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Abstract 

Duran, Nicholas D. PhD. The University of Memphis. August/2011. Uncovering 
the Hidden Cognitive Processes and Underlying Dynamics of Deception. Danielle 
McNamara. 
 

This dissertation examines the processing demands associated with motor 

responding and verbal statements during deceptive (or deceptive-like) behavior. In the 

first set of studies presented in Chapter 2, participants’ motor movements in a false 

response paradigm revealed signatures of competition with the truth. In a second set of 

studies presented in Chapter 3, deceptive participants used language that reflected 

cognitive and social demands inherent to various types of deception. In evaluating both 

motor and verbal cues, this dissertation provides a comprehensive, multi-modal approach 

to better understanding the cognitive processes underlying deception.  

In conducting the motor responding studies, participants’ arm movements were 

analyzed as they navigated a motion tracking device (computer-mouse, Nintendo 

Wiimote) to visually co-present response options, where the “true” option acts as a 

competitor to a false target. In an initial study, competition during deceptive responding 

was shown to be much greater than during truthful responding. In two follow-up studies, 

the introduction of various task-based cognitive demands was shown to systematically 

modulate response performance. Specifically, these studies suggest that an intention to 

false respond early in question presentation will amplify competition effects, and that 

false responding to information in autobiographical memory is much more difficult than 

responding to information in general semantic memory. 

 In the studies analyzing verbal statements, the focus is turned to large-scale 

linguistic analyses using automated natural language processing tools. In the first study, 
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changes in language use were identified between deceptive and truthful narratives using 

six psychologically relevant categories. A major finding was that the language of 

deception is adapted to facilitate ease of cognitive processing.  

 In a second study, the indicative phrasing and semantic content of deceptive texts 

was extracted using a contrastive corpus analysis, whereby indicative features are 

defined by their frequent use in one corpus while being infrequent in a comparative 

corpus. Two contexts of deception were evaluated. In the first context of computer-

mediated conversations, deceivers used a range of unique thematic elements, as in 

avoiding personal involvement in their narrative accounts. In the second context of 

attitudes towards abortion, unique thematic elements once again emerged; for example, 

participants tended to position their arguments in terms of formal law.  
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Preface 

This dissertation is comprised of a collection of published journal articles of 

which I am the primary author, as well as unpublished data that supplements the 

published work. This original research was conducted while I was a research assistant in 

two laboratories; one led by Dr. Danielle McNamara and the other by Dr. Rick Dale. This 

research was also partly funded by a National Science Foundation Graduate Student 

Fellowship.  

 There are two major sections of this dissertation, the first, Cognitive Dynamics 

and Deception, is built upon an article published in the peer-reviewed journal 

Psychonomic Bulletin & Review:  

Duran, N.D., Dale, R., & McNamara, D. S. (2010). The dynamics of overcoming 

the truth. Psychonomic Bulletin & Review, 17, 486-491.  

This first section also includes three additional unpublished studies that extend Duran, 

Dale, et al. (2010).  

 The second section, Discourse Analysis and Deception, is built upon an article 

published in the peer-reviewed journal Applied Psycholinguistics:  

Duran, N. D., Hall, C., McCarthy, P. M., & McNamara, D. S. (2010). The 

linguistic correlates of conversational deception: Comparing natural language 

processing technologies. Applied Psycholinguistics, 31, 439-462.  

An additional unpublished study is also included that extends Duran, Hall, et al. (2010). 

This additional study was written with the intention of being submitted for publication, 

following the guidelines of the journal Discourse Processes.    
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All studies in this dissertation are preceded by a short note indicating whether the 

reported work has been previously published, and if so, a citation is provided. No major 

modifications have been made to the original articles (e.g., original formatting 

preserved). However, changes to figure and table number have been made to maintain 

consistency across chapters.  

It should also be noted that each section includes a self-contained literature review 

and justification. However, in the primary Introduction, I also provide additional review 

material that supplements the information in each section. I briefly canvass previous 

research regarding the general cognitive underpinnings of deception. While many of the 

studies are germane to the current study, the overarching goal is to provide a general 

theoretical landscape in which to situate the current work. This introductory material is 

also weighted toward the Chapter 2: Cognitive Dynamics and Deception, where the 

literature review from the original published article was somewhat limited.  
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Uncovering the Hidden Cognitive Processes  

and Underlying Dynamics of Deception  

Chapter 1: Introduction 

Deceptive behavior can take on many forms and serve a variety of goals. Some 

lies are morally reprehensible, but are nevertheless effective in advancing personal gain  

(Bok, 1999). In other cases, an expected “white lie” can maintain social pleasantries, 

executed for the benefit of a group (DePaulo et al., 2003). Although the expressions are 

many, what all types of deception have in common is that the person has a willingness to 

violate what is considered to be reality, and to ostensibly maintain a falsity as truth 

(Ekman, 1997). To achieve such behavior, sophisticated cognitive processes are likely 

involved, such as the inhibition of a truth bias (Gilbert, 1991; Muraven & Baumeister, 

2000), executive control in delimiting truth from lies (Spence et al., 2004), the generation 

of imagined events (Schacter, Normam, & Koutstaal, 1998), and the monitoring of 

another’s mental state (Burgoon, Buller, Guerrero, Afifi, & Feldman, 1996; Frith & Frith, 

2003). It should then come as no surprise to learn that deception is neurally instantiated in 

highly developed cortical regions (e.g., dorso- and ventro-medial prefrontal regions, 

anterior cingulate cortices; Sip, Roepstorff, McGregor, & Frith, 2007), as it is with other 

species that are capable of rudimentary types of deception (Premack, 2007). But to be 

clear, it is only with humans that a remarkable degree of flexibility and variation is 

revealed. Human deception is special, largely due to the richness of the cognitive 

processes involved. 

The aim of this dissertation is to better understand the cognitive processes 

underlying deception. I do so within the context of multimodal channels of behavior, 
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homing in on two major areas: continuous perceptomotor dynamics and low-level 

analysis of language. The emphasis is a departure from the predominant “applied” 

approach that deals primarily with the accuracy of detecting deception. Instead, the 

developments discussed in this dissertation are organized around two basic research 

questions. The first, Research Question 1, is summarized as: “What do the motor 

dynamics generated during deceptive behavior reveal about the underlying cognitive 

processes and strategies of deception?”; the second, Research Question 2, is summarized 

as: “What does the linguistic output of deceptive speakers reveal about the underlying 

cognitive processes and strategies of deception?” Both questions are explored in greater 

detail across several empirical studies. Before delving in, a short synopsis and 

supplementary justification of each study is first provided (see Preface for organizational 

rationale).   

Research Question 1: Motor 

The rationale for Research Question 1 is motivated by recent work on the 

dynamics of cognition as they relate to the dynamics of perception and action. I present 

evidence that complex cognitive states, such as those needed to perpetrate deception, will 

have particular signatures in the movements of the body. At the core of this theoretical 

perspective is the idea that much of the cognitive system relies heavily on perceptual and 

motor mechanisms. Rather than each mechanism “communicating” separately, where the 

output of one serves as the input of another, the components instead interact 

simultaneously (Spivey, 2006; Spivey, Richardson, & Dale, 2008). The important 

implication here is that continuous action can serve as the direct manifestation of real-

time cognitive processing. In the studies that will be presented, I take advantage of one 
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particularly relevant class of actions in the form of reaching movements during decision 

tasks.  

This approach deviates from previous attempts that have exclusively employed 

simple reaction time measures (Gregg, 2006; Sartori, Agosta, Zogmaister, Ferrara, & 

Castiello, 2008; Walczyk et al., 2005; Walczyk, Mahoney, Doverspike & Griffith-Ross, 

2009; Vendemia, 2005). Such measures capture only the duration of processing, rather 

than the moment-by-moment competition that might occur during false responding. To 

capture this competition, I follow the lead of action dynamics researchers that have used 

motion tracking devices like the Nintendo Wiimote controller and a simple computer-

mouse (Dale, Roche, Snyder, & McCall, 2008; Spivey & Dale, 2006). These devices are 

useful in assessing how the hand goes about selecting critical “targets” amidst visually 

co-present “distractors.” By surreptitiously measuring the position of the hand during the 

course of movement (via the position of a cursor on a computer screen), periods of 

instability, stabilization, and modulation can be identified. Such a fine-grained 

examination will shed new light on how the truth interferes with an intent to express the 

counterfactual.  

Apart from some work in neuroscience, there have been very few attempts to 

characterize the mechanisms involved in deception. The theories that do exist are 

typically aligned with traditional information processing accounts (Vendemia, Buzan, & 

Green, 2005; Walczyk et al., 2005; Walczyk, Roper, Seemann, & Humphrey, 2003). 

These accounts involve discrete stages of processing that are largely independent of 

contextual constraints (Evans, 2008; Fodor, 1983; Fodor & Pylychyn, 1981, Miller, 

1956). In contrast, for a dynamical account, response behavior is closely tied to emergent 
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order, constrained and guided by task conditions, which continuously evolve over 

overlapping and varied time scales (Port & van Gelder, 1995; Spivey & Dale, 2006; Van 

Orden, Holden, & Turvey, 2003). Such an approach allows for a flexible depiction of 

cognitive processes that are themselves characterized by flexibility and change.  

In the first of four studies (Study 1a), the x,y coordinates of a handheld Nintendo 

Wiimote are tracked while participants make true and false responses to yes-or-no 

autobiographical questions. Unlike a computer-mouse, the Wiimote has a notable 

advantage of increasing the range of arm motion during response performance. Rather 

than being confined to a computer desk (a stabilizing surface), the Wiimote is held with 

an outstretched arm toward the direction of presented stimuli.  

In this first study, a question stimulus was presented at the bottom of a large 

screen and participants moved the Wiimote cursor from the bottom of the screen to 

“YES” and “NO” labels displayed at the top of the screen. Critically, half of the questions 

were preceded by a prompt that required a deceptive response. This prompt appeared 

with the last word of the question. The trajectories were assessed across multiple 

timescales and for a number of trajectory properties, including overall response time from 

start to finish, latency time to initiate a movement, and trajectory curvature toward visual 

attractor regions (e.g., target and competitor regions) in short slices of ongoing time 

(slices around 20 ms). Trajectory properties like instability and attractor strength were 

also measured. Together, these variables provide a vastly more detailed depiction of the 

fine-grained changes of cognitive dynamics (via the behavioral dynamics) of a decision 

process.  
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The second study (Study 1b) replicates the Wiimote study, but data are now 

captured via mouse movements. Furthermore, the study is implemented in an Adobe 

Flash environment that can be played as an online game by participants across the United 

States. By doing so, a diverse range of demographics can be represented that are typically 

not found in the average university laboratory.1 Another advantage of the current 

approach is that it is easily parameterizable and provides a baseline for comparing the 

following two studies (Study 2a and 2b). The study is also at the forefront of a growing 

trend in cognitive science of using “crowdsourcing” technologies, like Amazon’s 

Mechanical Turk, to collect human data (see Munro et al., 2010).    

In the third and fourth studies (Study 2a and 2b), task-based cognitive demands of 

deception are examined. Deception is a very present force in virtually all social 

interactions. Whether it is to enhance one’s self-image (Feldman, Forrest, & Happ, 2002) 

give another a false impression of one’s feelings (DePaulo, Kashy, Kirkendol, Wyer, & 

Epstein, 1996), or even fabricate one’s whereabouts, plans, or actions (DePaulo et al., 

2003), lying occurs at a surprisingly high rate, and is considered by some to be an 

evolutionary-driven norm in human interactions (DePaulo et al., 1996; DePaulo et al., 

2003; DePaulo & Kashy, 1998; Lippard, 1988). However, the prevalence of deception 

stands in contrast to the cognitive difficulty associated with lying, which should limit the 

attempts at deception given the increased odds of mishandling the execution of a lie. Why 

then are people so willing to engage in deception? One reason is that deception exists on 

a continuum of difficulty, where certain contexts make lying more or less difficult, and 

therefore more or less risky. Indeed, this has been exploited by researchers interested in 

                                                
1 A laboratory-based mouse movement analysis was also conducted and is presented in 

Appendix D. 
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devising interview techniques to catch deceivers. By ramping up the difficulty of 

deception, as in asking questions that are unexpected or by asking a suspected liar to 

repeat a fabricated story, the more pronounced the tell-tale indicators of deception will 

become (Vrij, Granhag, Mann, & Leal, 2011).  

In studies that exploit the cognitive difficulty of lying, it is often unclear what the 

cognitive factors are that reside behind better “deception-eliciting” questions. Although a 

general notion of executive function is given, there is little in the way of an explanation 

for how this system interacts with parameters inherent to the questions asked, such as the 

memory demands associated with question content, or the time given to prepare an 

answer. Although subtle, these changes are likely to modulate the difficulty of lying, and 

are the focus of the current action dynamics approach.  

Beginning with the specifics of the third study (Study 2a), I explore signatures of 

deception when the false response prompt occurs at the question initial position, that is, 

with the first word of a question. This setup primes the participant with a true or false 

response orientation before a response is actually required. The additional time allows 

participants to anticipate how they will respond (either truthfully or falsely) without 

knowing what form the response will take (either with an affirmative “yes” or a denial 

“no”). This setup simulates a situation where someone with concealed knowledge (as in 

knowledge of the details surrounding a store robbery) is regarded as a suspect, and has a 

heightened awareness of the possibility that he or she might have to lie. In other words, 

this suspect is oriented to a state of readiness for false responding. But for this scenario to 

conform to the conditions of the current study, the suspect must be asked a series of 

questions whose required response is difficult to predict (again, whether the question 
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requires a “yes” or “no”). Given this set-up, there are two predictions for response 

behavior outcomes. One prediction, based on Walczyk et al. (2003; 2005), is that lying 

occurs in discrete steps, whereupon being asked a question, one must activate the truth, 

make a decision to falsify, and then generate a false answer. Given that a participant in 

the current study is told ahead of time to falsify information, the second step of “decision 

to falsify” is effectively bypassed, thereby minimizing the cognitive resources expended. 

As a result, responses should be faster and more stable, at least when compared to Study 

1b, where the prompt occurs at the question final position (i.e., with the last word of the 

question). However, another prediction, more aligned with a dynamical systems account, 

is that a false response might instead be more difficult to execute. The priming of a false 

response deepens a false response attractor, eliciting a tendency to “deny” information. 

This stronger tendency to say “no” (i.e., deny) builds up during the time it takes to 

present the words in each question, and makes certain types of responses more difficult, 

like those requiring one to say “yes” falsely. Moreover, a false prime might also activate 

the “true” condition of false information, whereby the truth becomes a stronger distractor 

when attempting to fabricate information. This is similar to the effect of negation, where 

the non-negated (“true”) condition of a negated sentence interferes with interpretation, 

even when one has foreknowledge that to-be-read sentence requires negation (Mayo, 

Schul, & Burnstein, 2004). This latter account thus makes predictions that overall false 

behavior will take longer and be more unstable, but that false response behavior is also 

modulated by whether the eventual response takes on the form of “yes” or “no.” These 

predictions are not easily accommodated by “discrete-based” accounts.  
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Finally, for the fourth study (Study 2b), I examine the response dynamics 

involved in falsely responding to information that is autobiographical in nature and 

information that is based on general semantic knowledge. These question types draw on 

different memory sources that are likely to modulate the difficulty associated with 

deception. Given that recall fluency depends on how information is first encoded, as well 

as the number and strength of associations within a memory network (Koriat, Goldsmith, 

Pansky, 2000; Nunez, Casey, Egner, Hare, & Hirsch, 2005, Tulving, 2002), 

autobiographical information is expected to generally be more accessible, as it is linked 

to a greater number of salient experiences, emotions, intentions, and motivations 

(Harmann, 2001). But if the truth content of autobiographical information “comes to 

mind” with greater ease, it will be that much more difficult to falsify. Indeed, there is 

some evidence that patterns of inhibitory control in neural firings are more pronounced 

when lying about personal events compared to non-personal events (Piefke, Weiss, Zilles, 

Markowitsch, & Fink, 2003). Thus, the hypothesis presented here is that falsifying 

personal, autobiographical facts will be slower and exhibit greater instability than the 

falsification of semantic facts.   

Research Question 2: Linguistic 

Turning now to Research Question 2, I move from action dynamics to an entirely 

new domain of discourse analysis. The goal is to use theoretical advances in 

computational technology to forge novel links between language and thought. This focus 

allows for large-scale exploration of spontaneously expressed thought in a variety of 

pragmatic contexts. To proceed, a comprehensive set of linguistic features, ranging from 

word information variables (Hancock, Curry, Goorha, & Woodworth, 2008; Newman, 
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Pennebaker, Berry, & Richards, 2003) to sentence and discourse level variables (Zhou, 

Burgoon, Nunamaker, & Twitchell, 2004) are used across two major studies. Subsets of 

conceptually related features will be used to uniquely characterize the mindset, 

motivations, and limitations of a person engaged in deceptive behavior. 

 In the first of two studies, a natural language processing (NLP) tool Coh-Metrix 

(Graesser, McNamara, Louwerse, & Cai, 2004) is used to evaluate deceptive and truthful 

conversations that occur within a context of computer-mediated communication. This 

study builds on the work of Hancock et al. (2008) who evaluated this conversational 

corpus with an NLP tool called Linguistic Inquiry and Word Count (LIWC, Pennebaker, 

Francis, & Booth, 2001). Both analyses take advantage of the expectation that, despite a 

deceiver’s best attempt to avoid exposing the truth, the cognitive and social demands 

brought on by deception will be closely bound to subtle changes in language use 

(Pennebaker, Mehl, & Niederhoffer, 2003). Indeed, such changes have been observed in 

previous research, and have been used to develop training programs for improving 

people’s abilities to detect deception. One of the most well-known programs, Criteria-

based Content Analysis, involves 19 criteria based on the notion that fabricated reality 

will be qualitatively distinct from actual reality. Human judges are asked to evaluate 

verbal content for features like breakdowns in logical structure, quantity of details, and 

spontaneous corrections (Steller & Kohnken, 1989; Vrij, 2005). In another approach 

known as Reality Monitoring, that was originally developed to experimentally explore 

phenomenological experiences, imagined reality is shown to lack the sensory richness 

that is evident in actual memories (Johnson, 1988; Johnson & Raye, 1981). Deceptive 

narratives have also been found to lack spatial and temporal details that are typically 
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found in the truth (Masip, Sporer, Garrido, & Herrero, 2005). However, a major 

disadvantage in the Criteria-based Content Analysis and Reality Monitoring approaches 

is that the verbal features under analysis must be identified by human raters. Not only is 

this a time-consuming process, but it leaves open rater biases that are likely to generate a 

greater number of false alarms or misses (Burgoon, Blair, & Strom, 2008). And verbal 

cues that are obvious enough to be processed by human judges, might also be easier to 

manipulate by deceivers.          

 In the current NLP approach, many of the concerns with previous verbal analysis 

are largely reduced with the use of sophisticated computational algorithms. These 

algorithms allow for automatic evaluations of low-level linguistic features that would be 

nearly impossible for human judges to calculate. Furthermore, these features lose none of 

their psychological plausibility, as they are grounded in theories of memory, pragmatics, 

and social psychology (including many of the categories of the aforementioned Criteria-

based Content Analysis and Reality Monitoring approaches). In total, there are six major 

categories of indices that correspond to the following core areas: a) the amount of 

information that is offered, b) the degree of personal identification with message content, 

c) the amount of sensory detail of descriptions, d) the semantic accessibility of words 

chosen for message content, e) the difficulty of syntactic phrasing, and f) the novelty of 

message content.  

In addition, because there are many linguistic features that conceptually overlap 

between Coh-Metrix and LIWC, convergent validity between NLP tools is also 

examined. And finally, because the corpus used here has transcripts for both sender (i.e., 
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liar) and receiver, the coordination of linguistic features between sender and receiver 

during deceptive and truthful exchanges can be evaluated. 

In the second and final study of this section, Discourse Analysis and Deception, 

an NLP tool called the Gramulator (Duran & McCarthy, in review; Min & McCarthy, 

2010) is used to examine deception in an emotionally-salient context. The Gramulator is 

based on contrastive corpus analysis (Granger, 1998; Min & McCarthy, 2009), and is 

useful for comparing short phrases and sequences of text that are statistically more likely 

to occur in one corpus relative to another. The result is an inductive evaluation of 

language elements, where the evaluation is conducted by returning to the local context in 

which the features are used, and using this context to draw meaningful conclusions.  

In summary, this dissertation is organized around two major research questions 

concerned with the motor and linguistic indicators of deception. This comprehensive 

examination of multiple behavior channels paves a way for a holistic approach to 

deception detection. Such approaches have been advocated as a crucial next step in 

improving detection techniques (Porter & ten Brinke, 2010; Vrij & Mann, 2004), and to 

date, few have taken up the challenge. One exception, however, is the work conducted by 

Judee Burgoon and her research group at the University of Arizona. These researchers 

have experienced a great deal of success pursuing a multi-channel exploration of 

deceptive behavior (e.g., Burgoon et al., 2005; Jensen, Meservy, Burgoon, & Nunamaker, 

2009).  The research presented here pursues many of the same goals, but is uniquely 

situated to do so within the theoretical and methodological perspective of cognitive 

psychology, incorporating domains of action dynamics, executive processes, memory, 

language representation, and pragmatics. Thus, there is continuity between the two major 
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sections of this dissertation (i.e., Cognitive Dynamics and Deception and Discourse 

Analysis and Deception), despite the sections largely constituting independent areas of 

research.      
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Chapter 2: Cognitive Dynamics and Deception 

 NOTE: This following introduction supplements Study 1a (below) by providing 

additional justification and detail that was omitted from the original publication.   

Action Dynamics 

The cognitive activity that occurs during deception is largely understood by 

reaction time measures in “guided lie” or “intentional false responding” paradigms 

(Spence et al., 2001; Vendemia, Buzan, & Green, 2005; Walcyzk et al., 2003). A 

consistent finding is that responses incompatible with the truth are executed more slowly 

than compatible responses. The observed increase in reaction time is typically taken as 

evidence for an increased workload in executive function. While executive function is a 

rather broad term, it generally relates to brain activity involved in the control and 

coordination of some task performance (Baddeley, 1996; Botvinick, Braver, Barch, 

Carter, & Cohen, 2001), including the inhibition of distractors while attending to a 

primary task (Carter et al., 1998; Garavan, Ross, Murphy, Roche, & Stein, 2002), and 

allocating attentional resources across multiple tasks to permit rapid transitions between 

tasks (Braver, Reynolds, & Donaldson, 2003). In the same manner, deceptive behavior is 

hypothesized to require greater executive function in the inhibition of true responses 

while selecting and transmitting false responses in real time (Nunez et al., 2005).  

Indeed, the role of executive function has been implicated as one of the major 

reasons why young children have difficulty in communicating false information (Carlson 

& Moses, 2001; Carlson, Moses, & Hix, 1998). For example, in temptation resistance 

paradigms, children are told not to peek under a cup that might contain a desirable object, 

such as a toy or piece of candy. However, for children who inevitably do (with rates as 
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high as 90%), they often fail to falsely deny having peeked, or are unable to avoid 

naming the object that they had seen. But children who are better able to deny (usually 

children older than 4 to 5 years of age), are also those who perform better on tests that 

measure inhibitory control and working memory, presumably because of a superior 

ability in suppressing the truth and holding false information in memory (Evans, Xu, & 

Lee, 2011; Talwar & Lee, 2008). Furthermore, in domains of comparative psychology, 

the inability to demonstrate intentional, strategic lying in primates is also linked to 

difficulties with executive function. In one study, chimpanzees were given incentives to 

avoid pointing to the location of a hidden food source, for example, by introducing a 

human confederate who did not know about the food location, but once informed, “stole” 

and ate the food without sharing. Chimpanzees in this study showed an initial tendency to 

point to a misleading “deceptive” location, but could not maintain this action, and always 

redirected their pointing to the hidden location (Woodruff & Premack, 1979).2 This 

behavior is taken as evidence for an inability to inhibit the truth and maintain false 

information in working memory. 

In the adult studies of deception, it is reaction time that exposes the breakdown of 

executive function in deception. However, it is also a surprisingly coarse and indirect 

measure of cognitive difficulty. To provide greater detail, researchers have begun to 

employ neuroimaging techniques to supplement their understanding of the processes 

involved in deception (Langleben et al., 2002; Vendemia & Buzan, 2004). For example, 

                                                
2 It should be noted, that in both cases involving children and primates, there are also 

other sophisticated cognitive processes that underlie difficulty associated with lying, most notably 
issues with mind-reading and perspective-taking (Byrne, 2010; Carlson, Moses, Breton, 2002). 
Such processes are also likely to play a significant role in adult’s ability to deceive, but have not 
yet been explored in great detail (see Carrion, Keenan, & Sebanz, 2010; Ybarra, Winkielman, 
Yeh, Burnstein, & Kavanagh, 2010 for initial work in this area).    
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event-related brain potentials (ERPs) and functional magnetic resonance imaging (fMRI) 

have been used in conjunction with reaction time to isolate the control processes involved 

in monitoring and choosing between false and true responses (Spence et al., 2004). A 

general finding is that the neural activity underlying false responding is similar to the 

neural activity underlying conflict monitoring and distractor inhibition in Stroop 

interference (Nuñez et al., 2005) and task-switching paradigms (Christ, Van Essen, 

Watson, Brubaker, & McDermott, 2008). These neuroimaging studies provide direct 

evidence that executive function is increasingly strained during false responding (Nunez 

et al., 2005). The studies also augment the speculations of many reaction time 

experiments: increased processing time involves the inhibition of a true response, the 

selection of a false response, and the transmission of the falsity (Vendemia, 2005; 

Walczyk et al., 2003; Walczyk et al., 2005). 

Going beyond reaction time is an important step in clarifying the cognitive 

aspects of false response behavior. For example, by evaluating the brain-state activity that 

accompanies a false response, additional insights can be had as to why processing is more 

difficult. However, in drawing conclusions, researchers assume for methodological 

convenience that processes of inhibition, selection, and transmission proceed with 

discrete and minimally interactive ordered components. These general assumptions have 

a long history in cognitive psychology (Donders, 1868; Wundt, 1874), and form the basis 

of the subtractive method of measurement, an analytic technique most recently 

instantiated in Sternberg’s (1969) Additive Factors Method. In neuroimaging studies of 

deception, neural activity recorded during a deceptive response (i.e., experimental 

condition) is subtracted from the neural activity during a control behavior. The 
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“deceptive” brain activity is the linear difference between these two response behaviors. 

Accordingly, any variables affecting deception cannot interact (because of the linear 

assumptions) and are regulated to separate processing stages. By doing this, there is an 

assumption that stages proceed in sequential order, in which one component gives way to 

the next in a single chain of processing (Van Orden & Papp, 1997).  

An alternative to the assumptions of discrete cognitive processing is the 

assumption of continuous cognitive processes. Accordingly, component processes do not 

occur in a discrete sequence, but can be activated in an overlapping manner and resolved 

in parallel. Indeed, there is mounting evidence that continuous cognitive processing is 

conveyed through the continuous movement of the body (Spivey, 2006; Spivey & Dale, 

2006). In studies of deception, the continuity is often obscured by reaction time measures 

that limit motor execution to ballistic movements, thereby collapsing intermediary 

cognitive processes to a single discrete behavior (Gregg, 2006; Walczyk et al., 2003). 

Continuity is also obscured by neuroimaging studies that often hold de facto assumptions 

about discrete processing, as is the case for neuroimaging studies focused on deception 

(e.g., Johnson, Barnhardt, & Zhu, 2004). Through tracking continuous action dynamics, 

we loosen such methodological and theoretical restrictions. As cognitive activity flows 

into the body, the continuous movements of the arm act as a direct conduit of the 

cognitive activity. 

Continuous mind-body covariance has been repeatedly demonstrated in decision 

tasks that require responses to be made in the visual co-presence of target and distractor 

choices. In an example related to the current study, participants evaluated the truth of 

simple propositions by navigating a computer-mouse to true or false response options in 
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the uppermost corners of a computer screen (McKinstry, Dale, & Spivey, 2008). 

Propositions that had a high level of uncertainty, such as Is murder sometimes 

justifiable?, were answered with slower arm movements and with greater moment-to-

moment fluctuations than propositions with a high level of certainty of being true (e.g., 

Should you brush your teeth everyday?). These unstable arm movements suggest that 

greater cognitive effort is involved in evaluating ambiguously true information. 

Moreover, the continuous movements of the arm reveal an immediate and persistent 

influence of a “positive confirmation” bias throughout the response (see also Gilbert, 

1991). This confirmation bias was most salient while answering no to propositions that 

were clearly false, such as “Is the mother younger than the daughter?”. For these 

propositions, there was a statistically significant tendency for the arm to gravitate 

relatively slowly toward a “yes” response (positive confirmation) during a no response 

movement. This pattern of movements suggest that both target false responses and a 

competitor confirmation bias were simultaneously activated, with the activation from the 

target response eventually prevailing. 

Despite the evidence of graded activation in the parallel processing of truth 

evaluations, it is still unclear if similar processing is involved while contradicting the 

truth in a prompted false responding paradigm. The greater difficulty associated with 

prompted false responding may alter processing from continuous activation to that of 

discrete and serial operations. Indeed, as discussed earlier, the discrete hypothesis plays a 

significant role in the theoretical and applied assumptions of deception detection. In the 

current study, I pursue an alternative hypothesis that posits false responding is carried out 

more continuously. In doing so, I intend to show that measurements based on continuous 
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processing can reliably distinguish between true and false response behavior (and does so 

with even greater accuracy than a reaction time measurement; see Appendix D for this 

and other supplementary analyses). 

Study 1a: Psychonomic Bulletin & Review 

Action Dynamics During False Responding (Wiimote) 

 NOTE: The following study was originally published in Psychonomic Bulletin & 

Review; Duran, Dale, & McNamara, 2010.  

 Most people can easily confirm or deny an assertion that they once met Elvis 

Presley or that they collect clocks in their spare time. Nonetheless, evidence suggests that 

prior to a final confirmation or denial of such assertions, people temporarily and perhaps 

non-consciously believe the assertions to be true (Gilbert, 1991; Gilbert, Tafarodi, & 

Malone, 1993). The nature of belief appears to be biased towards initially accepting a 

proposition as true, even when that proposition is unequivocally false. It stands to reason 

that for someone to dishonestly confirm or disconfirm any proposition, as in agreeing to 

having met Elvis when that was not the case, the person will accept the assertion as true, 

then assess whether the initial acceptance is correct (which it is not), and then respond in 

order to violate the conclusion of the assessment (by falsely saying yes). In such 

deceptive behavior, competition exists between the initial belief, the assessment of the 

belief, and the intention to deceive. While the initial belief is involuntary, this acceptance 

of the truth is an impediment that requires active processing to overcome.   

By many accounts of deception, the competition and resolution involved in false 

responding is a far more challenging and time-consuming process than confirming the 

truth (Vendemia & Buzan, 2004; Walczyk et al., 2005). Accordingly, researchers 
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interested in deception detection have designed clever tasks that exploit this increased 

processing time (e.g., Gregg, 2006; Sartori et al., 2008). Participants often respond 

honestly or deceptively to simple statements, and the time taken to respond, both by vocal 

onset or a manual key press, is recorded and analyzed. In general, these response time 

latencies are useful in discriminating certain deceptive behaviors, and have thus risen to 

prominence as a standard-bearer of detecting deception. Unfortunately, response time 

only captures the outcome of a completed cognitive process, and the real-time cognitive 

dynamics that occur during the process are lost.  

To begin exploring these moment-to-moment changes of response selection, we 

turn to a growing body of action dynamics research. In this research, actions that occur in 

conjunction with a cognitive task often reflect ongoing characteristics of processing, 

ranging from low-level speech perception (Spivey, Grosjean, & Knoblich, 2005) to 

higher-level learning (Dale et al., 2008). The response activity involved in these tasks is 

usually recorded as arm movements within a set spatial region. Analysis of the arm 

movement provides insight into what information is important during processing, and 

when that information is most relevant.  For example, in Dale, Kehoe, and Spivey (2007) 

participants used a computer-mouse to make typicality judgments on category 

membership. Each trial involved matching an animal exemplar (e.g., whale) to one of two 

visually co-present response options located in opposite corners of a computer screen. 

For some trials, classification was potentially ambiguous, such as matching whale to a 

fish or mammal option. During response movements, the streaming x,y-coordinates of the 

computer-mouse were recorded. The researchers found that computer-mouse trajectories 

for atypical animals (e.g., whale) curved more towards a featurally similar distractor (e.g., 
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fish), suggesting that semantic categorization process also unfolds partly into the 

dynamics of response execution. 

 We use this cognition-action interplay to tap the dynamics of false responding. 

Indeed, there is well-established evidence that deception often “leaks” into a deceiver’s 

actions, such as facial movements and body posture (Vrij, 2001). Here, we employ an 

action dynamics technique to study response behavior as continuous competition from an 

initial belief and the goals of deception. To the extent that this competition is expressed in 

action, we can use x,y-coordinate trajectories to expose the dynamics of overcoming this 

initial true belief, and enacting the agenda of a false response.  

In the current study, we expose hidden cognitive activity that is involved while 

falsely accepting or denying assertions about oneself. To do so, we use a modified 

version of the “guided lie” paradigm that is commonly employed in EEG and fMRI 

analysis (e.g., Spence et al., 2004; Vendemia & Buzan, 2005). Participants are prompted 

to respond falsely or truthfully to simple autobiographical facts, such as Have you ever 

been to Asia?. Rather than answering with a computer key press, participants use a 

Nintendo Wiimote and the x,y-coordinates of their arm movements are rapidly sampled 

(see Dale et al., 2008). 

  With this rich data output, we evaluate signatures of deception in terms of the 

shape of each movement trajectory and the location of the trajectory over time. We also 

quantify trajectory properties on dimensions of velocity, stability, and direction. As the 

results reveal, the “unpacking” of response time not only provides unique distinctions 

between false and true responses, but also in the more subtle distinction between false 

responses answered either with a “no” or “yes”.  
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Experiment: Revealing the Dynamics of False and True Responding 

Participants 

Twenty-six undergraduate students (19 female, 7 male) participated for extra 

credit. Only native English speakers with normal-to-corrected vision were eligible to 

participate. All participants were right-hand dominant.  

Procedure  

A trial began with a small bull’s-eye-shaped circle appearing at the bottom-center 

region of a 3.8m x 1.8m screen positioned approximately 2.7m directly in front of the 

participant. The participants’ task was to click on the circle with the Wiimote-controlled 

cursor, and by doing so, the first word in a biographical question would appear above the 

circle. With each click of the Wiimote, the current word was replaced with the next word 

in the question. This process continued until the final word of the question was 

encountered (akin to self-paced reading tasks; Just, Carpenter, & Woolley, 1982). At this 

point, a “NO” response box appeared in the top-right corner of the screen and a “YES” 

response box appeared in the top-left corner of the screen (each box was approximately 

0.5m x 0.5m). Also at this time, the bull’s-eye-shaped circle changed to the color green or 

to the color red. If the circle changed to the color green, the participant was simply 

instructed to answer the question truthfully. If the circle changed to the color red, the 

participant was to answer falsely. All responses were made by navigating the Wiimote 

cursor to the appropriate “NO” or “YES” box (see Appendix B for an example layout of 

the experimental design). 

 During each trial, the x,y coordinates of the cursor movement were continuously 

recorded (sampling at approximately 80Hz) and stored for later processing.  Because the 
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Wiimote is held with an extended arm in front of the body and toward the screen, subtle 

directional changes in wrist and arm movement are captured, with 33 pixels traversed for 

each centimeter of lateral movement.      

The participants responded to 84 question trials, including 4 practice trials. The 80 

experimental trials were divided equally between false and true color prompts, and the 

order of the false and true prompts, as well as the order of the questions, was randomized 

for each participant. The position of the “NO” and “YES” response boxes was also 

reversed for a third of the participants (i.e., “NO” response box appeared in the top-left 

corner of the screen and the “YES” response box appeared in the top-right corner of the 

screen). After the initial set of questions had been answered, the participants completed a 

follow-up verification task that required participants to truthfully re-answer all the 

questions they had previously viewed.  

Question Stimuli 

The questions used in the study began with the stem Have you ever… and were 

completed with 120 possible statements (i.e., Have you ever eaten pizza?; stimuli 

available online3). Eighty of the 120 questions were randomly selected for each 

participant. The questions were also selected to elicit an equal number of false “no” 

responses, true “no” responses, false “yes” responses, and false “no” responses. A pilot 

study confirmed that the responses were approximately evenly distributed within 

individuals across our target population. All questions were completed with two to three 

words, following the pattern of verb + object or verb + preposition + object. The object 

of the question always occurred in the sentence-final position to prevent early guessing of 

sentence meaning.  
                                                

3 http://actiondeception.nickduran.com/ 
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Results 

Trials were excluded if responses in the verification task were incongruent with 

the original responses or if response time was above 3 standard deviations. This exclusion 

criterion eliminated one participant (incongruent responses exceeded 50% of total trials) 

and 92 additional trials (5% of the data). Of the 1908 trials remaining, 435 trials occurred 

in the “false/no” condition, 455 trials occurred in the “truth/no” condition, 503 trials 

occurred in the “false/yes” condition, and 515 trials occurred in the “truth/yes” condition. 

 Trajectory Shape. This analysis examines the shape of each trajectory as it moves 

from the bottom-center bull’s-eye to the final response box at the top left or top right of 

the screen. To conduct this analysis, the response trajectories for each participant were 

initialized to x,y-coordinates (0, 0) and interpolated to 101 time steps (see Dale et al., 

2007; Spivey et al., 2005). At each time step, the x- and y-coordinate positions were then 

averaged within condition for each participant. To compare conditions, we performed 

paired t-tests at corresponding x-coordinate time steps (a total of 101 t-tests). A 

consecutive run of statistically significant tests indicates that trajectories between 

conditions are diverging during response execution.        

The false “no” and true “no” trajectories diverged for 29 time steps (p < .05) 

between the 59th and 88th steps, while the false “yes” and true “yes” trajectories 

statistically diverged for 58 time steps (p < .05) between the 40th and 98th steps (Figure 

1a). The divergence for each comparison exceeds the minimum number of 8 consecutive 

time steps that bootstrap simulations have shown to be a standard for statistical 

significance (see Dale et al., 2007). Accordingly, the trajectory shape analysis reveals 

false and true responses that are conspicuously different. True response movements 
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appear to travel a more direct route to the target response, whereas false response 

movements take a more curved route. The bend of the curve is always in the direction of 

the competing response option (i.e., the “true” response). This greater curvature suggests 

that competition is greater for false responses, whereas processing for true responses is 

relatively unaffected.    

To further explore this competition, we examined divergence between falsely 

responding “no” compared to falsely responding “yes” by superimposing mirror-reversed 

false “yes” trajectories (see Figure 1c). A paired t-test analysis revealed that false “yes” 

responses diverged from false “no” responses for 16 time steps (p < .05) between the 

55th and 70th time steps. During these time steps, false “yes” responses were closer to 

the competing true response option. Not only was there a greater competition for general 

false responding, but this effect was most pronounced with false “yes” responses. 
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Figure 1. (a) Shape of Wiimote trajectories for each condition. False answers (solid lines) 

display a greater arc towards the competing response option than true answers (dashed 

lines). (b) Location of Wiimote trajectories for each condition. The x-coordinate position 

is plotted at 500 ms (cross), 1000 ms (star), and 1500 ms (circle). The false answer 

positions (connected by solid line) show slower movements toward the correct response 

location (e.g., upper-left corner for false “yes”) and are closer to the competing response 

option (e.g., upper-right corner for false “yes”) than true answers (connected by dashed 

line). (c) Shape of trajectories for false “yes” responses (mirror-reversed from that of 

Figure 1a) compared to shape of false “no” responses. The false “yes” responses (dotted 

line) are closer to the competing true option than false “no” responses (dash-dotted line). 

(d) Location of trajectories for false “yes” responses (mirror-reversed from that of Figure 
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1b) compared to shape of false “no” responses. The false “yes” responses (dotted line) 

are closer to the competing true option than false “no” responses (dash-dotted line). 

Trajectory Location. This analysis compares the location of response trajectories 

after the first, second, and third 500 ms of processing (for 500, 1000, and 1500 ms). This 

information was lost in the previous analysis when temporal information was collapsed 

into fixed time steps. Now with trajectory location, we can answer the question of when 

trajectories begin to be statistically divergent.  To conduct this analysis, the trajectory 

coordinates were first normalized to initiate at x,y-coordinate (0, 0) and end at (1, 1). 

Next, the normalized x-coordinate positions for false and true responses were captured at 

the 500, 1000, and 1500 ms processing mark and placed in corresponding “time bins”. 

The average location of each time bin for each condition is plotted in Figure 1b.    

A 2 (prompt type: true vs. false) x 3 (time bin: 500 vs. 1000 vs. 1500 ms) 

repeated-measures ANOVA was used to evaluate trajectory position in real-time. 

Beginning with the “no” trials, there was a statistically significant effect for prompt type, 

time bin, and the interaction between prompt type and time bin. To explore this 

interaction further, planned comparisons were conducted between prompt types at each 

time bin.  There was a statistically significant difference of the x-coordinate position at 

the third time bin (1500 ms) between false (M = .23, SD = .27) and true (M = .47, SD = 

.23) trajectories, F(1, 24) = 20.54, p < .001.  

The repeated-measures results for “yes” trials also showed a statistically 

significant effect for prompt type, time bin, and the interaction. Planned comparisons for 

the interaction revealed statistically significant differences at the x-coordinate position at 

the second time bin (1000 ms) between false (M = .06, SD = .10) and true (M = -.31, SD 
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= .20) trajectories, F(1, 24) = 81.40, p < .001, and at the third time bin (1500 ms) between 

false (M = -.09, SD = .16) and true (M = -.68, SD = .19) trajectories, F(1, 24) = 203.29, p 

< .001.  

Taken together, these results indicate that false ”yes” trajectories diverge from 

true “yes” trajectories much earlier (at around 1000 ms) than when false “no” trajectories 

begin to diverge from true “no” trajectories (not until at least 1500 ms). Because 

divergence here refers to movement toward the competing response option, false ”yes” 

trajectories appear to be influenced by a truth competition much earlier than do false “no” 

trajectories.  

As in the trajectory shape analysis, false “yes” and “no” trajectories can be 

directly compared to each other instead of using the true trajectories as a reference, which 

have their own idiosyncratic response biases (as in a “yes-bias” for “no” responses). As 

such, the trajectories for false “yes” responses were mirror-reversed (see Figure 1d) and 

paired t-tests at each time bin were assessed. Once again there was greater divergence for 

false “yes” responses compared to false “no” responses, with divergence recorded at the 

second time bin F(1, 24) = 4.31, p = .05 and third time bin F(1, 24) = 7.51, p = .01.  

Trajectory Velocity. The velocity of response trajectories was evaluated by 

computing the distance (in terms of pixels) covered per second within a moving window 

of 8-x,y pixel coordinates across total time. Figure 2 shows the average velocity profile 

for each condition. This figure suggests that, on average, the initial increase in velocity 

(as participants committed to a response) and the subsequent decrease in velocity (as 

participants completed the response) occurred much later for false responses than for true 

responses. A repeated-measures ANOVA conducted on the moment of peak velocity 
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confirms this observation, such that a significant interaction, F(1, 24) = 25.51, p < .001, 

and follow-up planned comparisons between prompt and response type reveal that false 

“no” responses peaked later in time than true “no” responses, F(1, 24) = 22.29, p < .001, 

and that false “yes” responses peaked later in time than true “yes” responses, F(1, 24) = 

93.32, p < .001. 

We also examined differences in the magnitude of peak velocity with the 

assumption that greater response activation would result in higher peaks. A statistically 

significant interaction was found between prompt and response type, F(1, 24) = 16.87, p 

< .001, showing that the peak for false “yes” responses is lower in magnitude than true 

“yes” responses, F(1, 24) = 9.07, p < .01. There were no significant differences for false 

“no” and true “no” responses.  
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Figure 2. The velocity profiles plotted as a function of total time for true “no”, (dashed 

line with circles), true “yes” (dashed line with triangles), false “no” (solid line with 

circles), and false “yes” (solid line with triangles) responses. The plotted range of 376 to 

3400 ms covers 90% of all completed trajectories and eliminates extremely early and late 

movements that have near-zero velocities. (NB: Average velocity profiles are defined 

over a broad range around the mean total time because these profiles are partly based on 

slower trajectories that go beyond the mean total time, that is, trajectories with a total 

time that is slower than the mean total time.) 

 
 

Trajectory Properties. In this final analysis we computed eight properties that 

characterize temporal and trajectory behavior along continuous scales of measurement 

(Dale et al., 2007). The variables are listed and summarized below: 

(a) Total Time: the amount of time elapsed between the initiation of the prompt 

and making a “yes” or “no” response; 



   

 30 

 (b) Latency: the amount of time the mouse cursor stays in a “latency region”, with 

region defined as a 100-pixel radius that surrounds the mouse cursor position that 

initiated the response prompt (Dale et al., 2008);  

 (c) Distance: the Euclidean distance traveled by the trajectory after leaving the 

latency region and making a “yes” or “no” response; 

 (d) Motion Time: the amount of time elapsed while moving between the latency 

region and completing a “yes” or “no” response; 

 (e) High x-value: a measure of how close (in coordinate position) each trajectory 

curves toward the “no” response box, with the “no” response box at the maximum x-

value position; 

 (f) Low x-value: a measure of how close (in coordinate position) each trajectory 

curves toward the “yes” response box, with the “yes” response box at the minimum x-

value position; 

 (g) x-flips in Latency: the number of times a trajectory moves back and forth on 

the x-axis within the latency region; and  

 (h) x-flips in Motion: the number of times a trajectory moves back and forth on 

the x-axis while in motion to a “yes” or “no” response.  

 The total time and latency variables are primarily temporal measures, whereas the 

remaining variables capture dynamical processes that occur along the trajectory of 

motion. For example, x-flips in latency and x-flips in motion provide an intuitive measure 

of response instability, and high x-value and low x-value variables are indicators of 

competing attractor strengths that occur while reacting either to “no” falsely (moving 
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leftward on the x-axis toward the competing “YES” response region) or to “yes” falsely 

(e.g., moving rightward on the x-axis toward the competing “NO” response region).   

A 2 (prompt type: false vs. true) x 2 (response type: yes vs. no) repeated-measures 

ANOVA was conducted for each of the eight dependent variables. Each variable, as well 

as their mean values and SEs for each condition, are provided in Table 1. The results of 

the repeated-measures ANOVA are provided in Table 2. 

 
 
Table 1. Means and SEs for the Wiimote trajectory variables by prompt and response 

type.  

 Yes No 

 False Truth False Truth 

Variable M SE M SE M SE M SE 

Total time (ms) 2806.00  83.00 1996.00 86.00 2802.00 115.00 2408.00 111.00 

Latency (ms) 1247.00 73.00 999.00 59.00 1246.00 67.00 1111.00 57.00 

Distance (pixels) 1423.00 102.00 996.00 98.00 1426.00 145.00 1273.00 114.00 

Motion time (ms) 1558.00 103.00 997.00 65.00 1556.00 122.00 1297.00 107.00 

High x-value  229.00 24.00 69.00 12.00 515.00 4.00 515.00 4.00 

Low x-value  -505.00 17.00 -509.00 22.00 -190.00 25.00 -139.00 2.00 

x-flips in latency 8.67 0.66 6.87 0.50 9.00 0.78 8.32 0.79 

x-flips in motion 3.87 0.36 2.20 0.24 4.22 0.48 3.42 0.39 
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Table 2. F scores for the repeated measures analysis using Wiimote movements. 
 
Variable Yes vs. no response Truth vs. false prompt Prompt x response 

Total time 9.92** 80.67** 11.85** 

Latency 4.68** 25.82** -- 

Distance 6.05* 16.03** 4.70** 

Motion time 8.04** 44.12** 6.90** 

High x-value 693.63** 68.38** 72.72** 

Low x-value 288.49** 7.18** 6.77** 

x-flips in latency 5.09* 12.83** -- 

x-flips in motion 9.41** 38.50** -- 

Note: * indicates statistical significance at p < .05; ** indicates statistical significance at  
p < .001; the degrees of freedom for all analysis are 1, 24.   

 
 
 
To ensure that the results for trajectory properties were not unduly influenced by 

possible confounds, we also performed a Hierarchical Linear Model (HLM) analysis with 

random factors that controlled for variance due to practice effects (by nesting trial 

number in participants), for NO/YES response position, and for items. A noted advantage 

of a HLM analysis is that it is also quite robust against unequal N in conditions, as is the 

case with our data. In all analysis, the results were consistent with the repeated-measures 

ANOVA, except the interaction terms for latency and x-flips in latency were no longer 

significant.       

Discussion 

The current study provides the first investigation into the action dynamics of 

deceptive behavior. The movements of the arm revealed distinct signatures of cognitive 

activity as participants made false and true responses to autobiographical questions. 

During false responses, the dynamics were slower and more disorderly than true 
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responses, and were also curved towards a competitor “truth” region that was visually co-

present with the target response region. This curvature suggests the presence of a truth-

bias attractor that pulls processing “off-course” during the production of a false response 

(Gilbert et al., 1993; McKinstry et al., 2008). For truthful responses, there was no 

equivalent pull in the direction of a competitor “false” region.  

The competition effects for false responding are similar to decision tasks that 

involve competition between featurally similar exemplars (Dale et al., 2007), ambiguous 

syntactic completions (Farmer et al., 2007), and phonological competitors (Spivey et al., 

2005). Similar to these studies, the competition exhibited in false responding is the result 

of cognitive components that evolve smoothly over the response movement itself, 

suggesting overlapping processes in overcoming an initial belief and generating a false 

response. This view of deception naturally extends response time measures by 

incorporating the fine-grained changes that occur during the response. By doing so, a 

clearer distinction between deceptive and truthful behavior is possible.  

One notable distinction is the greater trajectory curvature and slower responses 

for false “yes” responses compared to false “no” responses. This differentiation within 

false responses was not found for truth responses. Interestingly, the greater difficulty of 

falsely saying “yes” is at odds with an earlier finding that normal “yes” responses elicit 

faster and smoother trajectories than “no” responses, or a “yes-bias” (McKinstry et al., 

2008). Indeed, based on Gilbert and colleagues findings (Gilbert, 1991; Gilbert et al., 

1993), automatic acceptance of propositions should give “yes” responses a facilitative 

advantage. However, when deception is involved, this “yes” automaticity conflicts with 

the more deliberative goal to respond falsely.   
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To lay the initial foundation in quantifying deceptive response movements, we 

chose a “guided lie” paradigm that permits a straightforward contrast between false and 

true response behaviors. Unfortunately, this distinction is not always realized in “real-

world” scenarios, where elements of truth are intermingled with the motives and content 

of a lie. There is also a limitation in our experimental paradigm that concerns the 

intention to deceive. Ekman (1997) argues that deception is an act of conscious volition 

that requires the deceiver to know what is accurate, and then to purposefully violate that 

knowledge with false information. Clearly, deception requires a certain degree of 

motivation that is absent from a guided lie paradigm. Nevertheless, this type of 

responding is still closely aligned with deceptive behavior, and is widely used and 

accepted in the deception literature (DePaulo et al., 2003; Vrij, 2001). Of course 

consensus does not negate further investigation, and future work will allow participants 

greater choice in the scope of their deception, both in when they deceive and under what 

circumstances they do it (e.g., personal or social gain, avoiding embarrassment). 

It is clear that deception is a complex behavior that garners both theoretical and 

applied attention. To concoct a false reality requires one to maintain a mental 

representation of the truth, and then to violate this representation with all appearances of 

sincerity. Not only is this behavior cognitively challenging, but it also interacts with a 

host of social, motivational, and emotional factors. Notwithstanding this complexity, 

researchers have devised a multitude of techniques to identify cues of deception. This 

study provides the first steps towards applying an action dynamics framework to the 

exploration of false response behavior. The results suggest that dynamic measures 

capture deceptive processes that are unavailable to response time measurements alone. If 
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so, these measures could improve existing prediction models that have been touted in 

recent years (Gregg, 2006; Sartori et al., 2008; Walczyk, Mahoney, Doverspike & 

Griffith-Ross, 2009), as well as supplement techniques for detecting online deception 

(Monrose & Rubin, 2000). While there is much more work ahead, we admonish 

deceivers everywhere: your arm might just reveal when you are lying. 

Study 1b: PROMPT-FINAL/QUESTION-AUTO 

 NOTE: The following studies, Study 1b, 2a, and 2b, are novel extensions of Study 1a 

that constitute unpublished data. This study, Study 1b, is a computer-mouse replication of 

Study 1a.      

Participants  

Fifty-three Mechanical Turk workers were paid 40 cents to participate in this 

study. Two participants did not reveal their gender or age. Of the 51 participants who 

provided demographic data, 28 were female and the median age was 29.5 (with a 

minimum age of 18 and a maximum age of 69 years old). Due to the online nature of data 

collection, it could not be verified whether participants were predominantly right or left-

handed.  

Procedure  

To replicate the Wiimote experiment (Study 1a), the current procedure is mostly  

consistent, albeit with a few necessary changes for online implementation. Instead of 80 

questions, participants only answered 40 questions. These questions were randomly 

selected from the original 120 question set. This selection process was repeated ten times 

to produce ten lists, and of these ten lists, one was randomly presented to each 

participant. It should also be noted that presentation of the “YES” and “NO” response 
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boxes, on either the right or left sides of the screen, was randomly placed for each 

participant (and stayed consistent throughout all trials). Also, in using Adobe Flash to 

present and collect data, the sampling rate of trajectory movements was reduced to 40 Hz 

(instead of 80 Hz as used in the original Python implementation). And lastly, new colors 

were selected for the response prompts. The color ORANGE is now associated with a 

false response instead of the color RED, and the color BLUE is now associated with the 

true response instead of the color GREEN. The reason for this change is to remove any 

possible confound of inhibition/facilitation that might be elicited by color type. The color 

RED is often associated with STOP (e.g., traffic lights and stop signs), and slower 

responses in false responding might be attributed to this association.  

Question Stimuli  

The same questions as Study 1a were used.  

Results 

Based on the responses given in the follow-up verification task, four participants 

were removed for failing to answer the false response prompts properly. Also, 2.61% of 

trials were removed for exceeding 3 standard deviations above the mean (e.g., 5633 ms). 

No participant had more than a single trial that exceeded this upper threshold. In total, 

there were 536 trials in the “false/no” condition, 590 trials in the “true/yes” condition, 

389 trials in the “false/yes” condition, and 373 trials in the “true/no” condition.  

Trajectory Shape. The trajectories across each condition, for each participant, are 

time-normalized to 101 time steps. These trajectories are combined to form four 

composite vectors, representing each condition (see Figure 3). To determine if false 

trajectories diverge from a truth baseline, paired t-tests were computed at each of the 
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time-steps, moving up the sequence from 1 to 101 steps to produce 101 t-tests. To show 

evidence for divergence, there must be a sequence of 8 or more sequential t-tests that are 

statistically significant (based on bootstrapping methods). For the “no” responses, there 

was no evidence for divergence between the true and false responses. However, for the 

“yes” responses, the true and false trajectories diverged between the 48 and 87 time steps, 

with greater curvature toward a response competitor exhibited in false trajectories.  

The failure to find any divergence for false “no” responses is likely the result of 

using true “no” trajectories as a baseline. A visual inspection of Figure 3 suggests that the 

true “no” responses are pulled toward a “yes bias” attractor to the same extent that the 

false “no” responses are pulled toward a “truth” attractor. Given the curvature in true 

“no” responses, it is difficult to make any direct inferences about false “no” behavior 

with true “no” trajectories acting as a baseline. A better analysis for examining false 

response behavior is to compare the false trajectories against each other. Because false 

“yes” trajectories clearly demonstrate the effect of a “truth” bias (i.e., movement toward 

the “truth” response competitor), these trajectories will serve as an improved baseline. If 

no differences are found, then this suggests that false “no” are also influenced by a 

“truth” bias, at least to the same extent as false “yes” responses.    

For the new comparison, false “no” trajectories were mirror-reversed to lie on the 

same coordinate plane as the false “yes” trajectories. Using the t-test method, there was 

some evidence that false “no” trajectories diverged toward a truth attractor (from the 17 

to 21 time steps), but because this occurred only over 5 time steps, it is not considered 

statistically significant. Thus, it is safe to conclude that the false “no” and “yes” 

responses are similar in difficulty, according to a measure of deviation along the x-axis.   
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Figure 3. Shape of computer-mouse trajectories for prompt-final presentation, using 

autobiographical-based questions. False answers (solid lines) display a greater arc 

towards the competing response option than true answers (dashed lines). However, for 

“No target” responses, the greater curvature in true “no” trajectories suggest interference 

from a “yes bias.” 

 
 

Trajectory Location. In this analysis, the x,y coordinates of the “true/yes,” 

“false/yes,” “true/no,” and “false/no” trajectories were extracted to capture a 50 ms range 

around three stages in processing, at an initial stage around 500 ms (x,y coordinates 

between 450 and 550 ms), at a mid-range stage around 1100 ms (x,y coordinates between 

1050 and 1150 ms), and a later stage in processing, around 1700 ms (x,y coordinates 

between 1650 and 1750 ms). These stages and range of times are also used in all 

subsequent studies. For this study, the average position of each of these time ranges, for 

each condition across all participants, is plotted in Figure 4.  
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To evaluate the divergence toward a “truth bias” attractor, separate mixed effects 

model were conducted at each time range for displacement in x-coordinate position, with 

subject entered as a random effect. The analysis was conducted using the lmer package in 

the R statistical software. In this package, p-values are computed with 10,000 Monte 

Carlo Markov Chain simulations, using lmer’s pvals.fnc function (see Baayen, Davidson, 

& Bates, 2008). I report these p values, as well as the SEs from each model.  

 Starting with a comparison of “no” responses between true and false trajectories, 

the analysis now shows differentiation at particular time ranges. There were statistically 

significant displacements of the x-coordinate around 500 ms, b = -3.26, p < .001, and 

around 1700 ms, b = 16.95, p = .002, but not around 1100 ms (Figure 4a). For the “yes” 

responses, there was evidence of displacement at all time ranges, around 500 ms, b = -

3.15, p < .001; 1100 ms,  b = -74.07, p <  .001; and around 1700 ms, b = -77.08, p < .001. 

For every time range where a displacement was observed, it was the false response that 

was most affected by the competitor response option, with the notable exception of the 

true “no” trajectories around 500 ms (an explanation for this and other patterns provided 

below in Discussion) (Figure 4b).  

 I also tested for the existence of a general “yes” bias. To do so, the true “no” 

trajectories (which are susceptible to a “yes” bias) were compared against the true “yes” 

trajectories. At each time point, the true “no” responses deviated from the true “yes” 

responses and toward the competitor response option: around 500 ms, b = 8.72, p = .002; 

around 1100 ms, b = 78.27, p < .001; and around 1700 ms, b =  46.35, p = .019 (Figure 

4c). Next, comparing just the false “no” and “yes” responses against each other, there is 

evidence for an additive effect of a “truth” bias and a general “yes” bias for the false “no” 
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responses. Around the 500 ms mark, the false “no” responses, compared to the false 

“yes” responses, are shifted 2.5 x-coordinate positions toward the attractor region, p < 

.001. However, at all other time points, there are no statistically significant differences 

(Figure 4d).   

 
 

 
 
 
Figure 4. Location of computer-mouse trajectories for prompt-final presentation, using 

autobiographical-based questions. The x-coordinate position is plotted around 500 ms 

(cross), 1100 ms (star), and 1700 ms (circle). (a) False “no” vs. true “no” trajectories, (b) 

False “yes” vs. true “yes” trajectories, (c) True “yes” vs. true “no” trajectories, and (d) 

False “yes” vs. false “no” trajectories. 
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Temporal and Trajectory Properties. For this set of analysis, I keep the same 

trajectory variables as Study 1a: (a) Total Time, (b) Latency, (c) Distance, (d) Motion 

Time, (e) High x-value, (f) Low x-value, (g) x-flips in Latency, (h) x-flips in Motion, (i) 

Time to Reach Peak Velocity, and (j) Magnitude of Peak Velocity. The latter two 

variables were also used in Study 1a in their own section, but here they are combined 

with the larger temporal and trajectory properties analysis. I also include an additional 

variable, (k) Area Under the Curve, that measures the area between each response 

trajectory and a hypothetical straight line drawn from the starting and ending positions of 

each trajectory. This measure has been included for further validation of attractor 

strength, capturing degree of deviation toward a visually present attractor region.  

 For each measure, a complete mixed-effects model was conducted comparing all 

four conditions, “true/yes,” “false/yes,” “true/no,” and “false/no,” controlling for random 

variation between subjects, items, and trial number embedded in subject (to specifically 

control for practice effects). The means and SEs for each measure are reported in Table 3, 

and the outcome of the mixed effects models are reported in Table 4.  

To evaluate measures with a statistically significant interaction, planned 

comparisons were performed between trajectories for false and true “no” responses, and a 

separate analysis for false and true “yes” responses. For the “no” responses, none of the 

trajectory measures, which capture moment-to-moment changes in trajectory movement, 

differed between the true and false response movements. Again, because true “no” 

trajectories (which act as a baseline for false “no” responses) are affected by competition 

from a “yes bias”, the failure to find a difference is likely driven by increased processing 

difficulty for true “no” responses. However, this processing difficulty for true responses 
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is not so great that it supersedes the difficulty associated with false “no” responses. 

Together, the temporal variables Total Time, Motion Time, and Time to Reach Peak 

Velocity show that true “no” responses are still faster than those of false “no” responses.   

Turning now to the comparison of false “yes” and “no” responses, there were 

statistically significant differences for the majority of measures. Of the 10 variables 

evaluated, 8 were significant, including 4 temporal variables: Total Time, Latency, In 

Motion Time, and Time to Reach Peak Velocity, and 4 trajectory property variables: 

Distance, High x-value, x-flips in Motion, and Time to Reach Peak Velocity. For the 

temporal variables, the difference in means across all variables indicates that the false 

“yes” trajectories are slower than true “yes.” And similarly, for the trajectory property 

variables, the false “yes” trajectories travel a longer distance, travel closer to the attractor 

region, show greater instability, and take longer to reach maximum velocity.  

It should also be noted that Magnitude of Peak Velocity did not interact with “yes” 

or “no” responses, and was generally least for “false” responses. This finding indicates 

that false responses have a much lower maximum velocity than true responses, and 

highlights the supposition that false responses are slower, and thus can be considered 

more cognitively difficult to execute.  
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Table 3. Means and SEs for Study 1b (prompt-final, computer-mouse) trajectory 

variables by prompt and response type. 

 Yes No 

 False True False True 

Variable M SE M SE M SE M SE 

Total time (ms) 2567.00 46.00 2077.00 30.00 2571.00 43.00 2346.00 44.00 

Latency (ms) 1081.00 29.00 969.00 18.00 1079.00 25.00 1029.00 25.00 

Distance (pixels) 876.00 19.00 732.00 12.00 854.00 13.00 872.00 22.00 

Motion time (ms) 1486.00 44.00 1108.00 24.00 1492.00 37.00 1317.00 38.00 

High x-value 97.00 6.16 48.00 3.96 251.00 1.74 251.00 2.43 

Low x-value 250.00 2.17 251.00 1.58 100.00 4.68 99.00 5.89 

x-flips in latency 0.27 0.03 0.27 0.03 0.32 0.03 0.29 0.04 

x-flips in motion 1.82 0.78 1.39 0.05 1.70 0.07 1.57 0.07 

Vel max mag (pix/sec) 2924.00 32.00 2974.00 40.00 2923.00 38.00 3027.00 56.00 

Vel max time (ms) 1120.00 31.00 900.00 19.00 1120.00 28.00 1040.00 30.00 

Area under 0.12 0.01 0.09 0.01 0.13 0.01 0.14 0.01 

Note: Vel max mag = Magnitude of the Maximum Velocity; Vel Max time = Time to Reach Maximum 
Velocity 
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Table 4. b value (estimates) for the LMER analysis for Study 1b (prompt-final, computer-

mouse) movements. 

Variable Yes vs. no response Truth vs. false prompt Prompt x response 

Total time -149.00*** 366.00*** 205.00*** 

Latency -40.00*** -82.00*** -68.00*** 

Distance -69.00*** -68.00*** 163.00*** 

Motion time -114.00*** -285.00*** -172.00** 

High x-value -178.00*** -25.00*** -47.00*** 

Low x-value -148.00*** -- -- 

x-flips in latency -- -- -- 

x-flips in motion -- -0.29*** -0.31*** 

Vel max mag -- 80.26*** -- 

Vel max time -4.57*** -7.99*** -6.49*** 

Area under -0.02*** -0.01*** -0.03*** 

Note: * indicates statistical significance at p < .05; ** indicates statistical significance at  
p < .01; *** indicates statistical significance at p < .001 
 
 
 
Discussion 

 In this study, the goal was to replicate the action dynamics of false responding 

that were found in Duran et al. (2010), and to do so with computer mouse movements 

that were collected outside the laboratory. The evaluation of the movements followed the 

same analytical approach as Duran et al., and in general, provided similar results (also see 

Appendix D for an analysis based on mouse movements collected in the laboratory; 

results are again comparable). Overall, I was able to distinguish “false” from “true” 

responses in terms of a “truth” attractor. This attractor, which was visually co-present 

with the target response option, acted as a competitor, and quite literally pulled the arm 

toward it. This effect was most clearly demonstrated in the false “yes” responses, where  



   

 45 

a strong competitor attractor was found for false trajectories, both in the Trajectory Shape 

and Trajectory Location analysis. For false “no” trajectories, there was little evidence for 

a competitor attractor – but only when comparing false “no” trajectories to true “no” 

trajectories. In contrast, the comparison of false “no” to false “yes” trajectories showed 

near equivalence, for all 11 Temporal and Trajectory Property variables and with the 

Trajectory Location analysis (except at the early stage of processing, which will be 

interpreted below). The reason that the signal for false “no” responses appeared weak 

when compared to true “no” responses is because of a strong “yes bias” present in the 

true “no” trajectories.  

 However, a “yes bias” is likely a factor in more than just true “no” responses, and 

might also be present at the earliest moments of processing for false “no” responses. At 

the initial processing stage (around 500 ms), false "no" trajectories were more likely to be 

pulled toward a competitor region than false “yes” trajectories (Figure 4d). One 

explanation for this result is that at the earliest moments of processing, there is 

competition not only from a "truth bias," but also from a "yes bias," where apparently the 

"yes bias" is strongest (as evidenced by the true “no” trajectories with greater deviation 

toward the competitor region than false “no” trajectories; see Figure 4a, at 500 ms). 

Interesting, when comparing the strengths of a “yes bias” (based on the deviation of true 

“no” trajectories) versus a “truth bias” (based on the deviation of false “no” trajectories), 

both biases are nearly equal at 1100 ms, until the “yes bias” becomes significantly 

weaker, compared to the “truth bias” at 1700 ms (Figure 4a). This series of comparisons 

reveal the shifting attractor dynamics of different response modes as processing evolves 

over a relatively short timescale, from 500 to 1700 ms. One important insight from these 
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analyses is that clearest signal of deception, where there is the maximal influence of a 

“truth bias” with minimal influence of a "yes" bias, is in the later stages of response 

execution.  

Study 2a: PROMPT-INITIAL 

Procedure and Question Stimuli 

 The procedure was identical as to the previous Study 1b, but with the critical 

change of now presenting the response prompt at the beginning of each question, with 

sustained presentation throughout each question trial. Thus, for the question, “Have you 

ever met Elvis?,” a true or false prompt would appear at the word “Have” and stay visible 

until YES or NO was selected. The questions were also identical as the earlier study, 

although with new stimulation lists that were randomly generated (i.e., 40 questions from 

a 120 question set).  

Participants  

 Fifty-two participants were recruited from Amazon Mechanical Turk and paid the 

same amount as in Study 1b (40 cents). In this sample, there were 33 females and 17 

males, with a median age of 32 (maximum age: 77 and minimum age: 18).    

Results 

Forty-nine participants were retained after removing three participants who failed 

to follow directions correctly. 1.80% of the data was removed for exceeding 3 standard 

deviations above the mean (e.g., 6092 ms). No participant had more than a single trial 

that exceeded this upper threshold. In total, there were 516 trials in the “false/no” 

condition, 569 trials in the “true/yes” condition, 386 trials in the “false/yes” condition, 

and 374 trials in the “true/no” condition.  
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Trajectory Shape. The false and true “no” time-normalized trajectories were 

evaluated by running t-tests at each of the 101 positions (Figure 5). Like Study 2b, the 

“no” responses did not display any signature of deviation. However, for the false and true 

“yes” time-normalized trajectories, there was consistent separation for 40 time steps, 

between the 40th and 80th time steps.  

 Comparing just “true” responses, there was evidence for a “yes bias” for true “no” 

responses, with separation of true “no” responses from true “yes” responses for 50 time 

steps, between the 22nd and 72nd time steps. Next, comparing just “false” responses, 

there was no separation, indicating that the attraction strength for the false “no” responses 

(where a “yes bias” might be present) was just as strong for false “yes” responses.  
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Figure 5. Shape of computer-mouse trajectories for prompt-initial presentation, using 

autobiographical-based questions. False answers (solid lines) display a greater arc 

towards the competing response option than true answers (dashed lines). However, for 

“NO target” responses, the greater curvature in true “no” trajectories suggest interference 

from a “yes bias.” 

 
 

Trajectory Location. Mixed effects models were used to evaluate the x-coordinate 

position of false and true “no” response movements at 500 ms, 1100 ms, and 1700 ms 

(Figure 6a). There was statistically significant displacement of the x-axis around 500 ms, 

b = -2.39, p < .001, around 1100 ms, b = 23.46, p = .04, and around 1700 ms, b  = 54.41, 

p =.001. For the displacement around 1100 and 1700 ms, it is the false “no” responses, 

compared to the true “no” responses, that are most influenced by the attractor region, i.e., 

pulled toward the competitor response option. However, this pattern reverses around 500 
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ms, where the “yes bias” is most potent, such that it pulls true “no” trajectories away 

from the false “no” trajectories and towards the competitor response option.   

The comparison between false and true “yes” response movements was much 

more straightforward (Figure 6b). At every position, the false “yes” responses deviated 

from the true “yes” responses and towards the competitor response option: around 500 

ms,  b = -5.75, p < .001, around 1100 ms, b = -79.42, p < .001, and around 1700 ms, b  = 

-70.86, p < 001. However, as discussed for Study 1b, the more “straightforward” nature 

of the false “yes” responses does not necessarily mean that they are influenced more by a 

“truth bias” attractor. Indeed, when comparing just false trajectories (Figure 6d), there 

were no statistically significant differences at any time range (although false “yes” 

responses appear to be more difficult based on overall temporal measures, as discussed in 

the Temporal and Trajectory Properties section).   

And finally, the assumed “yes bias” was indeed present. When comparing just 

true responses, the true “no” responses (i.e., those that would be susceptible to a “yes 

bias”) exhibited the greatest effect of response competition (Figure 6c). Accordingly, all 

mixed effects models comparing x-coordinate position of true “no” trajectories versus 

true “yes” trajectories revealed greater competition for “no” responses, around 500 ms, b 

= 5.64, p <  .001, around 1100 ms, b = 56.63, p < .001, and around 1700 ms, b = 17.51, p 

= .003.   
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Figure 6. Location of computer-mouse trajectories for prompt-initial presentation, using 

autobiographical-based questions. The x-coordinate position is plotted around 500 ms 

(cross), 1100 ms (star), and 1700 ms (circle). (a) False “no” vs. true “no” trajectories, (b) 

False “yes” vs. true “yes” trajectories, (c) True “yes” vs. true “no” trajectories, and (d) 

False “yes” vs. false “no” trajectories. 

 
 

Temporal and Trajectory Properties. The same 11 variables used in the previous 

study were used here. The means and SEs for each variable are reported across the four 

response conditions (see Table 5). Mixed effects models were also run for each variable 

(controlling for subjects, items, and practice effects). The b values and significance 
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values for the main effects of answer (“yes” vs. “no”), prompt (“false” vs. “true”), and 

their interaction are reported in Table 6.  

Before investigating the interactions in greater detail, it should be mentioned that 

two measures, Distance Traveled and x-flips in Motion, were driven solely by the prompt 

factor; that is, there was no main effect or interaction with the answer factor (“yes” vs. 

“no”). Thus, false responses, in general, traverse a greater distance and have increased 

instability.  

Of the interactions that were statistically significant, starting with “no” responses, 

planned comparisons revealed increases in Total Time, Total Time in Motion, and Time to 

Reach Maximum Velocity for false responses, suggesting increased cognitive difficulty 

overall. For “yes” responses, the same temporal variables were significant, with the 

addition of the Latency variable that showed slower initiation time for false responses. 

There were also differences with the trajectory property variables High x-value and Area 

under the Curve, indicating that false “yes” responses, compared to true “yes” responses, 

traveled closer to the response competitor.  

For the next analysis, true “no” and “yes” trajectories were evaluated with each 

other. The true “no” responses were slower and more unstable than true “yes” responses, 

with the true “no” responses taking longer overall (b = -219.95, p < .001), taking longer 

to initiate (b = -67.41, p = .009), spending more time in motion (b = -182.98, p < .001), 

taking longer to reach maximum velocity (b = -3.40, p = .021), and curving more, 

overall, toward a response competitor (b = -.015, p = .05). Again, these results suggest 

the presence of a “yes” bias influencing “no” target responses.  
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Finally, false trajectories were compared independent of the “true” trajectories. In 

doing so, it appears that the false “yes” responses are slower and more susceptible to a 

response competitor, i.e., “truth bias” than false “no” responses, specifically, by taking 

longer to initiate (b = 130.39, p < .001), taking longer to reach maximum velocity (b = 

5.44, p = .006), and bending more, overall, toward a response competitor (b = .02, p = 

.008). 

 

Table 5. Means and SEs for Study 2a (prompt-initial, computer-mouse) trajectory 

variables by prompt and response type. 

 Yes No 

 False True False True 

Variable M SE M SE M SE M SE 

Total time (ms) 2794.00 54.00 2099.00 39.00 2645.00 45.00 2448.00 52.00 

Latency (ms) 1367.00 42.00 1066.00 26.00 1223.00 30.00 1190.00 33.00 

Distance (pixels) 879.00 25.00 718.00 13.00 951.00 95.00 798.00 18.00 

Motion time (ms) 1427.00 42.00 1033.00 24.00 1423.00 38.00 1257.00 39.00 

High x-value 96.00 6.17 41.00 3.72 255.00 2.82 249.00 3.14 

Low x-value -248.00 2.76 -248.00 1.85 -122.00 32.00 -70.00 5.21 

x-flips in latency 0.26 0.03 0.20 0.02 0.22 0.02 0.22 0.03 

x-flips in motion 1.64 0.08 1.25 0.06 1.69 0.07 1.47 0.07 

Vel max mag (pix/sec) 3163.00 74.00 3224.00 45.00 3533.00 364.00 3089.00 56.00 

Vel max time (ms) 1300.00 37.00 940.00 25.00 1180.00 29.00 1080.00 32.00 

Area under 0.13 0.01 0.10 0.01 0.11 0.01 0.12 0.01 

Note: Vel max mag = Magnitude of the Maximum Velocity; Vel Max time = Time to Reach Maximum 
Velocity 
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Table 6. b values (estimates) for the LMER analysis for Study 2a (prompt-initial, 

computer-mouse) movements. 

Variable Yes vs. no response Truth vs. false prompt Prompt x response 

Total time -93.00*** -425.00*** -322.00*** 

Latency  -- -151.00*** -173.00*** 

Distance -- -163.00*** -- 

Motion time -118.00*** -281.00*** -186.00*** 

High x-value -181.00*** -32.00*** -46.00*** 

Low x-value -153.00*** -- -- 

x-flips in latency -- -- -- 

x-flips in motion -0.13*** -0.32*** -- 

Vel max mag -- -- -- 

Vel max time -- -11.00*** -8.93*** 

Area under -- -0.01*** -0.04*** 

Note: * indicates statistical significance at p < .05; ** indicates statistical significance at  
p < .01; *** indicates statistical significance at p < .001. 

 
 
 

Discussion 

This study involved a simple task-based constraint of cueing the false or true 

prompt early in the trial, thus allowing the participant to anticipate how to respond (either 

truthfully or falsely) while the question was being presented. Many of the same effects as 

the previous study were found. Focusing on the Trajectory Location analysis, where the 

results are clearest, the comparison between the false "yes" and true "yes" trajectories 

revealed a strong competitor "attractor" for the false trajectories, where the effect 

persisted at every time point, from initial (450-550 ms), to mid (1050-1150 ms), to later 

processing (1650-1750 ms) (see Figure 6b). To determine if the strength of the 

competitor attractor for false "yes" responses was equivalent to that of the false "no" 
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responses, these two response types were compared, and trajectories were shown to be 

equivalent at every time range (see Figure 6d). Thus, false responses, regardless of 

whether the response required a “yes” or a “no,” were influenced equally by a “truth 

bias” attractor. But there was a curious result when comparing false “no” responses 

around 500 ms to true “no” responses. As already shown, true “no” responses are likely 

influenced by a “yes bias,” whereby there is a tendency to respond “yes” when en route 

to a “no” response. This deviation toward the “YES” response option, around 500 ms, 

was strongest of the four response conditions, including false “no” responses that also 

deviate toward “YES” (see Figure 6a). Thus, there is evidence for a very early and strong 

"yes bias" that is stronger than any “truth bias.”  However, as processing continues, the 

strength of the "yes bias" for true "no" responses became much weaker than the "truth 

bias" for false "no" responses, with significant differences around 1100 ms and 1700 ms. 

This pattern also occurred in the previous PROMPT-FINAL study, but it was only around 

the 1700 ms mark that the “truth bias” overcame the “yes bias.”   

This difference in a “yes bias/truth bias” trade-off between the PROMPT-

INITIAL and PROMPT-FINAL studies suggests that the “yes bias,” although still 

present, was weaker in this PROMPT-INITIAL study. Thus, any influence that the “yes 

bias” had on the false responses might be somewhat diminished, and suggests that the 

competition for false responses is better attributed to a truth bias alone, rather than a truth 

bias plus a “yes bias.” However, in the current study, it is not clear to what extent these 

biases can be separated. What is more certain is that for true responses, a “yes bias” was 

indeed weaker in the PROMPT-INITIAL study, and weaker still when compared to false 

response trajectories.  
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Comparing Late vs. Early Prompts 

 Although the results presented in Study 2a (PROMPT-INITIAL) had considerable 

overlap with Study 1b (PROMPT-FINAL), critical differences between the studies show 

how simple processing cues can change the dynamical landscape of true and false 

responding. I begin with the Trajectory Location analysis, which is, as mentioned 

previously, well adapted for demonstrating attractor strength modulation at various points 

along a response movement.  

 One example of such modulation is the apparent weakening of a “yes bias” 

(embodied in true “no” trajectories) that occurred at different rates between the 

PROMPT-FINAL and PROMPT-INITIAL studies. Using mixed-effects ANOVAs, with 

subject as a random factor, the comparison between STUDY for true “no” responses 

revealed statistically significant effects around 500 ms (b  = 2.90, p  = .005) and 1100 ms 

(b = 28.77, p < .001). At both times, the influence from the “yes” response competitor 

was much less for the PROMPT-INITIAL study (see Figure 7a). It should also be noted 

that even though there is modulation, the “yes bias” is still stronger than any “no bias” 

(suggesting a “no bias” might not exist at all for true responses, or is at a floor level).  
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Figure 7. Modulation of attractor dynamics of trajectory movements around 500 (star), 

1100 (star), and 1700 ms (circle). Using Study 1b (PROMPT-FINAL) as a reference (the 

figures in the bottom right and left panels), circled regions indicate whether trajectories in 

Study 2a (PROMPT-INITIAL) were shifted towards or away from the critical competitor 

region. All circled regions show statistically significant differences. In (a, top panel), “yes 

bias” is decreased at 500 (region a) and 1100 ms (region d). In (b, top panel), greater 

tendency to say “no” in false “yes” responses at 500 (region c) and 1700 ms (region e). 

For false “no” responses, facilitation to say “no” at 500 ms (region b), but interference 

with the truth competitor at 1700 ms (region f).  
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 Turning now to responses where participants were prompted to respond falsely, 

the competitor response is now the “truth”. And as reported earlier, this competitor is 

stronger than any “yes bias” or “no bias.” However, competitor strength is also 

modulated by whether the response is a “yes” or a “no,” and whether participants are 

given the false prompt at the beginning at each question (PROMPT-INITIAL) or at the 

end of each question (PROMPT-FINAL). In particular, false “yes” responses are most 

influenced by a “truth bias” in the PROMPT-INITIAL study; being pulled more toward 

the “no” truth competitor around 500 ms (b = -2.99, p = .003) and around 1700 ms (b = -

17.82, p = .003) (see Figure 7b). A similar, but somewhat more complex pattern emerges 

for the false “no” responses. Here, the “yes” truth competitor is weakened early on, 

around 500 ms in the PROMPT-INITIAL study (b = 2.02, p < .001), but by 1700 ms, the 

“yes” truth competitor is much stronger in PROMPT-INITIAL (b = -25.90, p < .001). 

 Taken together, the differences between PROMPT-FINAL and PROMPT 

INITIAL suggest that early prompt presentation acts as a prime that influences the 

activation of “truth values.” It is also likely that this activation occurs at different rates 

depending on whether one is primed to respond truthfully or falsely. Beginning with the 

“truth”, when there is no prime present, there is an early and strong tendency to confirm 

responses, in other words, as tendency to say “yes.” Thus, when a target answer is “yes,” 

this response is aligned with the “yes bias,” and will be faster, more stable, and less 

influenced by competitor response options than other response types. Indeed, these 

response dynamics were present for target “yes” responses when compared with the “no” 

responses – a response type which was misaligned with the “yes bias.” However, with a 

“true” prime (PROMPT INITIAL study), the immediate bias to say “yes” was diminished 
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for “no” responses, such that the truth-value, even if it requires denial (as with true “no” 

responses), was more readily employed during processing. Thus, there is support for the 

hypothesis that “preparation” for how to respond will diminish response competition. 

 However, this hypothesis was not supported when primed with a false prompt. 

Rather, a false prime tended to increase the attraction of the response competitor, 

particularly when the competitor was “no.” A false prime tends to increase a tendency to 

deny information, that is, to say “no.” When a false response required one to say “yes,” 

these participants were immediately pulled toward the “no” region, and continued to be 

influenced by the “no” attractor through the later stage of processing. Thus, when there is 

competition between a bias to deny and a target answer of “yes,” interference in the 

response movement will be greatest. But what about when a bias to deny is matched with 

a target answer of “no?” At the initial moments of processing, it does appear that there is 

automatic facilitation; responses do indeed move toward the false “no” response. But 

downstream in processing, at the later stage (around 1700 ms), there is a reversal, such 

that the true “yes” competitor becomes more active. This effect suggests that the false 

prime activates a denial response that has a facilitatory role early on, but is soon 

overcome when the “truth value” of the proposition is also activated, and interferes with 

the goal of responding falsely. Thus, there is little support for the hypothesis that a false 

prime will make it easier to respond falsely. This hypothesis, commensurate with a 

discrete-account of cognitive processing, is based on the notion that a false prime should 

remove a cognitive “step” of “deciding to falsify” (see Walczyk et al., 2003; 2005).  

Instead,  “preparation” or “foreknowledge” that one must respond falsely appears to 
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activate a bias to say “no,” as well as increases the strength of a “truth bias,” making the 

task of false responding that much harder.   

 The modulation of response competition between response types suggests the 

presence of three unique (but overlapping) attractors that are influential at different stages 

in processing: a confirmation attractor (i.e., “yes” bias), a denial attractor, and a truth 

attractor. The confirmation attractor was evident with the true “no” trajectories, which 

appeared to create the most interference around 500 ms to 1100 ms (early to mid-range 

stages of processing) (see Figure 7a and 7c). The denial attractor was most evident with 

the false “no” trajectories, which had the greatest facilitatory role around 500 ms (early 

stage of processing) (see Figure 7b-b). The denial attractor was also likely interfering 

with the false “yes” trajectories around 500 ms, and quite possibly around 1700 ms (see 

Figure 7c-c/e). But both false trajectories were also likely influenced by a truth attractor 

that interfered with processing. This truth attractor was most clearly demonstrated with 

the false “no” trajectories around 1700 ms (see Figure 7b-f). At this point in time, the 

truth attractor interfered with processing more than any facilitation that might have 

emerged with the denial attractor. Thus, the patterns here suggest that confirmation and 

denial attractors (corresponding to a true and false prime, respectively) were activated 

early, but the truth attractor (triggered by a false prime) occurred later in processing.   

 There is also one last comparison that supports the attractor dynamics described 

above. According to the attractors at play, the false “yes” responses are likely most 

difficult in the context of a “false” prime. To say “yes” falsely, there is interference from 

a tendency to deny information (say “no”), and interference from the truth. Using the 

Temporal and Trajectory Properties analysis to compare these false “yes” trajectories 
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with false “no” trajectories, it was found that the false “yes” trajectories are slower 

overall (b = 196.47, p = .003), slower to initiate (b = 261.19, p < .001), and take more 

time to reach maximum velocity (b = 7.42, p = .002). Thus, these results suggest that the 

best way to catch a liar is to forewarn the person that a lie may be necessary, and then ask 

a question that must be confirmed in order to reveal the deception. For example, someone 

suspected (and is guilty) of reckless driving might find the question: “Were you driving 

with caution?” challenging, particularly if the person had been forewarned or asked to 

intentionally lie on previous questions.        

Study 2b: QUESTION-SEMANTIC 

Procedure and Question Stimuli 

The procedure used here was similar to Study 1b: PROMPT-FINAL, whereby the 

prompt occurred in conjunction with the presentation of the final word. The critical 

change in this study is the nature of the questions. The questions in the previous studies 

probed autobiographical information. Here, the questions involve semantic information 

that tap simple trivia-like knowledge (questions are listed in Appendix C). Semantic 

questions were chosen to represent information that people generally do not explicitly 

think about on a daily basis. Previous research has found that information that is 

frequently retrieved also becomes easier to recall (Danker & Anderson, 2010). Such 

questions also match the autobiographical questions, which generally dealt with material 

that people do not frequently think about. There are two lists of 30 questions each. A 

question in one list is identical to a question in the second list except for the final word. 

For example, a question in the first list might read: “Is Moscow the capital of Russia?” 

and the matching question in the second list would be: “Is Moscow the capital of 
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Germany.” Thus, the questions in one list are always truthfully answered with a “yes,” 

and the questions in the second list are always truthfully answered with a “no.” To create 

stimuli lists, 14 questions from each list were randomly selected, ensuring that the two 

versions of the same question never appeared together. Each question was then randomly 

paired with a false or true response prompt. In this way, the four response conditions 

could be equally represented (e.g., true “no” responses”, true “yes” responses”, false “no” 

responses, and false “yes” responses). A total of 10 stimuli lists were created, and 

participants were randomly assigned to one of these stimuli lists.  

Participants 

Fifty-eight participants were recruited from Amazon Mechanical Turk and paid 

the same amount as in Study 1b and 2a (40 cents). Six participants did not voluntarily 

provide demographic data, but of the 52 that did, there were 31 females and 21 males, 

with a median age of 27 (maximum age: 60 and minimum age: 18). 

Results 

Fifty participants were retained after removing eight participants who did not 

follow directions correctly. Also, 1.78% of the data was removed for exceeding 3 

standard deviations above the mean (e.g., 6614 ms). No participant had more than a 

single trial that exceeded this upper threshold. In total, there were 284 trials in the 

“false/no” condition, 291 trials in the “true/yes” condition, 290 trials in the “false/yes” 

condition, and 292 trials in the “true/no” condition.  

Trajectory Shape. The time-normalized trajectories did not diverge between false 

“no” and true “no” trajectories; however, the trajectories for false “yes” and true “yes” 

trajectories did diverge between the 56 and 81 time steps (for 43 steps; see Figure 8). 
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Comparing just true responses, there is divergence between the “yes” and “no” 

trajectories, between the 56 and 81 time steps, with the true “no” responses being more 

susceptive to the pull of an alternative response attractor (embodied in the visually co-

present “YES” response target). Turning now to false responses, there is also divergence 

between “yes” and “no” responses, between the 41 and 57 time steps, with the false “yes” 

responses being much more influenced by a “truth” attractor.    

 
 
 

 
 
Figure 8. Shape of computer-mouse trajectories for prompt-final presentation, using 

semantic-based questions. False answers (solid lines) display a greater arc towards the 

competing response option than true answers (dashed lines). However, for “NO target” 

responses, the greater curvature in true “no” trajectories suggest interference from a “yes 

bias.” 
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Trajectory Location. The comparison between false “no” and true “no” responses 

revealed no statistically significant differences between x-coordinate position around the 

500 and 1100 ms time points. However, around 1700 ms, there was significant 

divergence (b = -16.11, p = .016), with the true “no’ responses most influenced by a 

competitor region (see Figure 9a).  On the other hand, for false “yes” and true “yes” 

responses, there was separation around every time point, with the false “yes” responses 

shifted toward the attractor region more so than the true “yes” responses: around 500 ms 

(b = -1.62, p .025), around 1100 ms mark (b = -94.51, p < .001), and around 1700 ms 

mark (b = -65.67, p < .001) (see Figure 9b). Next, comparing just true responses, there is 

separation between “yes” and “no” trajectories also around every time point: 500 ms (b = 

1.21, p = .047), 1100 ms (b = 63.12, p < .001, and 1700 ms (b = 52.39, p < .001), with the 

greatest influence of an attractor on the true “no” trajectories (see Figure 9c). And for just 

false responses, there was a statistically significant effect at the 1100 ms mark (b = -37, p 

< .001) and at the 1700 ms mark (b = 25.51, p < .001) with false “yes” trajectories 

showing greater deviation (see Figure 9d).    
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Figure 9. Location of computer-mouse trajectories for prompt-final presentation, using 

semantic-based questions. The x-coordinate position is plotted around 500 ms (cross), 

1100 ms (star), and 1700 ms (circle). (a) False “no” vs. true “no” trajectories, (b) False 

“yes” vs. true “yes” trajectories, (c) True “yes” vs. true “no” trajectories, and (d) False 

“yes” vs. false “no” trajectories. 

 

Temporal and Trajectory Properties. The means and SEs for all property 

variables are reported in Table 7. The b and p-values for the mixed effects models are 

reported in Table 8. Planned comparisons of the interactions between answer and prompt 

type show that there were no variables that distinguished the false “no” responses from 

the true “no” responses. For the false “yes” and true “yes” responses, every variable 
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showed increased difficulty and instability for the false “yes” responses. Furthermore, the 

measure Area Under the Curve did not interact with answer and prompt type, but did 

show a significant main effect for prompt type, with greater deviation exhibited in false 

responses compare to true responses.  

Comparing just “false” response types, there were few differences. However, 

there was evidence that false “yes” responses took longer to initiate (b = 103.02, p = 

.019), but false “no” responses exhibited more x-flips while in motion (b = -0.25, p = 

.03). Next, in comparing true “no” and “yes” responses, true “no” responses were much 

more difficult and unstable than true “yes” responses, with the true “no” responses taking 

longer overall (b = -481, p < .001), taking longer to initiate (b = -153.68, p < .001), 

traveling a greater distance (b = -167, p < .001), spending more time in motion (b = -

296.29, p < .001), exhibiting more x-flips while in motion (b = -0.61, p < .001), and 

taking longer to reach maximum velocity (b = -12.57, p < .001). These latter results of 

greater difficulty in true “no” responses supports the general conclusion of a “yes bias” 

that interferes with true “no” processing.  
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Table 7. Means and SEs for Study 2b (question-semantic, computer-mouse) trajectory 

variables by prompt and response type. 

 Yes No 

 False True False True 

Variable M SE M SE M SE M SE 

Total time (ms) 2710.00 58.00 2164.00 55.00 2602.00 60.00 2670.00 55.00 

Latency (ms) 1301.00 41.00 1057.00 33.00 1176.00 38.00 1263.00 33.00 

Distance (pixels) 779.00 16.00 669.00 11.00 820.00 21.00 820.00 22.00 

Motion time (ms) 1409.00 43.00 1107.00 34.00 1426.00 44.00 1407.00 41.00 

High x-value 80.00 5.70 31.00 4.05 245.00 2.89 247.00 2.55 

Low x-value -244.00 2.18 -241.00 1.99 -76.00 5.72 -72.00 5.77 

x-flips in latency 0.15 0.03 0.12 0.03 0.12 0.02 0.15 0.03 

x-flips in motion 1.31 0.07 0.93 0.07 1.54 0.08 1.49 0.08 

Vel max mag (pix/sec) 2828.00 57.00 3090.00 53.00 2942.00 67.00 2951.00 65.00 

Vel max time (ms) 1200.00 35.00 900.00 30.00 1120.00 38.00 1180.00 33.00 

Area under 0.12 0.01 0.11 0.01 0.13 0.01 0.12 0.01 

Note: Vel max mag = Magnitude of the Maximum Velocity; Vel Max time = Time to Reach Maximum 
Velocity 
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Table 8. b values (estimates) for the LMER analysis for Study 2b (question-semantic, 

computer-mouse) movements. 

Variable Yes vs. no response Truth vs. false prompt Prompt x response 

Total time -170.00*** -243.00*** -536.00*** 

Latency -- -84.00*** -243.00*** 

Distance -102.00*** -65.00*** -142.00*** 

Motion time -160.00*** -148.00*** -252.00*** 

High x-value -191.00*** -24.00*** -52.00*** 

Low x-value -167.00*** -- -- 

x-flips in latency -- -- -- 

x-flips in motion -0.41*** -0.21*** -0.37*** 

Vel max mag -- 126.00*** 228.00*** 

Vel max time -4.44*** -5.82*** -14.00*** 

Area under -- 0.02*** -- 

Note: * indicates statistical significance at p < .05; ** indicates statistical significance at  
p < .01; *** indicates statistical significance at p < .001 

 
 
 

Discussion 

This study used the same “PROMPT-FINAL” set-up as in Study 1b, but differed 

according to the type of questions asked. Here, the questions probed knowledge of simple 

facts, requiring one to verify or falsify information retrieved from semantic knowledge.  

First, examining the Trajectory Shape analysis, there appears to be a “yes bias” that is 

clearly demonstrated in the true “no” trajectories (Figure 8). This is also validated in the 

Trajectory Location analysis, where the true “no” trajectories diverged from the true 

“yes” trajectories throughout the entire course of processing (from 500 to 1100 to 1700 

ms) (Figure 9a). Given that the true “no” trajectories were influenced by a “yes bias,” 

these trajectories make a poor baseline in which to compare false “no” responses. By 
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doing so, no separation was found between true “no” and false “no” responses with 

Trajectory Shape, and where differences were found (based on the Trajectory Location 

analysis), there was a stronger “yes bias” than a “truth bias” around 1700 ms (Figure 9a). 

Thus, the false “no” responses appear less influenced by a “truth bias.” To examine this 

finding further, I compared false “no” and false “yes” trajectories to each other. The false 

“yes” trajectories are a good baseline because they clearly deviate from their true “yes” 

counterparts (at every time range), which suggests a strong “truth bias” (Figure 9b). The 

results show that, compared to false “yes” trajectories, the false “no” responses were less 

likely to be influenced by a truth attractor, mostly around mid and later stages of 

processing (around 1100 and 1700 ms) (Figure 9d). Overall, when accessing from 

semantic knowledge, the greater interference from the truth is when falsely confirming 

information (with a “yes” response) than when falsely denying information (with a “no” 

response).  Interestingly, this is the opposite pattern of when responding truthfully. 

During these responses, the least interference is when truthfully confirming information 

compared to truthfully denying information (Figure 9c). This overall pattern was also 

generally found for both Studies 1b and 2a.  

Comparing Autobiographic vs. Semantic (Late Prompts) 

 Although the general response pattern between studies is similar, changes in 

simple parameters can also systematically alter response dynamics. These changes make 

particular responses more or less easy, and are important for detection purposes, as well 

as for understanding the cognitive basis of deception. As was done for Study 2a, I 

compare the current study’s (Study 2b) trajectory properties with Study 1b. Both studies 

employ a  “PROMPT-FINAL” presentation, but differ in terms of question type. For this 



   

 69 

section, Study 1b will be referred to as QUESTION-AUTO because the questions used in 

that study draw on autobiographical memory. Likewise, the current study (Study 2b) will 

be referred to as QUESTION-SEMANTIC because the questions used here draw on 

semantic memory.  

 Figure 10 shows the differences between studies, using the circle and letter 

nomenclature employed in the earlier analysis. Beginning with “true” responses (Figure 

10a), the attraction toward a response competitor (and therefore the interference from the 

competitor), is decreased significantly for true “no” trajectories in QUESTION-

SEMANTIC, beginning from the early stage to mid-range stage of processing (500 to 

1100 ms) (Figure 10a-a/c). Thus, the “yes bias” is greatly diminished for true “no” 

trajectories. The true “yes” trajectories are also less swayed by the attractor region (i.e., 

less interference) in QUESTION-SEMANTIC, with the largest decrease around 1100 ms 

into processing (Figure 10a-d). Taken together, these results suggest that it is easier to 

truthfully respond to questions that require one to confirm or deny semantic facts, and 

more difficult to confirm or deny autobiographical facts.  
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Figure 10. Modulation of attractor dynamics of trajectory movements around 500 (star), 

1100 (star), and 1700 ms (circle). Using Study 1b (QUESTION-AUTO) as reference (the 

figures in the bottom right and left panels), circled regions indicate whether trajectories in 

Study 2b (QUESTION-SEMANTIC) were shifted towards or away from the critical 

competitor region. All circled regions show statistically significant differences. In (a), for 

true “no,” the “yes bias” is decreased around 500 (region a) and 1100 ms (region c); and 

for true “yes,” there is facilitation for “yes” response around 1100 ms (region d). In (b), 

greater facilitation to say “no” for false “no” responses around 500 (region b), 1100 

(region f) and 1700 ms (region h); and for false “yes” responses, greatest interference 

from truth around 1100 ms (region e) but decreases greatly by 1700 ms (region g). 
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 Similarly, turning now to “false” responses (Figure 10b), the false “no” responses 

also exhibited less interference from the competitor response, i.e., the “truth attractor,” in 

the QUESTION-SEMANTIC study. Interference was minimized at every time range, 

from 500 to 1100 to 1700 ms (Figure 10b-b/f/h). Thus, it appears easier to falsely deny 

information when it is semantic in nature versus autobiographical. For the false “yes” 

responses, there was also less competition in QUESTION-SEMANTIC later in 

processing, around 1700 ms (Figure 10b-g). Here, it was easier to falsely confirm 

information when it is semantic versus autobiographical. However, this easier processing 

was not present throughout the response. At the mid-range stage of processing, the false 

“yes” responses showed a greater “pull” toward the competitor response option, in this 

case, the “NO” response (Figure 10b-e). With a false prompt, even when it is presented at 

the final word of a question, it still primes a denial response (to say “no.”). This might 

explain why the false “no” responses were fastest, and why there is interference with the 

false “yes” responses early on. To interpret this finding in relationship to the 

QUESTION-AUTO study, it appears much more difficult to falsely deny autobiographic 

information than semantic information. Thus, to catch a would-be liar, signatures of 

increased processing difficulty should be best exhibited by questions that require a 

suspect to access information from autobiographic memory. For example, questions like, 

“What were you doing on the morning of February 12th?” might be more revealing than 

semantic episodic facts, like “What color was the getaway car?.”  However, further work 

needs to examine whether accessing semantic “trivia-like” knowledge is similar to 

semantic episodic knowledge.   
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Chapter 3: Discourse Analysis and Deception 

Study 3a: Automated Feature Extraction with Coh-Metrix  

 NOTE: The following study was originally published in Applied Psycholinguistics; 

Duran, McCarthy, Hall, & McNamara, 2010.  

Of the spinmeisters, fibbers, or equivocators among us, their success often hinges 

on the ability to conceal a lie with well-chosen words. However, truth’s traces may still 

lurk amidst their verbal eloquence, as subtle linguistic features of language have been 

shown to reveal inner states of thought and feeling. These features go beyond the literal 

meaning of words and focus instead on how words are arranged and structured in 

discourse (Pennebaker et al., 2003). By pursuing these features, some progress has been 

made in uncovering the linguistic correlates of deception. The gains, though, are not 

without their unique challenges. Deception is a behavior designed to defeat detection, and 

thus identifying salient linguistic features of deception may be difficult even for the 

trained researcher (Vrij, Edward, Roberts, & Bull, 2000). Indeed, attempts by human 

judges to detect deception are fraught with problems of reliability and depth of analysis. 

One approach to this problem has been to turn to Natural Language Processing (NLP) 

algorithms that incorporate advances in technology and linguistic theory. At the forefront 

of these technologies is an application called Coh-Metrix4 (Graesser et al., 2004). Coh-

Metrix is the largest NLP tool of its kind, with over 700 indices of computed language 

characteristics that have been validated across a variety of psychological domains 

(Crossley, Louwerse, McCarthy, & McNamara, 2007; Hempelmann, Rus, Graesser, & 

McNamara, 2006; McCarthy, et al., 2008; McNamara, Louwerse, McCarthy, & Graesser, 

in press).  
                                                

4 http://cohmetrix.memphis.edu 
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In the current study, we take the first steps in using Coh-Metrix to identify 

features of deception. By doing so, we also address another challenge in the linguistic 

analysis of deception research. Deception occurs in a variety of settings and for a variety 

of purposes. Accordingly, the linguistic features relevant to one context do not 

necessarily hold in another context (Zhou et al., 2004). Moreover, in research conducted 

thus far, the linguistic features that have been identified for a particular context have not 

been corroborated, or even extended, with multiple NLP tools. Given the nebulous nature 

of deception, there is an impetus for researchers to clearly specify the context of the 

targeted deception, and to use convergent NLP approaches to evaluate the various types 

of linguistic features. Therefore, to meet these challenges, we build from prior research to 

compare and establish conceptual validity between NLP tools.  

Specifically, we turn to the work of Hancock, Curry, Goorha and Woodworth 

(2008), who use a NLP tool called Linguistic Inquiry and Word Count (LIWC; 

Pennebaker et al., 2001). In their study, Hancock et al. (2008) collected transcripts of 

deceptive and truthful conversations that occurred within an instant-messaging (IM) 

environment. To evaluate their data, those transcripts were submitted to LIWC, a tool that 

evaluates over 70 dimensions of language. LIWC has gained a tried and trusted 

reputation for tracking linguistic features that are indicative of social and psychological 

phenomena, including personality traits (Pennebaker & King, 1999), emotional 

expression (Kahn, Tobin, Massey, & Anderson, 2007), and mental health (Pennebaker, 

Mayne, & Francis, 1997). Much like Coh-Metrix, the success of LIWC is aided by its 

automated and easy-to-use interface. The two NLP tools also share similarities in their 

ability to analyze a large number of linguistic features, preeminence in their respective 
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literatures, and accessibility for a general audience. Moreover, the tools have a number of 

conceptually similar indices (i.e., computational instantiations of linguistic features) that 

allow for an evaluation of algorithmic validity. By comparing Coh-Metrix with LIWC, 

we can offer a unique, but complementary analysis that strengthens our investigation into 

the nature of deceptive language. 

To conduct our study, we use the conversational transcripts and LIWC results 

from Hancock et al. (2008). We do so to provide a basis for comparison within one 

specific context of deception. According to Zhou et al. (2005), the features of deceptive 

language vary from context to context, with particular contrast within communication 

channels (e.g., face-to-face, telephone, email). Therefore, it becomes necessary to focus 

on a single communication channel to control for any changes in language use. In 

Hancock and colleagues’ study, the context for deceptive language is expressed as 

computer-mediated communication (CMC) using instant messaging. These conversations 

occur as synchronous exchanges between two (or more) interactive participants. In recent 

years, this CMC channel has received greater attention because of its increased use in 

business and industrial settings (Andersen, 2005; Quan-Haase, Cothrel, & Wellman, 

2005). Because of this increase, it is appropriate to investigate deception in CMC, which 

is as common, if not more so, than lies told during face-to-face conversations (Carlson, 

George, Burgoon, Adkins, & White, 2004). As in face-to-face conversations, deceivers 

using instant messaging can monitor the interaction as it occurs, but are not burdened by 

paralinguistic cues that might otherwise be incriminating. Although this CMC context is 

growing in popularity and is open to feature deception, there are few studies that 

explicitly address this communication channel. As such, the Hancock and colleagues 
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transcripts offer an opportunity to further explore a promising CMC context for deceptive 

cues.  

Another reason to revisit the Hancock et al. (2008) conversational transcripts is to 

place greater emphasis on the dynamics of deception in real-time conversation. Hancock 

and colleagues were largely motivated by the research of Burgoon and Buller (Buller & 

Burgoon, 1996; Burgoon, Buller, Floyd, & Grandpre, 1996; Burgoon, Buller, & Floyd, 

2001), who argue that deception is concomitant to maintaining plausibility in social 

interaction. Deception often occurs in a dialogue between interlocutors, and as such, the 

linguistic features that identify deceptive competence emerge from the joint contribution 

of both conversational partners (sender and receiver of deceptive exchanges). Indeed, 

many researchers claim the mutual influence between conversational partners creates an 

inter-dependent relationship in language use (Clark, 1996; Pickering & Garrod, 2004). 

Hancock and colleagues were particularly interested in whether the receiver engaged in 

what Niederhoffer and Pennebaker (2002) refer to as linguistic style matching, whereby 

the receiver takes on the linguistic features of the deceptive sender.  

The dynamic maintenance of conversational deception also has unique cognitive 

and social challenges. Although a receiver may be unaware of the veracity of the sender’s 

false statements, the sender must continually stay committed to preserving the receiver’s 

presumption of truth. In doing so, senders must process and comprehend the speech of 

the receiver while simultaneously planning their own response (Greene, O’Hair, Cody, & 

Yen, 1985); they must actively monitor the receiver’s understanding in order to establish 

and maintain conceptual common ground (Clark & Schaefer, 1987); and senders must 

adjust pragmatic strategies on the fly when discussing different topics. Hancock et al. 
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(2008) and others (e.g. Zuckerman, 1981; Johnson, Barnhardt, & Zhu, 2004) have 

hypothesized that the sender’s maintenance of both their own false reality and the 

receiver’s ostensible reality comes at the price of cognitive resources, thereby creating 

compensatory linguistic behavior on the part of the sender.  

Deception in interactive contexts such as conversation also increases the risk of 

being discovered as a fraud, resulting in face loss that is often associated with negative 

social standing (Brown, 1977). These social factors are embedded in the influences of the 

culture at large and are inextricably linked to the cognitive demands outlined. Based on 

these characterizations of conversational deception, we selected sets of Coh-Metrix 

measures that are operationalized to capture the cognitive and social influences of 

conversational deception. 

In the section that follows, we first review the method Hancock et al. (2008) used 

for collecting the transcripts of deceptive and truthful conversations. We then present and 

provide a theoretical rationale for the Coh-Metrix measures chosen for this study. We 

then compare the data of Hancock and colleagues alongside our expanded approach.  

Hancock et al.’s (2008) Conversational Transcripts 

Participants 

The original cohort of participants from the Hancock et al. (2008) study included 

30 male and 36 female upper-level undergraduate students from a private university in 

the northeastern United States. The 66 participants were randomly paired to create 33 

same-sex interlocutor pairs who were unacquainted with each other prior to their 

participation in the study. 
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All participants were recruited under the pretense of studying how unacquainted 

individuals communicate about various conversation topics. As such, participants were 

not aware that deception would be required in the study. Participants’ social interaction 

was also limited by placing each member of a pair in a separate room upon arrival at the 

laboratory.  

Procedures 

The experiment was conducted within a text-based, computer-mediated 

communication environment (CMC). CMC is simply using a computer interface to send 

message in text, video, or audio format via a computer interface. Participants were led to 

separate rooms and seated in front of a computer console. The instant-messaging 

software, Netmeeting, was used to collect the written communication of participants. This 

software allows messages to be sent instantaneously between computers, via an internet 

connection. Both the sender and receiver of a message enter text into a large interface text 

window that can be viewed easily. All messages were recorded automatically and stored 

anonymously.  

Still in their separate rooms, participants were randomly assigned the role of 

receiver (the “deceived”) or sender (the “deceiver”) for each dyad. The sender’s role was 

to initiate and maintain a conversation using four simple, icebreaker topics provided by 

the experimenter. These experimental topics included: Discuss the most significant 

person in your life; Talk about a mistake you made recently; Describe the most 

unpleasant job you have ever had to do; and Talk about responsibility. The four topics 

were presented to the sender and receiver on a sheet of paper along with the practice 

topic: When I am in a large group, I… The practice topic allowed participants to become 
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comfortable with one another in the experimental setting. Along with initiating the 

conversation, the sender was also responsible for introducing deception to the 

conversation. Senders were informed that it would be necessary to deceive their partners 

on two of the topics pre-selected by the researchers, and to tell the truth on the other two 

topics. Specifically, they were asked to NOT tell ‘the truth, the whole truth, and nothing 

but the truth’. This broad conceptualization of deception was considered to be the most 

naturalistic, thus giving senders some flexibility in how they chose to lie. On the sheet of 

paper with the experimental topics, the two topics that involved NOT telling the ‘truth, 

the whole truth, and nothing but the truth’ (i.e., to be deceptive) were signaled to the 

sender with an asterisk. The receivers, blind to the sender’s deception, were merely 

instructed to stay engaged and responsive to the ongoing conversation. The receiver’s 

sheet of paper outlining topic order had no asterisk markers. The presentation of topics, 

as well as the order of deception, was counterbalanced across all participant pairs.  

The online interactions were automatically stored and monitored by the 

experimenter on a separate, third console. The experimenter’s role during the 

conversational phase was to initiate the conversation and mediate the interaction with the 

practice topic. Prior to initiation, participants were allowed 5 minutes to reflect upon the 

topics, thus allowing senders (i.e., the deceivers) time to prepare the gist of their 

fabricated responses. There was no time limit to the subsequent conversation and 

participants were instructed to stop only when both conversational partners felt they had 

exhausted the topic matter. After completing all four topics, participants were introduced 

to each other in person and then fully debriefed. 
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For preparation of the data, the recorded messages were converted into sender and 

receiver transcript files according to topic. A total of 264 transcripts were produced, with 

each dyad generating eight different transcript files: four transcripts of the sender 

dialogue and four transcripts of the receiver dialogue. Because two of the four topics 

discussed were considered deceptive, there were four transcripts labeled deceptive, two 

from the sender and two from the receiver (recall, however, that the receiver was not 

aware that the sender was being deceptive). The remaining four transcripts were labeled 

truthful.  

Linguistic Features of Deception 

For dependent variables, Hancock et al. (2008) used eight LIWC based linguistic 

indices. With LIWC, 72 different word characteristics can be tracked per written 

response. For each of the 72 word characteristics, LIWC provides the percentage of 

words that adhere to that particular characteristic. Computational algorithms in LIWC 

compare the content of each transcript to over 2300 words that have been coded for a 

variety of psychological and linguistic characteristics; including part-of-speech, 

emotional saliency, and cognitive complexity.  

In our current study, we used the same transcripts as Hancock et al. (2008) but 

analyzed them with the Coh-Metrix software. Coh-Metrix was initially developed to 

explore cognitive constructs of cohesion in written text. Cohesion here refers to the 

linguistic features that explicitly link words, propositions, and events in a text; that in 

turn, facilitate a reader’s coherent mental representation of a text. To construct a profile 

of cohesion, Coh-Metrix tracks word-level features that are similar to LIWC, but also 

incorporates modules and algorithms that assess collocations of words. Coh-Metrix 
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integrates lexicons, syntactic parsers, part-of-speech classifiers, semantic analysis, and 

other advanced tools in natural language processing. Algorithms include referential 

overlap, proportion of situational dimensions (e.g., causal dependencies), latent semantic 

similarity, density of connectives, and syntactic complexity. As such, there are over 700 

linguistic indices available in Coh-Metrix. Combinations of these indices have been 

applied to a wide-range of domains, including the validations of coherence breaks in 

academic texts (Duran, Bellissens, Taylor, & McNamara, 2007; Ozuru, Best, & 

McNamara, 2004); discriminating low- and high-cohesion versions of academic texts 

(McNamara, Ozuru, Graesser, & Louwerse, 2006; McNamara, Louwerse, McCarthy, & 

Graesser, in press); identifying shifts in writing style between professional writers, even 

shifts that occurred during the careers of each respective writer (McCarthy, Lewis, Dufty, 

& McNamara, 2006); and evaluating the pedagogical importance of authentic and 

simplified texts for SLA education (Crossley, McCarthy, et al., 2007).  

The current analysis is the first attempt to use Coh-Metrix to characterize 

linguistic patterns of conversational deception. However, using over 700 linguistic 

indices presents two major theoretical problems. One problem is that spurious 

distinctions are likely to arise when there is an excess of variables. Too many variables 

can result in a statistical “over-fitting,” such that small and largely irrelevant differences 

between deceptive and truthful conditions may be exaggerated. The second problem of 

using the full set of linguistic indices is the overwhelming task of establishing each 

index’s explanatory power. Before a specific index is used, it should be justified by a 

general framework of deception; however, no such framework exists (that we are aware 

of) because deceptive linguistic behavior is highly flexible with different external (e.g., 
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social) and internal (e.g., cognitive) influences (DePaulo et al., 2003). As such, it 

becomes necessary to first consider the conversational context in which the deception is 

embedded and only then select linguistic indices that are most relevant to that particular 

context. For example, it is reasonable to assume that deceptive behavior in a casual 

conversation will be very different from deceptive behavior in a criminal interrogation. 

Accordingly, our selection of Coh-Metrix indices was guided by many of the principles 

of deception established in Hancock et al. (2008) and elsewhere in the deception and 

communication literature (Burgoon, Buller, Floyd, et al., 1996; Zhou et al., 2005). These 

principles are based on the cognitive and social influences that are hypothesized to arise 

during deceptive behavior. Ultimately, we operationalized the linguistic indices in six 

categorical constructs that will be explained in further detail later in this article: (a) 

Quantity, (b) Immediacy, (c) Specificity, (d) Accessibility, (e) Complexity, and (f) 

Redundancy. 

 Each category above is represented by 2 to 3 Coh-Metrix indices that were chosen 

to provide converging validity, one of the explicit goals of our research. At least one of 

these indices was selected to be conceptually similar to a LIWC index. These similar 

indices may seem trivially redundant; however, they provide a basis for comparison with 

Hancock et al. (2008) and for establishing simple measurement reliability. Unfortunately, 

several categories do not have a representative and/or a conceptually similar LIWC 

index. These omissions are addressed in turn.  

We proceed by briefly explaining the theoretical motivation for each of our six 

categorical constructs. For each category, we report the results from the Coh-Metrix 

analysis and interpret the results within a framework of conversational deception. Where 
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possible, we also compare and contrast our results with those of Hancock et al. (2008). 

As in Hancock and colleagues’ work, the Coh-Metrix data are analyzed in a 2 (message 

type: deceptive vs. truthful) x 2 (speaker type: sender vs. receiver) repeated measures 

type General Linear Model (GLM) procedure. We additionally provide partial eta 

squared values to assess the strength of any significant effects.   

This analytic method not only allows us to examine the differences between 

deceptive and truthful conversations but also allows us to examine the differences 

between sender and receiver. As mentioned earlier, the receiver might exhibit a pattern of 

linguistic style matching with the sender. Alternatively, the sender’s behavior may elicit a 

subtle, but unique pattern of linguistic behavior in the receiver. For these reasons, it is 

theoretically important to consider the linguistic profiles of both conversational partners 

in deceptive exchanges.  
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Table 9. Categories of deceptive behavior based on linguistic features operationalized by 

Coh-Metrix. 

Classification  Definition 

Quantity  

Total word count† 

Words per conversational turn† 

Total words in text (based on Charniak parser) 

Mean words per sentence 

Immediacy  

Tentative statements†† 

Personal pronouns† 

Modal verbs (e.g., should, might, may) 

e.g., I, me, he, they 

Specificity  

Spatial†† 

Temporal†† 

Questions† 

Locational prepositions (e.g., here) 

Ratio of temporal elements 

Incidence of wh- adverbs (e.g., why, what) 

Accessibility  

Familiarity of words†† 

Meaningfulness of words†† 

Concreteness of words†† 

Word rating from MRC database 

Word rating from MRC database 

Word rating from MRC database 

Complexity  

Negation†  

Sentential complexity†† 

Negation connectives (e.g., did not, except, but) 

Mean words before main verb of main clause 

†: Linguistic cue is an approximate replication of Hancock et al. (2008) 
††: Linguistic cue is novel to current study 
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Table 9. Categories of deceptive behavior based on linguistic features operationalized by 

Coh-Metrix. (continued) 

Classification  Definition 

Redundancy  

Given information†† 

Referential overlap†† 

LSA given/new value 

Argument word overlap, adjacent sentences 

†: Linguistic cue is an approximate replication of Hancock et al. (2008) 
††: Linguistic cue is novel to current study 

 
 
 

Coh-Metrix Results and LIWC Comparison 

Quantity  

In both Hancock et al. (2008) and the current study, the total word count and 

number of words per conversational turn were computed and compared between 

deceptive and truthful conversation transcripts. These indices are theoretically important 

for assessing the willingness of deceptive senders to proffer information. On the one 

hand, senders may use fewer words to minimize the opportunities to incriminate 

themselves (Colwell, Hiscock, & Memon, 2002). As such, senders’ total word count and 

number of words per conversation turn should be significantly lower in deception than 

when telling the truth. On the other hand, senders want to appear socially involved so as 

not to violate a social norm of reciprocity that might otherwise raise suspicion (Burgoon 

et al., 1996). Senders, therefore, may maintain their word count across truthful and 

deceptive interactions.  

In the current Coh-Metrix analysis, a significant main effect of message type 

(deceptive vs. truthful) was observed for total word count, F(1, 33) = 8.87, p = .005, 
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partial eta squared5 = .21. More words were produced during deceptive conversation (M 

= 159.38, SE6 = 9.97) than truthful conversation (M = 122.76, SE = 9.23). Senders 

increased word use from 123.15 words (SE = 10.21) in truthful conversations to 158.16 

words (SE = 12.01) in deceptive conversations. Receivers increased word use from 

122.37 words (SE = 10.39) in truthful conversations to 160.59 words (SE = 16.12) in 

deceptive conversations. These patterns of results were virtually identical to Hancock et 

al. (2008), who also found a statistically significant main effect for message type. In 

neither study was there an effect for speaker type (sender vs. receiver), nor did the total 

word count between message types differ across speakers (i.e., there was no interaction 

between message type and speaker type).  

The second quantity analysis was on the mean number of words per 

conversational turn. Using Coh-Metrix, a significant main effect for message type was 

observed, F(1, 33) = 3.50, p = .05, partial eta squared = .10. Fewer words were produced 

per conversational turn in the deceptive conversations (M = 7.73, SE = 0.27) than per 

truthful turn (M = 8.37, SE = 0.36). Senders produced fewer words per conversational 

turn when deceptive (M = 7.98, SE = 0.42) compared to telling the truth (M = 8.19, SE = 

0.55), and receivers produced fewer words per conversational turn in the deceptive 

conversations (M = 7.48, SE = 0.35) than per truthful turn (M = 8.55, SE = 0.55). Taking 

this result in conjunction with the previous total word count results, the Coh-Metrix 

analysis demonstrates that senders and receivers in deceptive conversations use more 

                                                
5 To interpret the partial eta squared values, Stevens (2002) suggests the following: .01 is 

considered a small effect, .06 is considered a medium effect, and .14 is considered a large effect. 
However, the reader is reminded that such interpretations are merely “guides”, and the 
importance of any effect size is always relative to the task at hand. 
 

6 We report standard errors in this study to be consistent with Hancock et al’s. (2008) 
results section 
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words overall, but fewer words per conversational turn. However, this conclusion does 

not hold for Hancock et al. (2008). In their analysis, they did not find an equivalent 

decrease in words per conversational turn for senders and receivers in deceptive 

conversations. Rather, Hancock and colleagues report a marginally significant interaction 

(two-tailed, p = .06) indicating that only receivers used fewer words per conversational 

turn in deceptive conversations.  

 The incongruent conclusions between the two computational tools may have 

resulted from implemented differences of what LIWC and Coh-Metrix consider a word. 

LIWC simply computes as a word any sequence of alphanumeric characters that is 

separated by a white space from another sequence. Coh-Metrix, however, computes 

words on the basis of the Charniak syntactic parser and corresponding word tags. As a 

result, the definition of a word is more precise. Contractions, for example, are counted in 

the expanded form (e.g., don’t > do not, they’re > they are). A more relevant difference is 

that an ellipsis is counted as a distinct pause filler. LIWC would treat so… as one word, 

whereas Coh-Metrix would output two words by distinguishing so and the ellipsis. This 

specificity is important for the current study where pause fillers are believed to hold 

semantic content.  

Based on overall word counts between deceptive and truthful conditions, Coh-

Metrix counts 2.6 more words on average per deceptive conversational turn and 0.42 

more words on average for truthful conversational turn when compared to LIWC’s 

counts. This comparison suggests that Coh-Metrix distinguishes more word types, and 

that this precision particularly affects the interpretation of the utterance length 

measurement.    
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Immediacy  

Introducing deception into a conversation always carries the risk of detection. 

Although the consequences might be no more than slight embarrassment, deceivers may 

take cautionary measures to distance themselves from their lies, even while engaged in 

the act of lying. Wiener and Mehrabia (1968) have suggested that deceptive statements 

are marked by “distancing strategies” that minimize personal involvement with the 

content of the message. One such distancing strategy is the decreased use of first person 

personal pronouns (e.g., I, me, ours; Newman et al., 2003). Related to this decrease, 

deceptive messages are expected to have a greater number of second and third person 

pronouns (e.g., you, s/he, it, they) to divert attention from the deceiver. 

Another distancing strategy is an increased use of tentative constructions with 

words and phrases like might, would, I guess, it seems to me. These are often referred to 

as hedges. Tentative constructions imply a noncommittal to the content of the lie, thereby 

mitigating negative judgment of personal character or attributions of blame (Vrij & 

Heaven, 1999).  

For the analysis of pronoun use, Hancock et al. (2008) computed the percentage 

of first, second, and third person pronouns in deceptive and truthful conversations. The 

researchers found a statistically significant main effect for speaker type (sender vs. 

receiver) for third person pronouns, as well as an interaction between message type and 

speaker type for third person pronouns. The main effect provides evidence that senders 

use more third person pronouns than receivers; but more importantly, the interaction 

reveals that it is only the deceptive senders who are more likely to discuss others in the 

third person.  



   

 88 

We also used Coh-Metrix to assess pronoun use as a distancing strategy. To do so, 

we simply computed the percentage of the different pronouns in each conversational 

transcript. Much like Hancock et al. (2008), we did not find any statistically significant 

effects for first and second person pronoun use. However, our results for third person 

pronouns differed from Hancock and colleagues’ results. We found a main effect for 

speaker type and the interaction, with marginally significant values, F(1, 33) = 3.84, p = 

.06, partial eta squared = .10 and F(1, 33) = 3.20, p = .08, partial eta squared = .09, 

respectively. Nonetheless we found the same the trend, F(1, 33) = 5.73, p = .02, partial 

eta squared = .15, showing senders using more third persons pronouns during deception 

(M = 2.93, SE = 0.32) than the truth (M = 1.94, SE = 0.22). The statistical differences 

here are most likely explained by differences in word count when computing percentages.  

In a second immediacy analysis, we used Coh-Metrix to evaluate the distancing 

strategy of increased tentative construction phrases. There is no equivalent analysis in 

Hancock et al. (2008). The current approach underscores the advantages of using a 

syntactic parser and part-of-speech tagger. With these additional modules, an incidence 

score (out of 1000 words) for modal verbs (e.g., should, might, may) can be computed. 

Despite these noted advantages, the Coh-Metrix index of tentative constructions via 

modal use was not statistically significant. The Coh-Metrix index may have been too 

general to make subtle distinctions. Coh-Metrix does not distinguish among different uses 

of modals. Consequently, all modals were included in the computation - even modals that 

are non-tentative in nature. For example, the root use of may and must produces a non-

tentative use in statements like You must go now or You may not. Taken together, the 

non-specific modal index was too general to support the immediacy category.  
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Specificity  

Language has many linguistic features that allow speakers to reconstruct events 

from memory with certain temporal and spatial characteristics. The reconstructed events 

are often isomorphic mappings to perceived external events or, as is the case with 

deception, fabrications generated from internal cognitive processes of imagination and 

reasoning. As such, the mental representation of each event differs in terms of origin; the 

event can be initially encoded as a perceptual experience or as a simulation of an 

imagined experience. According to Reality Monitoring theory (Johnson & Raye, 1981), 

the temporal and spatial characteristics for each event will differ in terms of specificity. 

Events that originate in actual perception will have greater temporal and spatial detail 

than events that originate from internal simulations. To continue with our goal of 

automatically cataloging the linguistic patterns of deceptive and truthful speech in 

conversation, we chose two Coh-Metrix indices that capture the linguistic features of 

temporal and spatial characteristics. The temporal features index tracks words that have a 

high probability of being embedded in temporal expressions. These words include 

specifiers (e.g., next, following), deictics (e.g., yesterday, now), absolutes (e.g., 1997, 

Monday), time of day (e.g., 12:00 AM, noon), and time periods (e.g., summer, week). The 

index is computed as a ratio score that divides the summed occurrence of all temporal 

words in a conversational transcript by the total number of words in the transcript. For the 

Coh-Metrix spatial index, the number of locational prepositions (e.g., here, on, in) is 

counted for each transcript and normalized for differences in transcript length by 

converting to an incidence score (out of 1000 words).  
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There are no equivalent measures for temporal and spatial specificity in Hancock 

et al. (2008). However, in terms of a general specificity, Hancock and colleagues 

hypothesized that there might be a decrease in general specificity, thus prompting the 

receiver of a lie to ask more questions for clarification or detail. As such, the number of 

questions asked by receivers will increase as the sender is lying. To infer an asked 

question, Hancock and colleagues used LIWC to compute the percentage of sentences 

ending with question marks. In similar fashion, we used Coh-Metrix to compute a 

proportion score of wh-words (e.g., why, what) to assess possible changes in receivers 

question asking behavior. 

The first specificity analysis using Coh-Metrix indices of temporal and spatial 

specificity was not statistically significant. However, for the Coh-Metrix index of general 

specificity, there was a significant interaction between message type and speaker type for 

number of wh-adverbs used, F(1, 33) = 6.83, p = .01, partial eta squared = .17. An 

analysis of wh-adverb use at each level of speaker type for deceptive and truthful 

messages revealed that senders used fewer wh-adverbs, and presumably asked fewer 

questions when being deceptive (M = 6.53, SE = .98) than when telling the truth (M = 

9.04, SE = 1.09), F(1, 33) = 4.19, p = .05, partial eta squared = .11; conversely, receivers 

used marginally more wh-adverbs when being deceived (M = 10.34, SE = 1.23) than 

when told the truth (M = 7.33, SE = 1.02), F(1, 33) = 3.30, p = .08, partial eta squared = 

.09. These patterns of results suggest that receivers ask more questions when being 

deceived, while senders ask fewer questions when being deceptive. In Hancock et al. 

(2008), they too found the same effect for the receiver, but failed to find a similar effect 

for the sender. Again, the incongruence might be attributed to differences in the 
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computational approach for operationalizing question use (i.e., proportion of wh-adverbs 

vs. percentage of question marks).   

Accessibility 

We hypothesized that deceivers would select vocabulary that is easier to retrieve 

from memory. Based on the seminal work of Paivio (1965) and Underwood and Schulz 

(1960), word retrieval accessibility is modulated by experiential influences of word 

meaningfulness, familiarity, and concreteness. Word meaningfulness is operationalized 

by the number of associations that a word invokes for native English speakers. More 

associations increase word meaningfulness and the ease of retrieval for that word. Word 

familiarity is the familiarity of the orthographic form of a word and is typically assessed 

on a Likert-type scale from 1 - 7. More familiar words are more likely to be retrieved. 

Finally, word concreteness refers to how easy it is to explicitly ground a word in 

perceptual experiences. For example, a word like house is more easily grounded than an 

abstract word like interesting. As such, concrete words are more easily recalled than 

abstract words. For word meaningfulness and familiarity, Coh-Metrix provides an 

average score based on human ratings of over 150,000 words compiled in the MRC 

database (Coltheart, 1981). For word concreteness, Coh-Metrix computes abstractness 

and ambiguity scores by incorporating a module based upon WordNet (Miller, 1995). 

WordNet is an online lexicon tool that groups words into sets of synonyms that are 

connected by semantic relations. One such relationship, the hypernym value, refers to the 

number of levels a word has above it in a conceptual, taxonomic hierarchy. A high 

hypernym value is a proxy for word concreteness because the word has many distinctive 

features.  
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All indices for the accessibility category are computed as incidence scores in Coh-

Metrix. There are no equivalent indices for accessibility in Hancock et al. (2008). There 

was a statistically significant main effect of message type for word meaningfulness in 

conversations, F(1, 33) = 7.88, p = .008, partial eta squared = .19. The words used in 

deceptive conversations were more meaningful (M = 418.47, SE = 1.23) than words used 

in truthful conditions (M = 412.76, SE = 1.75). Senders’ use of meaningful words 

increased from a rating of 415.21 (SE = 2.30) in truthful conversations to a rating of 

418.15 (SE = 1.47) in deceptive conversations. Receivers increased from a rating of 

410.31 (SE = 2.60) in truthful conversations to a rating of 418.78 (SE = 2.00) when they 

were being deceived. No interaction was observed between message type and speaker 

type.  

For the analysis of word concreteness there was a significant interaction between 

message type and speaker type, F(1, 33) = 5.42, p = .02, partial eta squared = .14. An 

analysis of word concreteness at each level of speaker type for deceptive and truthful 

messages suggest that senders use more concrete words when deceptive (M = 340.63, SE 

= 3.31) than when they are telling the truth (M = 332.99, SE = 2.69), F(1, 33) = 3.25, p = 

.05, partial eta squared = .09. There was no difference for receivers in deceptive 

conversations (M = 337.49, SE = 2.34) or truthful conversations (M = 337.77, SE = 3.28).  

The third accessibility measure of word familiarity was not statistically 

significant.  

In summary, senders and receivers used more meaningful words when being 

deceptive, with the deceptive sender specifically using words that are more concrete. As 

we suggested earlier, these word characteristics facilitate the activation and retrieval of 
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semantic meaning from memory. A consequence of this facilitation is that meaningful 

and concrete words are more likely to be used if cognitive resources are directed 

elsewhere (e.g., in concocting a deceptive message during conversation). Thus, the 

increased use of meaningful and concrete words by deceptive speakers supports our 

earlier hypothesis that deception places greater demands on cognitive resources.  

Complexity 

Another linguistic predictor of conversational deception is change in the syntactic 

complexity of sentential structures. Based on our general hypothesis of cognitive and 

social demands, deceivers will minimize or compensate for the demand by avoiding 

sentences with difficult syntactic composition. In Coh-Metrix, a standard index of 

sentence complexity is the number of words before the main verb of the main clause. It is 

assumed that as the number of words increases, so does the demand on the speaker's 

working memory (see Graesser, Zhiqiang, Louwerse, & Daniel, 2006). Assuming that the 

process of lying would tax a deceiver’s memory resources, we can expect a decrease in 

words before the main verb (i.e., lower complexity) compared to the truth-telling 

condition. 

Alternatively, we could also hypothesize that an increased number of words 

before the main verb are to be expected in conversational contexts where deceptive 

messages are created on the fly. An increase in words before the main verb would reveal 

a stalling strategy used to formulate a lie while still staying engaged in the conversation.     

Coh-Metrix computes the main verb of each sentence by first automatically 

parsing each sentence using the Charniak parser (1997, 2000). Each parse generates a 

syntactic tree that represents the underlying formal grammar. From this formal 
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representation, the main verb of the main clause is identified and preceding words are 

tallied. The sentential complexity for deception and truth-telling is then assessed by 

collapsing the sentences of each conversational transcript into a mean score. There is not 

an equivalent index in Hancock et al. (2008).   

A significant main effect of message type was observed for this complexity 

measure, F(1, 33) = 5.63, p = .02, partial eta squared = .15. More words were used before 

the main verb in deceptive conversations (M = 7.14, SE = .46) than in truthful 

conversations (M = 5.79, SE = .37). Specifically, senders use more words before the main 

verb when deceptive (M = 6.79, SE = .71) than when telling the truth (M = 6.16, SE = .61. 

Likewise, receivers use more words before the main verb (M = 7.50, SE = .60) when they 

are being deceived than in truthful conversations (M = 5.41, SE = .43). No interaction 

was observed between message type and speaker type.  

These results suggest that senders and receivers use more syntactically complex 

sentences in deceptive conversations. Increased sentence complexity does not support the 

hypothesis that complexity results from working memory demands, but rather supports 

the alternative hypothesis that generating deception in spontaneous conversation requires 

a stalling strategy. For working memory to be the prevailing factor, senders must know 

exactly what they want to say before they say it. It is only under these circumstances that 

a sender will intentionally minimize the use of words before the main verb. This active 

strategy of advanced planning is unlikely in the current conversational context.  

A second Coh-Metrix index of complexity that is common to LIWC is the number 

of negation connectives (e.g., did not, is not, but, except) that appear in each 

conversational transcript. Newman et al. (2003) argued that deceptive speakers tend to 
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avoid using negation connectives because they risk presenting incriminating 

contradictions and muddled detail. Negation connectives require speakers to contrast 

events that actually occurred with events that did not occur. Although negative 

connectives help clarify event depictions, the speaker must also recall additional detail 

from memory. Deceptive speakers must conjure that detail up at that moment. As such, 

deceptive speakers may have additional challenges because they are “recalling” false 

details from an already distorted reality - a reality that may be loosely constructed in 

spontaneous conversation. Thus, the deceiver may sacrifice clarity and use fewer 

negation connectives to avoid accidental contradictions.  

The Coh-Metrix index of negation connectives is a proportion value computed 

from the Charniak syntactic parser and part-of-speech taggers. The LIWC index uses the 

pre-defined word list and computes the value as a percentage.  

This measure of complexity is computed similarly for LIWC and Coh-Metrix and 

is also assumed to reflect demands on working memory. Our results agree with those 

reported by Hancock et al. (2008) that there are no statistically significant effects for 

negation connectives.  

Redundancy 

In both deceptive and truthful conversations, an important component of event 

narration is the coherence of statements and ideas. Coherence is a psychological 

interpretation of comprehension. The greater the coherence, the easier the narration will 

be to understand (Graesser, McNamara, & Louwerse, 2003). Coherence is modulated by 

various factors, but a crucial factor is cohesion - the explicit language used to connect 

information and provide conceptual consistency. Most cohesion research suggests that 
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text cohesion influences text comprehension, particularly with texts that consist of formal 

written monologues (Beck, McKeown, Sinatra, & Loxterman, 1991; McNamara, Kintsch, 

Songer, & Kintsch, 1996), but little work has been conducted on the relationship between 

cohesion and coherence in informal spoken dialogue. The question remains as to whether 

the coherence of a speaker's mental event representation influences the cohesion of their 

speech. Deceptive speech can potentially address this question because deceivers’ mental 

representations of false events are likely to be less coherent than representations of 

truthful events. If this is the case, the less coherent deceptive representation may result in 

less cohesive speech.  

It could be possible, however, that incoherent mental representations are not 

mirrored in speech, but instead, the difficulty of remembering and structuring 

spontaneous deception may promote simpler and more cohesive speech. Characteristics 

of such language include conceptual redundancy and more accessible words (Duran et al., 

2007). We have already demonstrated in this study that deceivers tend to use more 

accessible words (e.g., high concreteness; high meaningfulness). It may be the case that 

deceivers also capitalize on conceptual redundancy for greater cohesion.     

We evaluated the cohesion of deceptive and truthful conversations with two 

widely used indices in text analysis that are incorporated in Coh-Metrix: argument 

overlap (McNamara et al., 2006) and LSA given/new values (Hempelmann, 2005 ). Both 

indices are broad indicators of between-sentence conceptual redundancy. This 

redundancy reinforces information by keeping it focal in a developing narrative. 

Argument overlap computes explicit overlap between two sentences by tracking the 

common nouns in either single or plural form. The LSA given/new values also compute 
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overlap between sentences, but it requires more explanation to understand how it works.   

The LSA given/new value is based on Latent Semantic Analysis (LSA; Landauer, 

McNamara, Dennis, & Kintsch, 2007). This measure compares adjacent sentences to 

determine if the meaning in a target sentence is new (different) or given (redundant) to 

preceding sentences. Sentence meaning is first computed by representing each word in 

the sentences as a distributional pattern of frequency occurrences within a large corpus of 

texts (representation is in vector format). Words that have similar patterns of occurrences 

are considered similar in meaning. Word similarity vectors are then combined linearly 

into a composite meaning vector. The target vector is projected into a hyperplane 

constructed from all preceding composite meaning vectors and based on the target 

sentences relationship to the hyperplane and a new or given value is generated (see 

McCarthy et al., in press, for more information). High values on both the argument 

overlap and LSA given/new values suggest high cohesion between-sentences. These 

measures are unique to Coh-Metrix; there is no equivalent in Hancock et al. (2008).  

For the first analysis of argument overlap, we did not find any statistically 

significant effects. However, the more subtle measure, in the LSA given/new value, 

revealed a statistically significant main effect for message type, F(1, 33) = 9.32, p = .004, 

partial eta squared = .22. In the deceptive conversations, there was a higher given/new 

value (M = .25, SE = .005) compared to truthful conversations (M = .23, SE = .007). 

Senders’ given/new value was higher when they were deceptive (M = .26, SE = .007) 

compared to when they were telling the truth (M = .24, SE = .01). Receivers’ given/new 

values were higher when they were being deceived (M = .25, SE = .008) compared to 

when they were being told the truth (M = .22, SE = .01).  



   

 98 

These results provide evidence that deceptive conversations contain more given 

information relative to preceding context. This result should be expected if we consider 

an important goal for deceivers is to minimize opportunities for self-incrimination. A 

strategy to avoid self-incrimination may be to reiterate particular topics or themes in the 

conversation. Deceivers do not reiterate by explicit repetition, as evidenced by the null 

finding with referential overlap, but by an implicit focus on a few semantic focal points. 

However, there may be no conscious decision to avoid self-incrimination. Instead, the 

high LSA given/new values support a hypothesis that redundancy strategies are triggered 

by differences between memory representations of deceptive and truthful narratives. For 

example, it is possible that the details of truthful events are more extensively linked in 

memory than the fabricated details of a lie. As a truthful account unfolds, the activation 

and recall of remembered details are likely to activate other details in a distributed and 

global manner, thus a greater variety of information is available for use. Conversely, the 

details in a deceptive account are often constructed and cued from the local and 

developing context. As such, there is less new information activated from memory and 

deceivers may default to more redundant language.  

Brief Summary of Coh-Metrix Analysis 

The overall results of our study demonstrate that the linguistic features that 

characterize deceptive conversations are substantially different from those that 

characterize truthful conversations. From the perspective of Coh-Metrix, we can describe 

deceptive conversations as involving: (a) more words overall, but fewer words used per 

conversational turn, (b) words that are more meaningful, (c) utterances of each 
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conversational turn being more syntactically complex (due to a stalling hypothesis), and 

(d) less unique information introduced during the course of the conversation.  

The effects we have discussed so far changed in the same direction for both 

sender and receiver. However, other changes in linguistic behavior were specific to either 

the sender or receiver. For example, personal pronouns and word concreteness increased 

only for senders while they were being deceptive. Demonstrating another pattern, 

receivers asked marginally more questions in deceptive conversations than the senders 

who asked fewer questions.  

Brief Summary of Coh-Metrix and LIWC Comparison 

Table 10 provides a side-by-side comparison of the results using the indices that 

were similar in Coh-Metrix and LIWC. While these indices are not exact replications due 

to differences in algorithmic operationalization, they are quantifications of the same 

linguistic features. Overall, five indices were comparable, and of these five, total word 

count, negation, and personal pronouns had the same result. This convergence confirms 

that more words are used in deceptive conversations, that there are no differences in the 

use of negation, and that deceptive senders use more third person pronouns. The multi-

method alignment lends greater credibility to the Coh-Metrix and LIWC indices, as well 

as to the quantity and immediacy constructs in general.  

The two remaining indices, words per conversational turn and questions, did not 

completely converge; the difference in the indices most likely results from the different 

definitions of a word used by the two tools. For the words per conversational turn index, 

the Coh-Metrix analysis revealed that both sender and receiver used fewer words in each 

utterance during deceptive conversations. With LIWC, only receivers used fewer words 
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in each utterance during deception. For the questions index, the Coh-Metrix analysis 

revealed that receivers asked more questions while being deceived and senders asked 

fewer questions while being deceptive. LIWC showed only that the receivers asked fewer 

questions during deception. In general, for both of the non-converging indices, the Coh-

Metrix analysis found a statistically significant effect that was not found in the LIWC 

analysis. 
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Table 10. Comparison of similar Coh-Metrix and LIWC index results in conversational 

transcripts. 

 Coh-Metrix LIWC 

Total word 

count 

More words overall in deceptive 

conversations 

More words overall in deceptive 

conversation 

Words per 

conversational 

turn 

Fewer words per conversational 

turn in deceptive conversations 

Receivers used marginally fewer 

words per conversational turn than 

senders in deceptive conversation 

Personal 

pronouns 

Senders used marginally more 

3rd-person pronouns when 

deceptive as compared to when 

telling the truth 

Senders used more 3rd-person 

pronouns when deceptive as 

compared to when telling the truth 

Questions 

Receivers ask more questions 

during deceptive conversations, 

senders fewer 

Receivers ask more questions 

during deceptive conversations 

Negation None None 

 
 

General Discussion 

Both this study and Hancock et al. (2008) demonstrate that at least one type of 

deception is detectable through natural language processing (NLP) tools. For our 

analysis, we compared the Coh-Metrix and LIWC tools on the original corpus of 

deceptive conversations used by Hancock and colleagues. Using this approach, we were 

able to evaluate the effectiveness of each NLP tool in a common context of social 
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interaction. In addition, we were also able to use Coh-Metrix to build a more complete 

catalogue of the linguistic features that emerge during deception. In this discussion, we 

first turn to the expanded analysis and the identification of eight Coh-Metrix indices that 

distinguish deceptive conversations from truthful conversations. Using this winnowed set 

of indices, we provide new insights into the cognitive and social constraints that are 

hypothesized to influence deceptive behavior – in both the deceiver and their naïve 

conversational partner. Turning next to the comparison with Hancock and colleagues, we 

discuss complimentary insights provided by the LIWC analysis. In particular, we 

consider the findings of Coh-Metrix and LIWC within the context of computer-mediated 

communication (CMC). Throughout this discussion, we address the limitations of our 

current research and end with suggestions for future work.  

There is a well-established conversational Maxim of Quality that a speaker should 

avoid saying what the speaker knows to be false (Grice, 1975). When lying to a friend, 

colleague, or foe, a speaker often violates this maxim, and as a consequence, new goals 

and task demands are introduced into the conversation. The deceiver must now maintain 

representations of both the truth and a falsified version of that truth. In doing so, the 

deceiver must also appear convincing while avoiding unintentional “slips” of the truth. 

The cumulative effect is that deception requires increased cognitive control in the 

presence of social scrutiny. Previous research suggests that even with the best attempts to 

maintain control, the inner states brought on by deception are manifested in subtle 

changes of language use (Pennebaker et al., 2003).  

For the Coh-Metrix analysis, we created six theoretically guided categories to 

represent these changes in language. Each category is composed of two or three Coh-
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Metrix indices. The categories include a) the amount of information in the conversation 

(i.e., quantity), b) the readiness to identify with message content (i.e., immediacy), c) the 

breadth of detail used to describe a narrative (i.e., specificity), d) the change in semantic 

memory retrieval (i.e., accessibility), e) the change in grammatical phrasing (i.e., 

complexity), and f) the repetition of given information (i.e., redundancy). We then 

compared truthful and deceptive conversations for changes in the six categorical 

dimensions. We found statistically significant results for all categories.  

Several of our findings provide novel contributions to the relationships between 

deception and language. A key discovery is that quantity of word use changes for the 

level of analysis. For example, in deceptive conversations, fewer words were used at the 

level of conversational turn. Based on this finding alone, we might conclude that 

deceivers use fewer words to minimize opportunities for incrimination; however, in the 

same conversations, there are also more conversational turns and more words used 

overall. This result challenges the original conclusion and suggests that the deceivers are 

attempting to establish rapport with their conversational partner. Because our results also 

show that receivers ask more questions of deceptive senders, an alternate interpretation 

might be that the deceivers do, indeed, use fewer words per conversation turn to 

minimize opportunities for incrimination; however, the ‘paucity’ of information in these 

restricted turns require the receivers to ask for additional information or clarification 

which then generates more overall turns and words. Unfortunately, there is not enough 

information to make a conclusive interpretation either way. However, the results do 

highlight the rich interplay between the often-conflicting goals of cautiously limiting 

information and the appearance of affability.  
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Another new discovery is that the words used in deceptive conversations are more 

meaningful than those used in truthful conversations; for the sender in particular, the 

words are also more concrete. The accessibility of meaningful and concrete words from 

semantic memory indicates that the deceiver is using an unconscious strategy to decrease 

burdens on cognitive processing. Because meaningful and concrete words are highly 

associated to other words in semantic memory, these words are easier to retrieve, and in 

turn, allow cognitive resources to be redirected to the more difficult task of maintaining 

deception in conversation.  

Related to increased difficulty, we also found evidence for redundancy in 

deceptive conversations. The redundancy is the repetition of content from contiguous 

utterances. Previous research that has investigated linguistic features of redundancy has 

failed to find significant effects because it applied a strict lexical overlap criterion (e.g., 

Zhou et al., 2005). Instead, redundancy in deception appears to be more subtle. In our 

analysis, we used an algorithm that compares the semantic similarity of two words based 

on their likelihood to appear in similar contexts. This algorithm, called the LSA 

given/new value, revealed that words similar in meaning are used more often in deceptive 

conversations than in truthful conversations. This redundancy in meaning suggests the 

deceiver may find it simpler to focus on consistent themes. Part of the reason for such 

focus is that the deceiver may have difficulty in using the same interconnected memory 

representations that are formed with real experiences. Instead, deceivers rely more on 

local conversational cues for what information can or cannot be reasonably fabricated. 

This orientation towards local context decreases the likelihood of using novel information 

and increases the chances of repeating what has already been stated.  



   

 105 

Deceptive conversations are also characterized by a change in the complexity of 

grammatical constructions. A complex sentence is defined in Coh-Metrix as having more 

words before the main verb of the main clause. In deceptive conversations, we found that 

this type of sentence complexity increases. It is important to note that complex 

grammatical constructions identified by Coh-Metrix are not necessarily more difficult to 

produce, and in fact, may be preferred when attempting to generate a spontaneous lie. For 

instance, consider a lie about what you did yesterday. If you were telling the lie in 

conversation, it might take some time to think of a false response, such as I watched TV 

at my house. While constructing the response, it would be useful to buy some time with a 

stalling strategy that provides genuine information. Thus, you begin with It was really 

cold outside… and continue with the lie ...so, I’d thought I’d stay in and watch TV. By 

doing so, there would be a higher occurrence of words before the main verb, and as such, 

greater evidence for our hypothesized stalling strategy.  

Finally, for specificity of the deceptive narrative, we found that deceptive 

conversations were marked by the receiver asking the sender more questions. This result 

implies that the sender lacked specificity and that the receiver was requesting greater 

clarification. During these exchanges, the deceptive sender also asked fewer questions 

compared to when they were telling the truth. Again, these findings can be interpreted in 

multiple ways. The receiver may ask more questions because of an unconscious suspicion 

of the sender’s deception. Likewise, the deceptive sender may ask fewer questions to 

defend against the suspicion. It may also be that because deceivers use fewer words in 

each conversational turn, receivers need to ask for more clarification. The receivers may 

be responding to a perceived violation of the Maxim of Quantity rather than the Maxim 
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of Quality that deals with truthfulness (Grice, 1975). In either interpretation, the 

important finding is that receiver linguistic behavior systematically varies from that of the 

sender in terms of specificity.  

For most of the analyses, receiver behavior was mostly aligned with the deceptive 

sender, with the exception of wh-adverbs, concreteness, and third person pronouns. The 

alignment of linguistic features is not uncommon between conversational partners. There 

is extensive research that shows implicit alignment can occur and cut across lexical, 

syntactic, and conceptual levels (Garrod & Anderson, 1987; Pickering & Garrod, 2004). 

The underlying mechanism is due to priming, whereby the linguistic features used by one 

partner elicit a similar representation in the other. In this way, coordination of form and 

meaning is automatically generated and maintained. In the current study, we find 

evidence for alignment in the number of words used, the meaningfulness of words, the 

repetition of similar words and concepts, and the complexity of grammatical 

constructions. A possible limitation in the alignment is not knowing whether the sender 

or the receiver is predominantly priming or being primed. The limitation is a particular 

concern because we are interested in the linguistic features generated by the deceptive 

sender. As such, we assume that it is the deceptive sender’s linguistic behavior that is 

most influential. We base this assumption on two factors. First, the design of the 

experiment gives the sender more control by allowing the sender to introduce new topics 

(total = 4) into the conversation. Second, being deceptive may invoke a greater desire for 

the sender to be convincing, where an equivalent desire is not present in the receiver. As 

a result, this unique desire may translate into greater linguistic influence.  
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In detecting linguistic features of deception, the problem of who influences whom 

is heightened in conversational interactions. Unlike monologues or scripted interviews, 

there are cognitive and social constraints that present additional and novel challenges. 

Moreover, our use of a CMC corpus of deceptive and truthful conversations adds to these 

challenges. Despite the increasing difficulty, the CMC conversational context is an 

ecologically important domain that is gaining in popularity and use. However, we must 

be careful in generalizing our findings from the CMC context to other domains with their 

own constraints. Face-to-face conversations, for example, are not the same thing as 

instant-messaging conversations, and thus the linguistic features characterizing each 

conversation may substantially differ. For these reasons, we felt justified in using and 

extending the Hancock et al. (2008) study. Importantly, their data provided a common 

context to compare and contrast Coh-Metrix with LIWC.   

Our first step in the comparison was simply to assess the degree to which the 

systems differed in their analysis of deception. Our results suggest that Coh-Metrix was 

largely able to reproduce LIWC results (e.g., in areas of quantity and immediacy) and 

offer many areas of deception detection in addition to LIWC (e.g. accessibility, 

complexity, and redundancy). For these reproduced results, the replication occurred 

despite two different computational approaches for operationalization. The alignment 

gives greater credence to the original findings in the Hancock et al. (2008) study, 

specifically their findings that more words are used in deceptive conversations and that 

deceptive senders project the focus of conversation onto others (as evidenced by the 

greater use of third person pronouns).  
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Our study also showed where LIWC and Coh-Metrix were not able to reproduce 

the same results on similar indices, namely, words per conversational turn and questions. 

For Coh-Metrix, deceptive conversations were marked by fewer words from both the 

sender and receiver, as well as more questions from the receiver and fewer questions 

from the sender. In contrast, LIWC did not find a difference of word use for senders and 

found only a marginal difference for the receiver. In addition, no difference in question 

use was found for senders. This inability to reproduce the same results using the identical 

corpus might suggest that one NLP tool is superior to the other. However, we take an 

alternative perspective. The algorithmic operationalization for each tool is a matter of 

preference that should be chosen to best address a research question. In other words, the 

operationalization does not capture a “truer” representation of reality. More than 

anything, the operationalization is a manifestation of computational expediency. For 

example, LIWC uses computationally inexpensive algorithms to process texts. During 

processing, words are identified by surrounding white space and matched to an internal 

set of words that are coded for linguistic and psychological features. In contrast, Coh-

Metrix goes beyond a predefined set of words and incorporates sophisticated algorithms 

to maximize the scope of analysis. By including syntactic parsers and psycholinguistic 

databases, linguistic features can be distinguished at the word, sentence, and discourse 

levels. To understand this in practice, we consider the operationalization of word count. 

Words are not separated by white spaces alone (as in LIWC), but are expanded from 

contraction form (e.g., don’t > do not) and distinguished from a trailing ellipsis to create 

unique entries for ellipsis occurrence. Furthermore, for the operationalization of 

questions, instead of counting the number of question marks (as in LIWC), detailed part 
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of speech information, like wh-adverbs (e.g., where, what), can be used as an index of 

question use. Based on these differences in operationalization and given the current task, 

the Coh-Metrix analysis may have an advantage over LIWC. Because the data are typed 

conversations, there are a large number of ellipsis occurrences that might be an important 

linguistic feature of deception (e.g., pauses, incomplete thoughts). In addition, 

participants tend to use multiple question marks at the end of a sentence. By just counting 

question marks, there is a risk for over exaggerating the number of questions. This 

miscount is not a problem with wh-adverbs.  

For the current task, LIWC does have an important advantage over Coh-Metrix. 

LIWC codes words for psychological dimensions, such as sensory information like “see”, 

“touch”, and “listen”, that may be related to a deceiver’s goals of convincing story-

telling. Indeed, in Hancock et al. (2008), the deceptive conversations were reported as 

having a greater degree of these sensory words. Future work will require adapting Coh-

Metrix to include linguistic features that have been successful in detecting deception in 

multiple contexts. Other candidates include positive and negative word connotations, as 

well as content word diversity measures (Zhou, et al., 2005). Additional work also needs 

to be conducted in predicting the likelihood that a narrative is deceptive or truthful. Given 

our established set of deceptive linguistic features, we can include these features as 

variables into statistical prediction models (e.g., logistic regression, discriminant function 

analysis). By doing so, we can also evaluate how well our linguistic features collected in 

a CMC context explain the variance in other interactions, such as business negotiations or 

even police interrogations.  
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 Finally, it would be naïve for us to argue that a straight and easy road lies 

between identifying linguistic features of deception and using them in real-world 

practice. There are many individual differences to account for, as well as the 

consideration of ethical and legal concerns. Nevertheless, we begin the journey with the 

current study. We have shown that deception is a feature of language that is identifiable 

through many variables, established that Coh-Metrix is a computational system that can 

identify deception, and revealed that there is insight to gain by comparing computational 

NLP tools.  

Study 3b: Automated Phrasal Analysis with Gramulator 

 NOTE: The following study was prepared for journal publication; Duran & McCarthy 

(2011).  

Of all human behaviors that are considered to breach conventions of social and 

communicative interaction, deception is one of the most pervasive and by far the most 

elusive. Deception is a violation of what is known to be true for the purpose of providing 

misleading, but seemingly trustworthy information (Ekman, 1997). To succeed, the 

deception must be covert and is thus designed to thwart detection. Yet, despite the 

potential social risks involved (e.g., face loss: Brown, 1977), deception is surprisingly 

common in everyday interactions (DePaulo et al., 1996). But why would a speaker be so 

brazen as to use deception? Personal gain notwithstanding, the risks of deception are 

mitigated by the simple fact that deception usually goes undetected or is excused as 

hyperbole. From the “tall tales” that people choose to tell to their fishing buddies, to the 

excuses they use to get out of work, deceivers are generally believed without reproach. 

Even when the potential risks are increased, or when the lie strongly deviates from the 
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truth, detection rates are still little better than chance (Feeley & deTurck, 1995; Vrij et al., 

2000). One of the reasons for poor detection is that humans come equipped with a truth-

bias, whereby all statements are initially assumed to be true (Gilbert, 1991; Levine & 

McCornack, 1991). Researchers have attempted to overcome this truth-bias by explicitly 

training people to look for “leakage” cues that are expressed in a deceiver’s actions, such 

as facial movements and body posture (Vrij, 2001); or in their language output, such as in 

the vividness of spatiotemporal descriptions or number of verbal hedges (Johnson & 

Raye, 1981; Sporer, 2001). However, even when people are trained in these various 

techniques, their performance is still too inconsistent for real-world applicability (Bond & 

DePaulo, 2006; Vrij et al, 2000). Although this poor performance might be attributed to 

techniques that are theoretically misguided, a more likely account is that the grain-size of 

leakage cues is outside the normal processing abilities of trained and novice judges. For 

this reason, many researchers interested in detecting deception have turned to 

computational techniques that are unbiased and better suited to detect hidden linguistic 

patterns.  

The current studies build from the published work of Hancock et al. (2008) and 

Duran et al. (2010) and their respective computational textual analyses of the linguistic 

features characterizing the deceptive and truthful conversations of native English 

speakers. We also build from Newman et al. (2003) and their linguistic analysis of 

arguments (both truthful and lying) on personal beliefs about abortion. In these 

aforementioned studies, as is true in other computational work (e.g., Zhou et al., 2004), 

the focus is on the stylistic organization of language; that is, the abstract linguistic 

properties that exist at the word, sentence, and discourse level. These properties can 
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include the number of words of a certain grammatical category (e.g., percentage of 

articles), or they can measure the number of words that repeat across locally distributed 

sentences (e.g., proportion of referential overlap). One of the advantages of a 

computational approach is that the analysis does not depend on variations in topical or 

thematic content because the computation is neutral to context. Thus, the output is 

generated more rapidly than a qualitative or narrative analysis that requires subjective 

interpretation (Reissman, 1993).    

Although computational research has certainly provided a great deal of insight 

into deception, many content-analytic questions remain unaddressed. These questions 

include: what are the topics that people tend to lie about? How does a particular phrasing 

reflect the cognitive, social, and motivational biases involved in deception? Such 

questions are important because they promise to expose content that taps the 

psychological processes of lie-telling, from recurring story elements that offset the 

processing difficulty associated with deception, to tell-tale themes that arise when the 

contents of long-term memory are fabricated.   

To address these issues within an automated natural language processing 

approach, we introduce a computational tool called the Gramulator (McCarthy, 

Watanabe, & Lamkin, in press). This tool provides a numeric representation of relevant 

qualitative content – content that consist of short sequences of text (up to four words) that 

are more probable in one corpus compared to another. With these features in hand, we 

can go back to the text in which the features were found and draw conclusions based on 

how they were used in context. By doing so, a richly detailed characterization of 

deceptive language can be offered.      
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In the sections that follow, we present our attempt to develop an automated 

analysis that respects content-analytic concerns of transforming qualitative content to 

quantitative output. We first discuss two methodological perspectives that are common in 

evaluating deceptive discourse, namely, abstract feature extraction and phrasal analysis. 

We then introduce our method of automated phrasal analysis, describing the operational 

underpinnings of the Gramulator. We then turn to our primary objective of applying the 

Gramulator to deceptive scenarios involving everyday conversations and persuasive 

argumentation. In doing so, we show how certain phrases and word choices are uniquely 

tailored to each scenario, and how overarching psychological themes can emerge from a 

diverse set of narrative and rhetorical styles. Finally, we speculate on future 

developments and needs of the current approach.  

An Inductive Approach to Automated Phrasal Analysis 

In general, content-analytic research is defined as the attempt to extract 

meaningful representations from large sets of qualitative material, where these 

representations are derived from objective methods that can be easily reproduced, and 

that can be interpreted to yield new insights on how people might differ (Holsti, 1969; 

Smith, 2001; Stone, Dunphy, Smith, & Ogilvie, 1966). In the current studies, we evaluate 

discourse generated during open-ended verbal communication. We analyze two contexts 

of such communication, one involving casual, typed conversations, and the other 

involving expository monologue (spoken and written). We are interested in how people’s 

language might change during deception, particularly language consisting of short 

phrases of two to three contiguous word sequences, also called n-grams. We hypothesize 

that these sequences are important for capturing salient narrative themes (e.g., types of 
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characters, locations, events, feelings; Mandler & Johnson, 1977; Reissman, 1993) or 

pragmatic elements (e.g., dialogue acts, disfluencies, editing expressions; Clark, 1996; 

Schober & Brennan, 2003) that best characterize deceptive language. However, this 

approach is inductive insofar that the organization of these textual units into 

psychologically interesting constructs is not known a priori, but must be interpreted 

based on compatibility with existing theories. As described below in the section, The 

Gramulator, we go to great lengths to ensure that the extracted textual units are 

statistically more probable in deceptive texts than in non-deceptive texts (and vice versa), 

and that these textual units are interpreted within the local sentential context in which 

they originally occurred (by using a specially adapted concordancer tool). 

For deception, homing in on the specific phrases and unique wording can have 

potentially important consequences in detecting deception. In studies where people are 

asked to record what they lie about during the course of a day, the bulk of deception tends 

to dwell on feelings and opinions, as well as personal preferences, achievements, and 

failures (DePaulo et al., 1996; DePaulo & Kashy, 1998). Thus, knowing what people tend 

to lie about can signal when a would-be detector should be particularly vigilant. The 

thematic content of deceptive speech is also relevant for understanding information 

management strategies that accompany deceptive intent (McCornack, 1992). These are 

strategies that deceivers use to control the content of a message by obfuscating the truth 

and thwarting perceptions of guilt. Such control is showcased by Burgoon et al. (1996) 

who evaluated what was said by deceivers in structured interviews. The researchers 

concluded that deceivers tend to provide impoverished details, downplay personal 
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involvement, and provide less relevant information. Again, such information is crucial for 

enhancing the goals of deception detection.     

To evaluate language, content-analytic researchers often rely on human raters to 

code theoretically interesting features, where high agreement between raters is a priority. 

However, this process can be extremely time-consuming, particularly when there are 

many texts and multiple features to code. Furthermore, human raters can easily overlook 

subtle semantic patterns that are embedded in more salient content.  

Of course, the limitations of human raters are easily contrasted with the 

processing speed and pattern extraction abilities of computational approaches. As in the 

studies of Duran et al. (2010), Hancock et al. (2008), and Newman et al. (2003), natural 

language processing tools have been used to process hundreds of linguistic features in a 

matter of seconds. Many of these features are also likely impossible for human raters to 

identify. For example, Duran et al. (2010) used the given-new index available in the Coh-

Metrix natural language processing tool to capture a construct of information novelty 

(Graesser et al., 2004; McCarthy, Dufty, Hempelman, Graesser, Graesser, & McNamara, 

in press). This index functions by computing the co-occurrence patterns of content words 

across contiguous sentences in a text. The algorithm is not dependent on any a priori 

notion of what raters might agree to be typical, or even what raters would recognize as 

being typical. Rather, the algorithm is designed to mindlessly (quite literally) evaluate 

hundreds of texts in terms of the amount of new information present in each text.  

As is generally the case in this and other computational approaches, the data are 

interpreted without any direct reference to the specific words (or extended text). That is, 

the analysis is based on a composite measure of the abstract properties of words and 
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relationships between words. When encountering the phrase “this is a chair,” 

computational algorithms similar to given-new might track information like: there are 

four words, there is one verb phrase, there is a noun that is a hypernym of furniture, et 

cetera. Thus, the analysis, by design, transforms the semantic content into higher-level, 

abstract properties. Two texts could be about very different topics, but potentially have 

the same Coh-Metrix values. However, as noted earlier, there are notable advantages in 

evaluating short, semantic phrases of discourse. For example, although a given-new 

evaluation might show that deceivers tend to be more redundant, this conclusion could be 

strengthened by also determining what people are more likely to talk about when telling 

the truth, or avoid talking about when telling a lie. In this way, researchers can begin 

asking why certain themes are avoided and others are not, and ultimately use this 

information to improve our understanding of the psychological underpinnings of 

deception, as well as the development of techniques for enhanced detection.  

The Gramulator 

Natural language processing tools have been tremendously successful at offering 

insight into language register differences (Duran, McCarthy, Graesser, & McNamara, 

2007; Kahn, Tobin, Massey, & Anderson, 2007; McCarthy, Myers, Briner, Graesser, & 

McNamara, 2009; McNamara et al., 2010; Pennebaker & King, 1999). However, in all 

such analyses, the emphasis is on converting content to abstract representation. The fact 

that a corpus contains the words “happy”, “grateful”, or “confident” is only important 

insofar that these words count towards a pre-defined measure, such as percentage of 

positive emotion words, or that these words can be categorized by statistical techniques 

(e.g., factor analysis) into high-level conceptual categories. Given that such output is 
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removed from the actual context in which these words originally appeared, researchers 

might overlook changes in meaning that are context-dependent. What is needed then is a 

computational tool that can complement existing techniques by revealing context-

embedded features that occur within a text. In carrying out this goal, it is also of great 

benefit to have a tool that is computationally inexpensive (i.e., a tool that requires few 

resources, is easy to install and run, and does not need special coding for each analysis). 

And unlike other approaches that purport to integrate qualitative and quantitative analysis 

(e.g., DocuScope; Kaufer, Ishizaki, Ishizaki, & Butler, 2000), the Gramulator’s extracted 

text features are not pre-defined in a dictionary-like structure. As such, the features 

themselves require are not restricted to any particular linguistic or psychological theory. 

Consequently, the Gramulator provides a straightforward means to quantitatively explore 

the qualitative nature of language.  

The Gramulator is a freely available computational textual analysis tool.7 It is 

designed to identify the differential linguistic features of correlative text types. That is, it 

primarily functions by identifying the key linguistic features of two related, yet 

theoretically distinguishable, sets of data. The Gramulator performs this function by first 

extracting what is typical to each individual set of data, and then eliminating what is 

common to those two sets of data (reciprocal). The elements that are left (differentials) 

are indicative of one set of data while being antithetical to the other set of data. The 

Gramulator also provides many associate modules for the further analysis of the revealed 

data. These modules include a concordancer, parser, lemmatizer, and an array of textual 

                                                
7 The Gramulator can be downloaded at: 

https://umdrive.memphis.edu/pmmccrth/public/index.html 
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measures such as frequency counts, genre categorization, lexical diversity measures, 

semantic assessment and so forth.  

 Central to the Gramulator’s identification of relevant linguistic features is the 

extraction of statistically relevant distributions of n-grams. N-grams are adjacently 

positioned lexical items in a text that can be composed of any number of words, although 

here (as is typical) we focus on two-words (i.e., bi-grams) and three-words (i.e., tri-

grams). For example, the initial four bi-grams of the first sentence of this paragraph are 

Central to, to the, the Gramulator, and Gramulator is; whereas the initial four tri-grams 

are Central to the, to the Gramulator, the Gramulator is, and Gramulator is the. 

N-grams are useful textual analysis units because they capture examples of 

language that may be unique or rare to a given text type (Jurafsky & Martin, 2009). They 

are also widely used in statistical models of language to generate predicted linguistic 

structures (Christiansen & Chater, 2002), and have been instrumental in designing speech 

recognition and information retrieval systems (Manning & Schütze, 2000). For this study, 

we extend the use of n-gram analysis by incorporating n-gram features with contrastive 

corpus analysis (CCA) (McCarthy et al. in press; Min & McCarthy, 2010). CCA refers to 

the approach of characterizing one corpus by contrasting it with a related corpus (Cobb, 

2003; Damerau, 1993; Granger, 1998). In doing so, CCA redirects the question a 

discourse analyst might ask, from: what do the most frequent features in a text type tell us 

about the text type?, to instead: what are the most frequent features of one text type 

relative to another, and how do these features distinguish either text type? This latter 

question, unlike the former, can only be answered by simultaneously considering what is 

commonplace and what is not commonplace across two corpora.  
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The Gramulator’s operation can be understood as a multi-step process. These 

steps include a) collecting two candidate corpora for analysis, b) identifying and tallying 

the n-grams that appear in each corpus, c) retaining only the n-grams that appear with 

above average frequency in each corpus (i.e., the Typicals), and d) comparing the 

Typicals of each corpus and removing those Typicals that overlap. In this latter step, the 

goal is to identify Typicals that are not shared (the Differentials), and therefore are 

indicative of their respective corpus relative to the corpus against which they have been 

compared (see Figure 11). 
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Figure 11. A schematic flow chart for the operations involved in deriving and computing 

differential 

 
 

The first step of corpus collection is to select sister corpora. These are corpora 

where systematic differences are minimized apart from a single experimental 

manipulation. This process is exemplified with the current studies where experimental 

factors were held constant except for the manipulation of deceptive versus honest 

response instructions. The next step is to separately compute the typical n-grams for each 
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of the two sister corpora. These are n-gram frequency counts that have been weighted to 

ensure that any n-gram that appears in multiple texts is considered more typical than an 

n-gram that occurs multiple times in just a few texts.  The Gramulator’s weighting 

approach is based on a modified procedure common in information retrieval and text 

mining procedures (Spärck Jones, 1972). As an example, let x and y be two n-grams that 

have a raw frequency count of 100 occurrences in one of the sister corpora. N-gram x 

occurs in just 10% of the corpus’ texts, whereas y occurs in 50% of the texts. The 

Gramulator’s default weighting function considers y to be more typical than x because 

y(weighted count) = 100*.50 = 50 and x(weighted count) = 100*.10 = 10.  Next, in the 

third step, we simply rank order all n-grams in each corpus by their weighted counts and 

only select those that are among the top half of frequent n-grams.  

At this point in the analysis, there are two typical n-grams sets corresponding to 

each of the sister corpora. Of course, among these typical sets there will be shared n-

grams, that is, n-grams that are highly frequent in each corpus (e.g., of the). In the fourth 

and final step, the Gramulator removes all shared instances because any n-gram that is 

typical to both corpora is diagnostic of neither. This process of removing high frequency 

shared n-grams to leave only high frequency non-shared n-grams is a form of Machine 

Differential Diagnostics, a technique commonly used in medical diagnostic software 

(Graber, Tompkins, & Holland, 2009; Rahati & Kabanza, 2010). Consequently, the n-

grams that are left after the removal process are referred to as “differentials.” These 

differentials are diagnostic of each corpus because they are typical of one corpus while 

being atypical of the corresponding sister corpus. 



   

 122 

The Indicative Language of Deception 

For the following studies, we use the corpora from the published work of 

Hancock et al. (2008) and Newman et al. (2003). These corpora have been collected 

under rigorous standards of experimental control and are thus ideal for present purposes. 

Moreover, these corpora have been subjected to extensive linguistic computational 

analyses that have produced linguistic characteristics unique to deceptive and truthful 

language. As such, these corpora provide an important point of departure for the current 

approach. By using the corpora here, we will reveal additional meaningful linguistic 

characteristics that have remained hidden, and in doing so, highlight the importance of an 

automated n-gram analysis for gaining new theoretical insights.  

Study 1: Everyday Conversation 

Within almost any everyday conversation, there is a good chance that one or both 

conversational partners will tell at least one lie (DePaulo et al., 1996). Although such 

“fibs” are generally harmless, introducing deception to conversation creates unique 

challenges for the conversational participants. One such challenge arises from the 

violation of the well-established conversational Maxim of Quality: that speakers should 

avoid saying what they know to be false (Grice, 1975). By violating this maxim, the 

speaker might sabotage the willingness of the conversational partner to contribute 

meaningfully to the ongoing discourse. Thus, it is important that deceivers stay 

committed to preserving their partners’ presumption of truth. In doing so, deceptive 

speakers must take special care to monitor their partners’ speech and respond in such a 

way as to maintain the appearance of common ground and mutual knowledge (Clark, 

1996). Furthermore, deceptive speakers must maintain representations of both truthful 
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and non-truthful versions of that truth, and convincingly present the non-truthful version 

while avoiding unintentional “slips” of the potent truth. Given the increased cognitive 

control required, as well at the need to maintain conversational norms, it is reasonable to 

suspect differences in language use.  

In recent years, there has been growing interest in how these cognitive and social 

factors shape conversational deception. An important strand of this research has been a 

focus on computer-mediated communication (e.g., Carlson et al., 2004; Hancock et al., 

2004; Zhou et al., 2004). As the technology becomes more advanced, the use of CMC is 

quickly becoming a daily fixture in people’s lives. Although CMC varies greatly with the 

conversational affordances it shares with face-to-face communication, CMC does offer 

face-to-face attributes of synchronous and cotemporaneous message exchange (Brennan 

& Lockridge, 2006). Of these CMC approaches, instant messaging is a primary example.  

Not surprisingly, there has been a strong move toward evaluating deception in an 

instant-messaging communication medium. One such evaluation is the research by 

Hancock et al. (2008). In that study, Hancock and colleagues asked unacquainted same-

sex pairs to discuss four “ice-breaker” topics over instant-messaging software. The topics 

included 1) Discuss the most significant person in your life; 2) Talk about a mistake you 

made recently; 3) Describe the most unpleasant job you have ever had to do; and 4) Talk 

about responsibility. Prior to the conversation, the researcher gave one participant (the 

sender) all four topics and told the sender to lie about two of them and tell the truth about 

the other two. The assignment of lie or truth to a topic was counterbalanced, such that 

each topic was equally likely to be the basis for deception or truth-telling. The 

conversations were allowed to proceed as long as was needed, and were always initiated 
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by the sender. Based on their analysis, which used the LIWC computational tool 

(Pennebaker et al., 2001), Hancock and colleagues found that deceptive conversations 

compared to truthful conversations used more overall words, but fewer words per 

utterance. Deceptive speakers also used more third person pronouns (e.g., he, she, they) 

and sense words (e.g., see, touch, listen), while more question marks were used by the 

receivers of the lie.  

For the current study, we used the same corpus of deceptive conversations 

employed in Hancock et al. (2008). However, rather than identifying counts of linguistic 

properties, we were interested in the indicative themes that emerge in the senders’ 

deceptive speech relative to their truthful speech. And, while Hancock et al. (also see 

Duran et al., 2010) looked at both the sender and receiver of deception, we focus here on 

just the language of the deception. The reason for doing so is that although receivers may 

also lie (just like the senders), the receivers were not instructed to do so, and so it is more 

difficult to assess their contributions as truthful or deceptive. In total, the study includes 

130 transcripts (66 true and 66 deceptive) from 33 unique participants, with each 

transcript containing an average of 140 words (or tokens). 

Data Extraction and Validation 

As previously discussed, our goal is to merge the strengths of automated phrasal 

analysis with that of a contrastive corpus analysis approach. To this end, the Gramulator 

was used to capture qualitative content in the form of statistically relevant n-gram 

examples. We begin with the quantitative data extraction.   

The Hancock et al. (2008) texts were processed using the Gramulator, which 

automatically stores the typicals (i.e., the weighted most frequent n-grams for each 
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corpus regardless of the frequencies in the sister corpus) along with the differential n-

grams (i.e., the weighted most frequent n-grams for each corpus relative to the sister 

corpus). For present purposes we are most interested in the differentials, which are 

indicative of the TRUE and LIE corpus. Again, a “true” differential are those n-grams 

that are among the most frequent in the true corpus and are not among the most frequent 

in the lie corpus (noting that “not among the most frequent” does not necessarily mean 

absent). And for a “lie” differential, these are the n-grams that are among the most 

frequent in the lie corpus and are not among the most frequent in the true corpus. The 

reader is also asked to keep in mind that frequency here has been weighted to ensure that 

n-grams are widely distributed across texts within each corpus (see The Gramulator 

section above). In the end, the Gramulator produces a set of true differential bigrams and 

a set of lie differential bigrams (hereafter referred to as dT-grams and dL-grams, 

respectively).8  

To assess the validity of these differential sets, we used the Gramulator’s default 

normalization function to count the occurrence of dT- and dL-grams in individual texts 

while taking into account text length. This step is important because it ensures that 

subsequent analyses are not unduly influenced by differential sets that have more 

instances, or by longer texts that are more likely to contain differentials. This 

normalization process is streamlined by one of the Gramulator’s built-in modules, the 

Evaluator. The output of this module consists of two variables for each of the texts under 

evaluation, consisting of a normalized frequency count of dT- and dL-grams. Again, 

                                                
8 An analysis was also run using tri-grams. The results largely overlap with the bi-gram 

analysis; however, a few examples of tri-gram differentials are reported in the “Content-based 
Analysis” section for the purpose of providing additional support to the bi-gram identified trends. 
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normalization is based on the total number of words in the text9, and by the total overall 

number of dT- and dL-grams being processed. The final value is raised by a factor of 100 

for ease of reading. Thus, if Text 1 features 180 words, the number of dT-grams found in 

the text is 10, and there are 100 dT-grams overall, then the normalized dT-gram value for 

Text 1 is 10/100/180 * 10000 = 5.55.  

Cross-validation. In our first validation test, we are interested in the 

generalizability of the extracted dL-grams across different groups of participants that are 

lying or telling the truth. Specifically, if the dL-grams are indicative of deceptive 

language, then these dL-grams are likely to generalize to an independent group of 

deceptive participants that are tested under similar conditions. Moreover, when compared 

to an independent group of truthful participants, also similarly matched, the dL-grams are 

likely to be used to a lesser extent.  

To evaluate generalizability, we randomly divided the TRUTH and LIE corpora 

(66 texts in each corpus) into training and test sets. The training sets contained two thirds 

of all texts, or 43 texts, and the test sets contained the remaining one third, or 23 texts. 

Starting with the extraction of dL-grams, we used the Gramulator to evaluate the LIE and 

TRUTH training sets. This analysis produced 88 dL-grams. With these 88 dL-grams, we 

simply counted their normalized value, per text, in the LIE training set, the LIE test set, 

and the TRUTH test set. As a reminder, the dL-grams used here were derived from 

participants contributing to the LIE training set alone, and not from those participants 

contributing to the two test sets.   

                                                
9 The Gramulator can produce values based on type count instead of token count; 

however, the present default setting is token count, which we use throughout the study. 
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Evidence for generalizability will be provided if the dL-gram count in the LIE 

training set (in which the dL-grams were derived) is similar in number to the LIE test set, 

and importantly, compared to the LIE test set, the dL-gram count in the TRUTH test set 

is much lower. In other words, the language of deception from one group of participants 

should generalize to another group of deceivers, but not to a group of truth-tellers – even 

when the general topics being discussed are identical.    

Our results confirmed these general hypotheses. There were no statistically 

significant differences between the LIE training set data and the LIE test set data. 

However, between the two test sets (LIE and TRUTH), a t-test revealed a higher dL-gram 

occurrence for lie texts (M = 6.80, SD = 2.98) than for true texts (M = 2.61, SD = 1.95), 

t(42) = 14.96, p < .001. Both findings validate the claim that the Gramulator is extracting 

content that is indicative of deception.  

Embedded lies and truth. Having established cross-validation, another 

validation question is whether there is more “truth” in LIE texts or more “lies” in 

TRUTH texts. In Gramulator terms, we ask whether there is a greater occurrence of dT-

grams in the LIE texts compared to the occurrence of dL-grams in TRUE texts. To find 

these embeddings, it is important to remember that differential n-grams are derived by 

comparing the top half of frequent n-grams across two corpora. However, the differential 

n-grams for one corpus might still occur among the bottom half of n-grams in the 

contrasting corpus. It is the occurrence of dL-grams or dT-grams in these bottom halves 

that is most relevant for this analysis.  

We expect that the occurrence of dT-grams in LIE texts will outweigh the 

occurrence of dL-grams in TRUTH texts. As noted by Spence (2004), there is rarely a 
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clear distinction between truth and lie in the “real-world.” To lie successfully, it is often 

best to start with the truth and strategically add elements of deception. And while a large 

part of a lie must be true, no part of a truth need be a lie. This approach to deception is 

well-aligned with Gricean expectations that the truth is the default in communication 

(Grice, 1989). Even when communicators violate a conversational pact of truthfulness, 

the bulk of what is said will be grounded in truth. By doing so, appearances of 

cooperativity and quality are maintained.   

To conduct this analysis, we first evaluated all 132 texts (66 TRUE, 66 LIE) in 

the complete TRUE and LIE corpora to produce 51 dT-grams and 87 dL-grams. We then 

used a linear mixed-effects ANOVA to compare the normalized dL-gram count in TRUE 

texts with the normalized dT-gram count in LIE texts, while simultaneously controlling 

for random effects due to each participant’s contribution of multiple text types. The 

results show that there are more dT-grams in lie texts (M = 2.67, SD = 2.15) than dL-

grams in true texts (M = 1.98, SD = 2.12), F(1,130) = 3.68, p < .05. As hypothesized, 

these results indicate that the composition of deception and truth contain elements of each 

other, with more of the truth found in the language of deception. These results also hint at 

one of the reasons deception is so difficult to detect; it is shrouded in elements of 

everyday or normal language.   

Overall, in both validation studies, the quantitative analysis here suggests that the 

Gramulator extracts thematic content that is most characteristic of one corpus, relative to 

the other. The analysis also suggests that the indicative language of lies may be sufficient 

to distinguish LIE texts from TRUTH texts. And finally, we provide evidence that the 
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indicative language of truth is likely to be found in lies, at least to a greater extent than 

the language of lies can be found in truth. 

Inductive Interpretation 

Turning now to the question of what is actually said, we present a breakdown of 

the top-ranked differentials that were extracted in the previous analysis. Although we are 

interpreting data that is qualitative in nature, we bring a rigorous experimental and 

computational perspective that deviates somewhat from traditional qualitative 

procedures. We are interested in patterns that are generalizable over many randomly 

selected participants, rather than the “exceptions” that are the focus of some qualitative 

and ethnographic case studies (Miles & Huberman, 1994). The patterns themselves are 

extracted not by subjective observations, but with machine learning algorithms. It should 

also be recognized that the corpora under analysis also come from carefully controlled 

experimental studies, and that various quantitative analyses of these corpora have been 

published elsewhere in well-established, peer-reviewed journals.  

To continue with our treatment of the data, we have developed strict criteria for 

guiding our interpretations. These criteria are based on the simple notion that the 

differentials with the highest frequencies of weighted-occurrence are likely to give the 

strongest and clearest signal (i.e., diagnostic). Examination of such differentials generally 

leads to contextual clues as to where differences between the corpora lie. From these 

differences, the objective is to identify thematic trends and pragmatic elements that 

capture the underlying sentiment of the data. For these trends to be plausible, they need to 

be based on theory and to include statistically distinct differentials. Each of these criteria 
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are expanded upon in the subsequent section, but first we give special consideration to 

the notion of “statistical distinctiveness.”  

For a differential to be a candidate for interpretation, it must statistically occur 

more often in one corpus than in another. To ensure this is the case, theoretically 

interesting differentials are evaluated using a Fisher’s Exact test. The process can be 

exemplified as follows: a corpus (e.g., LIE) contains the target n-gram of “going to” for 9 

instances across 8 of a total of 66 texts. The sister corpus (here, TRUTH) contains the 

target n-gram of “going to” for 4 instances across 2 of a total of 66 texts. Using Fisher’s 

Exact, the differences between these two counts is deemed not significant (p =.096) and 

would not be used for further interpretation. In reporting these tests throughout the paper, 

we have translated the operations into the format (9, 8:66; 4, 2:66, p = .096), where the 

first three numbers correspond to the corpus of interest (LIE), and the second three to the 

comparative corpus (TRUTH).  

Distancing by focus on the “other.”  In previous research examining the 

occurrence of personal pronouns as a marker of deception, it is assumed that deceivers 

use personal pronouns to avoid personal ownership of the deceptive content (Chung & 

Pennebaker, 2007). With more 2nd and 3rd person personal pronouns, the greater the 

chance that co-conspirators are being introduced into the deceptive narrative, thereby 

mitigating the deceivers own personal culpability. Likewise, by minimizing the use of 1st 

person personal pronouns, the deceiver can weaken any direct association to the 

deceptive content (Anolli, Balconi, & Ciceri, 2003). While such hypotheses are plausible, 

without further exploration of the larger context, any explanation remains highly 
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speculative. What is needed is grounded interpretation that relates personal pronouns to 

their context of use. 

Here, the differentials are you, you feel and you can were featured more regularly 

in deceptive language compared to the language of truth. One or more of these 

differentials occurred across 27% of the lie texts, but only within 12% of the truth texts 

(26, 18:66; 8, 8:66, p = .048). In Sentences 1-12 below, we highlight representative 

contexts in which you-based differentials occurred.10 A quick glance at these sentence 

fragments reveals a distinct pattern: 2nd person personal pronouns are primarily used to 

elicit information from the conversational partner. Thus, the use of personal pronouns, 

when evaluated in context, co-occurs with a unique type of “other-oriented” question-

asking behavior that is not seen in truthful exchanges. For example, in deceptive texts, 21 

of 26 instances of you-based differentials were involved in getting the partner to talk 

more about themselves, but only 3 of 8 instances in truthful texts were used for the same 

purposes. And it is not that deceivers are merely avoiding opportunities to communicate, 

as would be the case if they were minimizing their odds of self-incrimination. In a 

previous analysis on this corpus, Duran et al. (2010) found that participants use more 

words overall when they are told to lie. What might be happening is that deceivers are 

attempting to establish a sense of rapport with their partner, and by doing so, attempting 

to appear more believable – a hypothesis aligned with the Interpersonal Deception 

Theory of Buller and Burgoon (1996). 

 

                                                
10 Although the contexts here are representative of the data as a whole, there were also a 

few examples that did not clearly fit with the overall interpretation. These are treated as outliers 
for present purposes.  
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1. if they are meant to be, you can always get back together in the end, right? 

2. you and your mom are really close? do you feel comfortable about telling  

her everything? 

3. why do you feel "not being concise" was a big mistake? 

4. so are you fluent in Thai? 

5. why? where are you going there? a major city? 

6. where are you from? wow, never talked to a miner before. 

7. like, are you more responsible? 

8. what are you going to do differently? next time you talk... 

9. are you in communications? did you hurt yourself? 

10. are you responsible for any organizations here at... 

11. where, are you ok? 

12. wow. are you a biology major or chemistry major? 

Biases in the narrative elements of setting and subject. The conversations in 

this current study were open-ended, allowing for a great deal of spontaneity. The 

narratives generated, both in the deceptive and truthful conditions, represented personal 

anecdotes that ranged widely in where they were set and who they were about. Indeed, 

for truthful narratives, there was no particular preference for the where and who being 

discussed, as might be expected given the freedom of the topics. However, for the 

deceptive narratives, there were indeed observable preferences for the where and who.  

In terms of a location bias, there was a statistically significant tendency to situate 

the n-gram high school in deceptive texts. This differential was found in 15% of lie texts, 

compared to just 3% in true texts (14, 10:66; 2, 2:66, p = .030; see example sentences 1-5 
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below). Given that the majority of participants were a few years removed from high 

school, it appears that when being deceptive, participants return to familiar territory. 

Here, this recent event is better represented in memory than a more temporally distant 

event, and might be distorted with greater control. However, does this mean that 

deceptive content should always be based on the most recent events? This is problematic 

because the most recent events might also include a shared temporospatial setting with 

the conversational partner, thus making deception more easily detected. It seems that lies 

situated in high school strike a middle ground. These lies are removed from any possible 

shared experience with the conversational partner, but are also not too temporally distant 

that the truth is forgotten.    

1. ...was just a very very messed up situation! high school years! oh yes, we  

all regret some stuff from... 

2. ...like there were a lot of petty fights in high school over nothing at all! 

3. ...impact on my life, it would probably be my high school hockey coach... 

4. ...i've had to do was to break up with my high school boyfriend. 

5. did you ever forge letters in high school so you could skip a class? haha. 

In addition to locational biases in situating deception, there also appears to be a 

bias in who is mentioned in deceptive narratives. When performing deception, the 

prominent subject-oriented differentials that appear include my boyfriend (9, 5:66; 0, 

0:66, p = .058; see example sentences 1-5 below) and my friend/s (14, 11:66; 5, 3:66, p = 

.045; see example sentence 6-12 below). One or more of these differentials occurred in 

24.2% of the lie texts, and just in 4.5% of the truth texts (23, 16:66; 5, 3:66, p = .002; see 

example sentences 1-5 below). 
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1. yeah. broke up with my boyfriend of three years. yikes. 

2. i live in the same building as my boyfriend. it’s a great feeling. 

3. i'd have to say my boyfriend is also the most significant person in my... 

4. but i spend most of my time with my boyfriend. 

5. that's good. my boyfriend and i are in entirely different majors. 

6. well my friend back home also has a drug problem. 

7. cool. my friend went there over christmas break. 

8. ...took off on a weekend trip with my friend and basically the mice... 

9. ...and thought i put my friends up to it, which is stupid, so he fired... 

10. ...the wrong house looking for my friend's party. it was embarrassing 

11. ...mistake was forgetting to call my friend on her birthday. 

12. because my friend worked there so that made it a little better. 

The greater use of the differential my boyfriend was not found for the reciprocal 

relationship, my girlfriend, despite there being no statistically significant differences in 

the number of male and female participants. These results are suggestive that females 

may be more comfortable lying about boyfriends than males lying about girlfriends. 

Clearly, the evidence here cannot put forward such a strong claim, but the direction of 

results certainly called for further investigation.  

There was also a greater use of the differential friend/s in deception texts, but 

notably no difference between the truth and deceptive narratives with mentions of best 

friend/s (7, 5:66; 5, 4:66, p = 1.00). Furthermore, when best friend/s is used in the 

deceptive texts, it is in the context of high school (see example sentences 13-15 below), 

the location where deception might be best situated in order to avoid detection.  
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13. ...was to break up with my best friend’s boyfriend for her while in high  

school...   

14. made recently is that i forgot about my best friend from high school's  

15. birthday. like my best friend in the entire world! 

16. ...a friend who was suicidal. probably my best friend in high school. 

It seems that mentions of friend are favored in deceptive texts over mentions of 

close personal relationships (e.g., best friend). Furthermore, when close personal 

relationships were part of the conversation; for example, referring to my mother/my mom, 

or my dad/my father, there was a trend (although not statistically significant) for these 

terms to occur more frequently in truthful texts (25.8% overall) compared to lie texts 

(16.7%). What might be likely, is that when formulating a lie, deceivers distance the lie 

from close friends and family, and opt to use more general, and perhaps less emotionally 

meaningful relationships (in which boyfriends are seemingly included). Similar behavior 

is evident in other work that has documented who lies are told to, with fewer lies being 

told to those who one feels closest (DePaulo & Kashy, 1998). 
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Narrative alteration by negation. Phrases of uncertainty were another set of 

frequently used differentials that occurred more often in deceptive texts. Differentials 

such as  i didn't, don't think, and don't know, were present at least once in 24% of the lie 

texts, but in only 7% of the true texts (23, 16:66; 5, 5:66, p = .016). In previous research, 

the use of “thinking” terms (e.g., “think,” “know”), has been hypothesized to occur more 

in deceptive language, and might be a byproduct of internally generated fabrications 

(Johnson & Raye, 1981; Vrij et al., 2000). Conversely, the use of negation (e.g., 

specifying what is and what is not) is expected to occur less frequently because it is more 

cognitively challenging to generate and maintain in dialogue (Hancock et al., 2008). 

However, an examination of context, via an n-gram analysis, shows that thinking and 

negation terms often occur together. This relationship would not have been identified if 

our analysis was limited to single words. Thus, we are able to capture a relationship 

between thinking and negation terms that points to a tendency for deceivers to avoid 

commitment to the deceptive narrative (see example sentences 1-4 below).  

1. hmm. don't think i have. or, it doesn't stick out in my mind. 

2. yeah. i don't know my personal stance on this---but i feel... 

3. i don't know what to do with it. i don't make many... 

4. see, i don't know. i would like to think talking things out... 

Moreover, more negation in deceptive texts, as evidenced here with the greater 

use of i didn’t (see example sentences 5-8 below), contradicts the hypothesis that 

negation will be avoided because of increased cognitive difficulty. Another account is 

needed as to why negation is employed more frequently. For example, it might be the 

case that negation makes the task of lying easier by simply allowing one to negate one 
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aspect of a true event to make it false, allowing other details from the true event to be 

used. In Sentence 5 below, the fact that the deceiver did not want to live with “her” could 

be an example of negated truth, where the deceiver indeed did live with “her.” By 

changing just one aspect of the narrative, true details about the person can be 

communicated. Although much follow-up work is required to confirm this interpretation, 

the more fundamental point is that different forms of negation can occur more or less 

frequently, and that by doing linguistic analysis that lumps all forms together (as in 

having a composite measure for “number of negated terms”), any interpretation of the 

results is likely to have meaningful exceptions that are not considered.  

5. the hard thing was telling her that i didn't want to live with her. she took it  

ok, 

6. i didn't tell them about the incidents. i just told them... 

7. ...felt the same way. i didn’t really speak to her afterwards. 

8. ...so i didn't make it, but it was really embarrassing. 

Temporal and causal sequencing. During more elaborate deceptive narratives, 

involving multiple event sequences, there is evidence that deceivers organize events in 

linear fashion, each unfolding in chronological order. According to Criteria-Based 

Content Analysis, a technique often used in forensics to evaluate verbal testimony, 

adherence to linear structure is easier to generate and maintain in memory, particularly 

when the lie is prepared in advance (Vrij, 2005). Related to this temporal sequencing is a 

tendency for deceivers to directly state the causal sequence for event and belief states, 

particularly those that directly involve the critical falsification. Deceivers do so to infuse 
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confidence into their story, providing enough detail for plausibility, but also structured in 

such a way to be easily encoded and remembered by the deceiver.   

In the current automated analysis, we found evidence for both these 

organizational tendencies. The deceptive narratives were more likely to contain the 

differential and then (example sentences 1-5 below), a transitional phrase that marks a 

chronological continuation of an event (Moens & Steedman, 1988) and the differentials 

because i/my/we/the (example sentences 6-10 below), causal phrases that clearly specify 

the reasons for events. Overall, these critical differentials occurred in 41% of the lie texts 

and only in 22% of the truth texts, a difference that was statistically significant (40, 

27:66; 21, 15:66, p = .039).  

1. ...business it was soooooooo boring. i hated it. and then i had another job,  

a camp counselor. 

2. ...people burn popcorn and then we all have to leave the building. 

3. but i would watch kids all day and then work till closing at the ice cream  

place. 

4. ...it just completely slipped my mind. and then after the prelim my girls... 

5. ...and she was not cute.  and then my mom asked me about it. 

6. turned out to be a huge mistake because the grad students were  

following... 

7. and he's lucky because the missionaries there are taking care of 

8. mine sucked because my boss told me i had to make sure each day... 
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9. i had a pretty high position because i had been working there for a few  

summers. 

10. i couldn't do much for him, because he was gay and in the closet. 

Brief Synopsis 

The deceptive narratives were ones where certain locations and types of people 

were likely to be mentioned, and done so with chronological sequencing of events and 

definitive causal statements. There was also some hesitation in committing to personal 

involvement, and a greater tendency to redirect the focus of the conversation to the 

conversational partner.   

Study 2: Persuasive Argumentation 

The number of possible types of deception is virtually limitless. From warping the 

truth to omitting critical details, each type of deception has an associated difficulty of 

execution. But perhaps the lies that are most difficult to tell are those that require the 

rejection of personal beliefs and values. As anyone that has ever been in a heated political 

debate can testify, personal beliefs are often intertwined with notions of personal identity, 

and are strongly resistant to change (Noonan, 2003). And for this reason, the “Devil’s 

Advocate” approach has been recommended as one of the best ways for exposing hidden 

beliefs (Leal, Vrij, Mann, & Fisher, 2010). It is in this scenario that human judges 

achieve their most reliable and stable detection rates. When people must argue for a 

belief they do not truly believe, it is particularly difficult to maintain the same type of 

language as they might use when telling the truth.   

In our second study, we extend the Gramulator to this more sensitive domain of 

deception. Our interest here is to test the robustness of the Gramulator and to provide 
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further insight into the language of truthful and non-truthful representations of beliefs. 

We again reanalyze and expand upon an existing corpus by extracting differential 

bigrams, this time using essays and transcripts on abortion attitudes, published in 

Newman et al. (2003). In that study, participants were asked to argue for a pro-choice and 

pro-life position on abortion, either in a written or oral form. Prior to providing these 

arguments, the participants first indicated which of the two positions they favored. In this 

way, the researchers were better able to distinguish between TRUE and LIE 

contributions. To ensure that the participants were as persuasive as possible, they were 

told that their arguments would be read by naïve judges that would attempt to guess their 

true views. Participants were given 5 minutes to provide a response. The corpus consists 

of 352 texts from 176 unique participants (81 men, 95 women). Of these 176 participants, 

50 identified themselves as pro-life (24 men, 26 women), and 126 identified themselves 

as pro-choice (57 men, 69 women). Texts were an average of 195 words in length. 

Although the Newman et al. (2003) deceptive context is clearly different from the earlier 

conversational corpus, the use of the Gramulator and method of evaluation are similar. 

As with our analysis of the Hancock et al. corpus in Study 1, we first compare TRUE 

pro-choice and pro-life arguments with LIE pro-choice and pro-life arguments. Then, for 

purposes of a cross-validation and inductive interpretation, we hone in on the language of 

TRUE pro-lifers and LIE pro-choicers.11 In these corpora, the topic (pro-life) is held 

                                                
 11 The focus on “pro-life” as a topic was to provide a parsimonious demonstration of the 
general differences that exists between deception and truth, and to do so in a domain that 
sufficiently varies from Study 1. Although the inclusion of “pro-choice” as a topic would have 
also met these general goals, it could also be considered redundant. Moreover, for analytical 
purposes, there are more unique participants deceptively arguing for a pro-life position than a 
pro-choice position. Thus, there is greater variation in the deceptive language, thus making the 
results of pro-life more likely to be generalizable. 
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constant between the truth and deception, ensuring that possible language differences are 

the result of the deception manipulation, and not confounded with topic shifts.  

Data Extraction and Validation 

By contrasting the TRUTH and LIE corpora using the Gramulator, we are able to 

extract bigrams that are indicative of one corpus but not of the sister corpus (e.g., dL-

grams and dT-grams). Following the same series of analyses as Study 1, we first test 

whether the dL-grams used by one group of deceptive participants also occurs in a 

similarly matched group of participants. And in the second analysis, we isolate the 

language that is indicative of each of the two sister corpora (but, by definition, not typical 

of both), to determine how much of the lie information is embedded in truth texts, and 

how much of the true information is embedded in lie texts.  

Cross-validation. In this study, we identify the dL-grams used by pro-choicers 

deceptively arguing for a pro-life position (i.e., “fake pro-lifers”) and evaluate whether 

these dL-grams also occur in a separate group of fake pro-lifers. In addition, because the 

dataset includes pro-life arguments from real pro-lifers, we can assess how convincing 

the fakers are at lying. Presumably, to be convincing, a good liar should use the same 

language as someone telling the truth. Thus, for the deception to be successful (i.e., 

undetectable), the language of the fake pro-lifer should also be found in the language of a 

real pro-lifer. If they are not similar, then we have strong support that fake pro-lifers are 

unconvincing, and importantly, the Gramulator is detecting qualitative information that 

distinguishes deception from truth.  

To begin, we randomly selected two-thirds of fake pro-lifers deceptive 

essays/transcripts to form a LIE training set of 83 texts (corresponding to 83 participants) 
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and the remaining third as a LIE test set. Using the Gramulator, the LIE training set was 

contrasted against their honest (pro-choice) arguments. At the end of analysis, 60 dL-

grams were produced. Next, using the Gramulator’s Evaluator module, we determined 

how many of the 60 dL-grams occurred in a) the original LIE training set, b) the LIE test 

set of 43 fake pro-lifers, and c) a randomly selected TRUTH test set of 43 real pro-lifers.   

In the first analysis, comparing the LIE training and test sets, the occurrence of 

dL-grams did not differ for deceptive writers. As expected, the thematic content of one 

group of deceivers generalized to a separate group of deceivers. Next, in the comparison 

between the LIE and TRUTH test sets (i.e., fake and real pro-life arguments), a t-test 

revealed a higher dL-gram count in lie texts (M = 6.79, SD = 4.27) than in true texts (M = 

4.19, SD = 2.62), t(68) = 3.36, p < .01. This result suggests that the test sets contained 

different qualitative information, even though both test sets were apparent arguments for 

the same pro-life position. The dL-grams, or what we are calling the indicative language 

of deception, appear to differentiate lies from truth.   

Embedded lies and truth. Next, we evaluate how much of the indicative 

language of truth occurs in LIE texts, and how much of the indicative language of lies 

occurs in TRUTH texts. To do so, we first compare the entire LIE corpus (e.g., fake pro-

lifers and fake pro-choicers) with the entire TRUTH corpus (e.g., real pro-lifers with real 

pro-choicers) to produce 45 dT-grams and 39 dL-grams. All 352 texts were then 

processed through the Gramulator’s Evaluator module for values of dT-grams and dL-

grams, resulting in the output of two variables for each text. These variables were 

normalized as in Study 1, thus controlling for differences due to length effects and the 

greater number of dT-gram targets (45 vs. 39). 
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Again, we confirm the general finding that the occurrence of dT-grams in LIE 

texts is higher (M = 2.27, SD = 2.60) than the occurrence of dL-grams in TRUTH texts 

(M = 1.79, SD = 2.14), F(1, 350) = 3.96, p < 0.05. Thus, we have further evidence to 

support the finding that participants employ more truth in deceptive statements than 

deception in truthful statements, suggesting that deceptive elements are embedded in 

what is mostly normal language.  

Overall, the results suggest that the Gramulator is identifying thematic content 

that is more indicative of one corpus relative to another, given a particular context of 

communication. There is also no complete distinction between lies and truth, rather, 

elements of truthfulness pervade deception. And finally, despite a deceiver’s goal to use 

“honest” language, this goal appears to fall short.   

Inductive Interpretation 

In the previous section, we confirmed that the Gramulator-produced differentials 

do indeed distinguish text types that, on the surface, are identical in topic, but vary 

substantially on some deeper psychological level.  Again, the goal is to examine the 

differentials in greater detail to potentially reveal something new about the mental states 

of those that preserve or violate the truth. Thus, we provide an interpretation that is 

motivated by theory and grounded in a rigorous computational and statistical approach. 

And, unlike previous automated linguistic analysis of deception, the differentials are 

content-retrievable rather than numerical in nature. To reiterate our previous points, 

“hidden” intentions are not merely confined to composite linguistic measures of quantity, 

complexity, redundancy, etc., but can be examined in terms of the content that is actually 

expressed. In what follows, we highlight critical sets of differentials and their underlying 
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themes, and end with a discussion of how these sets support and provide general insights 

into the cognitive states of deceivers and truth-tellers.  

Distancing by equivocating. For the deceivers, the struggle to articulate a 

position is marked by increased differentials like um and uh, as well as phrases of 

equivocation like I mean (487, 101:126; 140, 30:50, p = .008). These differentials 

appeared in 80% of the deceptive texts compared to 60% of the true texts, with the 

overall rate of usage being over three times greater in deceptive texts than in true texts 

(487 versus 140). The use of I mean appears with common reformulations and hedges 

(see examples 1 to 6 below). Such usage may reflect relatively poor access to the topic 

matter that fake pro-lifers are trying to express, and may also explain why the examples 

appear more like an appeal to pathos than a presentation of an argument. This conclusion 

is supported by several other similar discourse markers, each of which appears as 

differentials: um I, that uh, that um, and uh, um it.  

1. …kill a person, especially inside of you, i mean, i mean the person is  

alive…  

2. … just have to look at it and it's wrong. I mean, abortion is wrong no  

matter…  

3. …therefore, it, it, it's murder. i mean, you, the united states government… 

4. …I mean, life, what a beautiful choice, man. i mean, it's a baby 

5. …and, i mean, it's just, it's a horrible thing to do… 

6. …wrong so it is wrong. uh, there's just, I mean, it's morally wrong 

The use of um and uh are generally used to signal a delay in communication, with 

such delays arising from problems in planning, retrieving a word or idea from memory, 
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or hesitation due to uncertainty about the appropriateness of what is being said (Brennan 

& Williams, 1995; Clark & Fox Tree, 2002; Goodwin & Goodwin, 1986; Levelt, 1989). 

Nevertheless, all interpretations converge on the general notion that deception places an 

increased burden on processing. These demands are also reflected in the use of I mean. 

Rather than signaling a delay, I mean is a prototypical editing expression that indicates a 

correction to, or justification of, the truth-value of some previous statement (Clark, 1996; 

Goffman, 1981). Given the uncertainty conveyed by um and uh, it is likely that deceivers 

feel compelled to use I mean as an attempt to clarify what they know to be a tenuous 

argument.  These verbal cues also appear unintentional, unlike previous work that has 

found deceivers strategically minimize such cues to fend off the suspicion of others 

(Arciuli, Mallard, & Villar, 2010). It is possible that the emotional gravity of the present 

topic, i.e., whether abortion should or should not be allowed, limits strategic control that 

would normally be employed to avert suspicion.   

Distancing by appealing to external agency. The differentials it should, they 

should, and  shouldn’t be occurred in 45% of deceptive texts compared to 28% in true 

texts (89, 57:126, 15, 14:50, p = .041). The question naturally arises: what then are the 

faker pro-lifers referring to when they use should-based differentials? By examining 

additional high-occurring differentials in deceptive language, the differential to kill is 

predominantly situated (30, 21:126; 2, 2:50, p = .025), as well as the presence of six 

additional differentials that correspond to “legal agency:” the law, made legal, the bible, 

be allowed, allowed to, the government.  (88, 56:126; 24, 13:50; p = .027). Given this 

relationship, the underlying theme that appears to be most characteristic of fake pro-life 

arguments is legal agency should prevent murder (see examples 1 to 7 below).  



   

 146 

1. …shouldn't be the government's decision to kill… 

2. …we are not allowed to kill in our society… 

3. …should be tried as if they had attempted to kill a full grown adult… 

4. …no one should have the right to kill another defenseless human being 

5. …people should not be allowed to murder a unborn child 

6. …it should not be guaranteed by law 

7. …they should be made legal in all states 

When comparing these false arguments to real pro-life arguments, clear 

differences are manifest. Rather than an appeal to law (as an external force) and murder, 

real pro-lifers converge on more personal themes that people should be responsible for 

their actions and the child should be given a chance/opportunity (see examples 1 to 5 

below). It is important to note that, as with fake pro-lifers, the use of “should” is a focal 

point in dictating obligations and responsibilities of the moral argument. But here, 

“should” is embedded in it’s own set of should-based differentials; for example, the 

bigram people should (2, 2:126; 5, 4:50, p = .054) and slight variants of the trigram 

should be given (5, 34; 1, 83: p = .008); be given: (7, 34; 4, 83: p = .014); given the: (6, 

34; 4, 83: p = .061); and be given the: (4, 34; 2, 83: p = .058). But unlike the fake pro-

lifers, the real pro-lifers are focused more on the right, the opportunity, the chance, a fair 

chance, and every opportunity (2, 2:126; 8, 7:50, p = .002) that one should be given, as 

well as the importance of responsible/responsibility for their [own] actions (3, 2:126; 4, 

4:50, p = .055) (see examples 1 to 9 below).  

 

 



   

 147 

1. …people should be responsible for their actions… 

2. …morally and ethically wrong and I feel that people should take  

responsibilities for...   

3. People should be more careful when having sex to prevent… 

4. …take responsibility for their own action. It is not the baby's fault… 

5. the child should be given the chance to live a life 

6. the baby is innocent and should be given every opportunity… to have a happy  

and healthy life 

7. …the child in the in the mother should be given that right 

8. …be given every opportunity possible to have a happy and healthy life.   

9. the child should be given the chance to live a life that god intended…  

This Gramulator analysis suggests that deceivers tend to depersonalize their 

arguments by appealing to external standards of right and wrong (e.g., “the law”), 

whereas truth-tellers favor internal notions of moral imperatives. This external/personal 

divide is similar to the distancing strategies often attributed to deceivers (Bavelas, Black, 

Chovil, & Mullett, 1990; Buller & Burgoon, 1996; Newman et al., 1900). Much like in 

the earlier conversational corpora where deceivers find separation by situating their lies 

in remote time and space, distance in false arguments is achieved by referring to the 

standards of others, rather than one’s own sense of moral correctness. Thus, the argument 

is situated in the realm of what “others” generally think, rather than in what “I” 

personally feel. This finding is in line with deceivers’ reticence to give clear statements 

about their own opinions, and a tendency to refer to others and their actions in 

nonspecific terms (Burgoon et al., 1996). Even in our own data, deceivers used 
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differentials like they should and the fetus rather than the more direct differentials people 

should and a fetus that were used by the truth-tellers.  

Brief Synopsis 

Combining the results of all analyses, the derived rhetoric appears to be one 

where fake pro-lifers (i.e., deceivers) struggle to articulate their position, and ultimately 

position their argument in terms of formal law. Conversely, true pro-lifers are less likely 

to appeal to external entities to justify their position. Instead, they rely on individual 

rights and personal responsibilities.   

What is clear from this automated phrasal analysis and inductive interpretation is 

that it is difficult to adopt the true perspective of another when it violates one’s own 

intrinsic beliefs. Major rifts were found in the content of deceptive and true 

essays/transcripts, even when the deceivers were attempting to adopt the opinion of 

actual pro-lifers.  

Discussion 

In this paper, we analyzed the distinctive phrases of deceptive and truthful 

discourse, doing so with a computational tool that extracts relevant text sequences based 

on their likelihood of appearing in one corpus relative to another. We found unique 

narrative elements used by deceivers in a domain where two strangers were simply 

getting to know each other; and in a second study, we found unique rhetorical elements in 

essays/transcripts where participants were asked to violate their true beliefs on abortion.  

In each set, the themes that emerged were supported by, and supplemented, existing 

theories of deception.  
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It is important to note that the themes for both studies were largely unique to each 

pragmatic domain. In the conversational narratives, the distinction between deception and 

truth was split along an event dimension, where the location, characters, and 

temporal/causal structure of events was central. Also, given the conversational nature of 

the interactions, unique strategies to appear more convincing, deter suspicion, or ease the 

cognitive burdens of deception, could be employed. Conversely, for the persuasive 

arguments, the focus was on rhetorical style, not on event narration. Thus, the distinction 

between deception and truth was by what criteria the argument could be best justified, 

and in the current study, it appeared to be one of external versus personal obligation.  

These findings highlight the importance of evaluating linguistic behavior within 

targeted domains. Given the variability and flexibility of language, the quest to find 

universal linguistic patterns might be an exasperating venture, particularly with a 

behavior like deception that is employed for seemingly innumerable reasons. However, 

as more domains are evaluated, meta-themes might emerge that bring researchers closer 

to identifying near universals. One such meta-theme is the use of distancing strategies, 

mentioned earlier with the discussion of true and fake pro-lifers. In that study, deceivers 

distanced themselves from the content of their lies by giving externally-situated 

justification, as well as exhibiting greater equivocation. And likewise, with the 

conversational narratives, deceivers were more likely to emotionally distance by avoiding 

mention of people presumably closest to them (best friends and family), and by routinely 

reorienting the focus of the conversation to their conversational partner.  If this general 

behavior holds, it might also suggest fundamental cognitive or affective constraints that 

generally influence deceptive behavior.  
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Another major contribution of this research is the development of a purpose built 

natural language processing tool. With this tool, the Gramulator, we were able to detect 

hidden chunks of content in the form of statistically relevant n-grams that we call 

differentials. The Gramulator has many of the advantages of previous computational 

analysis of deception. It uses computationally light algorithms of pattern extraction to 

bypass subjective selection that might compromise the identification of stable and 

reliable units of analysis. The resulting extracted units are submitted to standard 

inferential statistical tests, such as those used in these studies (linear mixed-effects 

ANOVA, paired t-tests). In doing so, we effectively integrate phrasal analysis with the 

rigorous control of a computational approach.  

Given the importance of understanding the “what” being discussed; that is, the 

semantic content of the discourse, a great deal of emphasis within the current work has 

been on understanding linguistic features in context. In other computational approaches, 

linguistic features are typically reported as being a certain percentage of some linguistic 

set. Often it is unclear whether percentages are distributed across multiple texts in each 

corpus, or are confined to a few idiosyncratic instances. For example, if tracking the use 

of “ums” and “uhs,” it might be the case that one or two texts in Corpus A are laden with 

um/uh fillers while elsewhere in Corpus A or Corpus B they rarely occur. To solve this 

problem, we employ an analysis that gives a weighted advantage to content features that 

are distributed over multiple texts within a corpus, and then apply a follow-up statistical 

test (i.e., Fisher’s exact) to ensure that the appearance of any feature in one corpus is 

greater than its appearance in a comparison corpus. As further assurance that the 

evaluated language is being used similarly in multiple texts, the features are interpreted 
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by explicitly evaluating all contexts in which the features appear. We look for consistent 

trends, but also polysemous meanings that should be taken into account. Indeed, in the 

conversational narratives of Study 1, the use of negation mapped onto a construct of 

noncommittal and a construct of event negation. Such graded differences would be nearly 

impossible to isolate with computational approaches that lump together all instances of a 

linguistic feature into a single percentage-based measure. 

In comparing the Gramulator tool with other approaches, there are also potential 

limitations on our end. For example, deceivers might be quite good at monitoring and 

controlling the content-based “what,” thus making our approach easier to dupe when 

deceivers know what themes to avoid. On the other hand, for analyses that measure more 

stylistic and abstract features, it has been argued that such features are more difficult to 

control, thereby making them better candidates for deception detection (Chung & 

Pennebaker, 2007; Newman et al., 2005). We do not deny that such feature extraction has 

a great deal of potential, but we argue that the thematic “what” also has the potential to 

capture involuntary mental states. Further research is needed to determine if abstract 

features are indeed resistant to duping, and whether this resistance is superior to the 

phrasal analysis approach used here.  

Although the current studies offer new insight into many features of truthful and 

deceptive discourse, a considerable amount of development lies ahead. For instance, uni-

grams (1-word units) and quad-grads (4 word units) might also be assessed. In addition, 

the Gramulator tool has recently been modified to assess off-grams: sequences such as 

word + [any word] + word or even extended to word + [any word + any word] + word. 

And we are also implementing a parser with the tool so that n-grams can be specified for 
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part of speech (POS) attributes. Off-gram analysis and POS attribute options open up 

numerous new avenues for investigation for Gramulator research. And it should also be 

acknowledged that although the Gramulator might come to offer numerous forms of n-

gram analyses, that n-grams are not the only sequences of text that may reveal 

characteristic patterns of interest relative to registers. For example, the many various 

cohesion analyses generated from tools such as Coh-Metrix might yet be modified to 

highlight which cohesion patterns are contributing most to the final output. We also 

acknowledge that our interpretations of the differential n-gram arrays produced by the 

Gramulator are in need of automation. To this end, we are devising a flexible latent 

semantic analysis (Landauer et al., 2007) module that is designed to cluster the n-gram 

differential output. Clearly, a great deal is still in development; however, we argue that 

the results of the current studies offer compelling evidence that an automated n-gram 

analysis can make a significant contribution to textual assessment and perhaps to better 

revealing how participants represent truthful and deceptive representations of their 

beliefs. 
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Chapter 4: Conclusion 

In this dissertation, I presented a comprehensive examination of the nonverbal and 

verbal signatures of low-level, fast-acting, and often-unintended cues that emerge during 

the course of deceptive responding. These cues were defined in terms of the cognitive 

processes involved when one must act in discordance with their knowledge of the truth. 

In the first section exploring nonverbal signatures, these processes were situated within 

an action dynamics framework, allowing an in-depth exploration of the competition 

involved when trying to resolve what is known to be true with what is intended to be 

false. Although this competition occurs over very short timescales, I was able to capture 

complex patterns by examining arm movements while participants responded falsely or 

truthfully to questions requiring a simple “no” or “yes” response. To answer, participants 

either navigated a Nintendo Wiimote-controller to “NO/YES” regions on a large 

projector screen (Study 1a) or a computer-mouse to “NO/YES” regions displayed on their 

personal computers (Studies 1b, 2a, 2b). Overall, trajectory analyses of the fine-grained 

arm movements show increased complexity in false responding over truthful responding, 

with the greatest difference in false “yes” answers. These motor movements also reveal 

greater strength of competition during the act of false responding, thereby extending 

traditional response time measures that capture latent competition alone.  

 Moreover, specific patterns of response time effects were identified as a result of 

varying the task-based cognitive demands associated with the content and manner in 

which questions were asked, as well as varying when false or true response prompts were 

presented. In Study 1b (which was a replication of Study 1a, using computer-mouse 

movements instead of Wiimote movements), the response prompts were presented with 
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the final word of a question - questions whose content probed autobiographical 

knowledge. Conversely, in Study 2a, response prompts were presented with the initial 

word of an autobiographical question. And in Study 2b, the response prompts were again 

presented immediately at the final word of a question, but with questions now probing 

general semantic knowledge. These particular task demands were chosen to compare 

modulation of response competition, when participants can or cannot prepare for a false 

or true response (Study 1b vs. Study 2a), and when participants are asked questions 

involving autobiographical or semantic-based knowledge (Study 1b vs. Study 2b). 

In the first of these two comparisons, it was found that participants who could 

anticipate how to respond (falsely or truthfully) experienced less response competition 

for true responses, but increased competition for false responses. The pattern of 

movements behind these responses, and the resolution of response competition over time, 

suggests that a “true prompt” decreases the bias to indiscriminately say “yes” when asked 

to tell the truth, but a “false prompt” increases a tendency to deny information, therefore 

making false responses that require a “yes” answer particularly difficult. In the second 

comparison, it was found that participants who responded to questions that probed 

semantic-based knowledge generally experienced less response competition for true and 

false responses. Presumably, falsifying information that is personal in nature is more 

difficult because this information tends to be more salient and readily believed, therefore 

making it harder to falsify. Across all studies, these results suggest that deception, 

operating under a variety of contexts, is uniquely detectable when action is allowed to 

covary with thought. 
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 Turning now to the second major section, the focus is on the verbal signatures of 

deception. The words people use and the way they use them can reveal a great deal about 

their mental states when they attempt to deceive. The challenge for researchers is how to 

reliably distinguish the linguistic features that characterize these hidden states. In the first 

of two studies, I used a natural language processing tool called Coh-Metrix to evaluate 

deceptive and truthful conversations that occurred within a context of computer-mediated 

communication. Coh-Metrix is unique in that it tracks linguistic features based on 

cognitive and social factors that are hypothesized to influence deception. The results from 

Coh-Metrix were compared to linguistic features reported in previous independent 

research, which used a natural language processing tool called LIWC. The comparison 

revealed converging and contrasting alignment for several linguistic features and 

established new insights on deceptive language and its use in conversation.  

 In the final analysis, I conducted a similar natural language processing study as 

before, but now with a new tool called the Gramulator. However, there are notable 

differences that help provide a more comprehensive and complimentary linguistic 

analysis. The Gramulator uses statistical algorithms to extract snippets of text that are 

more likely to be used under one set of task conditions than in another. In Study 1, the 

task involved simple conversations amongst two strangers who were getting to know 

each other; in Study 2, the task involved participants arguing for a highly charged 

personal belief. In both studies, the manipulation of task instructions required participants 

to sometimes tell the truth and to sometimes lie. The resulting “snippets” of phrasal 

content found for each study, and for each condition (truth and lie), were then used to 

build an inductive interpretation of the psychological processes represented by the 
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linguistic output. And unlike many other automatic natural language processing studies, 

these interpretations relied on how the output was used in its original context of use.  
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APPENDICES 
 

Appendix A. Question stimuli with the stem Have you ever… and 120 autobiographical 
format completions. 
 
1) Have you ever been…  
…parachuting? …backpacking? …bowling? …canoeing? …hungover? …mugged? 
...married? …quarantined? 
 
2) Have you ever been to… 
…Disneyland? …Europe? …Hawaii? …a zoo? …a park? …a supermarket? …a 
restaurant? …a circus? …Asia? …an ER? 
 
3) Have you ever been on…  
…TV? …an elephant? …a camel? …a horse? …a motorcycle? …the radio? 
...medication? …a cruise? 
 
4) Have you ever eaten…  
…buffalo? …octopus? …insects? …spaghetti? …a hamburger? …breakfast? 
…artichokes? …apricots? …cheese? 
 
5) Have you ever gone…  
…skiing? …surfing? …fishing? …hunting? …sailing? … snowboarding? …paragliding? 
 
6) Have you ever made…  
…cheesecake? …gumbo? …sushi? …toast? …cookies? …a dress? …a scrapbook? …a 
website? …a joke? 
 
7) Have you ever slept…  
in a cave? … in a tent? …on a bed? …on a train? …in Memphis? …in Chicago? …on a 
plane? …in a hammock? …in a barn? 
 
8) Have you ever seen…  
…a tornado? …the Simpsons? …an ostrich? …the ocean? …a movie? …the Olympics? 
...Stonehenge? 
 
 9) Have you ever met…  
…Oprah? …Elvis? ...a professor? ...a mayor? ...a neighbor?  
 
10) Have you ever built… 
...an igloo? …a snowman? …a sandcastle? …a cabinet? …a fire?  
…a computer? …a robot? 
 
 11) Have you ever tried…  
…knitting? ...origami? …paintball? …snorkeling? …tofu? …to waltz? …rollerblading? 
…skateboarding? …basketball? …surfing? 
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 12) Have you ever collected…  
…antiques? …butterflies? …clocks? …coins? …knives? …spoons? …stamps? …rocks? 
…dolls? 
 
13) Have you ever played…  
…backgammon? …checkers? …the tuba? …the violin? …dominoes? …poker? 
…Monopoly? …Scrabble?  
 
14) Have you ever bought…  
…a house? …a car? ...a CD? ...a computer?  …a piano?  …milk? …a sofa? 
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Appendix B. Example layout for experimental design.  

 
A

DC

B

Have you

Elvis?

Yes No

Elvis?

Yes No

A

DC

B

Have you

Elvis?

Yes No

Elvis?

Yes No

 
 
 

Figure B1. Sample trial sequence for the question “Have you ever met Elvis?”. In panel 

(A), the first word of the question appears. In panel (B), the next word of the question 

appears after participants click on the bull’s-eye-shaped circle. In panel (C), the last word 

is encountered and the bull’s-eye turns to red and response options appear. In panel (D), a 

sample trajectory shows a participant falsely responding “Yes”.  
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Appendix C. Question stimuli for Study 2c:  semantic knowledge. 

1a)  Is Moscow the capital of Russia?   
1b)  Is Moscow the capital of England? 
 
2a) Did Shakespeare write the play Hamlet?   
2b) Did Shakespeare write the play Rent? 
 
3a) Is insomnia the inability to sleep?  
3b) Is insomnia the inability to eat? 
 
4a) Is Wimbledon an event associated with the sport tennis?  
4b) Is Wimbledon an event associated with the sport hockey? 
 
5a) Do cheetahs run faster than humans?   
5b) Do humans run faster than cheetahs? 
 
6a) Is "lamb" the name for a young sheep?  
6b) Is "lamb" the name for a young horse? 
 
7a) Is treason the crime in which people betray their country?  
7b) Is treason the crime in which people betray their spouse? 
 
8a) Did Einstein propose the theory of relativity?  
8b) Did Einstein propose the theory of evolution? 
 
9a) Is the unit of sound intensity called a decibel?  
9b) Is the unit of sound intensity called a watt? 
 
10a) Are people that make maps called cartographers?  
10b) Are people that make maps called cardiologists? 
 
11a) Is the largest flightless bird called an ostrich?   
11b) Is the largest flightless bird called a crow? 
 
12a) Is the longest river in South America called the Amazon?  
12b) Is the longest river in South America called the Nile? 
 
13a) Is the villainous captain in the story "Peter Pan" named Hook?  
13b) Is the villainous captain in the story "Peter Pan" named Jafar? 
 
14a) Was the first U.S. President named Washington?  
14b) Was the first U.S. President named Lincoln? 
 
15a) Is the legendary one-eyed giant in Greek mythology named Cyclops?   
15b) Is the legendary one-eyed giant in Greek mythology named Samson? 
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16a) Is the skirt worn by men in Scotland called a kilt?  
16b) Is the skirt worn by men in Scotland called a sarong? 
 
17a) Is the name of Dorothy's dog in the 'Wizard of Oz" named Toto?  
17b) Is the name of Dorothy's dog in the 'Wizard of Oz" named Yeller? 
 
18a) Are dried grapes called raisins?   
18b) Are dried grapes called figs? 
 
19a) Is the thick layer of fat on a whale called blubber?  
19b) Is the thick layer of fat on a whale called wool? 
 
20a) Was the unsinkable ship that hit an iceberg called the Titanic?   
20b) Was the unsinkable ship that hit an iceberg called the Mayflower? 
 
21a) Are dried plums called prunes?   
21b) Are dried plums called apricots? 
 
22a) Is deer meat called venison?  
22b) Is deer meat called beef? 
 
23a) Is the cartoon character that eats spinach named Popeye?  
23b) Is the cartoon character that eats spinach named Garfield? 
 
24a) Is the horse-like animal with black and white stripes called a zebra?  
24b) Is the horse-like animal with black and white stripes called a donkey? 
 
25a) Is Paris the capital of France?  
25b) Is Paris the capital of Germany? 
 
26a) Are doctors that specialize in diseases of the skin called dermatologists?  
26b) Are doctors that specialize in diseases of the skin called radiologists? 
 
27a) Is the process by which plants make their food called photosynthesis?   
27b) Is the process by which plants make their food called inhalation? 
 
28a) Is the artist that painted the Sistine Chapel's ceiling named Michelangelo?  
28b) Is the artist that painted the Sistine Chapel's ceiling named Picasso?  
 
29a) Is "chick" the name for a young bird?  
29b) Is "chick" the name for a young fish?  
 
30a) Is "Old Faithful" located in the national park called Yellowstone?  
30b) Is "Old Faithful" located in the national park called Denali? 
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Appendix D. Computer-mouse movements in the laboratory, with tests of continuity, 
examination of practice effects, and discriminant analysis (supplementary study to Study 
1b) 
 

Computer-mouse Movement (Laboratory) 

Participants 

Thirty-seven undergraduate students participated for extra credit in an 

introductory psychology class. Only native English speakers with normal-to-corrected 

vision were eligible to participate. Of those who participated, 18 were female and 9 were 

male. All participants performed the experimental task with their right hand.  

Procedure and Question Stimuli 

The procedure was identical to Study 1a; however, instead of using a Nintenedo 

Wiimote to collect data, a computer-mouse cursor was used. The sampling rate for the 

mouse movement trajectories averaged 42 Hz. These recordings, as well as the stimuli 

presentation, were conducted using Matlab software with the Psychophysics Toolbox 

(Brainard, 1997). 

The same question set as used in Study 1a (see Appendix A) was also used here. 

It should also be noted that the questions were selected to elicit an equal number of false 

“no” responses, true “no” responses, false “yes” responses, and false “no” responses. A 

pilot study was conducted to confirm that the responses were equally distributed within 

our target population of undergraduate college students.  

Summary of Data Analysis 

A series of analyses were conducted on the mouse cursor trajectories for the four 

possible response conditions: a) false answers while making “yes” responses (hereby 

referred to as “false/yes” responses), b) true answers while making “yes” responses (i.e., 
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“true/yes” responses), c) false answers while making “no” responses (i.e., “false/no” 

responses), and d) true answers while making “no” responses (i.e., “true/no” responses). 

The analyses are categorized into six complementary dependent measures presented 

below. Each area is relevant to identifying signatures of motor movement that are 

hypothesized to distinguish the continuous true and false response patterns. As a brief 

summary before further explanation, the first analysis examines the shape of each 

trajectory within the possible movement space, the second analysis examines the location 

of the trajectory over time, the third analysis validates the hypothesis of continuous 

trajectory movements, the fourth analysis identifies various properties that characterize 

the trajectories, the fifth analysis uses the trajectory properties to predict response the 

four possible prompt/response categories, and the sixth analysis evaluates whether the 

trajectory variables are affected by practice effects.  

Results 

Trials were excluded if responses in the verification task were incongruent with 

the original responses. Two participants were removed because incongruent responses 

exceeded 50% of total trials. Among the remaining participants, 40 trials were removed, 

or 1.39% of the trials for the included participants. Trials were also excluded if total time 

was above 3 standard deviations. This exclusion criterion removed 55 trials, or an 

additional 1.94% of the trials. Of the 2784 trials remaining, 639 trials occurred in the 

“false/no” condition, 726 trials occurred in the “truth/no” condition, 728 trials occurred in 

the “false/yes” condition, and 691 trials occurred in the “truth/yes” condition. 

The data for the subset of participants who viewed the reversed position “YES” 

and “NO” response boxes did not differ from the larger group of participants. As such, 
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the trajectories for the subset were mirror-reversed and combined with larger group to 

form one dataset.      

Trajectory Shape  

The first analysis examines the shape of each trajectory taken from the bottom-

center bull’s-eye to the final response at the top left or top right of the screen. To conduct 

this analysis, the trajectories for each participant were initialized to x, y coordinates (0, 0) 

and interpolated to 101 time steps (see Dale et al., 2007; Spivey et al., 2005). In this way, 

each trajectory was time-normalized to the same number of x, y coordinate positions 

across all trials. Normalization allows the trajectories to be averaged for each participant 

and for comparison across the four combinations of prompt (true vs. false) and response 

(yes vs. no) conditions. For the statistical comparison between conditions, we performed 

paired t-tests at corresponding x-coordinate time steps, resulting in 101 t-tests with 35 

observations (i.e., participants) in each response group.  

The trajectories for “false/no” trials and “true/no” trials statistically diverged for 

27 time steps (p < .05) between the 47th and 73rd steps, while the trajectories for 

“false/yes” and “true/yes” statistically diverged for 71 time steps (p < .05) between the 

5th and 75th steps (see Figure D1). The divergence for each comparison exceeds the 

minimum number of 8 consecutive time steps reported as a standard for statistical 

significance (Dale et al., 2007). Accordingly, the trajectory shape analysis reveals false 

and true responses that are conspicuously different. True response movements appear to 

travel a more direct route to the target response, whereas false response movements take 

a more curved route. Not surprisingly, the bend of the curve is always in the direction of 

the competing response option (i.e., the “true” response).    
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Given that the false responses reveal the greatest competition, we compared the 

false “no” and “yes” responses to determine whether there is any further differentiation. 

Figure D1 suggests that the “false/yes” responses exhibit greater pull towards the truth 

region than “false/no” responses.  To conduct this analysis, the trajectories for “false/no” 

responses were mirror-reversed so the trajectories were in the same region of movement 

space as “false/yes” responses. Paired t-tests were conducted once again at each of the 

101 time steps. The analysis revealed that the “false/yes” responses were indeed closer to 

the truth region than the “false/no” responses for 16 time steps (p < .05) between the 40th 

and 55th time steps. Thus, “false/yes” responses appear to be the most susceptible to the 

influences of the truth.  
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Figure D1. Time-normalized computer-mouse trajectories for each condition. False 

answers (solid lines) display a greater arc towards the competing response option than 

true answers (dashed lines).   

 
 
Trajectory Location 

The second analysis examines the location of the trajectory over time. To conduct 

this analysis, the trajectory coordinates were normalized to initiate at x, y coordinate (0, 

0) and finalize at x, y coordinate (1, 1). Unlike the first analysis that normalized temporal 

change, this analysis is space-normalized and preserves the temporal organization of the 

trajectory. As the trajectory traveled along the x, y coordinates in the normalized range, 

these coordinates were captured in temporal time bins of 0 to 500 ms, 500 to 1000 ms, 

and 1000 to 1500 ms (see Figure D2). For statistical comparison between conditions, the 

x-coordinate positions within each time bin were submitted to a repeated-measures 
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ANOVA. The goal was to determine if the greater competition for false “no” and “yes” 

responses was consistent across time. 

The 2 (prompt type: true vs. false) x 3 (time bin: 0-500 ms vs. 500-1000 ms vs. 

1000-1500 ms) repeated-measures ANOVA revealed that for “no” trials there was a 

statistically significant effect for prompt type, F(1, 34) = 26.94, p < .001, a statistically 

significant effect for time bin, F(2, 68) = 145.94, p < .001, and a statistically significant 

interaction between prompt type and time bin, F(2, 68) = 7.90, p = .001. To explore this 

interaction further, planned comparisons were conducted between false and true prompt 

types at each time bin.  There was a statistically significant difference of the x-coordinate 

position at the first time bin (0-500 ms) between true (M = .24, SD = .22) and false (M = 

.13, SD = .21) answers, F(1, 34) = 12.22, p = .001, at the second time bin (500-1000 ms) 

between true (M = .55, SD = .28) and false (M = .30, SD = .31) answers, F(1, 34) = 26.88, 

p < .001, and at the third time bin (1000-1500 ms) between true (M = .72, SD = .24) and 

false (M = .51, SD = .27) answers, F(1, 34) = 15.02, p < .001.  

A similar pattern of results was found for “yes” trials. There was a statistically 

significant effect for prompt type, F(1, 34) = 78.77, p < .001, a statistically significant 

effect for time bin, F(2, 68) = 159.90, p < .001, and a statistically significant interaction 

between prompt type and time bin, F(2, 68) = 3.90, p = .025. Planned comparisons 

between false and true prompt types at each time bin revealed statistically significant 

differences at the x-coordinate position for the first time bin (0-500 ms) between true (M 

= -.34, SD = .23) and false (M = -.08, SD = .19) answers, F(1, 34) = 33.02, p < .001, at 

the second time bin (500-1000 ms) between true (M = -.64, SD = .27) and false (M = -.28, 

SD = .31) answers, F(1, 34) = 86.57, p < .001, and at the third time bin (1000-1500 ms) 
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between true (M = -.75, SD = .21) and false (M = -.49, SD = .28) answers, F(1, 34) = 

35.51, p < .001. These results indicate that the x-coordinate position for false answers is 

closer to the competing response options (“yes” or “no) than it is for true answers. It also 

appears that this competition is consistent throughout the decision process. 

As in the first analysis, we can again compare the false responses for just the “no” 

and “yes” responses. The trajectories for “false/no” responses were mirror-reversed to be 

comparable with the “false/yes” responses. Paired t-tests were conducted at each time bin 

for the false responses. Although the “false/yes” responses were consistently closer to the 

truth region than the “false/no” region, the tests were not statistically significant. 
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Figure D2. Space-normalized computer-mouse trajectories for each condition. The x-

coordinate position is plotted at 500 ms (cross), 1000 ms (star), and 1500 ms (circle). The 

false answers (solid line) are slower and closer to the competing response option than true 

answers (dashed line).  

 
 
Trajectory Continuity  

The third analysis validates the hypothesis of continuous trajectory movements. 

Following the work of Spivey et al. (2005), we evaluated whether continuous or discrete 

movements predominate trajectory behavior in decision tasks. In related studies, 

trajectory movements toward a target answer are considered to be simultaneously 

influenced by a competitor response option. The resulting movement appears to gravitate 

towards the competitor as a smooth arc en route to the target. Alternatively, the observed 

continuity can also be explained as the averaging over multiple distributions of discrete, 
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sequential movements. If so, the illusion of continuity would occur for the following 

trajectory behavior: a) direct movements toward target false responses, summed with b) 

direct movements toward competitor truth responses before switching to target false 

responses. To test the possibility of a bimodal distribution, we calculated the area of each 

trajectory (in pixels) from a hypothetical straight line plotted from the initial and final x, y 

trajectory coordinates. The area between these two lines serves as a measure of trajectory 

curvature. The trajectory areas for each participant were then converted to z-scores and 

pooled across participants. If there were two distinct trajectory curvatures, the 

distribution of z-scores would reveal evidence of bimodality. We submitted the 

distributions of z-scores to various tests of normality, including significance testing of a 

bimodality coefficient and the Kolmogorov-Smirnov test. 

Figure D3a shows the distributions of the z-scores of trajectory area for 

“false/yes” trials (kurtosis = .49, skewness = -.40) and “true/yes” trials (kurtosis = 1.22, 

skewness = -1.13). Figure D3b shows the distributions of z-scores for “false/no” trials 

(kurtosis = .11, skewness = -.29) and “true/no” trials (kurtosis = 1.16, skewness = -.27). 

These distribution statistics all appear to fall within the range of unimodal normality.  

Following Spivey et al. (2005), we tested for bimodality using the bimodal 

coefficient (Darlington, 1970; DeCarlo, 1997). The coefficient for the “false/yes” trials 

was .33 and the coefficient for “true/yes” trials was .54. Both bimodality coefficient 

values are below the .55 critical cut-off point. The coefficient for the “false/no” trials was 

.35 and the coefficient for the “true/no” trials was .26. Again, both bimodality 

coefficients are below the critical cut-off point.  
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 We also used a Kolmogorov-Smirnov test of normality to compare the 

distributions of false and true answers for each category of “yes” and “no” responses. We 

tested the null hypothesis that distributions for false and true answers are drawn from 

similar populations. We have no theoretical reason to suspect bimodal distributions for 

truthful answers, meaning that truthful answers are likely unimodal. A Kolmogorov-

Smirnov test will fail to reject the null hypothesis when false answers are also unimodal. 

Indeed, the Kolmogorov–Smirnov test failed to reject the null hypothesis when 

comparing false and true  “yes” responses, !2 = .08, p = .07, and when comparing false 

and true “no” responses, !2 = .05,  p = .50. As such, the distributions for false answers 

appear to be as unimodal as for truth answers.  

It should be noted that the marginal statistical significance of the “yes” responses 

in the Kolmogorov–Smirnov test, as well as the high “true/yes” value in the bimodal 

coefficient test, can both be explained by the large kurtosis of “true/yes” distributions. 

Both tests are adversely affected by high kurtosis. However, high kurtosis in the present 

data confirms that distributions are concentrated over a single movement pattern. This 

concentration lends further evidence for unimodal distributions of false answers.  
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Figure D3. The computer-mouse z-score distributions of the area between the trajectory 

and a straight line from the trajectory beginning and end points. For (A), the solid gray 

distribution represents “true/yes” answers and the black outline represents “false/yes” 

answers. For (B), the solid gray distribution represents “true/no” answers and the black 

outline represents “false/no” answers. 

 
 
Trajectory Properties  

The fourth analysis identifies various properties that characterize trajectory 

behavior. We computed eight properties along continuous scales of measurement (Dale et 

al., 2007). These property variables were analyzed in a repeated-measures ANOVA to 

test differences as a function of prompt (true vs. false) and response (yes vs. no) 

conditions. The trajectory characteristics are the same as those used in Study 1a: Total 

Time, Latency, Distance, Motion Time, High x-value, Low x-value, x-flips in Latency, and 

x-flips in Motion.  

 The latency variable is analogous to reaction time in standard response tasks and 

is not strictly considered a “trajectory” variable. The remaining variables capture 
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dynamical processes that occur at an order of magnitude smaller than reaction time, 

except for total time that captures the entire dynamical response motion. For example, x-

flips in latency and x-flips in motion provide an intuitive measure of moment-to-moment 

disorder during reaction time, and high x-value and low x-value variables are indicators of 

competing attractor strengths that occur while reacting either to “yes” falsely (e.g., 

moving rightward on the x-axis toward the competing “NO” response region) or to “no” 

falsely (moving leftward on the x-axis toward the competing “YES” response region).   

A 2 (prompt type: truth vs. false) x 2 (response type: yes vs. no) repeated-

measures ANOVA was conducted for each of the seven dependent variables. Each 

variable, as well as their mean values and SEs for each condition, are provided in Table 

D1. The results of the repeated measures ANOVA are provided in Table D2. 

 

Table D1. Means and SEs for the computer-mouse trajectory variables by prompt and 

response type.  

 Yes No 

 False True False True 

Variable M SD M SD M SD M SD 

Total time (ms) 2146.30 478.62 1537.98 387.92 2173.52 454.53 1749.48 423.31 

Latency (ms) 741.99 440.60 530.46 325.25 761.07 464.06 622.01 386.20 

Distance (pixels) 1068.56 356.76 855.89 197.33 1065.87 326.93 920.14 266.85 

Motion time (ms) 1404.30 393.61 1007.52 231.26 1412.45 356.65 1127.46 288.76 

High x-value 157.43 109.96 71.44 65.05 502.62 27.86 502.25 32.87 

Low x-value -495.74 28.73 -499.65 27.04 -145.45 103.16 -98.66 80.72 

x-flips in latency 1.57 2.62 1.27 2.26 1.45 2.33 1.50 2.54 

x-flips in motion 1.64 0.86 1.19 0.66 1.66 0.88 1.35 0.70 
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Table D2. F scores for the repeated measures analysis using computer-mouse 
movements. 
 

Variable Yes vs. No Response Truth vs. False Prompt Response x Prompt 

Total time 8.62** 132.44** 6.51** 

Latency 5.09** 31.56** 2.73** 

Distance 1.26** 32.85** 1.50** 

Motion time 3.01** 74.49** 2.80** 

High x-value 890.79** 30.76** 30.32** 

Low x-value 803.87** 9.00** 14.28** 

x-flips in latency 0.71** 3.34** 5.54** 

x-flips in motion 1.07** 38.01** 0.72** 

Note: * indicates statistical significance at p < .05; ** indicates statistical significance at  
p < .001; the degrees of freedom for all analysis are 1, 34.   

 
 

 
Overall, the trajectory properties reliably differentiated false and true answers. 

The main effects for all variables indicate that truthful answers (compared to the false 

answers) took more time overall, took more time to initiate, traveled a greater distance, 

took more time while in motion, and had a greater number of x-flips while in motion.  

The four statistically significant interactions between prompt and response type 

also provided additional analysis into the difference of false and true answers while 

making either “yes” or “no” responses. The results of these planned comparisons are 

reported in Table D3. For “yes” responses, false answers compared to true answers had 

statistically larger values on all trajectory variables except low x-value. The lack of an 

interaction for low x-value was expected because the “yes” option was located in the 

region of lowest x-values, and thus all “yes” responses had a low x-value. However, even 

though false “yes” responses had a low x-value, the interaction with high x-value also 

demonstrates that false “yes” responses were more likely to move toward the competing 
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true “no” option than were the true “yes” responses. For “no” planned comparison 

results, false answers compared to true answers had statistically larger values on all 

trajectory variables except x-flips in latency and high x-value. Again, the lack of an 

interaction for high x-value was expected because the “no” option was located in the 

region of highest x-values, and thus all “no” responses had a high x-value. And like the 

previous results, even though false “no” responses had a high x-value, the interaction 

with low x-value also demonstrates that false “no” responses were more likely to move 

toward the competing true “yes” option than were the true “no” responses.  

 
 
Table D3. Mean value differences of false minus true responses for variables with a 

statistically significant prompt (truth vs. false) x response (yes vs. no) interaction 

(computer-mouse analysis). 

 
 Yes No 

Variable False - True False - True 

Total time 608.32** 424.04** 

High x-value 85.99** 0.37** 

Low x-value 3.91** 46.79** 

x-flips in latency 0.30** -0.05** 

Note: * indicates statistical significance at p < .05, 
** indicates statistical significance at  p < .01;  
the degrees of freedom for all analysis are 1, 34.   
 
 
 
Discriminant Analysis 

The fifth analysis supplements the previous analysis by evaluating the importance 

of trajectory properties and reaction time in differentiating the categories of “false/no”, 
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“true/no”, “false/yes”, and “true/yes” responses. To do so, we used a discriminant 

analysis (DA) to simultaneously predict the four prompt/response categories. The DA 

provides estimates of how well dynamical trajectory variables and combinations of 

trajectory variables contribute to the overall analysis. Moreover, the primary value of a 

DA here is the ability to compare the prediction accuracy of trajectory variables to the 

accuracy of discrete variables like reaction time. On the one hand, reaction time could 

potentially subsume the trajectory properties, therefore obviating the contribution of the 

trajectory properties in predicting false and true responses. On the other hand, the 

trajectory properties may capture unique cognitive and behavioral processes that are 

ignored when reaction time is used as the sole unit of analysis. If the latter is true, the 

classification accuracy for dynamical trajectory variables will be far superior to the 

classification accuracy of reaction time.  

To conduct a DA based on “dynamical” properties, the variables obtained from 

the trajectory analysis were used as predictors of category membership. Concerns with 

multicollinearity prompted the removal of variables that correlated with other variables 

above a 0.70 threshold. When a highly correlated pair was identified, the variable with 

the lowest F-score from the repeated-measures ANOVA (see Table D2) was excluded. 

As a result, the final DA included a reduced set of four predictors: total time, distance, 

high x-value, and low x-value.     

 Discriminant scores loaded onto two functions that delineated the four 

prompt/response categories into distinct regions of state space. The objective of the 

discriminant scores is to maximize between-category differences while minimizing 

within-category variation. The Wilks’ Lambda test of function discrimination was 
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statistically significant across the two functions, " = .169, #2(12) = 4938.65, p < .001, 

indicating that, overall, the variables in the study predicted category membership.  

We used a “one-against-all” classification technique for predicting group 

membership of each trial. In this technique, a discriminant analysis model is built using 

all but one trial and the model is then used to predict the excluded trial. This process of 

exclusion and prediction continues until all trials have been assessed. Prediction success 

for each category is reported as recall, precision, and F1 scores. The recall scores 

measure the number of trials that were classified correctly (hits) divided by the total 

number of trials in each corresponding category (hits + misses). The precision scores 

measure the number of trials that were classified correctly (hits) divided by the number of 

correct classifications and misclassifications (hits  + false alarms). The F1 score is the 

harmonic mean between the recall and precision scores.  

 In general, the accuracy of the classifications greatly exceeded the .25 baseline for 

each prompt/response category (Table D4). Accuracy was highest for “true/yes” trials, 

followed by “true/no” trials, followed by “false/yes” trials, and lowest for “false/no” 

trials.  
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Table D4. Recall, precision, and F1 scores for discriminant analysis using computer-

mouse.  

 Yes No 

 False True False True 

Recall 0.43 0.79 0.36 0.68 

Precision 0.57 0.61 0.46 0.59 

F1 0.50 0.70 0.41 0.64 

  
 
 

For the purposes of comparison, we then built a DA that included the four 

trajectory variables and the latency variable that served as an approximate measure of 

reaction time. The latency variable captures the temporal duration between stimuli onset 

and the initial movement toward a response choice, and does not correlate with the other 

variables above the critical .70 threshold. This expanded model showed no improvement 

in the recall, precision, and F1 scores over that of the initial model. Another model was 

then constructed with latency as the sole classification predictor. The results indicate that 

classification for “false/yes” and “true/no” categories were far below baseline, while 

classification for “false/no” and “true/yes” categories were moderately above baseline 

(Table D5). However, the overall classification accuracy was below the initial model 

(56.6% vs. 27.5% cases correctly classified). Thus, it appears that the trajectory variables 

are better at discriminating the four prompt/response categories than a reaction time 

measure based on the latency variable. 
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Table D5. Recall, precision, and F1 scores for only latency variable in discriminant 

analysis (computer-mouse analysis). 

 Yes No 

 False True False True 

Recall 0.04 0.66 0.37 0.06 

Precision 0.33 0.28 0.26 0.28 

F1 0.19 0.47 0.32 0.17 

 
 
 
Practice Effects 

The sixth and final analysis examined the possibility that competition between 

false and true answers is attenuated with practice. If so, trajectory properties for false 

answers might shift toward values that characterize true answers during the course of the 

experimental session. In real-world applications, there is always the possibility that 

deceivers will become more proficient in responding falsely when given repeated 

opportunities to do so. To test this possibility, the sequence of trials for each participant 

was divided into three increasing time sets (first set: trials 1-26; second set: trials 27-53; 

third set: trials 54-80). For each of the four prompt/response categories, the trajectory 

properties were compared between trial sets using a repeated-measures ANOVA. The 

potential for practice effects will be mitigated if there are not significant effects as a 

function of trial sets.   

Based on the repeated-measures ANOVA, only the variable motion time was 

affected by practice effects. For motion time, “false/yes” responses decreased from 

253.80 ms from the first set to the third set of trials, F(2, 68) = 4.37, p = .02. However, 
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while false answer trajectories for motion time showed improvements in the direction of 

true answer trajectories, there remained a statistically significant difference between these 

false answers with the true answers (p < .001). This finding suggests that the response 

patterns to false and true questions are robust against practice effects, and when practice 

effects are found, the improvement is negligible. The practice effects analysis also 

indicates that “false/yes” responses were more affected by practice than “false/no” 

responses.  

Brief Summary 

The movements of the arm revealed distinct signatures of movement during false 

response behavior. These action dynamics were slower and more disorderly than true 

responses, thus suggesting greater difficulty in cognitive processing. The false response 

movements were also curved towards a competitor “truth” region that was visually co-

present with the target response region. This curvature suggests the presence of a truth-

bias attractor during false responding (Gilbert et al., 1993; McKinstry et al., 2008). We 

also found that the curvature is composed of smooth and graded changes that occur in 

parallel, rather than a combination of discrete response “modes” that are influenced by 

separate processing factors. Finally, we found that dynamical trajectory properties 

predicted false responding with greater accuracy than did a reaction time measure.  
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