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ABSTRACT

Tanveer, Md. Iftekhar. M.S. Electrical and Computer Engineering. The
University of Memphis. August 2011. On The Evaluation of Model Based Approaches
for Applications in Affective Computing. Major Professor: Mohammed Yeasin, Ph.D.

Automatic recognition of emotion has a huge potential in several applications.

In order to address such potential, researchers from diverse fields are collaborating

together to build systems capable of recognizing human emotion. As a preliminary

step towards such systems, many works are being done to automatically detect facial

expressions. A technique generally termed as “Model Based Technique” has gained

significant attention among the researchers for its utility in detecting facial expressions.

However, methods currently used for evaluation of the performance of such

systems have several flaws and inefficiencies. Due to these inefficient evaluation

methods, it becomes difficult to compare among the systems from their literary

descriptions. In this thesis, origins of such flaws are analyzed and efforts have been

made to derive some solutions. As a part of this endeavor, a Three Level Evaluation

(TLE) model has been proposed. In addition, some new and efficient assessment

metrics have been suggested that can make faithful comparison of the systems.
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Chapter 1

Introduction

1.1 Background

“Affective computing is a field of computing that relates to, arises from, or

deliberately influences human emotions” [3]. A major area of affective computing is

the automated understanding of human emotion. While the human beings have innate

abilities to predict emotions and affective states; such capabilities are very difficult for

machines to emulate. However, machine recognition of emotion has huge potential in

different fields. For example, it can be used to build an intelligent tutoring agent such

as Auto-Tutor [4, 5] which is able to recognize whether a student is bored, confused or

frustrated etc. It can also be used in medical or psychological treatments to detect

pain [6] or depression [7] of the patients. Affective computing works to bridge the

tremendous gap between the limited capability of machines and the large potential of

emotion recognition applications.

A number of psychological studies [8, 9] have demonstrated that facial

expression is strongly associated with human emotion. In order to represent and

measure facial expressions, behavioral scientists use a widely known method named

as “Facial Action Coding System” or FACS [10]. In 1976, Paul Ekman and Wallace

Friesen developed this coding system by analyzing the anatomy of facial muscles and

their effects on appearance of the face. According to this code, every possible change

in face can be represented by 32 different Action Units (AU)1. Although no emotional

significance is carried through the AUs, they specify actions of certain muscle groups

that produce a particular change in the face. Trained human coders observe these

changes and express any facial expression in terms of AUs. However, scoring of AUs

by human annotators is time consuming and requires much effort. Moreover, this is

1 A list of Action Units used in this work is given in Appendix A
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not suitable for automatic systems. Therefore, it is useful to build a system which is

able to automatically detect AUs corresponding to a particular facial expression.

A plethora of reported literature has used many techniques to detect

expressions from visual data. State-of-the-art techniques [11, 6, 7] have shown the

potential in robust recognition of emotion from facial expression. Among these

techniques, “Model Based” [12, 13, 14, 15, 16, 17] representations of the face have

gained considerable attention. These methods utilize a mathematical model of

probable deformations of the face in order to track some predefined landmark

locations. They exhibit good tracking performance with a dense mesh of about 60-70

landmark points as shown in Fig. 1.1. Examples of model based techniques are

Active Shape Model (ASM) [12], Active Appearance Model (AAM) [15], Constrained

Local Model (CLM) [16, 17] etc. Several expression recognition approaches use these

techniques to detect landmark points and to extract morphological and appearance

features of the face. Then various machine learning techniques are used to predict

facial expressions based on these extracted features.

1.2 Current Problems

Due to the success of model based techniques, a number of variants are

reported and still being proposed by accounting for their limitations

[12, 15, 18, 17, 16, 19, 20, 21, 14]. The evaluation of the variants of model based

approaches became increasingly difficult due to their rapid growth. In order to

effectively compare it is necessary to have a set of “concise” and “invariant” evaluation

metric. By the term “invariant” it is indicated that the metrics should be consistent in

their interpretations. An invariant evaluation metric makes two systems comparable

with each other regardless their differences in implementation. On the other hand the

term “concise” refers to a small set of parameters that is rendered to be more

expressive in terms of the evaluation of systems. Without a set of concise and invariant

metric it is difficult to compare competing approaches and to deduce right conclusions.

2



0

1

2

3

4

5

6

7

8

9

10

11

12

13

14
15

16
17

18 19
2021

22 23
242526

27
28

2930
31

32

33

34
35

36
37

38

39

40 41 42

43

44

45

46 47

48 49 50 51 52
53 54

55565758
59

60 61 62636465 66

67

800

1000

1200

1400

1600

1800

2000

2200

2400

Fig. 1.1: Example of a face annotated using a model based landmark tracker.
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The existing metrics for the evaluation of model based approaches are often

found to be non-invariant. For example, sometimes accuracy in detection of

landmarks is expressed solely by the use of pictures showing the fitting performances

[22]. Since it is possible to find a few good results in a poorly performing system or

vice versa, this kind of evaluation metric is not informative enough. Moreover, in order

to measure accuracy in landmark prediction, Root Mean Squared (RMS) error is

commonly used [23, 20]. Note that, it is possible to generate a low RMS error with low

resolution images compared to a high resolution image while having the same

content. Without explicitly mentioning resolutions of all the images such measures fail

to maintain consistency in interpretation.

Moreover, evaluation in current approaches is performed only at the last level

based on the final predictions made by the system. Although such strategies are

simple and indicative of overall performance, but it fails to localize the sources of

inefficiencies and hence deemed not to be concise enough.

1.3 Research Objectives

The objective of this research is to study the current model based approaches

for facial expression recognition and to propose a method for analyzing their strengths

and weaknesses. For effective comparison among these systems it is necessary to

use an evaluation model which is invariant to the context of experiments. In other

words, a general conceptual evaluation approach has to be decided which is

applicable to any of the model based facial expression recognition techniques. The

metrics used in such approaches have to be invariant and concise. This research is

intended to analyze and propose solutions for all the problems encountered in

effective evaluation among several candidate approaches.

1.4 Challenges

Evaluation and comparison of different approaches in a dynamically evolving

field is a difficult task. The first challenge that comes into picture is the

4



non-comparable principles of working. It often happens that evaluation parameters are

designed on certain assumptions which are not valid in some other approaches. This

prohibits a standard one size fits all kinds of evaluation parameters.

Sometimes differences in implementation prohibit proper comparison of

systems. Since many model based systems are not freely available and there are not

enough baseline codes to compare with, it is very difficult for performance evaluation

of such systems. Moreover, the databases used for evaluating model based facial

expression recognition systems lack any standard scheme for annotation of ground

truth data. As a result, it becomes hard to compare a system with more than one

database.

1.5 Overview of the Following Chapters

The next chapter reviews works related to this thesis. Evaluation of the model

based research works are discussed in the chapter. Going through these works will

help better understand this thesis. Moreover, this chapter also discusses the works

where some evaluation has been done in a wrong procedure. Chapter 3 will discuss

about the theoretical knowledge necessary to understand this work. Otherwise

explicitly mentioned, only the fundamental contributions of the author are discussed in

this chapter. Other theories are either discussed very briefly or referred to their original

works. Chapter 4 discusses the experimental setup. The first section in this chapter

discusses the datasets used. The next section discusses the process of annotating

the images for ground truth. Sec. 4.2 discusses the setup implemented in order to

perform different experiments. It also discusses the methods of extracting different

features. In Chapter 5, various experiments and their outcomes are described. Finally,

chapter 6 concludes the thesis by discussing the contributions of this work.
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Chapter 2

Related Literature

Model based approaches are gaining momentum since the seminal work of

Lanitis et al, [23] on the recognition of facial expressions through ASM [12]. Major

contributions in model based representation of face are shown in Fig. 2.1. ASM can

detect shapes of deformable objects and this capability was rendered useful in facial

expression research. Later on, several techniques were proposed similar to ASM.

Active Appearance Model (AAM) [15] could account for not only the shape of

deformable objects but also its texture. AAM algorithm was improved for faster

convergence by Matthews et al. [20]. They used an elegant image registration

technique known as Inverse Compositional Image Alignment [24, 25]. As a result it

was possible to be used in real time videos. ICIA based AAM is used in several

applications including detection of pain [6, 26, 27], depression [7] etc.

Although it was possible to use in determining pain and depression, a more

general use of AAM was prohibited due to its dependency on a specific subject [28].

In the mean time some more model based approaches [29, 30, 17, 31] were proposed

which claimed improvements like robustness in illuminations, faster and less complex

registration algorithms etc. In 2008, Wang et al. converted the model based

registration algorithm as a convex optimization algorithm [32]. This brought a huge

increase in the performance of model based techniques. Later, in 2009 and 2010,

through a series of their works, Saragih et al. proposed a technique known as

Constrained Local Model (CLM) [33, 19, 34, 16] which is actually a generalized

version encompassing all the model based techniques till 2010. CLM was found to be

person independent [35] which solved the problem associated with AAM.

The methods used to evaluate the performance of these works were not

always thoughtfully chosen to be invariant and concise. For example some works

used RMS error without any scale normalization [23, 20]. Although more recent works

6
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have adopted a scale normalized error metric [17, 36], it is inconvenient because of

the normalization factor (such as the distance between two pupils) is difficult to

determine when parts of face is self-occluded.

Moreover, the facial expression and emotion detection techniques are often

evaluated only based on the prediction performance of the machine learning

techniques involved [37, 38, 7, 39, 6, 26, 27, 35]. Even works that were intended to

define baseline performance of the systems [40] were also used only classification

performance as evaluation metric. A better approach is described in this thesis which

is termed as Three Level Evaluation Model. Moreover, some invariant and concise

metrics are proposed for better comparison of the systems.

8



Chapter 3

Theoretical Background

3.1 Three Level Evaluation Model

A typical model based Action Unit (AU) recognition system [37, 38, 26] has the

following conceptual blocks – landmark tracker, feature extractor and a classifier. A

landmark tracker is a system that detects important points of a deformable objects

(such as the face) based on a mathematical model of the object. These tracked

landmarks are used to extract some appearance and morphological (shape) features.

Details of extracting shape and appearance features are described in [37, 38, 26]. In

the last level, a classifier is used to provide appropriate class labels to the images

based on extracted features. Classically the performances of all the stages were

measured only by evaluating the predictions given by the last stage as shown in Fig.

3.1(a).

As indicated in the introduction, this kind of evaluation model provides an

indication only about the overall performance of the system. It cannot provide

sufficient information to identify which block is performing poorly only by observing the

classifier performance. Moreover, the overall performance can be affected by

numerous factors coming from different blocks. As a result it becomes difficult to

conclude well on the strengths and weaknesses of a system. In short, it lacks enough

granularities in the evaluation process.

In order to better evaluate a system, a Three Level Evaluation (TLE) model is

proposed so that it becomes possible to evaluate the performances of all the blocks

rather than only the classification block. Such method provides much granularity and

makes it possible to detect the sources of inefficiencies. For example, the landmarks

tracked using a landmark tracker can be evaluated using ground truth locations

provided with image databases. Landmark error measuring parameters are already

available in current literature. The following section discusses some of these error

9
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Fig. 3.1: A typical block diagram of a facial expression detection system. (a) shows
the current evaluation approach which is dependent on the last block only. (b)
illustrates the proposed approach which evaluates the outcomes of all the blocks.

metrics and problems associated with them. Also, a new metric will be defined to

evaluate the ability of the features to discriminate among different classes. Lastly, the

classical performance measuring techniques are used for evaluating the classification

predictions.

3.2 Normalized Root Mean Squared Point Error (NRMS-PE)

In many of the recent works on model based representations of deformable

objects (like ASM, AAM and CLM) RMS distance between ground truth and detected

points is used as a performance evaluation parameter of landmark detectors [20, 23].

However, it is possible to show that this parameter is not invariant on image resolution.

Due to such non-invariant properties, when this parameter is used to represent

detection performance on two sets of images with identical content but different

resolution, the values of the parameter vary significantly for these two datasets. This

makes the parameter inconsistent and prohibits comparison of landmark detection

systems without explicitly mentioning the image resolutions.

10
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Fig. 3.2: Effect of proportionate scaling.

In order to show the dependency of the parameter on image resolution, let us

consider a case where the coordinates of some landmark points are predicted to be

(x1, y1), (x2, y2) . . . (xn, yn) where the true coordinates are

(x′1, y
′
1), (x

′
2, y

′
2) . . . (x

′
n, y

′
n). Also, the image width and height is assumed to be p

and q pixels respectively. Root Mean Square distance between the predicted points

and the ground truth is defined by (3.1).

dRMS =

√√√√ n∑
i=1

{(xi − x′i)2 + (yi − y′i)2}

n
(3.1)

Now let us assume that, in another image the same content has been

represented using s times the original image resolution as shown in Fig. 3.2.

Therefore, the landmark and the predicted points will also be scaled s times their

values in the earlier image. RMS distance for the new image will be as shown in (3.3).

From this equation it is clear that RMS distance increases linearly with scale. It will

produce different values for images with different resolution even if the image content

is similar.

11



dRMS,Scaled (3.2)

=

√√√√ n∑
i=1

{(sxi − sx′i)2 + (syi − sy′i)2}

n

=

√√√√s2
n∑
i=1

{(xi − x′i)2 + (yi − y′i)2}

n

= s

√√√√ n∑
i=1

{(xi − x′i)2 + (yi − y′i)2}

n

= sdRMS (3.3)

Some works in literature have used a parameter which represents the RMS

distance as a fraction of some physiological measurements like width of face,

inter-ocular length (i.e. the length between the pupil of two eyes) etc. [17, 36]. In these

parameters, the effect of proportionate change in resolution gets canceled as shown

in (3.4).

Where (xr, yr) and (xl, yl)represents the coordinates of pupils. It is clear from

the equation that this parameter is not dependent on scale variation. However, it has

two significant drawbacks. Firstly, the normalization does not take place if the

horizontal and vertical axes are scaled differently. Secondly, the face width,

inter-ocular distance (IOD) etc. may vary person to person and may be impossible to

calculate when parts of the face are occluded due to head rotation.

A better approach might be normalizing the horizontal and vertical coordinates

of the landmark points separately and expressing the errors as a fraction of RMS

distance of landmarks from their centroid. Normalizing the coordinates separately

takes care of the scaling problem that solves the first drawback mentioned in the

previous paragraph. On the other hand, expressing errors with respect to the RMS

12



distance from centroid (RMSD) is more convenient than inter-ocular distance because

some landmarks will be in frame even when an eye is occluded.

dRMS,Scaled,IOD

=
1√

(sxr − sxl)2 + (syr − syl)2

√√√√ n∑
i=1

{(sxi − sx′i)2 + (syi − sy′i)2}

n

=
s

s
√

(xr − xl)2 + (yr − yl)2

√√√√ n∑
i=1

{(xi − x′i)2 + (yi − y′i)2}

n

=
1√

(xr − xl)2 + (yr − yl)2

√√√√ n∑
i=1

{(xi − x′i)2 + (yi − y′i)2}

n
(3.4)

In such case both the x and y components of the coordinates should be scaled

in such a way that the RMS distance from their respective means be equal to 1√
2
.

1

s′x

√√√√ n∑
i=1

(x′i − µ′x)2

n
=

1√
2

⇒ s′x =

√√√√2
n∑
i=1

(x′i − µ′x)2

n
(3.5)

Therefore, the scaling factors for x and y components will be

s′x =

√
2

n∑
i=1

(x′i−µ′x)2

n
and s′y =

√
2

n∑
i=1

(y′i−µ′y)2

n
respectively. Where µ′x and µ′y are the

mean of x and y coordinates of the ground truth points. Now let us normalize the

ground truths by shifting the centroid to origin and scaling the axes so that the RMSD

of normalized ground truth points be equal to one. In other words, x and y can be

normalized using (3.6) and (3.7).

13



x′i,norm ←
1

S ′x
(x′i − µ′x) (3.6)

y′i,norm ←
1

S ′y
(y′i − µ′y) (3.7)

Algorithm 1: Algorithm to Calculate Normalized Root Mean Squared Point Error
Input: Predicted Points: (x1, y1), (x2, y2) . . . (xn, yn) and True Points:

(x′1, y
′
1), (x

′
2, y

′
2) . . . (x

′
n, y

′
n)

Output: Normalized Root Mean Squared Point Error

begin1

µ′x ←− 1
n

n∑
i=1

x′i
2

µ′y ←− 1
n

n∑
i=1

y′i
3

s′x ←−

√
2

n∑
i=1

(x′i−µ′x)2

n
4

s′y ←−

√
2

n∑
i=1

(y′i−µ′y)2

n
5

for i ∈ {1, 2, 3, . . . , n} do6

x′i,norm ←− 1
s′x

(x′i − µ′x)7

y′i,norm ←− 1
s′y

(y′i − µ′y)8

xi,norm ←− 1
s′x

(xi − µ′x)9

yi,norm ←− 1
s′y

(yi − µ′y)10

dNRMS−PE =

√
n∑

i=1
{(xi,norm−x′i,norm)2+(yi,norm−y′i,norm)2}

n
11

end12

Algorithm 1 describes the process of normalizing and calculating the error

metric. The x and y coordinates of the centroid of ground truth landmark points has

been calculated in lines 2 and 3 respectively. When these values are subtracted from

each landmark points, the whole shape is translated to make the centroid to be located

in origin. In lines 4 and 5, the appropriate scaling factor is calculated which is used to

normalize the ground truth points so that the RMS distance of all the translated and

14



scaled (i.e. normalized) ground truth points from their origin becomes one. This can

be proved using (3.8). One point is to be noted about the algorithm is it translates and

scales the predicted points using the same parameters as it does with the ground truth

points. This ensures no error is introduced in the translation and scaling process.

Therefore, the Normalized Root Mean Squared Point Error (NRMS-PE)

dNRMS−PE is actually the normalized detection error expressed in terms of the RMS

distance of ground truth points from origin. It is more convenient to use than the IOD

based metric because it is possible to calculate this metric even if some parts of the

face are occluded.

RMSD′Norm

=

√√√√√ n∑
i=1

{(
x′i−µ′x
s′x

)2
+
(
y′i−µ′y
s′y

)2}
n

=

√√√√ 1
s′x

2

n∑
i=1

{
(x′i − µ′x)2

}
n

+

1
s′y

2

n∑
i=1

{
(y′i − µ′y)2

}
n

=

√
s′x

2

2s′x
2 +

s′y
2

2s′y
2

=

√
1

2
+

1

2

= 1 (3.8)

3.3 Parameter of Discrimination

For feature level evaluation it is necessary to decide the discrimination power

of features. By the term “discrimination power” it is implied that how good a set of

features in discriminating between two discrete classes of data. In this work, a metric

has been proposed to determine such capabilities of features termed as the

“Parameter of Discrimination”. In order to do this, Deng Cai’s implementation [41] of

15



Linear Discriminant Analysis (LDA)[42] has been used. Using LDA it is possible to get

a set of eigenvectors. The eigenvectors are oriented in such a way that if the data is

projected onto these eigenvectors, the projections from two different classes will be

maximally separated. This concept is demonstrated using Fig. 3.3.

Now let us assume that F1 and F2
1 are two sets of high dimensional features.

Also let us denote the projections of F1 and F2 on the maximally separating

eigenvector by the operator ℘(). That is, if E1be the maximally separating eigenvector

then,

℘(Fi) =
ET

1Fi

‖E1‖
; ∀i = {1, 2} (3.9)

It is possible to propose a parameter of discrimination. We know that for a

normal distribution, only 0.1% of the data lies beyond the 3rd standard deviation from

mean in each side as shown in Fig. 3.4.

Therefore, if we want two Gaussian distributions to be separated in such a way

that they have less than 0.1% overlap, then the distance of their mean should be equal

to or greater than three times the summation of their standard deviations as shown in

Fig. 3.5. Therefore a parameter of discrimination D can be define as shown in (3.10)

so that the amount of overlap becomes less than 0.1% which is very small.

|µ(℘(F1))− µ(℘(F2))| ≥3(σ(℘(F1)) + σ(℘(F2)))

⇒ |µ(℘(F1))− µ(℘(F2))|
3(σ(℘(F1)) + σ(℘(F2)))

≥1

⇒D ≥1 (3.10)

1Bold and capital letters denote a matrix. Bold and small letter denotes a vector and non-bold
small letters denote a scalar
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Here, the operators µ() and σ()represents mean and standard deviation

respectively. Therefore, the parameter of discrimination between two classes of

features is defined as below.

D =
|µ(℘(F1))− µ(℘(F2))|
3(σ(℘(F1)) + σ(℘(F2)))

(3.11)

The parameter of discrimination, D will be greater than or equal to one when

F1 and F2 is perfectly Gaussian and has less than 0.1% overlap among their

projections on maximally separating line. However, it can also be applied to

distributions that are not Gaussian. In such cases, its value of unity might refer to

some other amount of overlap than the one described here.

3.4 Normalizing the Differences among the Ground Truth Schemes

While comparing various implementations of landmark detectors with each

other using some standard dataset, it is a common phenomenon that the number and

positions of the chosen landmarks do not match over different datasets. This happens

because the ground truth annotated datasets were developed in a scattered way to

serve a particular interest and later on released to public for further use. Since no

standard annotation scheme is in place, the datasets became incompatible to each

other. For example, the tracker used in this work [2] is trained on Multi-PIE database

[43]. Therefore it detects the landmark points according to the annotation scheme of

Multi-PIE where 66 landmark points are detected.

On the other hand, the landmarks in Extended Cohn Kanade Database (CK+)

are annotated using a different scheme which uses 68 landmark points. The lower

part of the upper lip and the upper part of the lower lip is represented by two different

numbers of landmark points in these two databases. As a result of this incompatibility,

it becomes difficult to match the landmarks tracked by the tracker with the ground truth

landmarks provided in CK+ dataset. This problem can be very difficult to solve in
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Fig. 3.6: Process of up-sampling the number of landmarks in order to normalize two
non-compatible annotation schemes.

severe cases. However, in this case, it has been solved by re-sampling both

annotation schemes to a common higher value. For example, let us consider the Fig.

3.6 where a path is represented using 3 points and 4 points respectively. In order to

compare among those two sets of points it is needed to assume that only the

beginning and the end points of the path corresponds to one another. Then the rest of

the points in the path are interpolated in order to increase the number of samples to

the least common multiple of the earlier number of samples (i.e. LCM(3,4) = 12).

These up-sampled points are compared with each other. However, this method will not

work if the initial points do not match.
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Chapter 4

Methodologies

4.1 Databases

4.1.1 Extended Cohn Kanade Database

The Extended Cohn Kanade (CK+) database [40] is an updated version of

Cohn Kanade Database [44]. It consists of 593 sequences from 210 adults posing

different emotions. The images consist of a significant amount of diversity in ethnic

groups and gender. In each sequence, an emotion is posed from onset to apex. The

name of the action units occurred in the apex frame and the emotion expressed in

each sequence are provided as ground truth. Also, 68 predefined landmarks locations

in each picture of face are given. A total of 30 action units (AU) are annotated in the

CK+ database. However, some of these are occurred in a very small number of

images. In this work, only 21 AUs are chosen considering a minimum of twenty

positive sample images per AU.

4.1.2 MMI Database

The MMI database for facial expression [45] is a web based [46] database for

analyzing facial expressions. It is a continuously growing database with periodic

accumulation of new video data and meta information. The database is divided into

several parts among which the first part consists of 1767 clips from 20 participants

showing fully synchronized frontal and profile display of several action units (AUs) and
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Fig. 4.1: Number of Images from Extended Cohn Kanade database for different Action
Units used in this work.
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Fig. 4.2: Number of Images from MMI database for different Action Units used in this
work.

action descriptors (ADs). It also contained several affective states along with the

action units. In part two, there are 238 clips from 28 subjects showing six basic

emotions. Part three includes high quality still images rather than video. It is

comprised of 484 images of 5 subjects where all the AUs are displayed. Part four and

five include videos that consist of spontaneous disgust, happiness and surprise

emotion. There are different kinds of ground truth information associated with MMI

database among which action unit annotations are also given. In this work, a total of

1374 action unit coded frontal images from the first three parts of the MMI database

have been used. For video sequences, only the middle frame is considered. The

images which contain synchronized profile picture with the frontal one, only the frontal

picture is considered. The amount of positive samples for each AUs used in this work

from MMI database is shown in Fig. 4.2

4.2 Experimental Setup

In order to discuss three level evaluation model, a simple action unit detection

system is considered in this paper. Block diagram of the system is shown fin Fig. 4.3.

This system is intended to detect existence of several action units from pictures of

face. Two image databases are used to train and test the system. These are Extended

Cohn-Kanade (CK+) and MMI database. Descriptions of these databases are given in

the previous section. The action unit detection system employs a facial landmark

detector named FaceTracker [2]. FaceTracker is available online for download and to
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Results 
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Fig. 4.3: Overall block diagram of the prototype system implemented in order to
evaluate a simple action unit recognition system.

use in research purposes [34]. It is a Constrained Local Model (CLM) [19] based

landmark detector which is trained on Multi-PIE database [43] and can detect 66

points on face. An example of the landmarks tracked by FaceTracker along with the

defined triangulation is given in Fig. 4.4.

The system extracts normalized point features (SPTS) and canonical

appearance features (CAPP) as described in the following section. These features are

built based on the predictions of landmarks provided by the face tracker. A hybrid of

the point and appearance features is also calculated. Hybridization is done just by

concatenating the SPTS and CAPP features together. A dimensionality reduced

version of the hybrid features is also evaluated for its performance in this system.

Dimensionality is reduced by the use of Linear Discriminant Analysis (LDA)[42] as

implemented by Deng Cai [41]. All these features and the associated class labels are

stored in the pool of features as Comma Separated Value (CSV) files. A set of binary

classifiers are used to detect the action units. Each classifier detects only one action

unit by providing a positive or negative output. This system is evaluated in a three

level evaluation module which is described using Fig. 4.5.

23



Fig. 4.4: Output given by FaceTracker.
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Fig. 4.5: Three Level Evaluation Module.
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The point level evaluation is done on the raw points detected by the face

tracker. A scale normalized evaluation parameter named “NRMS-PE” is used for this

purpose. This parameter is invariant to different horizontal and vertical scaling and

also convenient to use when parts of face is self-occluded due to head rotation.

Details of this parameter are discussed in Chapter 3. For evaluating the goodness of

extracted features, another parameter is constructed. As discussed in Chapter 3, this

parameter is based on the ability of the features to discriminate among two discrete

classes. It is used to evaluate the system in feature level.

Lastly, in the prediction level, the classifier predictions are evaluated for its

performance. Several classifier performance measuring parameters exist in current

literature. For example, in this work, the area under ROC (Receiver Operating

Characteristics) is used as an evaluation parameter for classifier prediction.

4.2.1 Standardized Points Features (SPTS)

Landmark points of the face actually form a shape that is deformable and

changes its pattern with different facial identity and expressions. A face-tracker

detects the x and y coordinates of these landmark points in picture of face assuming

the top left corner as origin and each pixel as unit distance. Suppose

X = (x1, y1), (x2, y2), . . . , (xn, yn) be the shape formed by the landmark points

detected by the face-tracker. Since the size and location of face in the picture can be

varied, therefore, for a good comparison of landmarks over several images it is

necessary to “standardize” all the shape points [37]. In the process of standardization,

the global similarity transformations (i.e. translation, scale and rotation) has to be

removed.

In order to remove translation, the shape is centered onto the origin. This is

done by subtracting the centroid of the landmarks from the coordinate location of each

point. This is shown in Fig. 4.6. The centroid is obtained by averaging all the points in

shape as shown below in 4.1.
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Centroid 

Centroid 

Fig. 4.6: Translating to origin [Note: the lines are drawn for illustration purpose].

XCOG =
1

N
(X1 +X2 + ...+XN) (4.1)

For scale normalization the shape is rescaled so that the norm of shape

becomes one. Norm of shape is defined as the Root Mean Squared (RMS) distance

of each point from the centroid of the shape. Mathematically the RMS distance is

defined by (4.2)

S =

√√√√√ N∑
i=1

(Xi −XCOG)

N
(4.2)

and it represents the scale of the shape. For normalizing the scale, each point

is to be divided by the RMS distance of the shape as shown in (4.3)

Xnorm =
1

S
{Xi};∀i = 1...N (4.3)
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Fig. 4.7: Process of removing rotation transformation. The dark shape denotes a
reference shape.

For removing the global rotation transformation, it is necessary to have a

reference shape.

In this work, the mean of all the shapes is considered as reference. Rotation

transformation is removed by aligning each shape with the reference. It is done in a

process described in [47]. The aligning process does not superimpose the shapes

completely because of the uniqueness of facial morphology and deformation due to

facial expression. However, it results in similar orientation of the shapes. For more

details of constructing SPTS please refer to [37] and [48].

4.2.2 Split Triangle Canonical Appearance Features (CAPPX)

Canonical Appearance (CAPP) features contain information about the texture

or appearance of face. For better comparison of appearance from different face

morphology and expressions, it is necessary to decouple the appearance from shape.

This is done by warping the image in a canonical base form. A piecewise affine

transformation with the help of a predetermined triangulation (as shown in Fig. 4.9(a))

is used to accomplish this work.

A triangulation is a collection of triangles formed by joining a number of points.

The triangles are taken in such a way so that they do not overlap onto one another.

For example, a Delaunay [49] triangulation may be used which is constructed by a
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Fig. 4.8: Example of an image for which the process of PAW will be demonstrated.

constraint that no point lies inside the circum-circle of any triangle. Once a suitable

triangulation for the reference shape is decided, it is applied on the points tracked on

the face image. Then a Piecewise Affine Transformation (PAW) algorithm is applied to

transform the content of each triangle in the image triangulation to the corresponding

triangle in the base triangulation. The effect of PAW is shown in Fig. 4.8 and Fig. 4.9.

Fig. 4.9(b) shows the image of face after PAW is applied to transform the image region

from Fig. 4.8 to Fig. 4.9(b). Full detail of PAW is given in [48].

Once the appearance is warped into canonical base form, changes due to

facial morphologies of different people are normalized. For minimizing the effect of

illumination, histogram equalization [50, 51] algorithm is applied. Although this cannot

normalize the local illumination variations due to the structure of face and position of
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(a) (b)

Fig. 4.9: The effect of Piecewise Affine Warping (PAW). The face region shown in Fig.
4.8 is warped into the reference base triangulation. The base triangulation is shown in
(a). The resulting image is shown in (b).

light, it can effectively normalize the effect of global variation of brightness from picture

to picture. Moreover, the image is converted to grayscale since the information

corresponding to facial expression is not carried by skin color. Now, it is possible to

use the pixel values as appearance feature which is used in [37]. However, this

approach incorporates a large number of features. Using very high number of features

is not desirable because that might introduce the phenomenon known as curse of

dimensionality [52]. On the other hand, using too small of a number of features might

miss significant information to discriminate between two discrete classes.

Therefore, in order to achieve optimal results, a method is needed through

which it would be possible to control the total number of features. In this work this is

done by splitting the larger triangles into smaller ones and considering the average

value of pixels inside each triangle as a feature. The triangles are split iteratively. In

each iteration, the triangle with largest area is split into three smaller triangles by

considering the centroid as a new vertex. Once a specified number of splitting is done,

the pixels inside a triangle are averaged to calculate a single valued feature for that
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(a) (b)

Fig. 4.10: Demonstration of splitting the triangles for calculating CAPP features. (a)
CAPP91 (b) CAPP140.

particular triangle. In this process the number of triangles can be arbitrarily increased

and in the asymptotic case the features become individual pixel values. Therefore, the

traditional CAPP feature is a special instance of the appearance feature described

here. In this thesis, appearance feature calculated using X number of triangles are

called CAPPX (For example, CAPP90,CAPP150 etc.). Fig. 4.9(a) shows a CAPP90

feature because the base triangulation consists of 90 triangles. Each triangle in the

figure are filled with a grayscale value corresponding to the feature value associated

with that triangle. Fig. 4.10 shows examples of a CAPP91 and CAPP140 features. It is

to be noted that the largest triangle is split first.

Once it is possible to control the total number of features, it becomes

necessary to determine the amount of the features that will be optimum. The amount

should be large enough to contain sufficient information to discriminate among

different classes and at the same time, small enough to avoid curse of dimensionality.

In this work, this is determined through the use of discrimination parameter as defined

in Sec. 3.3. Since the appearance features are basically the averages of pixel

intensities, according to central limit theorem they can be assumed to be normally
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distributed. Although the parameter is defined assuming that the features are normally

distributed, here it is used regardless of the normality assumption. In the next chapter

values of discrimination factors for ideal case is determined through a series of

experiments.
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Chapter 5

Experiments and Results

5.1 Point Level Evaluation

5.1.1 Efficacy of NRMS-PE

An experiment was designed in order to evaluate the efficacy of the

Normalized Root Mean Square Point Error (NRMS-PE). As stated earlier, it is a

resolution invariant point tracking error measurement parameter. To check its

resolution invariance property, landmark points were tracked in two different versions

of a picture from the CK+ database. One version of the picture was represented using

640 x 490 pixels which is the original dimension of pictures from Extended Cohn

Kanade (CK+) database. Another version was made by up-sampling the horizontal

axis to 5 times its original size. Now the Root Mean Squared Point Error (RMS-PE)

and the Normalized Root Mean Squared Point Error (NRMS-PE) was calculated using

the tracked points and the ground truth points. For the up-sampled image ground truth

was calculated by multiplying the horizontal coordinates by 5.

The RMS-PE and the NRMS-PE were measured for the several areas of face.

The results are shown in Fig. 5.1. According to the figure, RMS-PE varies widely with

image resolution while NRMS-PE remains same.

5.1.2 Cumulative Error Distribution (CED) Chart

Since NRMS-PE is scale invariant, it can be used for an invariant and concise

representation of the fitting performance of the tracker. To do this

Cumulative-Error-Distribution (CED) chart is a popular and useful method. The CED

chart is computed for different areas of face in CK+ database as shown in Fig. 5.2. It

is actually a plot of percentage of database versus Normalized Root Mean Squared

Point Error (NRMS-PE). It essentially represents what fraction of the whole set of

images in the database lie within a certain amount of error threshold. In this chart a

significantly deteriorated performance for tracking of the lower lip is evident. This may
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Fig. 5.1: (a) The shape formed by the landmarks of original image and corresponding
RMS errors for different parts of face (b) RMS errors when the x axis is scaled 5 times
(c)NRMS-PE is same for both the original and scaled versions.
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be due to the abrupt changes in the appearance of mouth region when it is opened

widely. Since the tracker is based on local models with limited capacities, they fail to

account for when there is significant changes in appearance. Moreover, in some

pictures of CK+ database the timestamps fell on to the face image which prohibited

local detectors to detect the landmarks accurately. Some of these fitting inaccuracies

are shown in Fig. 5.3.

5.2 Feature Level Evaluation

5.2.1 Efficacy of Parameter of Discrimination

MMI database was used in this experiment. 1374 videos and images were

selected where different action units were acted out. In every video, the action units

were expressed and then gradually diminished. From each of these videos only the

middle frame was extracted. All the frames extracted were frontal faced. For every

frame, the CAPPX features were extracted using the method discussed in Sec. 4.2.2.

The set of features corresponding to a frame where a particular action unit is present

was taken as a positive example of that action unit. Now, for each action unit,

parameter of discrimination among the positive features and negative features was

calculated. As it is discussed earlier Linear Discriminant Analysis (LDA) is used in the

process of calculating parameter of discrimination (D).

Fig. 5.4 shows the projection of the data on maximally separating eigenvector

as well as the value of D for action unit 10 (AU10). Along vertical axis some arbitrary

zitter is incorporated for greater visibility of the data points. It can be noticed from the

figures that the parameter of discrimination can successfully represent the amount of

overlap on the line of maximum discrimination.

5.2.2 Relation between Number of Features and Parameter of Discrimination

The following experiment was done in order to derive a relationship between

the parameter of discrimination and the number of triangles (i.e. the number of

features). The Fig. 5.5 shows a plot of Parameter of Discrimination (D) against the
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Fig. 5.3: Examples of images where the FaceTracker fails.
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Fig. 5.4: Projection of the positive and negative features for AU10 on the 1st LDA
eigenvector. D represents the Parameter of Discrimination for a particular Number of
Features (X).
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Number of Triangles (X) used to create the CAPPX features. It can be noted from the

plot that with increasing number of features, D increases in an exponent-like fashion.

This observation is coherent with the intuition mentioned earlier that with increasing

number of triangles, the features retain more information useful for discriminating

facial actions. It is also clear from the figure that for MMI database, if the number of

triangles is about 1100, the value of Dexceeds 1.

Similar experiment was done using the Extended Cohn-Kanade (CK+)

database. In this case, only the apex frames were used to make the chart. However,

the rate of increase is different than that of MMI database. CK+ requires less number

of features than MMI to obtain a similar value of D. In other words, the apex frames of

CK+ database contain more information to distinguish among the presence or

absence of an action unit than the middle frames of MMI database. A reason behind

so might be due to the fact that expressions shown in CK+ are extremely exaggerated

in the apex frames. On the other hand MMI dataset expresses a mild display of the

action units. Another interesting observation is the AU 26 is least discriminative in both

cases. This indicates a weakness of selected features to discriminate AU26. It may be

due to the poor performance of the FaceTracker in the lower lips and cheek-chin area

as demonstrated in Fig. 5.2.

5.2.3 Morphological and Appearance Properties of AUs

The effects of different AUs are reflected in both the landmark locations (i.e.

shape) and appearance of face. The effects of some action units are more reflected in

shape features while others are reflected in appearance features. For example, it is

very intuitive that AU 1 (Inner brow raiser), AU 2 (Outer brow raiser), AU 27 (Mouth

Stretch) etc. should reflect their existence in shape features. On the other hand AU 9

(Nose Wrinkler), AU14 (Dimpler), AU11 (Nasolabial Furrow Deepener) etc. should

produce appearance changes. Such phenomenon is clearly reflected in discrimination

parameters as shown in Fig. 5.6. The scatter plot in Fig. 5.6(a) shows the relative
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Fig. 5.5: Plot of Parameter of Discrimination (D) vs. Number of Features for (a) MMI
Database and (b) Extended Cohn Kanade (CK+) Database. Three most discriminative
and three least discriminative AUs are shown as well as the mean of all the AUs used
in this work.
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positions of different action units based on the values of D for shape features (SPTS)

and appearance features (CAPPX). The number of triangles used for calculating the

appearance feature was 570. The horizontal and vertical lines represent the median.

From this plot, several properties of different action unit are readily visible. For

example, some AUs are easy to discriminate by either of the two features (e.g. AUs in

top right quadrant) while others are difficult (e.g. AUs in bottom left quadrant). Also

some action units are more distinguishable by a certain kinds of features than the

other (e.g. the AUs in top left and bottom right quadrants). Moreover, it can be noticed

that the intuitions about the action units discussed earlier are reflected accordingly in

the plot.

Fig. 5.6(b) shows the same plot for MMI database. An important fact can be

observed from the two plots that AU25 (Lips part) and AU26 (Jaw drop) are not shown

to be discriminable by shape although intuitively they should be so. This discrepancy

is due to the poor performance of FaceTracker as discussed in Sec. 5.2.2. Moreover

sometimes a particular AU also induces the occurrence of other AUs. In such cases,

an appearance based AU can be more discriminative by non-appearance features or

vice versa.

5.2.4 Effect of Hybridization on Parameter of Discrimination

In Fig. 5.7 , D for SPTS feature, CAPPX and their hybrid are shown for

different action units. For CK+, CAPP530 and for MMI, CAPP1090 was used. These

values were selected in such a way so that the value of D becomes slightly greater

than one for all the action units. From the figure it is to be noticed that SPTS features

are not good enough to distinguish among the action units. When sufficiently

triangulated, appearance features produce greater amount of discrimination. However,

shape features have a great potential to increase the discriminating power when

combined with the appearance features. This increment is more than the value of D

for shape features only. This effect is evident for both the CK+ and MMI database.
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Fig. 5.6: Scatter plot of different AUs positioned based on the values of Ds obtained
from SPTS features and CAPP570 features. (a) shows the plot for CK+ database and
(b) shows the same for MMI database.
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5.3 Prediction Level Evaluation

5.3.1 Receiver Operating Characteristics (ROC)

All prediction level evaluations are done based on the output predicted by the

classifier located in last level of the system. A well established method for evaluating

classification performance is Receiver Operating Characteristics also known as ROC.

ROC shows a detailed view about the performance of a classifier in different possible

conditions. It is a plot of True Positive Rate (TPR) versus False Positive Rate (FPR).

TPR is a classifier performance representing what fraction of positive data points are

correctly classified. On the other hand, FPR represents the fraction of negative

samples that has been incorrectly classified as positive. Therefore, it is desirable for a

good classifier to have a high true TPR and a low FPR. In other words, an ideally good

classifier will cover the whole ROC space.

An example of an ROC curve is shown in Fig. 5.8. This curve was calculated

using CAPP1090 features for AU9 from MMI database. Weka toolbox [53] was used

for all the necessary processing. A boosting based meta classifier (AdaBoostM1) was

used where the base classifier was a decision stub. All other default parameters in

weka were used. Five fold cross validation was adopted. The area under this ROC

curve (AUC) is 0.765. It should be noted that for an ideal ROC where TPR is 1 and

FPR is 0 the area under ROC is 1. For more information on ROC and AUC please

refer to [54].

5.3.2 AUC vs. AU: Effect of Features

The following experiment was designed in order to observe the effect of

different features on Area Under ROC Curve (AUC). The AUC was calculated using

decision stump based Ada Boost [55] classifier. Three different kinds of features were

used in this experiment - CAPPX, SPTS and Hybrid. For CK+ database, 530

appearance features were used. On the other hand for MMI database, 1090 number

of appearance features used. In all the cases a five fold cross validation is used.
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Fig. 5.8: An example of ROC Curve.

As shown in the results in Fig. 5.9 it can be noted that the SPTS features give

a low classification performance than any other features. However, when this is

merged with the appearance features (i.e. hybrid) it shows significant improvement

over the CAPPX features. It should be noted that similar phenomenon was observed

with parameter of discrimination, D, which gives an impression that D can provide

some indication about the classification performances without actually doing the

classification. This information is helpful for choosing better features in order to get

good classification performance. However, the relationship between D and AUC is

probably not very straightforward because there are some action units which show

decreased AUC with hybrid features which never happened in case of D. This is

because the AUC incorporates several sources of inefficiencies; for example, the

classifier used and its parameters, the curse of dimensionality etc.
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5.3.3 AUC vs. AU: Effect of Classifiers

It is mentioned in the previous section that the choice of classifiers might

influence the AUC. In order to verify that assertion the following experiment was

designed. Four different classifiers were used in this experiment: Decision stump

based Ada-Boost classifier, A fast decision tree based bagging classifier, J48 tree

based classifier and Random forest classifier. Hybrid feature was used with the same

number of triangulation as in the previous section. The result of this experiment is

shown in Fig. 5.10.

It is evident from the figure that all the four different classifiers show different

performances although their input is identical. Among these classifiers, ensemble

classifiers (bagging and boosting) show best performance in most of the cases. In

certain occasions, random forest also provides the best classification performance.

However, J48 tree based classifier is not good for most of the cases.

5.3.4 AUC vs. Number of Features

It is mentioned earlier in several occasions that the number of features in

CAPPX has significant influence over the classification performance. Fig. 5.11 is

computed using MMI database where the effect of number of features (X) on AUC is

demonstrated. Fig. 5.11(b) shows that with increasing number of features the AUC is

first increases. However, after a certain point it starts to decrease. This demonstrates

the effect of curse of dimensionality. With increasing number of features, possible

sample space grows exponentially which results in poor classification performance.

Another interesting point can be noted in Fig. 5.11(a). It shows that for different AUs,

AUC reaches maximum in a different amount of features. This indicates that for

different action units, a different number of features are needed for optimal

classification performance. Similar phenomenon is also evident in Fig. 5.12(b) where

the calculations were made using CK+ database.
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Fig. 5.11: Plots and 2nd order polynomial trend-lines of (a) AUC vs Number of
Features for a few action units and (b) Mean AUC of all the action units vs Number of
features. All the calculations are made using MMI database.
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Fig. 5.12: Plots and 2nd order polynomial trend-lines of (a) AUC vs Number of
Features for a few action units and (b) Mean AUC of all the action units vs Number of
features. All the calculations are made using CK+ database.
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Fig. 5.13: Plots and 2nd order polynomial trend-lines of (a) AUC vs Parameter of
Discrimination for a few action units and (b) Mean AUC of all the action units vs
Parameter of Discrimination. All the calculations are made using MMI database.
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5.3.5 AUC vs. Parameter of Discrimination

The plot of AUC versus Parameter of Discrimination as shown in Fig. 5.13

demonstrates an important phenomenon. It is evident from the trend lines that with

increasing values of D, AUC increases and then after a threshold it starts decreasing

again. Unlike the number of features, AUC reaches to its peak in a consistent manner

when plot against D. From the mean AUC plot as shown in Fig. 5.13(b) it can be

noticed that average AUC reaches maximum when D is about 2.7.
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Chapter 6

Conclusion

The previous chapters have demonstrated a Three Level Evaluation approach

for a simple action unit detection system. Primary contribution of this work is to

acknowledge that a comprehensive evaluation is necessary to determine the utility of

model based approaches. The key idea is to evaluate all the major components

instead of the last component only. In addition to this, several problems of effective

evaluation of model based approaches are identified and some solutions are also

suggested.

A new metric to evaluate landmark detection systems has been proposed in

this work which is named as Normalized Root Mean Squared Point Error (NRMS-PE).

It has been shown that this new error metric is invariant to non-proportionate scaling of

horizontal and vertical axes of images and also convenient to calculate than the

classical error metric (RMS-PE). Furthermore, a new parameter has been proposed

named the “Parameter of Discrimination”, D, in order to calculate the quality of the

extracted features. The efficacy of this parameter has been assessed through several

experiments.

It has been shown that, with the help of these improved and newly proposed

evaluation metrics, the three level evaluation approach reveals significantly more

information than its traditional counterpart. This is useful for literary comparison of the

strengths and weaknesses of different systems.
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Appendix A 

Names and Examples of Action Units 

 

AU/AD Description Example image 

1 Inner Brow Raiser 

 

2 Outer Brow Raiser 

 

4 Brow Lowerer 

 

5 Upper Lid Raiser 

 

6 Cheek Raiser 

 

7 Lid Tightener 

 

9 Nose Wrinkler 

 

10 Upper Lip Raiser 

 

11 Nasolabial Deepener 

 

12 Lip Corner Puller 
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AU/AD Description Example image 

13 Cheek Puffer 

 

14 Dimpler 

 

15 Lip Corner Depressor 

 

16 Lower Lip Depressor 

 

17 Chin Raiser 

 

18 Lip Puckerer 

 

19 Tongue Show 

 

20 Lip stretcher 

 

22 Lip Funneler 
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AU/AD Description Example image 

23 Lip Tightener 

 

24 Lip Pressor 

 

25 Lips part 

 

26 Jaw Drop 

 

27 Mouth Stretch 

 

28 Lip Suck 

 

30 Jaw Sideways 

 

32 Bite 

 

36 Blow 
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AU/AD Description Example image 

37 Puff 

 

38 Suck 

 

43 Eyes Closed 

 

45 Blink 

 46 Wink 

 

 

This list of Action Units and associated pictures were taken from the “Automated Face Analysis” 

webpage of Computer Science department of The Carnegie Melon University.  

URL: http://www.cs.cmu.edu/~face/index2.htm 

Pictures of Tongue Show, Jaw Sideways, Bite, Blow, Puff, Suck and Wink were taken from the 

FACS Manual. 

http://www.cs.cmu.edu/~face/index2.htm


Appendix B

Model Based Landmark Detection Techniques

Model based facial expression recognition systems can employ a variety of

landmark detection techniques. Among them two popular methods are discussed

below.

B.1 Active Appearance Model

Active Appearance Model (AAM) [56] is a mathematical model capable to

account for various deformations in morphable objects. Using AAM, it is possible to

parameterize such deformations in terms of some known variations. Building AAM

requires ground truth annotation of some predefined landmark points in a set of

sample pictures of a morphable object. Through the model building process some

constraints are defined regarding the positions of landmarks with respect to other

landmarks. In the fitting process, these constraints are utilized as prior knowledge in

order to parameterize a new image of the object.

Let us assume that each of s1, s2, s3, ..., sn be 2l dimensional vector

representing the x and y coordinates of l landmark points in n sample images of an

object. These vectors are often called shape vectors of the deformable object. Let us

also assume that s0 be the mean shape vector. That is,

s0 =
1

n

n∑
1

si (B.1)

For building the shape model, first, Procrustes analysis [57, 47] is applied on

the set of shapes to align them by removing the effect of global transformations. Then

Principal Component Analysis (PCA)[47] is utilized in order to obtain a set of

orthonormal eigenvectors representing the major variations of the landmark points. A

good tutorial of PCA and its physical interpretation can be found in [58]. The
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eigenvectors found from PCA are often called the modes of deformations of the

object. The change of a new shape vector from the mean can be expressed as a

linear combination of these eigenvectors as below.

s− s0 = c1e1 + c2e2...+ crer (B.2)

Where s0 denotes the mean shape vector and e1, e2, ..., er be the shape eigenvectors

representing the modes of deformations in shape. The coefficients of shape

eigenvectors c1, c2 ... cr represent the amount of corresponding deformations. Once

the eigenvectors are fixed, any shape variation of a deformable object can be

described by these coefficients c1, c2 ... cr which are called shape parameters.

On the other hand, a set of parameters representing appearance variations of

the object are known as appearance parameters. In order to parameterize the

appearance, all the image contents are first warped into a canonical base shape and

re-sampled. Generally the mean shape, s0 is used as the canonical shape and a

piecewise affine warp based on Delaunay triangulation [59, 60] is used for warping.

Some photometric normalization is also performed for eliminating the effect of global

changes in illumination [48]. Then the pixel intensities of the part of image inside the

convex hull created by the landmark points can be processed in the same way as

shape vectors for getting linear modes of variations in appearance. The variation from

mean appearance can be described as following where a, a0, ui, λi represent

appearance vector, mean appearance vector, ith Eigenvector and Eigenvalues

respectively.

a− a0 = λ1u1 + λ2u2...+ λquq (B.3)

The mean shape (s0), mean appearance (a0) and the eigenvectors (ei and uj for i = 1,
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2, ... r and j = 1, 2, ... q) constitute the mathematical model for describing the

variations of a deformable object which is known as Active Appearance Model (AAM).

For more detailed description of building AAM please refer to [48, 20].

Once an Active Appearance Model is built, it can be used to identify the shape

and appearance of a deformable object in a non-annotated image; a process known

as model fitting. Fitting Active Appearance Model is an optimization process where the

model parameters are tuned in order to synthesize an image which is closest to the

test image. Sum of squared errors of the pixel intensities between the test image

I(x,y) and the synthesized image I(x,y|c, λ) is generally used as an objective

function.

[c, λ] = argmin
c,λ

∑
x,y

[I(x,y)− I(x,y|c, λ)]2 (B.4)

This optimization is done in a process known as Inverse Compositional Image

Alignment (ICIA). Detailed discussion of such process is outside the scope of this

work. For more information please refer to [20].

Many works have been done to improve the performance of AAM and thus it

has many different versions. Efforts have been made to use other useful objective

functions [61, 62]. Sometimes, a convexity criterion is enforced into the objective

function [32] in order to avoid local minima and faster convergence in the optimization

process. A “Project Out” [63] method is often used for faster fitting of the appearance.

Also, works have been done to make AAM robust against occlusion [64] and identity

[28].

B.2 Constrained Local Model (CLM)

Although many works have been done on AAM, it fails to robustly detect

landmark points in certain cases. AAM does not robustly work when the model is built

with several people. In other words, AAM is subject dependent. Moreover, it gives

poor fitting performance when illumination is varied widely.
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CLM [19, 16] is a technique that has obtained considerable attention to AAM

researchers because it has been found useful as a partial solution to the

generalization aspects of AAM. Generally, in AAM, the appearance vector is

constituted of all the pixel intensities inside the convex hull of annotated landmarks

which is known as “Holistic Approach” . Contrastingly, a patch based method is

adopted in CLM, where a small region of appearance around each landmark is

considered for modeling. This makes the varying illumination problem much easier to

solve because lighting in a smaller region is more homogeneous. Appearance

variation inside a patch is much less than that inside a big region. Consequently, it is

easier to model the appearance variation with a simple PCA based dimensionality

reduction technique.

The fitting process of CLM is constituted of two major stages. In the first stage,

an exhaustive local search is performed by some local detectors to estimate locations

of the patches in the image. A number of local detectors can be used for this purpose

such as: linear logistic regressors, Gaussian likelihood and the Haar-based boosted

classifier etc. From the local classifiers a likelihood map, p(li = aligned|I, x) is

obtained for each landmark. Where li is a random variable indicating whether the ith

landmark has aligned or not. x is a 2D location in image I.

In second step, conditional independence among the landmarks are assumed

and the following objective function is maximized with respect to p.

p(li = aligned|I,p) =
n∏
i=1

p(li = aligned|I, xi) (B.5)

Here, p represents the scale, rotation, translation and non-rigid movement

parameters of the landmarks created in the model building phase. A varieties of

different optimization strategies can utilized in this stage. For more discussion on
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these please refer to [19]. CLM is found to be robust in detecting landmarks in

different lighting conditions. It is also found to be person independent [35]. The

landmark tracker used in this work is built on CLM technique.
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