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ABSTRACT 

Lester, Deranda Brewer. Ph.D. The University of Memphis. May 2011. Neuronal 

Pathways and Receptor Mechanisms Mediating Stimulation-Evoked Striatal Dopamine 

Release: Relevance to Deep Brain Stimulation as a Treatment for Parkinson’s Disease. 

Major Professor: Charles D. Blaha, Ph.D. 

 

Dopaminergic neurons of the nigrostriatal dopaminergic system, projecting from 

the substantia nigra compacta (SNc) to the striatum, serve a critical role in mediating 

voluntary motor control.  Parkinson’s disease is a neurological disorder characterized by 

progressive degeneration of these dopamine neurons, which leads to dopaminergic 

deficiencies in the striatum.  Reduced striatal dopamine transmission is thought to 

increase inhibitory basal ganglia output to the thalamus and subsequently reduce 

excitation of cortical motor areas, resulting in impaired motor functioning.  Despite 

unclear mechanisms, deep brain stimulation (DBS) is an established neurosurgical 

approach for effectively treating the parkinsonian motor symptoms.  Currently the 

subthalamic nucleus (STN) is the most commonly targeted site in these procedures, while 

the pedunculopontine tegmental nucleus (PPT) is emerging as a therapeutically beneficial 

target when stimulated alone or in combination with the STN.  Thus, the connectivity 

between these nuclei and the nigrostriatal dopamine system is the focus of the present 

paper, with the overarching hypothesis being that the therapeutic benefits of STN/PPT 

DBS are mediated, at least in part, by activation of surviving nigrostriatal neurons, 

resulting in striatal dopamine release.  The present study investigated several neural 

pathways and receptor mechanisms involved in mediating STN or PPT stimulation-

evoked striatal dopamine release using in vivo fixed potential amperometry with carbon-

fiber recording microelectrodes in the striatum of urethane-anesthetized mice.  Overall, 

results indicate that STN stimulation evokes striatal dopamine release directly via 
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excitatory glutamatergic inputs to SNc dopamine cells as well as indirectly by activating 

excitatory glutamatergic and cholinergic STN-PPT-SNc pathways, while PPT stimulation 

evokes striatal dopamine release directly by activating glutamatergic and cholinergic 

pathways to SNc dopamine cells as well as indirectly via activation of glutamatergic and 

cholinergic PPT-STN-SNc projections.  Understanding the influence of the STN and PPT 

on SNc dopamine cell activity and output of the basal ganglia-thalamocortical motor 

circuit may lead to novel pharmaceutical therapies as well as a better understanding of the 

underlying mechanisms of clinical DBS, which could then improve the therapeutic 

efficacy of treatments for Parkinson’s disease. 
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PREFACE 

This dissertation has been formatted to allow for the separate publication of Chapter 5 

and Chapter 6. As such, this dissertation and reference list are written following the 

Neuroscience style guidelines. 
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Chapter 1. Overview of the Nigrostriatal Dopamine System 

 

The nigrostriatal dopaminergic system projects predominantly from the substantia 

nigra compacta (SNc) of the midbrain to the caudate putamen (striatum in the rat) of the 

forebrain (Albanese and Minciacchi, 1983).  Stimulation of the SNc elicits fast excitatory 

responses in striatal neurons (Plenz and Kitai, 1996), while lesions of the SNc reduce 

basal levels of extracellular striatal dopamine concentrations (Dentresangle et al., 2001).  

In addition, striatal extracellular dopamine concentration is positively correlated with the 

degree of dopamine cell loss in the SNc (Altar et al., 1987).  Dopamine transmission in 

the striatum is most commonly associated with voluntary movements and has been linked 

to the selection and initiation of contextually appropriate motor patterns (Hauber, 1998; 

Redgrave et al., 1999; Wickens, 1990).  Reduced dopamine in the striatum is associated 

with motor symptoms of Parkinson’s disease such as difficulty initiating and terminating 

movements, gait impairments, and muscular rigidity (Knott et al., 1999; Lev et al., 2003; 

Wolters and Francot, 1998), whereas excess dopamine release in the striatum can lead to 

repetitive motoric behaviors such as stereotypy, with the degree of intensity of 

stereotypical behaviors (e.g. body rearing, head bobbing, and gnawing) being positively 

correlated with striatal dopamine release (Sharp et al., 1987).  

 

Physiology of the Basal Ganglia 

The basal ganglia are comprised of the striatum, substantia nigra, subthalamic 

nucleus (STN), and globus pallidus. Anatomists have made further distinctions based on 

structure and function. The substantia nigra has been divided into the SNc and substantia 
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nigra reticulata (SNr), while the globus pallidus comprises lateral segments, namely the 

globus pallidus externus (GPe) and the globus pallidus internus (GPi).  The putative role 

of the basal ganglia is to synthesize multiple sources of information from sensual, 

emotional, associative brain areas in order to produce a contextually appropriate response 

(Bolam et al., 2000).  The major input station for the basal ganglia is the striatum, with 

the majority of neurons within this area being spiny γ-aminobutyric acid (GABA) 

containing projection neurons, 2% of striatal neurons being large cholinergic 

interneurons, and the rest being aspiny GABAergic interneurons (Hauber, 1998; Parent 

and Hazrati, 1995).  The spiny GABAergic neurons are the main targets for most 

projections to the striatum (Parent and Hazrati, 1995), with dopamine receptor subtypes 

of these cells being both dopamine D1-like (D1 and D5) and D2-like (D2, D3, and D4) 

receptors (Wooten, 2001).  As illustrated in Fig. 1, the neurons of the striatum project to 

other areas within the basal ganglia complex, the GPi and the SNr, via two pathways, a 

direct (monosynaptic) connection and an indirect pathway through the external segment 

of the globus pallidus (GPe) and the subthalamic nucleus (STN).  Striatal neurons in the 

direct pathway utilize D1 receptors, whereas those in the indirect pathway utilize D2 

receptors (Galvan and Wichmann, 2008; Gerfen et al., 1990). Activation of D1 receptors 

stimulates adenylate cyclase activity, thus activating the GABAergic medium spiny 

output neurons, whereas activation of D2 receptors inhibits adenylate cyclase, thus 

inhibiting GABAergic output neurons (Wooten, 2001).  Therefore, the direct (via D1) 

and indirect (via D2) pathways have opposing actions, but may reach the same net 

outcome of activating motor regions of the cortex. For example, activation of D1 

receptors in the direct striatal GABAergic pathway leads to inhibition of GPi/SNr 
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inhibitory GABAergic projections to the thalamus, subsequently increasing activity in the 

thalamus that, in turn, excites motor areas in the cortex (Gerfen et al., 1990; Mink, 1996; 

Wooten, 2001).  Alternatively, activation of D2 receptors in the indirect pathway inhibits 

striatal inhibitory GABAergic neurons, resulting in disinhibition (excitation) of GPe 

inhibitory GABAergic neurons that project to the STN.  As a consequence, decreased 

activity of the STN excitatory glutamatergic neurons that innervate the GPi/SNr, GPe, 

and SNc leads to a reduced inhibitory drive of these nuclei to the thalamus, thereby 

indirectly increasing excitation of the motor areas in the cortex (Gerfen et al., 1990; 

Mink, 1996; Wooten, 2001).  In sum, the net effect of striatal dopamine release from the 

nigrostriatal pathway increases thalamocortical activity via direct or indirect reduction of 

GPi/SNr activity consequently facilitating voluntary movements (Gerfen et al., 1990).  
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Fig. 1. Simplified thalamocortical basal ganglia circuitry depicting the innervation of the 

striatum by the nigrostriatal dopaminergic system and its excitatory and inhibitory 

influence on the direct (via D1 receptors) and indirect (via D2 receptors) GABAergic 

striatal output pathways to the globus pallidus internus/substantia nigra reticulata 

(GPi/SNr).  The glutamatergic and cholinergic neurons of the pedunculopontine 

tegmental nucleus (PPT) connect with the basal ganglia via excitatory projections to the 

subthalamic nucleus (STN), substantia nigra compacta (SNc), and GPi/SNr.  ACh: 

acetylcholine; DA: dopamine; GABA: γ-aminobutyric acid; Glu: glutamate; GPe: globus 

pallidus externus; Thal: thalamus. 
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STN and PPT Connectivity and Modulation of Striatal Dopamine Release 

The STN comprises a relatively small bilateral pair of brain nuclei, located in the 

diencephalon close to the dorsal forebrain bundle (Hauber, 1998; Lee et al., 2006).  The 

majority of STN neurons are projection neurons which are glutamatergic in nature (Albin 

et al., 1989; Smith and Parent, 1988; Van der Kooy and Hattori, 1980).  The STN 

projects to many areas of the basal ganglia, with high amounts of collateralization, 

including the globus pallidus, SNr, and the SNc (Deniau et al., 1978; Hauber, 1998).  

These connections, specifically the direct excitatory efferent to the SNc, place the STN in 

a critical position to regulate dopamine activity in the striatum (Groenewegen and 

Berendse, 1990; Hammond et al., 1978; Kita and Kitai, 1987).  The STN also projects to 

the pedunculopontine tegmental nucleus (PPT), offering an alternate route of mediating 

activity of the nigrostriatal dopamine system via the PPT’s connectivity with the basal 

ganglia (Groenewegen and Berendse, 1990; Morrizumi and Hattori, 1992).  The PPT, 

located in the mesopontine region of the hindbrain, contains a heterogeneous population 

of cholinergic and glutamatergic neurons.  PPT projections to the STN, GPi, SNc, cortex, 

and thalamus have been identified, with the densest of these projections going to the SNc 

and STN (Charara et al., 1996; Clarke et al., 1997; Lee et al., 2000; Pahapill and Lozano, 

2000). This prompts interest in the question of exactly how the STN and PPT may 

interact to differentially modulate nigrostriatal dopaminergic neurotransmission given 

their extensive interconnectivity and high degree of collateralization with many important 

nigrostriatal related structures. 

 Research supports a contribution of the STN in modulating functional activity of 

the nigrostriatal dopamine system. Stimulation of the STN has been shown to alter 
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neuronal activity within the SNc of rodents generating both excitatory and inhibitory 

postsynaptic potentials (Lee et al., 2004; Nakanishi et al., 1987) and increased firing of 

SNc neurons (Benazzou et al., 2000; Hammond et al., 1978; Iribe et al., 1999).   

Electrical stimulation of the STN has also been shown to increase dopamine extracellular 

levels in the striatum (Lee et al., 2006).  Pharmacological activation via microinfusion of 

the GABA antagonist bicuculline into the STN produced enhancements in not only STN 

neuronal firing, but also in SNc and globus pallidus neuron activity (Chergui et al., 1994; 

Robledo and Feger, 1990).  Intra-STN infusion of kynurenate, which non-selectively 

antagonizes ionotropic glutamate receptors, attenuates spontaneous activity of SNc 

neurons (Robledo and Feger, 1990).  Most of the aforementioned studies utilized rodents; 

however, changes in STN activity have also been shown to significantly affect discharge 

patterns of SNc neurons and striatal dopamine release similarly in primates (Charara et 

al., 1996; Futami et al., 1995).  However, the monosynaptic pathway between the STN 

and SNc has shown to be sparse in primates compared to rodents (Sato et al., 2000; Smith 

et al., 1990). Thus, changes in SNc discharge patterns following pharmacological 

stimulation and inhibition of the STN in primates have been suggested to be mediated 

primarily by excitatory SNc afferents from the PPT (Charara et al., 1996; Futami et al., 

1995).  The STN and PPT are reciprocally connected with excitatory projections (Futami 

et al., 1995; Lee et al., 2000), which have been shown to be both cholinergic and 

glutamatergic from the PPT to the STN (Moon-Edley and Graybiel, 1983; Oakman et al., 

1999).  In vivo electrochemical studies have previously shown that electrical and 

chemical stimulation of the PPT enhances dopamine efflux in the striatum (Forster and 

Blaha, 2003; Miller and Blaha, 2004); thus, stimulation of the STN may be increasing 
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discharge patterns of SNc dopaminergic neurons and generating striatal dopamine release 

indirectly through activation of the PPT.   

 Evidence illustrating the functional importance of the PPT supports a critical 

modulatory role of this brain region in the modulation of nigrostriatal dopaminergic 

activity.  As noted above, excitatory glutamatergic and cholinergic neuronal cells in the 

PPT directly project to dopamine-containing cell bodies in the SNc (Blaha and Winn, 

1993; Forster and Blaha, 2003; Moon-Edley and Graybiel, 1983; Oakman et al., 1999).  

Pharmacological activation of the PPT with ionotropic glutamate receptor agonists 

increases both the firing rate of SNc dopamine neurons (Clarke et al., 1987) and 

dopamine metabolism within the striatum as measured by in vivo voltammetry 

(Hernandez-Lopez et al., 1992).  Electrical stimulation of the PPT has also been shown to 

activate STN neurons via cholinergic and glutamatergic projections (Hammond et al., 

1983; Woolf and Butcher, 1986).  Therefore, in addition to direct activational inputs to 

SNc dopaminergic cells, the PPT may also modulate nigrostriatal dopamine activity in an 

indirect manner, through PPT glutamatergic and cholinergic inputs to STN glutamatergic 

neurons that, in turn, innervate dopamine-containing cells in the SNc (Bevan and Bolam, 

1995; Lee et al., 2000).  An understanding of how these brain regions functionally 

interact to mediate nigrostriatal dopamine release is essential in enhancing our knowledge 

on how these pathways normally function to affect sensory-motor gating in the striatum.  

Such an understanding will give insight and greater clarity into neurological disorders 

such as Parkinson’s disease which arise as a result of abnormal functioning of the 

nigrostriatal dopamine system. 
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Behavioral Correlates of Striatal Dopamine Release 

Dopamine transmission in the striatum is most commonly associated with normal 

voluntary ballistic movements (Wickens, 1990).  Increasing striatal dopamine levels with 

psychostimulants such as the amphetamines in animals leads to the production of 

repetitive and contextually redundant stereotypic behaviors, which includes behaviors 

such as repetitive rocking, self-grooming, sniffing, and gnawing.  Indeed, early in vivo 

microdialysis studies have demonstrated that the presentation of these behaviors is 

correlated with abnormally high levels of striatal dopamine release (Sharp et al., 1987).  

Furthermore, stereotypy may be induced and subsequently attenuated by microinfusions 

of dopamine receptor agonists and antagonists, respectively, into the striatum (Canales 

and Graybiel, 2000; Presti et al., 2003).  It is thought that dopaminergic receptor agonists 

and antagonists infused in the striatum may enhance or reduce GABAergic medium spiny 

neurons activity, respectively, ultimately resulting in an enhancement or reduction in 

communication to motor cortical areas.  Thus, excessive striatal dopamine levels are 

thought to alter the output of striatal projection neurons (via the direct or indirect output 

pathways) leading to reduced activity of the GPi/SNr, as seen in hyperkinetic disorders 

such as Huntington’s disease (Mink, 1996).  

 In contrast, marked reduction or absence of dopamine in the striatum leads to an 

overall increase in activity of the GPi/SNr, which in turn reduces neurotransmission in 

motor cortical areas and impairs motor control (Mink, 1996; Wooten, 2001).   Animals 

treated with 6-hydroxydopamine (6-OHDA) or 1-methyl-4-phenyl-1,2,3,6-

tetrahydropyridine (MPTP), which are commonly used chemicals for inducing 

degeneration of nigrostriatal dopamine neurons,  demonstrate significantly low levels of 
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locomotion as well as muscular rigidity, slowness of movement, and abnormal posture 

(Langston et al., 1984; Truong et al., 2006).  Thus, these animal models mimic the 

neuropathology as well as behavioral symptomology seen in Parkinson’s disease.  In 

clinical cases of Parkinson’s disease, as well as 6-OHDA-lesioned rats and MPTP-

lesioned monkeys, administration of indirect dopamine agonists such as levodopa, 

dramatically ameliorates motor symptoms (Konitsiotis et al., 2000; Murer et al., 1998; 

Olanow et al., 2006).  Furthermore, chronic treatment or acute high doses of indirect 

dopamine agonists such as levodopa can induce dyskinesias, which can be eliminated by 

either lowering the levodopa dose or pharmacologically reducing activity of SNc 

dopamine neurons (Obeso et al., 2002).  In sum, the ultimate effect of dopamine release 

in the striatum, arising from SNc dopamine neurons is to facilitate movement and 

regulate motor patterns.   
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Chapter 2. Parkinson’s Disease 

 

Motor Symptoms and Neuropathology of Parkinson’s Disease 

Parkinson’s disease is a neurological disorder affecting up to 3 percent of people 

aged 65 and over worldwide (Lang and Lozano, 1998; Zhang and Roman, 1993).  Mean 

age of onset is now thought to be in the early-to-mid 60s, but has in some cases occurred 

as early as mid 40s (Inzelberg et al., 2002).  Parkinson’s disease is characterized 

primarily by motor symptoms that include bradykinesia (slowness in movement), tremor, 

rigidity, postural instability, and gait impairments, with nonmotor symptoms such as 

sleep disturbances and cognitive impairment appearing also (Jankovic, 2008).  The 

principal pathology associated with Parkinson’s disease is the degeneration of dopamine-

containing neurons in the substantia nigra compacta (SNc), a critical component of the 

nigrostriatal dopamine system (Wolters and Francot, 1998).  Degeneration of SNc 

dopamine neurons subsequently results in dopamine deficiencies within the caudate-

putamen (striatum) of the forebrain (Lev et al., 2003).  Reduced dopamine levels in the 

striatum disrupts the normal functioning of the basal ganglia-thalamocortical motor 

circuit, which plays a critical role in regulating motor activity (Knott et al., 1999; Lev et 

al., 2003; Wolters and Francot, 1998).  Specifically, a reduction in striatal dopaminergic 

transmission, as in the parkinsonian condition, is thought to increase inhibitory output 

from the basal ganglia to the thalamus leading to a reduction in excitation of primary 

motor areas of the cortex, resulting in impaired motor functioning.  Fig. 1 depicts changes 

in the overall activity of basal ganglia-thalamocortical motor circuit related to 

Parkinson’s disease (modified from Galvan and Wichmann, 2008).   In Parkinson’s 
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disease, the degeneration of SNc dopamine neurons and their projections to the striatum 

is a slowly evolving process occurring over decades, a very heinous aspect of this 

disease.  SNc projections to the areas of the striatum related to motor function degenerate 

earlier than projections to associative or limbic portions of the striatum; therefore, the 

motor symptoms of Parkinson’s disease develop and are often detectable before the non-

motor symptoms.  Clinical motor symptoms are observed with at least 80% decrease in 

striatal dopamine content and at least 50% or greater loss of dopaminergic neurons in the 

SNc (Fearnley and Lees, 1991; Samii et al., 2004).   

 

 

 

Fig. 1. Simplified depiction of Parkinsonism-related changes in overall activity of the 

thalamocortical basal ganglia motor circuitry.  Blue arrows indicate dopaminergic 

projections.  Red arrows indicate excitatory glutamatergic projections, and black arrows 

indicate inhibitory GABAergic projections.  The thickness of the arrows corresponds to 

their presumed activity; such that the thicker lines indicate more activation, and the 
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dotted lines indicate less activation. GPe: globus pallidus externus; GPi: globus pallidus 

internus; SNc: substantia nigra compacta; SNr: substantia nigra reticulata; STN: 

subthalamic nucleus. 

 

 

Evidence implicating nigrostriatal dysfunction in Parkinson’s disease arises from 

a number of sources including postmortem brain analysis and functional imaging 

techniques.  Post mortem analysis of Parkinsonian brains have demonstrated a marked 

degeneration of dopamine-containing cells in the SNc, as well as reduced expression of 

dopamine transporters and synaptic vesicle amine transporter gene expression (Fearnley 

and Lees, 1991; Knott et al., 1999; Zweig et al., 1989).  Interestingly research also 

demonstrates significant reductions in neurons within the pedunculopontine tegmental 

nucleus (PPT), a hindbrain region which as discussed in Chapter 1 is known to critically 

contribute to the functioning of the nigrostriatal dopamine system via its glutamatergic 

and cholinergic projections to the SNc (Blaha and Winn, 1993; Chapman et al., 1997; 

Jellinger, 1988; Zweig et al., 1989).  Additionally, significant loss of neurons within the 

PPT has also been found to correlate with the extent of neuronal loss of dopamine cells in 

the SNc (Zweig et al., 1989).  Structural magnetic resonance imaging (MRI) studies have 

noted decreased width of the SNc in Parkinson’s patients (Duguid et al., 1986; 

Hutchinson and Raff, 2000), and as expected, volumetric MRI analysis of parkinsonian 

brains have shown diminished volumes in subcortical nuclei including the striatum 

(Lisanby et al., 1993; Oneill et al., 2002).  Functional neuroimaging is mainly used 

experimentally but has become useful in clinical trials aimed at measuring the 
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progression of Parkinson’s disease (Whone et al., 2003).  As measured by positron 

emission tomography (PET), Parkinson’s disease is characterized by decreased striatal 6-

[
18

F]-fluoro-L-dopa (F-DOPA) uptake (Vingerhoets et al., 1994), which is highly 

correlated with reduced dopamine cell counts measured in post mortem brains (Snow et 

al., 1993). 

 

Animal Models of Parkinson’s Disease 

Animal models of Parkinson’s disease have also yielded strong supporting 

evidence for a neuropathology of the nigrostriatal dopamine system in this disorder.  

Studies that have selectively lesioned components of the nigrostriatal dopamine system 

(e.g. SNc, striatum) through the application of specific neurotoxins, one of the most 

common being the catecholamine neurotoxin 6-hydroxydopamine (6-OHDA), have 

reported close approximations of the extent of the neurodegeneration seen in Parkinson’s 

disease (Cousins and Salamone, 1996; Deumans et al., 2002).  At a behavioral level, 6-

OHDA lesioned animals demonstrate motor abnormalities in skilled and fine movements, 

as well as deficits in locomotor activity.  Furthermore, such animal models demonstrate 

that significant lesions of the nigrostriatal dopamine system that reduce dopamine striatal 

tissue content by approximately 80% produce motor difficulties akin with Parkinson’s 

disease.  Interestingly, excitotoxic lesions of the PPT have also been found to produce 

parkinsonian type postural deficits, hypokinesia and locomotor deficits in primates 

(Kojima et al., 1997; Pahapill and Lozano, 2000).   

Another neurotoxin commonly used to mimic Parkinson’s disease neuropathology 

in animals is 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP).  During the early 
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1980’s, a number of individuals unwittingly injected a potent pyridine derivative related 

to the non-opioid analgesic Demerol which was contaminated with MPTP by virtue of a 

sloppy synthesis and sold on the streets as “China White”, a synthetic heroin (Ballard et 

al., 1985; Langston et al., 1983). Exposure to MPTP produced selective 

neurodegeneration of the nigrostriatal dopamine system resulting in the development of 

severe bradykinesia, postural deficits, and motor rigidity similar to that seen in 

Parkinson’s disease (Langston et al., 1999; Snow et al., 2000).  The serendipitous 

discovery of MPTP and its parkinsonian symptoms offered new avenues in researching 

Parkinson’s disease, and new MPTP animal models of Parkinson’s disease emerged.  The 

MPTP primate model of human Parkinson’s disease has also provided additional 

evidence that the nigrostriatal dopamine system is particularly important in the etiology 

of this disease.   MPTP treated primates develop motor abnormalities closely resembling 

those seen in humans with Parkinson’s disease, with deficits including bradykinesia, 

rigidity, postural abnormalities and postural tremor, and rest tremor in some primate 

species (Kanda et al., 2000; Maratos et al., 2001; Schapira, 2002).  For this reason, MPTP 

administration in primates is considered the most predictive model for antiparkinsonian 

efficacy of novel drugs in humans (Gerlach and Riederer, 1996).  In sum, animal models 

such as these suggest that interfering with neural areas that importantly influence 

nigrostriatal dopamine activity may contribute to the severe motor abnormalities 

associated with Parkinson’s disease.  Also, these animal models have been very useful in 

studying the therapeutic strategies for motor symptom treatment and potential 

neuroprotection (Betarbet et al., 2002; Schober, 2004; Terzioglu and Galter, 2008). 
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Etiology of Parkinson’s Disease 

The etiology for the vast majority of Parkinson’s disease cases is largely unknown 

and thus classified as idiopathic.  Controversy exists as to how much of the disease 

results from a strictly genetic cause, a purely environmental factor, or a combination of 

the two (Di Monte, 2003; Farrer, 2006).   Thus, despite the overwhelming evidence 

implicating nigrostriatal dysfunction in Parkinson’s disease, the precise cause for 

neuronal loss and deficient dopaminergic activity within the nigrostriatal dopamine 

system remains unclear.  Several mechanisms have been proposed for the cell death 

associated with Parkinson’s disease, including oxidative stress and excitotoxicity.  

Oxidative stress is an adverse effect that occurs when the generation of highly reactive 

free radicals exceeds the system’s ability to neutralize and eliminate them, resulting in 

damage to the cellular membrane lipids, proteins, and DNA (for review see Simonian and 

Coyle, 1996).  Post mortem brains of Parkinson’s patients have shown increased amounts 

of free radical damage indicators, such as lipid peroxidation and oxidized DNA (Alam et 

al., 1997; Dexter et al., 1989).  6-OHDA is selectively taken up by dopaminergic neurons 

(and other catecholaminergic neurons near site of infusion) and causes oxidative stress 

and ultimately cell degeneration (Cohen and Heikkila, 1974).  Oxidative stress is also 

thought to participate in MPTP-induced toxicity of dopamine neurons (Zang and Misra, 

1993).  For this reason, antioxidant approaches for neuroprotective therapies seem 

warranted and have shown preclinically to protect against MPTP toxicity and 6-OHDA 

lesioning in animal models. It is important to note however, clinical trials assessing the 

effectiveness of antioxidants as neuroprotective agents for Parkinson’s disease have been 

inconclusive, with transient results at best (Alexi et al., 2000). 
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It has also been proposed that the neurodegeneration associated with Parkinson’s 

disease may result from increased glutamatergic transmission in the SNc, most likely due 

to overactivity and burst firing of STN neurons (Johnson et al., 2009).  Glutamate 

receptors, specifically N-methyl-D-aspartic acid (NMDA) receptors, are known to 

mediate excitotoxicity caused by high levels of glutamate.  Therefore, activation of these 

receptors in the SNc may contribute to the degeneration of dopamine neurons in this 

region (Waxman and Lynch, 2005).  In support of this argument, NMDA antagonists 

have been noted to reduce or delay SNc degeneration and motor deficits caused by MPTP 

administration or 6-OHDA lesioning (Johnson et al., 2009).  These results support the 

hypothesis that NMDA receptor activation contributes to neurodegeneration in 

Parkinson’s disease and suggest that blockade of NMDA receptors may be a useful 

strategy for slowing disease progression.  However, the widespread expression and 

diverse functional roles of NMDA receptors raise concern that targeting these receptors 

would lead to serious unwanted side effects.  Clinical studies have therefore used weak 

NMDA receptor antagonists and have generally failed to find any therapeutic benefit 

when administered alone (without levodopa) (Johnson et al., 2009).  More promising 

studies suggest that selectively targeting NMDA receptor subtypes specific to regions 

relevant to Parkinson’s disease pathophysiology may represent safer neuroprotective 

options (Jin et al., 1997).  As such, further clinical studies using more selective drugs 

targeting NMDA receptors are needed.   In sum, the specific factors that contribute to or 

initiate overly active NMDA mechanisms in excitotoxicity are poorly understood, and the 

potential contribution of other types of glutamate receptors to the development and 

progression of Parkinson’s disease symptoms remains unclear. 
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Treatments for the Motor Symptoms of Parkinson’s Disease 

The most effective pharmaceuticals for treating the motor symptoms of 

Parkinson’s disease are drugs that restore dopaminergic function in the striatum, with the 

most commonly prescribed being the dopamine precursor levodopa (Olanow et al., 2004).  

Levodopa is usually combined with carbidopa (Lodosyn) or benserazide (Serazide) as 

Sinemet or Prolopa, respectively, to prevent peripheral conversion of levodopa to 

dopamine by dopa-decarboxylase (Olanow et al., 2004).  Dopamine synthesized from 

levodopa activates both D1 and D2 receptors in the striatum, which is important 

therapeutically as antiparkinsonian drugs with high D2 and low D1 affinity have been 

shown to be less effective in reversing motor symptoms compared to levodopa (Wooten, 

2001).  Conjoint use of levodopa with drugs that inhibit dopamine-degrading enzymes 

(e.g. monoamine oxidase inhibitors) within surviving dopamine nerve terminals have 

further been shown to enhance the therapeutic effects of levodopa alone, presumably by 

slowing the metabolic breakdown of dopamine, while the conjunctive use of 

dopaminergic agonists with levodopa has also proved therapeutically beneficial during 

later stages of Parkinson’s disease (Hurtig, 1997).  In fact, levodopa has been used to 

distinguish Parkinson's disease from other conditions that may resemble Parkinson's 

disease, a true testament to the reliability of levodopa for treating the motor symptoms of 

Parkinson’s disease.  Reduced motor symptoms following a single administration of 

levodopa can help to confirm the diagnosis of Parkinson’s disease, and a negative 

response is thought to be an indication for alternative diagnosis (D’Costa et al., 1995).    

While levodopa treatment provides relief of motor symptoms for several years in 

most patients, complications occur with long-term use.  As dopaminergic neurons 
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continue to deteriorate, the levodopa dose is effective for a shorter time, and the patient 

experiences “wearing off” sooner.  Motor fluctuations can also become unpredictable 

with sudden switches between good therapeutic response (i.e. mobility) and no 

therapeutic response (i.e. immobility), referred to as the “on-off” phenomenon (Marsden 

and Parkes, 1976).  Also, increased doses of levodopa leads to abnormal involuntary 

movements (e.g. dyskinesia and leg dystonia), which can be lessened by reduction of the 

dose, but the dose decrease then generally leads to loss of control of the disease.  These 

motor complications have an incidence of 10% per year, so that after taking levodopa 5 

years roughly 50% of patients experience these detrimental side effects (Rajput et al., 

1984; Rascol et al., 2000).  Patients therefore become increasingly disabled even with 

treatment, which is a particular problem given that levodopa remains the most effective 

treatment for Parkinson’s disease despite these serious drawbacks.  Thus, novel 

pharmaceuticals as well as interventive neurosurgical treatments, such as deep brain 

stimulation, are continuously being explored and refined for better management of the 

motor symptoms associated with Parkinson’s disease.  Advances in our understanding of 

the connectivity and function of the basal ganglia circuitry will continue to open the door 

for novel therapeutic strategies. 
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Chapter 3. Deep Brain Stimulation as a Treatment for Parkinson’s Disease 

 

Parkinson’s disease is a neurological disorder characterized by a progressive 

degeneration of the dopamine neurons in the substantia nigra compacta (SNc) and a 

subsequent reduction in striatal dopamine levels (Obeso et al., 2002).  Parkinson’s 

disease treatments attempt to alleviate symptoms by restoring dopamine transmission in 

the striatum (Clarke, 2004).  Although oral administration of the dopamine precursor 

levodopa, the most commonly prescribed pharmaceutical for ameliorating the motor 

symptoms of Parkinson’s disease, is highly effective for several years in most patients, as 

the disease progresses with time chronic levodopa treatment is associated with the 

development of complications, such as motor fluctuations and dyskinesias, which can be 

just as problematic as the disease itself (Marsden and Parkes, 1976; Rascol et al., 2000).  

When patients reach this stage, interventive neurosurgery such as deep brain stimulation 

(DBS) is an option to consider.  Because of the limitations of the current available 

pharmaceutical treatments and the efficacy and favorable safety profile of DBS, this 

interventive neurosurgical treatment approach is now approved by the US Food and Drug 

Administration and is routine in clinical use for treatment of Parkinson’s disease (Krack 

et al., 2003).  The application and substantial progress of functional neurosurgery rank 

amongst the most significant of therapeutic advances in Parkinson’s disease, perhaps 

second only to the introduction of levodopa.    

DBS involves implanting electrodes with four contacts into the target area of the 

brain and connecting it to an implanted pulse generator usually located in the chest area, 

much like a pacemaker for the heart.  Conventional DBS systems use a relatively high-
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frequency (100-250 Hz) pulse train applied continuously at the site of electrode 

implantation (McIntyre et al., 2006).  One key aspect permitting reliable therapeutic 

benefits of this procedure is that stimulation parameters provided by the implanted pulse 

generator can be adjusted postoperatively to improve efficacy, reduce side-effects, and 

adapt to the course of the disease.  Results from clinical trials have repeatedly shown that 

DBS plus medical therapy improves patient quality of life as well as clinical scores on the 

Unified Parkinson’s Disease Rating Scale more than the best medical therapy alone 

(Deuschl et al., 2006; Weaver et al., 2009; Williams et al., 2010).  The most common 

target for DBS in Parkinson’s disease is the subthalamic nucleus (STN) as this 

ameliorates the cardinal symptoms of the disease (i.e. bradykinesia, rigidity, and tremor) 

while at the same time reducing medication needs for the patient (Limousin et al., 1998; 

Molineuvo et al., 2000; Moro et al., 1999; Volkmann et al., 2001).    

 

Hypotheses of the Mechanism of Action of DBS  

Despite the acceptance of DBS as a well qualified therapeutic tool for treating the motor 

symptoms of Parkinson’s disease, the mechanism of action of DBS remains poorly 

understood and debated in research.  Because the therapeutic effects of DBS are similar 

to those of a lesion of targeted nuclei, whether it is the STN (for Parkinson’s  disease), 

globus pallidus interna (for generalized dystonia), or ventrointermedial nucleus of the 

thalamus (for essential tremor), DBS has been thought to silence neurons at the site of 

stimulation (Benazzouz et al., 1995; Lozano et al., 2002).  However, emerging evidence 

is beginning to discredit neuronal silencing hypothesis and, as such, implicates additional 

mechanisms of DBS, which involve activation of local neuronal terminals at the site of 
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stimulation that inhibit and/or excite efferent outputs.  In turn, this has been postulated to 

enhance efferent neurotransmission, which may ultimately normalize activity within 

structures of the basal ganglia complex (see Benabid, 2003; Lozano and Eltahawy, 2004; 

McIntyre et al., 2004; Uc and Follett, 2007).  Specifically, recent studies have shown that 

DBS results in excitation and altered firing patterns of neurons in the STN (Carlson et al., 

2010; Garcia et al, 2003; Lee et al., 2007), increased activity in dopaminergic neurons of 

the SNc (Lee et al., 2003, 2004), as well as enhanced dopamine release in the striatum 

(Lee et al., 2006).  These findings have lead to the “dopamine release” hypothesis which 

proposes that STN DBS improves motor symptoms related to Parkinson’s disease by 

activating surviving nigrostriatal dopaminergic neurons and subsequent increases in 

striatal dopamine release (Lee et al., 2009).  Several studies using in vivo microdialysis 

have shown that STN DBS increases dopamine metabolites DOPAC and HVA in the 

striatum of normal and 6-hydroxydopamine (6-OHDA) lesioned rats (Meissner et al., 

2001, 2002, 2003; Paul et al., 2000).  Furthermore, DBS of the STN decreases or 

eliminates the need for levodopa (Molineuvo et al., 2000; Moro et al., 1999) and is most 

effective in patients who have responded well to levodopa (Breit et al.,2004), suggesting 

that effective DBS requires endogenous dopamine production.  Also consistent with the 

notion that STN DBS activates surviving nigrostriatal dopamine neurons are clinical 

observations that DBS can generate dyskinesias resembling those seen when excess 

levodopa is given (Frank et al., 2007).  

While supporting evidence from basic research is available, the hypothesis that 

DBS of the STN contributes to symptom relief in Parkinson’s disease due to an evoked 

increase in striatal dopamine release remains controversial.  Two major techniques in 
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basic research studies have provided the majority of findings that oppose the dopamine 

release hypothesis.  First, most basic studies using in vivo microdialysis do not report an 

increase in striatal dopamine release during stimulation of the STN in intact or 6-OHDA 

lesioned animals (Bruet et al., 2001; Meissner et al., 2001; Paul et al., 2000).  Although in 

vivo monitoring of slow (min-hrs) changes in dopamine release is easily accomplished 

using conventional microdialysis methods, analysis of more rapid changes in dopamine 

release that may result from STN DBS requires an equally rapid “real-time” detection 

and monitoring system.  Second, several positron emission tomography (PET) studies 

using [11C]-raclopride binding to measure dopamine release have failed to demonstrate 

significant raclopride displacement despite improvements in motor performance 

following STN DBS (Abosch et al., 2003; Hilker et al., 2003; Strafella et al., 2003).  

However, PET scanning with raclopride has relatively poor temporal resolution and 

requires an increase of greater than 90% of baseline measures in order to detect a change 

in dopamine receptor populations (Hilker et al., 2003; Volkow et al., 1993).  Thus, it 

seems likely that inconsistencies in the literature may be due to technical difficulties in 

measuring striatal dopamine release.  Whether STN DBS improves Parkinson’s disease 

motor symptoms via increased release of dopamine in the striatum is the overall focus 

connecting the experimental studies in Chapters 5 and 6.  For this reason, in order to 

avoid the issues of temporal resolution and sensitivity seen in other techniques, these 

experimental studies involve real-time monitoring of striatal dopamine release following 

electrical stimulation using fixed potential amperometry (FPA), which offers the highest 

temporal resolution and sensitivity to monitor changes in dopamine release evoked by 
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electrical stimulation of all in vivo neurochemical recording methods to date (Venton et 

al., 2002). 

 

Candidate Pathways Mediating DBS-evoked Striatal Dopamine Release  

There are several neuronal pathways by which STN DBS could elicit dopamine release in 

the striatum.  First, stimulation of the glutamatergic input that projects from the STN to 

the SNc has been shown to activate nigrostriatal dopaminergic pathways directly 

(Meltzer et al., 1997).  Second, stimulation of the glutamatergic neurons of the STN 

projecting to the pedunculopontine tegmental nucleus (PPT) indirectly activates 

nigrostriatal dopamine neurons via reciprocal excitatory innervation back to the STN 

which leads to subsequent SNc activation by the aforementioned glutamatergic inputs 

(Lee et al., 2000) and by activating excitatory cholinergic and glutamatergic inputs from 

the PPT to the SNc (Blaha and Winn, 1993; Forster and Blaha, 2003).  As is mentioned in 

Chapter 1 and expanded upon in Chapter 5, the interconnectivity between the PPT and 

nuclei within the basal ganglia potentially provides the PPT an interesting position in 

which to mediate nigrostriatal dopamine activity (Mena-Segovia et al., 2008).  

The improvement in motor symptoms in Parkinson’s patients has been correlated 

with the location and electrical intensity of chronic stimulation (Garcia et al., 2005), and 

therapeutic outcomes of DBS have suggested that the best improvement in symptoms is 

obtained when stimulating the white matter corresponding to myelinated axons of 

passage in the region of the zona incerta just immediately dorsal to the STN (Saint-Cyr et 

al., 2002; Voges et al., 2002).  DBS in this region likely results in stimulation of 

dopaminergic axons within the medial forebrain bundle (MFB) projecting from the SNc 
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to the striatum. Thus, thirdly, DBS of the STN may be activating surviving nigrostriatal 

dopamine neurons in Parkinson’s patients via direct stimulation of the MFB. In fact, it 

has been postulated that DBS of the MFB may be superior to DBS of the STN in 

enhancing dopamine release in the striatum (Lee et al., 2006).  These candidate neural 

pathways are expanded upon and investigated systematically in the experimental studies 

in Chapters 5 and 6.  Understanding the underlying mechanisms of DBS and the neural 

pathways affected could lead to improvements in stimulation locations and parameters, 

which may prove invaluable in improving DBS interventive neurosurgical procedures 

and enhancing the clinical efficacy for the treatment of Parkinson’s disease. 
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Chapter 4. Fixed Potential Amperometry Methodology 

 

The experimental studies in Chapters 5 and 6 utilize in vivo fixed potential amperometry 

(FPA), an electrochemical method that has been valuable in elucidating the modulation of 

forebrain dopamine activity by other neurotransmitter systems (Blaha et al., 1996, 1997; 

Floresco et al., 1998; Lester et al., 2008).  Like many in vivo amperometric recording 

techniques, FPA uses a three-electrode configuration that incorporates an auxiliary 

electrode (typically platinum, chrom-alloy or stainless-steel wire), reference electrode 

(normally silver/silver chloride) and recording electrode (see Fig. 1) (Blaha and Phillips, 

1996).  In the experiments of Chapters 5 and 6, the procedure specifically involves the 

implantation of a carbon fiber recording electrode and the placement of a silver/silver 

chloride reference and stainless-steel auxiliary electrode combination in contact with 

brain tissue.  An electrometer and analog to digital chart recorder (EA162 Picostat and 

ED401 e-corder 401, eDAQ Inc., Colorado Springs, CO, USA; simply referred to as the 

electrometer in all other chapters) creates a circuit between the three electrodes, allowing 

the application of a fixed continuous potential (+0.8 V) to the recording electrode via the 

auxiliary electrode, while maintaining a potential difference between the recording and 

reference electrode (Blaha and Phillips, 1992).  Continuously applying a potential to the 

recording electrode allows dopamine to be continuously oxidized at the electrode surface.  

As such, FPA allows a high temporal resolution (10,000 samples/sec or higher dependent 

on the analog to digital converter of the recording device) for the analysis of dopamine 

neurotransmission in vivo.  Pharmacological studies have validated the selectivity of FPA 

as a measurement of electrically-stimulated dopamine efflux in vivo (Dugast et al., 1994; 
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Forster and Blaha, 2003; Lee et al., 2006).  For example, this has been demonstrated by 

significant increases in laterodorsal tegmentum stimulation-evoked oxidation current in 

the nucleus accumbens and subthalamic nucleus stimulation-evoked oxidation current in 

the striatum of rats in response to systemic administration of the dopamine reuptake 

inhibitor nomifensine, but not following serotonin or norepinephrine reuptake blockade 

with fluoxetine or desipramine (Lee et al., 2006).  Consequently, this in vivo technique 

has been utilized commonly to evaluate the kinetics of stimulation-evoked dopamine 

release and reuptake and drug-induced changes in the magnitude and temporal pattern of 

dopamine neurotransmission, as well as the biochemical basis of dopaminergic cell burst 

firing in anesthetized rats and mice (Benoit-Marand et al., 2000; Dugast et al., 1994; 

Forster and Blaha, 2003; Lee et al., 2006; Lester et al., 2008, 2010; Suaud-Chagny et al., 

1995). 
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Fig. 1. Simplified diagram of a three-electrode system used in amperometric 

electrochemical recordings.  The electrometer applies an electrical potential to the 

auxiliary (AUX) electrode that is suitable to oxidize dopamine (DA) at the surface of the 

recording electrode (RE), which is held constant relative to the reference electrode (REF).  

Oxidized dopamine molecules transfer electrons to the RE which are measured as current 

flow via the electrometer (EA162 Picostat) and passed as an analog signal to the analog 

to digital chart recorder and (ED401 e-corder 401) where it is converted to a digital signal 

for display via Chart software on a computer monitor in near real time. Adapted from 

Blaha and Phillips (1996). 
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Electrochemical Recording Electrodes Used in FPA 

Polyacrylic nitrile, pitch, or pyrolytic-based carbon provides an electrochemically inert 

surface covered with oxygen-containing functional groups that facilitate electron transfer 

from compounds undergoing oxidation or reduction at the electrode surface (Kawagoe et 

al., 1993).  Carbon fiber microelectrodes to record stimulation-evoked dopamine release 

in vivo were fashioned by threading a single carbon fiber (10 m o.d.) through a 

borosilicate glass capillary tube.  The tube was then heat-pulled to form a tip through 

which the carbon fiber protruded.  Carbon paste was packed into the bore of the electrode 

and a wire inserted to make contact with the fiber.  The wire was secured in place with a 

carbon paste (super glue mixed with carbon powder) (see Fig. 2).  The protruding carbon 

fibers were cut under a stereomicroscope so that the active recording electrode surface 

was approximately 250 m long.  A new carbon fiber recording electrode was used in 

each animal. As a consequence of its small size, the carbon fiber recording electrode 

results in minimal tissue damage at the site of insertion and allows for high degree of 

local specificity for assessment of regional differences in neurochemical efflux 

(Stamford, 1989).  Moreover, the small size enables faster sampling of the dopamine 

oxidation current as there is less depletion of the neurochemical at the electrode surface 

(Forster and Blaha, 2003; Kawagoe et al., 1993). 
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Fig. 2.  Illustration of the carbon fiber recording electrode fabricated for use in fixed 

potential amperometry to monitor the oxidation of dopamine (corresponding to dopamine 

efflux) in vivo. 

 

 

Stereotaxic Surgery and Recording Set-up for FPA 

Anesthetized mice are mounted in a stereotaxic frame (David Kopf Instruments, Tujunga, 

CA, USA) within a mouse head-holder adaptor (Stoelting, Wood Dale, IL, USA).  

Stereotaxic coordinates for each of the target sites, which include the subthalamic nucleus 

(STN), medial forbrain bundle (MFB), pedunculopontine tegmental nucleus (PPT), 

substantia nigra compacta (SNc), and striatum in Chapters 5 and 6, are determined from 

the mouse atlas of Paxinos and Franklin (2001).  As shown in Fig. 3, in each mouse a 

concentric bipolar stimulating electrode (SNE-100; Rhodes Medical Co., CA, USA), a 31 

g stainless-steel guide infusion cannula, and a carbon fiber recording microelectrode is 

implanted into the desired brain sites.  A silver/silver chloride reference and stainless-

steel auxiliary electrode combination is also placed on contralateral cortical tissue. 
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Fig. 3. Schematic diagram of the mouse brain illustrating a typical setup for in vivo fixed 

potential amperometric recording of stimulation-evoked striatal dopamine release.  In the 

experiments in Chapters 5 and 6, a carbon fiber recording electrode is positioned in the 

striatum.  A stimulating electrode is positioned in the dorsal portion of the medial 

forebrain bundle (MFB), subthalamic nucleus (STN), or pedunculopontine tegmental 

nucleus (PPT).  A silver/silver chloride reference and stainless-steel auxiliary electrode 

combination is placed in contact with contralateral cortical tissue, and a drug infusion 

cannula is implanted into the PPT, STN, or substantia nigra compacta (SNc). 

 

 

Amperometric recordings are made within a Faraday cage to increase the signal to 

noise ratio (Forster and Blaha, 2003).  The stimulation site varies (MFB, STN, or PPT) to 

accommodate the aim of each project, but the stimulation protocol consists of twenty 0.5 

msec duration pulses at 50 Hz delivered every 30 sec over a 1 hour testing period, 
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delivered to the stimulating electrode via an optical isolator and programmable pulse 

generator (Iso-Flex/Master-8; AMPI, Jerusalem, Israel).  With the addition of 

microinfusions of drugs, FPA lends itself to the investigation of the role of receptor 

subtypes in stimulation-evoked phasic dopamine efflux.  Intracerebral infusions of the 

local anesthetic lidocaine is an effective means of temporarily blocking all axonal 

transmission to or from specific areas and pathways with recovery approximately 10 min 

post-infusion (Blaha et al., 1997; Floresco et al., 1998).  This drug procedure offers a 

unique means to determine the functional neuroconnectivity of DBS-mediated striatal 

dopamine release and the relationship between DBS target sites, such as the MFB, STN, 

or PPT.  By temporarily blocking transmission through one of these sites, it is possible to 

determine whether DBS of these structures evokes striatal dopamine transmission via 

direct or indirect routes to the SNc.  Furthermore, infusions of specific receptor 

antagonists help determine the neurochemical nature of the neuronal pathways involved 

in mediating stimulation-evoked striatal dopamine release.  To confirm that the observed 

drug effects are not attributable to non-specific effects of the microinfusion procedure, 

microinfusions of sterile phosphate-buffered saline (PBS, pH~7.4) served as a control. 

 

Post-Experiment Procedures 

Upon the completion of each FPA session, the stimulation, recording, and infusion sites 

are marked, either by lesioning or stain infusion.  After euthanasia, the brains are 

removed and properly stored until sectioning.  Coronal sections are sliced in a cryostat 

and observed under a light microscope to confirm that the placements of stimulating 
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electrodes, recording electrodes, and drug infusion cannulae are within the anatomical 

boundaries of the target site.   

The mean change in dopamine oxidation current, corresponding to stimulation-

evoked dopamine efflux, is converted to mean dopamine concentration (µM) by post-

experiment in vitro calibration of the carbon fiber electrode in solutions of dopamine (2-

10 µM) using a flow injection system (Michael and Wightman, 1999). For each animal, 

changes in stimulation-evoked dopamine concentration after infusion were expressed as 

mean percent changes with respect to pre-infusion baseline responses (100%) and are 

subsequently averaged across animals.  The appropriate statistical tests are then 

performed, either comparing between experimental groups or before and after drug 

infusion. 
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Chapter 5. Neural Pathways Mediating Striatal Dopamine Release following High 

Frequency Stimulation: Relevance to DBS as a Treatment for Parkinson’s Disease 

 

Deep brain stimulation (DBS) is an established interventive neurosurgical approach for 

effectively treating the motor symptoms of Parkinson’s disease (Benabid, 2003; Krack et 

al., 2003).  The most common stimulation site for DBS as a treatment for Parkinson’s 

disease is the subthalamic nucleus (STN); however, the pedunculopontine tegmental 

nucleus (PPT) is emerging as a therapeutically beneficial target when stimulated by itself 

or in combination with the STN (Stefani et al., 2007).  Thus, the connectivity between 

these two nuclei and the basal ganglia is the focus of the present paper.  Despite the 

acceptance of DBS as a therapeutic tool for treating parkinsonian motor symptoms, 

which onset with at least 80% decrease in striatal dopamine content and 50% or greater 

loss of dopaminergic neurons in the substantia nigra compacta (SNc) (Fearnley and Lees, 

1991; Samii et al., 2004), the mechanism of action of DBS remains poorly understood 

and debated in research.  Because the therapeutic effects of DBS are similar to those of a 

lesion, DBS has been thought to act by silencing neuronal activity at the site of 

stimulation (Benazzouz et al., 1995; Lozano et al., 2002).  However, emerging evidence 

implicates additional mechanisms, which involve activation of local neuronal terminals at 

the site of DBS that inhibit and/or excite efferent outputs.  In turn, this has been 

postulated to enhance efferent neurotransmission, which may ultimately normalize 

activity within structures of the basal ganglia complex (Benabid, 2003; Lozano and 

Eltahawy, 2004; McIntyre et al., 2004; Uc and Follett, 2007).  Specifically, recent studies 

in rodents have shown that electrical stimulation of the STN results in excitation of 
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neurons in the STN (Garcia et al, 2003; Lee et al., 2007), increased activity in 

dopaminergic neurons of the SNc (Lee et al., 2003, 2004), as well as enhanced dopamine 

release in the striatum (Lee et al., 2006).  These findings have led to the “dopamine 

release” hypothesis which proposes that STN DBS improves motor symptoms related to 

Parkinson’s disease, in part, by activating surviving nigrostriatal dopamine neurons and 

subsequently increasing striatal dopamine release (Lee et al., 2009).  DBS of the STN has 

been shown to decrease or eliminate the need for levodopa (Molineuvo et al., 2000; Moro 

et al., 1999) and is most effective in patients who have responded well to levodopa (Breit 

et al., 2004).  Thus, clinical findings support the dopamine release hypothesis by 

suggesting endogenous dopamine production is required for DBS to be therapeutically 

successful.  Furthermore, DBS can generate dyskinesias resembling those seen when 

excess levodopa is given (Frank et al., 2007).   

STN DBS could elicit dopamine release in the striatum through activation of a 

number of neural pathways.  First, stimulation of the glutamatergic neurons that project 

from the STN to the SNc have been shown to activate nigrostriatal dopaminergic neurons 

directly (Meltzer et al., 1997).  Second, stimulation of glutamatergic neurons of the STN 

projecting to the PPT may indirectly activate nigrostriatal dopamine neurons via both 

reciprocal excitatory innervation back to the STN which leads to subsequent SNc 

activation by the aforementioned glutamatergic inputs (Lee et al., 2000) and/or by 

activating excitatory cholinergic and glutamatergic PPT neuronal projections to the SNc 

(Blaha and Winn, 1993; Forster and Blaha, 2003).  Thirdly, DBS of the STN may 

activate nigrostriatal dopamine neurons via direct stimulation of the dorsal portion of the 

medial forebrain bundle (MFB) within the zona incereta. Therapeutic outcomes of DBS 
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have suggested that the best symptom improvements result when stimulating the white 

matter just dorsal to the STN (Saint-Cyr et al., 2002; Voges et al., 2002).  DBS in this 

region likely results in stimulation of dopaminergic axons within the MFB passing 

directly from the SNc to the striatum.  Thus, it is conceivable that DBS directly aimed at 

the MFB may be superior to STN DBS in enhancing striatal dopamine release (Lee et al., 

2006).  Therefore, the present study also conducted experiments designed to determine 

the neuronal pathways involved in evoking striatal dopamine release via stimulation of 

the MFB. 

In regards to DBS of the PPT, the interconnectivity between the PPT and nuclei 

within the basal ganglia complex allows the PPT to play a critical role in the modulation 

of nigrostriatal dopaminergic activity (Forster and Blaha, 2003; Miller and Blaha, 2004; 

Mena-Segovia et al., 2008), which may explain the findings from recent clinical trials 

showing that DBS of the PPT is effective in ameliorating parkinsonian motor symptoms, 

particularly gait and postural disabilities (Stefani et al., 2007).  Thus, the present study 

also investigated the relative influence of cholinergic and glutamatergic PPT projections 

in eliciting striatal dopamine release.  Previous work from our lab using in vivo 

chronoamperometry has shown that PPT stimulation elicits striatal dopamine release, in 

which dopamine release could be blocked by intra-SNc infusions of nicotinic and 

muscarinic acetylcholine receptor (nAchR and mAchR, respectively), and ionotropic 

glutamate receptor (iGluR) antagonists (Forster and Blaha, 2003).   However, in addition 

to direct excitatory inputs to SNc dopaminergic cells, as noted above, the PPT may also 

indirectly activate these dopaminergic cells via cholinergic and glutamatergic projections 
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to excitatory glutamatergic neurons in the STN that, in turn, innervate SNc dopaminergic 

cells (Bevan and Bolam, 1995; Lee et al., 2000).   

To-date no studies have systematically examined these candidate pathways as to 

their relative involvement in mediating the effects of MFB, STN, or PPT DBS on striatal 

dopamine release.  Therefore, the present studies investigated these potential pathways in 

vivo using fixed potential amperometry (FPA) with carbon fiber microelectrodes 

positioned in the striatum to record striatal dopamine efflux evoked by DBS-like high 

frequency electrical stimulation (HFS) of the MFB, STN, or PPT.  By temporarily 

blocking transmission through various nuclei via microinfusions of the local anaesthetic 

lidocaine, we were able to determine whether HFS of the MFB, STN, or PPT evokes 

striatal dopamine transmission via direct or indirect routes to the SNc and their relative 

importance in mediating these effects.  Furthermore, infusions of specific receptor 

antagonists helped to uncover the neurochemical nature of the pathways that mediate 

MFB, STN, and PPT stimulation-evoked striatal dopamine release. 

 

Experimental Procedures 

The following experiments were approved by the Institutional Animal Care and Use 

Committee at the University of Memphis and conducted in accordance with the National 

Institutes of Health Guidelines for the Care and Use of Laboratory Animals.  Efforts were 

made to reduce the number of animals used and to minimize animal pain and discomfort. 
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Animals and surgery 

Seventy-six male C57BL/6J mice (Jackson Laboratories, Bar Harbor, ME, USA), 8-11 

weeks of age and weighing 20-27 g at the time of surgery, were used. Animals were 

housed five per cage in a temperature controlled environment (21 + 1ºC) with a 12 h 

light: 12 h dark cycle (lights on at 0600 h).  Food and water were available ad libitum.  

Mice were anesthetized with urethane (1.5 g/kg, i.p.) and mounted in a stereotaxic frame 

(David Kopf Instruments, Tujunga, CA, USA) within a mouse head-holder adaptor 

(Stoelting, Wood Dale, IL, USA), ensuring the skull was flat.  Body temperature was 

maintained at
 
36 ± 0.5°C with a temperature-regulated heating pad (TC-1000; CWE Inc., 

New York, NY, USA).  Determined from the mouse atlas of Paxinos and Franklin 

(2001), stereotaxic coordinates (AP from bregma, ML from midline, and DV from dura, 

all in mm) for each target site were as follows: striatum: AP 1.4, ML +1.4, DV -2.5; 

MFB: AP -2.0, ML +1.1, DV -4.0; STN: AP -2.0, ML +1.6, DV -4.0; SNc: AP -3.1, ML 

+1.5, DV -3.8; PPT: AP -4.7, ML +1.25, DV -2.7).  In each mouse a concentric bipolar 

stimulating electrode (SNE-100; Rhodes Medical Co., CA, USA) was implanted into the 

left MFB, STN, or PPT of each mouse.  A 31 g stainless-steel guide infusion cannula was 

implanted into the left SNc, STN, or PPT with the tip of the guide cannula positioned 2 

mm above site.  An Ag/AgCl reference and stainless-steel auxiliary electrode 

combination was placed in surface contact with contralateral cortical tissue 

approximately 2.0 mm posterior to bregma, and a carbon fiber recording microelectrode 

with an active recording surface of 250 μm (length) by 10 μm (o.d.) (Thornel Type P, 

Union Carbide, Pittsburgh, PA, USA) was then implanted into the left striatum.  
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FPA and electrical stimulation 

All amperometric recordings were made within a Faraday cage to increase the signal to 

noise ratio (Forster and Blaha, 2003).  A fixed potential (+0.8 V) was applied to the 

recording electrode, and oxidation current was monitored continuously (10K 

samples/sec) with an electrometer filtered at 50 Hz.  Approximately 10 min following 

implantation of the recording electrode, a series of 0.5 ms duration cathodal monophasic 

current pulses (20 pulses at 50 Hz applied every 30 sec over a 1 hr recording period) was 

delivered to the stimulating electrode via an optical isolator and programmable pulse 

generator (Iso-Flex/Master-8; AMPI, Jerusalem, Israel).  Intensity levels were set at 800 

µAmps in the MFB and PPT and 400 µAmps in the STN as determined by preliminary 

studies to be optimal for each target site. Intensity levels were also lower in the STN in an 

attempt to conclusively limit the stimulation region to the STN.  FPA coupled with 

carbon fiber microelectrodes has been confirmed as a valid technique for real-time 

monitoring of changes in striatal dopamine oxidation current evoked by brief electrical 

stimulation of afferent inputs to midbrain dopamine neurons (Dugast et al., 1994; Forster 

and Blaha, 2003; Lester et al., 2008).  

 

Drug microinfusions 

Microinfusions were performed by first backloading the drug into a fibreglass cannula 

(80 m o.d., Polymicro Tech. Inc., AZ, USA) connected via PE10 tubing to a 5 l 

microsyringe (Scientific Glass Engineering Inc., Austin, TX, USA) mounted on a 

microinfusion pump (Stoelting, Wood Dale, IL, USA).  After a 10 min electrical 

stimulation baseline recording period, the cannula was inserted 2 mm beyond the tip of 



39 
 

the implanted guide cannula, and 1.0 µl infusions were made over a 1.5 min period.  

Infusions of the local anesthetic lidocaine (4%) were performed to temporarily block 

axonal transmission to or from the infusion sites (Blaha et al., 1997; Floresco et al., 

1998).  By temporarily blocking transmission through the SNc, STN, or PPT, we were 

able to determine whether HFS of the MFB, STN, or PPT evokes striatal dopamine 

transmission via direct or indirect routes to the SNc.  Furthermore, in order to assess the 

relative contributions of GluRs and AchRs in the SNc and STN in mediating stimulation-

evoked striatal dopamine release, MFB, STN, or PPT-evoked striatal dopamine release 

was monitored in separate groups of mice before and during intra-SNc or STN infusions 

of the iGluR antagonist kynurenate (1 µg), the metabotropic GluR (mGluR) antagonist 

(+)-methyl-4-carboxyphenylglycine (MCPG; 1 µg), the mAchR antagonist scopolamine 

(10 µg), the nAchR antagonist mecamylamine (1 µg), or a combination of these drugs.  

To confirm that observed drug effects were not attributable to non-specific effects of the 

microinfusion procedure, microinfusions of 1.0 µl of sterile phosphate-buffered saline 

(PBS, pH~7.4) were also performed.  See Table 1 for the complete list of experimental 

groups.  The microinfusion cannula was left in place over the duration of the experiment.  

All drugs were prepared immediately before use at doses determined by preliminary 

studies in this laboratory.  
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Table 1.  Drugs used to assess the contributions of cholinergic and glutamatergic 

projections on stimulation-evoked changes in striatal dopamine concentrations. 

 

Stimulation 

Site 

Infusion 

Site 
Drug Target receptors 

% Change    

from baseline 

MFB SNc PBS –  - 2% ± 1 

MFB SNc Lidocaine axonal + 62% ± 12 

MFB SNc Kynurenate iGluRs - 3% ± 4 

MFB PPT PBS – - 3% ± 1 

MFB PPT Lidocaine axonal - 4% ± 4 

STN SNc PBS – - 4% ± 2 

STN SNc Lidocaine axonal - 84% ± 3 

STN PPT PBS – - 1% ± 3 

STN PPT Lidocaine axonal - 46% ± 6 

STN SNc Kynurenate iGluRs - 46% ± 4 

STN SNc MCPG mGluRs - 3% ± 1 

STN SNc Scopolamine mAchRs - 28% ± 5 

STN SNc Mecamylamine nAchRs - 28% ± 5 

PPT SNc PBS – - 2% ± 2 

PPT SNc Lidocaine axonal - 90% ± 3 

PPT STN PBS – - 5% ± 3 

PPT STN Lidocaine axonal - 50% ± 8 

PPT STN Kynurenate + MCPG iGluRs + mGluRs - 23% ± 6 

PPT STN 
Scopolamine + 

mecamylamine 
mAchRs + nAchRs - 26% ± 3 
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Data collation and statistical analysis 

MFB, STN, or PPT stimulation-evoked dopamine efflux were quantified by extraction of 

data points occurring within the range of 0.25 sec pre- and 2.0 sec post-stimulation from 

the recorded oxidation current in the striatum at 30 sec intervals over the course of the 

recording period.  The mean change in dopamine oxidation current, corresponding to 

stimulation-evoked dopamine efflux, was converted to a mean dopamine concentration 

(µM) by post-experiment in vitro calibration of the carbon fiber electrode in solutions of 

dopamine (2-10 µM) using a flow injection system (Michael and Wightman, 1999).  For 

each animal, changes in stimulation-evoked dopamine concentration after infusion were 

expressed as mean percent changes with respect to pre-infusion baseline responses 

(100%).  Mean peak levels in dopamine concentration following the infusion were 

statistically compared to pre-infusion baseline responses using paired two-tailed t-tests 

with the alpha level set at 0.05. 

 

Histology 

Upon the completion of each experimental session, an iron deposit was made in the 

stimulation and recording site by passing direct anodic current (100 μA and 1 mA, 

respectively) for 10 sec through the stimulating and recording electrodes, and 1.0 µl 

cresyl violet stain was infused into the cannula site.  Mice were then euthanized with a 

0.25 ml intracardial injection of urethane (0.345 g/ml).  Brains were removed, immersed 

overnight in 10% buffered formalin containing 0.1% potassium ferricyanide, and then 

stored in 30% sucrose/ 10% formalin solution until sectioning.  After fixation, 30 µm 

coronal sections were sliced in a cryostat at -30°C, with a Prussian blue spot resulting 
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from a redox reaction of the ferricyanide marking the stimulation site.  Placements of 

stimulating electrodes, recording electrodes, and drug infusion cannulae were determined 

under a light microscope and recorded on representative coronal diagrams (Paxinos and 

Franklin, 2001). 

 

Chemicals 

Urethane, lidocaine, kynurenate, MCPG, scopolamine, and mecamylamine were obtained 

from Sigma-Aldrich Chemical Co. (St Louis, MO, USA).  All chemicals, with the 

exception of urethane (distilled water), were dissolved in sterile PBS (pH~7.4). 

 

Results 

Stereotaxic placements of infusion cannulae, recording and stimulating electrodes 

Recording electrode placements (n = 56) were confined to the striatum (range in mm: 

1.34 to 1.54 anterior to bregma, 1.30 to 1.60 lateral to midline, and 2.40 to 2.70 ventral to 

dura; Fig. 1A).  Stimulating electrode tips (n = 20) were localized within the MFB (range 

in mm: 1.94 to 2.18 mm posterior to bregma, 1.00 to 1.20 mm lateral to midline, and 3.80 

to 4.10 mm ventral to dura; Fig. 1B).  Stimulating electrode tips (n = 28) and infusion 

cannula tip placements (n = 16) were accurately positioned within the STN (range in mm: 

1.94 to 2.18 posterior to bregma, 1.50 to 1.70 lateral to midline, and 3.90 to 4.20 ventral 

to dura; Fig. 1B), and infusion cannula tip placements (n = 28) were localized within the 

SNc (range in mm: 2.92 to 3.16 posterior to bregma, 1.40 to 1.60 lateral to midline, and 

3.60 to 3.90 ventral to dura; Fig. 1C).  The tips of stimulating electrodes (n = 24) and 

infusion cannula (n = 8) were confined within the PPT (range in mm: 0.39 to 0.63 
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posterior to lambda, 1.15 to 1.40 lateral to midline, and 2.60 to 2.90 ventral to dura; Fig. 

1D).    

 

 

 

Fig. 1.  Representative coronal sections of the mouse brain (adapted from the atlas of 

Paxinos and Franklin, 2001), with dark gray shaded areas indicating the placements of 

carbon fiber recording electrodes in the striatum (A), stimulating electrodes or drug 

infusion cannulae in the medial forebrain bundle (MFB) (B), subthalamic nucleus (STN) 

(B), substantia nigra compacta (SNc) (C), or pedunculopontine tegmental nucleus (PPT) 

(D).  Numbers correspond to mm from bregma.    
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Effects of intra-SNc or PPT lidocaine or SNc GluR blockade on MFB stimulation-evoked 

dopamine efflux 

With respect to pre-infusion baseline levels, MFB stimulation-evoked striatal dopamine 

efflux was not significantly altered at 5 min following PBS infusion into the SNc (n = 4; 

98.1% ± 0.8, p = 0.09; Fig. 2A and C) or PPT (n = 4; 97.4% ± 1.1, p = 0.10; Fig. 2B and 

D).  Intra-SNc infusion of lidocaine significantly increased MFB stimulation-evoked 

striatal dopamine levels from pre-infusion baseline levels (n = 4; 161.6% ± 12.4, p = 

0.03; Fig. 2A and C) with the peak increase occurring 5 min post-infusion.  However, 

lidocaine infused into the PPT did not significantly alter MFB stimulation-evoked 

dopamine efflux in the striatum assessed at 5 min following infusion (n = 4; 95.8% ± 3.9, 

p = 0.35; Fig. 2B and D).  Infusion of the iGluR antagonist kynurenate into the SNc also 

had no significant affect on MFB stimulation-evoked striatal dopamine efflux assessed at 

5 min following infusion (n = 4; 96.8% ± 3.9, p = 0.472; Fig. 2A and C). 
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Fig. 2.  Mean amperometric recordings of dopamine release in the striatum evoked by 

electrical stimulation of the dorsal portion of the medial forebrain bundle (A and B) and 

corresponding mean peak percentages (C and D).  Profiles illustrate mean peak effects in 

response to substantia nigra compacta (SNc) (A) or pedunculopontine tegmental nucleus 

(PPT) (B) microinfusions of sterile phosphate-buffered saline (PBS, pH~7.4) or lidocaine 

(lid) or the ionotropic glutamate receptor antagonist kynurenate (kyn).  Time zero 

indicates the start of the train of 20 pulses at 50 Hz.  * Significant change in striatal 

dopamine concentration after infusion compared to pre-infusion baseline responses 

(100%). 
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Effects of intra-SNc or PPT lidocaine on STN stimulation-evoked dopamine efflux 

With respect to pre-infusion baseline levels, STN stimulation-evoked striatal dopamine 

efflux was not significantly altered at 5 min following PBS infusion into the SNc (n = 4; 

96.2% ± 1.7, p = 0.11; Fig. 3A and C) or PPT (n = 4; 99.5% ± 3.1, p = 0.87; Fig. 3B and 

D).  STN stimulation-evoked striatal dopamine efflux was significantly attenuated by 

lidocaine (4%) infused into either the SNc (n = 4; 15.9% ± 3.9, p < 0.01; Fig. 3A and C) 

or the PPT (n = 4; 54.2% ± 6.4, p = 0.02; Fig. 3B and D) compared to pre-infusion 

baseline levels, with the peak decrease occurring 5 min post-infusion. 

 

 

 

Fig. 3.  Mean amperometric recordings of dopamine release in the striatum evoked by 

electrical stimulation of the subthalamic nucleus (A and B) and corresponding mean peak 

percentages (C and D).  Profiles illustrate mean peak effects in response to substantia 
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nigra compacta (SNc) (A) or pedunculopontine tegmental nucleus (PPT) (B) 

microinfusions of sterile phosphate-buffered saline (PBS, pH~7.4) or lidocaine (lid).  

Time zero indicates the start of the train of 20 pulses at 50 Hz.  * Significant change in 

striatal dopamine concentration after infusion compared to pre-infusion baseline 

responses (100%). 

 

 

Effects of SNc GluR or AchR blockade on STN stimulation-evoked dopamine efflux 

With respect to pre-infusion baseline levels, intra-SNc infusion of the iGluR antagonist 

kynurenate (1 µg) significantly attenuated STN stimulation-evoked striatal dopamine 

levels (n = 4; 54.1% ± 3.0, p < 0.01; Fig. 4A and B) with the peak decrease occurring 5 

min post-infusion; however, intra-SNc infusion of the mGluR antagonist MCPG (1 µg) 

had no significant effect on STN stimulation-evoked striatal dopamine levels (n = 4; 

97.1% ± 1.1, p = 0.09; Fig. 4A and B).  STN stimulation-evoked striatal dopamine was 

also significantly reduced by intra-SNc infusion of the muscarinic AchR antagonist 

scopolamine (10 µg; n = 4; 72.2% ± 4.6, p < 0.01; Fig. 4A and B) or the nicotinic AchR 

antagonist mecamylamine (1 µg; n = 4; 71.8% ± 4.8, p = 0.01; Fig. 4A and B), with the 

peak decrease occurring 5 min after infusion of each drug.   
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Fig. 4.  Mean amperometric recordings of dopamine release in the striatum evoked by 

electrical stimulation of the subthalamic nucleus (A) and corresponding mean peak 

percentages (B).  Profiles illustrate mean peak effects in response to substantia nigra 

compacta (SNc) microinfusions of the ionotropic glutamate receptor antagonist 

kynurenate (kyn), the metabotropic glutamate receptor antagonist (+)-methyl-4-

carboxyphenylglycine (MCPG), the muscarinic acetylcholine receptor antagonist 

scopolamine (scop), or the nicotinic acetylcholine receptor antagonist mecamylamine 

(mec).  Time zero indicates the start of the train of 20 pulses at 50 Hz.  * Significant 

change in striatal dopamine concentration after infusion compared to pre-infusion 

baseline responses (100%).   
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Effects of intra-SNc or STN lidocaine on PPT stimulation-evoked dopamine efflux 

With respect to pre-infusion baseline levels, PPT stimulation-evoked striatal dopamine 

efflux was not significantly altered at 5 min following PBS infusion into the SNc (n = 4; 

98.2% ± 2.2, p = 0.50; Fig. 5A and C) or STN (n = 4; 95.7% ± 3.3, p = 0.28; Fig. 5B and 

D).  PPT stimulation-evoked dopamine in the striatum was completely abolished 

following intra-SNc lidocaine (4%) infusion (n = 4; 9.9% ± 2.6, p < 0.01; Fig. 5A and C) 

and significantly, but less dramatically, reduced following intra-STN lidocaine infusion 

(n = 4; 50.0% ± 7.7, p < 0.01; Fig. 5B and D), with the peak decrease at each site 

occurring 5 min post-infusion.   

 

 

 

Fig. 5.  Mean amperometric recordings of dopamine release in the striatum evoked by 

electrical stimulation of the pedunculopontine tegmental nucleus (A and B) and 

corresponding mean peak percentages (C and D).  Profiles illustrate mean peak effects in 
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response to substantia nigra compacta (SNc) (A) or subthalamic nucleus (STN) (B) 

microinfusions of sterile phosphate-buffered saline (PBS, pH~7.4), lidocaine (lid), a 

combination of the ionotropic glutamate receptor antagonist kynurenate (kyn) with the 

metabotropic glutamate receptor antagonist (+)-methyl-4-carboxyphenylglycine (MCPG), 

or a combination of the nicotinic acetylcholine receptor antagonist mecamylamine (mec) 

and the muscarinic acetylcholine receptor antagonist scopolamine (scop).  Time zero 

indicates the start of the train of 20 pulses at 50 Hz.  * Significant change in striatal 

dopamine concentration after infusion compared to pre-infusion baseline responses 

(100%).   

 

 

Effects of STN GluR or AchR blockade on PPT stimulation-evoked dopamine efflux 

With respect to pre-infusion baseline levels, infusion of a combination of the iGluR 

antagonist kynurenate (1 µg) and the mGluR antagonist MCPG (1 µg) into the STN 

significantly attenuated PPT stimulation-evoked dopamine efflux in the striatum (n = 4; 

77.5% ± 6.2, p = 0.03; Fig. 5B and D) with the peak decrease occurring 5 min post-

infusion.  PPT stimulation-evoked striatal dopamine was also significantly reduced by 

blockade of STN AchRs (n = 4; 74.2% ± 3.4, p < 0.01; Fig. 5B and D) via infusion of a 

combination of the mAchR antagonist scopolamine (10 µg) and the nAchR antagonist 

mecamylamine (1 µg), with the peak decrease occurring 5 min post-infusion.   
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Discussion 

As measured by in vivo FPA, stimulation of either the MFB, STN, or PPT elicits 

dopamine release in the dorsal striatum.  STN stimulation-evoked striatal dopamine 

release was markedly attenuated by inactivation of either the SNc or the PPT, and PPT 

stimulation-evoked dopamine release in the striatum was significantly reduced following 

inactivation of either the SNc or the STN.  Therefore, neural interactions between these 

nuclei are likely involved in the underlying mechanisms of DBS as a treatment for the 

motor symptoms of Parkinson’s disease.  The present findings provide a glimpse at the 

relative significance of the glutamatergic and cholinergic connections between the SNc, 

STN, and PPT in regards to striatal dopamine neurotransmission.  

 

Neuronal pathways mediating striatal dopamine release following MFB stimulation 

Lee et al. (2006) used a monoclonal antibody to TH to demononstrate in rats that the 

axons of ascending dopamine neurons from the SNc align closely along the dorsal 

surface of the STN with some fibers potentially passing through the nucleus itself.  A 

similar pattern of TH staining of catecholaminergic neurons has been shown in both 

monkeys and humans (Lee et al., 2005).  Thus, it is conceivable that clinical DBS of the 

STN is activating these axons of the MFB due to the close proximity and that HFS of the 

MFB may optimally enhance dopamine transmission in the basal ganglia (Lee et al., 

2006).  The present findings suggest that MFB stimulation is mediated predominately by 

activation of ascending SNc dopamine neurons, as lidocaine infusions into the SNc did 

not reduce MFB-evoked striatal dopamine release.  Previous studies have shown that 

pharmacological denervation of dopamine axonal transmission promotes a rapid 
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compensatory mechanism that dramatically enhances synthesis and storage of dopamine 

in terminal vesicles (Brown et al., 1991).  These findings are consistent with our 

observation of an enhancement in MFB stimulation-evoked striatal dopamine release 

following lidocaine inactivation of the SNc.  The present results show that stimulation of 

the MFB is not dependent upon SNc iGluRs, as kynurenate infused into the SNc had no 

effect on MFB-evoked dopamine, again suggesting that MFB stimulation is mediated 

predominately by activation of ascending SNc dopamine neurons rather than 

neurochemical activities within the SNc.  Altogether, these data may help to explain the 

clinical improvements in motor symptoms of Parkinson’s patients following stimulation 

of the border and white matter dorsal to the STN (Herzog et al., 2004; Saint-Cyr et al., 

2002; Voges et al., 2002). 

 

Neuronal pathways mediating striatal dopamine release following STN stimulation 

The present study examined several neuronal circuits in the mid- and hindbrain by which 

clinical DBS of the STN could increase striatal dopamine transmission.  Stimulation of 

the STN has been shown to alter neuronal activity within the SNc of rodents generating 

initial transient inhibitory (via activation of GABAergic interneurons in the SN reticulata) 

and more prolonged excitatory (via direct activation of dopaminergic neurons in the SNc) 

postsynaptic potentials (Lee et al., 2004), leading to increased firing of SNc neurons 

(Hammond et al., 1978; Iribe et al., 1999; Benazzou et al., 2000).  Changes in STN 

activity have also been shown to significantly affect discharge patterns of SNc neurons 

and striatal dopamine release in primates.  Shimo and Wichmann (2009) concluded that 

increases in the firing rate of SNc neurons following intra-STN injections of carbachol, 
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and decreases in the firing rate of SNc neurons after intra-STN injections of muscimol, 

may have resulted from changes in activity along the connections between the STN and 

SNc via an excitatory glutamatergic pathway well documented in rodent research 

(Hammond et al., 1978; Kita and Kitai, 1987; Smith and Parent, 1988).  However, the 

monosynaptic pathway between the STN and SNc has been shown to be relatively sparse 

in primates compared to rodents (Smith et al., 1990; Sato et al., 2000).  Therefore, the 

observed changes in SNc discharge patterns in primates may have been mediated 

primarily by excitatory SNc afferents from the PPT (Futami et al., 1995; Charara et al., 

1996).  The STN and PPT are reciprocally interconnected with excitatory projections 

(Futami et al., 1995; Lee et al., 2000), which have been shown to be both cholinergic and 

glutamatergic from the PPT to the STN (Moon-Edley and Graybiel, 1983; Oakman et al., 

1999).  In vivo electrochemical studies in rodents have previously shown that electrical 

and chemical stimulation of the PPT enhances dopamine efflux in the striatum (Forster 

and Blaha, 2003; Miller and Blaha, 2004); thus, it is highly probable that stimulation of 

the STN in primates may be increasing discharge patterns of SNc dopaminergic neurons 

to elicit striatal dopamine release indirectly through STN activation of the PPT.   

 The present results confirm that STN stimulation is dependent on activities of 

both the SNc and PPT, as inactivation of either of these nuclei decreased STN-evoked 

striatal dopamine efflux by 84.1% and 45.8%, respectively, compared to pre-infusion 

baseline responses.  Thus, these findings suggest that HFS of the STN works by 

activating the SNc directly via excitatory STN-SNc projections and indirectly via 

excitatory STN-PPT projections that, in turn, provide excitatory PPT inputs to SNc 

dopamine cells.  However, these findings cannot distinguish the extent to which STN 
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stimulation is activating dopamine cells in the SNc via reciprocal excitatory innervation 

between the STN and PPT.  Future experiments incorporating intra-STN infusions of 

selective glutamate and acetylcholine receptor antagonists would address this issue.  In 

addition, STN stimulation-evoked striatal dopamine release was significantly diminished 

by inactivation of the SNc; however, it was not completely abolished.  This is not 

surprising considering the relatively wide medial to lateral distribution of dopamine cell 

bodies in the midbrain comprising the SNc (see Fig. 1C), such that a single infusion of 

drug into the SNc likely fails to inactivate all of these cells.  Thus, the small remaining 

response (15.9%) can be attributed either to incomplete drug inactivation of the SNc.  

Alternatively, unavoidable stimulation of some of the dopamine axons within the medial 

forebrain bundle that project immediately dorsal to STN on their way to the striatum may 

also have contributed to the response following intra-SNc lidocaine inactivation.  This 

observation would support the notion that STN DBS may act by directly stimulating SNc 

dopamine axons passing near or through the STN (Lee et al., 2006).  

The STN and PPT are the only subcortical nuclei in the basal ganglia complex 

whose glutamate-containing neurons directly innervate nigrostriatal dopaminergic 

neurons (Kitai et al., 1999; Overton and Clark, 1997).  Stimulation of the STN has been 

shown to alter neuronal activity within the substantia nigra of rodents resulting in 

elevated glutamate release in the SNc (Windels et al., 2000).  Glutamate release in the 

SNc activates dopamine neurons that project to the striatum.  The present results show 

that STN stimulation is dependent upon iGLuRs, but not mGluRs, in the SNc as intra-

SNc kynurenate significantly decreased STN-evoked striatal dopamine release (54.1%) 

while intra-SNc MCPG had no effect.  These findings are consistent with our previous 
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findings and others (Balon et al., 2003; Forster and Blaha, 2003; Lavoute et al., 2006).  

The remaining STN stimulation-evoked striatal dopamine release (45.9%) following 

intra-SNc kynurenate infusion can be attributed to a major extent to excitatory 

cholinergic SNc inputs from the PPT.  However, as mentioned, it cannot be completely 

discounted that a small portion of the signal may have been due to unavoidable 

stimulation of a small number of dopamine axons immediately dorsal to the STN within 

the medial forebrain bundle.  Intra-SNc infusions of scopolamine or mecamylamine 

decreased STN-evoked striatal dopamine release by 27.8% and 28.2%, respectively.  

Accordingly, these results suggest that cholinergic projections from the PPT to the SNc 

mediate roughly half of the STN stimulation-evoked dopamine release in the striatum.  In 

sum, the present data confirms the significance of the PPT in STN stimulation-evoked 

striatal dopamine release and suggest that glutamatergic projections (acting on iGluRs in 

the SNc) and cholinergic projections (acting on mAchRs and nAchRs in the SNc) 

mediate approximately half of the striatal dopamine release following STN stimulation. 

 

Neuronal pathways mediating striatal dopamine release following PPT stimulation 

Excitatory glutamatergic and cholinergic inputs from the PPT directly project to 

dopamine-containing cell bodies in the SNc (Blaha and Winn, 1993; Forster and Blaha, 

2003; Moon-Edley and Graybiel, 1983; Oakman et al., 1999).  Our previous work using 

in vivo chronoamperometry to measure basal changes in dopamine release has shown that 

PPT stimulation elicits an initial transient increase in striatal dopamine release, in which 

this rapid increase in dopamine release could be blocked by a combination of intra-SNc 

infusions of nAchR and iGluR antagonists.  This transient stimulation time-locked 
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increase was followed by a delayed, prolonged increase in striatal basal dopamine release 

that could be selectively blocked by mAchR antagonists infused into the SNc (Forster 

and Blaha, 2003).  However, electrical stimulation of the PPT has also been shown to 

activate STN neurons via cholinergic and glutamatergic projections (Woolf and Butcher, 

1986; Hammond et al., 1983).  Therefore, in addition to direct cholinergic activational 

inputs to SNc dopaminergic cells, the PPT may also enhance striatal dopamine release via 

indirect PPT glutamatergic and cholinergic inputs to STN glutamatergic neurons that, in 

turn, innervate directly dopamine-containing cells in the SNc (Bevan and Bolam, 1995; 

Lee et al., 2000).  The present results show that PPT stimulation-evoked striatal 

dopamine release is significantly dependent on activities of the SNc and STN, as 

inactivation of the SNc and STN lead to decreases in PPT-evoked striatal dopamine 

efflux of 90.1% and 50.0%, respectively, compared to pre-infusion baseline responses.  

Thus, these findings suggest that clinical DBS of the PPT may involve activation of the 

SNc directly via excitatory PPT-SNc projections and indirectly via excitatory PPT-STN 

projections that, in turn, provide excitatory inputs to SNc dopamine cells.  However, 

these findings cannot distinguish the extent to which PPT stimulation is activating 

dopamine cells in the SNc via reciprocal excitatory innervation between the STN to the 

PPT.  Future experiments incorporating intra-PPT infusions of selective GluR antagonists 

would address this issue. 

The present study further examined the excitatory glutamatergic and cholinergic 

pathway from the PPT to the STN and found that PPT-evoked striatal dopamine release is 

dependent upon both GluRs and AchRs in the STN, as intra-STN GluR antagonists or 

AchR antagonists both significantly decreased PPT-evoked striatal dopamine release by 
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22.5% or 25.8%, respectively.  Together, the present data confirms the significance of the 

SNc, as well as the STN, in PPT stimulation-evoked striatal dopamine release and 

suggests that combined glutamatergic and cholinergic projections from the PPT to the 

STN are mediate approximately half of PPT-evoked dopamine release in the striatum. 

 

Conclusions 

The present study shows that electrical stimulation of the MFB, STN, or PPT elicits 

dopamine release in the striatum.  MFB stimulation evokes striatal dopamine through 

direct stimulation of dopamine axons and is independent of neurochemical activity within 

the SNc and PPT, while STN or PPT stimulation elicits striatal dopamine through several 

neural routes.  The relative contributions of the direct and indirect projections to the SNc 

that are involved in mediating STN or PPT stimulation-evoked dopamine release are 

summarized in Fig. 6A and B.  STN-evoked dopamine release in the striatum is almost 

fully dependent upon (84.1%) activation of dopamine cells in the SNc, while also 

partially dependent upon projections from the PPT (45.9%).  Fig. 6A also illustrates the 

relative involvement of SNc iGluRs (45.9%) and mAchRs and nAchRs (27.8% and 

28.2%, respectively) in STN-evoked striatal dopamine release.  PPT-evoked striatal 

dopamine release was highly dependent upon activation of dopamine cells in the SNc 

(90.1%), and partially dependent upon activation of STN cells that project to the SNc 

(50.0%), equivalent to the relative involvement of STN GluRs or AchRs (22.5% + 

25.8%). 
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Fig. 6.  Summary of relative contributions of neuronal projections mediating subthalamic 

nucleus (STN) (A) or pedunculopontine tegmental nucleus (PPT) (B) stimulation-evoked 

dopamine release in the striatum (stri).  ACh: acetylcholine; Glu: glutamate; m/nAchR: 

muscarinic/nicotinic acetylcholine receptor; iGluR: ionotropic glutamate receptor; SNc: 

substantia nigra compacta.   

 

 

  In relation to DBS as a treatment for Parkinson’s disease, these findings support 

research indicating that DBS of the STN, as well as the PPT, provides therapeutic 

benefits due to increased extracellular levels of dopamine in the striatum (Lee et al., 

2009).  Although these studies were conducted in intact animals, future experiments 

using the present neurochemical recording procedures in 6-OHDA lesioned mice would 

provide knowledge of the involvement of these pathways in an animal model of 

Parkinson’s disease.  Another intriguing future experiment could be monitoring 

dopamine concentrations while stimulating the STN and PPT simultaneously, as clinical 
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studies have shown combined STN and PPT DBS to be more therapeutically efficacious 

than DBS of the STN or PPT alone on certain symptoms, such as the control of axial 

motor impairments (Stefani et al., 2007).  Understanding the underlying mechanisms of 

DBS of the STN and the interconnected PPT could lead to improvements in stimulation 

locations and parameters, which may prove invaluable in improving DBS procedures and 

enhancing its clinical efficacy for the treatment of Parkinson’s disease. 
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Chapter 6. Substantia Nigra Compacta Glutamate Receptors Modulate 

Dopamine Release in the Striatum 

 

The nigrostriatal dopamine pathway, comprised of dopamine-containing neurons in the 

substantia nigra compacta (SNc) and their projections to the striatum, is integral in motor 

functioning, including the selection and initiation of contextually appropriate motor 

patterns (Hauber, 1998; Redgrave et al., 1999).  The dopaminergic neurons of the SNc 

degenerate in Parkinson’s disease, leading to reduced dopamine levels in the striatum 

and, subsequently, clinical symptoms such as bradykinesia, tremor, and rigidity (Fearnley 

and Lees, 1991; Olanow and Tatton, 1999).  Identifying receptors that modulate the 

activity of dopamine neurons in the SNc may help in the development of novel 

therapeutic strategies for treating the symptoms of Parkinson’s disease and perhaps even 

slowing the progression of the disease.  The subthalamic nucleus (STN) and the 

pedunculopontine tegmental nucleus (PPT) provide significant glutamatergic excitatory 

inputs to the SNc, which induce burst firing of SNc dopamine neurons resulting in 

sustained release of dopamine in the striatum (Grillner and Mercuri, 2002; Kitai et al, 

1999; Overton and Clark, 1997).  Glutamatergic input to the SNc has received a great 

deal of attention based on findings that suggest overactivity of STN glutamatergic 

projections in Parkinson’s disease and the potential contributory role of long-lasting 

glutamate receptor stimulation in the degeneration of dopaminergic neurons (Rodriguez 

et al., 1998).  The present study expands on the involvement of these projections in 

Parkinson’s disease by focusing on their modulatory control of dopamine release in the 

striatum.  
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Previous studies have shown that the effects of glutamate in the SNc are mediated 

by ionotropic glutamate receptors (iGluRs), which activate ion-gated channels, and 

metabotropic glutamate receptors (mGluRs), which activate slow and more complex 

effects mediated by G-coupled protein secondary messenger systems (Chatha et al, 2000; 

Valenti et al, 2005).  Three iGluR subclasses have been identified based on their 

definitive agonist and include N-methyl-D-aspartic acid (NMDA), -amino-3-hydroxyl-

5-methyl-4-isoxazole-propionate (AMPA), and kainate, with the latter 2 sometimes 

collectively referred to as non-NMDA receptors (Hollmann and Heinemann, 1994).  The 

relative contribution of these glutamate receptor subtypes in the SNc in mediating STN 

glutamatergic activation of fast phasic activity of the nigrostriatal dopamine system 

remains largely unknown.  Therefore, the present study investigated the extent to which 

each of these GluR subtypes is involved in mediating striatal dopamine release by 

infusing NMDA, AMPA/kainate, and mGluR antagonists into the SNc while recording 

STN stimulation-evoked dopamine efflux in the striatum using in vivo fixed potential 

amperometry with carbon fiber microelectrodes.   

 

Experimental procedures 

All experiments were approved by the Institutional Animal Care and Use Committee at 

the University of Memphis and conducted in accordance with the NIH Guidelines for the 

Care and Use of Laboratory Animals.  Efforts were made to reduce the number of 

animals used and to minimize animal pain and discomfort. 
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Animals and surgery 

Sixteen male C57BL/6J mice (Jackson Laboratories, Bar Harbor, ME, USA), 8-11 weeks 

of age and weighing 20-27 g at the time of surgery, were used. Mice were housed four 

per cage at 21 ± 1ºC with a 12 h light: 12 h dark cycle (lights on at 0600 h).  Food and 

water were available ad libitum.  Mice were anesthetized with urethane (1.5 g/kg, i.p.) 

and mounted in a stereotaxic frame (David Kopf Instruments, Tujunga, CA, USA) with a 

mouse head-holder adaptor (Stoelting, Wood Dale, IL, USA).  A temperature-regulated 

heating pad (TC-1000; CWE Inc., New York, NY, USA) maintained body temperature at 

36 ± 0.5°C.  All stereotaxic coordinates (AP from bregma, ML from midline, and DV 

from dura, in mm) were determined from the mouse atlas of Paxinos and Franklin (2001).  

In each mouse, a concentric bipolar stimulating electrode (SNE-100; Rhodes Medical 

Co., CA, USA) was implanted into the left STN (coordinates: AP -2.0, ML +1.6, DV -

4.0).  A 31 g stainless-steel guide infusion cannula was implanted into the left SNc, with 

the guide cannula tip 2 mm above site (coordinates: AP -3.1, ML +1.5, DV -3.8).  An 

Ag/AgCl reference and stainless-steel auxiliary electrode combination was placed on 

contralateral cortical tissue approximately 2.0 mm posterior to bregma, and a carbon fiber 

recording electrode (250 μm length x 10 μm o.d.; Thornel Type P, Union Carbide, 

Pittsburgh, PA, USA) was then implanted into the left striatum (coordinates: AP 1.4, 

ML +1.4, DV -2.5).  

 

Fixed potential amperometry and electrical stimulation 

Amperometric recordings in a Faraday cage consisted of applying a fixed potential (+0.8 

V) to the recording electrode and monitoring dopamine oxidation current continuously 
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(10K samples/sec) with an electrometer filtered at 50 Hz.  Approximately 10 min 

following implantation of the electrodes, a series of 0.5 ms duration cathodal monophasic 

current pulses (20 pulses at 50 Hz applied every 30 sec at 800 µAmps) was delivered to 

the stimulating electrode via an optical isolator and programmable pulse generator (Iso-

Flex/Master-8; AMPI, Jerusalem, Israel).  Fixed potential amperometry with carbon fiber 

electrodes has been confirmed as a valid technique for real-time monitoring of changes in 

striatal dopamine oxidation current evoked by electrical stimulation of afferent inputs to 

midbrain dopamine neurons (Dugast et al., 1994; Forster and Blaha, 2003; Lester et al., 

2008).  

  

Drug microinfusions 

Intra-SNc infusions were performed by backloading each drug into a fibreglass cannula 

(80 m o.d., Polymicro Tech. Inc., AZ, USA) connected via PE10 tubing to a 5 l 

microsyringe (Scientific Glass Engineering Inc., Austin, TX, USA) mounted on a 

microinfusion pump (Stoelting, Wood Dale, IL, USA).  After a 10 min baseline recording 

period, the cannula was inserted 2 mm beyond the guide cannula tip, and 1.0 µl infusions 

were made over a 1.5 min period.  Separate groups of mice received intra-SNc infusions 

of the following drugs: the mGluR antagonist (+)-α-methyl-4-carboxyphenylglycine 

(MCPG) (2.0 µg), the NMDA receptor antagonist (±)-3-(2-carboxypiperazin-4-yl)-

propyl-1-phosphonic acid (CPP) (1.0 µg), and the AMPA/kainate receptor antagonist 6-

cyano-7-1fitroquinoxaline-2,3-dione (CNQX) (0.2 µg).  Drugs were prepared 

immediately before use at doses determined by preliminary studies in this laboratory.  
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Separate phosphate-buffered saline (PBS, pH~7.4) infusions served as drug effect 

controls. 

 

Data collation and statistical analysis 

STN stimulation-evoked dopamine efflux were quantified by extraction of data points 

occurring within the range of 0.25 sec pre- and 2.0 sec post-stimulation at 30 sec intervals 

from the recorded oxidation current.  Mean changes in striatal dopamine oxidation 

current, corresponding to STN stimulation-evoked dopamine efflux, were converted to 

mean dopamine concentrations (µM) by post-experiment in vitro calibration of the 

carbon fiber electrode in solutions of dopamine (2-10 µM) using a flow injection system 

(Michael and Wightman, 1999).  For each animal, changes in stimulation-evoked 

dopamine concentration after infusion were expressed as mean percent changes with 

respect to pre-infusion baseline responses (100%).  Mean peak levels in dopamine 

concentration following the infusion were statistically compared to pre-infusion baseline 

responses using paired two-tailed t-tests.  In order to compare the relative contributions of 

NMDA and AMPA/kainate SNc receptors, mean peak percentage changes in dopamine 

concentration were compared between the mice receiving intra-SNc infusion of CPP and 

those receiving intra-SNc CNQX using independent two-tailed t-tests.  The alpha level 

for all analyses was set at 0.01. 

 

Histology 

At the end of each experiment, an iron deposit was made by passing direct anodic current 

(100 μA for 10 sec) through the stimulating and recording electrodes, and 1.0 µl cresyl 
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violet stain was infused through the cannula.  Mice were then euthanized with a 0.25 ml 

intracardial injection of urethane (0.345 g/ml).  Brains were removed, immersed 

overnight in 30%/10% sucrose/formalin plus 0.1% potassium ferricyanide until 

sectioning.  After fixation, 30 µm coronal sections were sliced in a cryostat at -30°C, and 

placements of stimulating electrodes, recording electrodes, and drug infusion cannulae 

were determined under a light microscope and recorded on representative coronal 

diagrams (Paxinos and Franklin, 2001). 

 

Chemicals 

Urethane, CPP, CNQX, and MCPG were obtained from Sigma-Aldrich Chemical Co. (St 

Louis, MO, USA).  All chemicals, with the exception of urethane (distilled water), were 

dissolved in sterile PBS (pH~7.4). 

 

Results 

Stereotaxic placements of infusion cannulae, recording and stimulating electrodes 

Recording electrode placements (n = 16) were confined to the dorsal striatum (range in 

mm: 1.34-1.54 anterior to bregma; 1.30-1.60 lateral to midline; 2.40-2.70 ventral to dura) 

(Fig. 1A).  Stimulating electrode tips (n = 16) were positioned within the STN (range in 

mm: 1.94-2.18 posterior to bregma; 1.50-1.70 lateral to midline; 3.90-4.20 ventral to 

dura) (Fig. 1B).  Cannula tip placements (n = 16) were localized within the SNc (range in 

mm: 2.92-3.16 posterior to bregma; 1.40-1.60 lateral to midline; 3.60-3.90 ventral to 

dura) (Fig. 1C).   
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Fig. 1.  Representative coronal sections of the mouse brain (adapted from the atlas of 

Paxinos and Franklin, 2001), with shaded areas indicating the placements of (A) 

amperometric recording electrodes in the striatum, (B) stimulating electrodes in the 

subthalamic nucleus (STN), (C) drug infusion cannulae in the substantia nigra compacta 

(SNc). Numbers correspond to mm from bregma. 

 

 

Effects of GluR blockade on STN stimulation-evoked dopamine efflux  

Intra-SNc infusion of PBS (n = 4) did not significantly alter STN stimulation-evoked 

striatal dopamine efflux from pre-infusion baseline levels (96.2% ± 1.7 at 5 min post-

infusion, p = 0.110) (Fig. 2A and B).  Infusion of the mGluR antagonist MCPG (2.0 µg; n 

= 4) also had no significant effect on STN-evoked striatal dopamine efflux (97.1% ± 1.1 

at 5 min post-infusion, p = 0.084) (Fig. 2A and B).  However, intra-SNc infusion of the 

NMDA receptor antagonist CPP (1.0 µg; n = 4) or the AMPA/kainate receptor antagonist 
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CNQX (0.2 µg; n = 4) significantly decreased evoked dopamine efflux, reaching a 

maximum of 60.1% ± 5.2 and 67.6% ± 2.3 respectively (p < 0.01) at 5 min post-infusion 

(Fig. 2A and B).  The peak percent change of STN stimulation-evoked dopamine striatal 

release following intra-SNc CPP were not significantly different compared to the percent 

change following CNQX infusion into the SNc (p = 0.23). 

 

 

 

Fig. 2.  Mean amperometric recordings of dopamine release in the striatum evoked by 

electrical stimulation of the subthalamic nucleus (A) and corresponding mean peak 

percentages (B) following substantia nigra compacta (SNc) microinfusions of phosphate-
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buffered saline (PBS, pH~7.4), the metabotropic glutamate receptor antagonist (+)-

methyl-4-carboxyphenylglycine (MCPG), the NMDA receptor antagonist (±)-3-(2-

carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP), the AMPA/kainate receptor 

antagonist 6-cyano-7-1fitroquinoxaline-2,3-dione (CNQX).  Time zero indicates the start 

of the stimulation (20 pulses at 50 Hz).  * Significant change in striatal dopamine 

concentration after infusion compared to pre-infusion baseline responses (100%). 

 

Discussion  

STN stimulation-evoked dopamine release in the striatum as measured using in vivo fixed 

potential amperometry was significantly attenuated following infusion of an NMDA or 

AMPA/kainate antagonist into the SNc. In contrast, intra-SNc infusion of an mGluR 

antagonist, including drug vehicle (PBS), had no effect on STN stimulation-evoked 

dopamine release in the striatum.  The present results suggest that iGluRs in the SNc, 

compared to mGluRs, play a more critical role in mediating relatively brief excitatory 

glutamatergic activation of SNc dopamine neurons.  

 

The role of SNc mGluRs in mediating nigrostriatal dopamine activity 

The present finding that intra-SNc MCPG had no effect on STN stimulation-evoked 

dopamine release in the striatum warrants consideration.  The mGluRI subtype, 

belonging to the Group I mGluRs, is the predominant mGluR subtype localized to SNc 

dopamine cells (Kosinski et al., 1998; Testa et al., 1994), justifying the use of the Group I 

and II antagonist MCPG (Pin and Duvoisin, 1995; Riedel, 1996).  Furthermore, we 

utilized a dose of MCPG that has been effective in abolishing accumbal basal dopamine 
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efflux as evoked by electrical stimulation of the ventral subiculum of the hippocampus 

(Blaha et al., 1997).  Consequently, the results of the present study imply that mGluRs in 

the SNc are not employed by STN glutamatergic afferents to mediate striatal dopamine 

efflux.  Previous studies on the role of SNc mGluR receptors in nigrostriatal dopamine 

activity are somewhat conflicting.  The activation of mGluR1 subtype in the SNc has 

been shown to both excite and inhibit dopamine neurons (Fiorillo and Williams, 1998; 

Guatteo et al, 1999; Meltzer et al., 1997), while the activation of Group II mGluRs at 

STN-SNc synapses, most likely located presynaptically on glutamatergic terminals, 

inhibits glutamatergic transmission in SNc dopamine neurons (Bonci et al, 1997; Wang et 

al., 2005).  Our utilization of fixed potential amperometry allows for the measurement of 

phasic dopamine release, rather than basal extracellular levels of dopamine.  Thus, the 

rapid responses seen with STN-stimulation, generating burst firing of SNc dopamine 

neurons, are most likely not affected by the complex, relatively slower, actions of 

mGluRs.  While the findings of the present study are strengthened by similar previous 

findings that intra-SNc MCPG had no effect on brief PPT stimulation-evoked striatal 

dopamine release (Forster and Blaha, 2003), further studies involving various doses of 

MCPG and other mGluR antagonists are needed before the use of mGluRs by STN 

projections to the SNc can be excluded. In this regard, it is significant to note that 

prolonged stimulation of the STN has been shown to result in an initial short duration 

increase in phasic striatal dopamine release (~1 sec) that is followed by a lower but still 

elevated level of dopamine release (Lee et al., 2006).  This later inhibition of stimulation-

evoked phasic dopamine release was thought to reflect compensatory effects at the level 

of the SNc glutamate-containing terminal. Theoretically, activation of group II and III 
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mGluRs on glutamate-containing terminals may attenuate dopamine cell activity by 

reducing excessive glutamate release onto dopamine cells in the SNc, despite a 

continuous level of firing activity (Grillner and Mercuri, 2002; Mercuri et al., 1993). 

 

The role of SNc iGluRs in mediating nigrostriatal dopamine activity 

Both NMDA and non-NMDA receptors were shown to be involved in STN stimulation-

evoked dopamine in the striatum, as evidenced by significantly attenuated responses 

following intra-SNc NMDA or AMPA/kainate receptor antagonists.  The present results 

also indicate that NMDA and AMPA/kainate receptor subtypes have an equal role in 

modulating excitatory glutamatergic inputs arising from the STN, as the maximum 

percent decreases in STN-evoked striatal dopamine release post-infusion did not differ 

between the NMDA and AMPA/kainate receptor antagonists.  Activation of AMPA and 

kainate receptors opens membrane ion-channels to allow the rapid influx of positively 

charged sodium resulting in the generation of fast moment-to-moment excitatory post-

synaptic potentials (Borges and Dingledine, 1998).  NMDA receptors are highly 

conductive to the positive ion calcium, although the entry of calcium in the resting state is 

blocked by magnesium (Chapman, 2009).  Usually, activation of NMDA receptors 

requires colocalised AMPA/kainate receptors to depolarise first so that the entry of 

positive sodium displaces magnesium ions from the NMDA ion pore thus permitting 

calcium influx into the cell, consequently depolarizing it (Michaelis, 1998).  Thus, a 

similar degree of attenuation in STN-evoked striatal dopamine following blockade of 

SNc NMDA or AMPA/kainate receptors in the present study is not surprising.  Previous 

research has shown that synaptic potentials in dopamine neurons evoked by single 
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stimulating pulses are mediated predominantly by activation of AMPA/kainate receptors 

and to a smaller extent through NMDA receptor activation (Johnson and North, 1992; 

Mereu et al, 1991).  Whereas, a preferential role for NMDA receptors, compared to non-

NMDA receptors, in producing burst activity in SNc dopamine neurons has been 

described (Chergui et al., 1994; Overton and Clark, 1997).  It is possible that activation of 

NMDA receptors requires a larger amount of glutamate release than non-NMDA 

receptors, as high frequency stimulation, perhaps corresponding with burst firing, is 

required to evoke synaptic potentials with a large contribution of NMDA receptors 

(Grillner and Mercuri, 2002).  Nonetheless, it seems that glutamatergic excitation of 

dopamine neurons in the SNc, and subsequent striatal dopamine release, is mediated to 

some degree by both NMDA and AMPA/kainate receptors, as widespread distribution of 

both types of these subtype receptors on dopaminergic neurons in the SNc has been well 

established (Chatha et al., 2000).   

 

Conclusions 

The present results suggest that NMDA and AMPA/kainate receptors both play a 

significant role in modulating striatal dopamine release evoked by electrical stimulation 

of the STN.  Because glutamate receptors mediate synaptic transmission in the SNc, a 

vital site in the extrapyramidal motor circuit, pharmacological manipulation of these 

receptors may be able to alter dysfunctional neurotransmission and thus provide a 

promising therapeutic target for treating Parkinson’s disease.  Animal model studies 

suggest that altering the activity of these receptors pharmaceutically may serve to 

alleviate parkinsonian motor symptoms or perhaps even slow disease progression by 
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delaying dopamine neuron degeneration, thought to be associated with excitotoxicity 

caused by relatively high extracellular levels of glutamate.  For example, antagonists of 

NMDA and AMPA receptors have been shown to reverse motor symptoms and 

levodopa-induced dyskinesias in animal models (Gossel et al., 1995; Klockgether and 

Turski, 1990; Schwarz et al., 1996), as would be expected given the findings of the 

present study.  Although blocking SNc mGluRs had no effect on STN stimulation-evoked 

striatal dopamine release in the present study, pharmaceutical modulation of mGluRs 

have shown promise in providing neuroprotection of SNc dopamine neurons in animal 

models of Parkinson’s disease (Johnson et al., 2009), further suggesting a role for 

mGluRs, located presynaptically, in maintaining functional basal glutamate levels in the 

SNc (Grillner and Mercuri, 2002; Mercuri et al., 1993).  Therefore, GluRs represent 

promising targets for the development of nondopaminergic pharmaceutical therapies for 

the treatment of Parkinson’s disease, and more studies are necessary to determine the 

relative contributions of each receptor subtype in mediating afferent activation of the 

nigrostriatal dopamine system. 

 



73 
 

 Chapter 7.  Summary, Conclusions, and Implications for Future Research 

 

The experimental studies of Chapters 5 and 6 were undertaken to investigate important 

neural circuits that functionally contribute to phasic dopamine neurotransmission within 

the nigrostriatal dopaminergic system. These investigations were conducted with the 

purpose of extending current knowledge of the neural connectivity of nuclei, specifically 

the substantia nigra compacta (SNc), subthalamic nucleus (STN), and pedunculopontine 

tegmental nucleus (PPT), with projections that mediate striatal dopamine release and 

subsequently influence activity of the basal ganglia-thalamocortical motor circuit.  This 

chapter presents an overview of the present findings and their functional implications to 

pharmaceutical and surgical treatments for the motor symptoms of Parkinson’s disease.   

 Overall, using in vivo fixed potential amperometry the present studies show that 

electrical stimulation of the dorsal portion of the medial forebrain bundle (MFB), STN, or 

PPT, all of which are targets for clinical deep brain stimulation (DBS) procedures as a 

treatment for the motor symptoms of Parkinson’s disease, elicits dopamine release in the 

dorsal striatum.  Stimulation of the MFB, which consists of axons of ascending SNc 

dopamine neurons that project closely along the dorsal surface of the STN to the striatum, 

was investigated as a control for STN stimulation, as it has been suggested that DBS of 

the MFB may optimally enhance dopamine transmission in the basal ganglia, thus 

providing better therapeutic results compared to DBS of the STN (Lee et al., 2006).  The 

present findings confirm that MFB high frequency stimulation (HFS)-evoked striatal 

dopamine release is mediated predominately by activation of ascending SNc dopamine 

neurons, independent of activity within the SNc and PPT.  Striatal dopamine release 
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elicited by STN or PPT stimulation, however, occurs via more complicated neural 

interactions, which are likely involved in the underlying mechanisms of STN or PPT 

DBS as a treatment for the tremor, gait and postural symptoms of Parkinson’s disease.  

Reductions in striatal dopamine release following pharmacological blockade of axonal 

transmission or cholinergic/glutamatergic receptor populations was used to determine  the 

specific involvement of the SNc, STN, and PPT in mediating HFS-evoked striatal 

dopamine release.  The influence of these subcortical nuclei and their intrinsic receptor 

mechanisms on STN or PPT-driven nigrostriatal dopamine transmission is presented 

below. 

 

Subcortical Involvement in STN HFS-Evoked Nigrostriatal Dopamine Transmission 

The present studies examined several neuronal circuits in the mid- and hindbrain that 

could be involved in STN HFS-evoked dopamine release in the striatum.  Results 

confirmed that STN stimulation is dependent on activities of both the SNc and PPT, as 

pharmacological blockade of axonal transmission within either of these nuclei 

significantly decreased STN-evoked striatal dopamine efflux compared to pre-infusion 

baseline responses. Thus, these findings suggest that stimulation of the STN works by 

activating the SNc directly via excitatory STN-SNc projections and indirectly via 

excitatory STN-PPT projections that, in turn, provide excitatory PPT inputs to SNc 

dopamine cells.  The relative contributions of the direct and indirect projections to the 

SNc that are involved in mediating STN HFS-evoked dopamine release are summarized 

in Fig. 1A.  The present data highlight the significance of the PPT in STN HFS-evoked 

striatal dopamine release as neuronal projections through the PPT mediate roughly half 
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(45.9%) of STN HFS-evoked dopamine release in the striatum.   As expected STN-

evoked striatal dopamine release is almost fully dependent upon activation of dopamine 

cells in the SNc; however, blockade of axonal transmission within the SNc did not 

completely abolish STN HFS-evoked striatal dopamine release.  Under the present 

experimental conditions, it is likely that a single infusion of lidocaine or receptor 

blocking drug failed to inactivate the entire SNc, as well as unavoidable stimulation of 

some of the dopamine axons within the MFB that may also have contributed to the 

response elicited by STN stimulation.  It is important to note that in previous 

amperometric recording of STN stimulation-evoked dopamine release in rats (Lee at al., 

2006), this was avoidable given the relatively larger size of the STN in rats, compared to 

mice. 

 

 

 

Fig. 1.  Summary of relative contributions of neuronal projections mediating subthalamic 

nucleus (STN) (A) and pedunculopontine tegmental nucleus (PPT) (B) HFS-evoked 

dopamine release in the striatum (stri).  ACh: acetylcholine; Glu: glutamate; m/nAchR: 
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muscarinic or nicotinic acetylcholine receptor; iGluR: ionotropic glutamate receptor; 

SNc: substantia nigra compacta. 

 

 

PPT receptor mechanisms mediating STN HFS-evoked nigrostriatal dopamine 

transmission 

Although the present studies only included intra-PPT infusions of lidocaine, rather than 

receptor antagonists, previous studies have shown that the PPT receives glutamatergic 

projections from the STN and prefrontal cortex (Kita and Kitai, 1987; Sesack et al., 

1989), as well as GABAergic projections from the substantia nigra reticulata (SNr) and 

globus pallidus (Kang and Kitai, 1990; Moriizumi and Hattori, 1992).  Both NMDA and 

AMPA receptors have been shown to be located on cholinergic and glutamatergic cells 

within the PPT, and activation of both types of iGluRs increase PPT activation (Steiniger 

and Kretschmer, 2003) (see Fig. 2); however, activation of both A and B GABA receptor 

subtypes has been shown to inhibit activity of PPT neurons, although the precise location 

of these GABA receptors in the PPT remain unclear (Saitoh et al., 2003).  Furthermore, 

mAchRs (specifically of the M2 family) have been localized presynaptically on PPT 

cholinergic neurons (Vilaro et al., 1992).  Intra-PPT infusions of the non-selective 

mAChR antagonist scopolamine enhances striatal dopamine release and dopamine-

dependent behaviors such as locomotion and stereotypy; both of which can be blocked by 

the cholinergic agonist carbachol infused into the PPT (Chapman et al., 1997; Mathur et 

al., 1997). These mAChRs are most likely autoreceptors of the M2 family as intra-PPT 

infusion of the M2/4 selective mAChR antagonist methoctramine has been shown to 
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enhance striatal dopamine release (Miller and Blaha, 2004). Activation of M2-like 

mAChRs in the PPT results in hyperpolarization of mesopontine cholinergic cells 

(Luebke et al., 1993; Leonard and Llinas, 1994) and a net decrease in excitation to SNc 

dopaminergic cells resulting in lowered extracellular levels of striatal dopamine (Forster 

and Blaha, 2003). Therefore, M2-like mAChRs are thought to function as cholinergic 

autoreceptors involved in feedback inhibition at the level of PPT cholinergic cells, 

serving as regulators of information received by the PPT. 
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Fig. 2. Simplified basal ganglia circuitry depicting the muscarinic/nicotinic acetylcholine 

receptors (m/nAchRs), ionotropic/metabotropic glutamate receptors (i/mGluRs), and 

GABA-A/B receptors within the substantia nigra (SN), subthalamic nucleus (STN), and 

pedunculopontine tegmental nucleus (PPT) responsible for mediating nigrostriatal 

dopamine activity. + indicates excitatory effects upon receptor activation, and – indicates 

inhibitory effects upon receptor activation.  Note that the GABAergic projection from the 

globus pallidus externus to the STN has been omitted for clarity; however, activation of 

mAchRs on these incoming terminals has been shown to excite STN neurons by 

inhibiting GABA release in the STN (Shen and Johnson, 2000).  Thus, mAchRs located 

presynaptically on GABA terminals in the STN are receptors that mediate increases in 

dopamine activity not listed in this figure.  References corresponding to citation numbers: 

1: Picciotto et al., 1999; 2: Meltzer et al., 1997; 3: Schilstrom et al., 2003; 4: Paladini et 

al., 1999; 5: Forster et al., 2001; 6: Grillner and Mercuri, 2002; 7: Chergui et al., 1994; 8: 

Kearney and Albin, 2000; 9: Steiniger and Kretschmer, 2003; 10: Yin and French, 2000; 

11: Bonci and Malenka, 1999; 12: Manzoni and Williams, 1999; 13: Prior and Singh, 

2000; 14: Charara et al., 2000; 15: Miller and Blaha, 2004. 

 

 

Subcortical Involvement in PPT HFS-Evoked Nigrostriatal Dopamine Transmission 

The present results show that PPT HFS-evoked striatal dopamine release is significantly 

dependent on activities of the SNc and STN, as inactivation of the SNc or the STN both 

led to significant decreases in PPT-evoked striatal dopamine efflux compared to pre-drug 

infusion baseline responses.  Thus, these findings suggest that clinical DBS of the PPT 
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may involve activation of the SNc directly via excitatory PPT-SNc projections and 

indirectly via excitatory PPT-STN projections that, in turn, provide excitatory inputs to 

SNc dopamine cells.  The relative contributions of the direct and indirect projections to 

the SNc that are involved in mediating STN HFS-evoked dopamine release are 

summarized in Fig. 1B.  As expected PPT HFS-evoked dopamine release in the striatum 

is almost fully dependent upon activation of dopamine cells in the SNc, either directly or 

indirectly.  The present data again highlight the significance of the PPT-STN reciprocal 

connectivity, as neuronal projections through the STN mediate 50.0% of the PPT HFS-

evoked dopamine release in the striatum.  Thus, the present results suggest that the 

connectivity of the PPT and STN may be equally as important as the connectivity 

between the PPT and SNc; however, the neurochemical nature of this pathway has 

received historically less attention compared to the PPT-SNc projections.  For this reason, 

the present studies included experiments designed to distinguish the neurotransmitters 

involved in activating the STN following PPT HFS. 

 

STN receptor mechanisms mediating PPT HFS-evoked nigrostriatal dopamine 

transmission 

In further examining the excitatory glutamatergic and cholinergic pathway from the PPT 

to the STN, the present findings suggest that PPT HFS-evoked striatal dopamine release 

is dependent upon both glutamate receptors (GluRs) and acetylcholine receptors (AchRs) 

in the STN, as intra-STN GluR antagonists or AchR antagonists both significantly 

decreased PPT-evoked striatal dopamine release by 22.5% or 25.8%, respectively.  Thus, 

it seems that combined glutamatergic and cholinergic projections from the PPT to the 
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STN mediate approximately half of PPT-evoked dopamine release in the striatum.  

Although the use of broad-spectrum receptor antagonists in these studies precludes 

identification of specific receptor subtypes, both ionotropic and metabotropic GluRs 

(i/mGluRs) have been found in the STN (Gotz et al., 1997; Testa et al., 1994).  All iGluR 

subtypes, which are N-methyl-D-aspartic acid (NMDA), -amino-3-hydroxyl-5-methyl-

4-isoxazole-propionate (AMPA), and kainate (with the latter 2 sometimes collectively 

referred to as non-NMDA receptors), have been localized postsynaptically within the 

STN (Albin et al., 1989; Clarke and Bolam, 1998).  Activation of either NMDA and non-

NMDA receptors is thought to excite STN neurons, as studies utilizing in vitro slice 

preparations show that the application of both NMDA and non-NMDA glutamatergic 

antagonists reduce excitatory firing of STN neurons (Chergui et al., 1994; Shen and 

Johnson, 2000).  Future studies recording PPT HFS-evoked striatal dopamine release 

before and after intra-STN infusion of specific NMDA or AMPA/kainate receptor 

antagonists would help to determine the relative extent to which these iGluRs within the 

STN mediate pathways important to modulating striatal dopamine activity from PPT 

glutamatergic afferents.   

 The mGluRs are subdivided into 3 groups, I, II, and III, all of which are expressed 

to some degree in the STN (Testa et al., 1994).  The mGluRI and mGluRIII receptors are 

thought to be located postsynaptically and presynpatically, respectively, while the 

mGluRII are thought to be located both presynaptically and postsynaptically (Cartmell 

and Schoepp, 2000; Wang et al., 2000).  Activation of mGluRs in the STN has been 

shown to both increase and inhibit excitation of STN glutamate neurons (Abbott et al., 

1997; Awad et al., 2000; Awad-Granko and Conn, 2001).  Although the localization of 
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STN mGluRs and their role in mediating nigrostriatal dopamine release is unclear, it has 

been suggested that activation of presynaptic mGluRIII subtypes on glutamate terminals 

reduces STN activity while activation of postsynaptic mGluRII subtypes increases STN 

activity (Kearney and Albin, 2000).  The effects of STN mGluR activation on STN 

activity and dopamine-related behaviors appears to be occurring through several 

mechanisms that are still unclear (Kearney and Albin, 2000); therefore, future studies 

recording PPT HFS-evoked striatal dopamine release before and after infusion of 

selective mGluR antagonists would be useful in elucidating their role in mediating 

nigrostriatal dopamine transmission. 

The use of a combination of broad-spectrum AchR antagonists in the present 

studies also prevented identification of the specific STN muscarinic and nicotinic AchRs 

(m/nAchRs) utilized by PPT afferents to the STN.  Cholinergic agonists such as 

carbachol have been shown to excite STN neurons (Flores et al., 1996); however, nAchR 

agonists alone had no apparent effect on neuronal cell activity in the STN (Feger et al., 

1979).  Furthermore, the mAchR antagonist scopolamine, but not the nAchR antagonist 

mecamylamine, have been shown to block acetylcholine-evoked STN cell excitations 

(Feger et al., 1979); thus, it may be postulated that STN AchRs are primarily muscarinic 

(see Fig. 2). The M3 mAchR subtype, in particular, is prominently expressed in the STN 

(Levey et al., 1994), and Shen and Johnson (2000) found that the mAchR agonist 

muscarine reduced the amplitude of GABA inhibitory postsynaptic currents, while the 

effect was blocked by the non-subtype specific mAchR antagonist scopolamine as well as 

an M3 specific mAchR antagonist.  These investigators concluded that muscarinic 

agonists in the STN act at presynaptic M3 mAchRs on GABA afferents, causing 
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disinhibition (excitation) of STN neurons, thereby permitting afferents from the PPT to 

have a greater excitatory influence on STN output.  Thus, STN mAchRs, particularly of 

the M3 subtype, may be involved in the indirect activation of SNc dopaminergic cells via 

PPT-STN-SNc pathways (Shen and Johnson, 2000). 

 

SNc Receptor Mechanisms Mediating STN and PPT HFS-Evoked Nigrostriatal 

Dopamine Transmission 

Intra-SNc infusions of specific GluR and AchR antagonists helped to uncover the SNc 

receptor mechanisms that mediate STN and PPT HFS-evoked striatal dopamine release.  

The present findings suggest that activation of both GluRs and AchRs in the SNc is 

involved nigrostriatal dopamine transmission elicited by STN or PPT stimulation.  In 

regards to GluRs, the present results suggest that iGluRs in the SNc, compared to 

mGluRs, play a more critical role in mediating relatively brief excitatory glutamatergic 

activation of SNc dopamine neurons.  Fig. 2 illustrates i/mGluRs, m/nAchRs, and GABA 

receptors within the SNc and SNr responsible for mediating nigrostriatal dopamine 

activity.  Both NMDA and non-NMDA receptors were shown to be involved in STN 

HFS-evoked dopamine in the striatum, as evidenced by significantly attenuated responses 

following intra-SNc NMDA or AMPA/kainate receptor antagonists.  These findings were 

not surprising given that widespread distribution of both types of these subtype iGluRs on 

dopaminergic neurons in the SNc has been well established (Chatha et al., 2000).   

However, the present finding that infusion of an mGluR antagonist into the SNc 

had no effect on STN HFS-evoked dopamine release in the striatum warrants 

consideration.  Previous studies on the role of SNc mGluR receptors in nigrostriatal 
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dopamine activity are somewhat conflicting, as activation of mGluRs in the SNc has 

elicited both excitation and inhibition of nigrostriatal dopamine activity (Bonci et al, 

1997; Fiorillo and Williams, 1998; Guatteo et al, 1999; Meltzer et al., 1997; Wang et al., 

2005).  The mGluRI subtype is the predominant mGluR subtype localized to SNc 

dopamine cells (Kosinski et al., 1998; Testa et al., 1994); however, group II and III 

mGluRs are thought to be located presynaptically within the SNc (Mercuri et al., 1993).  

Activation of group II and III mGluRs on glutamate-containing terminals may attenuate 

dopamine cell activity by reducing excessive glutamate release onto dopamine cells in the 

SNc, despite a continuous level of firing activity (Grillner and Mercuri, 2002; Mercuri et 

al., 1993).  Indeed, continuous HFS of the STN has been shown to elicit a rapid increase 

in striatal dopamine release that quickly abates within two seconds of stimulation to 

approximately one-third the peak height of the initial increase (Lee et al., 2006), possibly 

reflecting a delayed inhibitory presynaptic regulation of glutamate release.  Thus, it is 

possible that the the relatively rapid (~1 sec duration) responses seen in the present 

studies utilizing in vivo fixed potential amperometry with STN-stimulation are not 

affected by the complex, relatively slower, actions of mGluRs.  Further studies utilizing 

longer term stimulation and selective mGluR antagonist infusions into the SNc are 

needed to clarify the role of these receptors mediating STN and/or PPT activation of SNc 

dopamine neurons, particularly in consideration that conventional DBS involves 

continuous stimulation of target structures. 

The use of broad-spectrum mAchR and nAchR antagonists in the present studies 

also did not permit identification of the specific receptor subtypes utilized by PPT 

afferents to the SNc.  However, excitation of midbrain dopaminergic neurons by 
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muscarine has been shown to be mediated by M1-like receptors (Lacey et al., 1990), and 

given that relatively high expression levels of mRNA for the M5 mAchR subtype in the 

SNc and the finding that the M5 subtype is the only mAchR to be definitively localized 

on SNc dopaminergic cells (Reever et al., 1997; Vilaro et al., 1990), SNc mAchRs of the 

M5 subtype are thought to be involved in the release of striatal dopamine following PPT 

stimulation (Forster et al., 2001; Forster and Blaha, 2003).  Nicotine administered locally 

into the SNc increases the firing of SNc dopaminergic neurons and enhances 

concentrations of dopamine metabolites in the striatum (Lichtensteiger et al., 1976, 

1982).  Several nAchR subunits, such as α3 to α7 and β2 to β3, have been shown to be 

present in the SNc (Champtiaux et al., 2002; Charpantier et al., 1998; Goldner et al., 

1997; Klink et al., 2001; Wonnacott et al., 2006).  In particular, cholinergic inputs from 

the PPT may enhance nigrostriatal dopaminergic transmission via activation of α4β2 and 

α7 nAchRs localized on dopaminergic cells in the SNc (Livingstone and Wonnacott, 

2009). 

 

Implications of the Current Findings to Parkinson’s Disease and DBS 

Furthering the current state of knowledge on the interconnectivity between important 

neural structures which can functionally influence nigrostriatal dopamine transmission 

allows for insight into potential pharmacological and surgical treatment of basal ganglia-

related disorders, such as Parkinson’s disease.  Results from the series of experiments in 

Chapters 5 and 6 add to the growing body of evidence supporting an important role of the 

STN and PPT in modulating striatal dopamine release and subsequent output from the 
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basal ganglia to the thalamus and motor areas of the cortex, thus influencing motor 

functioning. 

 

Glutamatergic and cholinergic receptor subtypes as targets for the treatment of 

Parkinson’s disease 

As the present results suggest that NMDA and AMPA/kainate receptors both play a 

significant role in modulating striatal dopamine release evoked by HFS of the STN, 

pharmacological manipulation of these receptors may be able to alter dysfunctional 

neurotransmission and thus provide a promising therapeutic target for treating 

Parkinson’s disease.  For example, antagonists of NMDA and AMPA receptors have 

been shown to reverse motor symptoms and levodopa-induced dyskinesias in 

parkinsonian animal models (Gossel et al., 1995; Klockgether and Turski, 1990; Schwarz 

et al., 1996).  Animal model studies also suggest that altering the activity of these 

receptors pharmaceutically may even serve to slow disease progression by delaying 

dopamine neuron degeneration, thought to be associated with excitotoxicity caused by 

relatively high extracellular levels of glutamate.  Specifically, NMDA receptors are 

known to mediate excitotoxicity caused by high levels of glutamate.  Therefore, 

activation of these receptors in the SNc may contribute to the degeneration of dopamine 

neurons in this region (Waxman and Lynch, 2005).  In support of this argument, NMDA 

antagonists have been noted to reduce or delay SNc degeneration and motor deficits 

caused by MPTP administration or 6-OHDA lesioning (Johnson et al., 2009).  Thus, 

blockade of NMDA receptors have been suggested to be a potentially useful strategy for 

slowing disease progression.  However, the widespread expression and diverse functional 
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roles of NMDA receptors raise concern that targeting these receptors would lead to 

serious unwanted side effects.  Clinical studies have therefore used weak NMDA receptor 

antagonists and have generally failed to find any therapeutic benefit when administered 

alone (without levodopa) (Johnson et al., 2009).  More promising studies suggest that 

selectively targeting NMDA receptor subtypes specific to regions relevant to Parkinson’s 

disease pathophysiology may represent safer neuroprotective options (Jin et al., 1997).  

As such, further clinical studies using more selective drugs targeting NMDA receptors 

are warranted.  Although blocking SNc mGluRs had no effect on relatively brief STN 

HFS-evoked striatal dopamine release in the present study, pharmaceutical modulation of 

mGluRs have shown promise in providing neuroprotection of SNc dopamine neurons in 

animal models of Parkinson’s disease (Johnson et al., 2009), further suggesting a role for 

mGluRs, located presynaptically on glutamate terminals in the STN, in maintaining 

functional non-toxic basal glutamate levels in the SNc (Grillner and Mercuri, 2002; 

Mercuri et al., 1993).  Therefore, GluRs represent promising targets for the development 

of nondopaminergic pharmaceutical therapies for the treatment of Parkinson’s disease, 

and more studies are necessary to determine the relative contributions of each receptor 

subtype in mediating afferent activation of the nigrostriatal dopamine system. 

Given the well known functional interactions of the cholinergic systems with the 

nigrostriatal dopaminergic system (for review see Lester et al., 2010), selective 

pharmaceutical agents acting on the various AchR subtypes existing heterogeneously at 

key anatomical sites in the brain also represent promising pharmaceutical targets in the 

treatment of Parkinson’s disease.  Historically, anticholinergics were the first available 

drugs for the alleviation of Parkinson’s symptoms, and are still used as secondary 
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treatments for Parkinson’s disease in conjunction with other antiparkinsonian drugs 

(Katzenschlager et al., 2003).  Centrally-acting anticholinergics, all specific for mAchRs, 

include benztropine (Cogentin), which is widely prescribed, and biperiden (Akineton), 

orphenadrine (Norflex), and procyclidine (no longer prescribed in the U.S.) (Deleu et al., 

2002).  Anticholinergic drugs have been used mainly in tremor-predominant cases of 

Parkinson’s disease and are thought to act by counterbalancing the reduced dopaminergic 

influence on the medium spiny GABAergic output neurons to the globus pallidus 

(Clarke, 2002; Lees, 2005).  Parkinsonian symptoms in mice induced by mAchR agonists 

can be reduced by systemic administration of a broad-spectrum mAchR antagonist, as 

well as a mAchR antagonist with moderate selectivity for the M4 mAchR (Betz et al., 

2007). 

Furthermore, findings that parkinsonian-like symptoms in mice can be reduced by 

systemic administration a broad-spectrum mAchR antagonist, as well as a mAchR 

antagonist with moderate selectivity for the M4 mAchR suggests that blockade of M4 

mAchR may be beneficial in reducing parkinsonian symptoms (Betz et al., 2007).  

However, systemic administration prevents the identification of the neural location at 

which the receptors are being blocked.  Intra-PPT infusions of the non-selective mAchR 

antagonist scopolamine enhances striatal dopamine release and dopamine-dependent 

behaviors such as locomotion and stereotypy; both of which can be blocked by the 

cholinergic agonist carbachol infused into the PPT (Chapman et al., 1997; Mathur et al., 

1997).  These mAchRs are most likely autoreceptors of the M2 family (M2 and M4) as 

M2 receptors have been localized presynaptically on PPT cholinergic neurons (Vilaro et 

al., 1992, 1994), and intra-PPT infusion of the M2/4 selective mAchR antagonist 
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methoctramine has been shown to enhance striatal dopamine release (Miller and Blaha, 

2004).  Therefore, M2/4 mAchRs are thought to function as cholinergic autoreceptors 

involved in feedback inhibition at the level of PPT cholinergic cells, regulating 

information received by the PPT.  Blocking these mAchR within the PPT and 

subsequently increasing PPT activation of SNc dopamine neurons may be therapeutically 

beneficial for treating the motor symptoms of Parkinson’s disease as reduced excitatory 

cholinergic output from the PPT has been found to result in parkinsonian-like postural 

deficits, hypokinesia, and locomotor deficits in primates (see Pahapill and Lozano, 2000).  

Furthermore, cholinergic neurons in the PPT are reduced by nearly 40% in Parkinson’s 

patients, and a significant loss of PPT neurons has been found to correlate with the extent 

of neuronal loss of dopaminergic cells in the SNc and the severity of Parkinson’s disease 

symptoms (Rinne et al., 2008; Zweig et al., 1989).  In sum, increasing activation of PPT 

neurons via blockade of mAchRs may relieve the motor symptoms of Parkinson’s disease 

by increasing activity of the remaining PPT projection neurons to SNc dopamine 

neurons. 

Findings from animal studies also suggest that nicotine or nAchR agonists may be 

an effective treatment for the motor symptoms of Parkinson’s disease.  Stimulation of 

nAchRs has been shown to modulate locomotor activity in intact nonlesioned animals as 

well as ameliorate motor dysfunctions in animals with nigrostriatal damage (Meshul et 

al., 2002; Schneider et al., 1998).  Additionally, studies have shown that people who 

smoke, or have smoked regularly, are 50% less likely to develop Parkinson’s disease than 

those who have never smoked, and nicotine has been found to alleviate parkinsonian 

cognitive and motor symptoms once Parkinson’s disease has developed (see Janhunen 
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and Ahtee, 2007).  The mechanisms underlying these therapeutically beneficial qualities 

of nicotine are not known.  Smoking and nicotine treatment have been shown to protect 

the nigrostriatal dopaminergic neurons from degeneration following MPTP or 6-OHDA 

treatment (Costa et al., 2001; Parain et al., 2003).  However, acute or short-term treatment 

with nicotine has shown little to no effects on motor activity in Parkinson’s patients or 

parkinsonian animal models, suggesting that nicotine treatment may only provide a 

neuroprotective and/or restorative effect with chronic use (see Quik et al., 2007).    

 

Mechanism of action of deep brain stimulation as a treatment for Parkinson’s disease 

The present studies show that HFS of the MFB, STN, or PPT elicits dopamine release in 

the dorsal striatum.  In relation to DBS as a treatment for Parkinson’s disease, the present 

findings add support for the “dopamine release” hypothesis which proposes that DBS 

improves motor symptoms related to Parkinson’s disease, in part, by activating surviving 

nigrostriatal dopamine neurons and subsequently increasing striatal dopamine release 

(Lee et al., 2009; Shah et al., 2010).  The present results indicate that MFB stimulation is 

mediated predominantly by activating ascending SNc dopamine axons, while STN 

stimulation evokes striatal dopamine release directly via excitatory glutamatergic inputs 

to SNc dopamine cells as well as, to a lesser degree, indirectly by activating excitatory 

glutamatergic and cholinergic STN-PPT-SNc pathways.  PPT stimulation evokes striatal 

dopamine release directly by activating glutamatergic and cholinergic pathways to SNc 

dopamine cells as well as indirectly via activation of glutamatergic and cholinergic PPT-

STN-SNc projections.  These data may help to explain the clinical improvements in 

motor symptoms of Parkinson’s patients following stimulation of the border and white 
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matter dorsal to the STN (notably the zona incerta) (Herzog et al., 2004; Saint-Cyr et al., 

2002; Voges et al., 2002) and may further suggest that DBS dorsal to the STN (within the 

MFB), rather than within the STN proper, may be optimal in increasing striatal dopamine 

levels for therapeutic benefits of Parkinson’s disease (Lee et al., 2006).   

The present findings also add further support for the PPT as a potential target for 

DBS as a treatment for certain motor symptoms of Parkinson’s disease, as PPT 

stimulation elicited dopamine release in the striatum similar in magnitude to that of STN 

stimulation.  The dual stimulation of the STN and PPT in clinical DBS procedures is an 

interesting and promising approach given the connectivity between the two nuclei 

highlighted in these studies (Stefani et al., 2007).  A better understanding of the neural 

connectivity and mechanisms involved in DBS could potentially revolutionize the 

procedure and lead to much greater clinical efficacy.  For example, expanding on the 

implications of the dopamine release hypothesis could lead to the next generation of DBS 

devices in which the system can monitor dopamine neurotransmission during stimulation, 

thus providing a neurochemical sensing feedback mechanism to maintain dopamine 

concentrations in the striatum at optimal levels for therapeutic efficacy (Lee et al., 2009). 

 

Future Directions and General Conclusions 

 Integrity of the nigrostriatal dopamine pathway is critical for the normal 

processing of sensory-motor information, with disruptions leading to neurological motor 

disorders, such as Parkinson’s disease.  The nigrostriatal dopamine pathway and other 

nuclei within the basal ganglia have many functionally critical interconnections as well as 

extensive connections with mesopontine glutamatergic and cholinergic pathways, to the 
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extent that pathology of the PPT is correlated with the motor symptoms of Parkinson’s 

disease (Rinne et al., 2008; Zweig et al., 1989).  The electrochemical technique applied in 

the experiments in Chapters 5 and 6 has provided a method with which to confirm and 

extend research investigating the neuronal pathways and receptor mechanisms involved 

in HFS-evoked nigrostriatal dopamine transmission.  Findings have thus indicated a 

complex role of glutamatergic and cholinergic afferents from the STN and PPT in 

modulating dopamine release in the striatum via direct and indirect routes to the SNc.  

Together with what is known of the physiological role of i/mGluRs and m/nAchRs in the 

STN, PPT, and SNc, results highlight the need for further development and application of 

selective ligands.   

The purpose of these studies was to explore the functional interconnectivity 

between nuclei involved in afferent regulation of nigrostriatal transmission. Therefore, it 

was necessary to use an intact brain, rather than in vitro slice preparations, so that normal 

neuronal influences on nigrostriatal dopamine release were maintained giving more 

ecological validity to the measures (Beurrier et al., 2006).  However, it has been noted 

that a possible limitation of in vivo monitoring is that it requires deep anaesthesia of 

animals which may increase the inhibitory responses of the central nervous system (West, 

1998).  However, this limitation has been minimized by the use of the anaesthetic 

urethane which has been shown to not interfere with dopamine functioning (Sabeti et al., 

2003).  Still, the evaluation of STN or PPT HFS-evoked striatal dopamine release, 

perhaps coupled with behavioral studies, in freely-moving animals would completely 

eliminate the issue of anaesthetic interference while further elucidating the behaviorally 

functional roles of the GluRs and AchRs identified in the present studies.  Furthermore, 
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as the present studies were conducted in intact animals, the applicability of the 

conclusions is limited.  Importantly, we have shown that HFS of the STN can elicit 

measurable dopamine release in the striatum of 6-OHDA lesioned animals, and the 

amount of HFS-evoked dopamine release correlated with the extent of 6-OHDA-induced 

denervation (Blaha et al., 2008).  Therefore, future experiments using the present 

neurochemical recording procedures in 6-OHDA lesioned mice are feasible and would 

provide knowledge of the involvement of these pathways in an animal model of 

Parkinson’s disease.   

Nonetheless, the findings of the present studies shed considerable light on the 

neural connectivity as well the receptor mechanisms involved in mediating HFS-evoked 

nigrostriatal dopamine transmission.  Understanding the influence of the STN and PPT 

on SNc dopamine cell activity and output of the basal ganglia-thalamocortical motor 

circuit may lead to novel pharmaceutical therapies as well as a better understanding of the 

underlying mechanisms of clinical DBS of the MFB, STN, and the interconnected PPT; 

both of which could lead to improvements the therapeutic efficacy of neuroprotective and 

symptomatic treatments for Parkinson’s disease. 
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