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ABSTRACT 

 

Myers, Mark Hebron. Ph.D. The University of Memphis.  August 2011.   

Simulation of abnormal/normal brain states using the KIV model.  Major Professor: 

Robert Kozma, Ph. D. 

 

Recent studies have focused on the phenomena of abnormal electrical brain 

activity which may transition into a debilitating seizure state through the entrainment of 

large populations of neurons.  Starting from the initial epileptogenisis of a small 

population of abnormally firing neurons, to the mobilization of mesoscopic neuron 

populations behaving in a synchronous manner, a model has been formulated that 

captures the initial epileptogenisis to the semi-periodic entrainment of distant neuron 

populations.  The normal non-linear dynamic signal captured through EEG, moves into a 

semi-periodic state, which can be quantified as the seizure state.  Capturing the 

asynchronous/synchronous behavior of the normal/pathological brain state will be 

discussed.  This model will also demonstrate how electrical stimulation applied to the 

limbic system restores the seizure state of the brain back to its original normal condition. 

Human brain states are modeled using a biologically inspired neural network, the 

KIV model.  The KIV model exhibits the noisy, chaotic attributes found in the limbic 

system of brains of higher forms of organisms, and in its normal basal state, represents 

the homogeneous activity of millions of neuron activations.  The KIV can exhibit the 

’unbalanced state’ of neural activity, whereas when a small cluster of abnormal firing 

neurons starts to exhibit periodic neural firings that eventually entrain all the neurons 

within the limbic system, the network has moved into the ‘seizure’ state.  These attributes 

have been found in human EEG recordings and have been duplicated in this model of the 

brain.   
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The discussion in this dissertation covers the attributes found in human EEG data 

and models these attributes.  Additionally, this model proposes a methodology to restore 

the modeled ‘seizure’ state, and by doing so, proposes a manner for external electrical 

titration to restore the abnormal seizure state back to a normal chaotic EEG signal state.  

Quantification measurements of normal, abnormal, and restoration to normal brain states 

will be exhibited using the following approaches: 

• Analysis of human EEG data 

• Quantification measurements of brain states. 

• Development of models of the different brain states, i.e. fit parameters of the 

model on individual personal data/history. 

• Implementation of quantitative measurements on “restored” simulated seizure 

state. 
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CHAPTER 1: INTRODUCTION 

 

Overview 

 

In this dissertation we investigate quantitative measurements that demonstrate 

how the KIV (K-4) model can be used as a metaphor of the limbic system of the human 

brain.  The brain states of normal/pathological (seizure)/restoration are modeled to further 

understand the pathological states of the brain and propose a titration therapy through this 

model.  

 Spectral analysis of high density EEG arrays from pediatric patients with 

intractable types of seizures, demonstrate a clear delineation of normal EEG behavior vs. 

abnormal behavior.  The power spectral densities (PSD) of the EEGs have power-law 

distributions (1/f
α
) in log-base10 displays. Quantitative measurements of 

electroencephalograph (EEG) characteristics demonstrate that attributes of the normal, 

chaotically behaving action potentials of mesoscopic groups of neurons can be captured 

into a non-linear, biologically-inspired neural network model of the limbic system of the 

brain. This model can be used to study abnormal aspects of action potentials as seen in 

epileptic seizures when EEG output displays semi-periodic signals that synchronize 

throughout the cortex.  

 We model the dynamics of the limbic system through the KIV model, a 

biologically-motivated computational model of the brain, which can model the 

normal/abnormal attributes found in mesoscopic neural activity (Kozma & Freeman, 

2003). Through internal and external weight adjustments of the nodes/neurons of the 

chaotic oscillators within the KIV, we can model the interactions of cortical-hippocampal 
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systems.  In this manner, we can demonstrate how our EEG simulator can be used for 

external electrical conditioning of the brain to reduce abnormal action potentials effects 

found during the seizure state.  During seizure events, organized, semi-periodic electrical 

discharges develop in the epileptogenic zone and spread, within seconds, over wide areas 

of the cerebral cortex. Seizure discharges typically last seconds to minutes and are 

followed by the normal non-linear, chaotic neuron behavior that is captured through an 

EEG. 

In this dissertation, we analyze quantifiable temporal shifts in normal action 

potentials, as well as ictal synchronization of mesoscopic neuron populations. As normal 

EEG is enormously varied, manifesting qualitative changes depending on behavioral 

state, we initially develop methods to quantify brain states using EEG features. Next, we 

focus on the distinctive features of normal and abnormal states of the brain, respectively. 

We distinguish ictal behavior from non-ictal behavior, and accurately capture these states 

in the EEG simulator. Next, we demonstrate the capability of the KIV-based EEG 

simulator to incorporate electrical stimulation therapies that reduce the effects of the 

seizure state.  In this manner, we demonstrate an EEG simulator that captures normal 

abnormal states of the limbic system, which can provide a means to test electrical 

stimulation techniques to restore the normal, chaotic electrical activity of the brain. 

Structure of the Dissertation 

This dissertation is separated into six parts.  Chapter 2 reviews the background of 

seizure state attributes.   It discusses how the interactions of large populations of neurons 

cause the debilitating seizure state of semi-periodic neuron oscillations.   
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 Chapter 3 introduces quantitative measurement techniques for capturing the brain 

dynamics in human EEG.  Power spectral density analysis, autocorrelation, and phase 

space analysis are discussed and utilized within the analysis process.  The discussion of 

the analysis in this chapter provides the framework of experimentation with EEG signals 

in the subsequent chapters. 

Chapter 4 provides the background of the KIV model used to simulate 

normal/abnormal brain EEG signal attributes.  The biologically inspired neural network 

will be discussed to demonstrate how this model can be used as a metaphor for limbic 

system modeling. 

Chapter 5 describes initial research of the underlying causes of petit-mal seizures 

and the application of this work into the KIII model.  This research is used to emulate the 

epileptogenisis and incorporate this work into the broader KIV network. 

Chapter 6 discusses applying the analysis methods discussed in chapter 3 to 

human EEG data.  Quantification of normal/abnormal states is exhibited through analysis 

methods in order to capture EEG attributes.  Additionally, these analysis methods are 

applied to the KIV model.  Comparisons of human EEG/simulated EEG are demonstrated 

in this chapter.   

Chapter 7 demonstrates how simulated seizure treatment of the seizure state is 

reduced through the application of an external stimulation titration method.   
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CHAPTER 2: EPILEPTIC SEIZURES 

 

Pathophysiology of Seizure Characteristics 

 

Hughlings Jackson (Jackson, 1878) proposed the classic definition of epileptic 

seizures as, “…excessive and disorderly discharge of nerve tissue.”  William Gowers 

suggested that the brain’s constitution or formation was accompanied by an abnormal 

structure within the brain.  The following figure demonstrates seizure activity recorded 

from an EEG through an electrode (Figure 1).  This type of seizure known as localized or 

focal seizure occurs within a specific area of the brain. 

 

Figure 1. Localized (focal) Seizure. 

 

Recording of electrical activity in the human brain was performed by Hans Berger, E.D. 

Adrian and B.H.C. Matthews.  This technique was quickly applied to the analysis of 

epilepsy.  Two types of seizures were discovered: generalized seizures and partial/focal.   

Currently, the most common forms of generalized seizure are tonic/clonic 

convulsion without aura (grand-mal), petit-mal, and myoclonic jerk.  For grand-mal 

seizures, the tonic phase involves muscle stiffness on both sides of the body, followed by 
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the clonic phase of muscle jerking (Figure 2).  Petit-mal absence is characterized by an 

individual who loses awareness for a few seconds.  EEG patterns consist of spike wave 

activity occurring at the rate of 3 cycles per second (Figure 3).   Myoclonic jerk consists 

of very rapid symmetrical upward jerk of the arms and head and forward bend of the 

trunk. 

 

 

Figure 2. Examples of Grand-mal seizures 

 

 

Figure 3. Example of Petit-mal seizure 

 

 

When the seizure occurs in the motor cortex of the brain, jerking of the muscles 

occurs on the opposite part of the body, and may spread out to other opposite parts if the 
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seizure location becomes larger.  This is known as a Jacksonian seizure.  When electrical 

discharges pass through the Corpus Callosum to the other side of the hemisphere, 

consciousness is lost and convulsions occur all over the body.  Temporal lobe seizures 

originate from discharges from the temporal lobe.  This type of seizure commences with 

an alteration of the thought process and perception caused by the seizure.  This is the 

aura. Surgery has been known to cure this type of seizure.   

Generalized seizures are formed inherently throughout the structure of the brain 

where focal seizures involve a specific area of pathology, i.e., tumor, brain damage due to 

injury, etc. Temporal Lobe seizures may be due to a loss of neurons in the hippocampal 

area of the brain. 

Seizure control involves medication treatment, surgery, diet, and for intractable 

types of seizures, the vagus nerve stimulation brain implant.  The majority of seizure 

treatment involves medical treatment in the form of antiepileptic drugs where 

approximately half of the patients diagnosed with epilepsy become seizure-free on their 

first antiepileptic drug (AED) (Wheless, 2006). Where AEDs and surgery fail to alleviate 

the patient of the debilitating seizure effects, those living with refractory epilepsy 

perceive their condition as being life-limiting, which greatly reduces their overall quality 

of life and potentially leads to a lifetime of dependence on others.   

Drug therapy does not always control seizures and can be associated with 

negative side effects. Additionally, only a minority of patients are candidates for epilepsy 

surgery. Vagus nerve stimulation (VNS) therapy, approved by the US FDA in 1997, is a 

treatment option that is effective in reducing refractory types of seizure frequency and 

severity as well as improving patient quality of life without the pharmacological side 
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effects associated with traditional antiepileptic drugs (Wheless & Baumgatrner, 2004; 

Wheless & Maggio, 2002).  Vagus nerve stimulation generally refers to several different 

techniques used to stimulate the vagus nerve, including those in studies in animals where 

the vagus was accessed through the abdomen and diaphragm. The VNS system has been 

used a treatment for intractable types of seizures where medication and surgery have not 

worked.  Vagus Nerve Stimulation may also refer to stimulation of the left cervical vagus 

nerve using a commercial device, the NCP System (Zabara, 1985). 

A study featuring 50 patients, median age 13 years, with medically refractory 

epilepsy were implanted with VNS system. The study showed reductions in total seizures 

were 42% at one month, 58.2% at three months, and 57.9% at six months. The most 

common adverse events reported were voice alteration and coughing during stimulation. 

Other uncommon adverse events included increased drooling and behavioral changes 

(Frost, Gates, Helmers, Wheless, Levisohn, Tardo & Conry, 2001). 

Epilepsy Experiments 

In this section we review findings from open-loop stimulation epilepsy 

experiments in order to understand the effects of electrical stimulation modulation of the 

brain.  As an example, epilepsy of hippocampal origin may enable an implanted electrode 

where stimulation can be applied chronically (Merill, 2005). In contrast, a noninvasive 

system may be used to induce antiepileptic changes in superficial cortex.   

Clinical studies are often grouped by anatomical targets (Ellis & Stevens, 2008; 

Halpern, Samadani, Litt, Jaggi & Baltuch, 2008), but target-specific factors need to play a 

greater role in individualizing electrotherapy strategy and characterizing its mechanisms.  

Afferent connections throughout the different regions of the brain can influence the 
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dynamics of neuronal populations and sensitivity to electrical stimulation. As is true of 

deep brain stimulation for Parkinson’s and functional electrical stimulation (FES), if 

axonal projections are excited in the vicinity of the electrode, the functional target of 

stimulation is determined by where those axons project, and not solely by the neuronal 

network near the stimulation electrode(s).  Therefore, by analyzing the functional 

outcome of stimulation is to focus on induced changes in efferent activity in the context 

of global network function. 

In electrotherapy of movement disorders, continuous stimulation during therapy is 

standard (Johnson, Miocinovic, McIntyre & Vitek, 2008) it is therefore noteworthy that 

in epilepsy therapy intermittent (ON-OFF) protocols are being explored (Andrade, 

Zumsteg, Hamani, Hodaie, Sarkissian, Lozano & Wennberg, 2006; Velasco, Velasco, 

Velasco, Jimenez, Marquez & Rise, 1995). The effects of open-loop stimulation are 

divided into ON effects, and OFF effects. The distinction between ON and OFF effects is 

made when the stimulation is intermittent (e.g., repeated patterns of 5 min on, 5 min off): 

the ON effects occur during a functional stimulation “unit” such as a pulse train, and the 

OFF effects are observed transiently after each ON functional unit ends.  

In hyperexcitable tissue, brain slice studies have indicated whether DC fields 

suppress or aggravate seizures depends on neuronal geometry relative to the sign and 

direction of the applied fields (Sunderam, Gluckman, Reato & Bikson, 2010). 

(Richardson, Gluckman, Weinstein, Glosch, Moon, Gwinn, Gale & Schiff, 2003) 

demonstrated that a cylindrical electrode placed axially in the hippocampus, similar to the 

placement of a standard clinical hippocampal depth electrode, creates a radially 

expanding field that is aligned with the CA3 pyramidal cell neurons and can be used to 
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polarize them and thereby modulate their activity. Though this study was performed on 

animals, the finding has a direct clinical translation path.  Very-low frequency stimulation 

through CNS-implanted electrodes has not been applied to humans, in part due to 

electrochemical safety concerns (Sunderam, Gluckman, Reato & Bikson, 2010). 

Electrical Titration Approaches 

 

Vagus nerve stimulation (VNS) devices result in a significant reduction of seizure 

frequency in many patients when antiepileptic drugs (AED) or resection of the seizure 

focus localized to one mesial temporal lobe cannot avail the effects of the seizure state 

(Karceski, 2007).  Titration parameters, such as frequency, intensity, pulse width, and 

duration are used as external input into the KIV simulated limbic system in order to 

model the interaction of external stimulation into the cortex.  The following VNS 

attributes were found in the literature.  Low intensity trains of VNS (100 µA, 30 Hz, 500 

µs, 20 second periods) have been found to hyperpolarize pyramidal neurons of rat parietal 

association cortex (Zagon & Kemeny, 2000).  A range of values were utilized starting 

with the parameters: 1.5 to 5 V; pulse width 90 to 200 µs, stimulation frequency, 5 to 10 

cps (Kerrigan et al., 2004).  In another study, five patients treated with the VNS system 

using the parameters: output current 1mA, signal frequency 30 Hz, signal pulse width 

500 µs, signal on for 30 seconds, showed increased cortical inhibition associated with 

stimulation without any evidence of cortical excitability (Marrosu, Santoni & Pulighedda, 

2003).   Additional experimental results suggested that the sensitivity of epileptic brain to 

VNS was different during the epileptic process, such that the inhibiting effect of VNS to 

seizure decreased as the development of seizures occurs over time (Yang, 2007).  
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An ideal form of electrical seizure control might be a single precisely tuned pulse 

that resets or annihilates a developing or ongoing seizure. Entrainment of interictal-like 

bursts with low frequency (1-5Hz) pulse trains in hippocampal slices was shown to 

interrupt the development of full electrographic seizures causing short-term synaptic 

depression of excitatory neurotransmission.  But clinical tests of low-frequency pulse 

trains have had mixed results.  It is well known that even a single pulse can trigger an 

electrographic discharge in hyperexcitable tissue (Lesser, 2008). It has also been 

proposed that high-frequency (50-100 Hz) stimulation can suppress, or at least shorten, 

an ongoing electrographic seizure.  High-frequency stimulation trains may have distinct 

effects at stimulation onset versus after several minutes of ongoing stimulation, due to 

adaptive tissue mechanisms (e.g., potassium clearance).  Specific high-frequency 

stimulation waveforms can trigger seizures. Notable is the classic and popular kindling 

seizure model elicited from high-frequency trains (Betram, 2007).  It is clear from the 

preceding discussion that is not possible to define a unique stimulation protocol that is 

optimal for every situation, and therefore a patient-tailored stimulation protocol is needed 

(Osorio, Frei, Sunderam, Giftakis, Bhavaraju, Schaffner & Wilkinson, 2005; Sunderam, 

Gluckman, Reato & Bikson, 2010). 

The EEG Data Set 

 

A high density array of electrodes was placed onto the surface of the scalp of 

several neurosurgical patients with medically intractable epilepsy, who were a candidate 

for the Vagus Nerve Stimulator (VNS) surgical treatment. The data for this study was 

provided by Dr. James W. Wheless, MD, Professor and Chief of Pediatric Neurology and 

LeBonheur Chair in Pediatric Neurology, University of Tennessee Health Science Center, 



11 

 

and Dr. Don M. Tucker of Electrical Geodesics Inc., (EGI) through their high density 

EEG system. 

Features of normal/abnormal brain activity have been monitored for 60-90 

minutes.  A high density 256-channel EEG system captured the action potentials of 

electrical brain activity.  Action potentials are captured at a sampling rate of 250 

points/second.   

Figure 4 demonstrates the locations of normal and abnormal EEG behavior 

captured in an EEG.  These sites will be used for comparative analysis.  Figure 5 

demonstrates interictal behavior, while Figure 42 magnifies the seizure event in Figure 5.    

In this display, we see the two disparate channels change from their respective non-linear 

dynamic state to a lock-step semi-periodic state. 

 

Figure 4. Electrical Geodesics Inc (EGI) 256-Channel EEG System. The display features 

comparison electrodes used for Phase Lock, Channel 1, reference signal. Channel 61, 

seizure location. 
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Figure 5. Synchronization between channel 61 and 1 indicates epileptogenisis starting at 

minute 63.   

 

The analysis of the dataset was done using MATLAB software. 

EEG Data Analysis 

 

EEG recordings were captured via a high density 256-channel EGI system from 

four patients over a 60-90 minute time frame.  Each seizure event was verified by the 

physician and tested against our algorithm.  Pre-processing of EEG data consisted of 

finding the standard deviation (STD) of all 256 channels against each channel, and 

sorting the result set from highest deviation to lowest.  In this manner, we can locate the 
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epileptogenisis or working channel.  There may be several channels with high STD 

values that correlate to the locus of the seizure site.  We also take the channel with lowest 

STD as our comparison or reference channel.  These two channels will be used as input 

to our algorithm.   Those EEG channels that correspond to more artifact behavior, i.e., 

electrode movement instead of seizure behavior, were discarded. 

Pre-processing the datasets involved sorting out pre- and post- VNS data sets, and 

then separating each large dataset into 7.55 minutes of EEG recordings.  This 

preprocessing of the EEG data enabled faster processing and management of the large 

datasets, since the EEG data for 256 channels for over 60 minutes would be roughly 4-5 

Gigabytes of data.  EEG data filtering was accomplished using a Remez filter within the 

6- 12 Hz range (Theta – Alpha) in order to isolate the seizure occurrence. 

 

 



 

CHAPTER 3: Q

 

Neonatal Seizure Detection Methods

 

There are several prevalent seizure

signal properties found in the seizure state

Zhang & Rosenblatt, 1997) involves breaking up the seizure signal found in infa

different types of rhythmic discharges that correspond to seizure/non

Gotman detection method is based on the information available in the frequency 

spectrum of the newborn EEG, obtained through FFT.

finding a large peak at the main seizure frequency, accompanied by one or two other 

main frequencies, and little power elsewhere in the spectrum. 

Figure 6. (Left side) Non

(Right side) Seizure EEG
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: QUANTITATIVE MEASUREMENT TECHNIQUES

Neonatal Seizure Detection Methods – Autocorrelation Approach 

There are several prevalent seizure detection methods that focus on the EEG 

signal properties found in the seizure state.   The Gotman approach (Gotman

, 1997) involves breaking up the seizure signal found in infa

different types of rhythmic discharges that correspond to seizure/non-seizure areas.

Gotman detection method is based on the information available in the frequency 

spectrum of the newborn EEG, obtained through FFT.  The Gotman method consists

finding a large peak at the main seizure frequency, accompanied by one or two other 

main frequencies, and little power elsewhere in the spectrum.  

(Left side) Non-Seizure EEG (top), non-Seizure frequency spectrum (

G (top), seizure frequency spectrum (bottom). 

UANTITATIVE MEASUREMENT TECHNIQUES  

that focus on the EEG 

Gotman, Flanagan, 

, 1997) involves breaking up the seizure signal found in infants into 

seizure areas.  The 

Gotman detection method is based on the information available in the frequency 

The Gotman method consists of 

finding a large peak at the main seizure frequency, accompanied by one or two other 

 

Seizure frequency spectrum (bottom).   



 

 

The autocorrelation function is used to measure ‘rhythmicity’ or periodic areas 

found in the signal (Liu, Hahn, Heldt & Coen,

correlation of a signal with a delayed version of itself, is useful for finding repeating 

patterns in a signal, such as determining the presence of periodic signals in complex 

signals.  The center of each peak in the autocorrelation result is determined by its moment 

center; the point which halves the area between zero

calculated with respect to the autocorrelation result of the previous calculation.  

closer these ratios are to integers, the higher the score that window of the E

In the case of a repeating pattern, such as seizure spikes, the autocorrelation 

results in regularly spaced peaks and 

times when the signal is not rhythmic, the autocorrelation results in irregul

troughs (Faul, Boylan, Connolly, Marnane & Lightbody

Figure 7. Autocorrelation result of non

Heldt & Coen, 1992). 
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The autocorrelation function is used to measure ‘rhythmicity’ or periodic areas 

Liu, Hahn, Heldt & Coen, 1992).  Autocorrelation, the cross

a signal with a delayed version of itself, is useful for finding repeating 

patterns in a signal, such as determining the presence of periodic signals in complex 

The center of each peak in the autocorrelation result is determined by its moment 

nter; the point which halves the area between zero-crossings.  Moment center ratios are 

calculated with respect to the autocorrelation result of the previous calculation.  

closer these ratios are to integers, the higher the score that window of the E

In the case of a repeating pattern, such as seizure spikes, the autocorrelation 

results in regularly spaced peaks and troughs as seen in Figure 7. During non

times when the signal is not rhythmic, the autocorrelation results in irregul

Faul, Boylan, Connolly, Marnane & Lightbody, 2005).   

 

. Autocorrelation result of non-seizure (a) and seizure (b) segments (

The autocorrelation function is used to measure ‘rhythmicity’ or periodic areas 

Autocorrelation, the cross-

a signal with a delayed version of itself, is useful for finding repeating 

patterns in a signal, such as determining the presence of periodic signals in complex 

The center of each peak in the autocorrelation result is determined by its moment 

Moment center ratios are 

calculated with respect to the autocorrelation result of the previous calculation.    The 

closer these ratios are to integers, the higher the score that window of the EEG receives. 

In the case of a repeating pattern, such as seizure spikes, the autocorrelation 

. During non-seizure 

times when the signal is not rhythmic, the autocorrelation results in irregular peaks and 

 

) segments (Liu, Hahn, 
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Regularity in peaks is the same as having a dominant frequency. In theory, the 

entropy of the autocorrelation function should be able to quantify how regular the peaks 

are and therefore the level of rhythmic in the original signal.  Regularity in peaks is the 

same as having a dominant frequency.    Autocorrelation is performed on 1 minute 

windows of EEG data and 16 second windows of simulated EEGs.  Low-pass filtering 

using the Remez filter for filtering 6-12 Hz of the EEG and simulated EEG was 

performed in order to locate semi-periodic behavior in the signals.  

Capturing Non-Linear Dynamic Properties of Epileptic Seizures.   

 

The central concept consists of the idea that seizures represent transitions from a 

chaotic (preictal) state to an abnormal/periodic (ictal) state and back to a normal 

(postical) state.   Very large biological populations have the potential for chaotic 

dynamics.  Most biological systems are too complex to be easily understood.  Largest 

lyapunov exponents are used to measure chaos-to-order-to chaos transitions (Wolf, Swift, 

Swinney & Vastano, 1985).  Lyapunov exponents will determine if points in a system 

will eventually diverge, converge or become a neutral fixed point.    This number, called 

the Lyapunov exponent ‘λ’, is useful for distinguishing among the various types of orbits. 

It works for discrete as well as continuous systems.  When λ > 0, the orbit is unstable and 

chaotic. The points in a time series, plotted as phase space diagrams that represent an 

orbit of the traversing points, no matter how close, will diverge to any arbitrary 

separation. The points and their time offset values are said to be unstable. This does not 

preclude any organization as a pattern may emerge.  As λ approaches 0, the orbit is a 

neutral fixed point (or an eventually fixed point).  A Lyapunov exponent of zero indicates 

that the system is in some sort of steady state mode.  A physical system with this 
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exponent is conservative. Take the case of two identical simple harmonic oscillators with 

different amplitudes. Because the frequency is independent of the amplitude, a phase 

portrait of the two oscillators would be a pair of concentric circles. 

The advantage to using the Lyapunov exponent’s method allows us to use a small 

representation of the population data (~15000 data points).  The disadvantage is that 

results depend critically on the choice of the initial points from the dataset. 

The following figure displays a patient’s EEG which captures pre-ictal, ictal, and 

post-ictal states over the time series covering 62-65 minutes.   

 

Figure 8. Channels 61 (black) and 1 (grey). Channel 1 is the reference electrode and 61 is 

the working electrode. 

The following diagrams depict EEG time series captured at 250 samples per 

second for 1 minute intervals.  Figures 9, 10, and 11, demonstrate phase space displays of 

pre-ictal, ictal, and post-ictal behavior, respectively.  
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Figure 9. Time Series: 62 – 63 minutes – pre-ictal time series. 

Lyapunov λ = 0.2274 

 

Figure 10. Time Series: 63 – 64 minutes - ictal time series. 

Lyapunov λ = 0.0772 
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Figure 11. Time Series: 64- 65 minutes – post-ictal time series. 

 Lyapunov λ = 0.1383 

 

Figure 10 displays phase space that occurs during the ictal period of the time series.  The 

Lyapunov λ value is dramatically decreased compared to the previous λ values and rise 

again as seen in Figure 11 when the time series moves into a post-ictal state. 

 

Phase Space Analysis 

 

Phase Space representations of the normal and abnormal states of seizure patient’s 

EEGs were taken in order to demonstrate limit cycle and chaotic behavior.   Nonlinear 

analyses have suggested that the seizure state may represent a transition from the normal 

EEG state to one of increased synchronous activity and that a more orderly state 

characterizes an epileptic seizure (Velazquez, Cortez, Carter & Wennberg, 2003).  Phase 

diagrams will demonstrate normal/abnormal brain states in order to display the normal 

EEG in the form of a chaotic attractor vs. the abnormal seizure EEG in the form of a limit 

cycle.  Plots of the EEG time series against a fixed time offset reveal the dynamics of the 
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EEG signal as the time series may converge, diverge or move in a period motion 

(Freeman, 1986). Time series offset values (n) were plotted for normal and seizure states, 

where the x, y, and z axis were plotted for EEG and simulated EEG analysis.  The 

selected offsets enable a clearer depiction of the chaotic attractors found in the normal 

EEG time series vs. the semi-periodic behavior found in the EEG of the seizure state. 

Power Spectral Density Analysis 

 

Power spectral density (PSD), or energy spectral density, is a general concept 

applied to a signal which may have physical dimensions such as power per Hz, or energy 

per Hz, etc. It is often called simply the spectrum of the signal. Due to the identified 

spatio-temporal dynamics of EEG signals, the PSD often exhibits a linearly decreasing 

behavior over log10 coordinates considering frequency and amplitude of PSD or spectral 

power. This is called in the literature “power law” or scale-free behavior (1/f
α
), where 

cognitive processing states varied by the calculated PSD linear regression values -α. 

Power law relation seen in Figure 12 spans the whole range of frequencies from 1 Hz to 

100 Hz.  Power law behavior is attributed to the brain structural connectivity and 

dynamical properties. 

The temporal power spectral densities (PSD) in coordinates of log power vs. 

log10 frequency often conform to power-law distributions (1/f
α
) with exponents α 

varying between 0 and 4 for human EEGs, as displayed in the following Figure 12. 

(Freeman, Holmes, West & Vanhatalo, 2006b).   
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Figure 12. The slope value corresponds to the “power law” or scale-free behavior (1/fα), 

where cognitive processing states varied by the slope -α. Alpha values of human EEGs 

during awake and sleep states have been found to be within -2 to -3 (Freeman, 2006a).  

EEG figures featuring PSD values for EEG data where alpha = -2.16 

 

The power spectral density (PSD) may often conform to a power-law distribution, 

by taking the linear regression of the PSD in coordinates of log power vs. log frequency 

(Freeman & Erwin, 2008). These findings are explained with a model of the neural 

source of the background activity in mutual excitation among pyramidal cells. The 

dendritic response of a population of interactive excitatory neurons to an impulse input is 

a rapid exponential rise and a slow exponential decay, which can be fitted with the sum 

of two exponential terms. When that function is convolved as the kernel with pulses from 

a Poisson process and summed, the resulting “brown” (1/f
2
) or “black “ (1/f

3
) noise 

conforms to the EEG time series and the PSD in rest and sleep states (Freeman & Zhai, 
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2009).  Linear regression ranges are selected within self-stabilized neural beta-gamma 

range (20-50 Hz) based on analysis of human EEG normal/abnormal states.   

Variations in the observed slope are attributed to changes in the level of the 

background activity that is homeostatically regulated by the refractory periods of the 

excitatory neurons. Departures in behavior from rest and sleep to action are accompanied 

by local peaks in the PSD, which manifest emergent nonrandom structure in the EEG.  

Awake and sleep states will have slope values within 2 and 3 in the beta-gamma range 

(Freeman & Zhai, 2009). 

The stability of the normal background activity is governed by a non-zero point 

attractor, by which the level is homeostatically regulated. The PSD values involve a 

range of values where PSD values are initially flat, then decay rapidly throughout the rest 

of the PSD display.  The location of the inflection frequency in PSD of EEG between 1 

Hz and 10 Hz, or delta-theta-alpha ranges, indicates typical values between 0.1/s and 10/s 

for prevailing steady state input levels (Freeman & Zhai, 2009). This is verified by 

simulating the PSD of the evoked activity in Figure 13 which show the inflection point as 

located above 10 Hz. 
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Figure 13. Simulated EEG of normal background activity, where alpha = -2.73. 

 

The PSD of the states of sleep, awake, seizure, and VNS dampened seizure conform to 

the power law relation, 1/f-α, where α = -3 when the patient is at rest, α = -3 to -2 during 

the awake state, α = -2 during cognitive tasks, whereas when α = -2, we have what’s 

referred to as brown noise, 1/f
2
, which is found to the PSD of the EEG in animals 

engaged in intentional behaviors (Freeman, 2006). This change also appears in pre-ictal 

EEG, so it might offer a clue to understanding the mechanisms of complex partial 

seizures and predicting their onsets (Freeman, Holmes, West & Vanhatalo, 2006).  The 

calculated PSD linear regression values during the seizure state approaches the 

theoretical limit of -4 (Freeman & Zhai, 2009). 

Entrainment of Mesoscopic Neuron Populations 

 

Another approach to analyzing the seizure state is to view seizures as the result of 

the progressive recruitment of brain sites in an abnormal hyper-synchronization.  Seizures 
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appear to be bifurcations of a neural network that involves progressive coupling of the 

focus with normal brain sites. Seizure activity is characterized by recurrent, short-term 

electrical discharges of the cerebral cortex that result in intermittent disturbances of brain 

function (Sackellares, Iasemidis, Shiau, Gilmore & Roper, 2000; Schelter et al., 2006). 

The state between seizures, known as interictal behavior, appears to have minor spiking 

activity.  In seizures of focal onset (focal seizures, partial seizures), the anatomical 

distribution of the interictal spikes varies, but spikes tend to occur most commonly in the 

epileptogenic zone and its connections. During the seizure, organized, semi-periodic 

electrical discharges develop in the epileptogenic zone and spread, within seconds, over 

widespread areas of cerebral cortex. Seizure discharges typically last seconds to minutes 

and is followed by the normal non-linear, chaotic neuron behavior that is captured 

through an EEG.   

Network of Coupled Oscillators 

 

Brain models have been created that exhibit epileptic seizures through a network 

of coupled oscillators that produce seizure like behavior by coupling periodic/abnormal 

oscillators to the rest of the network.  These models have been able to exhibit the 

disruption of the Correlation-Synchronization-Entrainment patterns observed prior to 

seizures (Tsakalis, Chakravarthy & Iasemidis, 2005).  This model is inspired by Freeman, 

Kozma, and Werbos (2001). Initially, Rossler-like oscillators with each oscillator i (i = 1, 

. . ., N) are constructed through the following equations:   
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where the intrinsic parameters α, β, γ, ω are chosen in the chaotic regime, e.g., 0.4, 0.33, 

5, 0.95, respectively. bi is a small constant bias term, different for each oscillator, which 

ensures that the origin is not an equilibrium point (in our examples, bi’s have “random” 

values in [−0.2, 0.2]). ϵ, ϵ’ are the generally asymmetric coupling strengths; in this 

example, ϵ = ϵ’. When the ϵ between two oscillators increases, their dynamical 

behaviors synchronize until they become nearly identical at high values of ϵ.  The value, 

uij produces internal feedback to the system, PI (Proportional Integral) compensates for 

network oscillator coupling: 

 

                          
}{),( *,,,, cPIkxxku jiIjiijji

I

ji −=−= ρ                                             (3) 

 

and c∗ is a threshold parameter (here taken as c∗ = 0.1).  The PII notation signifies that the 

considered PI feedback is part of the internal network of the “brain”. The estimation of 

the correlation is performed in an exponentially weighted fashion in order to simplify the 

model’s simulation: 
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      (4) 

 

The author used a time constant of 200 sec (a = 0.005) for his simulations. 
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These equations form the following Brain Network of coupled oscillators.  The 

connecting lines indicate non

Figure 13.  

Figure 13. Brain Emulator as a Network

 

 A sufficient PI value should be able to decorrelate adjoining oscillators in the network 

and preserve the chaotic behavior of the network.  If several oscillators overcome the 

destabilizing behavior of PI, the attempts to cancel t

coupling ε will not be reduced within the network and the network will turn “epileptic”

(Figure 14).  
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These equations form the following Brain Network of coupled oscillators.  The 

connecting lines indicate non-zero coupling between neighboring oscillators

. Brain Emulator as a Network of Coupled Oscillators 

A sufficient PI value should be able to decorrelate adjoining oscillators in the network 

and preserve the chaotic behavior of the network.  If several oscillators overcome the 

destabilizing behavior of PI, the attempts to cancel the effects of excessive diffusive 

will not be reduced within the network and the network will turn “epileptic”

                             (5) 

These equations form the following Brain Network of coupled oscillators.  The 

zero coupling between neighboring oscillators as seen in 

 

A sufficient PI value should be able to decorrelate adjoining oscillators in the network 

and preserve the chaotic behavior of the network.  If several oscillators overcome the 

he effects of excessive diffusive 

will not be reduced within the network and the network will turn “epileptic” 
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Figure 14. Internal feedback is reduced 10% from that of the “normal” brain (Tsakalis, 

Chakravarthy & Iasemidis, 2005). 

 

Adding additional feedback control mechanism to the previous equations enables “shock” 

therapy modeling in order to disrupt the signal from its seizure state.  A stimulation 

method is modeled to aid the PI value in decoupling the oscillators.  Chaos is restored 

(Figure 15)!  The Decoupling Control, which is inspired from adaptive control, records 

the output of the normal state of the brain to maintain the output of the signal through 

continuous monitoring of the signal. 
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Figure 15. Top display features 'restored' time series from seizure state.  The bottom 

display features the control input signal to block the entrainment of periodic oscillators to 

control the overall network (Tsakalis, Chakravarthy & Iasemidis, 2005). 

 

Additional analysis of the seizure prediction/classification algorithms is needed in order 

to compare the strengths/weaknesses of each approach.  Additionally, we utilize the KIV 

model which Tsakalis based his chaotic network approach in order to model 

normal/abnormal brain states. 
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CHAPTER 4: EEG SIMULATION USING THE KIV MODEL 

 

Nonlinear dynamics is the framework that is currently being pursued to explain 

the brain processes. Models based on Dynamic theory have been applied to several 

biological systems and it provides a better explanation of the phenomenon compared to 

the traditional connectionist and computational approaches (Bak, 1996; Van Gelder, 

1995).  Nonlinear Dynamic theory applied to brain modeling is not a completely new 

approach, but an existing approach in a new theoretical framework. It belongs to the new 

generation of the biologically plausible and dynamical connectionist models (Kozma, 

2007).  A model based on this approach, the K models are explained in section ‘K 

Models Overview’ of this chapter. The parameterization of the model to simulate EEG 

signals is discussed in Chapter 6, ‘KIV Parameterization’.   

 EEG analysis done by Freeman, Pritchard, Duke and others, characterizes the brain 

as a chaotic, nonlinear dynamic system. These properties help explain some of the 

underlying mechanisms of the brain (Pritchard & Duke, 1995; Skarda & Freeman, 1987). 

The following section provides an explanation of the nonlinear dynamics in the brain.  

 Brain as a Chaotic Nonlinear Dynamic System 

 

This section provides an explanation of why the brain is characterized as a 

“chaotic nonlinear dynamic system”. 

Brain as a Dynamic System:  A dynamic system is one whose state changes over 

time and is governed by an evolution rule, which captures the way the system changes 

with time. At a high level, the brain can be characterized as a system having different 

states like wake, sleep, cognitive, and pathological states. Intuitively, one can say that the 
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brain changes from one state to another over time. So the brain can be characterized as a 

dynamic system. The temperal evolutionary rule(s) can be described using differential 

equations. The behavior of a dynamic system such as the brain can be explained using 

attractors (Stam, 2005). Basic types of dynamic behavior include fixed point, limit cycle, 

and strange (chaotic) attractor, examples of which are shown in Figures 18, 21, and 23, 

respectively.  

Nonlinearity in the Brain: The support for characterization of the brain as a 

nonlinear system can be gleaned from the analysis of brain activity captured by EEG 

signals.  On a more general level, the complete functionality of the brain cannot be 

obtained by breaking it down into smaller parts and then combining the solution of each 

of those parts, which is a defining feature of nonlinear systems.   

Chaos in Brain: A dynamic approach to understanding the brain seems intuitive, 

whereas chaos in the brain is far from intuitive.  Nonlinearity and chaos go hand in hand 

and linear systems are never chaotic. Although there is much debate as to the precise 

description of chaos, a widely accepted property of a chaotic system is defined as 

“sensitivity to initial conditions” (Strogatz, 2000), which means that the slightest change 

to the initial settings of a system, over time will lead to a result that is far from the result 

obtained with original settings. The notion that the brain is sensitive to initial conditions 

flies in the face of the existing knowledge about the brain. The human brain is extremely 

robust. As an example, humans can recognize a face, even if is slightly different from 

what they have seen the first time. 

 Chaos in the brain doesn’t fit the usual definition and is not caused by sensitivity 

to initial conditions. What then, is the source of chaos in the brain? The underlying 
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mechanisms of the brain are not purely ordered like a computer, neither is it purely 

random (noisy). It is somewhere in between, made up of some structure and randomness 

(Erdi, 2008), which is why the brain is said to be on the “edge of chaos”. This property of 

the brain enables it to be robust and adapt to its environment. The randomness inherent in 

the brain is what makes it chaotic, not the sensitivity to initial conditions (Freeman, 

2000b). Skarda and Freeman proposed that the group behavior of the neurons produces 

chaos, which is essential for carrying out all the functions of the brain such as 

information processing, creation of memory and knowledge generation (Skarda & 

Freeman, 1987). 

K Models Overview 

 

In this section, the K models, which are used to model the chaotic and nonlinear 

dynamic nature of the brain, are described. The K models are biologically based 

hierarchical models which were designed by Dr. Freeman. The hierarchy consists of K0, 

KI, KII, KIII, and KIV in order of increasing complexity and are described in the 

following subsections. This model addresses some of the disadvantages of the traditional 

connectionist models.  

K0 set.  The interactions between groups of neurons produce the dynamics seen in 

the brain. Although an individual neuron is an indispensible component of the brain, the 

functioning of a single neuron is not enough to explain the complex behavior produced by 

the brain. Freeman, Kozma and others believe that the complex behavior of the brain can 

be expalined by the interations of the mesoscopic neuron populations. Hence the basic 

unit in K models, namely the K0 set, is not a single neuron, but represents a mesoscopic 
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neuron population (~104 neurons). This is one of the major differences between 

traditional connectionist models and the K models.  

The dynamics of the K0 set are governed by a point attractor. This means that, 

over time, a non-interacting population of neurons will converge to the point zero. The 

K0 set is the basic unit of the K models, upon which the rest of the hierarchy is based.  

Figure 16a shows the K0 set and Figure 18 is an example of a point attractor landscape.  

The  dynamics of the K0 set are given by the following second order ODE 

(ordinary differential equation):                  

                                   (6) 

where ‘a’ and ‘b’ are time constants determined based on physiological experiments, p(t) 

is the pulse density at time t and X(t) is the external input and I(t) is the external input at 

time t.   

Dendrites convert the axonal pulse they receive into a wave, which is later 

converted back into a pulse by the axon. This pulse-wave and wave-pulse is an essential 

function of the neurons and neuron populations. The pulse to wave transfer function is 

assumed to be linear, and the wave-pulse transfer function is nonlinear and is given by 

the following equation (Ilin & Kozma, 2006): 
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where v is the average wave density, p is the average pulse density and  qm is a constant 

whose value is between 1 and 14.   The asymmetric nature of equation 2 changes for 
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circle with an ‘e’ is the K0 set or node and ‘e’ stands for excitatory population. The arrow 

pointing toward the node is the input (received by the dendrites of a neuron) to the K0 set 

and the arrow pointing away from the node is the output axonal pulse of the K0 set. ‘+’ is 

used to indicate the input to the K0 set is excitatory and the effect of the output of the K0 

population is also excitatory in nature. The asymmetricity of the function depends on the 

value of the constant qm.  

 

                 a)      b) 

 

Figure 16. K0 set and nonlinear transfer function. a) The K0 set represents a population 

of neurons. b) The nonlinear transfer function Q(v) given by Eq. (7) (solid line) and its 

derivative (dashed line). The maximum of the derivative is shifted to the positive value of 

the average wave amplitude; qm = 5. (Ilin & Kozma, 2006). 
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The conversion from pulse density at excitatory synapses is expressed by a 

positive gain coefficient ke, and that at inhibitory synapses is expressed by a negative 

gain coefficient ki. The action of modulatory neurons is dependent on ke or ki.  The 

conversion of the sum of current density is described by a static nonlinear equation (7) in 

the form of a sigmoid curve that has a single parameter Qm specifying the slope and 

maximal asymptote of the curve (Freeman, 1979).  The shape of the curve Qm is 

determined experimentally from the pulse probability of cortical neurons (Eeckman & 

Freeman, 1991; Freeman, 1975), Figure 17.  

 

 

Figure 17.  The biologically derived sigmoid curve realting pulse density, p, to wave 

density, v (light trace) is asymmetric about its rest point (triangle).  The steepest point of 

the slope, dp/dv (dark trace), lies to the excitatory side of the rest point.  The steepness is 

determined be a parameter Qm, where curves are shown for Qm = 2 in a quiescent subject 
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and Qm = 6 in an aroused, motivated subject.  Avarage and maximal values in the bulb 

and pyriform cortex are 5 and 12 respectively (Eeckman, & Freeman, 1991). 

 

KI set.  The KI is made up of two neuron populations which are either excitatory 

(KIE) or inhibitory population (KII). The two populations are connected to each other and 

a numeric value called weight is assigned to each connection. The dynamics of KI are 

governed by a non-zero point attractor (Kozma, Aghazarian, Huntsberger, Tunstel & 

Freeman, 2007; Kozma & Freeman, 2003) (Figure 18). 

 

Figure 18. Point Attractor, one of the basic attractor types found in dynamical systems. 

(Kozma, 2003). 
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  Figures 19 shows the KIE and KII populations respectively.  Feedback is 

introduced in the KI  sets.  KI sets are also governed by point attractors.  The Point 

Attractor is one of the basic attractor types found in dynamical systems. The K0 and KI 

are governed by this type of attractor. K0 always converges to the point zero, whereas KI 

converges to a zero or non-zero point depending on the parameterization of KI (Kozma, 

2003).  There is only one type of interaction in the KI sets and the feedback is also either 

exitatory or inhibitory.   Figure 17a displays excitatory KI populations and inhibitory KI 

populations which are constructed by two interacting neuron populations. Generally, the 

top nodes receive the input and output is also read for the top node. Feedback is 

introduced in the KI  sets.  

 

a) 
b) 

 

Figure 19. a) Excitatory KI population and Inhibitory KI population are made up of two 

interacting neuron populations. Simple excitatory KIe set with two K0 units. KIe has a 

single parameter wee which represents the level of mutual excitation within the neural 

population b). 

 

A simple case of two interacting excitatory K0 sets are shown in Fig. 17b.  We 

assume that the pulse density of the first K0 set is transformed into the wave density by 

the nonlinear function Q(v) (Eq. (7)) and again into the pulse density by the linear 



37 

 

function, represented by the weight wee. The same holds for the second K0 set. The 

dynamics is given by the following two second order ODEs:  

�� 1 + α�� 1  + βy1 = βwee Q(y2),                                                                                             (8) 

�� 2 + α�� 2  + βy2 = βwee Q(y1). 

 

Here α = a+b, and β = ab. The equilibrium can be found by setting the derivatives to zero, 

which gives the following equations for the equilibrium values of y1 and y2: 

��
∗ = wee Q(��

∗),                                                                                                                  (9) 

��
∗ = wee Q(��

∗).  

 

We characterize the equilibria of Eq. (9) depending on gain parameter wee.  For small 

values of wee, there is a unique stable zero equilibrium. As we increase wee, we reach a 

value wLP when a limit point (LP) appears.  The zero equilibrium is stable until a 

threshold value of wee = wBP, which is a bifurcation point (transcritical bifurcation). 

Above wBP, the zero equilibrium becomes unstable (Ilin & Kozma, 2006).   

KII set. KII models the interactions between excitatory and inhibitory 

populations and is made up of interconnected KIE’s and KII’s (Figure 20). The feedback 

between the excitatory and inhibitory components produces periodic oscillations which 

are governed by a limit cycle attractor (Freeman, 2000a; Kozma, Aghazarian, 

Huntsberger, Tunstela & Freeman, 2007) (Figure 21). 
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Figure 20.  KII sets contain both excitatory and inhibitory feedback, which produces 

oscillatory behavior. 

There are four types of interactions (connections) that are possible in KII sets, 

namely excitatory-excitatory, excitatory-inhibitory, inhibitory-excitatory and inhibitory-

inhibitory. Each connection is assigned a weight. Hence, interactions withn a KII are 

described by four ODE’s.  
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Figure 21. The Limit Cycle, one of the basic attractors types found in dynamical systems 

(Kozma, 2003). 

 

KIII set. Multiple KII’s are connected together to produce a KIII set.  Delayed 

feedback connections are introduced in the KIII sets. The KIII set models sensory 

systems in the brain such as visual cortex, olfactory systems, and other brain regions. 

KIII architecture is based on the cortical colums and layers found in the brain. Each 

column can interact with other columns and the interactions between columns is through 

lateral connections (blue and pink lines in Figure 22).  Figure 22 shows a general 

architecture of the KIII set. The architecture can be changed by changing the number of 

layers (rows) and columns and also by changing the connectivity between them. The 

dashed lines in Figure 22 represent the delayed-feedback loops. 
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Figure 22.  KIII sets. Delayed feedback connections (dashed lines) and lateral weights 

(blue and pink lines) are introduced in the KIII sets (Kozma, & Freeman, 2003).  

 

 

 KIII sets are governed by a chaotic attractor, which are produced by the interactions 

between multiple oscillating KII components (Kozma, & Freeman, 2003); see Figure. 23.  

KIII is used to model various sensory systems in the brain such as the olfactory, visual, 

and auditory system.   
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Figure 23. Chaotic Attractor, yet another type of basic attractor type found in dynamical 

systems.  KIII’s and KIV’s are governed by chaotic attractors, which is also the kind of 

dynamics observed in healthy brains (Kozma, 2003). 

 

KIV model. The interactions between the various sensory systems are modeled 

in KIV sets. The KIV consists of multiple KIII’s, one for each sensory system needed in 

the model and a KII or KIII that interacts with each of the KIII’s.  Knowledge, memory 

and intentional behavior can be modeled using the KIV (Freeman, 2000; Kozma, 

Aghazarian, Huntsberger, Tunstela & Freeman, 2007).  
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The KIV used in this dissertation has two KIII’s and a KII. One KIII is for the 

somatosensory cortex and the other for the hippocampus. The KII is used to model the 

entorhinal cortex/amygdala. In the human brain, the cortex processes sensory input, while 

the hippocampus plays an essential part in memory, learning and navigation. The cortex 

is also associated with several brain disorders such as epilepsy, schizophrenia, 

Alzheimers etc. One of the functions of the amygdala is to integrate the sensory and 

spatial information with the internal motivation/needs to reach a decision. It is also 

essential for long term memory formation.  

The architecture of the KIV is shown in Figure 24. The  KIII’s architecture 

consists of three layers. Apart from the lateral weights between the KII’s within each 

KIII, lateral connections, WA, WB and WC are introduced, which connect the three 

components somatosensory cortex, hippocampus and entorhinal cortex/amygdala of the 

KIV as shown in Figure 24. The signals from the somatosensory cortex KIII and the 

hippocampus KIII are integrated by the KII entorhinal cortex/amygdala (Kozma & 

Freeman, 2003; Myers & Kozma, 2007). The KIV used in this dissertation models the 

dynamics of somatosensory cortex, hippocampus and entorhinal cortex/amygdala, in 

order to simulate the electrical activity EEG during pathological states of the brain, as 

seen in Figure 25.  
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Figure 24. The KIV model of the limbic system, consisting of two KIII’s and one KII 

(Myers et al, 2008). 

 

 

Figure 25.  Schematic illustration of the components of the limbic system 
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There are three layers (L1, L2, L3) of KIIs in both KIII networks.   There is one layer in 

the KII network (L1).  The top KII nodes of the 3
rd 

layer of both KIII networks and the 

top KII nodes of the KII network are shown to illustrate how the 3 networks are updated, 

Figure 26.    

 

Figure 26. The following KIV schematic features how KIII and KII networks are updated 

throughout the KIV network. 

 Clink, HLink, and ALink consists of a matrix of (12, 1) top KII nodes.  The values M, N, 

R equal the matrix size of 12.  The term ‘i’ refers to the ‘ith’ node in the 3 matrices.  WA, 

WB, and WC are external weight values. The KIV network features matrices to be the 

same size, therefore the weight values are the same, such as WA=WB=WC=0.325.  For 

each time step each node in the KIII 3
rd

 layer is calculated, and then all the nodes in KIII 
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are updated. The KII network is updated by simple matrix addition between the KIII 

network, multiplied by the external weights, WB and WC, i.e.: 

                 ALink = (WB x CLink) + (WC x HLink)                                            (9) 

HLink = (WA x CLink) + (WC x ALink)                                          (10) 

Clink =  (WA x HLink) + (WB x ALink)                                          (11) 

All three matrices update the nodes in the KIV network via the 2
nd

 ODE. 

The external weights are bidirectional, as indicated by the double arrow heads in 

Figure 24, with the same value and therefore enable feedback between the three 

networks.  The following table lists the parameters of the external and internal weight of 

the KIV. 

 

Table 1 

Network of Coupled Oscillators constants for KIV and Tsakilis networks 

WA=

WB=

WC 

KIII parameters 

(Hippocampus) 

KIII parameters 

(Sensory Cortex) 

KII parameters 

(Entorhinal 

Cortex/ 

Amygdala) 

KIII 

Feed-

forward 

weights 

KIII 

Delayed 

Feed-

back 

weights 

KIV 2nd 

ODE 

constant 

Pulse 

wave 

density 

values 

Tsakilis 2nd ODE 

constants 

0.325 kii1=[0.50, 

2.20, 2.20, 

2.50] 

kii2=[0.06, 

2.25, 2.23, 

2.40] 

kii3=[0.30, 

2.30, 2.00, 

2.36] 

kii4=[0.05, 2.20, 

2.20, 2.50] 

kii5=[0.06, 2.25, 

2.23, 2.50] 

kii6=[0.30, 2.00, 

2.10, 2.25] 

kii=[2.00, 1.50, 

2.00, 1.00]  

[0.30, 

0.50, 

0.50]  

[0.60,     

-0.50, 

0.50]  

a= .22                          

b=.72 

Qm= 

1-14       

α=0.40             

β=0.33            

γ=5.00           

ω=0.95 

 

KIII parameterization, including feed-forward and delayed feedback connection 

weights that join KII objects within the KIII, enables normal background activations to 
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occur in a chaotic manner.  KII parameters provide a periodic signal output, until external 

weighting (WA/WB/WC) between the two KIII objects and KII object bring the system 

to output a chaotic signal.  KIV 2
nd

 ODE rate constant values, a and b from Eq. 6 have 

been determined experimentally a = 0.22 ms−1 and b = 0.72 ms−1 (Kozma & Freeman, 

2003).  The value of constant qm varies between 1 and 14 for different types of neural 

populations and for different states of the animal in sleep or being awake and motivated 

(Ilin & Kozma, 2006).  Tsakalis 2
nd

 ODE constant values from Eq, 1-2 (Tsakalis, 

Chakravarthy & Iasemidis, 2005) have been determined to enable their Rossler oscillator 

construction to maintain a chaotic state of output, as opposed to the KIV rate constant 

values which enable the KIV to produce stronger frequency ranges around 40 Hz.  A 

schematic of KIV parameterization values are displayed in Figure 27. 

The KIV is a chaotic dynamic memory model which encodes sensory information 

in the form of periodic spatial-temporal oscillations of non-linear processing elements. 

The amygdala is linked with both KIIIs as shown in Figure 27 with some weighted 

matrix. With proper weight selection the KIV neural network can maintain some non-

convergent chaotic oscillations among all the components of the system. The activations 

from Hippocampus and Cortical KIII’s are transferred between them through connection 

weight matrix WA. The activations between Hippocampus and Amygdala are passed 
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Figure 27.  Schematic of KIV model with external and internal weights 

 

through weighted matrix WB. Finally, the activations between Cortex and Amygdala are 

passed through weight matrix WC, as seen in Figure 27. 

The internal weights of the KIII and external weights between the KIII and KII 

subcomponents provide the manner in which we can model various states of electrical 

neuronal activity found in a human EEG. Through this model, we can capture those 

attributes of abnormal/normal EEG data to provide further understanding of the healthy 

brain development.  The output is read from the top KII nodes of the bottom most layers 
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in the KIV. Three outputs, one each from cortex, hippocampus and amygdala are 

obtained. The K models are implemented using MatLab.  An iterative approach called 

Runge-Kutta method is used for the approximation of the solution of ordinary differential 

equations. The sampling rate is set at 0.5ms, in order to capture output with sufficient 

time resolution.  
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CHAPTER 5: KIII SIMULATED SEIZURES 

 

 

  Freeman’s analysis of electrical stimulation of the lateral olfactory tract (LOT) 

has been found to induce an epileptiform seizure in the prepyriform cortex (PC) of cats, 

rats and rabbits (Freeman, 1962). We will initially develop the same simulation of seizure 

behavior described in Freeman’s work (Freeman, 1972) using the KIII model to capture 

the electrophysiology of stimulated induced seizures. 

     As the complex sensory dynamics has been observed first in the olfactory bulb, 

early KIII sets mimic the architecture of the olfactory system (Chang & Freeman, 1998; 

Kozma & Freeman, 2003). Each layer is a distributed KII set, which consists of 

interacting neural populations.  The simplified KIII set shown here consists of 3 layers of 

distributed KII sets corresponding to different anatomical parts of the brain: the olfactory 

bulb (OB), Anterior Olfactory Nucleus (AON), and Prepyriform Cortex (PC).  Input 

signals enter OB through the glomeruli layer (top layer in Figure 28). Excitatory elements 

of the OB layer correspond to the populations of the secondary dendrites of the mitral 

cells. The inhibitory populations are the granule cells.  Freeman has modeled mutual 

excitation between the mitral cells and mutual inhibition between the granule cells 

(Chang & Freeman, 1998). AON consists of excitatory pyramidal and inhibitory stellate 

cells. OB sends projections to AON and PC. They, in turn, send feedback projections, as 

shown in Figure 28. The delays in the feedback tract are greater than in other parts of the 

olfactory system, due to the length of the tract.  Therefore, feedback links are modeled by 

delayed connections as in Figure 28 (Freeman, Chang, Burke, Rose & Badler, 1997).  

The two main cell types of excitatory and inhibitory cells in the prepyriform cortex are 
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the superficial pyramidal cell, which is excitatory, and the granule or stellate cell, which 

is excited by the former and inhibits it. 

     The KIII model generates chaotic activity with a variety of parameter settings as 

seen in each layer of the KII, Figure 29.  Certain parameter aspects appear to be critical. 

In each KII set, the strength of mutual inhibition must exceed that of mutual excitation 

(kii > kee) (Freeman, 1986).    By itself, the KIIOB set is capable only of a steady state 

activity ('DC') or oscillation at one frequency, not of chaotic activity.  Coupling of the 

KIIOB set with the KIIAON set results in multi–frequency oscillation that repeats a complex 

pattern about every 0.3 s. Introduction of the KIIPC set to attain the KIII level 

deregularizes the 3/s activity (Freeman, 1986). 

 

 

Figure 28. Simplified KIII system and its relationship with the anatomy of the olfactory 

system. Olfactory Bulb (OB), Anterior Olfactory Nucleus (AON), Prepyriform Cortex 

(PC). Black and white circles: inhibitory and excitatory populations, respectively. 
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Figure 29.  KIII model output of the background EEG as seen in the Olfactory Bulb 

(OB), Anterior Olfactory Nucleus (AON), Prepyriform Cortex (PC). 

Parameterization of the KIII model to output seizure behavior is accomplished in 

the following manner.  Initially, feedback is decreased from KIIOB to KIIPC and KIIAON to 

KIIPC. Next, feedback is decreased from the KIIPC to KIIAON.  Finally, feedback is 

increased from KIIAON to KIIOB.  The directions of change that are effective serve to 

reduce the activity of excitatory elements and to increase that of inhibitory elements and 

produce simulated EEG activity at the 3/s (Figure 31 as seen in the literature in Figure 

30) (Freeman, 1986).   
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Figure 30. Examples of 2–s time segments of EEGs recorded from a rat during a seizure, 

comparing these with the outputs of the KIII model (Freeman, 1986). 
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Figure 31. KIII model output of the background EEG to a 3/s spike train resembling the 

seizure as seen in the Olfactory Bulb (OB), Anterior Olfactory Nucleus (AON), 

Prepyriform Cortex (PC) caused by the reduction of the activity of excitatory elements 

and the  increasing of inhibitory elements within the KIII. 

 

Runaway inhibitory neurons are not caused by the failure of inhibition to control 

runaway excitation but in the failure of the afferent excitatory synapses to maintain 

symmetry that leaves the inhibitory interneurons in a hyperexcited and unstable condition 

(Freeman, 1986).   

     Several statistical properties are employed to characterize the KIII model as a 

model for normal EEG behavior and petit-mal seizures (Freeman, 1972).  Power spectral 

density (PSD), exhibits a linearly decreasing behavior over log-log10 coordinates 

considering frequency and amplitude of PSD or spectral power, as seen in Figures 32 and 

33.     
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Figure 32. Power Spectral Density display of the KIII model.  Log10 graph exhibits 

strong log power around 20 Hz.   

 

Linear regression calculations provide a slope of the PSD display of 2.75.  The slope 

value corresponds to the “power law” or scale-free behavior (1/f
α
), where cognitive 

processing states varied by the slope -α. Alpha values of Human EEGs during awake and 

sleep states have been found to be within -2 to -3 (Freeman, Holmes, West & Vanhatalo, 

2006). 
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Figure 33. Power Spectral Density display of the KIII model during a simulated seizure.  

Log10 graph exhibits strong log power around 3 Hz.  Linear regression calculations 

provide a slope of the PSD display of 3.98.   

 

The calculated PSD linear regression values during the seizure state approaches the 

theoretical limit of less than -4 (Freeman & Zhai, 2009).    

 

Autocorrelation displays of the KIII network during the simulated seizure state exhibit 

monotonously decreasing behavior, indicative of semi-periodic behavior (Wilrich, 2004) 

(Figure 34). 



56 

 

 

Figure 34. Autocorrelation of KIII simulated seizure signal. 

 

 

Phase diagrams of the KIII seizure state exhibit semi-periodic behavior as the signal is 

displayed as a time series offset of twenty points from the original time series.  We see in 

Figure 35 that the signal moves into an elliptical orbit during the simulated seizure event. 
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Figure 35. Phase diagram of the KIII simulated seizure state. 

      

 

 In terms of modeling global cortical seizure states, it is noted that spikes seen in 

the prepyriform cortex suggest that seizure activity has been propagated into other brain 

regions by the feedback connections from those other parts of the limbic system. They 

are subject to analysis and simulation with non–linear dynamics (Freeman, 1972).  We 

will utilize the seizure parameterized KIII and incorporate this model into the KIV model 

to demonstrate seizure propagation to other parts of the limbic system.  
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CHAPTER 6: A MODEL FOR BRAIN PATHOLOGIES  

 

Epilepsy Modeling 

Several neural network models have been developed in modeling the bistable 

states of normal/abnormal brain behavior: an interictal one characterized by a normal, 

apparently random, steady-state of ongoing activity, and another one that is characterized 

by the paroxysmal occurrence of a synchronous oscillations (seizure).  Lopes da Dilva et 

al. (2003) developed a model of thalamic and thalamocortical networks in order to 

demonstrate the behavior of populations of interacting neurons lumped together.  In his 

experimentation, he illustrates the two brain states through the displays of ‘normal’ and 

‘seizure’ attractors.  The model consists of processing three inputs: a one glutamatergic 

(AMPA) and two γ-aminobutyric acid (GABA)ergic, with the corresponding synaptic 

transfer functions.  The summed activity is the input to a nonlinear transfer function that 

represents the generation of impulses, including the low-threshold spikes.  Stam and 

Pritchard (1999) applied nonlinear cross prediction (NLCP), to investigate if polymorphic 

delta activity (PDA) and frontal intermittent rhythmic delta activity (FIRDA) reflect 

linear or nonlinear brain dynamics. These dynamical properties of PDA and FIRDA 

could be reproduced by the Lopes da Silva model. PDA and FIRDA reflect a chaotic 

attractor and a limit cycle attractor, of the normal/abnormal brain states respectively, 

perturbed by dynamical noise.   Another model based on “lumped’’ or ‘‘mean field’’ 

neural models features corticothalamic modeling which has been based on the evolution 

of several dynamical variables within each of these populations. The variables represent 

the local mean value of a physiological process at position r in these neural systems, 

averaged over a small patch (~0.3 mm) of surrounding neuropil (Breakspear et al., 2006).  
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When the coupling between cortical to thalamic increases, feedback increases, whereas 

the model exhibits tonic-clonic or absence seizure effects.  Models of corticothalamic 

dynamics have been developed that reproduces and unifies many features of EEGs, 

including the discrete spectral peaks in the slow wave, ‘delta’, ‘theta’, ‘alpha’, and ‘beta’ 

bands, seen in waking and sleeping states as well as  generalized epilepsies (Robinson et 

al., 2003).  Mean-field equations enabled the modeling of corticothalamic interactions.    

Takeshita, Sato & Bahar (2007) models synchronized neural activity between two 

neurons to demonstrate seizure activity through the increase of extracellular potassium 

concentration which has been observed during epileptiform activity.  In doing so, the 

model exhibits limit cycle behavior.  The addition of noise in to the model enables noise-

induced transitions between ‘‘in-phase’’ and ‘‘antiphase’’ network activities, analogous 

to the case of intermittent seizure activity. Additional conductance-based neuron 

modeling occurs in the model by Frohlich, Sejnowski & Bazhenov (2010).  Both 

pyramidal cells (PYs) and fast-spiking inhibitory interneurons (INs) were modeled as 

two-compartment, conductance based neurons using the classic Hodgkin-Huxley form for 

ionic currents.  The network used in this study consisted of 200 PYs and 40 INs. The 

network included recurrent excitatory connection between PYs and recurrent feedback 

inhibition.   Prolonged perturbation over several seconds caused sufficiently elevated 

potassium levels thereby preventing the network from returning to the normal 

physiological state and moving into clonic activity. 

Tsakalis and Chakravarthy (Chakravarthy, Sabesan, Iasemidis & Tsakalis, 2007; 

Takeshita, Sato & Bahar, 2005) developed a neural mass model, with an internal 

feedback mechanism to maintain synchronous behavior within normal levels despite 
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elevated coupling. Normal internal feedback quickly regulates an abnormally high 

coupling between the neural populations, whereas pathological internal feedback can lead 

to hypersynchronization and the appearance of seizure-like high amplitude oscillations. 

Feedback decoupling is introduced as a robust seizure control strategy. An external 

feedback decoupling controller is introduced to maintain normal synchronous behavior.  

Other internal feedback models featured closed-loop feedback control systems in 

epileptic seizures combining methods from seizure prediction and deep brain stimulation 

(Good, 2009).  Periodic stimulation was also performed, with a reduction of seizure 

frequency in 33% of six rat modeling instances.  Autoregressive modeling and neural 

network based modeling techniques are used to model and simulate 

electroencephalogram (EEG) signals of normal/abnormal states (Kannathal, 2006).  

Chaotic invariants like correlation dimension (CD), largest Lyapunov exponent (lambda1, 

Hurst exponent (H), and Kolmogorov entropy (K) are used to characterize the dynamical 

properties of the actual and modeled signals. Additional neural network models features 

functional coupling between cerebral structures through coupling parameters in the model 

(Wendling, 2001).  Seizure activity can be classified on the basis of interactions between 

medial and lateral neocortical structures. 

Cognitive processing models have been developed of the hippocampal region in 

order to demonstrate when a subpopulation of neurons achieves and maintains a given 

spatiotemporal pattern, or a given “relatedness in activity,” and which as a consequence 

allows for the identification of a relation between that pattern and an external event.  

Representations are transient because neuron firing typically is maintained in one 

spatiotemporal pattern for only hundreds to thousands of milliseconds (restated, the 
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duration of an identifiable spatiotemporal pattern is typically hundreds to thousands of 

milliseconds), unless we consider pathological conditions, e.g., rhythmic, cyclical firing 

characteristic of epilepsy (Berger, Song, Chan & Marmarelis, 2010).  In the case of brain 

pathologies such as epilepsy, the brain model would exhibit the low frequency, high 

amplitude of the seizure state. 

Initial Seizure Modeling 

 

We modify the activity in the KIV model by adjusting the weight connections 

between the cortex, hippocampus, and amygdala. A small perturbation in initial 

conditions can greatly affect the evolution of chaotic systems through time, but once 

those conditions are established, the future of a chaotic system is just as deterministic as a 

non-chaotic system (Kozma, 2003).  By introducing a greater bias to the KII signal we 

can cause the signal to change its chaotic nature. 

Figure 36 displays the basal state A with high dimensional oscillations for a healthy 

patient. The Lyapunov exponent is 0.10, showing well-developed chaos. Figure 37 

exhibits state B with increase inhibitory connection weights. This state simulates epileptic 

conditions. The trajectory becomes less chaotic, and the Lyapunov exponent is 0.02. 

Figure 38 shows the case of simulated electrical external treatment, when highly chaotic 

behavior is restored in the model by applying external noisy bias. This is called state C. 

The calculated Lyapunov exponent is 0.12 indicating well-developed chaos. State C is 

similar to the conditions that external stimulation treatment induces on the EEG activity 

of the seizure patient. Namely, it forces the system back to an average system state 

(Myers & Kozma, 2007). 
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Figure 36. Simulations with KIV model in the basal normal state A.  The figure is return 

plot in the time-delayed phase space. 

 

Figure 37. Simulations with KIV model in the simulated seizure state B. 

 

Figure 38. Simulations with KIV model in the simulated VNS treatment state C.  Higher 

complexity chaotic state is restored 
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KIV Parameterization 

The goal of utilizing the KIV in this study is to have the model exhibit normal 

‘chaotic’ EEG behavior, then transition to abnormal semi-perioidic behavior as displayed 

on EEGs exhibiting seziure type behavior.  Additionally, the true strength of the KIV 

model is not only its capability of exhibiting non-linear dynamic behavior, but to 

demonstrate how abnormal brain pathologies such as how seizure behavior can be 

reduced or nullified via external input techniques into the model.  In this manner, the KIV 

can act as a test bed for new electrical stimulation titration methods before those methods 

are tested on animals and eventually humans.  Therefore the KIV must exhibit a 

‘restoration’ state of transitioning back from semi-periodic behavior to normal chaotic 

behavior.  Table 2 features the internal and external KIV network parameters in used to 

create the ‘normal’, ‘seziure’, and ‘restore’ states. 

 

Table 2 

KIV Parameterization for normal->seizure->restore states 

State 
WA/WB/

WC 

KIII Feed-forward /Delayed 

Feed-back weights 

External Input   

into KIV via BSI 

(KII) Internal 

Parameters  
 

‘normal’ 

 

0.325 

 

[0.30, 0.50, 0.50, 0.50, -0.50, 0.60] 

 

 

‘seizure’ 

 

5.0 

 

[0.30, 0.20, 0.20, 0.30, -0.50, 10.0] 

 

 

‘seizure->restored’ 

 

5.0 

 

[0.30, 0.20, 0.20, 0.30, -0.50, 10.0] 

 

[ 2.0,  1.5,  2.0,  1.0]   
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The parameters used in the KIV for normal EEG modeling are the external lateral 

weighting between the three objects (WA, WB and WC) which were reduced so that each 

object (the two KIIIs and the single KII) could produce their respective signal ouptut with 

some small degree of influence from the rest of the network in order for the KIV to 

exhibit the chaotic normal state as seen in the human and simulated EEG time series 

(Figures 39 and 40). In order to exhibit the ‘normal’ chaotic state of human EEGs, the 

KIV model was adjusted to exhibit the same ‘noisy’ attributes through the input additive 

noise throughout the network (Kozma, 2003). 

Biological systems exhibit both low-dimensional and high-dimensional chaotic 

states where both states coexist, and are in perpetual transition between the two extremes 

(Kaneko, 1990; Tsuda, 1996).  Using the architecture of the KIII, the additive noise is 

implemented to homeostatic regulation of the network within the chaotic attractor regime.  

In response to external stimulation, the behavior of the signal changes can switch from 

periodic, quasiperiodic, or aperiodic oscillations to chaotic attractors and vice versa.  The 

additive noise level prevents the dynamics from collapsing to a fixed point, and the 

system exhibits a nontrivial oscillation (Kozma, 2003).  More generally, additive noise in 

the KIII model increases oscillations in the gamma band, from 20 Hz to about 60 Hz, 

where this frequency band is found in normal cognitive processing EEG attributes 

(Freeman, 2000a). 
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Figure 39. EEG time series featuring ‘normal’ EEG behavior. 

 

Figure 40. Simulated EEG time series featuring ‘normal’ EEG behavior. 

 

In order to simulate the epileptogenesis of a localized group of abnormal firings 

of neurons, the  lateral weights between the  KII networks within a KIII network are 

modifed as discussed in section ‘KIII Simulated Seizures’.  In order for this signal to 
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propogate throughout the KIV network and into the other objects, the coupling or lateral 

weights between the networks must be increased.  Therefore, the feedback that gets 

updated into the other networks causes a signal stratification within the KIV network, 

producing a higher amplitude and semi-periodic signal.  The signal is read out from the 

bottom KII network which represents the neurological equivalent of the amygdala.  All 

the nodes/neurons within the KII network produce synchronous producing signals, i.e., 

each of the nodes/neurons mirror each others signals.  This output exhibits the 

phenomenum of entrainment found in seizure behavior. 

The transition of ‘normal’ to ‘seizure’ states is performed by having the KIV 

initially increase the lateral weights that couple the KIV objects together, and update the 

internal KII object at a given time period, as seen in human EEG compared to simulated 

EEG (Figure  41).   



67 

 

 

Figure 41. KIV parameterization of seziure state through feed-forward and delayed 

feedback changes.  Additionally, External weight parameters, WA/WB/WC have been 

increased to tightly couple the three network oscillators. 

 

The ‘seizure’ state would end when the KIV network reduces the lateral weights 

to its orginal low weighting and update the the intenal KII object after another set time.  

‘Random’ seizure events would occur by invoking these seizure parameters utilizing 

random time periods, in order to mimick the seizure event in human EEG seen in Figure 

42 and demonstrated in Figure 43. 
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Figure 42. EEG figures depict a seizure event causing entrainment of two disparate 

neuron populations.  

 

Figure 43. Simulated EEG figures depict a seizure event causing entrainment of two 

disparate neuron populations. 
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EEG and Simulated EEG PSD Analysis 

       PSD analysis found in Figure 44 (a-d), features PSD displays of EEG and 

simulated EEG time series, where linear regression was performed in order to find the 

slope of the PSD values.  The slope, -α corresponds to the alpha value in 1/f
α
.  Simulated 

EEG PSD alpha values are in the same range of normal EEGs (2-3) and seizure state 

EEGs (< 4). 

   

 

 
(a) 
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(b) 

 

 
(c) 
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(d) 

 

Figure 44. EEG figures featuring PSD values for EEG data where alpha = -2.16 (a) and a 

seizure event, where alpha = -3.68 (b).  Simulated EEG of normal, where alpha = -2.73 

(c) and seizure state, where alpha = -3.88 (d).  

 

 

 

The PSDs of four human patients EEGs were analyzed to confirm the differing 

alpha values found between the normal and seizure states, as seen in Table 3.  Alpha 

values collected from the slope of the log10 values confirmed the ranges for 

normal/seizure states, where ��   and  
� denote the average and standard deviation of α, 

respectively.  The PSD values found during seizure activity exhibited high power in both 

the low and high theta ranges, corresponding to the 3/s wave that dominated the EEG 

(Freeman, Holmes, West & Vanhatalo, 2006).   

Five simulated patients are constructed through the KIV by varying the levels of 

noise throughout the KIV by 5%, whereas patient A1 is a KIV with full input noise, and 
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patient A5 has 20% less noise than A1.  These simulated ‘patient’ EEGs illustrate how 

noise affects the alpha values collected from their respective EEGs. Additionally, the 

KIV normal and seizure state exhibited the same alpha value range, as seen in Table 3.   

Table 3 

 

Power law exponent (-α) of the PSD regression function (1/f
α
) Human EEG Data 

 

 
 Table 4 

 

Power law exponent (-α) of the PSD regression function (1/f
-α

) Simulated EEG using KIV 

Model 
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The simulation using noise in the KIV requires temporal filtering to give 1/f 

amplitude spectra of temporal frequencies.  This method of simulation is based on the 

premise that EEG activity is due to near-white noise generated by immense numbers of 

interacting pyramidal cells, whose activity episodically undergoes transient increases in 

spatial coherence (Freeman, 2006).  Noteworthy are the steepened slope of 1/f PSD in the 

seizure state compared with the normal EEG state (Figure 44a), which is simulated in the 

KIV model (Figure 44c). 

       PSD values found during the EEG time series and the simulated EEG time series 

exhibit low standard deviation during the seizure states per patient.  This activity may be 

due to the entrainment of large scale neural population whose power per frequency is 

limited to the theta range (Figure 44b – human EEG, Figure 44d – simulated EEG).  High 

theta activity causes the slope of the PSD to rise sharply, and diminishes any other brain 

activity state, i.e., the carrier wave in the rest state, active state and sleep state which 

seems to be diminished or lost during the seizure ((Freeman, Holmes, West & Vanhatalo, 

2006).   

    The role of noise in the KIV is illustrated in Table 3, whereas the lessening of 

noise from patient A1 to A5 seems to increase the PSD alpha values from the normal to 

abnormal KIV time series.  The rise of PSD values found in the theta frequency bands of 

3-8 Hz causes the slope of the PSD to rise sharply, causing the higher frequency bands to 

diminish due to the reduction of noise in the system, and therefore moving the system 

into a lower dimension chaotic state (Kozma, 2003).   High standard deviations of the 

slope of the alpha values are maintained during the simulated normal states, but diminish 

as noise is reduced from the model.  Conversely, lower standard deviation values are 
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found during the seizure state, increasing as noise is removed from the network, but 

within a much smaller range. 

     The PSD in the normal state of human and simulated EEG conforms roughly to 

1/f having a slope near –2 (Figure 44a and c).  We propose that the normal neural activity 

manifests a process of self-organized criticality, in which the mean firing rates of neurons 

are held at a critical value throughout the cortex, homeostatically stabilized locally by 

their thresholds and refractory periods (Freeman, 2004). 

     The onset of seizures is characterized by high amplitude slow waves and a shift in 

the PSD nearer to 1/f with a slope near –4 and loss of the peaks in PSD in the classical 

ranges (beta – gamma frequency ranges) (Figure 44b and d). The seizures were 

characterized by high amplitude waves at 3/s showing that the normal shared waveform 

(the carrier wave in the normal state, i.e., beta–gamma ranges) was diminished or lost 

during the seizure. The PSD during seizure likewise often differed sharply from the 1/f 

form of the PSD in the normal states with high power in both the low and high theta 

ranges, corresponding to the 3/s wave that dominated the EEG (Freeman, 2006).   We 

attribute these properties to sustained loss of large-scale synaptic integration (Varela et al, 

2001) that normally smoothes by cooperative interactions the local spatial variations in 

activity that arise through competitive inhibition and prevents breakdown of large-scale 

organization of neocortex (Freeman, Holmes, West & Vanhatalo, 2006).  When 

interactions among inhibitory neurons rose to a high intensity with a deficit of excitation, 

an instability emerged in which by random fluctuations some neurons increased their 

activity, inhibited their neighbors, and became more excited in regenerative feedback that 

produced a self-limited explosive discharge of half the population and an inhibitory post-
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synaptic potential in the excitatory neurons to which they projected (Freeman, Holmes, 

West  & Vanhatalo, 2006).  The seizure states are departures from this sequence into 

diminished global integration by sustained loss of long-range correlated activity, initially 

with loss of spectral peaks in the PSD, followed by explosive growth of local activity 

(Freeman, Holmes, West & Vanhatalo, 2006). 

Autocorrelation diagrams depicted in Figure 45(a-d) show the same periodic and 

non-periodic behavior between seizure and non-seizure states of the simulated EEG.   

 

(a) 
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(b) 

 

 

(c) 
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(d) 

Figure 45.  EEG figures featuring autocorrelation diagrams for EEG data where the 

normal chaotic state is exhibited in the diagram (a) and a seizure event (b), depicts 

periodic activity.  Simulated EEG of normal, where chaotic values are depicted (c) and 

the simulated EEG shows periodic activity (d). 

Phase diagrams displayed in Figure 46(a-d) depict the chaotic attractors found in normal 

EEG and simulated EEG as well as limit cycles found in the EEG and simulated EEGs of 

the seizure state. 
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(a) 

 

(b) 
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(c) 

 

(d) 

Figure 46. EEG figures featuring phase diagrams values for EEG data where the normal 

chaotic attractors are exhibited in the diagram (a) and a seizure event depicts a limit cycle 

(b).  Simulated EEG of normal, where chaotic attractors are depicted (c) and seizure state, 

exhibits the same limit cycle attributes (d). 



80 

 

 

CHAPTER 7: SEIZURE REDUCTION IN THE KIV MODEL 

 

The ‘seizure to restore’ state is accomplished through the input of Brain 

Stimulator Interface (BSI) object.  This object is a modified KII object which enables the 

restoration of the KIV seizure state back to its normal chaotic attractor output. The de-

synchronizing external signal is a KII signal with the original node values.  In this 

manner, we are adding a KII network to the KIV network to overcome the semi-periodic 

firings of an ‘abnormal firing’ KII network due to runaway inhibitory neuron 

hyperexcitation (Figure 47).  The modified KII object also consists of an amplitude 

reduction signal which is a sample of the seizure state time period and increase the values 

by 1%.  This sample is subtracted from the the seizure signal. The BSI added input and 

the amplitude reduction sampling signal restore the signal back to its normal state (Table 

2, ‘seizure->restore’ state) (Figure 48).  The external signal is comprised of two input 

matrices that break the entrainment of the nodes within the KII and reduce the overall 

amplitude of the signal.    This technique mirrors the approach from (Tsakalis, 

Chakravarthy & Iasemidis, 2005) Decoupling Control mechanism.  Additionally, the 

theory of superposition applies in amplifying/reducing signals in restoring the seizure 

state back to its normal state.  As found in the literature, low-frequency pulse trains 

produced a hyperexcited state of the seizure state (Lesser, 2008) as well as a high 

frequency stimulation train (Betram, 2007).  It is through a simulated patient-tailored 

protocol that reduced the simulated seizure effect (Osorio, Frei, Sunderam, Giftakis, 

Bhavaraju, Schaffner & Wilkinson, 2005; Sunderam, Gluckman, Reato  & Bikson,  

2010).  
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The simulated seizure state is maintained at the same time segment and the model 

is re-executed, except with an added external input to simulate electrical pacing therapy 

(BCI object).  The KIV architecture involves adding the BCI object to the KII matrix, 

which joins the two KIII’s networks.  The external BCI object is subtracted to the KII 

matrix before the next output KII signal is calculated through the 2
nd

 order ODE.  The 

signal is subtracted to the semi-periodic signal to restore the chaotic attributes of nodes 

within the KIV network.    

 

Figure 47. De-synchronization input signal 

 

The external interface to the KIV model is a 42 Hz signal, with a 21 ms pulse 

width applied over the seizure state time series.  

Therefore, the amplitude of the seizure state is reduced to normal neural state 

values, as shown in Figure 48. 
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Figure 48.  EEG figures on the right side featuring the restored simulated EEG where the 

normal chaotic state is exhibited in the diagram. 
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PSD analysis of the KIV model depicts the same low alpha value range as seen in 

the normal EEG time series (Figure 49).   

 

Figure 49. The restored state with alpha = -2.73 

 

The following PSD values (Table 4) show that the restoration state also exhibits 

small standard deviation across the simulated patient EEGs, while maintaining the alpha 

range of 2 to 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



84 

 

 

  Table 5 

 

Power law exponent (α) function of the PSD regression function (1/f
-α

) Simulated EEG 

using KIV Model 

 

 

Restore with Titration Signal 
 

 

 

  A1 

(25) 

 A2 

(25) 

 A3 

(25) 

 A4 

(25) 

 A5 

(25) 

��  2.47 2.52 2.61 2.69 2.77 

 
� 0.18 0.17 0.17 0.17 0.16 

Min(α) 2.13 2.17 2.28 2.36 2.44 

Max(α) 2.65 2.70 2.78 2.89 2.95 

 

 

Phase diagrams show the same chaotic attractor as found in the normal and 

simulated EEG as well as autocorrelation displays depicts the restored signal back to its 

original non-periodic state as seen in Figures 50 and 51, respectively.   

 

Figure 50.  The phase diagram of the restored state of the simulated EEG. 
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Figure 51. The autocorrelation of the restored state of the simulated EEG. 

 

The external signal that restores the KIV model back to its initial state causes the 

runaway inhibitory signal to become ‘rebalanced’, since the external signal may provide 

the excitatory signal needed to restore the signal.  Through the EEG simulator, electrical 

titration methodologies can be tested, and researched in order to provide an insight to the 

manner VNS treatment reduces the effects of the seizure state. 

External stimulation applied to the KIV may accomplish one of the following 

seizure reduction realizations: 

1) A reduction of runaway inhibitory activations that enable the restoration of the 

‘normal’ state. 

2) A ‘rebalancing’ of excitatory and inhibitory activations that overcome runaway 

inhibitory activations through the external excitatory input that act as excitatory 

activations.  

Therefore, the amplitude and phase of the seizure state is reduced to normal neural state 

values. 
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CHAPTER 8: CONCLUSION AND FUTURE WORK 

 

Conclusion Discussion 

 

   The KIV model enables brain pathology simulation and analysis through 

internal excitatory and inhibitory node tuning of KII networks and external coupling of 

KIII and KII networks within the KIV.  Through this model, electrical titration therapies 

can be simulated and tested that could lead to a deeper understanding of the 

underpinnings of mesoscopic pathological neuron behavior. 

Initially, we demonstrated seizure behavior through the KIII model to simulate the 

‘epileptogenesis’ process where a local group of neurons exhibit hyperexcitability 

through the imbalance of excitatory and inhibitory neuron populations.  An instability 

develops in which some inhibitory neurons become more disinhibited (excited) and 

others more inhibited (less active) to the point where there is a discharge that is 

manifested in a massive compound inhibitory post-synaptic potential (IPSP) of the 

excitatory neurons (Freeman, 1972).   Several statistical properties were employed to 

characterize the KIII model as described in the literature (Freeman, 1972).  

Autocorrelation functions and power spectral analysis were utilized to characterize the 

‘seizure’ state of the KIII EEG.  Additionally, phase diagrams demonstrated abnormal 

brain states of the seizure EEG in the form of a limit cycle. 

Attributes of mesoscopic neuron hyperexcitability have the characteristics of 

increased amplitude and change of phase or frequency of the neuron’s activations.  KIII 

model seizure parameterization was implemented in one of the KIII objects of the KIV 

network in order to model local neuronal hyperexcitability, hence establishing the local 
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area of seizure behavior or epileptogenesis.  By increasing the external weighting of the 

networks, the local group of neuron’s activation behavior can spread throughout the KIV 

network.  The epileptogenesis process is commonly accepted to be closely associated 

with changes in neuronal synchronization in a network of components that may be 

spatially distributed (Fisch & Spehlmann, 1999).  Therefore, this process demonstrates 

that seizure precursors may begin locally and then expand spatially, and even "entrain" to 

other brain structures before reaching the critical mass required to initiate a clinical 

seizure (Engel, 2007).    

The KIV exhibits normal and abnormal seizure states through the KIII and KIV 

parameterization discussed in this dissertation.  Quantification measures were applied to 

demonstrate biological equivalence between human EEG and simulated EEG.   The PSD 

values in the normal state of human and simulated EEG conforms roughly to 1/f having a 

slope between 2.02 and 2.93 (Table 2) due to the mean firing rates of neurons being held 

at a critical value throughout the cortex, homeostatically stabilized locally by their 

thresholds and refractory periods (Freeman, 2004).  The PSD values in the seizure state of 

human and simulated EEG conforms roughly to 1/f having a slope between 3.41 and 3.91 

(Table 3) due to the high power in both the low and high theta ranges, corresponding to 

the 3/s wave that dominated the EEG.  PSD values found during the EEG time series and 

the simulated EEG time series exhibit low standard deviation during the seizure states per 

patient.  This activity may be due to the entrainment of large scale neural population 

whose power per frequency is limited to the theta range.   

Autocorrelation of the human EEG and simulated EEG output during the seizure 

state demonstrates regularity in peaks of the time offset or time ‘lag’ of the EEG time 
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series.  This regularity implies a dominant frequency is present in the EEG time series, 

which is found in the PSD diagrams to be 3 Hz, therefore conforming to the 3/s 

waveform found during seizure activity.   

Phase diagrams of the EEG time series demonstrate that the normal/abnormal 

brain states exhibit high and low chaotic dimensionality in the form of a chaotic attractors 

(Figures 45a and c) vs. the abnormal seizure EEG in the form of a limit cycle (Figures 

45b and d).  Plots of the EEG time series by a fixed time offset reveal the dynamics of the 

EEG signal as the time series may converge, diverge or move in aperiodic motion 

(Freeman, 1986).   Chaotic attractors are the manifestation of cortical columns and layers 

and their noisy neural interactions.  KIII’s and KIV’s are governed by chaotic attractors, 

which is also the kind of dynamics observed in healthy brains (Kozma, 2003).  

Conversely, unbalanced feedback between the excitatory and inhibitory components 

produces periodic oscillations which are governed by a limit cycle attractor, as found in 

seizure behavior. 

Restoration of the KIV seizure state back to the initial chaotic normal state is 

accomplished through the introduction of an external signal into the KIV network.  This 

external signal is composed of the inverse of the seizure signal at slightly higher 

amplitude added to a KII signal.  When this signal is applied to the KIV as the next action 

potential is calculated, the output of the KIV displays the restored normal state, as seen in 

Figure 47.  As stated in the previous chapter, external stimulation applied to the KIV may 

accomplish one of the following seizure reduction realizations; a reduction of runaway 

inhibitory activations that enable the restoration of the ‘normal’ state, or a ‘rebalancing’ 
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of excitatory and inhibitory activations that overcome runaway inhibitory activations 

through the external excitatory input that act as excitatory activations.    

The restoration state also exhibits small standard deviation across the simulated 

patient EEGs, while maintaining the alpha range of 2 to 3. Figure 47 shows the restored 

simulated EEG after an external input has been added to the system.  Phase diagrams 

show the same chaotic attractor as found in the normal and simulated EEG as well as 

autocorrelation displays depicts the restored signal back to its original non-periodic state.   

Through the EEG simulator, electrical titration methodologies can be tested and 

researched in order to provide an insight to the manner how electrical titration therapy 

reduces the effects of the seizure state, as well as other brain pathologies. 

Areas of Continuing Research 

 

� Utilize the simulated EEG model to study other brain pathologies, i.e., 

Parkinson’s, Alzheimer’s, schizophrenia, depression, etc.   Develop brain 

models using the KIV in order to capture EEG characteristics to better understand 

the underpinnings of each disease.  Brain stimulation techniques have been 

applied to patients with Parkinson’s as well as depression, therefore brain 

stimulation techniques can be applied to the KIV to determine which titration 

method can alleviate the pathological effect on the model.  In this manner, 

electrical titration methods can be optimized per patient. 

� Incorporate additional quantitative measurements to KIV model to further 

develop the model into a mesoscopic brain simulator.  Additional measurement 

tools such as Morlet wavelets can find wave packets of differing amplitudes and 

phases.  This study would enable the location of brain pathologies with signature 
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waveforms that can be adjusted to fit a particular segment in an EEG time series, 

with various degrees of signal fitting.   Also, the incorporation of Short-Term 

Lyapunov exponents (STLMax) would enable a fine-tuned analysis tool to locate 

changes of non-linear dynamic artifacts within a time series, such as the changes 

in the EEG signal as it moves in various degrees of non-linearity to a semi-

periodic state. 

� Tune the KIV to produce cognitive processing attributes, such as phase 

transitions in order to model cognitive processing features along with brain 

pathologies.  Cognitive processing tools could be applied, such as the application 

of the analytic amplitude and phase of an EEG signal to locate phase transitions as 

it relates to consciousness and brain pathologies.  Additionally, adaptive filtering 

tools can be developed such as Knife Edge filters and neural network 

implementations for enhanced frequency change detection relating to brain state 

changes of awake, rest and seizure states.  

� Incorporate additional nodes/neurons in the network to approach a closer 

scale of limbic system modeling.  A KIV model with at least 64 nodes would 

bring the model closer to the high density EEG monitoring equivalence of human 

EEGs of the limbic system of the brain.  High density EEG recordings of 64 

channels could be emulated to capture larger neuron population dynamics, such as 

cognitive processing and global cortical changes due to simulated brain 

pathologies.  While this model would be computationally expensive, the benefit 

of this model would enable the study how the unity of conscious perception is 

brought about by the distributed activities of the central nervous system.  
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Additionally, studies of how brain pathologies affect conscious perception as seen 

in Alzheimer and schizophrenia patients could be accomplished.  Models of 

decreased or heightened perception could help explain the differing levels of 

consciousness. 

� Develop KIV into real-time action potential generator with a controller 

interface in order to change KIV parameters dynamically so that internal 

and external parameter adjustments can be made to finely tune EEG output.  

Dynamic KIV parameter adjustment would enable closer patient EEG emulation, 

and also enable external electrical titration therapies to be incorporated into the 

model to demonstrate different brain pathology reduction techniques.  External 

stimulation amplitude, frequency, pulse duration and width can be adjusted and 

applied to the simulated EEG in order to provide an optimized patient-based 

electrical titration pacing remedy. 
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APPENDIX B : KIV SOURCE CODE 

 

The list of files in the KIV files 
 

k2_Klayer.m - constuctor of the KII layer data structure 

k2_new.m - constuctor for the KII network 

k2_parameters.m - sets parameters of a KII network 

k2_run.m - simulates KII network by running it with given inputs 

k2_SolveNextStep.m - updates the KII network for one time step of integration with 

numberic Runge-Kutta method 

k3_config.m - creates internal data structure for a KIII network 

k3_delay2.m - computes the distributed delayed connections 

k3_diag.m - returns diagnostic parameters for a KIII network 

k3_filt.m - filters out the internal signal for read-out 

k3_formKIImatrix.m - forms connections weight matrix of KII network inside KIII layer 

k3_formKlink2.m - forms link between layers structures of KIII network 

k3_formKSlink.m - forms link between layers structures of KIII network 

k3_formLateralMatrix1.m - forms a lateral connections weight matrix inside a KIII net-

work 

k3_habituation.m - computes habituation learning update 

k3_hebb.m - computes Hebbian learning update 

k3_Klayer.m - creates layer of KII networks in a KIII  

k3_Klayer_SolveNextStep2.m - updates one layer in a KIII network for one time step of 

integration 

k3_KSlink.m - creates links between layers in a KIII network 

k3_KSLink_Calc.m - calculates delayed links in KIII network 

k3_new.m - creates new KIII networks and runs it for warm-up period 

k3_parameters.m - sets parameters for KIII network data structure 

k3_q.m - computes sigmoid transfer function 

k3_run.m - simulates the KIII network for given inputs 

k3_SolveNextStep.m - updates KIII network for one time step integration 

k3_SolveNodeRungeKutta.m - implements Runge-Kutta numerical method for integra-

tion for the network update 

k3_train.m - simulates the network for training inputs and makes the training updates of 

the connections in a KIII network 

k4_new.m - updates KIII and KII networks and runs it for warm-up period 

k4_k2_solveNextStep.m - updates KII network within KIV network for one time step 

integration 

k4_k3_SolveNextStep.m - updates KIII network within KIV network for one time step 

integration 

k4_Klayer_SolveNextStep2.m - updates one layer in a KIII network for one time step of 

integration 

k4_run.m - updates KIV networks and runs it for active period 

k4_train.m - This function returns and k4 network after training with the input from both 

the k3's 
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k4_update.m - This function updates the K4 network by updating the cortical 

hippocampal and amydale links one time step 

k4_parameters.m - sets parameters for KIV network data structure 

k2_stim.m – a kII network used as an external input to reduce the simulated seizure 

produced by the KIV network. 

autocorr_eeg.m – autocorrelation function used to measure the correlation of a time series 

against a time offset segment of the same series. 

psd_analysis.m – power spectral density measurement function of simulated EEG time 

series. 

 
 

k2_Klayer.m 
function K = k2_Klayer( params, w, wLat) 
% returns k-layer object with the following arguments 
% 
%   params      - parameters object with all needed constants 
%   w          - weights matrix of full k-ii 
%   wLat        - is the matrix of lateral weights 

  
% set time counter to zero 
K.t = 0; 

  
% set buffers for activation and its derivative to zeros 
K.A = zeros(4*params.MM, params.buf_size); 
K.B = zeros(4*params.MM, params.buf_size); 

  
% set buffer for current input 
K.I = zeros(4*params.MM, 1); 

  
% set global layer weight matrix 
K.OMEGA = wLat; 
for j=1:params.MM 
    K.OMEGA((j-1)*4+1:j*4,(j-1)*4+1:j*4) = w; 
end 

  

k2_new.m 
function [K] = k2_new(MM) 
% 
% function k2_new returns new K_II object with 
% given size of input layer MM, that is number 
% of full k-ii sets in the layer 
% 
% At this moment all parameters are set to some 
% default values used in the lab for k-sets.  
% 
% The default parameters for K_II sets in are as follows: 
%  
%   k3_formKIImatrix(1.8, 1, 2, 0.8);   % w_ee, w_ei, w_ie, w_ii 
% 
% K-set object has the following fields: 
%  
%             L: [1x1 struct]   - layer object (see k3_Klayer) 
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%             t: 400            - current total number of time steps 

run 
%        params: [struct]       - parameters of the network  
%      buf_size: 80             - size of activation buffer in time 

steps 
%     it_active: 100            - number of time steps for active phase 
%      it_relax: 300            - number of time steps for relaxation  
%            MM: 10             - size of input 
% 
% see also k2_run(), k2_parameters(), k3_formKIImatrix, k3_Klayer, 

k3_formLateralMatrix1 
% 
% by bileon, August 2004 

  
% call k2_parameters for all weiths of full k_ii 
params = k2_parameters(MM); 

  
%Lateral Connection Matrix 
wLat = k3_formLateralMatrix1(params.wLat(1), params.wLat(2), 

params.MM); 

  
%internal weights 
w = k3_formKIImatrix(params.kii(1), params.kii(2), params.kii(3), 

params.kii(4));  

  
% prepare a KLayer 
% give it params, k-ii weights matrix and lateral weights matrix 
K = k2_Klayer(params, w, wLat); 

  
% store parameter object inside network object 
K.params = params; 

  
% prepare input (small perturbation) 
var1 = 0.1; 

  
in = [  var1; 0.0; 0.0; 0.0]; 
in = repmat(in, params.MM, 1); 
% in(1:4:end) = 2 * var1 *( rand(params.MM,1) - 1/2 ); 
%in(1:4:end) = 2 * var1 *( rand(params.MM,1) - 1/2 ); 

  
% run network for one active (with input) iteration 
for t = 1:1 
    K.t = K.t + 1; 
    K = k2_SolveNextStep(K, in );  
end 

  
% run network for res of parmas.it_warmup iterations with zero input 
for t = 2:params.it_warmup 
    K.t = K.t + 1; 
    K = k2_SolveNextStep(K, zeros(size(in))); 
end 

 

  
k2_parameters.m 
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function [params] = k2_parameters(input_size) 
% Returns an object that contains parameters of K-II  
% network which include: 
% 
%   it_warmup       - number of time steps for warm up period 
%   it_active       - number of time steps for active phase  
%   it_relax        - number of time steps for inactive phase 
%   dT              - time resolution for RK solver ( sec. / time steps 

) 
%   K-II weights    - weights w_ee, w_ei, w_ie, w_ii for K-II network  
%   wLat            - lateral intra-layer connections weights 
% all parameters are packed into 'params' data structure 
% 
% see also k2_new, k2_run, k3_formKIImatrix 
% 
% by bileon, August 2004 

  
% size of input 
params.MM = input_size; 

  
% time steps for warm up period, active and inactive phase of k3 cycle 

  
% mm 
params.it_warmup = 1000; 
params.it_active = 1000; 
params.it_relax  = 50; 
%mm 

  
% params.it_warmup = 10000; 
% params.it_active = 10000; 
% params.it_relax  = 10000; 

  

  
% size of internal buffer to store activation history 
params.buf_size = max( params.it_active, 70); 

  
% weights of full k-ii 
% params.kii = [1.8, 1.0, 2.0, 0.9]; 
params.kii = [2.0 1.5 2.0 1.0]; % Orig 
%params.kii = [0.05, 2.20, 2.20, 3.4]; 
%params.kii = [0.0 0.0 0.0 0.0]; 

  
% time resolution for Runge-Kutta solver 
params.dT = 0.5; 

  
% lateral itra-layer connections 
% wLat_ee and wLat_ii 
params.wLat = [1.5 -1.0]; 
% params.wLat = [0.15 -0.1]; 
% params.wLat = [0.0 0.0]; 

  
% Constants of differential equation 
params.a = 0.22; 
params.b = 0.72; 
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% Constant in asymetric sigmoid 
params.sig = 5; 

 

 
k2_run.m 
function [K] = k2_run(K, in) 
% function k2_run returns K-II object K after 
% it has been run for K.it_active time steps with  
% each input sample vector from set 'in' (active period) 
% followed by K.it_relax time steps of relaxation period  
% (zero input) and set of std(activations) vectors 
% that is standard deviation of 50 time steps of 
% active phase for excitatory units of third layer 
% for every input sample. 
% 
% Input set in is composed of input samples row by row, that  
% is in = [ x_1; x_2; ... x_k]. 
% 
% Sigma is composed of vectors that are computed as follows: 
% 
%   sigma(i,:) = std( activations ); 
% 
% where 'activations' is set of activation for all top K-II  
% excitatory units in the third layer. 
% 
% see also k2_new, k2, k2_train 
% 
% by bileon, June 2004 

  

  
if size(in) ~= 0 

     
    sigma = []; 

     
    % iterate over input vectors 
    for i = 1 : size(in,1) 

         
        tic; 

         
        % take input from set_train 
        inp = repmat(zeros(4,1), K.params.MM,1); 
        inp(1:4:end) = in(i,1:K.params.MM); 

         
        % get current network time 
        total_t = K.t; 

         
        % run ACTIVE phase for 100 iterations 
        for t = 1:K.params.it_active 
            K.t = t + total_t; 
            K = k2_SolveNextStep(K, inp ); %zeros(size(in)) 
        end 

         
        % run INACTIVE phase for 300 iterations 
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        for t = K.params.it_active + 1 : K.params.it_active + 

K.params.it_relax 
            K.t = t + total_t; 
            K = k2_SolveNextStep(K, zeros(size(inp))); 
        end 

         
        ['iteration ' int2str(i) ' of ' int2str(size(in,1)) ' time 

elapsed ' num2str(toc)] 

         
    end 
else 
    [' no input ... nothing done '] 
end 

 

 

k2_SolveNextStep.m 
function K = k3_SolveNextStep2( K, extIn ) 
%------------------------------------------------------------------% 
%--The University of Memphis, Department of Mathematical Sciences--% 
% File:      k3_Klayer_SolveNextStep2    
% Author:    Roman Ilin 
% Date:      5/2003 
% Purpose:   given array of external inputs into the layer, extIn, 4*N 

by 1 
%            calculates the next time step activations for all KII sets 
%------------------------------------------------------------------% 

  
k = mod(K.t - 1, K.params.buf_size) + 1; 

  
% index in a round robin buffer by modulo K.Hist,  
% turn it around if modulo division is zero 
if mod( K.t - 1, K.params.buf_size) == 0  
    kk = K.params.buf_size;   
else 
    kk = mod( K.t - 1, K.params.buf_size); 
end 

  
in = K.OMEGA*k3_q( K.A(:,kk),K.params.sig );    
%in = K.OMEGA*k3_q( K.A(:,mod(K.t - 1, K.Hist) + K.Hist),K.Zig ) / 

max(1, K.N - 1) ;    
%NOT SURE WHICH WAY IS CORRECT 
%in = k3_q(K.OMEGA* K.A(:,mod(K.t - 1, K.Hist) + K.Hist),K.Zig ); 
K.I = extIn; 

  
% sovle ODE and store current results 
[K.A(:, k) , K.B(:, k)] = k3_SolveNodeRungeKutta(K.params.a, 

K.params.b, K.params.dT, K.A(:, kk ), K.B(:, kk ), K.I + in  ); 
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k3_config.m 
function K = k3_config( varargin ) 
% KCONFIG Is a container for KSet configuration info 
% The following are the properties which can be set by the user or  
% can assume their default values 
% Property               Possible Values         Default             

Comment 
% 
% 'general.type'            'kii', 'kiii'           'kii'               

type of configuration 
% 'general.inputtype'       'file', 'matrix'        'matrix'            

source of input 
% 'general.history'         1..xx                   40                  

length of 'history' 
% 'general.time'            1..xx                   3200                

simulation time, msec 
% 'general_dt'              0..xx                   0.5                 

time step, msec 
% 
% 'kii.units'               1..xx / integer         1                   

number of units in KII 
% 'kii_schema'              'name'                  ''                  

schema for single KII 
% 'kii.w'                   4 by 4 matrix           0                   

KII connection weights 
% 'kii.lateralw'            4xx by 4xx matrix       0                   

KII lateral connection weights 
% 'kii.filename'            'name'                 'kii_out'           

KII output file name 
% 'kii.zig'                 0..xx                   5                   

zigmiod coefficient   
% 'kii.A0'                  4xx by 1                []                   

KII init activations 
% 'kii.B0'                  4xx by 1                []                   

KII  derivatives of init activations 
% 
% 'kiii.layers'             1..5                    1                   

Number of KIII layers 
% 
% 'kiii.layer1.kii.units'   1..xx                   1                   

Number of Layer1 units 
% 'kiii.layer1.kii.schema'  'name'                  ''                  

layer1 KII schema 
% 'kiii.layer1.w'           4 by 4 matrix           0                   

layer1 KII connection weights 
% 'kiii.layer1.lateralw'    4xx by 4xx marix        0                   

layer1 lateral connections 
% 'kiii.layer1.filename'    'name'                  'layer1_out'        

output filename     
% 'kiii.layer1.zig'         0..x                    5                   

zigmoid coefficient 
% 'kiii.layer1.A0'          4zz by 1 matrix         []                  

initial activations 
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% 
% 'kiii.layer2.kii.units'  
% 'kiii.layer2.kii.schema'  
% 'kiii.layer2.w'  
% 'kiii.layer2.lateralw'  
% 'kiii.layer2.filename'  
% 'kiii.layer2.zig'         0..x                    5                   

zigmoid coefficient 
%         
% 'kiii.layer3.kii.units'  
% 'kiii.layer3.kii.schema'  
% 'kiii.layer3.w'  
% 'kiii.layer3.lateralw'  
% 'kiii.layer3.filename'  
% 'kiii.layer3.zig'         0..x                    5                   

zigmoid coefficient 
% 
% 'kiii.layer4.kii.units'  
% 'kiii.layer4.kii.schema'  
% 'kiii.layer4.w'  
% 'kiii.layer4.lateralw'  
% 'kiii.layer4.filename'  
% 'kiii.layer4.zig'         0..x                    5                   

zigmoid coefficient 
%         
% 'kiii.layer5.kii.units'  
% 'kiii.layer5.kii.schema'  
% 'kiii.layer5.w'  
% 'kiii.layer5.lateralw'  
% 'kiii.layer5.filename'  
% 'kiii.layer5.zig'         0..x                    5                   

zigmoid coefficient 
%        
% 'kiii.schema'             'name'                  ''                  

name of KII connevction schema 
% 
% 'kiii.klink.1.1'          k3_link2 object           k3_link2( 'null', 

0);  
% 'kiii.klink.1.2' 
% 'kiii.klink.1.3' 
% 'kiii.klink.1.4' 
% 'kiii.klink.1.5' 
% 
% 'kiii.klink.2.1'          k3_link2 object           k3_link2( 'null', 

0);  
% 'kiii.klink.2.2' 
% 'kiii.klink.2.3' 
% 'kiii.klink.2.4' 
% 'kiii.klink.2.5' 
% 
% 'kiii.klink.3.1'          k3_link2 object           k3_link2( 'null', 

0);  
% 'kiii.klink.3.2' 
% 'kiii.klink.3.3' 
% 'kiii.klink.3.4' 
% 'kiii.klink.3.5' 
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% 
% 'kiii.klink.4.1'          k3_link2 object           k3_link2( 'null', 

0);  
% 'kiii.klink.4.2' 
% 'kiii.klink.4.3' 
% 'kiii.klink.4.4' 
% 'kiii.klink.4.5' 
% 
% 'kiii.klink.5.1'          k3_link2 object           k3_link2( 'null', 

0);  
% 'kiii.klink.5.2' 
% 'kiii.klink.5.3' 
% 'kiii.klink.5.4' 
% 'kiii.klink.5.5' 

         

         
K.General_Type = 'kii'; 
K.General_InputType = 'matrix'; 

  
% K.General_History = 40; 
% K.General_Time  = 40*80; 
%K.General_dT    = 0.5; 

  
K.KII_Units = 1; 
K.KII_Schema = ''; 
K.KII_W = zeros(4,4); 
K.KII_lateralW = zeros(4*K.KII_Units, 4*K.KII_Units); 
K.KII_filename = 'kii_out'; 
K.KII_Zig = 5; 
K.KII_A0 = []; 
K.KII_B0 = []; 

  
K.KIII_Layers = 1; 

  
K.KIII_Layer1_KII_Units = 1; 
K.KIII_Layer1_KII_Schema = ''; 
K.KIII_Layer1_W = zeros(4,4); 
K.KIII_Layer1_lateralW = zeros(4*K.KII_Units, 4*K.KII_Units); 
K.KIII_Layer1_filename = 'layer1_out'; 
K.KIII_Layer1_Zig  = 5; 
K.KIII_Layer1_A0  = []; 

  
K.KIII_Layer2_KII_Units = 1; 
K.KIII_Layer2_KII_Schema = ''; 
K.KIII_Layer2_W = zeros(4,4); 
K.KIII_Layer2_lateralW = zeros(4*K.KII_Units, 4*K.KII_Units); 
K.KIII_Layer2_filename = 'layer2_out'; 
K.KIII_Layer2_Zig  = 5; 

  
K.KIII_Layer3_KII_Units = 1; 
K.KIII_Layer3_KII_Schema = ''; 
K.KIII_Layer3_W = zeros(4,4); 
K.KIII_Layer3_lateralW = zeros(4*K.KII_Units, 4*K.KII_Units); 
K.KIII_Layer3_filename = 'layer3_out'; 
K.KIII_Layer3_Zig  = 5; 
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K.KIII_Layer4_KII_Units = 1; 
K.KIII_Layer4_KII_Schema = ''; 
K.KIII_Layer4_W = zeros(4,4); 
K.KIII_Layer4_lateralW = zeros(4*K.KII_Units, 4*K.KII_Units); 
K.KIII_Layer4_filename = 'layer4_out'; 
K.KIII_Layer4_Zig  = 5; 

  
K.KIII_Layer5_KII_Units = 1; 
K.KIII_Layer5_KII_Schema = ''; 
K.KIII_Layer5_W = zeros(4,4); 
K.KIII_Layer5_lateralW = zeros(4*K.KII_Units, 4*K.KII_Units); 
K.KIII_Layer5_filename = 'layer5_out'; 
K.KIII_Layer5_Zig  = 5; 

  
K.KIII_Schema = ''; 

  
K.KIII_Klink_1_1 = k3_link2( 'null', 0, [], []); 
K.KIII_Klink_1_2 = k3_link2( 'null', 0, [], []); 
K.KIII_Klink_1_3 = k3_link2( 'null', 0, [], []); 
K.KIII_Klink_1_4 = k3_link2( 'null', 0, [], []); 
K.KIII_Klink_1_5 = k3_link2( 'null', 0, [], []); 

  
K.KIII_Klink_2_1 = k3_link2( 'null', 0, [], []); 
K.KIII_Klink_2_2 = k3_link2( 'null', 0, [], []); 
K.KIII_Klink_2_3 = k3_link2( 'null', 0, [], []); 
K.KIII_Klink_2_4 = k3_link2( 'null', 0, [], []); 
K.KIII_Klink_2_5 = k3_link2( 'null', 0, [], []); 

  
K.KIII_Klink_3_1 = k3_link2( 'null', 0, [], []); 
K.KIII_Klink_3_2 = k3_link2( 'null', 0, [], []); 
K.KIII_Klink_3_3 = k3_link2( 'null', 0, [], []); 
K.KIII_Klink_3_4 = k3_link2( 'null', 0, [], []); 
K.KIII_Klink_3_5 = k3_link2( 'null', 0, [], []); 

  
K.KIII_Klink_4_1 = k3_link2( 'null', 0, [], []); 
K.KIII_Klink_4_2 = k3_link2( 'null', 0, [], []); 
K.KIII_Klink_4_3 = k3_link2( 'null', 0, [], []); 
K.KIII_Klink_4_4 = k3_link2( 'null', 0, [], []); 
K.KIII_Klink_4_5 = k3_link2( 'null', 0, [], []); 

  
K.KIII_Klink_5_1 = k3_link2( 'null', 0, [], []); 
K.KIII_Klink_5_2 = k3_link2( 'null', 0, [], []); 
K.KIII_Klink_5_3 = k3_link2( 'null', 0, [], []); 
K.KIII_Klink_5_4 = k3_link2( 'null', 0, [], []); 
K.KIII_Klink_5_5 = k3_link2( 'null', 0, [], []); 

  
K.KIII_KSlink = cell(5,5);  %for now assume max 5 layers 

  
for j=1:2:nargin 
    switch lower(varargin{j}) 
    case 'general.type'  
        K.General_Type = varargin{j+1}; 
    case 'general.inputtype'  
        K.General_InputType = varargin{j+1}; 
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    case 'buffer.size'     
        K.buf_size = varargin{j+1}; 
    case  'general.time'   
        K.General_Time  = varargin{j+1}; 
    case  'general_dt'    
        K.General_dT    = varargin{j+1}; 

  

         
    case 'kii.units'  
        K.KII_Units = varargin{j+1}; 
    case 'kii_schema'  
        K.KII_Schema = varargin{j+1}; 
    case 'kii.w'  
        K.KII_W = varargin{j+1}; 
    case 'kii.lateralw'  
        K.KII_lateralW = varargin{j+1}; 
    case 'kii.filename'  
        K.KII_filename = varargin{j+1}; 
    case 'kii.zig'  
        K.KII_Zig = varargin{j+1}; 
    case 'kii.a0'  
        K.KII_A0 = varargin{j+1}; 
    case 'kii.b0'  
        K.KII_B0 = varargin{j+1}; 

  

         
    case 'kiii.layers'  
        K.KIII_Layers = varargin{j+1}; 

         
    case 'kiii.layer1.kii.units'  
        K.KIII_Layer1_KII_Units = varargin{j+1}; 
    case 'kiii.layer1.kii.schema'  
        K.KIII_Layer1_KII_Schema = varargin{j+1}; 
    case 'kiii.layer1.w'  
        K.KIII_Layer1_W = varargin{j+1}; 
    case 'kiii.layer1.lateralw'  
        K.KIII_Layer1_lateralW = varargin{j+1}; 
    case 'kiii.layer1.filename'  
        K.KIII_Layer1_filename = varargin{j+1}; 
    case 'kiii.layer1.zig'     
        K.KIII_Layer1_Zig  = varargin{j+1};        

  

         
    case 'kiii.layer2.kii.units'  
        K.KIII_Layer2_KII_Units = varargin{j+1}; 
    case 'kiii.layer2.kii.schema'  
        K.KIII_Layer2_KII_Schema = varargin{j+1}; 
    case 'kiii.layer2.w'  
        K.KIII_Layer2_W = varargin{j+1}; 
    case 'kiii.layer2.lateralw'  
        K.KIII_Layer2_lateralW = varargin{j+1}; 
    case 'kiii.layer2.filename'  
        K.KIII_Layer2_filename = varargin{j+1}; 
    case 'kiii.layer2.zig'     
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        K.KIII_Layer2_Zig  = varargin{j+1};        

         

         
    case 'kiii.layer3.kii.units'  
        K.KIII_Layer3_KII_Units = varargin{j+1}; 
    case 'kiii.layer3.kii.schema'  
        K.KIII_Layer3_KII_Schema = varargin{j+1}; 
    case 'kiii.layer3.w'  
        K.KIII_Layer3_W = varargin{j+1}; 
    case 'kiii.layer3.lateralw'  
        K.KIII_Layer3_lateralW = varargin{j+1}; 
    case 'kiii.layer3.filename'  
        K.KIII_Layer3_filename = varargin{j+1};         
    case 'kiii.layer3.zig'     
        K.KIII_Layer3_Zig  = varargin{j+1};        

  
    case 'kiii.layer4.kii.units'  
        K.KIII_Layer4_KII_Units = varargin{j+1}; 
    case 'kiii.layer4.kii.schema'  
        K.KIII_Layer4_KII_Schema = varargin{j+1}; 
    case 'kiii.layer4.w'  
        K.KIII_Layer4_W = varargin{j+1}; 
    case 'kiii.layer4.lateralw'  
        K.KIII_Layer4_lateralW = varargin{j+1}; 
    case 'kiii.layer4.filename'  
        K.KIII_Layer4_filename = varargin{j+1}; 
    case 'kiii.layer4.zig'     
        K.KIII_Layer4_Zig  = varargin{j+1};        

         
    case 'kiii.layer5.kii.units'  
        K.KIII_Layer5_KII_Units = varargin{j+1}; 
    case 'kiii.layer5.kii.schema'  
        K.KIII_Layer5_KII_Schema = varargin{j+1}; 
    case 'kiii.layer5.w'  
        K.KIII_Layer5_W = varargin{j+1}; 
    case 'kiii.layer5.lateralw'  
        K.KIII_Layer5_lateralW = varargin{j+1}; 
    case 'kiii.layer5.filename'  
        K.KIII_Layer5_filename = varargin{j+1}; 
    case 'kiii.layer5.zig'     
        K.KIII_Layer5_Zig  = varargin{j+1};        

         
    case 'kiii.schema'  
        K.KIII_Schema   = varargin{j+1}; 

         
    %now use spacial links instead of klinks     
    case 'kiii.kslink.1.1'         
        sz = size(K.KIII_KSlink{1,1}, 2); 
        K.KIII_KSlink{1,1}(sz+1) =  varargin{j+1}; 
    case 'kiii.kslink.1.2'         
        sz = size(K.KIII_KSlink{1,2}, 2); 
        K.KIII_KSlink{1,2}(sz+1) =  varargin{j+1}; 
    case 'kiii.kslink.1.3'         
        sz = size(K.KIII_KSlink{1,3}, 2); 
        K.KIII_KSlink{1,3}(sz+1) =  varargin{j+1}; 
    case 'kiii.kslink.1.4'         
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        sz = size(K.KIII_KSlink{1,4}, 2); 
        K.KIII_KSlink{1,4}(sz+1) =  varargin{j+1}; 
    case 'kiii.kslink.1.5'         
        sz = size(K.KIII_KSlink{1,5}, 2); 
        K.KIII_KSlink{1,5}(sz+1) =  varargin{j+1}; 

  

         
    case 'kiii.kslink.2.1'         
        sz = size(K.KIII_KSlink{2,1}, 2); 
        K.KIII_KSlink{2,1}(sz+1) =  varargin{j+1}; 
    case 'kiii.kslink.2.2'         
        sz = size(K.KIII_KSlink{2,2}, 2); 
        K.KIII_KSlink{2,2}(sz+1) =  varargin{j+1}; 
    case 'kiii.kslink.2.3'         
        sz = size(K.KIII_KSlink{2,3}, 2); 
        K.KIII_KSlink{2,3}(sz+1) =  varargin{j+1}; 
    case 'kiii.kslink.2.4'         
        sz = size(K.KIII_KSlink{2,4}, 2); 
        K.KIII_KSlink{2,4}(sz+1) =  varargin{j+1}; 
    case 'kiii.kslink.2.5'         
        sz = size(K.KIII_KSlink{2,5}, 2); 
        K.KIII_KSlink{2,5}(sz+1) =  varargin{j+1}; 

         

         
    case 'kiii.kslink.3.1'         
        sz = size(K.KIII_KSlink{3,1}, 2); 
        K.KIII_KSlink{3,1}(sz+1) =  varargin{j+1}; 
    case 'kiii.kslink.3.2'         
        sz = size(K.KIII_KSlink{3,2}, 2); 
        K.KIII_KSlink{3,2}(sz+1) =  varargin{j+1}; 
    case 'kiii.kslink.3.3'         
        sz = size(K.KIII_KSlink{3,3}, 2); 
        K.KIII_KSlink{3,3}(sz+1) =  varargin{j+1}; 
    case 'kiii.kslink.3.4'         
        sz = size(K.KIII_KSlink{3,4}, 2); 
        K.KIII_KSlink{3,4}(sz+1) =  varargin{j+1}; 
    case 'kiii.kslink.3.5'         
        sz = size(K.KIII_KSlink{3,5}, 2); 
        K.KIII_KSlink{3,5}(sz+1) =  varargin{j+1}; 

         
    case 'kiii.kslink.4.1'         
        sz = size(K.KIII_KSlink{4,1}, 2); 
        K.KIII_KSlink{4,1}(sz+1) =  varargin{j+1}; 
    case 'kiii.kslink.4.2'         
        sz = size(K.KIII_KSlink{4,2}, 2); 
        K.KIII_KSlink{4,2}(sz+1) =  varargin{j+1}; 
    case 'kiii.kslink.4.3'         
        sz = size(K.KIII_KSlink{4,3}, 2); 
        K.KIII_KSlink{4,3}(sz+1) =  varargin{j+1}; 
    case 'kiii.kslink.4.4'         
        sz = size(K.KIII_KSlink{4,4}, 2); 
        K.KIII_KSlink{4,4}(sz+1) =  varargin{j+1}; 
    case 'kiii.kslink.4.5'         
        sz = size(K.KIII_KSlink{4,5}, 2); 
        K.KIII_KSlink{4,5}(sz+1) =  varargin{j+1}; 
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    case 'kiii.kslink.5.1'         
        sz = size(K.KIII_KSlink{5,1}, 2); 
        K.KIII_KSlink{5,1}(sz+1) =  varargin{j+1}; 
    case 'kiii.kslink.5.2'         
        sz = size(K.KIII_KSlink{5,2}, 2); 
        K.KIII_KSlink{5,2}(sz+1) =  varargin{j+1}; 
    case 'kiii.kslink.5.3'         
        sz = size(K.KIII_KSlink{5,3}, 2); 
        K.KIII_KSlink{5,3}(sz+1) =  varargin{j+1}; 
    case 'kiii.kslink.5.4'         
        sz = size(K.KIII_KSlink{5,4}, 2); 
        K.KIII_KSlink{5,4}(sz+1) =  varargin{j+1}; 
    case 'kiii.kslink.5.5'         
        sz = size(K.KIII_KSlink{5,5}, 2); 
        K.KIII_KSlink{5,5}(sz+1) =  varargin{j+1}; 

         
    case 'MM' 
        K.MM = varargin{j+1}; 

         
    end 
end 
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k3_delay2.m 
function a = KDelay2( K, b, N, M) 
% function a = KDelay2( K, b, N, M ) 
% performs delay opeation between two Klayer's.  Assumes that there is 

only one 
%   link between the layer's, so that the signals from each (KII) unit 

of the 
%   sending layer are summed together, transformed using the Klink2's 

schema 
%   and then sent to each KII unit of the receiving layer.  This 

assumtion of course causes 
%   amplification of the signals if the numbers of units in the 

receiving and sending 
%   layers are diferent, so an appropriate amplification coefficient 

should be defined 
%   in the Klink2 object. 
% Arguments: 
% Klink2 K, input matrix b, Integer N (from units), Integer M (to 

units) 
% K         is Klink2 object 
% b     is signal from KLayer, consisting of N KII units, 4*N by Hist 
% a     returned signal, 1 by 4*M, where M is the number of KII units 

in the receiving layer 
% method    can be 'average' or 'converge-diverge' 

  
%A. get the delayed (filtered) values 
%DD = K.D; % k3_Klink2_get(K, 'D'); 
a1 = zeros(4,1); 
hist = size(K.D,3); 

  
if size(b,2) < hist 
       error('KDelay2:The input signal does not have sufficient history 

length'); 
end  

  
r = size(b,1); 
method = K.method; 

  
switch method 
    case 'average' 
        %ONE WAY OF DOING THIS: AVERAGE OF INPUT LAYER FEEDS ALL 

ELEMENTS OF THE 
        %OUTPUT LAYER 
        for l=1:4:r 
            temp = zeros(4,1); 
            for j=1:4 
                temp(j) = sum(diag(reshape(K.D(:, j, :),4,hist) * 

b(l:l+3,1:hist)'));       
            end 
            a1 = a1 + temp; 
        end 

         
        %B. build the input for all M units 
        a = zeros(M*4,1); 
        for k=1:M 
            a(4*(k-1)+1:4*k,1) = a1; 
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        end 
        a = a .* K.Amp; 

  
    case 'converge-diverge' 
        % ANOTHER WAY OF DOING IT: NOT AVERAGE FEEDS ALL, BUT NEIGHBORS 

FEED INTO 
        % NEIGHBORS 
        % SUPPOSE, N >= M, then if C = N/M, we can say that the input 

KII units with 
        % index from floor(C*(i-1)+1) to floor(C*i+1) feed the output 

unit i 
        % What if N < M?  then we can say that output elements from 
        % floor(C*(j-1)+1) to floor(C*j+1) receive from input element j 
        % this needs to be developed for the case when N/M or M/N are 

not 
        % whole numbers.  For now just use the case with whole numbers 
        error('KDelay2:"converge-diverge" has not been implemented yet, 

SORRY'); 
    case 'converge-diverge-int' 
        %converge-diverge with integer ratio of the number of 

input/output or 
        %output/input elements 
        temp_out = zeros(N,4);  %keep the results of time delay here 
        for l=1:4:r 
            temp = zeros(1,4); 
            for j=1:4 
                temp(j) = sum(diag(reshape(K.D(:, j, :),4,hist) * 

b(l:l+3,1:hist)')); 
            end 
            %now temp contains output of unit l 
            temp_out((l+3)/4,:) = temp; 
        end 
        if N > M  %converge 
            C = N/M; 
            if floor(C)-C ~= 0  
                error('KDelay2:the ratio of the number of KII in 

input/output must be a whole number'); 
            end 
            for j=1:M 
                a(4*(j-1)+1:4*j)=sum(temp_out(C*(j-1)+1:C*j,:)); 
            end 
            a = a .* K.Amp; 
        elseif N == M  %equal 
            for i=1:N 
                a(4*(i-1)+1:4*i)=temp_out(i,:); 
            end 
            a = a .* K.Amp;             
        else%diverge 
            C = M/N; 
            if floor(C)-C ~= 0  
                error('KDelay2:the ratio of the number of KII in 

input/output must be a whole number'); 
            end             
            for i=1:N 
                a(4*((C*(i-1)+1)-1)+1:4*C*i)=repmat(temp_out(i,:),1,C); 
            end 
            a = a .* K.Amp; 
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        end 
    otherwise 
        error('KDelay2:Unknown methods passed, has to be "converge-

diverge-int" or "average"'); 
end 

 
k3_diag.m 
function [pr, nt, bt] = k3_diag(x, q) 
% 
% returns three number which tell how each 
% of the following tests perform on given input x signal 
% 
%   pr - PSD ratio test: ratio of the power in lower frequency range 
%        to the power in the gamma range (5 - 20 Hz / 20-80 Hz) 
%   nt - normality test, we want the signal to have normal distribution 
%        jbtest is used ????? 
%   bt  - balancing test, we want mean value of the signal be in the  
%         neighbourhood of the maximum for the derivative of sigm 

function 
% 
% takes in signal [x] and parameter of the sigmoid function [q] 
% 
% by Roman Ilin, bileon,  September 2004 

  

  
% balancing test 
bt = abs(log(q) - mean(x)); 

  
% psd ratio 
[y ff] = psd(x); 

  
low_low = 0.05; 
low_up = 0.1; 

  
gamma_low = 0.1; 
gamma_up = 0.8; 

  
xx = 1: max(size(y)); 
% lower freq. range summation for power 
x_begin = max(find( xx < low_low * max(size(y)))); 
x_end = max(find( xx < low_up * max(size(y)))); 

  
s1 = 0; 
for i= x_begin : x_end 
    s1 = s1 + ( 1/max(size(y)) )* y(i); 
end 

  
% higher freq. range summation for power 
x_begin = max(find( xx < gamma_low * max(size(y)))); 
x_end = max(find( xx < gamma_up * max(size(y)))); 

  
s2 = 0; 
for i= x_begin : x_end 
    s2 = s2 + ( 1/max(size(y)) )* y(i); 
end 
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pr = s1/s2; 

  

  
% nt - nothign is done yet 
nt = 0; 

 

k3_filt.m 
% k3_filt.m nov-20-99 
% Matlab script for filter design and testing 
% prepared for INFO411 class Lab work 
% by R. Kozma 
% March 11, 1997 

  
% create initial DATA FILE  
% normally distributed random time series - white noise 
%xx=randn(1,20*512); 

  
function xxfil=k3_filt(x) 

  
f=[0 0.08 0.08 0.16 0.16 1]; 
m=[0 0    1    1    0    0]; 
b=fir2(70,f,m); 

  
fP3=[]; 
%plot(xx); 
% check visually Gaussianity 
%hist(xx,128); pause 
% this is quite nice bell curve 
% calculate the POWER SPECTRAL DENSITY 
% the resolution of the spectrum is 1/512 
% note: psd uses the default Hanning vindow 
% to avoid aliasing and it takes the average 
% of 20 spectra calculated by fft 

  
%[zz yy]=psd(xx,256,1000); 
%loglog(yy,zz,'r') 
%hold 
%pause(0.1) 

  
% now we have plotted the spectrum of xx time series 
% it is rather constant in accordance with the 'white'-ness 
% it is not completely flat due to statistical errors 
% you can smooth it by selecting longer time series 
% e.g. using 100 instead of 20 segments in the xx=... line 
% FILTER DESIGN 
% you can select various filters with matlab 
% here we design our own filter using 'fir2' function 
% 'fir2' is a general-shape finite impulse response filter 
% in systems theory this is related to moving average MA models 
% first define the desired shape of the filter 

  
%f=[0 0.08 0.08 0.16 0.16 1]; 
%m=[0 0    1    1    0    0]; 
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% f is the vector of the frequency intervals  
% where 1 is the Nyuist freq = half the sampling frequency 
% m is the vector of the desired magnitudes 
% note: size(f) = size(m) 
% chech this by plotting 
%plot(f,m) 
%pause 
% create an order 50 fir filter of this shape 
% plot the resulting filter-shape 
% note it is not 'exactly' the designed one 
% you can increase the accuracy using higher order filters 

  
%b=fir2(70,f,m); 

  
%[h, w]=freqz(b,1,512); 
%plot(f,m,w/pi,abs(h)) 
%pause 
% now we are ready to FILTER the time series 
% and also calculate the spectrum of the filtered signal 

  
xxfil=filter(b,1,x); 
%[yfilt ax]=psd(xxfil,256,1000); 
%loglog(ax,yfilt); 

  
fP3=[fP3; xxfil]; 

  
%end; %(for mm cycle) 

  
% you see that only a narrow band of the spectrum remained 
% we will use this procedure for preprocessing speech signals 
% and generate Mel scale coefficients over pre-defined frequencies 
% PHONEME MEL-SCALE COEFFICIENTS CALCULATION 
% introduce Mel-scale central frequencies 
%fmel=[86 173 256 430 516 603 689 775 947 1033 1120 1292 1550 1723 1981 

... 
%2325 2670 3015 3445 3962 4565 5254 6029 6997 8010 9216 11025]; 

  

 

 
k3_formKIImatrix.m 
function  w  = k3_formKIImatrix( Kee, Kei, Kie, Kii ) 
%-----------------------------------------------------------------% 
%--The University of Memphis, Department of Mathematical Sciences--% 
% File:      formKIImatrix    
% Author:    Roman Ilin 
% Date:      5/25/2003 
% Purpose:   returns 4 by 4 matrix for KII set given e, ei, ie, ii 

weights 
%-----------------------------------------------------------------% 
w =     [0     Kee -Kie    -Kie; ... 
           Kee   0   -Kie    0; ... 
           Kei   Kei 0       -Kii; ... 
           Kei  0   -Kii    0]; 
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% w =     [   0       Kee     -Kie    -Kie; ... 
%            Kee      0       -Kie    0; ... 
%            Kei      Kei     0       Kii; ... 
%            Kei      0       Kii     0]; 
%         
% %w =     [   0       Kee     -Kei    -Kei; ... 
%             Kee     0       -Kei    0; ... 
%             Kie     Kie     0       -Kii; ... 
%             Kie     0       -Kii    0]; 

  
k3_formKlink2.m 
function [ K ] = formKlink2(  varargin ) 
%-----------------------------------------------------------------% 
%--The Univrsity of Memphis, Department of Mathematical Sciences--% 
% File:      formKlink2    
% Author:    Roman Ilin 
% Date:      6/17/2003 
% Purpose:   Return Klink2 object with given connection schema 
%            The input arguments allow to specify each connection's 
%             weight  bi.aj.w  and delay bi.aj.n 
%            only assume simple delays for now 
%-----------------------------------------------------------------% 
% CONSTRAINT:  max lenth of delay is 100 
%-----------------------------------------------------------------% 
length = 70; 
D = zeros(4, 4, length+1); 
Amp = 0; 
connections = zeros(4,4); 
method=[]; 
for j=1:2:nargin 
    switch lower(varargin{j}) 
    case 'b1.a1.w'  
        connections(1,1) = varargin{j+1}; 
    case 'b1.a2.w'  
        connections(1,2) = varargin{j+1}; 
    case 'b1.a3.w'  
        connections(1,3) = varargin{j+1};         
    case 'b1.a4.w'  
        connections(1,4) = varargin{j+1}; 
    case 'b2.a1.w'  
        connections(2,1) = varargin{j+1}; 
    case 'b2.a2.w'  
        connections(2,2) = varargin{j+1};         
    case 'b2.a3.w'  
        connections(2,3) = varargin{j+1}; 
    case 'b2.a4.w'  
        connections(2,4) = varargin{j+1};         
    case 'b3.a1.w'  
        connections(3,1) = varargin{j+1};         
    case 'b3.a2.w'  
        connections(3,2) = varargin{j+1};         
    case 'b3.a3.w'  
        connections(3,3) = varargin{j+1};         
    case 'b3.a4.w'  
        connections(3,4) = varargin{j+1};         
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    case 'b4.a1.w'  
        connections(4,1) = varargin{j+1};         
    case 'b4.a2.w'  
        connections(4,2) = varargin{j+1};         
    case 'b4.a3.w'  
        connections(4,3) = varargin{j+1};         
    case 'b4.a4.w'  
        connections(4,4) = varargin{j+1};                 
    case 'amp' 
        Amp = varargin{j+1}; 
    case 'method' 
        method = varargin{j+1}; 
    end 
end 

  
% Creating Transformation Matrix for Klink2 connecting 
% two Klayers 
% index 1: sending unit  b 
% index 2: receiving unit a  
% index 3: filter coefficients 
%---------------from node b1---------------- 
%---------  1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 
% D(1,1,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .05 0 0 0 0 0 0 0 0]';% 

to a1 
% D(1,2,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]';% to 

a2 
% D(1,3,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .25]';% 

to a3 
% D(1,4,:) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]';% to 

a4 
%----------------------------------------- 
for j=1:2:nargin 
    switch lower(varargin{j}) 
    case 'b1.a1.n'  
        D(1,1,:) =  [zeros(1, varargin{j+1}-1), connections(1,1), 

zeros(1, length - varargin{j+1} + 1)]'; 
    case 'b1.a2.n'  
        D(1,2,:) =  [zeros(1, varargin{j+1}-1), connections(1,2), 

zeros(1, length - varargin{j+1} + 1)]'; 
    case 'b1.a3.n'  
        D(1,3,:) =  [zeros(1, varargin{j+1}-1), connections(1,3), 

zeros(1, length - varargin{j+1} + 1)]'; 
    case 'b1.a4.n'  
        D(1,4,:) =  [zeros(1, varargin{j+1}-1), connections(1,4), 

zeros(1, length - varargin{j+1} + 1)]'; 
    case 'b2.a1.n'  
        D(2,1,:) =  [zeros(1, varargin{j+1}-1), connections(2,1), 

zeros(1, length - varargin{j+1} + 1)]'; 
    case 'b2.a2.n'  
        D(2,2,:) =  [zeros(1, varargin{j+1}-1), connections(2,2), 

zeros(1, length - varargin{j+1} + 1)]'; 
    case 'b2.a3.n'  
        D(2,3,:) =  [zeros(1, varargin{j+1}-1), connections(2,3), 

zeros(1, length - varargin{j+1} + 1)]'; 
    case 'b2.a4.n'  
        D(2,4,:) =  [zeros(1, varargin{j+1}-1), connections(2,4), 

zeros(1, length - varargin{j+1} + 1)]'; 
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    case 'b3.a1.n'  
        D(3,1,:) =  [zeros(1, varargin{j+1}-1), connections(3,1), 

zeros(1, length - varargin{j+1} + 1)]'; 
    case 'b3.a2.n'  
        D(3,2,:) =  [zeros(1, varargin{j+1}-1), connections(3,2), 

zeros(1, length - varargin{j+1} + 1)]'; 
    case 'b3.a3.n'  
        D(3,3,:) =  [zeros(1, varargin{j+1}-1), connections(3,3), 

zeros(1, length - varargin{j+1} + 1)]'; 
    case 'b3.a4.n'  
        D(3,4,:) =  [zeros(1, varargin{j+1}-1), connections(3,4), 

zeros(1, length - varargin{j+1} + 1)]'; 
    case 'b4.a1.n'  
        D(4,1,:) =  [zeros(1, varargin{j+1}-1), connections(4,1), 

zeros(1, length - varargin{j+1} + 1)]'; 
    case 'b4.a2.n'  
        D(4,2,:) =  [zeros(1, varargin{j+1}-1), connections(4,2), 

zeros(1, length - varargin{j+1} + 1)]'; 
    case 'b4.a3.n'  
        D(4,3,:) =  [zeros(1, varargin{j+1}-1), connections(4,3), 

zeros(1, length - varargin{j+1} + 1)]'; 
    case 'b4.a4.n'  
        D(4,4,:) =  [zeros(1, varargin{j+1}-1), connections(4,4), 

zeros(1, length - varargin{j+1} + 1)]'; 
    end 
end 

  
K = k3_link2( '', Amp, D, method ); 
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k3_formKSlink.m 
function [ K ] = k3_form_KSlink( varargin ) 
%-----------------------------------------------------------------% 
%--The University of Memphis, Department of Mathematical Sciences--% 
% File:      formk3_KSlink    
% Author:    Roman Ilin 
% Date:      2/15/200 
% Purpose:   Return k3_KSlink object  
%            The input arguments allow to specify the connections and 
%            delays 
%-----------------------------------------------------------------% 
for j=1:2:nargin 
    switch lower(varargin{j}) 
    case 'inidx'  
        inidx = varargin{j+1}; 
    case 'outidx'  
        outIDX = varargin{j+1}; 
    case 'klink' 
        objKlink = varargin{j+1}; 
    end 
end 
if mod(size(inidx,2),4) ~= 0 
    error('formk3_KSlink: wrong dimension of the input layer, must be 

multiple of 4');     
end  
if mod(size(outIDX,2),4) ~= 0 
    error('formk3_KSlink: wrong dimension of the output layer, must be 

multiple of 4');     
end  
K = k3_KSlink( inidx, outIDX, objKlink ); 

  
k3_formLateralMatrix1.m 
function w = k3_formLateralMatrix1( we, wi, NN ) 
%-----------------------------------------------------------------% 
%--The University of Memphis, Department of Mathematical Sciences--% 
% File:      formLateralMatrix1    
% Author:    Roman Ilin 
% Date:      5/25/2003 
% Purpose:   returns 4*N by 4*N matrix for k3_Klayer lateral 

connections 
%           this is TYPE 1 connection schema, top and bottom nodes are 

connected  
%           the weights we and wi are factored by the inverse number of 

units 
%-----------------------------------------------------------------% 
o = [ we 0 0 0; ... 
        0 0 0 0; ... 
        0 0 wi 0; ... 
        0 0 0 0]; 
if NN > 1 
    w = repmat(o, NN, NN) ./ (NN - 1); 
else 
    w = repmat(o, NN, NN); 
end 
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k3_hebb.m 
function [W]=k3_hebb(Activations,W, lr) 
% returns updated weights matrix given activations for all  
% units and current weight matrix. Takes 'Activatins' and 
% 'W' in as parameters. 
% 
% The update of the weights 'W' is done based on Hebbian 
% learining rule: 
% 
%   dW(i,j) = alpha * (sigma(i) - mean_s) * ( sigma(j) - mean_s); 
% 
% where mean_s is average standard deviation over all units'. 
% 
% 
% see also k3_new, k3, k3_train, ke_run 
% 
%   by bileon, April 2004 

  
% determine size of net 
MM = size(W,1); 

     
% learining rate  
alpha = lr; 

  
% compute std values for activation channels 
sigma_act = std(k3_filt(Activations)); 

  
% mean standard deviation of all channels 
mean_s = mean(sigma_act); 

    
% compute weight updates and store in matrix 
dW = zeros(MM); 
for i = 1 : MM 
    for j = 1 : MM 
        dW(i,j) = alpha * (sigma_act(i) - mean_s) * ( sigma_act(j) - 

mean_s); 
    end 
end 

  
% delete uncorrelated, those <0 
dW = max(dW, zeros(MM)); 

  
% update matrix 
W = W + dW; 

  
% clean main diagonal from near zero values 
W = W - diag(diag(W)); 
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k3_Klayer.m 
function K = k3_Klayer( Zig, L, dT, KII_W, KII_schema_name, n, wLat, 

IsFileOn, file_name, schema_name, A0, B0, params ) 
%-----------------------------------------------------------------% 
%--The University of Memphis, Department of Mathematical Sciences--% 
% File:      Klayer    
% Author:    Roman Ilin 
% Date:      5/2003 
% Purpose:   KLAYER is the constructor for Klayer object 
%-----------------------------------------------------------------% 
%   K = Klayer(Zig, L, dT, KII_W, KII_schema_name, n, wLat, IsFileOn, 

file_name, schema_name, A0, B0 ) 
% arguments 
% Zig                   sigmoid function parameter 
% L                     length of history 
% dT                        time step, in milliseconds 
% KII_W                  is single unit KII's weight matrix, can be 

empty if KII_schema_name is 
%                       specified 
% KII_schema_name        is the name of the schema for KII unit 
% n                      is the number of KII units in the layer 
% wLat                   is the matrix of lateral weights, can be empty 

if schema is specified 
% IsFileOn 
% file_name 
% schema_name            is the name of pre-defined lateral connections 

schema 
%A0, B0                 the initial values for Activation and 

Derivative for each Node, 4*N by 1 

  
% PART 1 
%------------------ATTRIBUTES------------------- 
K.N = n; 
K.FileOutputOn = IsFileOn; 
K.FileName = ''; % file_name; 
K.fid = 0; %fopen(K.FileName, 'w');    

  
K.t = 0; 

  
K.Zig = Zig; 
K.h = dT; 
K.Hist = L; 

  
K.A = zeros(4*K.N, K.Hist ); 
K.B = zeros(4*K.N, K.Hist ); 
K.I = zeros(4*K.N, 1); 
K.OUT = []; 

  
K.swap = 0; 
%apply initial conditions if passed in 
if ~isempty(A0)  
    K.A(:, K.Hist) = A0; 
end 
if ~isempty(B0)  
    K.B(:, K.Hist) = B0; 
end 
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K.a = params.a; 
K.b = params.b; 
K.params = params; 

  
%--------------------------------------------------------- 

  
%PART 2 
%------------------LATERAL CONNECTIONS------------------- 
K.Schema = schema_name; 
if ~isempty(K.Schema) 
    switch lower(K.Schema) 
        case 'meanfield_1'  %top elements are all connected 
                o1 = [ 0.2 0 0 0; 0 0 0 0; 0 0 0 0; 0 0 0 0]; 
                o2 = []; 
                for j=1:K.N 
                    o2 = cat(1, o2, o1); 
                end 
                K.OMEGA = []; 
                for j=1:K.N 
                    K.OMEGA = cat(2, K.OMEGA, o2); 
                end             
        case 'neighbor' 

         
        otherwise 
       %throw error     
        error('Schema name did not match any existing Lateral conn. 

schema, Klayer constructor'); 

  
    end 
else 
    K.OMEGA = wLat; 
end 
%--------------------------------------------------------- 

  
% PART 3 
%------------------KII INNER CONNECTIONS------------------ 
K.KII_Schema = KII_schema_name; 
if ~isempty(K.KII_Schema) 
    switch lower(K.KII_Schema) 
    case 'k0' 
        [Kee, Kei, Kie, Kii] = weights(0, 0, 0, 0);             

        
    case 'ob'   %zero fixed point    
        %[Kee, Kei, Kie, Kii] = weights(1.0, 1.0, 1.0, 0.9);             
        [Kee, Kei, Kie, Kii] = weights(0.25, 1.5, 1.5, 1.8);             
    case 'aon'  %positive fixed point 
        %[Kee, Kei, Kie, Kii] = weights(1.5, 1.0, 1.0, 1.9);     
        [Kee, Kei, Kie, Kii] = weights(1.4, 1.1, 1.1, 1.8);     

  
    case 'pc'   %negative fixed point 
        %[Kee, Kei, Kie, Kii] = weights(1.0, 1.2, 1.2, 1.7); 
        [Kee, Kei, Kie, Kii] = weights(0.25, 1.4, 1.4, 1.8);         

         
        %Parameters from Haizhon's Model 
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    case 'h_ob'   %zero fixed point    
        [Kee, Kei, Kie, Kii] = weights(1.8, 1, 2, 0.8);             
    case 'h_aon'  %positive fixed point 
        [Kee, Kei, Kie, Kii] = weights(1.6, 1.6, 1.5, 2);     
    case 'h_pc'   %negative fixed point 
        [Kee, Kei, Kie, Kii] = weights(1.6, 1.9, 0.2, 1);         

         
    otherwise 
        %throw error     
        error('Schema name did not match any existing KII schema, 

Klayer constructor'); 
    end 
    K.W = [0     Kee -Kie    -Kie; ... 
           Kee   0   -Kie    0; ... 
           Kei   Kei 0       -Kii; ... 
           Kei  0   -Kii    0]; 

  
else 
    K.W = KII_W; 
end 
for j=1:n 
    K.OMEGA((j-1)*4+1:j*4,(j-1)*4+1:j*4) = K.W; 
end 
%--------------------------------------------------------- 

  
% PART 4 
%------------------REGISTER CLASS------------------------- 
%K = class( K, 'Klayer'); 

  

  

  
function [ee, ei, ie, ii] = weights(Wee, Wei, Wie, Wii) 
ee = Wee; ei = Wei; ie = Wie; ii = Wii; 

  
k3_Klayer_SolveNextStep2.m 
function K = k3_Klayer_SolveNextStep2( K, extIn ) 
%------------------------------------------------------------------% 
%--The University of Memphis, Department of Mathematical Sciences--% 
% File:      k3_Klayer_SolveNextStep2    
% Author:    Roman Ilin 
% Date:      5/2003 
% Purpose:   given array of external inputs into the layer, extIn, 4*N 

by 1 
%            calculates the next time step activations for all KII sets 
%------------------------------------------------------------------% 

  
k = mod(K.t - 1, K.Hist) + 1; 

  
% index in a round robin buffer by modulo K.Hist,  
% turn it around if modulo division is zero 
if mod( K.t - 1, K.Hist) == 0  
    kk = K.Hist;   
else 
    kk = mod( K.t - 1, K.Hist); 
end 
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in = K.OMEGA*k3_q( K.A(:,kk),K.Zig );    
%in = K.OMEGA*k3_q( K.A(:,mod(K.t - 1, K.Hist) + K.Hist),K.Zig ) / 

max(1, K.N - 1) ;    
%NOT SURE WHICH WAY IS CORRECT 
%in = k3_q(K.OMEGA* K.A(:,mod(K.t - 1, K.Hist) + K.Hist),K.Zig ); 

  
    % N O I S E   A D D E D   H E R E   
    % add noise, for each layer take K.params.noise(j) weight of noise 
%     noise = zeros(K.params.MM * 4, 1); 
%     noise(1:4:end) = K.params.bias + K.params.noise * 

randn(K.params.MM,1); 
%     in = in + noise; 
% mm 
     noise = zeros(K.params.MM * 4, 1); 
%     noise(1:4:end) = randn(K.params.MM,1); 
    % -mm add 4-15-2007 
    %in = [ 1; 0; 0; 0; 2; 0; 0; 0; 3; 0; 0; 0]; 
    %in = [0.122; 0.144; 0.455; 1; 0.898; 0.344; 0.232; 2; 0.232; 

0.655; 0.111; 3]; 
    in = in + noise; 
% mm 
K.I = extIn; 

  
% sovle ODE and store current results 
[K.A(:, k) , K.B(:, k)] = k3_SolveNodeRungeKutta(K.a, K.b, K.h, K.A(:, 

kk ), K.B(:, kk ), K.I + in  ); 
K.A(:, k) = K.A(:, k) + noise; 

  

 

 k3_KSlink.m 
function K = KSLink( inIndexes, outIndexes, link ) 
%-----------------------------------------------------------------% 
%--The Univrsity of Memphis, Department of Mathematical Sciences--% 
% File:      KSLink.m    
% Author:    Roman Ilin 
% Date:      2/15/200 
% Purpose:   Constructor 
%-----------------------------------------------------------------% 
%KSLINK Describes the space-time link between two layers 
%  inIdx and outIdx are the arrays of indexes of respectively input and 
%  output layers.   
%  KLink is the KLnik2 object describing the time-distributed link. 
%  inIdx and outIdx arrays select which KII units of the input and 

output 
%  layer are participating in this link.  Therefore, the indexes must 

be 
%  the union of intervals 1:4, 5:8, 8:12, etc...   
K.inIdx = inIndexes;    %indexes from the input layer  
K.outIdx = outIndexes;   %indexes from the output layer  
%K.inLayer = intLayerIn;  %index of the input layer, integer 
%K.outLayer = intLayerOut; %index of the output layer, integer 
K.Klink = link;    %k3_link2 object, to calc the delays 
%K = class( K, 'KSLink'); 

  



131 

 

k3_KSLink_Calc.m 
function [ outActivations ] = k3_KSlink_Calc( K, inActivations , 

outsize) 
%-----------------------------------------------------------------% 
%--The Univrsity of Memphis, Department of Mathematical Sciences--% 
% File:      k3_KSlink_Calc    
% Author:    Roman Ilin 
% Date:      2/15/200 
% Purpose:   CALC Space-Time Delay 
%-----------------------------------------------------------------% 
%  Calculates the delayed signal from one layer to another 
%  inActivations is a 2D array of activations from the inbound  
% layer, and K.inIdx is the selector of which indexes are "working" for 
% this link.  similarly K.outIdx determines which outbound layer 

indexes 
% are receiving the output. 
%  !!! inIdx and outIdx must be the multiples of 4 since we select on 

KII 
%  unit basis, so if a layer has 10 KII sets in it, the possible 

indexes 
%  can be [1:4] or [5:8] or [9:12] etc. or any combination of them.  

But 
%  inIdx = [2:5] is NOT 

VALID!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!  
outActivations = zeros(outsize,1); 
outActivations(K.outIdx) = k3_delay2( K.Klink , 

inActivations(K.inIdx,:) , size(K.inIdx,2)/4, size(K.outIdx,2)/4); 

  

 

 k3_link2.m 
function K = k3_link2( Schema_Name, Amp, D, method ) 
%------------------------------------------------------------------% 
%--The University of Memphis, Department of Mathematical Sciences--% 
% File:      Klink2    
% Author:    Roman Ilin 
% Date:      5/2003 
% Purpose:   Constructor for Klink2 object, which represent distributed  
%            time delay link between two Klayer's   
%------------------------------------------------------------------% 
%function K = Klink2( Schema_Name, Amp ) 
% Schema_Name       name of the predefined link schema 
% Double Amp   - is the global amplification coefficient 
% method - "average", "converge-diverge-int", etc.. methods of spacial 
% convergence 
% Detailed description: -- OLD 
% KLink2        KLink2 describes connection between two KII units.  

Each unit has 4 nodes, so we have 
%           16 connection links, in general.  Each link is described 

similar to  a Digital Filter, 
%           by its coefficients.  If Ts and Tf and the start and end 

time steps then the number of coefficients 
%           must be Tf - Ts + 1.  ASSUME that each of 16 channels has 

the same Tf and Ts (this is 
%           easy to achieve by patching the shorter filters with zero 

coefficients. 
%            
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%           D is the 3-dimensional matrix, 4 by 4 by Tf - Ts + 1.  It 

can be thought of as consisting of 16 columns 
%           each of the columns is a digital filter applied to its 

corresponding channel.    
%   !IMPORTANT!   First dimension           - sending KII 
%                 Second dimension  - receiving KII 
%                 D can either be passed in, or filled internally using 

Schema_Name 
%   !IMPORTANT!   This class is used by global function KDelay2 
%   if isa(Schema_Name, 'KLink2') 
%         K = Schema_Name; 
%         return; 
%   end 
K.Amp = Amp; 
if isempty(method) 
    K.method = 'average';  %default for now is average 
else 
    K.method = method; 
end 
K.D = D; 
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 k3_new.m 
function [K] = k3_new(MM) 
% 
% function k3_new returns new K_III object with 
% given size of input layer MM, that is size of  
% all three layers.  
% 
% At this moment all parameters are set to some 
% default values used in the lab for k-sets. This  
% function calls K-III constructor k3() and gives it 
% three layer object prepared by function k3_Klayer(). 
% 
% The default parameters for K_II sets in first, second  
% and third layer are as follows: 
%  
% First layer:    k3_formKIImatrix(1.8, 1, 2, 0.8);   % w_ee, w_ei, 

w_ie, w_ii 
% Second layer:   k3_formKIImatrix(1.6, 1.6, 1.5, 2); % w_ee, w_ei, 

w_ie, w_ii 
% Third layer:    k3_formKIImatrix(1.6, 1.9, 0.2, 1); % w_ee, w_ei, 

w_ie, w_ii 
% 
% K-set object has the following fields: 
%  
%             N: 3              - number of layers (double K-II layers) 
%             L: [1x3 struct]   - array of layer objects (see 

k3_Klayer) 
%        Schema: ''             - schema name for some predifined 

shemas 
%             D: []             - links object 
%             t: 400            - current total number of time steps 

run 
%        SLINKS: {5x5 cell}     - array of inter-layer links objecst 
%      buf_size: 80             - size of activation buffer in time 

steps 
%     it_active: 100            - number of time steps for active phase 
%      it_relax: 300            - number of time steps for relaxation  
%            MM: 10             - size of input 
%         STEPS: 1000           - total number of time steps (not used) 
% 
% 
% see also k3, k3_train, k3_run, k3_formKIImatrix, k3_Klayer, 

k3_formKlink2 
% 
% by bileon, June 2004 

  
% call k3_parameters for all major parameters of k3 
params = k3_parameters(MM); 

  
% set up all parameters and instantiate the network 
%number of units in layers 
NN1 = params.MM; 
NN2 = params.MM; 
NN3 = params.MM; 

  
% %input 
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% dT = 0.5; 

  
%Lateral Connection Matrix 
%connect a1 and a3 in each layer 
we1 = params.wLat1(1);  wi1 = params.wLat1(2); 
we2 = params.wLat2(1);  wi2 = params.wLat2(2); 
we3 = params.wLat3(1);  wi3 = params.wLat3(2); 

  
wLat1 = k3_formLateralMatrix1(we1, wi1, NN1); 
wLat2 = k3_formLateralMatrix1(we2, wi2, NN2); 
wLat3 = k3_formLateralMatrix1(we3, wi3, NN3); 

  
%internal weights 
w1 = k3_formKIImatrix(params.kii1(1), params.kii1(2), params.kii1(3), 

params.kii1(4));  
w2 = k3_formKIImatrix(params.kii2(1), params.kii2(2), params.kii2(3), 

params.kii2(4));  
w3 = k3_formKIImatrix(params.kii3(1), params.kii3(2), params.kii3(3), 

params.kii3(4)); 

  
%klinks 
%Weights = [0.15  0.6  0.05 0.25 -0.05 0.3]; 
Weights = [0.1529  0.5979  0.0518 0.2501 -0.0502 0.2789]; 
Weights = params.weights; 

  
%klinks 
k12 = k3_formKlink2('b1.a1.w', 1 , 'b1.a1.n', 1, 'Amp', Weights(1)/NN1, 

'method', 'converge-diverge-int'); 
k13 = k3_formKlink2('b1.a1.w', 1 , 'b1.a1.n', 1, 'Amp', Weights(2)/NN1, 

'method', 'converge-diverge-int'); 

  
k21 = k3_formKlink2('b1.a1.w', Weights(3), 'b1.a1.n', 17, 'b1.a3.w', 

Weights(4), 'b1.a3.n', 25, 'Amp', 1/NN1, 'method', 'average'); 
k23 = k3_formKlink2('b1.a1.w', 1, 'b1.a1.n', 1, 'Amp', 0, 'method', 

'converge-diverge-int'); 

  
k31 = k3_formKlink2('b3.a3.w', Weights(5), 'b3.a3.n', 25, 'Amp', 1/NN1, 

'method', 'average'); 
k32 = k3_formKlink2('b1.a3.w', Weights(6), 'b1.a3.n', 25, 'Amp', 1/NN1, 

'method', 'average'); 

  
%configuration 
conf = k3_config(   'general.type', 'kiii', ... 
                    'kiii.layers', 3, ... 
                    'kiii.schema', '', ... 
                    'general.time' , 500, ... 
                    'buffer.size', params.buf_size, ... 
                    ... 
                    'kiii.layer1.kii.units', NN1, ... 
                    'kiii.layer2.kii.units', NN2, ... 
                    'kiii.layer3.kii.units', NN3, ...                     
                    ... 
                    'kiii.layer1.kii.schema', '', ... 
                    'kiii.layer2.kii.schema', '', ... 
                    'kiii.layer3.kii.schema', '', ...                     
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                    ... 
                    'kiii.layer1.lateralw', wLat1, ... 
                    'kiii.layer2.lateralw', wLat2, ... 
                    'kiii.layer3.lateralw', wLat3, ... 
                    ... 
                    'kiii.layer1.w', w1, ... 
                    'kiii.layer2.w', w2, ... 
                    'kiii.layer3.w', w3, ... 
                    ... 
                    'kiii.kslink.1.2', k3_formKSlink('inIDX',[1:4*MM] , 

'outIDX' , [1:4*MM] ,'klink', k12 ), ... 
                    'kiii.kslink.1.3', k3_formKSlink('inIDX',[1:4*MM] , 

'outIDX' , [1:4*MM] ,'klink', k13 ), ...                     
                    'kiii.kslink.2.1', k3_formKSlink('inIDX',[1:4*MM] , 

'outIDX' , [1:4*MM] ,'klink', k21 ), ...  
                    'kiii.kslink.2.3', k3_formKSlink('inIDX',[1:4*MM] , 

'outIDX' , [1:4*MM] ,'klink', k23 ), ...  
                    'kiii.kslink.3.1', k3_formKSlink('inIDX',[1:4*MM] , 

'outIDX' , [1:4*MM] ,'klink', k31 ), ... 
                    'kiii.kslink.3.2', k3_formKSlink('inIDX',[1:4*MM] , 

'outIDX' , [1:4*MM] ,'klink', k32 )); 

                 
conf.MM = MM; 

  
% prepare three KLayers - could pass the whole conf object 
params.a = 0.22; % 0.6; % corresponds to frequency 40.021 
params.b = 0.72; % 0.6; 
L1 = k3_Klayer(conf.KIII_Layer1_Zig, params.buf_size, params.dT, ... 
    conf.KIII_Layer1_W, conf.KIII_Layer1_KII_Schema, 

conf.KIII_Layer1_KII_Units, ... 
    conf.KIII_Layer1_lateralW, 1, conf.KIII_Layer1_filename, '', [], 

[], params ); 

  

  
params.a = 0.22; % 0.3; % corresponds to frequency 47.0217 
params.b = 0.72; % 0.3; 
L2 = k3_Klayer(conf.KIII_Layer1_Zig, params.buf_size, params.dT, ... 
    conf.KIII_Layer2_W, conf.KIII_Layer2_KII_Schema, 

conf.KIII_Layer2_KII_Units, ... 
    conf.KIII_Layer2_lateralW, 1, conf.KIII_Layer2_filename, '', [], 

[], params ); 

  
params.a = 0.22; % 0.9; % corresponds to frequency 51.0465 
params.b = 0.72; % 0.9; 
L3 = k3_Klayer(conf.KIII_Layer1_Zig, params.buf_size, params.dT, ... 
    conf.KIII_Layer3_W, conf.KIII_Layer3_KII_Schema, 

conf.KIII_Layer3_KII_Units, ... 
    conf.KIII_Layer3_lateralW, 1, conf.KIII_Layer3_filename, '', [], 

[], params ); 

  
% prepare K nerwork out of L1 L2 L3 layers         
K = k3(3, [L1 L2 L3], [], conf.KIII_KSlink, conf, params);             
K.params = params; 

  
% prepare input (small perturbation) 
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in = [  1.0; 0; 0; 0]; %hilbert transform phase slip = 1.5 

 
% run network for 400 iterations 
for t = 1:1 
    K.t = K.t + 1; 
    K = k3_SolveNextStep(K, in );  
end 

  
for t = 2:params.it_warmup 
    K.t = K.t + 1; 
    K = k3_SolveNextStep(K, zeros(size(in))); 
end 

 

 
k3_parameters.m 
function [params] = k3_parameters(input_size) 
% Returns an object that contains all major 
% parameters of K-III network which include: 
% 
%   it_warmup       - number of time steps for warm up period 
%   it_active       - number of time steps for active phase  
%   it_relax        - number of time steps for inactive phase 
%   dT              - time resolution for RK solver ( sec. / time steps 

) 
%   alfa            - learning rate for k3_hebb 
 %   K-II 1 weights  - weights w_ee, w_ei, w_ie, w_ii for K-II network 

in 1st layer 
%   K-II 2 weights  - weights w_ee, w_ei, w_ie, w_ii for K-II network 

in 2nd layer 
%   K-II 3 weights  - weights w_ee, w_ei, w_ie, w_ii for K-II network 

in 3rd layer 
%   tau's           - time delays for inter-layer connections 
% 
% all parameters are packed into 'params' data structure 
% 
% see also k3, k3_new, k3_config 
% 
% by bileon, June 2004 

  
% size of input 
params.MM = input_size; 

  
% time steps for warm up period, active and inactive phase of k3 cycle 
params.it_warmup = 1000; 
params.it_active = 1000; 
params.it_relax  = 50; 

  

  
% size of internal buffer to store activation history 
% mm params.buf_size = max( params.it_active, 70); 
params.buf_size = max( params.it_active, 70); 

  
% parameters of k-ii networks for the 1st, 2nd and 3rd layer 
params.kii1 = [0.05, 2.20, 2.20, 2.50];  
params.kii2 = [0.06, 2.25, 2.23, 2.40];  
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params.kii3 = [0.30, 2.00, 2.10, 2.25];  
params.kii4 = [0.05, 2.20, 2.20, 2.50];  
params.kii5 = [0.06, 2.25, 2.23, 2.50]; 
params.kii6 = [0.30, 2.00, 2.10, 2.25]; 

  
% time resolution for Runge-Kutta solver 
params.dT = 0.5; 

  
% learning rate in hebbian learning algorithm 
params.alpha = 5; 

  
% delays for inter-layer links in the following order 
% tau_12, tau_13, tau_21, tau_23, tau_31, tau_32 
params.taus = [1, 1, 17, 1, 25, 25]; %orig 

  
% and weights of corresponding connections 
params.weights = [0.3  0.5  0.5 0.6 -0.5 0.5]; %orig weights 
%params.weights = [0.2  0.2  10.0 0.6 10.0 10.0]; %seiz weights  

  
% lateral itra-layer connections 
% wLat_ee and wLat_ii 
params.wLat1 = [0.15 -0.1]; 
params.wLat2 = [0.2  -0.2]; 
params.wLat3 = [0.15 -0.1]; 

  
% constants of differential equations 
params.a = 0.22; 
params.b = 0.72; 

  

  

 k3_q.m 
function [ s ] = k3_q( x, Sig ) 
%------------------------------------------------------------------% 
%--The University of Memphis, Department of Mathematical Sciences--% 
% File:      Q    
% Author:    Roman Ilin 
% Date:      5/2003 
% Purpose:   Sigmiod function for K Sets 
%------------------------------------------------------------------% 
%   x   vector input 
%   s   vector output 
%   Sig is the sigmoid coefficient 
s = Sig .* (1 - exp( -1/Sig * (exp(x) -1))); 
%s = max(s, -1); 

 

k3_run.m 
function [K, sigma] = k3_run(K, in) 
% function k3_run returns K-III object K after 
% it has been run for K.it_active time steps with  
% each input sample vector from set 'in' (active period) 
% followed by K.it_relax time steps of relaxation period  
% (zero input) and set of std(activations) vectors 
% that is standard deviation of 50 time steps of 
% active phase for excitatory units of third layer 
% for every input sample. 
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% 
% Input set in is composed of input samples row by row, that  
% is in = [ x_1; x_2; ... x_k]. 
% 
% Sigma is composed of vectors that are computed as follows: 
% 
%   sigma(i,:) = std( activations ); 
% 
% where 'activations' is set of activation for all top K-II  
% excitatory units in the third layer. 
% 
% see also k3_new, k3, k3_train 
% 
% by bileon, June 2004 

  

  
if size(in) ~= 0 

     
    sigma = []; 

     
    % iterate over input vectors 
    for i = 1 : size(in,1) 

         
        tic; 

         
        % take input from set_train 
        inp = repmat(zeros(4,1), K.MM,1); 
        inp(1:4:end) = in(i,1:K.MM); 

         
        % get current network time 
        total_t = K.t; 

         
        % run ACTIVE phase for 100 iterations 
        for t = 1:K.it_active 
            K.t = t + total_t; 
            K = k3_SolveNextStep(K, inp ); %zeros(size(in)) 
        end 

         
        % compute network output 
        act = K.L(3).A; 

         
        % get time brake position in buffer 
        if mod(K.t, K.buf_size) == 0 
            t_temp = K.buf_size; 
        else 
            t_temp = mod(K.t, K.buf_size); 
        end 

  
       % get activation history of third layer 
        act = [ K.L(3).A( :, t_temp + 1 : end) K.L(3).A( :, 1:t_temp)]; 
        act = act(:, max(1, size(act,2) - K.it_active ) : end); 

  
        sigma_temp = std(act(1:4:end, :)'); 
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        sigma = [ sigma; sigma_temp]; 

         

         
        % run INACTIVE phase for 300 iterations 
        for t = K.it_active + 1 : K.it_active + K.it_relax 
            K.t = t + total_t; 
            K = k3_SolveNextStep(K, zeros(size(inp))); 
        end 

         
        ['iteration ' int2str(i) ' of ' int2str(size(in,1)) ' time 

elapsed ' num2str(toc)] 

         
    end 
else 
    [' no input ... nothing done '] 
end 

  
k3_SolveNextStep.m 
function K = k3_SolveNextStep( K, ExtInput ) 
%-----------------------------------------------------------------% 
%--The Univrsity of Memphis, Department of Mathematical Sciences--% 
% File:      KIII_SolveNextStep    
% Author:    Roman Ilin 
% Date:      5/2003 
% Purpose:   Advance KIII set one step   
%-----------------------------------------------------------------% 
%KIII_SOLVENEXTSTEP KIII_SolveNextStep( K, ExtInput ) 
%ExtInput is the external input for the current time step , 
%coming to Layer 1 of the KIII set.  N by 1 vector 
%PROBLEM WITH Q being applied before summation, NEED TO TEST AND FIX, 

ALSO 
%COMPARE TO HIZHON's CODE 
for j=1:K.N 
    in = zeros(4* K.L(j).N,1); 
    for k=1:K.N 
        %here use space links to obtain the inter-layer communication 
        if j ~=  k  
            % calc signal from layer k to layer j for all communication 
            % lines 
            % sender2 is the piece of history suitable for KDelay.   
            % if statement is used because if k > j, history is already 
            % flipped, so the indexing changes 
            sig = K.L(k).Zig; 
            hist = K.L(k).Hist; 
            %index when 'history' starts, needs to be coordinated with 

the 'flips' of history 
            if k <= j  
                s = mod(K.t, hist);   
            else 
                s = mod(K.t - 1, hist) + 1; 
            end  

             
            for p=1:size(K.SLINKS{k,j},2) 
                sender2 = [K.L(k).A(:,s:-1:1) K.L(k).A(:,K.buf_size:-

1:s+1)];  
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                in = in + k3_KSLink_Calc(K.SLINKS{k,j}(p), 

k3_q(sender2, sig), size(in ,1)); 
            end 
        end 
    end 
    if j == 1 
        in = in + ExtInput; 
    end     

   
%     % N O I S E   A D D E D   H E R E   
%     % add noise, for each layer take K.params.noise(j) weight of 

noise 
%      noise = zeros(K.params.MM * 4, 1); 
%     noise(1:4:end) = K.params.bias(j) + K.params.noise(j) * 

rand(K.params.MM,1); 
%     in = in + noise; 

    
%mm 
       noise = zeros(K.params.MM * 4, 1); 
%       noise(1:4:end) = rand(K.params.MM,1); 
    %in = [ 0.9553; 0; 0; 1.1144; 0; 0; 0; 0.9762; 0; 0; 0; 0]; 
%in = [ 1.0011; 0; 0; 0; 1.0011; 0; 0; 0; 1.0011; 0; 0; 0; 1.0011; 0; 

0; 0; 1.0011; 0; 0; 0;1.0011; 0; 0; 0;1.0011; 0; 0; 0;1.0011; 0; 0; 

0;1.0011; 0; 0; 0;1.0011; 0; 0; 0;]; 
   noise = [0.00010967; 0; 0; 0.00010967; 0; 0; 0; 0.00010967; 0; 0; 0; 

0]; 
      %in = [0.122; 0.144; 0.455; 1; 0.898; 0.344; 0.232; 2; 0.232; 

0.655; 0.111; 3]; 
   % in = [3.255; 3.255; 3.255; 3.255; 3.255; 3.255; 3.255; 3.255; 

3.255; 3.255; 3.255; 3.255]; 
     % in = [ 1; 0; 0; 0; 2; 0; 0; 0]; 
       in = in + noise; 
%mm    

  
%input for all k layers into jth layer 
    K.L(j).t = K.t; 
    K.L(j) = k3_Klayer_SolveNextStep2(K.L(j), in); 
end 

 

 k3_SolveNodeRungeKutta.m 
function  [OutA, OutB] = SolveNodeRungeKutta( a, b, h, PrevA, PrevB, 

RHS ) 
%-----------------------------------------------------------------% 
%--The Univrsity of Memphis, Department of Mathematical Sciences--% 
% File:      SolveNodeRungeKutta    
% Author:    Roman Ilin 
% Date:      5/2003 
% Purpose:   Solve second order differential equation describing  the 
%            the dynamics of a K0 set using Runge-Kutta method 
%-----------------------------------------------------------------% 
%a, b       constants 
%h          step size 
%PrevA, PrevB   previous values of A and B: activation and its 

derivative 
%RHS            Right Hand Side, Input 
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%Kozma's Way 
k1 = F(a,b,   PrevB                                                                 

)*h; 
l1 = G(a,b,   PrevA                  ,PrevB                         , 

RHS           )*h; 

  
k2 = F(a,b,   PrevB + l1/2                                                      

)*h; 
l2 = G(a,b,   PrevA + k1/2      ,PrevB + l1/2               , RHS           

)*h; 

  
k3 = F(a,b,   PrevB + l2/2                                                      

)*h; 
l3 = G(a,b,   PrevA + k2/2      ,PrevB + l2/2               , RHS           

)*h; 

  
k4 = F(a,b,   PrevB +  l3                                                       

)*h; 
l4 = G(a,b,   PrevA +  k3       ,PrevB + l3                 , RHS           

)*h; 

  
OutA = PrevA     + (k1 + 2*k2 + 2*k3 + k4) / 6; 
OutB = PrevB     + (l1 + 2*l2 + 2*l3 + l4) / 6; 

  

  
%These are the two right-hand side functions, for solving 
%two simultaneous equations of first order with Runge Kutta 
function [f] = F(a,b, bb) 
% returns right hand side of the equation  
%               A' = B  
%  bb,  aa, input are the values substituted for B and A and I 
f = bb; 

  
function [g] = G(a, b, aa, bb, input) 
% returns right hand side of the equation  
%               B' = -(a+b)*B - abA + abI 
%  bb,  aa, input are the values substituted for B and A and I 
g = -(a+b)*bb - a*b*aa + a*b*input; 

  

  

k3_train.m 
function [K] = k3_train(K, set_train) 
% function k3_train returns K_III object K after 
% it has been trained with samples from set_train 
% when for K.it_active time steps input sample vector  
% activation is gathered and k3_hebb function called;  
% followed by K.it_relax time steps of relaxation period  
% (zero input)  
%  
% Training takes place after active phase for each input sample 
% in 'set_train'. Function k3_hebb() is called with lateral weights 
% matrix in third layer and activation history of top K-II excitatory 
% units for half active period. Weights matrix W = K.L(3).OMEGA and 
% activations act = K.L(3).A. 
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% 
%  
% see also k3_new, k3, k3_train, ke_hebb 
% 
% by bileon, June 2004 

  
for i = 1 : size(set_train,1) 

     
    tic; 

    
    % take input from set_train 
    in = repmat(zeros(4,1), K.MM,1); 
    in(1:4:end) = set_train(i,:); 

         
    % run ACTIVE phase for K.it_active iterations 
    for t = 1:K.it_active 
        K.t = K.t + 1; 
        K = k3_SolveNextStep(K, in ); %zeros(size(in)) 
    end 

     
    % run HEBBIAN UPDATE for LEARNING 

     
        % get weights of third layer 
        W = K.L(3).OMEGA; 

     
        % get time brake position in buffer 
        if mod(K.t, K.buf_size) == 0 
            t_temp = K.buf_size; 
        else 
            t_temp = mod(K.t, K.buf_size); 
        end 

         
        % get activation history of third layer 
        act = [ K.L(3).A( :, t_temp + 1 : end) K.L(3).A( :, 1:t_temp)]; 
        act = act(:, end - round( K.it_active / 2 ) : end); 

     
        % call hebb() function with selected weights and activations 
        % and update W 
        W(1:4:end, 1:4:end) = k3_hebb(act(1:4:end, :)', W(1:4:end, 

1:4:end), K.params.alpha); 

     
        % update the k3 model's weights matrix by redefining it 
        K.L(3).OMEGA = W; 
        K.O_H(i,:,:) = W(1:4:end, 1:4:end); 

     
    % run INACTIVE phase for 300 iterations 
    for t = K.it_active + 1 : K.it_active + K.it_relax 
        K.t = K.t + 1; 
        K = k3_SolveNextStep(K, zeros(size(in))); 
    end 
     ['iteration ' int2str(i) ' of ' int2str(size(set_train,1)) ' time 

elapsed ' num2str(toc)] 

     
end 
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 K4_new.m 
function [K] = k4_new(MC,MH,MM) 

  
%MC = The size of all three layers of the cortex KIII, i.e. the number 

of KIIs. Cortex KIII = 3 
%MH = The size of all three layers of the hippo KIII, i.e. the number 

of KIIs. Hippo KIII = 3 
%MM = The size of the one layer of the amy KII,i.e. the number of KIIs. 

Amy KII = 1 

  
%creating a cortical kiii network 
C = k3_cortex(MC); 
%creating a hippocampal kiii network 
H = k3_hippo(MH); 
%creating a amygdala kii network 
A = k2_new(MM); 

  
%creating a brainstem - interface kii network 
BS = k2_stim(MM); 

  
params = k4_parameters(MC,MH,MM); 

  
% temp variables 
WA = params.WA; 
WB = params.WB; 
WC = params.WC; 
NN1 = params.MC; 
NN2 = params.MC;  
NN3 = params.MC; 
NN1h = params.MH; 
NN2h = params.MH; 
NN3h = params.MH; 
NN1a = params.MM; 

  

  
% prepare K nerwork out of L1 L2 L3 layers         

  
% crete new k4 object and put C, H, and A into it 
K.C = C; 
K.H = H; 
K.A = A; 
K.BS = BS; 

  

  
% put parameter object into the K4 too 
K.params = params; 

  
% global time keeper 
K.t = K.C.t; % make sure H and C have the same time counter !!! (Amy 

too) 

  

  
% run network for several iterations 
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for t = 1:K.params.it_active 
    t 

     
  % Increase external external for seizure activity 
  if (t > 2000 & t < 4000) 
    %if (t > 2000 & t < 3000) 
        K.params.WA = 5; 
        K.params.WB = 5; 
        K.params.WC = 5; 
    elseif (t > 4000) 
        K.params.WA = 0.3225; 
        K.params.WB = 0.3225; 
        K.params.WC = 0.3225; 
  end 

     
    % set global time of K4 one step ahead 
    K.t = K.t + 1; 

     
    % take Cortical K3, compute links from Hypp., and Amy,  --------- 

Cort 
    % and update Cort. K3 one time step 

         
    % get current time position in the buffer 
    if mod(K.t, K.H.params.buf_size) == 0 
        t_temp = K.H.params.buf_size; 
    else 
        t_temp = mod(K.t, K.H.params.buf_size); 
    end 
    hypLink = zeros(4,1); 
    hypLink = repmat(hypLink,params.MH,1); 
    hypLink(1:4:end) = k3_q( K.H.L(3).A(1:4:end, t_temp), 

K.H.L(1).Zig)'* K.params.WA ; 
    amyLink = zeros(4,1); 
    amyLink = repmat(amyLink,params.MM,1); 
    amyLink(1:4:end) = k3_q( K.A.A(1:4:end, t_temp), K.H.L(1).Zig)'* 

K.params.WB ; 
    extIn = zeros(K.params.MC*4,1); 

     
    % update the k3 
    K.C.t = K.t; % synch k3 Cort with K4 global timer 
    K.C = k4_k3_solveNextStep(K.C, extIn, hypLink, amyLink); 

     

     
    % take Hippocampal K3, compute links from Cortex., and Amy,  ------

--- Hyp 
    % and update Hippo. K3 one time step 

     
    % get current time position in the buffer 
    if mod(K.t, K.C.params.buf_size) == 0 
        t_temp = K.C.params.buf_size; 
    else 
        t_temp = mod(K.t, K.C.params.buf_size); 
    end 
    CorLink = zeros(4,1); 
    CorLink = repmat(CorLink,params.MC,1); 
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    CorLink(1:4:end) = k3_q( K.C.L(3).A(1:4:end, t_temp), 

K.C.L(1).Zig)'* K.params.WA ; 
    amyLink = zeros(4,1); 
    amyLink = repmat(amyLink,params.MM,1); 
    amyLink(1:4:end) = k3_q( K.A.A(1:4:end, t_temp), K.C.L(1).Zig)'* 

K.params.WC ; 
    extIn = zeros(K.params.MH*4,1); 

     
    % update the k3 
    K.H.t = K.t; % synch k3 Hippo with K4 global timer 
    K.H = k4_k3_solveNextStep(K.H, extIn, CorLink, amyLink); 

     
    % take Amygdala k2, compute links from Cort K3 and Hyp k3   -------

-- Amy 

     
    %get current time position in the buffer 
    if mod(K.t, K.A.params.buf_size) == 0 
        t_temp = K.A.params.buf_size; 
    else 
        t_temp = mod(K.t, K.A.params.buf_size); 
    end 
    amyLinkC = zeros(4,1); 
    amyLinkC = repmat(amyLinkC,params.MC,1); 
    amyLinkC(1:4:end) = k3_q(K.C.L(3).A(1:4:end, t_temp), 

K.A.params.sig)'* K.params.WB; 
    amyLinkH = zeros(4,1); 
    amyLinkH = repmat(amyLinkH,params.MH,1); 
    amyLinkH(1:4:end) = k3_q(K.H.L(3).A(1:4:end, t_temp), 

K.A.params.sig)'* K.params.WC; 

     
    %Update Brain Stimulator object 
    stimLink = zeros(4,1); 
    stimLink = repmat(stimLink,params.MM,1); 
    stimLink(1:4:end) = k3_q(K.BS.A(1:4:end, t_temp), K.A.params.sig)'* 

K.params.WC; 

      
    %update k2 
    K.A.t = K.t; %synch k2 amygdale with K4 global timer 
    % restore section - works 
    if (t < 2000) 
        amyIn = amyLinkC + amyLinkH; 
    elseif (t > 2000 & t < 4000) 
    % Apply stimulator to reduce seizure event 
        amyIn = amyLinkC + amyLinkH + stimLink;   
    end 
    %amyIn = amyLinkC + amyLinkH; 
    K.A = k2_solveNextStep(K.A, amyIn); 

     
end 
  
k4_k2_solveNextStep.m 
function K = k4_k2_solveNextStep(K, amyLinkC, amyLinkH) 

  
%------------------------------------------------------------------% 
% 
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%purpose given the input from cortical and hippocampal 
%------------------------------------------------------------------% 

  
k = mod(K.t - 1, K.params.buf_size) + 1; 

  
% index in a round robin buffer by modulo K.Hist,  
% turn it around if modulo division is zero 
if mod( K.t - 1, K.params.buf_size) == 0  
    kk = K.params.buf_size;   
else 
    kk = mod( K.t - 1, K.params.buf_size); 
end 

  
in = K.OMEGA*k3_q( K.A(:,kk),K.params.sig );    
%in = K.OMEGA*k3_q( K.A(:,mod(K.t - 1, K.Hist) + K.Hist),K.Zig ) / 

max(1, K.N - 1) ;    
%NOT SURE WHICH WAY IS CORRECT 
%in = k3_q(K.OMEGA* K.A(:,mod(K.t - 1, K.Hist) + K.Hist),K.Zig ); 
K.I = amyLinkC + amyLinkH; 

  
% sovle ODE and store current results 
[K.A(:, k) , K.B(:, k)] = k3_SolveNodeRungeKutta(K.params.a, 

K.params.b, K.params.dT, K.A(:, kk ), K.B(:, kk ), K.I + in  ); 

  

 

k4_k3_SolveNextStep.m 
function K = k4_k3_SolveNextStep(K , ExtIn, otherIn, AmyIn) 
% solves RK for one step for the K3 network,K 
% given external input, ExtIn, link from the other 
% k3 in k4 formation, otherIn, and link from amygdala 
% k2, AmyIn 
% 
% extIn - goes to the top layer 
% otherIn and AmyIn - go to the third layer as external input 
% 
% by bileon, bharat, April 2005 

  
for j=1:K.N 

     
    in = zeros(4* K.L(j).N,1); 

     
    for k=1:K.N 
        %here use space links to obtain the inter-layer communication 
        if j ~=  k  
            % calc signal from layer k to layer j for all communication 
            % lines 
            % sender2 is the piece of history suitable for KDelay.   
            % if statement is used because if k > j, history is already 
            % flipped, so the indexing changes 
            sig = K.L(k).Zig; 
            hist = K.L(k).Hist; 
            %index when 'history' starts, needs to be coordinated with 

the 'flips' of history 
            if k <= j  
                s = mod(K.t, hist);   
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            else 
                s = mod(K.t - 1, hist) + 1; 
            end  

             
            for p=1:size(K.SLINKS{k,j},2) 
                sender2 = [K.L(k).A(:,s:-1:1) K.L(k).A(:,K.buf_size:-

1:s+1)];  
                in = in + k3_KSLink_Calc(K.SLINKS{k,j}(p), 

k3_q(sender2, sig), size(in ,1)); 
            end 
        end 
    end 
    if j == 1 
        in = in + ExtIn; 
    end     
    if j == 3 
        in = in + otherIn + AmyIn; 
    end     

    
    %input for all k layers into jth layer 
    K.L(j).t = K.t; 
    K.L(j) = k3_Klayer_SolveNextStep2(K.L(j), in); 
end  
 

k4_Klayer_SolveNextStep2.m 
function K = k4_Klayer_SolveNextStep2( K, extIn ) 

  
k = mod(K.t - 1, K.Hist) + 1; 

  
% index in a round robin buffer by modulo K.Hist,  
% turn it around if modulo division is zero 
if mod( K.t - 1, K.Hist) == 0  
    kk = K.Hist;   
else 
    kk = mod( K.t - 1, K.Hist); 
end 

  
in = K.OMEGA*k3_q( K.A(:,kk),K.Zig );    
%in = K.OMEGA*k3_q( K.A(:,mod(K.t - 1, K.Hist) + K.Hist),K.Zig ) / 

max(1, K.N - 1) ;    
%NOT SURE WHICH WAY IS CORRECT 
%in = k3_q(K.OMEGA* K.A(:,mod(K.t - 1, K.Hist) + K.Hist),K.Zig ); 

  
    % N O I S E   A D D E D   H E R E   
    % add noise, for each layer take K.params.noise(j) weight of noise 
    noise = zeros(K.params.MM * 4, 1); 
%    noise(1:4:end) = K.params.bias + K.params.noise * 

randn(K.params.MM,1); 
    %in = in + noise; 

  
K.I = extIn; 

  
% sovle ODE and store current results 
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[K.A(:, k) , K.B(:, k)] = k3_SolveNodeRungeKutta(K.a, K.b, K.h, K.A(:, 

kk ), K.B(:, kk ), K.I + in  ); 
K.A(:, k) = K.A(:, k) + noise; 

  

k4_run.m 
function [K, sigma] = k4_run(K, in_C ,in_H) 
if size(in_C) ~= 0  

     
    sigma = []; 

     
    % iterate over input vectors 
    for i = 1 : size(in_C,1) 

         
        tic; 

         
        % take input from set_train and set_trainh 
        in = repmat(zeros(4,1), K.C.MM,1); 
        in(1:4:end) = in_C(i,1:K.C.MM); 
        oin = repmat(zeros(4,1), K.H.MM,1); 
        oin(1:4:end) = in_H(i,1:K.H.MM);  
        % get current network time 
        K.t = K.C.t; 

                 
        % run ACTIVE phase for 300 iterations 
        % this function gives updated k4 model 
        for j = 1:K.params.it_active 
        % increment the global time by one step 
        K.t = K.t + 1; 
        K = k4_update(K , in(:,:) , oin(:,:)); 
        end 

         
        %THE READ OUT 

                 
        % get time brake position in buffer 
        if mod(K.t, K.C.params.buf_size) == 0 
            t_temp = K.C.params.buf_size; 
        else 
            t_temp = mod(K.t, K.C.params.buf_size); 
        end 

  
       % Collect the activation from amygdala  
        act = [K.A.A( :,t_temp + 1:end) K.A.A( :, 1:t_temp)]; 

                 
        %Apply standard deviation 
        sigma_temp = std(act(1:4:end, :)'); 

         
        sigma = [ sigma; sigma_temp]; 

         

         
        % run INACTIVE phase for 100 iterations 
       for j = 1:K.params.it_relax 
        % increment the global time by one step 
        K.t = K.t + 1;         
        K = k4_update(K , zeros(size(in)) , zeros(size(oin))); 
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       end 

        

           
        ['iteration ' int2str(i) ' of ' int2str(size(in_C,1)) ' time 

elapsed ' num2str(toc)] 

         
    end 
else 
    [' no input ... nothing done '] 
end 
 

k4_train.m 
function [K] = k4_train(K , in_C , in_H) 
% This function returns and k4 network after training with the input 

from 
% both the k3's. 
% when for K.it_active time steps input sample vector  
% activation is gathered and k3_hebb function called;  
% followed by K.it_relax time steps of relaxation period  
% (zero input)  
% Training takes place after active phase for each input sample 
% in both the k3's training sets. Function k3_hebb() is called with 

lateral weights 
% matrix in third layer and activation history of top K-II excitatory 
% units for half active period. Weights matrix W = K.L(3).OMEGA and 
% activations act = K.L(3).A. 

  

  
for i = 1 : size(in_C,1) 

  
         tic; 

         
        % take input from set_train 
        in = repmat(zeros(4,1), K.C.MM,1); 
        in(1:4:end) = in_C(i,:); 
        oin = repmat(zeros(4,1), K.H.MM,1); 
        oin(1:4:end) = in_H(i,:);  
        % get current network time 
        K.t = K.C.t; 

                 
        % run ACTIVE phase for 500 iterations 
        % this function gives updated k4 model 
         for j = 1:K.params.it_active 
        % increment the global time by one step 
        K.t = K.t + 1; 
        K = k4_update(K , in , oin); 
        end 

         
  %Run hebbain update for learining 

        
       % get weights of third layer of both hippocampal and cortical 
         WC = K.C.L(3).OMEGA; 
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         WH = K.H.L(3).OMEGA; 

          
        % get weights the amygdale 

         

         
       %W = K.A.OMEGA;       

     
  % get time brake position in buffer 
        if mod(K.t, K.C.params.buf_size) == 0 
            t_temp = K.C.params.buf_size; 
        else 
            t_temp = mod(K.t, K.C.params.buf_size); 
        end 

         
         % get activation history of third layer 
         actc = [ K.C.L(3).A( :, t_temp + 1 : end) K.C.L(3).A( :, 

1:t_temp)]; 

          
         acth = [ K.H.L(3).A( :, t_temp + 1 : end) K.H.L(3).A( :, 

1:t_temp)]; 

  
         % get activation from the amygdale 

          
         %act = [ K.A.A( :, t_temp + 1 : end) K.A.A( :, 1:t_temp)]; 

  
         % call hebb() function with selected weights and activations 
        % and update W 

         
        WC(1:4:end, 1:4:end) = k3_hebb(actc(1:4:end, :)', WC(1:4:end, 

1:4:end), K.params.alpha); 
        WH(1:4:end, 1:4:end) = k3_hebb(acth(1:4:end, :)', WH(1:4:end, 

1:4:end), K.params.alpha); 

         
         % update the k3 model's weights matrix by redefining it 
      K.C.L(3).OMEGA = WC; 
      K.H.L(3).OMEGA = WH; 

 
 % run INACTIVE phase for 100 iterations 
   for j = 1: K.params.it_relax 
        % increment the global time by one step 
        K.t = K.t + 1; 
        K = k4_update(K , zeros(size(in)) , zeros(size(oin))); 
    end 
end 
 

 

k4_update.m 
function K = k4_update(K, in_C , in_H) 
%This function updates the K4 network by updating the cortical 

hippocampal 
%and amydale links one time step 

   
% run network for several iterations 
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for t = 1:size(in_C , 1) 

     
    % set global time of K4 one step ahead 
    K.t = K.t + 1; 

     
    % take Cortical K3, compute links from Hypp., and Amy,  --------- 

Cort 
    % and update Cort. K3 one time step 

         
    % get current time position in the buffer 
    if mod(K.t, K.H.params.buf_size) == 0 
        t_temp = K.H.params.buf_size; 
    else 
        t_temp = mod(K.t, K.H.params.buf_size); 
    end 
    hypLink = zeros(4,1); 
    hypLink = repmat(hypLink,K.params.MH,1); 
    hypLink(1:4:end) = k3_q( K.H.L(3).A(1:4:end, t_temp), 

K.H.L(1).Zig)'* K.params.WA ; 
    amyLink = zeros(4,1); 
    amyLink = repmat(amyLink,K.params.MM,1); 
    amyLink(1:4:end) = k3_q( K.A.A(1:4:end, t_temp), K.H.L(1).Zig)'* 

K.params.WB ; 
    extIn = zeros(K.params.MC*4,1); 
    extIn = extIn + in_C; 

     
    % update the k3 
    K.C.t = K.t; % synch k3 Cort with K4 global timer 
    K.C = k4_k3_solveNextStep(K.C, extIn , hypLink, amyLink); 

     

     
    % take Hippocampal K3, compute links from Cortex., and Amy,  ------

--- Hyp 
    % and update Hippo. K3 one time step 

     
    % get current time position in the buffer 
    if mod(K.t, K.C.params.buf_size) == 0 
        t_temp = K.C.params.buf_size; 
    else 
        t_temp = mod(K.t, K.C.params.buf_size); 
    end 
    CorLink = zeros(4,1); 
    CorLink = repmat(CorLink,K.params.MC,1); 
    CorLink(1:4:end) = k3_q( K.C.L(3).A(1:4:end, t_temp), 

K.C.L(1).Zig)'* K.params.WA ; 
    amyLink = zeros(4,1); 
    amyLink = repmat(amyLink,K.params.MM,1); 
    amyLink(1:4:end) = k3_q( K.A.A(1:4:end, t_temp), K.C.L(1).Zig)'* 

K.params.WC ; 
    extIn = zeros(K.params.MH*4,1); 
    extIn = extIn + in_H; 

     
    % update the k3 
    K.H.t = K.t; % synch k3 Hippo with K4 global timer 
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    K.H = k4_k3_solveNextStep(K.H, extIn, CorLink, amyLink); 

     
    % take Amygdala k2, compute links from Cort K3 and Hyp k3   -------

-- Amy 

     
    %get current time position in the buffer 
    if mod(K.t, K.A.params.buf_size) == 0 
        t_temp = K.A.params.buf_size; 
    else 
        t_temp = mod(K.t, K.A.params.buf_size); 
    end 
    amyLinkC = zeros(4,1); 
    amyLinkC = repmat(amyLinkC,K.params.MC,1); 
    amyLinkC(1:4:end) = k3_q(K.C.L(3).A(1:4:end, t_temp), 

K.A.params.sig)'* K.params.WB; 
    amyLinkH = zeros(4,1); 
    amyLinkH = repmat(amyLinkH,K.params.MH,1); 
    amyLinkH(1:4:end) = k3_q(K.H.L(3).A(1:4:end, t_temp), 

K.A.params.sig)'* K.params.WC; 

     
    %update k2 
    K.A.t = K.t; %synch k2 amygdale with K4 global timer 
    amyIn = amyLinkC + amyLinkH; 

  
    K.A = k2_solveNextStep(K.A, amyIn); 

    
end 

 

k4_parameters.m 
function [params] = k4_parameters(cortex_size,hipp_size,amygdala_size) 

  
% size of input 
params.MM = amygdala_size; 
params.MC = cortex_size; 
params.MH = hipp_size; 

  
% time steps for warm up period, active and inactive phase of k3 cycle 
params.it_warmup = 1000; 
params.it_active = 1000; 
params.it_relax  = 50; 

  
% time resolution for Runge-Kutta solver 
params.dT = 0.5; 

  
%learing rate for hebb 
params.alpha = 5; 

  
lambda=1.0; 

  
nn=0.3225; 

   
params.WA = lambda*nn; 
params.WB = lambda*nn; 
params.WC =lambda*nn; 
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k2_stim.m 
function [K] = k2_stim(MM) 
% 
% function k2_new returns new K_II object with 
% given size of input layer MM, that is number 
% of full k-ii sets in the layer 
% 
% At this moment all parameters are set to some 
% default values used in the lab for k-sets.  
% 
% The default parameters for K_II sets in are as follows: 
%  
%   k3_formKIImatrix(1.8, 1, 2, 0.8);   % w_ee, w_ei, w_ie, w_ii 
% 
% K-set object has the following fields: 
%  
%             L: [1x1 struct]   - layer object (see k3_Klayer) 
%             t: 400            - current total number of time steps 

run 
%        params: [struct]       - parameters of the network  
%      buf_size: 80             - size of activation buffer in time 

steps 
%     it_active: 100            - number of time steps for active phase 
%      it_relax: 300            - number of time steps for relaxation  
%            MM: 10             - size of input 
% 
% see also k2_run(), k2_parameters(), k3_formKIImatrix, k3_Klayer, 

k3_formLateralMatrix1 
% 
% by bileon, August 2004 

  
% call k2_parameters for all weiths of full k_ii 
params = k2_parameters_stim(MM); 

  
%Lateral Connection Matrix 
wLat = k3_formLateralMatrix1(params.wLat(1), params.wLat(2), 

params.MM); 

  
%internal weights 
w = k3_formKIImatrix(params.kii(1), params.kii(2), params.kii(3), 

params.kii(4));  

  
% prepare a KLayer 
% give it params, k-ii weights matrix and lateral weights matrix 
K = k2_Klayer(params, w, wLat); 

  
% store parameter object inside network object 
K.params = params; 

  
% prepare input (small perturbation) 
var1 = 0.1; 

  
in = [  var1; 0.0; 0.0; 0.0]; 
in = repmat(in, params.MM, 1); 
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% run network for one active (with input) iteration 
for t = 1:1 
    K.t = K.t + 1; 
    K = k2_SolveNextStep(K, in );  
end 

  
% run network for res of parmas.it_warmup iterations with zero input 
for t = 2:params.it_warmup 
    K.t = K.t + 1; 
    K = k2_SolveNextStep(K, zeros(size(in))); 
end 

 

 

autocorr_eeg.m 
N=500; % Number of samples 
f1=1; % Frequency of the sinewave 
FS=256; % Sampling Frequency 
n=0:N-1; % Sample index numbers 

   
%normal EEG 
x=y1(100001:100500,1);  % Generate the signal, x(n) 

 
t=[1:N]*(1/FS); % Prepare a time axis 
figure; 
subplot(2,1,1); % Prepare the figure 
plot(t,x,'k'); 
title('EEG'); 

  
xlabel('Time, [s]'); 
ylabel('Amplitude'); 
grid; 
subplot(2,1,2); % Prepare the figure 
Rxx=xcorr(x); % Estimate its autocorrelation 
plot(Rxx/200,'k'); % Plot the autocorrelation 
grid; 
title('Autocorrelation function'); 
xlabel('lags'); 
ylabel('Autocorrelation'); 

 

 

 

 

 

 
 

psd_analysis.m 
[filename, pathname] = uigetfile( ... 
       {'*.txt', 'All Rabbit EEG Files (*.txt)'; ... 
           '*.dat', 'EEG Files (*.dat)'; ... 
        '*.*',                   'All Files (*.*)'}, ... 
        'Pick an EEG file'); 
if isequal(filename,0)|isequal(pathname,0) 
       disp('EEG File not found') 
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    else 
       disp(['File ', pathname, filename, ' EEG file found']) 

       
end 
aa=textread([pathname filename],'','headerlines',2); 
 

a=y1; 
numCh = size(a,2)-1; 
numData =input('Window size in analysis   :'); 
Initial_time=input('What is the first point in analysis?   :'); 

  
for ch=1:1:numCh 
     x(:,ch)=a(Initial_time: numData+Initial_time-1,ch); 
end 

  
for chh=1:numCh 
     [aa bb]=psd(x(:,chh)-mean(x(:,chh)),512,500); 
end 
 

XX=log10(bb(20:55)); 
YY=log10(aa(20:55)); 
 

figure; 
plot(log10(bb),log10(aa)) 
hold  
 

psd_val=polyfit(XX,YY,1); 

  
y_p2=polyval(psd_val,XX); 
plot(XX,y_p2,'r'); 
grid 
 

xlabel('log frequency (Hz)'), ylabel('log power'); 
title('temporal power spectral density'); 
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