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ABSTRACT 

Jami, Najmeh. M.S. The University of Memphis. 08/2011.  LED Traffic Signal 

Retrofits: Implications for Intersection Safety.  Major Professor: Stephanie S. Ivey, Ph.d. 

The recent advancements in light emitting diode (LED) technology and the 

comparative energy savings over traditional incandescent bulbs have led to many 

municipalities retrofitting traffic signals with new LED bulbs.  Although a significant 

amount of literature exists regarding benefits of LED installations in terms of energy and 

economic savings, less attention has been given to the potential safety impacts of these 

massive retrofit projects.  This thesis will evaluate the safety implications of the change 

to LED technology in traffic signals in Memphis, Tennessee, where 56 full LED 

conversions and 712 partial conversions (red and green only) of signalized intersections 

have occurred since 2000 and present findings from analysis of before and after crash 

data to determine the intersection safety impact, if any, of LED traffic signals. 
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CHAPTER 1 

INTRODUCTION

 

In August, 2005, the Highway Safety Improvement Program (HSIP) was 

legislated as a core of the Federal-aid program conducted by The Federal Highway 

Administration (FHWA) Office of Safety, with the main purpose of “achieving a 

significant reduction in traffic fatalities and serious injuries on all public roads through 

the implementation of infrastructure-related highway safety improvements.” (FHWA 

Safety n.d.)  In addition to HSIP, the FHWA Office of Safety has developed other safety 

programs in different transportation areas including Intersection Safety, Local and Rural 

Road Safety, Pedestrian and Bicycle Safety, Roadway Departure Safety, and additional 

safety programs and initiatives.  This wide range of programs indicates the importance of 

conducting research and studies regarding safety evaluation.    

In 2009, 33,808 fatalities occurred on U.S roadways, with 20.8% of them 

occurring at an intersection or being intersection-related.  One-third of intersection-

related fatalities happen at or near signalized intersections while only 10% of the 

Nation‟s intersections are signalized (FHWA Safety n.d.).  According to the Institute of 

Transportation Engineers (ITE) Policy Recommendation, the main goal in transportation 

safety is to “Establish national safety standards to cut surface transportation fatalities in 

half from current levels by 2025.” (Institute of Transportation Engineers n.d.).  Based on 

these facts regarding the number of crashes and fatalities, studies conducted on 

intersection safety are extremely important.  As a result, a comprehensive report was 
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published by the National Cooperative Highway Research Program (NCHRP) as a guide 

to investigate different factors regarding signalized intersection safety improvements.  In 

general, reduction of crashes at signalized intersections is addressed through various 

strategies (traffic control and operational improvements, geometric improvements, sight 

distance improvements, driver awareness of intersections and signal control 

improvements, driver compliance with traffic control devices improvements, access 

management near signalized intersections improvements, and other infrastructure 

treatments.) 

Considering signalized intersections, it is obvious that traffic signals play an 

important role in safety considerations, as the Manual on Uniform Traffic Control 

Devices (MUTCD) states the reduction of the frequency and severity of certain types of 

crashes as one advantage of traffic control signals which are designed, located, operated 

and maintained appropriately (U.S. Department of Transportation n.d.).  With regard to 

the safety aspect of signals, two factors can be evaluated: the physical characteristics of 

the signals and the methods of operation.  Therefore, any treatment regarding the traffic 

signal should include consideration of any corresponding change to either factor.  

The purpose of this project is to evaluate the safety impact of the widespread 

replacement of incandescent traffic signals with Light Emitting Diode (LED) types due to 

their physical characteristics.  It has been more than two decades that a large number of 

traffic signals have been replaced by LED lights due to incredible energy efficiency; 

however, the possible effect of this change on intersection safety has not been thoroughly 

evaluated.  
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The City of Memphis has also engaged in a city-wide replacement initiative, and 

has replaced almost all signalized intersection bulbs with LEDs.  This research evaluates 

the effect of this treatment on safety for selected intersections in the City of Memphis by 

conducting a before-after crash analysis.  To develop this safety analysis, available 

information and tools regarding intersection safety analysis on the FHWA Safety website 

have been considered.  The most recent resource that was used to guide this thesis is the 

Highway Safety Manual (HSM), which includes a comprehensive approach to deal with 

crash prediction methodology.  Moreover, at the time of conducting this research, only 

one other study has evaluated the safety effect of LED usage in signals; therefore the 

current research applies a similar approach in order to make comparisons between the 

results of the two studies more transparent. 
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CHAPTER 2  

LITERATURE REVIEW 

There are two main areas of literature relating to this research.  The first part of 

this literature review will review the research conducted to date considering various 

aspects of LED traffic signals, due to the wide-spread usage of them in the nation since 

the 1990s.  The second part of this review examines literature pertaining to existing 

before-after studies as a methodology of safety measurement.  

2.1 LED Traffic Signal Studies  

Based on the research of the U.S Department of Energy (DOE), LED surpassed 

incandescent usage in traffic signals with 52% market share, equaling more than 8.5 

million traffic signals (all types of signals including three-colored ball, arrow, bi-modal 

arrow, walking person, hand and countdown) converted to LEDs (Navigant Consulting 

Inc. September 2008).  This conversion initially started by only replacement of red signal 

bulbs since yellow and green LED bulbs were not financially feasible.  Recently, this 

replacement has been widely applied for green and red, while there are still some 

economic problems for yellow LED bulbs.  

This tremendous number of retrofit projects has led to many studies estimating the 

pros and cons of LED conversion. 

2.1.1 Generalized Benefits of LED 

The majority of studies on LED traffic signals have been conducted regarding the 

significant energy savings they provide.  One of the earliest studies about LED usage is 
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the review of related articles and information in 1999 and 2000 conducted by the 

Lighting Research Center. It reviewed case studies of LED traffic signal installation and 

evaluated them based upon their economic, technical and visibility characteristics.  Data 

was collected throughout the United States, Europe, Australia and New Zealand, and 

indicated 78% of red signals, 56% of green signals and 11% of yellow signals were 

replaced with LED, resulting in 80% energy savings and 90% maintenance savings for 

municipalities (Lighting Research center and Rensselaer Polytechnic Institute July 2000). 

The City of Portland released a report regarding the process of replacing traffic signal 

bulbs with LED lamps (The City of Portland, Oregon 2001).  The city started considering 

this conversion in 1995, and by 2001 the energy crisis in that area led to the replacement 

of almost all red and green traffic signal bulbs with LEDs.  The project accomplished 

6,900 red, 6,400 green, 140 flashing amber beacons, and several light rail transit signals 

retrofits, which led to 4% liability, 8% maintenance, 18% relamping, and 70% energy 

savings.  This result again proved the significant advantages of LEDs compared to 

incandescent signal bulbs in terms of cost and energy savings (The City of Portland, 

Oregon 2001). 

A similar study was conducted in 2003 by Iwasaki to investigate the process of 

LED traffic signal module installation in the State of California (Iwasaki 2003).  The 

California Department of Transportation (Caltrans) is known internationally as one of the 

largest users of LEDs, as they first began considering LED usage to reduce energy 

consumption in the late 1980s.  The first significant electricity consumption reduction led 

to $10 million in savings per year for just the California state highway system by 

conversion of only 10 percent of red lamps in traffic signals to an LED modulus.  This 
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prompted consideration of a new rule by the California Energy Commission that 

prohibited the use of incandescent lamps for traffic signal indications on future traffic 

signal installations.  Caltrans received awards from the California Energy Commission 

(CEC) and the U.S Department of Energy (National Energy Award) for this field test 

project and for low power solution demonstrations for traffic signals.  California also 

obtained incredible benefits through LED replacement.  They saw energy consumption 

reduction of 85%, with reduced maintenance activities and, a 90% increase in reliability 

(Iwasaki 2003).  Moreover, the ability of LEDs to operate by battery backup system made 

them more efficient economically.  The results led to other states using red LED modules. 

Caltrans also considered other aspects of LED performance.  They found that more tests 

were required for LEDs according to the fact that the light output of LEDs changed in 

different temperatures.  

Another report released in 2004 by the U.S. Department of Energy addressed high 

usage of LEDs in traffic signals in California through a comprehensive overview of this 

replacement‟s benefits (The National Renewable Energy Laboratory 2004).  It was found 

that LED replacement in traffic signals has been one of the successful solutions for 

California‟s Peak Load Reduction Program (PLRP), which is a program designed to 

reduce energy consumption throughout the state.  The report mentioned the high cost of 

installing LEDs compared to incandescent bulbs, but it emphasized the greater longevity, 

energy saving and maintenance cost reduction and the safety benefits.  Similar to most 

other studies, energy consumption reduction was addressed as the most significant 

advantage compared to traditional bulbs with an estimated 94% reduction in energy costs. 

The longevity of LEDs was determined to be 10 years compared to 2 years for 



7 

 

incandescent bulbs (The National Renewable Energy Laboratory 2004).  Because of all 

the mentioned benefits, by the time the report was released, approximately 87 cities, 

counties, and public agencies had secured state or federal grants or loans to pay for 

installing LED traffic signals.  

Another report, released by the National Cooperative Highway Research Program 

(NCHRP) in 2008, reviewed the history of LED traffic signal modulus and general 

differences between LEDs and incandescent bulbs.  The report documented that the 

increased energy efficiency is due to the fact that LEDs produce much less heat compared 

to incandescent lamps and they rarely need color filters, which is a requirement for the 

incandescent bulbs based on their incapability of producing light with colors other than 

white.  Also underscored was the fact that LEDs do not have the catastrophic bulb failure 

compare to incandescent ones (NCHRP 387 2008). 

Ted Schoenecker from the Washington County Public Works Department 

released a presentation about energy cost reduction in Washington County in the 2009 

Local Government Conference.  He calculated the power usage of LED and incandescent 

bulbs and determined that LEDs consume 1/10 of the wattage energy of incandescent 

usage (Schoenecker 2009).  He also compared the cost difference of LED operation 

between 1998 and 2008, which showed a $45 difference per red light and a $158 per 

green light, leading to energy saving estimates for the monthly cost of LED operation of 

$50 per signal.  He also mentioned other advantages of LEDs including wire size 

reduction, longer life, the ability to operate with battery back up and more visibility 

(Schoenecker 2009).  
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Another practical study was conducted by The Arkansas Department of Economic 

Development in Feb 2002 to investigate the advantages and disadvantages of LED traffic 

signals (Traffic Engineering Division 2003).  As with previous reports, it also indicated a 

significant energy savings compared to incandescent bulbs.  Six intersections, with three 

of them having LED modulus and 3 incandescent bulbs, were compared during the same 

period of 4 months of operation.  This again proved a 90% energy saving for LEDs.  

2.1.2 Safety Implications  

With regard to the safety aspects of signals, two factors can be evaluated: the 

physical characteristics of the signals and the methods of operation.  Since the method of 

operation does not depend upon the type of signal lamps (LED or incandescent) the 

objective of this review is to evaluate strengths and weakness of LED physical 

characteristics based upon current literature, and to draw conclusions regarding the 

potential safety implications. 

Because of the wide-spread conversion to LED, studies have been conducted to 

evaluate other aspects of LEDs beside the energy saving issue, particularly focusing on 

safety implications.  In terms of safety, LEDs expire gradually pixel-by-pixel instead of 

total bulb failure.  This was identified as a safety benefit due to reduced instance of signal 

failure (The National Renewable Energy Laboratory 2004). 

Other safety aspects have also been considered.  Caltrans started a laboratory 

research program to evaluate the safety aspects of LED use.  This research program was 

undertaken by the University of California-Berkeley, and the focus was to evaluate the 

light perception of red LEDs compared to the incandescent lights for the Fresno area 
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(Iwasaki 2003).  The results indicated the same performance and visibility of red LEDs as 

compared to incandescent traffic lights for the human eye.  

The Maryland State Highway Administration (SHA) approved an appropriate 

field test to evaluate other aspects of LED performance.  John P. Young and Thomas 

Hicks prepared the results of the test which investigated performance of LEDs in 

different highway devices such as overhead dynamic message signs (DMS), hazard 

identification beacons (HIB), traffic signals, “Red Signal Ahead” signs and pedestrian 

signals (Young and Hicks April 2003).  In fall 2001, a full LED signal of all red, green 

and yellow units was installed in an intersection to compare cost versus longevity, cone 

of vision, and the ability to function with the conflict monitoring system in traffic signal 

controllers with that of an incandescent signal installed in another similar intersection.  

The results indicated the failure of several LED units after a few months of installation 

and 15 degree cone of vision for LEDs compared to 40 degrees for incandescent bulbs.  

This led SHA to recommend installing LED signals only by mast-arm.  It also showed 

that many LED units were not capable of working with conflict monitors, a device that 

changes the signal status to a flashing light in abnormal conditions.  This lack of 

functionality was based on some electrical characteristics of LEDs; however some 

manufactures started to solve this problem at that time (Young and Hicks April 2003). 

Considering the limited cone of vision for LEDs, in 2007, a study was conducted 

by the school of optics at the University Complutense of Madrid, Spain (Va´zquez-

Molinı´, et al. 2007).  The researchers analyzed the factors related to the louvers used for 

LEDs in traffic controls which have better performance.  The study was based on 

analyzing far and medium vision of LEDs as a function of the observation distance, 
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which is also related to the sun position during the day and the year.  The geographical 

location was Madrid, Spain with system orientation facing south.  Researchers used two 

types of parameters, including intrinsic parameters (geometry configuration of the LED 

board, geometry and arrangement of the louvers, geometry arrangement of the display 

and optical properties), and extrinsic parameters (geometry parameters for the 

observation of the display, hours of operation weighted with some parameters describing 

the importance of the displayed message, environmental conditions parameterized in 

external radiation, background luminance and, technical and economic restriction 

(Va´zquez-Molinı´, et al. 2007).  For far distance vision, evaluation of shaded and non-

shaded areas in a display-louver system was used to calculate the minimum distance of 

appropriate observation (luminance) which resulted in different contrast in various times 

of the year.  When the observer approaches the display-louver system, the vision takes 

medium distance into account, which is modeled with a different method, showing that 

the contrast increases by getting the observer closer to the display-louvers system.  The 

researcher recommended that using this function for designing display-louver systems 

could make it possible to use the best design for the most appropriate vision for different 

geographical locations, orientations and observer positioning (Va´zquez-Molinı´, et al. 

2007). 

In one of the most specific issues studied for LEDs, Ray A. Starr, Mayne H. 

Sandberg and Yuzh Guan estimated the difference of LED traffic signal performance for 

color-blind and non-color-blind people (Starr, Sandberg and Guan August 2004).  It was 

performed due to a complaint of a color blind person to the Minnesota Department of 

Transportation (Mn/DOT) stating that the traffic signal appears on in direct sunlight when 
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it is not (where LED signals were installed in Mn by Mn/DOT).  To consider this 

problem, seven intersections were selected as field test areas with 8 persons including 4 

color-blind and 4 non-color-blind to evaluate the performance according to their 

responses.  They also tried to determine the impacts of other factors on this property.  A 

test was designed to evaluate the indication of six different designs of green LED lights, 

which differed in green tinted versus clear lens, old technology with high LED count 

versus new lens designs, and two brands (brand A and B), as compared to a green 

incandescent.  These were installed at the right or left side of travel lanes for investigation 

of the impact of angle viewing.  The test occurred on April 8 to April 10, 2003 in the 

early mornings with direct sunlight on the signals to exactly achieve the purpose of the 

test.  112 observations for each participant were recorded over all of the seven 

intersections, with researchers asking whether the green traffic signals on the left and 

right sides of the intersection were lit or not.  Less than 4% of non-color-blind people 

stated the green lights were on while they were not.  On the other hand, 25% of color-

blind participants indicated they were on when they were not.  The researchers also 

indicated that 5% of participants were red-green color-blind.  Data were also analyzed 

which showed that the clear lens, old technology and brand A of LEDs had more 

performance difficulties for color-blind participants while the tinted lens, new technology 

and brand B LEDs had the same effects as on non-color-blind participants.  Moreover, 

angle of viewing was seen to have no significant impact on the test objective (Starr, 

Sandberg and Guan August 2004).  

The most recent study concerning safety implications of LED retrofits was 

published in the ITE journal (April 2010) and was focused specifically on the effects of 
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LED traffic signals on urban intersection safety (Eustace, Griffin and Hovey April 2010).  

Based on the fact that LED traffic signals were described to be brighter than conventional 

signals, the researchers investigated the number of crashes at 10 urban signalized 

intersections in the city of Middletown, Ohio before and after the conversion to LED to 

consider if it enhanced intersection safety.  Eight intersections were converted to LEDs 

between 2003 and 2005 and the other two were considered for comparison (standard 

incandescent signals).  Several variables were chosen for analysis including road 

classification, number of lanes, lane width, total entering average daily traffic (ADT), 

entering ADT of the major and minor roads, the number of police officers patrolling each 

year.  The negative binomial distribution was used for the crash estimation model.  The 

Empirical Bayes method (EB) was used for this study, as it is the most accepted method 

for crash estimation.  This approach was also used for the expected number of crashes 

without any conversion.  The predicted values were compared to the actual number of 

crashes after the conversion and the results showed that the number of crashes increased 

by about 71% after that change.  The researchers concluded that although there was an 

apparently significant reduction in safety after installation of LEDs, several other factors 

might have affected the results, and should be considered in future studies.  Limitations 

of the study include very small sample size of both converted and comparison sites, the 

lack of available data for the years before the conversion, using different specifications 

for older fixtures, traffic growth in some sites, etc.  The researchers recommended more 

studies be conducted considering all these factors (Eustace, Griffin and Hovey April 

2010).  
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In 2010, the Associated Press indicated a critical safety issue with the LED bulbs 

(Dinesh 2010).  Many complaints were reported in cold weather, including in Illinois, 

Iowa and Minnesota, about the inability of LED lights to melt the snow, resulting in 

completely obscured signals.  This problem resulted in a fatal crash in Illinois during a 

storm in April 2010. As a result, some states have started testing the impact of installing 

weather shields and adding heating elements or coating the lights with water-repellent 

substances to prevent this problem.  

In addition to the generalized benefits of LEDs that were documented in NCHRP 

387 as mentioned in the previous section, the technical issues that were addressed in the 

2005 ITE specification for LEDs compared to the old version were reviewed.  In the new 

specification the problem regarding the traffic signal safety monitors has been corrected, 

however the correction for conflicting monitors has not been addressed clearly.  In the 

new specification it is mentioned that incandescent lights are more consistent in the light 

output compared to the LEDs but LEDs do not have catastrophic failure, which can be 

considered as an improvement in safety.  On the other hand, this gradual loss of light 

combined with the high cost of LED replacement might lead to LED lights with a low 

performance in terms of light output remaining in service.  Texas still has some problems 

with the LED signal heads with lightning strikes although a protected voltage has been 

recommended by the new specification.  No correction has been mentioned for the 

inability of LED lights to melt snow, however some agencies have started their own 

solutions.  “The new specification changes the ratio of red:yellow:green from 1:4.6:2 

based on circa 1933 standards developed based on glass lens to 1:2.5:1.3, which was 

based on human factor issues” (NCHRP 387 2008).  The report also presents the result of 
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an Institute of Transportation Engineers (ITE) survey in 2006 among various public 

agencies and vendors/manufactures of LEDs.  The purpose of the survey was to evaluate 

issues regarding LED usage and maintenance and it proved the widespread usage of 

LEDs among agencies (59% of respondents have LEDs in more than 50% of their traffic 

signals while 82% use or plan to use ITE LED specifications.) 

In one of the most recent studies regarding LED traffic signals, another NCHRP 

report (NCHRP 146) was provided to investigate problems related to LEDs and to 

consider problems that have been solved in the new ITE LED specification (Bullough, et 

al. n.d.).  According to this report, by increasing the LEDs illumines in the new 

specification, problems related to people with color deficiencies have been corrected.  

Moreover, new correction has been conducted to solve the inability of LEDs to operate 

appropriately with conflict monitors. Another problem that was mentioned in this report 

is the gradual loss of brightness of LEDs.  This was seen to cause issues related to 

discomfort due to glare at night and also through sunlight direction. The new criteria for 

LED illumination in the ITE specification are intended to address this problem.  The 

inability of LEDs to melt snow was not addressed (Bullough, et al. n.d.).   

Even with the apparent hazards resulting in some cases from using LED bulbs in 

traffic signals, (although some of these have been corrected due to the new ITE 

specification, there are still some remaining problems and also there are cost limitations 

for replacing LEDs with ones that fit the new criteria (Bullough, et al. n.d.)) the 

extremely high energy efficiency resulted in large-scale replacement of incandescent 

lights by LEDs across the nation.  Additionally, new requirements for LEDs became 
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effective via the Energy Policy Act of 2005 Title I, Subtitle C, Section 135 (z). It states 

that:  

“(c) STANDARD SETTING AUTHORITY—  

(z) TRAFFIC SIGNAL MODULES AND PEDESTRIAN  

MODULES—  

Any traffic signal module or pedestrian module manufactured on or after January 

1, 2006, shall—  

(1) meet the performance requirements used under the Energy Star 

program of the Environmental Protection Agency for traffic signals, as in effect 

on the date of enactment of this subsection; and 

(2) Be installed with compatible, electrically connected signal control 

interface devices and conflict monitoring systems.”  

These criteria prohibit the new installation of incandescent traffic signal and 

pedestrian modules on or after January 1, 2006 (Department of Energy October 18, 

2005).  The only signal head not required to be replaced with LED is the yellow, 

primarily due to the high cost.  Thus, with the massive nationwide replacement of 

incandescent bulbs with LEDs, it is critical that additional studies evaluating safety 

implications be conducted. 

2.2 Before-After Crash Analysis  

The number of crashes is the major factor to measure the safety effect of a traffic 

treatment.  In observational before-after studies, one may consider a simple approach of 

comparing the number of crashes before the treatment with the number of crashes after 

the treatment and conclude a positive effect for the treatment if the number of crashes 



16 

 

decreases after the treatment.  This view can be practical only when there is no change in 

other factors affecting the safety.  In fact, the number of crashes after the treatment 

includes the effect of other possible changes on crash count.  Since the assumption of no 

change in other factors besides the target treatment rarely is accurate, other methods are 

more applicable to estimate the safety effect of a treatment based on before-after studies. 

To achieve more reasonable estimation of safety, the number of crashes after the 

treatment has to be compared to the expected number of crashes that would have been 

observed after the treatment if the treatment had not been applied.  Developing a method 

to predict this number has been an area of researchers‟ interest for many years.  In 

general, this procedure is based on creating a function that relates the possible factors that 

affect the safety to the number of crashes.  Therefore, it is critical to recognize these 

factors and to implement a method to provide the most accurate function, which is known 

as a Safety Performance Function (SPF) among traffic engineers.  Moreover, researchers 

have also considered possible biases in creating SPFs and have tried to apply some 

methods for correction of the biases.  

Although regression analyses and application of statistical packages have been 

widely used for studies seeking to create SPFs specifically at intersections over the past 

several years, earlier research applied a simpler approach.  Thrope, Smith and Worsey 

(Smith 1970)(Worsey December 1985) were the earliest researchers focused on creating 

SPFs. They related the number of crashes to the summation of all traffic flows entering 

the intersection (Thorpe 1963).  One obvious limitation is that traffic flows in both major 

and minor approaches are considered to have the same impact on crash counts.  This does 

not lead to an accurate prediction.  In a similar way, Breunning, Surti, and Hakkert  
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provided a model which related the number of crashes to the product of the approaching 

traffic flows (Breunning and Surti 1959)(Surti 1965)(Hakkert and Mahalel 1978).  It was 

first proved by Webb(1955) and McDonald(1966).  While this model has some 

limitations it demonstrated an improved model relating crash counts to the product of 

traffic flows to the power of parameters with values less than one, referred to as “product-

of-flows-to-power” (McDonald 1966; Webb 1955).  

There are two main approaches to regression to create SPF: a normal distribution 

error structure assumption and a nonnormal error structure assumption.  Linear regression 

was commonly used to relate traffic volumes to crash incidence for many years (Ceder 

and Livneh 1982) (Ceder 1982).  Javanis and Chang (1986) were the first to discuss the 

limitations of using linear regression, based on the required assumptions for this 

procedure (normal error structure).  Homoscedasticity is one such assumption of applying 

linear regression to data, which means that all predictor variables have the same variance. 

However, as traffic flow increases, the variance of the number of crashes (dependent 

variable) increases as well, which is in conflict with the homoscedasticity assumption. 

Because the hypothesis test for linear regression on crash count data is based on this 

assumption, this conflict leads to incorrect confidence interval estimation for estimated 

parameters.  Considering these limitations, along with the non-negativity property of 

crash counts, the second approach is now widely used in estimating parameters to create 

SPFs.  In addition, since the entities with abnormal numbers of crash counts (very large 

or very small) are usually selected for safety studies because of being more critical for 

any improvement, there is a biased selection known as “regression-to-mean” bias.  To 

overcome this problem, the Empirical Bayes (EB) approach has been applied to increase 
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the precision of estimation and corrects for this bias.  The EB estimation procedure can 

be abridged or full.  The full approach for EB estimation is applicable for crash counts in 

long time periods, while abridged EB is appropriate for crash counts of 2-3 years. 

In the rest of this section, applications of different nonnormal error structure 

methods and empirical bayes procedures in selected studies will be reviewed. 

Regression models that are based on nonnormal error structure are known as 

generalized linear models (GLM).  Based on the fact that the dependent variable in an 

SPF (crash count) is a nonnegative integer, Poisson regression was first proposed by 

Jovanis and Chang to overcome the limitation of conventional linear regression to model 

the relationship of crashes to miles traveled along the Indiana Toll road (Jovanis and 

Chang 1986).  One major disadvantage of the Poisson model for crash count modeling is 

due to an important characteristic of the distribution of having an equal value for mean 

and variance.  It is realistic to expect crash counts to have a variance greater than the 

mean (overdispersion) and since the Poisson distribution requires the variance to be equal 

to the mean, building a model for such data creates a significant bias in the analysis.  In 

addition, although rare, it is possible for crash counts, to be underdispered (having a 

mean greater than the variance) which also leads to incorrect analysis when applying the 

Poisson model. 

To overcome this issue, Hauer et. al conducted one of the earliest studies to 

estimate safety at 145 four-legged signalized intersections in metropolitan Toronto using 

the Negative Binomial (NB) regression model (Hauer, NG and Lovel 1988).  The only 

factors they used to create the SPF were major and minor roads traffic flow as shown 
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below (they applied separate functions for each pattern of crashes; the following is the 

function for one of those crash patterns): 

 

𝐸 𝑚6 = 𝑏0 × 𝐹1 × 𝐹2
𝑏2        (1) 

 

Where, 𝐸 𝑚6  is the number of pattern6 crashes, 𝑏0 and 𝑏2 are the model 

parameters, and 𝐹1 and 𝐹2are independent variables (major and minor road traffic flow).  

A Negative Binomial error structure was specified to estimate the parameters. 

Bonneson and Mccoy conducted a study to predict the SPF due to crash data for 

125 two-way stop-controlled intersections in Minnesota (Bonneson and McCoy 1993).  

They also applied a nonlinear relationship between crashes counts and traffic data which 

is the product of flows to power as shown below: 

𝐸 𝑚 = 𝑏0𝑇𝑚
𝑏1𝑇𝑐

𝑏2         (2) 

Where, 𝐸 𝑚  is expected crash frequency, 𝑏𝑖  shows regression constants, 𝑇𝑚 is 

major road traffic demand, and 𝑇𝑐  is minor road traffic demand.  They developed the 

model using both Poisson and NB distributions as error structure separately.  The Pearson 

𝑋2statistic was applied to determine the significance of each model to fit the predicted 

value.  The result showed that NB error structure was able to fit the data with greater 

significance than Poisson error structure.  

Another study was conducted by Sayed and Rodriguez to predict crashes related 

to 419 unsignalized intersections in urban areas of the Greater Vancouver Regional 

District and Vancouver Island, British Colombia by applying the GLIM approach based 
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on the assumption of negative binomial distribution as the point probability function 

(Sayed and Rodriguez 1999).  The model structure is shown as: 

𝐸 Λ = 𝑎0𝑉1
𝑎1𝑉2

𝑎2         (3) 

Where, 𝐸 Λ  is expected crash frequency, 𝑉1 is major road traffic volume (annual 

average daily traffic (AADT)), 𝑉2 is minor traffic volume (AADT), and𝑎0, 𝑎1and 𝑎2 are 

model parameters.  The EB procedure was then applied to reduce the regression-to-mean 

bias and achieve a more accurate result. 

A negative binomial regression was also applied by Poch and Mannering to 

estimate the crash frequency at intersections in Seattle suburban areas (Poch and 

Mannering 1996). Traffic volume, geometric characteristics and signalization 

characteristics were considered as variables. 

Miaou and Lord applied Poisson and NB before-after analysis to 4-legged 

signalized intersection crash data in Toronto, Canada (Miaou and Lord 2003).  Both 

empirical Bayes and full Bayes were conducted to estimate the best model.  They also 

proved the previous mentioned models as proper functions to predict crashes, however; 

part of the study was based on considering the effect of using different functional forms 

of the SPF and specifically the impact of this for safety analysis of a transportation 

network.  

Other methodological alternatives have also been used due to their benefits.  Lord 

and Mannering recently conducted a comprehensive review of various methods that have 

been applied to before-after studies of crash analysis over the years (Lord and Mannering 

2010).  They evaluated the advantages and disadvantage of each methodology to create 
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an SPF, and reviewed almost all of the existing studies applying these methods as of the 

time of publication.  Their evaluation of the various methods is based on the ability of 

each model to handle different properties of crash data and consequently create a result 

with the least possible errors.  As mentioned before, dispersion is one major aspect of 

crash data that may cause significant bias in the result based on the type of model being 

applied.  They mentioned that besides overdispersion phenomena in crash data, 

sometimes data can be under dispersed which means that the mean of crash counts are 

larger than the variance.  Another aspect related to crash data that they considered is the 

existence of “time-varying explanatory variables”.  This means that some explanatory 

variables that contribute to the number of crashes change by time over the period of the 

study and not considering this fact may yield a significant bias in the results.  Temporal 

and spatial correlation models were also evaluated based on the capability of formulating 

a relationship for data with small size and small mean.  Another issue of interest is to fit a 

model to data based on the type of crash and the severity.  Table 1 (Lord and Mannering 

2010) presents the comparison of various models based on their ability to handle 

mentioned aspects of crash data.  They also identify studies that applied each 

methodology, as shown in Table 2 (Lord and Mannering 2010).  More details on each 

approach can be found in (Lord and Mannering 2010). 

Considering other studies being applied after the comprehensive review of Lord 

and Mannering, a recent study by Pei, Wong and Sze can be added to the list of studies 

related to Markov switching model types.  They applied Markov switching with full 

Bayesian analysis to predict the number of crashes and the severity with an application of 
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a proposed joint probability model that can be considered as a new approach to crash 

safety analysis (Pei, Wong and Sze 2011). 
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Table 1: Summary of existing models for analyzing crash-frequency data 

(Reproduced with permission from (Lord and Mannering 2010). 

Model type Advantages Disadvantages 

Poisson Most basic model; easy to 

estimate 

Cannot handle over- and under-

dispersion; negatively influenced by the 

low sample-mean and small sample size 

bias 

Negative 

binomial/ 

Poisson-

gamma 

Easy to estimate can account 

for over-dispersion 

Cannot handle under-dispersion; can be 

adversely influenced by the low sample-

mean and small sample size bias 

Poisson-

lognormal 

More flexible than the 

Poisson-gamma to handle 

overdispersion 

Cannot handle under-dispersion; can be 

adversely influenced by the low sample-

mean and small sample size bias (less 

than the Poisson-gamma), cannot 

estimate a varying dispersion parameter 

Zero-

inflated 

Poisson and 

negative 

binomial 

Handles datasets that have a 

large number of zero-crash 

observations 

Can create theoretical inconsistencies; 

zero-inflated negative binomial can be 

adversely influenced by the low sample-

mean and small sample size bias 

Conway-

Maxwell-

Poisson 

Can handle under- and over-

dispersion or combination of 

both using a variable 

dispersion (scaling) parameter 

Could be negatively influenced by the 

low sample-mean and small sample size 

bias; no multivariate extension available 

to date 

Gamma Can handle under-dispersed 

data 

Dual-state model with one state having a 

long-term mean equal to zero 

Generalized 

estimating 

equation 

Can handle temporal 

correlation 

May need to determine or evaluate the 

type of temporal correlation a priori; 

results sensitive to missing values 

Generalized 

additive 

More flexible than the 

traditional generalized 

estimating equation models; 

allows non-linear variables 

interactions 

Relatively complex to implement; may 

not be easily transferable to other datasets 

Random-

effects 

Handles temporal and spatial 

correlation 

May not be easily transferable to other 

datasets 

Negative 

multinomial 

Can account for over-

dispersion and serial 

correlation; panel count data 

Cannot handle under-dispersion; can be 

adversely influenced by the low sample-

mean and small sample size bias 
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Table 1-continued: Summary of existing models for analyzing crash-frequency 

data (Reproduced with permission from (Lord and Mannering 2010). 

Model Type Advantages Disadvantages 

Random-parameters More flexible than the 

traditional fixed parameter 

models in accounting for 

unobserved heterogeneity 

Complex estimation process; may 

not be easily transferable to other 

datasets 

Bivariate/multivariate Can model different crash 

types simultaneously; 

more flexible functional 

form than the generalized 

estimation equation 

models (can use non-linear 

functions) 

Complex estimation process; 

requires formulation of correlation 

matrix 

Finite mixture/Markov 

switching 

Can be used for analyzing 

sources of dispersion in 

the data 

Complex estimation process; may 

not be easily transferable to other 

datasets 

Duration By considering the time 

between crashes (as 

opposed to crash 

frequency directly), allows 

for a very in-depth 

analysis of data and 

duration effects  

Requires more detailed data than 

traditional crash-frequency model; 

time-varying explanatory variables 

are difficult to handle 

Hierarchical/multilevel Can handle temporal, 

spatial and other 

correlations among groups 

of observations 

May not be easily transferable to 

other datasets; correlation results 

can be difficult to interprets; 

Neural network, 

Bayesian neural 

network, and support 

vector machine 

Non-parametric approach 

does not require an 

assumption about 

distribution of data; 

flexible functional form; 

usually provides better 

statistical fit than 

traditional parametric 

models 

Complex estimation process; may 

not be transferable to other 

datasets; work as black-boxes; 

may not have interpretable 

parameters 
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Table 2: Summary of previous research analyzing crash-frequency data 

(Reproduced with permission from (Lord and Mannering 2010). 

Model Type Previous Research 

Poisson Jovanis and Chang (1986), Joshua and Garber (1990), Jones et 

al. (1991), Miaou and Lum (1993), and Miaou (1994) 

Negative Binomial Maycock and Hall 1984, Hauer et al. (1988); Brüde and Larsson 

(1993); Bonneson and McCoy (1993); Miaou (1994); Persaud 

(1994); Kumala (1995); Shankar et al. (1995); Poch and 

Mannering (1996); Maher and Summersgill (1996); Mountain et 

al. (1996); Milton and Mannering (1998); Brüde et al. (1998); 

Mountain et al. (1998); Karlaftis and Tarko (1998); Persaud and 

Nguyen, 1998; Turner and Nicholson (1998); Heydecker and 

Wu (2001); Carson and Mannering (2001); Miaou and Lord 

(2003); Amoros et al. (2003); Hirst et al. (2004); Abbas (2004); 

Lord et al. (2005a); El-Basyouny and Sayed (2006); Lord 

(2006); Kim and Washington (2006); Lord and Bonneson 

(2007); Lord et al. (2009); Malyshkina and Mannering (2010b); 

Daniels et al. (2010); Cafiso et al. (2010a) 

Poisson-lognormal Miaou et al. (2005), Lord and Miranda-Moreno (2008), and 

Aguero-Valverde and Jovanis (2008) 

Zero-inflated Poisson 

and negative binomial 

Miaou (1994), Shankar et al. (1997), Carson and Mannering 

(2001), Lee and Mannering (2002), Kumara and Chin (2003), 

Shankar et al. (2003), Qin et al., 2004, Lord et al. (2005b), Lord 

et al. (2007), and Malyshkina and Mannering (2010a) 

Conway-Maxwell-

Poisson 

Lord et al. (2008), Sellers and Shmueli (in press) and Lord et al. 

(2010) 

Gamma Oh et al. (2006) and Daniels et al. (2010) 

Generalized 

estimation equation 

Lord and Persaud (2000), Lord et al. (2005a), Halekoh et al. 

(2006), Wang and Abdel-Aty (2006), and Lord and Mahlawat 

(2009) 

Generalized additive Xie and Zhang (2008) and Li et al. (2009) 

Random-effects Johansson (1996), Shankar et al. (1998), Miaou and Lord 

(2003), Flahaut et al. (2003), MacNab (2004), Noland and 

Quddus (2004), Miaou et al. (2003), Miaou et al. (2005), 

Aguero-Valverde and Jovanis (2009), Li et al. (2008), Quddus 

(2008), Sittikariya and Shankar (2009), Wang et al. (2009) and 

Guo et al. (2010) 

 

Negative multinomial Ulfarsson and Shankar (2003), Hauer (2004), and Caliendo et al. 

(2007) 

Random-parameters Anastasopoulos and Mannering (2009) and El-Basyouny and 

Sayed (2009b) 

. 
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Table 2-continued: Summary of previous research analyzing crash-frequency data 

(Reproduced with permission from (Lord and Mannering 2010) 

Model Type Previous Research 

Bivariate/multivariate Miaou and Lord (2003), Miaou and Song (2005), N‟Guessan 

and Langrand (2005a), N‟Guessan and Langrand (2005b), 

Bijleveld (2005), Song et al. (2006), Ma and Kockelman 

(2006), Park and Lord 

(2007), N‟Guessan et al. (2006), Bonneson and Pratt (2008), 

Geedipally and Lord (in press), Ma et al. (2008), Depaire et al. 

(2008), Ye et al. (2009), Aguero-Valverde and Jovanis (2009), 

El-Basyouny and Sayed (2009a), N‟Guessan (2010), and Park 

et al. (in press) 

Finite mixture/Markov 

switching 

Malyshkina et al. (2009), Park and Lord (2009), Malyshkina 

and Mannering (2010a), and Park et al. (in press) 

Duration Jovanis and Chang (1989), Chang and Jovanis (1990), 

Mannering (1993), and Chung (2010) 

Hierarchical/multilevel Jones and Jørgensen (2003) and Kim et al. (2007) 

Neural network, 

Bayesian neural 

network, and 

support vector machine 

Abdelwahab and Abdel-Aty (2002), Chang (2005), Riviere et 

al. (2006), Xie et al. (2007), and Li et al. (2008) 

 

Currently, the NB regression model is the most widely used (due to relative ease 

of application) and applicable to crash count data due to the capability of handling 

overdispersed data.  As mentioned previously, the most related literature to this project 

was conducted by Eustace et al., which also used NB regression for the SPF.  The current 

research will use the same methodology as this previous study to determine impact of 

LED conversion for selected intersections in Memphis, TN.  Results will then be 

compared to those obtained by Eustace et al. 
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CHAPTER 3  

METHODOLOGY 

In order to assess the safety implications of the LED conversion in Memphis, TN, 

it was necessary to develop a model to predict the number of crashes that would be 

expected at sites that have undergone LED conversion if no treatment had been applied.  

This predicted number can then be compared to the observed number of crashes after the 

treatment had been applied and the result could be expressed using either of the following 

evaluation factors (Hauer 1997). 

(1) 𝛿 = 𝐵 − 𝐴            (4) 

 

(2) 𝜃 = 𝐴/𝐵         (5) 

Where B is the predicted (expected) number of crashes if no treatment had been 

applied, and A is the actual observed number of crashes after the treatment.  A value of 

𝛿 < 0 or 𝜃 < 1 indicates that the treatment resulted in an improvement in the safety. 

 As mentioned in the previous section, various regression methods have been 

applied to create a mathematical relationship (Safety Performance Function or SPF) 

between the number of crashes and other potential factors that have an influence on 

safety.  In other words, the after measurement (number of crashes) doesn‟t show the 

effect of the treatment of interest separately.  It represents the combined effect of all 

factors on safety, and to measure the safety effect of the target factor (treatment), the 
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effect of other factors needs to be measured.  Consequently, the first step in developing 

an SPF is to identify other contributing factors.  

3.1 Factors (Variables) 

Factors that are involved in a before-after study are classified in two general 

groups.  The first group consists of those factors that are recognizable, measurable, and 

well understood.  The second group consists of factors that are difficult to identify, 

measure, or understand (Hauer 1997).  To improve the estimate obtained from an SPF, 

factors of the first group are applied as the function variables.  An approach to deal with 

the second group of factors will be discussed later in Section 3.4.  There are various 

variables that can be considered for an analysis, such as number of lanes, lane width, 

weather, type of intersections, traffic flow, etc.  However, not all of these variables will 

produce significant correlation with the number of crashes.  Guo et.al recommend three 

major properties for variables selected in creating an SPF “(1) the variable should have a 

sound engineering interpretation; (2) the variable should represent different aspects of 

properties of an intersection; and (3) there should be a weak/moderate correlation among 

the selected variables.”(Guo, Wang and Abdel-Aty 2010).  As pointed out in the literature 

review in the previous chapter, traffic flow has been recognized as the most appropriate 

variable related to safety in before-after studies and can be presented as either average 

daily traffic (ADT) or annual average daily traffic (AADT).  The Highway Safety Manual 

(HSM) recommends the usage of AADT over ADT unless no data is available for AADT 

(AASHTO 2010).  For intersections, the total entering traffic volume may be applied as 

the only variable of the SPF or two variables may be assumed separately for the traffic 

volume of the minor and major approaches.  The second approach using two variables is 
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more common among researchers since it has been recognized to create a better goodness 

of fit in improving the SPF.  For the current study, the variables considered initially 

include AADT for both the major and minor approaches, number of lanes and lane width. 

However, as it was expected, only AADT for both major and minor approaches were 

found significantly acceptable as explanatory variables to improve the SPF and the two 

other variables didn‟t have significant effects on the model.  

3.2 SPF Improvement  

3.2.1 SPF Structure 

According to current literature, the most common structure being used by 

researchers to relate traffic flows to the number of crashes at an intersection is formulated 

as; 

𝐸(𝛬) = 𝑒𝑎0𝑉1
𝑎1𝑉2

𝑎2         (6) 

Where, 𝐸(𝛬) is expected crash frequency, 𝑉1 is the major road traffic volume 

(annual average daily traffic (AADT)), 𝑉2 is the minor road traffic volume (AADT), 

and𝑎0, 𝑎1and 𝑎2 are model parameters (Tarek Sayed 1999).  This function has been also 

suggested by The Federal Highway administration (FHWA) in development of state-of-

the-art software tools (Safety Analyst) as the most appropriate model to estimate 

intersection safety (SafetyAnalyst n.d.), however; it has been recommended that 

individual states develop SPFs based on their own crash and AADT data (Harwood, et al. 
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December 2000).  For the current research the same functional form was applied as in 

Equation 6. 

3.2.2 Regression Procedure  

After selecting the variables and model structure, the next step is to estimate the 

unknown parameters of the SPF by assuming a probabilistic structure for crash counts.  

Various methods were discussed in Section 2.2.  In this project, negative binomial (NB) 

error structure is applied, as it best represents crash data.  Reasons for selecting NB as the 

most appropriate error structure distribution for crash counts will be explained in Section 

3.2.5. 

3.2.3 Crash Counts in Theory 

In general, a crash as a random experiment is recognized as a Bernoulli trial, in 

which the occurrence of a crash is considered as a success and no occurrence of crashes 

as a failure. The probability distribution of the number of successes in Bernoulli trials is 

modeled as a binomial distribution which is formulated as follows (Lord, Washington 

and Ivan n.d.): 

𝑃(𝑍 = 𝑛) =  𝑁
𝑛
 𝑝𝑛(1 − 𝑝)𝑁−𝑛 ,       (7) 

Where N is the number of trials (number of vehicles entering the intersection), 𝑝 

is the probability of success (occurrence of a crash), and 𝑍 = 0,1,… ,𝑛  is the random 

variable that records the number of successes.  The mean and variance of the distribution 

are computed as  (Lord, Washington and Ivan n.d.): 
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𝐸(𝑍) = 𝑁𝑝         (8) 

𝑉𝐴𝑅(𝑍) = 𝑁𝑝(1 − 𝑝)       (9) 

The Poisson distribution can be used to approximate binomial probabilities when 

there are a large number of trials and the probability of success is small.  These 

assumptions are true while dealing with crash counts since the probability of crash 

occurrence is very small compared to the large number of vehicles entering an 

intersection.  In mathematical terms, this occurs when 𝑁 → ∞ and 𝑝 → 0, where 𝑁𝑝 is 

represented by λ and the formulation is changed to the following, which is known as the 

Poisson distribution (Lord, Washington and Ivan n.d.). 

𝑃(𝑍 = 𝑛) =  𝑁
𝑛
 (

𝜆

𝑁
)𝑛(1 −

𝜆

𝑁
)𝑁−𝑛 ≅

𝜆𝑛

𝑛 !
𝑒−𝜆      (10) 

Where 𝜆 is the mean of the Poisson distribution or the Poisson parameter and is a 

function of variables, 𝑋𝑖  , and estimated parameters, 𝛽.  The expected value of a random 

variable that follows a Poisson distribution is equal to 𝜆 and is determined as follows:  

𝐸(𝑦𝑖) = 𝜆𝑖 = 𝐸𝑋𝑃(𝛽𝑋𝑖)       (11) 

3.2.4 Dispersion Parameter 

A very important characteristic of the Poisson distribution is that the mean and the 

variance are equal to 𝜆 (functional form of expected number of crashes).  Since it is not 
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always the case that crash data have an equal value for the mean and variance, this 

property is recognized as a limitation of this method.  In fact, crash data typically has a 

variance larger than the mean (overdispersion).  As a result, if a Poisson regression model 

is applied to crash counts, the result would be biased.  To overcome this limitation, 

researchers have found the NB regression procedure is more appropriate for the purpose 

of crash analysis. 

3.2.5 Negative Binomial (NB) Procedure 

Since the NB approach is applied due to the limitation of the Poisson method, (the 

equality of the mean and the variance) one may expect a new parameter in this model to 

represent the overdispersion of data.  This parameter is shown by 𝛼 which is known as 

the dispersion or overdispersion parameter.  The Poisson method is a special case of the 

NB procedure where 𝛼 is equal to zero.  The general form of the probability of 

occurrence of 𝑦𝑖  crashes at segment 𝑖 during a time period,𝑃(𝑦𝑖),  in a NB regression 

model is represented as (Lord, Washington and Ivan n.d.): 

𝑃 𝑦𝑖 =
Γ( 

1

𝛼
 +𝑦𝑖)

Γ 
1

𝛼
 𝑦𝑖 !

[
1

𝛼

 
1

𝛼
 +𝜆𝑖

]1/𝛼[
𝜆𝑖

 
1

𝛼
 +𝜆𝑖

]𝑦𝑖      (12) 

Where, Γ(. ) is a gamma function, 𝜆𝑖  is the Poisson parameter, and 𝛼 is the NB 

overdispersion parameter.  The NB variance is formulated as  (Lord, Washington and 

Ivan n.d.): 

𝑣(𝑦𝑖) = 𝐸(𝑦𝑖) + 𝛼(𝐸(𝑦𝑖))2       (13) 
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So far, the variance for the expected number of crashes has been defined only for 

a single entity.  In this project, similar to other before-after analysis, safety is measured 

with respect to the number of entities considered.  The estimation of the mean and the 

variance of the total entities are then determined by the summation of these values for all 

entities. 

Once variables, SPF structure, and the regression procedure are defined, data for 

each entity including crash counts, major road AADT, and minor road AADT are applied 

to estimate the unknown parameters.  This step is implemented by using a statistical 

package that allows the application of the previously mentioned procedures. 

3.3 Calibration Factor 

The previously described procedure estimating the number of crashes using an 

SPF is based on the assumption that the difference between the number of crashes at each 

entity across different years has the same manner of changing as the difference between 

the number of crashes across various entities.  In other words, no calibration was 

considered to account for within-period variation for each single intersection.  To deal 

with this in the methodology, a calibration factor is multiplied by the SPF to normalize 

the number of crashes for each site to a single base year.  For each individual site the base 

year is selected as the first year that before treatment data is available, and all other years 

are normalized to this year as follows: (Hauer 1997) 

𝐶𝑖𝑦 =  
𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑  𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡  𝑓𝑟𝑜𝑚  𝑆𝑃𝐹  𝑜𝑓  𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛  𝑖 𝑓𝑜𝑟  𝑦𝑒𝑎𝑟  𝑦

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑  𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡  𝑓𝑟𝑜𝑚  𝑆𝑃𝐹  𝑜𝑓  𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛  𝑖 𝑓𝑜𝑟  𝑦𝑒𝑎𝑟  1 
  (14) 



34 

 

3.4 Comparison Group and Empirical Bayes Approach 

The methodology for developing an SPF was conducted based on the measurable 

variables (traffic volume), however; as mentioned in Section 3.1, other factors may exist 

that are not easily identified and therefore cannot be measured to estimate the effect of 

them on the number of crashes.  Moreover, there is a high chance that the treated sites 

under study have been selected because of the high crash frequency which means that the 

crash count before the treatment cannot be an accurate representation of crash counts due 

to normal conditions.  This phenomenon is known as “regression-to-the-mean” or 

selection bias.  The most common approach to deal with this problem is the use of a 

comparison group in conjunction with the Empirical Bayes (EB) approach.  A 

comparison group includes sites with no treatment being applied during the study period. 

The EB method of using a comparison group is based on two assumptions.  

“Assumption a. That the sundry factors that affect safety have changed from the 

“before” to the “after” period in the same manner on both the treatment and the 

comparison group, and 

Assumption b. That this change in the sundry factors influences the safety of the 

treatment and the comparison group in the same way” (Hauer 1997). 

In fact, the comparison group is applied to the SPF from the previous step to 

account for other unmeasured factors as well.  One critical part in this procedure is to 

select the comparison group in such a way that they are as similar as possible to the sites 

under study by fitting the above assumptions.  One criterion to evaluate this similarity is 

the odds-ratio which is computed as follows: 
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𝑜𝑑𝑑𝑠 − 𝑟𝑎𝑡𝑖𝑜 =
𝑅𝑡/𝑅𝑡−1

𝐶𝑡/𝐶𝑡−1
       (15) 

Where, 𝑅𝑡  is the number of crashes in year t of study sites before the treatment, 

and 𝐶𝑡  is the number of crashes in year t for the comparison group (Brabander and 

Vereeck 2007) . It is expected that the closer this ratio is to one, the more reliable the 

comparison group. After considering the degree of reliability for the selected comparison 

group, the EB approach is then applied to correct the regression-to-the-mean bias.  Before 

considering the EB procedure, it is noteworthy to understand that a comparison group 

differs from a control group.  A control group is used for experiments that are conducted 

randomly and therefore the immeasurable factors are changed in the same manner for 

both the group under study and the control group.  It is unlikely that the comparison 

group and study group in our case have the same manner of changing in factors during 

time.  

The main concept in EB methodology is based on taking into account a weight 

between the observed and predicted number of crashes of each site as follows: (FHWA 

2010) 

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡𝑠𝑓𝑜𝑟𝑎𝑛𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛(𝐸𝐵) = 

𝑊𝑒𝑖𝑔𝑡 × 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡𝑠𝑓𝑟𝑜𝑚𝑆𝑃𝐹 + 

    1 −𝑊𝑒𝑖𝑔𝑡 × 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡𝑠 𝑓𝑜𝑟 𝑡𝑒 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 (16) 

Where, 
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𝑊𝑒𝑖𝑔𝑡 =
1

1+𝛼×𝑃
        (17)  

𝑃= Total expected number of crash due to SPF 

𝛼=Overdispersion parameter from SPF 

The weight factor is a function of model overdispersion.  This means that when 

data are largely overdispered, less weight is devoted to the predicted number of crashes 

from the SPF and the expected number of crashes is determined more based on the 

observed data. The expected number of crashes receives a larger weight from the 

predicted value of the SPF when the data has smaller overdispersion. 

The expected number of crashes in this step is due to the period before treatment.  

Then, these values are used to predict the after treatment number of crashes . 

The predicted number of crashes for the after treatment period, B, can then be 

determined as: (Eustace, Griffin and Hovey April 2010) 

𝐵 = 𝐶𝑖𝑦 × 𝑃𝐶𝑏          (18) 

Where 𝐶𝑖𝑦  is the normalized number of crash after the treatment as in Equation 

14, and 𝑃𝐶𝑏  is formulated as: 

𝑃𝐶𝑏 =
 𝐸𝐵𝑏𝑒𝑓𝑜𝑟𝑒

 𝐶𝑖𝑦𝑏𝑒𝑓𝑜𝑟𝑒
        (19) 
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Once the unbiased predicted number of crashes is estimated, the safety is 

evaluated by determining 𝛿 or 𝜃 , as defined in Section 3.   

3.5 Model Development 

3.5.1 Data Collection: 

From the total 768 signalized intersections in the City of Memphis, 56 full LED 

conversions and 712 partial conversions (red and green only) of signalized intersections 

have occurred since 2000.  To select intersections for this research, several factors were 

considered to reduce possible occurrence of various types of errors caused by 

dissimilarity of conditions among sites.  Consequently, intersections were selected from 

those that had full LED replacement where installation occurred at approximately the 

same time. As a result, 8 intersections were selected for the case study sample, while 2 

others were selected as comparison sites in which no LED replacement occurred during 

the study period.  General characteristics of these selected intersections are presented in 

Table 3.  
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Table 3. General characteristics of selected intersections. 

Treated Sites 

Intersection/ 

Approach 

Number of 

Lanes 

Lane Width 

(ft) 

Left Turn 

Lane 

Right Turn 

Lane 

Major Minor Major Minor Major Minor Major Minor 

E Raines Rd and S 

Mendenhall Rd 
2 3 3 2 12 12 1 1 1 1 1 0 0 1 

N Germantown 

Pkwy and Cordova 

Rd 

3 3 2 2 12 12 1 1 1 1 0 1 1 1 

N Germantown 

Pkwy and Trinity 

Rd 

3 3 2 2 12 12 2 1 2 1 1 1 0 1 

Poplar Ave and S 

Goodlett St 
3 3 2 2 9 12 1 1 1 1 0 0 0 0 

Winchester Rd and 

Riverdale Rd 
3 3 3 3 12 12 1 2 1 1 0 1 0 0 

N Highland St and 

Poplar Ave 
3 3 2 3 9 12 1 1 1 1 0 0 0 0 

Winchester Rd and 

Hickoryhill Rd 
3 3 3 3 12 12 2 2 1 1 0 0 0 0 

New Getwell Rd 

and E Shelby Dr 
3 3 2 2 12 12 1 1 1 1 0 0 0 1 

Comparison Sites 

Intersection/ 

Approach 

Number of 

Lanes 
Lane Width 

Left Turn 

Lane 

Right Turn 

Lane 

Major Minor Major Minor Major Minor Major Minor 

Cromwell Ave and 

S Perkins Rd 
3 2 1 1 12 12 1 1 1 1 0 0 0 1 

Knight Arnold Rd 

and Castleman St 
2 2 1 1 12 12 1 1 1 1 0 0 0 0 
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Data was gathered for each site for a time period containing the year of 

conversion itself, three years before the treatment and three years after the conversion 

took place.  This time period for the study includes seven years between 2000 to 2008, 

varying slightly for each site based on the year of installation.  Crash reports were 

obtained from the City of Memphis Engineering Department police crash reports archive 

and reviewed individually to gather the most related crash data for the purpose of this 

research, which were those that occurred at or near the intersection and specific crash 

types likely to be related to signal visibility.  Abdel et. al state that a default range 

distance from 50 feet to upwards of 500 feet is used by many state agencies to identify 

intersection related crashes (Abdel-Aty, Xuesong and Santos Dec 2009).  The City of 

Memphis Engineering Department uses 50 feet as a distance from the location of crash to 

the intersection to investigate required safety improvements for intersections.  However, 

in this study, crashes that occurred 100 feet away from the intersection or closer are 

included in the case sample.  In addition to the distance of the crashes from the 

intersections, crashes which took place at entrances of driveways were excluded as these 

are not likely due to a traffic signal‟s visibility.  Other data that was collected for this 

study include the AADT of the major and minor roads for each approach at all selected 

intersections.  These data were gathered from the Tennessee Department of 

Transportation (TDOT) traffic history website (Tennesse Department of Transportation 

n.d.).  Table 6 shows the summary of data collected for this project. The highlighted 

columns for treated intersections show year of LED replacement at each intersection, 

with two values reported for the number of crashes; the first one shows the number of 

crashes that occurred before the month of LED installation and the second number shows 
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that number of crashes occurring after the month of replacement.  There is no year of 

conversion for the last two intersections which are comparison sites.  Some AADT are 

also shown in red. The red indicates data that were not available on the TDOT website.  

To estimate these missing values, the rule from the HSM was applied. The HSM rule 

states, “The AADT‟s for years before the first year for which data are available are 

assumed to be equal to the AADT for that first year” (AASHTO 2010).  Table 4 and 

Table 5 show summary data for treated and comparison sites separately. 

Table 4: Statistical summary of data (treated intersections) 

 Mean Maximum Minimum 

Number of Crashes 43 79 9 

AADT Major 36150 68433 14681 

AADT Minor 21326 37178 9819 

 

Table 5: Statistical summary of data (comparison intersections) 

 Mean Maximum Minimum 

Number of Crashes 11 20 4 

AADT Major 22896 27162 18748 

AADT Minor 4369 5754 2843 

 

The sites were also selected to match as closely as possible in terms of land usage.  

An example of this can be seen in figure1 and figure 2.  A list of the intersections 

selected for study and comparison groups is shown in Table 6.    
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Table 6: Crash and AADT data for intersectios (treated and comparison), For each 

intersection, the first row indicates number of crashes, the second row shows AADT for 

the major approach and the third row presents AADT for the minor approch. 

Intersection\Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 

E Raines Rd & S 

Mendenhall Rd 
  10 10 9 4&12 11 10 13 

E Raines Rd   19331 17215 18539 19095 16964 14813 14681 

Mendenhall Rd   18358 17051 17562 18536 18344 16295 16303 

N Germantown 

Pkwy &Cordova 

Rd 

 38 46 44 39&8 42 47 48  

N Germantown 

Pkwy 
 42890 43187 44136 45460 44122 44751 45596  

Cordova Rd  14820 14820 14820 14820 14820 13878 14897  

N Germantown 

Pkwy & Trinity 

Rd 

41 49 40 20&33 53 56 48   

N Germantown 

Pkwy 
60903 59018 65205 68433 63839 64329 61727   

Trinity Rd 9819 10547 11292 12060 12292 12589 12843   

Poplar Ave & S 

Goodlett St 
 40 31 45 38 &12 57 37 28  

Poplar Ave  31969 31808 28179 30190 29615 30349 28379  

S Goodlett St  21677 23356 19647 24060 21661 20705 18346  

Winchester Rd & 

Riverdale Rd 
  78 64 54 

27&4

7 
58 79 48 

Winchester Rd   29188 29188 29188 29188 29188 32217 29723 

Riverdale Rd   38400 38408 39560 41779 34760 34670 32976 

S Highland St & 

Poplar Ave 
 57 51 49 14&36 45 37 34  

Poplar Ave  31969 31808 28179 30190 29615 30349 28379  

S Highland St  25190 25481 25092 26059 25432 22502 21954  

Winchester Rd 

&Hickory Hill Rd 
 56 41 50 21&31 46 48 55  

Winchester Rd  32172 33412 32068 32809 28005 29024 26155  

Hickory Hill Rd  34898 35950 33307 38317 34146 33994 32968  

E Shelby Dr 

&Getwell Rd  
 41 31 33 9&25 40 34 51  

E Shelby Dr  30217 30581 32458 33349 30883 32902 34687  

New Getwell Rd  15094 16782 16560 19080 18420 17967 19676  

S Perkins Rd & 

Cromwell Ave 
20 4 14 15 8 11 12 6 6 

Cromwell Ave 5720 5292 4718 4971 5485 5484 5456 4743 5754 

S Perkins Rd 26981 24432 27162 22351 24140 23556 24844 22744 23086 

Knigh Arnold Rd 

and Castleman St 
13 9 12 10 12 16 14 13 11 

Knight Arnold Rd 20582 20849 22835 23329 24802 22251 20297 19141 18748 

Castleman St 2843 3118 3408 3411 3513 3448 3688 3873 3712 
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Fig. 1. Visual aspects of treated intersections-from 

top to the bottom: Poplar Ave & S Highland St; 

Poplar Ave & S Goodlett St; E Raines Rd & 

Mendenhall Rd. 
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Fig. 1-continued. Visual aspects of treated 

intersections-from top to the bottom: N 

Germantown Pkwy & Cordova Rd; N Germantown 

Pkwy & Trinity Rd; Winchester Rd & Riverdale Rd 
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Fig. 1-continued. Visual aspects of treated 

intersections-from top to the bottom: Winchester Rd 

& Hickory Hill Rd; E Shelby Dr &Getwell Rd.  
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Fig 2. Visual aspects of comparison intersections-

from top to the bottom: S Perkins Rd & Cromwell 

Ave; Knight Arnold Rd & Castleman St. 
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3.5.2 Comparison group level of fitness 

To evaluate how well the comparison sites match selected study sites, as it is 

outlined in Section 3.4, the odds-ratio was determined.  The following ratio is calculated 

for each year at each intersection. 

𝑅𝑖𝑡 /𝑅𝑖𝑡−1

𝐶𝑖𝑡 /𝐶𝑖𝑡−1
         (20) 

Where, 𝑅𝑖𝑡  is the number of crashes in year t at intersection i of under studies sites 

before the treatment, and 𝐶𝑖𝑡  is the number of crashes in year t at intersection i of 

comparison group.  For each intersection, two years before the treatment year were 

considered to calculate the odds-ratio with the related year of comparison sites.  The 

result is shown in figure 3.  There are sixteen different values for odds-ratio, which show 

two numbers for each site continuously.  As explained in the previous section, the closer 

this ratio to 1 is, the more similar the treated and comparison sites are.  In general, the 

comparison sites seem to have an appropriate level of reliability. 

 

Fig. 3. Comparison group odds-ratio. 
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3.5.3 SPF development 

Data collected following methodology from the previous sections was analyzed 

using the GENMOD procedure of SAS 9.2 statistical software to create the SPF.  The 

data includes observations prior to the treatment period for both treated and comparison 

sites.  For treated sites, data includes the year of conversion before the month of the 

treatment in the „before treatment‟ period by applying a weighting factor to the AADT 

value based on the portion of the year that is considered „before treatment‟.  In this case, 

there are 4 inputs for the before treatment period for each site (3 years of before treatment 

and a year of conversion for months before conversion).  As mentioned before, number of 

crashes is the dependent variable, and AADT of the major and minor roads are 

considered as explanatory variables.  The error structure distribution, as discussed 

previously, is NB. Once again, these assumptions are based on the fact that crashes are 

random and rare events compared to all transportation movements.  This is illustrated in 

figure 4 where the range of the number of crashes is related to the total AADT for each 

site. 
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Fig. 4. Randomness Characteristic of Number of Crashes. 

3.5.4 SAS 9.2 GENMOD Procedure 

The SAS GENMOD procedure develops a generalized linear model by allowing 

selection of an error structure distribution function, which in this case is NB, and 

selection of a link function which represents the functional form of the regression model.  

For NB error structure, the link function is log by default.  This link function relates the 

dependent and independent variables in the following format (SAS 9.2 2010): 

𝐸(𝑌) = eβ0+β1X1+β2X2…+βnXn       (21) 
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Where 𝑌 is an independent variable, 𝑋1,𝑋2,…𝑋𝑛 are explanatory variables, and  

𝛽0,𝛽1,…𝛽𝑛 are estimated parameters.  In this case, since there are two independent 

variables (AADTmajor and AADTminor), the mathematical function is: 

𝐸(𝑌) = eβ0+β1X1+β2X2       (22) 

Where 𝐸 𝑌  is the expected number of crashes, 𝑋1 and 𝑋2 are regarding to major 

and minor AADT, and 𝛽0,𝛽1,𝛽2 are estimated parameters.  Since the desired SPF 

format is as shown in Equations, 21 and 22 the GENMOD procedure is applied using 

ln(AADTmajor) and ln(AADTminor).  An iterative fitting process is applied to estimate 

the model parameters (regression coefficients and overdispersion parameter related to the 

NB distribution) with the maximum likelihood method through an iterative fitting 

process.  The maximum likelihood method determines the values for unknown 

parameters that produced the observed data through the model with the maximum 

probability based on the selected probability distribution of the dependent variable. 

3.5.5 EB approach 

In the next step, the EB approach is applied to address the issue related to the 

regression-to-the-mean bias as stated in Section 3.4.  This phenomenon is presented in 

figure 5.  The EB weight is determined based on Equation 17.  These values are then 

applied using Equation 16 to determine the number of crashes expected for the after 

treatment period for comparison with the observed number of crashes to evaluate the 

safety implications. 
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Fig. 5. Regression-to-the-mean of number of crashes 

3.5.6 Safety Evaluation 

To evaluate the safety, the same criterion was applied as in the Eustace et al. 

study, to make the comparison of the results more straightforward.  The difference 

between the expected number of crashes after treatment and the observed number of 

crashes is determined by Equation 23 (Eustace, Griffin and Hovey April 2010). 

∆ 𝑐𝑟𝑎𝑠𝑒𝑠(%) = (1 − 𝜃𝑢) × 100      (23) 

Where 𝜃𝑢  is the unbiased estimate of 𝜃and is determined by (Eustace, Griffin and 

Hovey April 2010): 
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𝜃𝑢 =
𝜃

1+
 𝑉𝑎𝑟 (𝐵)

( 𝐵)2

         (24) 

The corresponding variance is estimated following NCHRP 572 (Rodegerdts, et 

al. 2007): 

𝑉𝑎𝑟 𝜃𝑢 = 𝜃𝑢
2

𝑉𝑎𝑟  𝐴

 𝐴
2 +

𝑉𝑎𝑟  𝐵

 𝐵
2

(1+
𝑉𝑎𝑟  𝐵

 𝐵
)2

        (25) 

The terms in the above formula are determined as follows (Eustace, Griffin and 

Hovey April 2010): 

𝜃 =
 𝐴

 𝐵
         (26)  

𝑉𝑎𝑟 𝐵 = 𝐶𝑦
2 × 𝑃𝐶𝑏         (27)  

𝑉𝑎𝑟 𝑃𝐶𝑏 =
 𝑣𝑎𝑟 (𝐸𝐵)𝑏𝑒𝑓𝑜𝑟𝑒

( 𝐶𝑦𝑏𝑒𝑓𝑜𝑟𝑒 )2        (28)  

Where B is the predicted number of crashes after the treatment if no treatment had 

been applied and A is the observed number of crashes in the after period.  In addition, the 

variance of A, the observed number of crashes after the treatment, in Equation 25 is 

estimated based on Equation 13.  It is noteworthy to mention that the variance of the 

summation of A and B are the overall summation of variances through all intersections 

for each single year (Rodegerdts, et al. 2007). 
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CHAPTER 4  

RESULTS AND ANALYSIS 

4.1 SPF Results 

Parameters of the SPF were estimated through the GENMOD procedure in SAS 

9.2 the resulting output table of SAS is shown in Table 7. 

Table 7: SAS Output of Estimated Parameters for SPF 

Parameter Estimate Standard Error 95% Confidence Limits 𝒁 P >  𝒁  

Intercept -9.2439 1.8686 -12.9062 -5.5816 -4.95 <0.0001 

AADT Major 0.7119 0.2349 0.2516 1.1722 3.03 0.0024 

AADT Minor 0.5568 0.1115 0.3383 0.7753 4.99 <0.0001 

Dispersion 0.0734 0.0268 0.0359 0.1500   

 

As a result the SPF is written as the following: 

𝑃 = 𝑒−9.2439 × 𝐴𝐴𝐷𝑇𝑚𝑎𝑗𝑜𝑟
0.7119 × 𝐴𝐴𝐷𝑇𝑚𝑖𝑛𝑜𝑟

0.5568
   (29)  

4.2 Evaluating the fit of the model 

The standard error columns in the output table are one of the criteria that are used 

to measure the error in the prediction procedure.  The value of corresponding standard 

errors of estimated parameters indicates the amount of variability of observed data from 
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the predicted values due to the SPF in each site.  Therefore, the lower this value 

compared to the related estimated value is, the better the model fits the data.  Considering 

the output table, these values seem to be reasonably acceptable compared to the estimated 

values for each parameter, as most are within ±30% of the estimated value, which 

compares well with other published research.  Another way to evaluate how well the 

model fits the data is through computing confidence limits.  The smaller the intervals are, 

the less this value varies among various sites and therefore the better the model fits the 

data.  Again the confidence limits indicate an acceptable evaluation of fitness of the 

model.  The last value that is used to evaluate the goodness of fit of the model is the p 

value (the last column of output table).  The p value is determined based on the type of 

the test that is used to evaluate the goodness of fit of the model.  In the GENMOD 

procedure, the z-test was applied, and the resulting p-values indicate a very significant 

relationship between the dependent and explanatory variables.  P-values less than 0.05 

are typically used to determine significance, which referring to the output table; p-values 

are significantly small and verify that the SPF appropriately fits the data.  In addition, the 

overdispersion parameter also indicated the statistical reliability of the SPF, as values for 

the overdipersion parameter close to zero indicate statistical reliability of the SPF 

(FHWA 2010). 

4.3 EB Result 

The SPF and observed number of crashes for the period prior to treatment were 

combined to conduct the EB procedure as explained in the previous section.  Applying 

Equation 29, the projected number of crashes for each site in each year is determined.  

Using Equations 17 to 19, the predicted number of accidents due to the EB procedure is 
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estimated.  The result for each site is shown in Table 8.  The estimated parameters and 

final safety evaluation are also presented in Table 9.  The EB weight in Table 9 indicates 

the contribution of the observed data to the predicted value.  The smaller weight means 

that the predicted number of accidents was determined more due to the observed data.  

And finally, the unbiased safety estimation shows a 47.3% increase in the number 

of crashes (negative reduction in expected crashes), which means a reduction in terms of 

safety based on the data analyzed. 
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Table 8: Observed and Predicted number of crashes for each intersection (after treatment 

period). 

Intersection Year 

Observed 

Number of 

crashes (A) 

Predicted Number 

of Crashes due to 

SPF 

Predicted number 

of Crashes Due to 

EB (B) 

E Raines Rd and S 

Mendenhall Rd 

2005 12 14 17 

2006 11 23 28 

2007 10 20 23 

2008 13 20 23 

N Germantown 

Pkwy and Cordova 

Rd 

2004 8 5 4 

2005 42 41 31 

2006 47 40 30 

2007 48 42 32 

N Germantown 

Pkwy and Trinity 

Rd 

2003 33 28 21 

2004 53 48 35 

2005 56 49 36 

2006 48 48 35 

Poplar Ave and S 

Goodlett St 

2004 12 5 4 

2005 57 38 29 

2006 37 38 28 

2007 28 34 25 
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Table 8-continued: Observed and predicted number of crashes for each intersection (after 

treatment period). 

Intersection Year 

Observed 

Number of 

crashes (A) 

Predicted Number 

of Crashes due to 

SPF 

Predicted number 

of Crashes Due to 

EB (B) 

Winchester Rd 

and Hickoryhill 

Rd 

2004 47 39 21 

2005 58 51 28 

2006 79 53 30 

2007 48 49 27 

New Gatewell Rd 

and E Shelby Dr 

2004 36 29 20 

2005 45 42 29 

2006 37 40 27 

2007 34 37 26 

Winchester Rd 

and Riverdale Rd 

2005 31 16 9 

2006 46 49 28 

2007 48 50 28 

2008 55 46 26 

N Highland St  

and Poplar Ave 

2004 25 26 25 

2005 40 37 34 

2006 34 37 35 

2007 51 41 39 
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Table 9: Safety Analysis Results 

Parameter Value 

EB weight 0.005 

Total observed number of crashes after LED replacement 1229 

Total predicted number of crashes after LED replacement due to EB procedure 834 

Standard Deviation 4.15 

Unbiased θ 1.47 

Standard Deviation 0.042 

Total crash reduction (%) -47.3 
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CHAPTER 5  

DISCUSSION 

The purpose of this research was to evaluate the safety effect of LED module 

replacement at signalized intersections by conducting a widely accepted before-after 

analysis procedure.  The result shows an increase in the number of crashes after the 

installation of LED modulus in traffic signals at study site locations, which corresponds 

to a reduction in safety.  The procedure was applied in a similar way as the study that was 

conducted by Eustace et al. since that was the only research that has been conducted to 

date to evaluate the safety effect of LEDs.  The same number of sample size (both treated 

sites and comparison group) in the current study was used for the other published 

research.  By using a similar procedure, the comparison of results is more transparent and 

a more reliable general conclusion due to this retrofit can be achieved. 

The result of Eustace et al. also shows an increase in the number of crashes after 

LED traffic signal retrofitted by 70.66%.  Although both studies indicate a reduction in 

safety, the Ohio study yielded a significantly larger increase in crashes after LED 

installation. This difference might have been caused due to the inability of LED lights to 

melt snow as mentioned in the Dinesh study (Dinesh 2010), since Ohio has more 

significant snow events than Memphis, TN.  This issue could be evaluated if data had 

been categorized in a way that the weather conditions for each crash were available.  One 

other factor that might affect the visibility of LED signal lights could be evaluated, which 

is the impact of sunlight.  In other words, LED lights could be less visible when there is 

direct sunlight on them.  It could be also more beneficial to evaluate the performance of 

LEDs in other weather conditions such as foggy, cloudy, and rainy conditions. In general, 
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having more details about factors that may contribute to crashes could lead to more 

accurate results.  

The procedure that has been applied in this project has some limitations, which 

are mainly related to the small sample size.  One main reason for not collecting a larger 

dataset was the lack of an easily accessible crash database for the City of Memphis.  The 

data collection process is complex and lengthy in order to obtain essential information. 

Working with a larger dataset would definitely lead to a more reliable result that would 

make a more general statement about the safety impact of LED conversions more 

defensible.  If sufficient data were available, a full Bayesian approach could be applied 

which may yield more reliable results.  Recalling Table 1 from the literature review, there 

are many different procedures that have been developed by researchers to get the most 

reliable estimation in before-after road safety studies, which could have been conducted 

if more data was available. 
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CHAPTER 6  

CONCLUSION 

LED traffic signal retrofits has been conducted widespread due to the huge energy 

efficiency.  The purpose of this research was to evaluate the safety impact of this 

nationwide replacement at signalized intersection which has not been considered as 

much.  A before-after crash analysis was applied to evaluate the safety.  The result was 

based on a small sample size and did not take account for the impact of crash types and 

weather conditions.  However; the SPF created in this project was recognized to properly 

fit the data. 

Regardless of all limitations, the results from this study and that conducted for 

Ohio (Eustace, Griffin and Hovey April 2010) indicated a safety decrease after LED 

conversion at signalized intersections (with a significantly larger decrease in Ohio).  

Since this conversion has been officially legislated due to the huge energy efficiency, this 

raises significant questions concerning whether saving energy would be worth the 

apparent decrease in safety.  It is essential that further research be conducted to determine 

conclusively if LED retrofits are contributing to significantly increased crash rates at 

intersections where they have been installed. 

6.1 Future Research 

As it was mentioned before, the HSM also provided a comprehensive 

methodology to create the most reliable SPF considering more factors such as pedestrian 

volumes, geometric classification of the intersection, and etc.  Since there was a 



61 

 

shortcoming in collecting data, not all recommended factors by FHWA were considered 

in this study, and future research could include a more robust analysis. 

Because of the potential safety impacts of these massive retrofit projects in all 

states, further studies with larger sample sizes are warranted to lead to a more generalized 

and defensible conclusion about the safety impact of LED traffic signals on signalized 

intersections.  In addition, the specific factors (i.e. weather conditions, tethering (is it 

required now that LEDs be tethered to keep them from swaying, time since installation 

(due to gradual fading of LED bulbs)) that may contribute to difficulties in visibility of 

LED signals should be investigated to determine their impact on intersection safety.   

Other studies are also recommended in terms of economical evaluation to 

investigate whether energy savings outweigh the cost of increased crash risk. 
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