×3 ≤ CT

1/2−δ�v1�Ks
p .

Since Dk(v̇0)j ∈ H
1/2+δ((0, T ); 0H−1

p ) (see the similar discussion in Claim 3), we can

use Lemmas C.6(ii) and C.5(iii) to obtain

�(λ1)j,kDk(v̇0)j� �H ≤ �(λ1)j,kDk((v̇0)j − (v̇0)j(0, ·))� �H

+ �(λ1)j,kDk(v̇0)j(0, ·)� �H

≤ C4�(λ1)j,k�H1/2+δ((0,T );H2+2δ
p )�Dk((v̇0)j − (v̇0)j(0, ·))� �H

+ C5�(λ1)j,k�H1/2+δ((0,T );H2+2δ
p )�Dk(v̇0)j(0, ·)�0H

−1
p

≤ C6T
1/2−δ�v1�Ks

p .

Here we have temporarily denoted the space H
1/2+δ((0, T ); 0H−1

p ) by �H for

convenience. We have also used the estimate

�fDk(v̇0)j(0, ·)�H1/2+δ((0,T );0H−1
p ) ≤ C�Dk(v̇0)j(0, ·)�0H

−1
p
�f�

H1/2+δ((0,T );H2+2δ
p ),
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which holds for all f ∈ H
1/2+δ((0, T );H2+2δ

p ) and can be obtained using Theorem

A.2 in a similar fashion to the one detailed in the proof of Claim 2. All that

remains is to estimate terms of the form (λ̇1)j,kDk(v0)j in the same space. Lemma

C.4 implies

�Dk(x1)j�H1/2+δ((0,T );H2+2δ
p ) ≤ CT

1/2−δ�v1�Ks
p .

Adding and subtracting terms, it is straightforward to verify that

Λ̇1 = −(Λ1 + Π0 + I)∇ẋ1(Λ1 + Π0 + I)− (Λ1 + Π0 + I)∇ẋ0Λ1 − Λ1∇ẋ0(Π0 + I).

Since every term contains either Λ1 or ∇ẋ1, with all other quantities bounded

(for α1 taken from a fixed, bounded set), we can apply Lemmas C.5(i) and C.6(ii)

repeatedly to get the estimate

�Λ̇1�(H1/2+δ((0,T );H1
p))

3×3 ≤ CT
1/2−δ�v1�Ks

p .

Finally, since Dk(v0)j ∈ H
1/2+δ((0, T );H1

p), we can apply Lemmas C.6(ii) and

C.5(iv) to obtain

�(λ̇1)j,kDk(v0)j�H1/2+δ((0,T );0H−1
p ) ≤ �(λ̇1)j,k(Dk(v0)j −Dk(u0)j)� �H

+ �(λ̇1)j,kDk(u0)j�H1/2+δ((0,T );0H−1
p )

≤ C7�(λ̇1)j,k� �H�Dk(v0)j −Dk(u0)j� �H

+ C8�Dj(u0)k�H1
p
�Dk(v1)j�H1/2+δ((0,T );L2)

≤ C9T
1/2−δ�v1�Ks

p .

Here we have temporarily denoted the space H
1/2+δ((0, T );H1

p) by �H for

convenience and have also made use of the estimate (6.16). That (L1α0)2 is a
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contraction in α1 can now be shown using the techniques described at the end of

Claim 2. �

As before, (L1α1)2 can be shown to satisfy Claim 4 (under the same conditions)

using a combination of the techniques/estimates described in the proofs of Claims 3

and 4. Since it is clear that (Fα1)3 = (g)3 = 0, all that remains to be shown is that

the fourth component of F is also contraction in α1.

Claim 5. (L0)4 is a contraction for sufficiently small T , with

�(L0α1)4�
K

s−3/2
p (∂GF )

≤ CT
δ�α1�Xs .

Proof of Claim 5. As usual, we begin by rewriting the i
th component in terms of

the entries of Π0:

((L0α1)4)i = q1(N0 − n)i − µ

�

j,k

((π0)j,kDk(v1)i + (π0)i,kDk(v1)j)(N0 − n)j

− µ

�

j

(Dj(v1)i +Di(v1)j)(N0 − n)j

− µ

�

j,k

((π0)j,kDk(v1)i + (π0)i,kDk(v1)j)nj (6.18)

where n = n(0, ·) = N(0, ·) = N0(0, ·). It will be most convenient for us to estimate

terms in K
2+2δ
p (G0) and then restrict them to ∂GF . In keeping with this, we can

use Lemmas C.2(ii) and C.1 to extend q1 first to K
3/2+2δ
p ((0, T0) × SF )) and then

to K
2+2δ
p (G0) in such a way that it remains bounded independent of T . Since nj is

smooth and, like u0, independent of time, the last term in (6.18) is straightforward

to estimate using the general techniques discussed in the proofs of the previous

claims. For the remaining terms, the only expression which has not already been

estimated is N0 − n.

The tangent vectors τ 1 and τ 2 are both C
∞(Ω), so N0 is easily extended into

Ω. Moreover, Lemma C.3 and the Sobolev Embedding Theorem imply that N0 ∈
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H
1+δ((0, T );H2−2δ

p ) ∩ C([0, T ];H2+2δ
p ) which is contained in C([0, T ];C0

p). Now,

since

N0 − n = (∇x0τ 1 ×∇x0τ 2) + (∇x0τ 1 × τ 2) + (τ 1 ×∇x0τ 2),

it readily follows from (6.5) and (6.8) that both

�N0 − n�
H1+δ((0,T );H2−2δ

p ) ≤ CT
δ and �N0 − n�

C([0,T ];H2+2δ
p ) ≤ CT

1/2
.

With these new estimates in hand, the claimed inequality now follows from the

usual techniques. As always, linearity of (L0)4 now implies that it is a contraction.

�

Claim 6. Under the hypotheses of Claim 2, (L1α0)4 is a contraction in α1 for

sufficiently small T , with �(L1α0)4 − (�L1α0)4�
K

s−3/2
p (∂GF )

≤ CT
δ�α1 − �α1�Ks

p where

α1, �α1 are taken as in Claim 2.

Proof of Claim 6. The i
th component of (L1α0)4 can be rewritten as

((L1α0)4)i = −µ

�

j,k

((λ1)j,kDk(v0)i + (λ1)i,kDk(v0)j)((N1)j + (N0 − n)j + nj)

− µ

�

j,k

((π0)k,jDk(v0)i + (π0)k,iDk(v0)j)(N1)j

− µ

�

j,k

((λ1)j,kDk(v0)i + (λ1)i,kDk(v0)j)((N0 − n)j + nj)

+ q0(N1)i − µ

�

j

(Dj(v0)i +Di(v0)j)(N1)j.

Here we seek appropriate estimates for N1. This can be done in roughly the same

way as in Claim 5 (with N0) using the corresponding estimates for Dm(x1)i. Here

the condition that α1 be taken from a fixed, bounded set is required in order to
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obtain

�N1�H1+δ((0,T );H2−2δ
p ) ≤ CT

δ�v1�Ks
p and �N1�C([0,T ];H2+2δ

p ) ≤ CT
1/2�v1�Ks

p .

Now (L1α0)4 is readily seen to be a contraction in α1 using the same technique

outlined in Claim 2. �

Finally, we can combine the approaches in the proofs of Claims 5 and 6 to

demonstrate that (L1α1)4 similarly satisfies Claim 6. Thus F satisfies (6.4),

completing the proof of Theorem 4.1.

Since α0 and α1 are uniquely determined, it is tempting to assume that the

solution provided by Theorem 4.1 is the only one. Unfortunately, however, though

we obtain that α1 is the unique fixed of R|B using the contraction mapping

principle, this says nothing of whether it is also the unique fixed point of R (on

X
s

0). The following result shows that any other solution of the nonlinear problem

(2.9)–(2.15) must agree with the one provided by Theorem 4.1 for some initial

period of time. Here we will denote changes to the underlying time interval of a

space by appending this interval onto the name of that space.

Lemma 6.1. Let 3 < s <
7
2 . Suppose that α ∈ X

s(0, Tα) is the solution of (2.9)–

(2.15) provided by Theorem 4.1 and let β ∈ X
s(0, Tα) be any other (strong) solution

to the same problem on (0, Tα). There exists Tβ > 0 such that α = β in X
s(0, Tβ).

Proof. Let α ∈ X
s(0, Tα) be the solution discussed in Theorem 4.1 where Tα

denotes the fixed upper limit of the time interval for this solution. Now suppose

that β ∈ X
s(0, Tα) is another solution. If β − α0 ∈ B(0, Tα), then α = β by

uniqueness of the fixed point of R in B(0, Tα). However, if β − α0 �∈ B(0, Tα), then
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there exists an n such that �β −α0 − L
−1
g�Xs(0,Tα) ≤ n�L−1

g�Xs(0,Tα). Define

Bn(0, T ) = {γ ∈ X
s

0(0, T ) : �γ − L
−1
g�Xs(0,T ) ≤ n�L−1

g�Xs(0,Tα)}

and notice that α−α0,β−α0 ∈ Bn(0, T ) for all T ≤ Tα. We estimate F exactly as

before to obtain (6.4) where the constant now depends on n. Taking γ ∈ Bn yields

�Rγ − L
−1
g�Xs(0,T ) = �L−1

Fγ�Xs(0,T )

≤ C�Fγ�Ys(0,T )

≤ C(n)T δ�γ�Xs(0,T )

≤ C(n)T δ(�γ − L
−1
g�Xs(0,T ) + �L−1

g�Xs(0,T ))

≤ C(n)T δ(n�L−1
g�Xs(0,Tα))

which implies that R(Bn(0, T )) ⊂ Bn(0, T ) for sufficiently small T = T (n).

As before, it is easily verified that R is a contraction on Bn(0, T ) for the same T .

Applying the contraction mapping principle and exploiting uniqueness of the fixed

point, we have α = β in X
s(0, T ).

Note that if Theorem 4.1 could be proven for displacements from Ω which are

initially nonzero (i.e., replace (2.13) with x(0, ·) = f for sufficiently general f), then

uniqueness on (0, Tα) could be obtained using Lemma 6.1 in the following way: for

α �= β in X
s(0, Tα), there exists 0 < Tmax < Tα such that α = β in X

s(0, Tmax)

and α �= β in X
s(0, T ) for T > Tmax. Making the change of variable τ = t − Tmax,

both α,β are solutions of the nonlinear problem given by (2.9)–(2.15), with (2.12)

replaced by vτ (0, ·) = v(Tmax, ·) and (2.13) replaced by xτ (0, ·) = x(Tmax, ·), for τ ∈

(0, Tα − Tmax). The argument contained in the proof of Lemma 6.1 could then be

applied again to contradict the maximality of Tmax and prove uniqueness on (0, Tα).
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6.2 The Axisymmetric Case

Given that our initial domain is a cylinder, a natural question to ask is whether

axisymmetric initial conditions will necessarily yield axisymmetric solutions.

This is especially important if one hopes to draw a connection to solutions of

corresponding thin-filament approximations since these arise from the axisymmetric

Navier-Stokes equations. To examine this, we rewrite the original nonlinear

problem (2.1)–(2.2) in cylindrical coordinates:

u̇r = −urDrur −
1

r
uθDθur − uzDzur +

1

r
u
2
θ
−Drp

+ µ

�
1

r
Dr(rDrur) +

1

r2
D

2
θ
ur +D

2
z
ur −

1

r2
ur −

2

r2
Dθuθ

�

u̇θ = −urDruθ −
1

r
uθDθuθ − uzDzuθ −

1

r
uθur −

1

r
Dθp

+ µ

�
1

r
Dr(rDruθ) +

1

r2
D

2
θ
uθ +D

2
z
uθ −

1

r2
uθ +

2

r2
Dθur

�

u̇z = −urDruz −
1

r
uθDθuz − uzDzuz −Dzp

+ µ

�
1

r
Dr(rDruz) +

1

r2
D

2
θ
uz +D

2
z
uz

�
+ g

0 =
1

r
Dr(rur) +

1

r
Dθuθ +Dzuz.

Similarly, in cylindrical coordinates, (2.7) becomes

(p− P0)nr = µ(2Drurnr +Druθnθ +
1

r
Dθurnθ −

1

r
uθnθ +Dzurnz +Druznz)

(p− P0)nθ = µ(Druθnr +
1

r
Dθurnr +

2

r
urnθ +

2

r
Dθuθnθ

− 1

r
uθnr +Dzuθnz +

1

r
Dθuznz)

(p− P0)nz = µ(Dzurnr +Druznr +Dzuθnθ +
1

r
Dθuznθ +

1

r
Dθur + 2Dzuznz).
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Lemma 6.2. The solution (u, p) of the problem (2.1)–(2.8) established in Corollary

4.2 (via Theorem 4.1) is axisymmetric provided that u0 is axisymmetric.

Proof. For the purposes of this proof, all functions are assumed to be given in

cylindrical coordinates. Suppose that u0 = u0(t, r, z) and let (u, p) be the solution

of (2.1)–(2.8) established in Corollary 4.2. It should be clear from the above

equations that (u(t, r, θ+c, z), p(t, r, θ+c, z)) must also be a solution of this problem

for any c ∈ R. Let α = (v, q) denote the solution of the associated Lagrangian

problem (2.9)–(2.15) provided by Theorem 4.1 and further let α = α0 + α1 be the

decomposition of α described in that proof. In what follows, we will only need to

keep track of differences in quantities’ angular (θ) arguments so we now abbreviate

any function of the form f(t, r, θ, z) by f(θ).

Taking φ as in Section 6.1, it is readily seen that, in addition to α0(θ), α0(θ + c)

is also a solution of Lα = (g e3,φ,u0, 0). It then follows from Theorem 5.6 that

α0(θ + c) = α0(θ) by uniqueness of solutions. This implies that α1(θ + c) ∈ B is a

fixed point of R and hence α1(θ + c) = α1(θ) since this fixed point is unique by the

contraction mapping principle. Hence the solution to the Lagrangian formulation of

the problem, α, is axisymmetric. To see that this translates into axisymmetry for

(u, p), we first observe that

y(θ) + c = x(θ) + (θ + c) =

�
t

0

v(θ) + (θ + c) =

�
t

0

v(θ + c) + (θ + c) = y(θ + c)

where y(θ), x(θ), and v(θ) denote the angular components of the trajectory,

displacement, and velocity maps, respectively, corresponding to α(θ). Similarly
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denoting the Eulerian solution (u, p) by β, it follows that

β(y + c) = β(y(θ) + c) = β(y(θ + c)) = α(θ + c) = α(θ) = β(y(θ)) = β(y).

Thus (u, p) is axisymmetric.

6.3 Concluding Remarks

In this work, we have established the local-in-time existence and regularity of

solutions (Theorem 4.1) to the three-dimensional Navier-Stokes flow of a viscous

fluid jet assumed to be periodic in the axial direction and everywhere else bounded

by a moving free surface. This was accomplished using a functional analytic

approach which revolved around a fixed point argument employing the contraction

mapping principle. A Lagrangian specification of the flow field was utilized in place

of the typical Eulerian specification in order to mitigate the difficulties involved in

having an a priori unknown domain. In addition to the existence result, we have

shown that the associated linear problem gives rise to an analytic semigroup of

contractions on P
0 (Theorem 5.3) whose generator has its spectrum contained in

the sector {λ ∈ C : 3π
4 ≤ arg(λ) ≤ 5π

4 }.
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A Function Spaces

A.1 Notation for Standard Function Spaces

While we define many of the spaces relevant to this work in the text, we assume

that the reader is already familiar with the standard Hölder, Lebesgue, and Sobolev

function spaces. These spaces are summarized below and we refer the reader to [1,

13, 43] for further details. For the following, let k ∈ N0, U ⊂ Rn is nonempty and

open, S ⊂ Rn is nonempty and of positive measure, and X is a complex separable

Hilbert space with norm � · �X .

(i) Continuous and continuously differentiable functions:

C(U) = {u : U → C | u is continuous}.

C(U) = {u : U → C | there exists v ∈ C(U), uniformly continuous on

bounded subsets of U , such that u is the unique bounded,

continuous extension of v to U}.

C
k(U) = {u : U → C | Dαu ∈ C(U) for all |α| ≤ k}.

C
k(U) = {u : U → C | Dαu ∈ C(U) for all |α| ≤ k}.

(ii) Smooth functions:

C
∞(U) =

�∞
k=0 C

k(U).

C
∞(U) =

�∞
k=0 C

k(U).

(iii) Hölder continuous and Hölder continuously differentiable functions with

exponent 0 < λ ≤ 1:

C
0,λ(S) = {u : S → C | there exists C ≥ 0 such that

|u(x)− u(y)| ≤ C|x− y|λ for all x, y ∈ S}.

C
k,λ(S) = {u : S → C | Dαu ∈ C

0,λ(S) for all |α| ≤ k}.
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(iv) Compactly supported continuous functions:

Cc(S) = {u ∈ C(S) | supp u ⊂ V ⊂ S where V is compact}.

C
k

c (S) = {u ∈ C
k(S) | supp u ⊂ V ⊂ S where V is compact}.

C
∞
c (S) = {u ∈ C

∞(S) | supp u ⊂ V ⊂ S where V is compact}.

C
k,λ

c (S) = {u ∈ C
k,λ(S) | supp u ⊂ V ⊂ S where V is compact}.

(v) Lebesgue p-integrable functions:

L
p(S) = {u : S → C | u is Lebesgue measurable and �u�Lp(S) < ∞},

where 1 < p < ∞ and

�u�p
Lp(S) =

�

S

|u|p.

L
∞(S) = {u : S → C | u is Lebesgue measurable and �u�L∞(S) < ∞},

where

�u�L∞(S) = ess sup
S

|u|.

(vi) Locally L
p functions:

L
p

loc(S) = {u : S → C | u ∈ L
p(V ) for each open V ⊂ V ⊂ S

with V compact}.

(vii) Weakly differentiable square-integrable functions (Sobolev spaces):

H
k(S) = {u ∈ L

2(S) | Dαu ∈ L
2(S) for all |α| ≤ k and �u�Hk(S) < ∞},

where

�u�2
Hk(S) =

�

|α|≤k

�Dαu�2L2(S).
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Here Dαu is a weak derivative of u. For u ∈ L
2(S), we define Dαu = v

where v satisfies �

S

uDαφ = (−1)|α|
�

S

vφ

for all test functions φ ∈ C
∞
c
(S).

(viii) H
k functions with vanishing trace (see the discussion preceding Theorem B.2):

H
k

0 (S) = {u ∈ H
k(S) | u|∂S = 0 in the sense of trace}.

(ix) Locally H
k functions:

H
k

loc(S) = {u : S → C | u ∈ H
k(V ) for each open V ⊂ V ⊂

S with V compact}.

(x) L
p and H

k functions with values in a separable Hilbert space

(Lebesgue-Bochner and Sobolev-Bochner spaces):

L
p(S;X) = {u : S → X | u is measurable and �u�Lp(S;X) < ∞}, where

1 < p < ∞ and

�u�p
Lp(S;X) =

�

S

�u�p
X
.

L
∞(S;X) = {u : S → X | u is measurable and �u�L∞(S;X) < ∞}, where

�u�L∞(S;X) = ess sup
S

�u�X .

H
k(S;X) = {u ∈ L

2(S;X) | Dαu ∈ L
2(S;X) for all |α| ≤ k and

�u�Hk(S;X) < ∞}, where

�u�2
Hk(S;X) =

�

|α|≤k

�Dαu�2L2(S).
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As before, we define Dαu = v (for u ∈ L
2(S;X)) where v satisfies

�

S

uDαφ = (−1)|α|
�

S

vφ

for all φ ∈ C
∞
c
(S).

A.2 Interpolation Spaces

A crucial role in this work is played by the Sobolev and Sobolev-Bochner

interpolation spaces,

H
k+β(S) = [Hk(S), Hk+1(S)]β, and H

k+β(S;X) = [Hk(S;X), Hk+1(S;X)]β,

respectively (where k ∈ N0, 0 < β < 1, and S and X are as in Appendix A.1).

These interpolation spaces give meaning to the notion of non-integer regularity

and provide a spectrum of spaces which are intermediate to (and consistent

with) the standard integer-regularity spaces. While there are several methods

of interpolation, the Sobolev and Sobolev-Bochner interpolation spaces are

generally obtained using the method of complex interpolation. We do not outline

this method here and refer the reader instead to [39, 40, 43] for further details.

Explicit characterizations of these spaces are unnecessary as we interact with them

primarily through the use of the interpolation properties which now follow.
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Theorem A.1. Let X0 ⊂ X1 be Hilbert spaces such that X0 is dense and

continuously embedded in X1. Complex interpolation provides a family of Hilbert

spaces denoted by [X0, X1]β, 0 ≤ β ≤ 1, which satisfy

(i) [X0, X1]0 = X0.

(ii) [X0, X1]1 = X1.

(iii) X ⊂ [X0, X1]α ⊂ [X0, X1]β ⊂ X1 for all 0 ≤ α ≤ β ≤ 1, where each embedding

is continuous.

(iv) �u�[X0,X1]β ≤ C�u�1−β

X0
�u�β

X1
for all u ∈ X1 and 0 ≤ β ≤ 1, where C > 0 is a

constant depending on β.

In fact, a much more general version of property (iv) is true and we will often

find it very useful in the proof of the main result in Chapter 6.

Theorem A.2. Let X0 ⊂ X1 and Y0 ⊂ Y1 be pairs of Hilbert spaces which

satisfy the conditions of Theorem A.1. Suppose T ∈ L(X1;Y1) is such that T |X0 ∈

L(X0;Y0), where L(A;B) denotes the space of bounded linear maps from A to B.

For 0 ≤ β ≤ 1, T |[X0,X1]β ∈ L([X0, X1]β; [Y0, Y1]β) and satisfies

�T�L([X0,X1]β ;[Y0,Y1]β) ≤ Cβ�T�1−β

L(X0;Y0)
�T�βL(X1;Y1)

where we have omitted the restriction notation for readability. The constant Cβ > 0

depends on β.
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B Referenced Results

This work utilizes standard results taken from a wide array of topics including

linear and nonlinear functional analysis, calculus of variations, spectral theory,

semigroup theory, and fluid dynamics. The most important of these are collected

in Appendices B.1, B.2, and B.3 for the reader’s convenience. Since we follow the

general overarching approach outlined by Beale in [7], we find many of the technical

lemmas from that work to be useful here. The majority of these require adaptation

in order to be compatible with the a3-periodic function spaces underlying our work.

These (modified) technical lemmas are collected in Appendix C along with the

necessary proofs.

B.1 Elementary Inequalities

The following inequalities are used throughout the text.

(i) For a, b ≥ 0 and 1 ≤ p < ∞,

(a+ b)p ≤ 2p−1(ap + b
p).

(ii) Young’s inequality. For a, b ≥ 0 and 1 < p, q < ∞ such that 1
p
+ 1

q
= 1,

ab ≤ a
p

p
+

b
q

q
.
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B.2 Integral Inequalities

For the following, suppose U ⊂ Rn.

(i) Hölder’s inequality. For u ∈ L
p(U), v ∈ L

q(U), and 1 ≤ p, q ≤ ∞ such that
1
p
+ 1

q
= 1, �

U

|uv| ≤ �u�Lp(U)�v�Lq(U).

(ii) Poincaré’s inequality. Let U be bounded with a Lipschitz boundary. There

exists C > 0 such that for all u ∈ H
1
0 (U) (see Appendix A.1),

�u�L2(U) ≤ C�∇u�L2(U).

(iii) Korn’s inequality. Let U be an open, connected domain in Rn
, n ≥ 2. There

exists C > 0 such that for all u ∈ (H1(U))n,

�u�2(H1(U))n ≤ C

�

U

�
n�

i,j=1

|ui|2 +
1

4
|(Diuj +Djui)|2

�
.

B.3 Standard Results

We begin with a simple density result that allows us to approximate functions in

H
k(Ω) by smooth functions whose derivatives are all uniformly continuous on Ω. It

bears mentioning that a cylinder is easily verified to be “star-shaped with respect to

a point,” but as there will be no further need for to discuss this geometric condition

we omit its definition.

Theorem B.1. If U is a bounded domain, star-shaped with respect to a point, then

C
∞(U) is dense in H

k(U).

Source. [18, p. 13].
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It is of fundamental importance that we be able to make sense of a function’s

value along boundaries, whether a boundary is with respect to the time interval

(e.g., at t = 0) or with respect to the spatial domain (e.g., on SF ). However, since

most of the functions we deal with are only well-defined on their domain up to a

set of measure zero, it is not immediately obvious whether such functions can have

well-defined values along a boundary (i.e., boundaries necessarily having measure

zero within their domains). The following result demonstrates that with sufficient

regularity, an L
2(U) function has a well-defined trace (of decreased regularity)

on the boundary ∂U (or any subset of positive measure within ∂U). Moreover,

we learn that this trace operator is bounded, linear, and surjective; in particular,

surjectivity is crucial since we will frequently need to construct functions with a

given trace.

Theorem B.2. Let U ⊂ Rn
have a Lipschitz boundary. Then the trace operator

T0 : C(U) → C(∂U) defined by T0u = u|∂U extends to a surjective and bounded

linear map T : Hs(U) → H
s−1/2(∂U) for any s > 1/2.

Source. [6, p. 201]

The next result verifies that integration-by-parts can be performed on a domain

with a Lipschitz boundary provided that the functions involved have sufficient

regularity.
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Theorem B.3. (Integration-by-parts) Let U ⊂ Rn
be open and bounded with a

Lipschitz boundary. Then

�

U

p(∇ · u) =
�

∂U

p(u · n)−
�

U

∇p · u

holds for all p ∈ H
1(U) and u ∈ (H1(U))n, where n is the outward unit normal

defined on ∂U .

Source. [6, p. 207]

As discussed in Sections 3.1 and 3.4, in the study of the Navier-Stokes equations

there is great utility in being able to decompose L
2 into its orthogonal divergence-

free and gradient parts. The following result provides sufficient “orthogonality”

conditions for a function to be recognizable as a gradient.

Theorem B.4. Let U ⊂ Rn
, n ≥ 2, be open and bounded with a Lipschitz boundary.

Define Z = {u ∈ (C∞
c
(U))n : ∇ · u = 0}.

(i) Let f ∈ (L2(U))n. If
�
U
f · u = 0 for all u ∈ Z, then there exists p ∈ H

1(U)

such that f = ∇p.

(ii) Let f ∈ (H−1(U))n where H
−1(U) denotes the dual space of H

1
0 (U). If f(v) =

0 for all v ∈ Z, then there is a unique p ∈ L
2(U) satisfying

f = ∇p,

�

U

p = 0.

Moreover, there are constants C1, C2 > 0 such that

�p�L2(U) ≤ C1�f�(H−1(U))n ≤ C1C2�p�L2(U).

Source. (i) [41, pp. 10–11], (ii) [26, p. 75].
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The Lax-Milgram Theorem is one of the most powerful tools available for

obtaining weak solutions to partial differential equations and we make frequent

use of it. Below is a version of the classical result which has been adapted for a

complex setting.

Theorem B.5. (Lax-Milgram) Let X be a complex Hilbert space with closed

subspace H. Let B : X ×X → C be a sesquilinear functional which is both

(i) continuous on X, i.e. there is M > 0 such that |B(x, y)| ≤ M�x�X�y�X for

all x, y ∈ X

(ii) coercive on H, i.e. there is γ > 0 such that |B(x, x)| ≥ γ�x�2
X

for all x ∈ H.

If u0 ∈ X and F ∈ H
∗
, there is a unique u ∈ (H+u0) ⊂ X such that B(u, v) = F (v)

for all v ∈ H and

�u�X ≤ 1

γ
�F�H∗ +

�
M

γ
+ 1

�
�u0�X .

Source. [6, p. 218] (i.e., the complex analog).

The next two theorems are concerned with gaining additional regularity for weak

solutions of the Stokes equations (a significant simplification of the full Navier-

Stokes equations). The first is only able to gain the desired regularity away from

the boundary of the spatial domain, but has the benefit of not requiring that the

domain be smooth. The second yields regularity all the way up to the boundary,

but demands that the domain have at least a C
2 boundary. The proof of this result

is done locally, however, so regularity can be gained up to the boundary wherever

it is locally C
2. Both results suppose the existence of weak solutions to nontrivial

problems; the proper variational formulations for these problems are made clear in

the proof of Lemma 5.2, where both of these results are exploited.
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Theorem B.6. Let U ⊂ R3
be bounded and open. Suppose (v, p) is a weak solution

of

−µ∆v +∇p = f

∇ · v = 0

where f ∈ L
2(U). Then v ∈ H

2(V ) and p ∈ H
1(V ) for any open V ⊂ V ⊂ U .

Source. [15, p. 38].

Theorem B.7. Let U ⊂ R3
be bounded and open such that ∂U is C

2
. Suppose

(v, p) is a weak solution of

−µ∆v +∇p = f

∇ · v = 0

S(v, p) = 0 on ∂U

where f ∈ L
2(U). Then v ∈ H

2(U), p ∈ H
1(U), and (v, q) satisfies the given

boundary value problem.

Source. [28, p. 144].

The following is a simplified version of the second part of what is collectively

referred to as the Sobolev Embedding Theorem. It describes when functions in

Sobolev spaces have sufficient regularity to be identified with Hölder continuously

differentiable functions. Notice that the regularity required to ensure continuity

increases as the dimension of the underlying domain U increases.
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Theorem B.8. (Sobolev Embedding Theorem) Let U be a bounded Lipschitz

domain in Rn
, j ∈ N0, and m ∈ N. If m >

n

2 > m− 1, then

H
j+m(U) ⊂ C

j,λ(U)

for 0 < λ ≤ m− n

2 .

Source. [1, pp. 85–86].

Also known as the Banach Fixed Point Theorem, the Contraction Mapping

Principle forms the foundation of the approach taken in this work. Below we only

detail the portion of the theorem which will be of interest to us in the current

work—proving the existence and uniqueness of a fixed point of a contraction

mapping—but it is worthwhile to note that the full result is much stronger and

addresses nearly every relevant mathematical concern (existence, uniqueness,

construction, approximation, and error estimation).

Theorem B.9. (Contraction Mapping Principle) Let (X, d) be a complete metric

space with M ⊂ X, a closed nonempty subset. If T : M → M is an operator for

which there exists 0 ≤ k < 1 such that d(Tx, Ty) ≤ kd(x, y) for all x, y ∈ M (called

a contraction mapping), then T has exactly one fixed point on M .

Source. [46, p. 17].

We now detail the Lumer-Phillips Theorem, a key result in semigroup theory

which provides a very useful characterization of the infinitesimal generators of

contraction semigroups that does not require explicit knowledge of the resolvent

operator. The following is a variation of the classical result which reduces the

number of sufficient conditions on the proposed generator given that its domain lies

in a reflexive space.
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Theorem B.10. (Lumer-Phillips) Suppose X is a reflexive Banach space and

D(B) ⊂ X. Let B : D(B) → X be a linear operator satisfying both

(i) �(λI−B)x�X ≥ λ�x�X for all x ∈ D(B) and λ > 0 (in which case we say that

B is dissipative),

(ii) λ0I − B is surjective for some λ0 > 0.

Then D(B) is dense in X and B is the infinitesimal generator of a C0 semigroup of

contractions on X.

Source. [12, p. 86].

We conclude this section with a portion of the Spectral Mapping Theorem for

C0 semigroups. In general, a spectral mapping theorem is one which relates the

spectrum of a semigroup to that of its generator. We restrict ourselves to the

identity relating their respective point spectrums since this will be sufficient for our

needs.

Theorem B.11. (Spectral Mapping Theorem) If (B,D(B)) generates a C0

semigroup, T (t), on a Banach space X, then

σp(T (t))− {0} = e
tσp(B)

where σp(·) denotes the point spectrum (i.e., the set of all eigenvalues) of the

enclosed operator.

Source. [12, p. 277].
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C Technical Lemmas Adapted for the Periodic Setting

Since this dissertation follows the general approach due to Beale in [7], we require

analogous versions of the technical lemmas used in that article. While most of

Beale’s lemmas require modification in order to match the periodic setting used in

this work, those not requiring adaptation have also been included for the reader’s

convenience. In the results that follow, note the attention paid to being able to

obtain bounds which are independent of the length of the underlying time interval.

These estimates will be used repeatedly in the proof of the main result to ensure

that we obtain a contraction mapping for sufficiently small T .

We begin with a trace theorem that allows us to find functions in K
s

p (see

Section 3.1) for prescribed initial conditions (i.e. trace with respect to time)

and/or normal derivative conditions on the free surface (i.e. trace with respect to

space). (i) and (ii) describe the traces individually and (iii) brings them together

along with a compatibility condition to ensure surjectivity of the combined trace

operator.
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Lemma C.1. Suppose
1
2 < s ≤ 5.

(i) The mapping v �→ D
j

n
v extends to a bounded linear operator from K

s

p to

K
s−j−1/2
p (∂GF ), where j ∈ Z such that 0 ≤ j < s− 1

2 .

(ii) If s > 1, then the mapping v �→ D
k

t
v(0, ·) also extends to a bounded linear

operator from K
s

p to H
s−2k−1
p , where k ∈ Z such that k <

1
2(s− 1).

(iii) Suppose s >
3
2 such that s �= 3, 5 and s− 1

2 �∈ Z. Define

W
s =

�

0≤j<s− 1
2

K
s−j−1/2
p (∂GF )×

�

0≤k<(s−1)/2

H
s−2k−1
p

and let W
s

0 be the subspace consisting of {b,w} such that, whenever j + 2k <

s− 3
2 ,

D
k

t
bj(0, ·) = D

j

n
wk(·).

The traces of (i) and (ii) form a bounded linear operator from K
s

p onto W
s

0

(so that this operator has a bounded right inverse).

Proof. Transforming first to T , this can be obtained exactly as in [7].

Source of the original result : [7, Lemma 2.1, pp. 364–365].

We will often seek to extend functions to larger time intervals in a bounded way.

This is usually done either to pass to a fixed time interval (0, T0), where T0 ≥ T , in

order to gain estimates which are independent of T , or to extend the function to all

of R in preparation for techniques involving Fourier transforms.
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Lemma C.2. Let X be a Hilbert space and s ≥ 0.

(i) There exists a bounded extension operator J : Hs((0, T );X) → H
s(R;X).

(ii) Provided s ≤ 2 and s − 1
2 �∈ Z, there exists an extension operator from {v ∈

H
s((0, T );X) : Dj

tv(0, ·) = 0 for j <
1
2(s − 1)} to H

s(R;X) which is bounded

independent of T . The extension of such a v ∈ H
s((0, T );X) vanishes for

t < 0.

(iii) Analogous statements hold for extending from K
2s
p to K

2s
p ((0,∞)× Ω).

Proof. (i), (ii) require no modification and (iii) follows exactly as in [7].

Source of the original result : [7, Lemma 2.2, p. 365].

When regarding the definition of Ks

p, one might question how well it corresponds

with our expectations of regularity with respect to separate variables. For example,

given f ∈ K
s

p for sufficiently large s, what can we say about the spatial regularity

of ḟ or the temporal regularity of ∇f? It is clear that ḟ ∈ H
(s−2)/2((0, T );H0

p) and

∇f ∈ H
0((0, T );Hs−1

p ), but that does not answer our question. The following result

provides us with a way to exchange temporal for spatial regularity (and vice versa)

in order to obtain more optimal information. Returning to our example, it would

imply that f ∈ H
1((0, T );Hs−2

p ) ∩ H
(s−1)/2((0, T );H1

p), so that we actually have

ḟ ∈ H
0((0, T );Hs−2

p ) and ∇f ∈ H
(s−1)/2((0, T );H0

p).

Lemma C.3. Suppose 0 ≤ s ≤ 4.

(i) For r ≤ s

2 , the identity operator extends to a bounded operator I : K
s

p →

H
r((0, T );Hs−2r

p ).

(ii) Provided s is not an odd integer, the restriction of this operator to {v ∈ K
s

p :

D
j

tv(0, ·) = 0 for j <
1
2(s− 1)} is bounded independent of T .
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Proof. Transforming first to T , this can be obtained exactly as in [7].

Source of the original result : [7, Lemma 2.3, p. 365].

The following lemma provides us with our chief tool for introducing an explicit

dependence on T into our estimates in the proof of the main result. The power of T

present in these estimates ultimately allows us to obtain a contraction mapping by

taking T small enough to balance whatever constants may show up. In most cases,

we will exploit the fact that x =
�

t

0 v by (2.13) and take V = x.

Lemma C.4. Fix T0 > 0 arbitrarily and let T ≤ T0. For v ∈ H
0((0, T );X), we

define V ∈ H
1((0, T );X) by

V (t) =

�
t

0

v(τ)dτ.

For all 0 ≤ ε ≤ 1, the function V satisfies

�V �H1−ε((0,T );X) ≤ C1T
ε�v�H0((0,T );X).

If v ∈ H
s((0, T );X) where 0 ≤ s <

1
2 , then V ∈ H

s+1−ε((0, T );X) for 0 ≤ ε < s and

satisfies

�V �Hs+1−ε((0,T );X) ≤ C2T
ε�v�Hs((0,T );X).

In both cases, the constants C1 and C2 are positive and independent of T .

Source: [7, Lemma 2.4, pp. 365–366]. �

The next two results are variations on the standard “multiplication” results in

Sobolev spaces which seek to determine the regularity of products of functions and

estimate them by their factors. They are especially important in studying the full

nonlinear problem where most terms involve products of v or q with entries of Λ.

Recall here that 0
H

−1
p is defined to be the dual space of 0

H
1
p (see the discussion

beginning Section 5.2).
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Lemma C.5. Suppose r >
3
2 and r ≥ s ≥ 0. There exist positive constants

C1, C2, C3, and C4, such that

(i) If v ∈ H
r

p and w ∈ H
s

p, then vw ∈ H
s

p and �vw�Hs
p ≤ C1�v�Hr

p�w�Hs
p .

(ii) If v ∈ H
1
p and w ∈ H

1
p , then vw ∈ H

0
p and �vw�H0

p
≤ C2�v�H1

p
�w�H1

p
.

(iii) If v ∈ H
r

p and w ∈ 0
H

−1
p , then vw ∈ 0

H
−1
p and �vw�0H

−1
p

≤ C3�v�H1
p
�w�0H

−1
p

.

(iv) If v ∈ H
1
p and w ∈ H

0
p , then vw ∈ 0

H
−1
p and �vw�0H

−1
p

≤ C4�v�H1
p
�w�H0

p
.

Proof. (i) Take s = k ∈ N0. We immediately obtain vw ∈ H
k using the original

result in [7]. Now it should be obvious from the characterization of Hk

p given in

Lemma 3.3 that vw ∈ H
k

p . The inequality now follows from Lemma 3.1 with

interpolation providing the remaining cases. (ii) Since H
0
p = H

0, the inequality is

the only distinction from the original result in [7] and it follows from Lemma 3.1.

(iii) and (iv) both follow exactly as in [7].

Source of the original result : Lemma 2.5 from [7], p. 365.

Lemma C.6. Suppose X, Y , and Z are Hilbert spaces and M : X × Y → Z is a

bounded, bilinear operator (called multiplication).

(i) Suppose v ∈ H
s((0, T );X) and w ∈ H

s((0, T );Y ) where s >
1
2 . If

vw is defined by (vw)(t) = M(v(t), w(t)), then vw ∈ H
s((0, T );Z) and

�vw�Hs((0,T );Z) ≤ C�v�Hs((0,T );X)�w�Hs((0,T );Y ).

(ii) If additionally s ≤ 2, where s− 1
2 �∈ Z, and v, w satisfy D

k

t
v(0, ·) = D

k

t
w(0, ·) =

0 for all k < s − 1
2 , then the constant C above can be chosen independently of

T .

Source: Lemma 2.6 from [7], p. 365. �
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The final lemma is a technical result only used once in the text; it is required

during the reduction of the inhomogeneous linear problem in Section 5.2 to the

homogeneous one considered in Section 5.1.

Lemma C.7. Suppose 3 < s <
7
2 . Given b ∈ K

s−3/2
p (∂GF ) with b · n = 0 and

b(0, ·) = 0, there exists w ∈ K
s

p such that w(0, ·) = 0,wt = 0,∇ ·w = 0,Stan(w) =

b, and �w�Ks
p ≤ C�b�

K
s−3/2
p (∂GF )

.

Proof. Using Lemma C.1(iii), choose u ∈ K
s+1
p such that

u(0, ·) = u̇(0, ·) = 0 on Ω

u = Dnu = 0, D
2
n
u = µn× b on SF .

It can now be verified that w = ∇ × u satisfies the claim. In particular, that the

boundary condition is satisfied is most easily seen by first transforming an arbitrary

point on SF to the origin such that the transformed normal vector, evaluated at the

origin, is parallel to one of the coordinate axes (see the proof of Lemma 4.2 in [7]).

Source of the original result : Lemma 4.2 from [7], p. 377.
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