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Abstract

Johannson, Karen Rosemarie. Ph.D. The University of Memphis. May 2011.
Probabilistic Problems in Graph Theory. Major Professor: Dr. Béla Bollobás.

In this thesis, I examine two different problems in graph theory using
probabilistic techniques. The first is a question on graph colourings. A proper
total k-colouring of a graph G = (V,E) is a map ϕ : V ∪ E → {1, 2, . . . , k} such
that ϕ|V is a proper vertex colouring, ϕ|E is a proper edge colouring, and if
v ∈ V and vw ∈ E then ϕ(v) 6= ϕ(vw). Such a colouring is called adjacent vertex
distinguishing if for every pair of adjacent vertices, u and v, the set
{ϕ(u)} ∪ {ϕ(uw) : uw ∈ E}, the ‘colour set of u’, is distinct from the colour set of
v. It is shown that there is an absolute constant C such that the minimal number
of colours needed for such a colouring is at most ∆(G) + C.

The second problem is related to a modification of bootstrap percolation on a
finite square grid. In an n× n grid, the 1× 1 squares, called sites, can be in one
of two states: ‘uninfected’ or ‘infected’. Sites are initially infected independently
at random and the state of each vertex is updated simultaneously by the
following rule: every uninfected site that shares an edge with at least two
infected sites becomes itself infected while each infected site with no infected
neighbours becomes uninfected. This process is repeated and the central question
is, when is it either likely or unlikely that all sites eventually become infected?
Here, both upper and lower bounds are given for the probability that all sites
eventually become infected and these bounds are used to determine a critical
probability for the event that all sites eventually become infected.
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Chapter 1

Preface

1.1 Introduction

The idea of applying probability to problems in combinatorics, and graph theory

in particular, is a well-studied concept. Probabilistic techniques have proven their

usefulness in many different ways. The notion of random graphs was introduced

by Erdős and Rényi [19] who, in a 1959 paper, gave estimates on the size of the

largest component in a graph when edges are chosen independently at random.

The study of random graphs has been used extensively to obtain results on

‘almost every graph’ of a particular edge density. On the other hand,

probabilistic techniques can often be used to prove the existence of some object

or structure with a particular property by showing that a random selection will,

with positive probability possesses the desired property. In 1947, Erdős [17] gave

a lower bound on the Ramsey numbers R(k, k) by showing that when n is

sufficiently large in terms of k, a randomly 2-coloured Kn will contain a

monochromatic Kk with positive probability.

The first stumbling block in many of these types of problems is generally an

attempt to determine the probability of some combination of events that are not
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independent. Many probabilistic tools have been developed to take advantage of

the structure of the dependencies between different events. The Lovász Local

Lemma, due to Erdős and Lovász [18], is one such result that can be used to

show that if certain collections of unlikely events are such that each event does

not depend on too many others, then with positive probability, none occurs. A

number of other results have been given that show that under certain

circumstances, collections of events that are not independent behave nearly as if

they were, such as Janson’s inequalities [27], Talagrand’s inequality [34], Harris’

Lemma [22] and the van den-Berg-Kesten inequality [8]. In this thesis, I use a

number of these tools to give results on two different types of problems.

The first type of problem examined is the minimum number of colours

required for a particular type of graph colouring. A proper total colouring of a

graph G is a colouring of both the edges and vertices of G so that every pair of

adjacent vertices receive different colours, every pair of incident edges receive

different colours and each vertex has a colour different from the colours of its

incident edges. In Chapter 2, a strengthening of this condition is considered.

Given a total colouring of a graph G, the colour set of a vertex u is the set of all

colours on edges incident to u and the colour of u itself. A proper total colouring

is said to be adjacent vertex distinguishing if for every pair of adjacent vertices u

and v, the colour set of u is different from the colour set of v. The idea of ‘vertex

distinguishing colourings’ was introduced independently by Aigner, Triesch and

Tuza [1]; Burris and Schelp [11]; and Černý, Horňák, and Soták [12] who each

looked at edge colourings that distinguish all vertices. This condition was relaxed

by Zhang, Liu and Wang [40] who introduced ‘adjacent vertex distinguishing

edge colourings’.

The study of adjacent vertex distinguishing total colourings was introduced

by Zhang, Chen, Li, Yao, Lu and Wang [39] who gave a number of results on the
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number of colours required for such a colouring of several classes of graphs. In

general, the best-known upper bound for the number of colours required for an

adjacent vertex distinguishing total colouring of an arbitrary graph G was

2∆(G) + 1 when the maximum degree of G is large. It was conjectured by Zhang

et al. [39] that for any graph G, there is an adjacent vertex-distinguishing total

colouring of G using ∆(G) + 3 colours. Here, it is shown that there is a constant

C such that, for any graph G, there is an adjacent vertex-distinguishing total

colouring with ∆(G) +C colours. This upper bound follows a similar result given

by Hatami [23] on adjacent vertex distinguishing edge colourings.

The strategy is to start with any proper total colouring and randomly

‘uncolour’ edges, independently with some probability p. Depending on the value

of p, it can be shown that with positive probability, after the edges are randomly

uncoloured, all adjacent vertices are distinguished in the subgraph of

still-coloured vertices. If the uncoloured edges are then properly coloured with a

set of new colours, the resulting colouring is adjacent vertex-distinguishing.

However, it is possible that many new colours would be needed. In order to avoid

this, a random set of uncoloured edges is altered so that the uncoloured subgraph

has maximum degree bounded above by some absolute constant. The uncoloured

subgraph can then be recoloured with only a constant number of new colours.

The events that two particular edges were uncoloured and remain so may no

longer be independent. A careful analysis, using such tools as Talagrand’s

inequality and the Lovász Local Lemma, shows that this can be done is such a

way that there is a positive probability that after the uncolouring and alteration,

every pair of adjacent vertices are distinguished.

The second type of question examined here is the ‘average behaviour’ over

time of a deterministic process that begins with a random subset of the vertices

of a graph. Given a graph G, with vertices in one of two states: ‘infected’ or
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‘uninfected’, and r ∈ Z+, the bootstrap process for G with parameter r is an

update rule for the states of vertices, defined as follows. Infected vertices remain

infected forever and every uninfected vertex with at least r infected neighbours

becomes itself infected. This process is repeated and a set of initially infected

vertices is said to ‘percolate’ if eventually all vertices become infected. The

bootstrap process was introduced by Chalupa, Leath and Reich [13] who studied

the process on infinite regular trees and related bootstrap percolation to the

study of ferromagnetism.

Bootstrap percolation has been well-studied in the case where the graph G is

a finite n× n integer lattice and the parameter for infection is r = 2. The vertices

are thought of as 1× 1 squares, called sites, in the n× n grid with two sites

adjacent if they share an edge. An uninfected site that shares an edge with at

least two infected sites becomes infected. The bootstrap process is an example of

a cellular automaton, as introduced by von Neumann [32] and suggested by Ulam

[36]. When the set of initially infected vertices are chosen independently at

random, one would like to know when percolation is either likely or unlikely.

Aizenmann and Lebowitz [2] first gave bounds on the critical probability of

percolation and, later, a sharp threshold was given by Holroyd [24].

In Chapters 3–5, a modification of the usual bootstrap process is considered

where infected sites can potentially recover from their infection, although they

remain susceptible to future re-infection. The update rule for the infection status

of sites is modified so that each infected site with no infected neighbours becomes

uninfected when the modified update rule is applied. As before, uninfected sites

with at least two infected neighbours become infected. These two rules are

applied simultaneously to every site in the grid. As in the study of the usual

bootstrap process, sites in a finite integer lattice are initially infected

independently at random. The process is repeated and one asks, again, when it is
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either likely or unlikely that all sites eventually become infected. With this

modified update rule, it is significant that the rule is applied simultaneously to

all sites. The process would be quite different if sites were chosen at random, one

at a time, to have their state updated.

The difficulty, compared to the analysis of the usual bootstrap percolation, is

that the event that a particular site is initially infected and remains infected

depends on the infection status of other, nearby, sites. If there is an infected site

with no other infected sites within distance 2, then after the modified bootstrap

update rule is applied, this site is uninfected and does not affect the infection of

any of its neighbours.

Instead of considering the infection status of single sites, the infection status

of certain pairs of sites is considered. These events are not, in general,

independent since two pairs may depend on overlapping sets of sites. It is shown,

though, that this modified bootstrap process can be reasonably compared to

another model, where pairs of sites are infected independently. Using this

approximation and modifications of the tools used by Holroyd [24] and others to

analyze usual bootstrap percolation, both upper and lower bounds are given on

the probability for percolation in the modified bootstrap process. These bounds

on the likelihood of percolation are used to determine an asymptotic value for the

critical probability of percolation. A slightly different analysis is used in the two

cases where percolation is shown to be likely and when it is shown to be unlikely.

In Section 1.2, a few of the probabilistic tools that are used repeatedly are

given, as well as some notation.
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1.2 Probability tools and notation

A few results are used repeatedly throughout and those are stated here for

reference. In a probability space, the probability of an event E is denoted P(E),

or Pp(E) if the probability measure depends on a parameter p. The expected

value of a random variable X is denoted E(X).

The following lemma, a Chernoff-type bound, gives estimates for the

unlikelihood of a binomial random variable being either much larger or much

smaller than its mean. This result can be found, in the following form, in Alon

and Spencer [3, pp 267–268], for example.

Lemma 1.2.1. Let X be a binomial random variable with parameters n ∈ Z+

and p ∈ (0, 1). For pn < m < n,

P(X ≥ m) ≤ em−np
(np
m

)m
and for 0 < m < pn,

P(X < m) ≤ e−(m−np)2/2pn.

The following two results are useful for examining the probabilities of

‘increasing events’ in a cube {0, 1}n. For every n ∈ Z+, let Qn be the cube {0, 1}n

and for p = (p1, . . . , pn) ∈ (0, 1)n, let Qn
p denote the cube with probability

measure given by product measure with respect to p. That is, if

x = (x1, . . . , xn) ∈ Qn
p is taken at random, then for every i = 1, . . . , n,

P(xi = 1) = pi and for each i 6= j, the events {xi = 1} and {xj = 1} are

independent.

The cube Qn is endowed with a coordinate-wise partial ordering as follows.

For each (a1, . . . , an), (b1, . . . , bn) ∈ Qn write (a1, . . . , an) ≤ (b1, . . . , bn) iff for

every i = 1, . . . , n, ai ≤ bi. An event E ⊆ Qn is called increasing, or an ‘up-set’, if
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for every e ∈ E and x ∈ Qn with e ≤ x, then x ∈ E. Similarly, an event E is

called decreasing or a ‘down-set’ if for every e ∈ E and x ∈ Qn with x ≤ e, then

x ∈ E.

The following two results on increasing and decreasing events can be found,

for example, in Bollobás and Riordan [10, pp. 39–44]. The first lemma is due to

Harris [22].

Lemma 1.2.2. Let A and B be subsets of Qn
p . If A and B are both increasing

events or if both A and B are decreasing events, then

P(A ∩B) ≥ P(A) P(B).

For sets A,B ⊆ Qn, define an event A2B ⊆ A ∩B as follows. For each

x ∈ Qn, then x ∈ A2B iff there exist I = I(x), J = J(x) ⊆ {1, 2, . . . , n} with

I ∩ J = ∅ and such that for any y ∈ Qn, if for every i ∈ I, yi = xi then y ∈ A and

for any z ∈ Qn, if for every j ∈ J , zj = xj, then z ∈ B. The set A2B is the set

of elements in A ∩B whose membership in A and B can be certified by two

disjoint sets of indices and is called the event that A and B occur disjointly.

The following lemma on the probability of two events occurring disjointly is

called the van den Berg-Kesten inequality [8].

Lemma 1.2.3. Let A and B be subsets of Qn
p . If A and B are both up-sets or if

both are down-sets, then

P(A2B) ≤ P(A)P(B).

Something much stronger than Lemma 1.2.3 is in fact true, although the

stronger result is not used here. In 2000, Reimer [33] showed that if A and B are

any events in Qn
p , then P(A2B) ≤ P(A)P(B).
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Talagrand’s inequality [34] is a useful tool for the analysis of certain random

variables that depend on a finite number of Bernoulli random variables. The

original formulation of Talagrand’s inequality gives concentration results for such

random variables about their median value. The following form of Talagrand’s

inequality, due to McDiarmid and Reed [30], is a variation giving bounds on the

probability that a random variable of this type is far from its mean. For further

details on the Talagrand inequality see, for example, Talagrand [35].

Theorem 1.2.4. Fix c > 0, r ≥ 0 and d ≥ 0. Suppose that g is a non-negative

random variable with mean µ and g = g(X1, . . . , Xn) where X1, . . . , Xn are

independent Bernoulli 0-1 random variables satisfying

(a) if x,x′ ∈ {0, 1}n differ in exactly one coordinate, then |g(x)− g(x′)| ≤ c and

(b) for any s ≥ 0, if g(y) ≥ s, there is a set I ⊆ [1, n] with |I| ≤ rs+ d such that

if y′ ∈ {0, 1}n agrees with y on the coordinates in I, then g(y′) ≥ s.

For any t ≥ 0,

P(g − µ ≥ t) ≤ exp

(
− t2

2c2(rµ+ d+ rt)

)
,

P(g − µ ≤ −t) ≤ exp

(
− t2

2c2(rµ+ d+ t/3c)

)
.

Very often, in the applications that follow, there are large collections of events

that are not mutually independent, but for which each event does not depend on

too many others in the collection. There are many results that measure how far

the probabilities of combinations of these events are from what they would be if

the events were mutually independent. The two that are used here are one of the

Janson inequalities (Theorem 1.2.5 below) and the Lovász Local Lemma

(Theorem 1.2.6 below) which give upper and lower bounds, respectively, on the

probability that none of the events in such a collection occur.
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The following is an inequality due to Janson [27] and can be found in this

form, for example, in [28, p.33].

Theorem 1.2.5. Fix n ∈ Z+, let p ∈ (0, 1)n, and let {Ai : i ∈ I} be a finite

collection of sets so that for each i ∈ I, Ai ⊆ {1, 2, . . . , n}. Choose x ∈ Qn
p at

random, according to the product measure given by p and for each i ∈ I, let

Bi ⊆ Qn
p be the event that for every j ∈ Ai, xj = 1. Set

∆ =
∑
Bi,Bj

Ai∩Aj 6=∅

Pp(Bi ∧Bj)

and let µ =
∑

i∈I Pp(Bi). Then

Pp(∧i∈IBi) ≤ e−µ+∆.

The next theorem, due to Erdős and Lovász [18], is known as the Lovász

Local Lemma. For the form below, see for example [9, pp 21–22].

Theorem 1.2.6. Let A1, . . . , An be events in a probability space and for each

i ∈ {1, . . . , n}, let Γ(i) ⊆ {1, . . . , n} be such that Ai is mutually independent of

the events {Aj : {1, . . . , n} \ (Γ(i) ∪ {i})}. If there are x1, . . . , xn ∈ [0, 1) such

that for all i ∈ [1, n],

P(Ai) < xi
∏
j∈Γ(i)

(1− xj)

then

P

(
n⋂
i=1

Āi

)
≥

n∏
i=1

(1− xi)

and in particular, P(∩ni=1Āi) > 0.

As a special case, let p ∈ (0, 1) and d ∈ Z+ be such that ep(d+ 1) ≤ 1 and

suppose that A1, A2, . . . , An are events such that for every i ∈ {1, 2, . . . , n},

9



P(Ai) ≤ p and |Γ(i)| ≤ d. Taking x1 = x2 = . . . , xn = 1
d+1

, since

p ≤ 1

e(d+ 1)
≤ 1

d+ 1

(
1− 1

d+ 1

)d
< xi

∏
j∈Γ(i)

(1− xj),

then P(∩ni=1Āi) ≥
∏n

i=1(1− xi) > 0.

Throughout, some standard notation is used and recorded here for reference.

For any n ∈ Z+ and p ∈ (0, 1) and X a binomial random variable with

parameters n and p, write X ∼ Bin(n, p). Similarly, in a slight abuse of notation,

for any set A and p ∈ (0, 1) denote by X ∼ Bin(A, p) a random subset X ⊆ A

where each element of A is included in X independently with probability p.

For any a, b ∈ Z with a < b, set [a, b] = {a ≤ n ≤ b : n ∈ Z} and for any

a ≥ 1, define [a] = [1, a], unless otherwise stated. The symbol log is used to

denote the natural logarithm.

Some standard graph theory notation is used in the following chapters. For

any n ≥ 3, Cn is used to denote a cycle on n vertices and Kn for a complete

graph on n vertices. In any graph G = (V,E) and v ∈ V , the neighbourhood of v

is denoted by N(v) = {u ∈ V : uv ∈ E}.

10



Chapter 2

Vertex-distinguishing total

colourings

2.1 Introduction

A well-studied concept is that of the total chromatic number. A proper total

colouring of a graph is a colouring of both vertices and edges so that every pair

of adjacent vertices receive different colours, every pair of adjacent edges receive

different colours and every vertex receives a colour different from the colour of

each of its incident edges. In this chapter, proper total colourings are considered

that have the additional property that for any adjacent vertices u and v, the set

of colours incident to u is different from the set of colours incident to v. It is

shown that there is a constant C so that for any graph G, there exists such a

colouring using at most ∆(G) + C colours.

This type of question is a natural extension of the study of

‘vertex-distinguishing edge colourings’. Before proceeding with the details

regarding total colourings, some background is given on the related results on

edge colourings.

11



2.1.1 Vertex distinguishing edge colourings

The study of proper colourings that induce different colour sets on different

vertices was introduced independently by Aigner, Triesch and Tuza [1]; Burris

and Schelp [11]; and Černý, Horňák and Soták [12]. Each of these teams

examined the number of colours needed to properly edge colour a graph so that

every vertex has a colour set different from that of every other vertex.

Zhang, Liu, and Wang [40] relaxed this condition, examining proper edge

colourings that distinguish pairs of adjacent vertices.

Definition 2.1.1. Given a graph G = (V,E), the adjacent vertex distinguishing

edge chromatic number, denoted χ′a(G), is the least k such that there exists ϕ, a

proper edge k-colouring of G, with the property that if u, v ∈ V with uv ∈ E,

then {ϕ(uw) : w ∈ N(u)} 6= {ϕ(vz) : z ∈ N(v)}.

In their paper, Zhang et al. determine the exact value of χ′a(G) for several

classes of graphs and conjecture that if G is a connected graph with V (G) ≥ 6,

then χ′a(G) ≤ ∆(G) + 2.

Balister, Győri, Lehel and Schelp [4] showed that if G is a graph with

∆(G) = 3 then χ′a(G) ≤ 5. They also showed that if G is a bipartite graph then

χ′a(G) ≤ ∆ + 2 and for G any graph, χ′a(G) ≤ ∆(G) +O(log2 χ(G)). The upper

bound on χ′a(G) for arbitrary graphs was sharpened by Hatami [23] who, using

probabilistic techniques, showed that if G is a graph with ∆(G) ≥ 1020, then

χ′a(G) ≤ ∆(G) + 300. (2.1)

2.1.2 Total colourings

Let G = (V,E) be a simple graph with no loops or multiple edges. For k ∈ Z+, a

map ϕ : V ∪ E → {1, 2, . . . , k} = [k] is called a proper total k-colouring of G iff

12



• for every u, v ∈ V , if uv ∈ E, then ϕ(u) 6= ϕ(v) and ϕ(u) 6= ϕ(uv), and

• for every pair uv, uw ∈ E of adjacent edges, ϕ(uv) 6= ϕ(uw).

In other words, ϕ|V is a proper vertex colouring, ϕ|E is a proper edge colouring

and every vertex receives a colour different from the colour of each of its incident

edges.

The total chromatic number of G, denoted χ′′(G), is the least k for which

there exists a proper total k-colouring of G.

The maximum degree of a graph G is denoted, as usual, by ∆(G). Under any

proper total colouring a vertex of maximum degree in G receives a colour

different from that of any of its edges and thus χ′′(G) ≥ ∆(G) + 1.

Definition 2.1.2. Let G = (V,E) be a graph and ϕ be a proper total colouring

of G. For each v ∈ V the colour set of v (with respect to ϕ) is the set

Cϕ(v) = {ϕ(v)} ∪ {ϕ(vw) : w ∈ N(v)}.

A vertex v ∈ V is said to be distinguished from u by ϕ iff Cϕ(u) 6= Cϕ(v) and ϕ is

said to be adjacent vertex distinguishing iff every pair of adjacent vertices in G

are distinguished from each other by ϕ.

The least k for which G has an adjacent vertex distinguishing total

k-colouring is called the adjacent vertex distinguishing total chromatic number,

denoted χat(G).

The study of adjacent vertex distinguishing total colourings was first

introduced by Zhang, Chen, Li, Yao, Lu and Wang [39] who gave the following

precise values of χat several classes of graphs. They showed that for the n-cycle
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Cn on at least 4 vertices, χat(Cn) = 4, and that for complete graphs

χat(Kn) =


n+ 1 if n is even, and

n+ 2 if n is odd.

(2.2)

In the same paper, Zhang et al. [39] made the following conjecture.

Conjecture 2.1.3. For every graph G,

χat(G) ≤ ∆(G) + 3.

There are graphs that attain the upper bound in Conjecture 2.1.3. For

example, when n is odd, χat(Kn) = n+ 2 = ∆(Kn) + 3, as above. Note that the

adjacent vertex-distinguishing total chromatic number is not, in general,

monotone with respect to subgraphs. In Figure 2.1 there is an example of a

graph G containing K3 as a subgraph but with χat(G) = 4 < 5 = χat(K3).

1

2

4

3

3

1

2

4

Figure 2.1: Example of a subgraph with χat(H) > χat(G)

Since an adjacent vertex distinguishing total colouring is also a proper total

colouring, for any graph G, χ′′(G) ≤ χat(G). While it has been conjectured,

independently by both Behzad [7] and Vizing [37], that χ′′(G) ≤ ∆(G) + 2,

currently, the best-known upper bound for graphs with sufficiently large

maximum degree was given by Molloy and Reed [31] who showed that there

14



exists a constant ∆0 such that if G is any graph with ∆(G) ≥ ∆0, then

χ′′(G) ≤ ∆(G) + 1026. (2.3)

While a proof of Conjecture 2.1.3 would require a significant improvement on

the known upper bound for the total chromatic number of an arbitrary graph, in

the case ∆(G) = 3, the conjecture has been verified, independently by Wang [38],

Chen [14] and Hulgan [25]. Hulgan, in fact, showed the following stronger result.

Theorem 2.1.4. For every graph G = (V,E) with ∆(G) = 3 and G 6= K4, there

is a proper total 6-colouring, ϕ, of G such that |ϕ[V ] ∩ ϕ[E]| ≤ 1.

This theorem implies that if G is a graph with ∆(G) = 3 then χat(G) ≤ 6.

Indeed, suppose ϕ is a proper total colouring of G = (V,E) with |ϕ[V ]∩ϕ[E]| ≤ 1

and u and v are adjacent vertices. Since ϕ is a proper colouring, ϕ(u) 6= ϕ(v) and

at most one of the colours ϕ(u) or ϕ(v) can appear as an edges colour and hence

Cϕ(u) 6= Cϕ(v). Thus, ϕ is an adjacent vertex-distinguishing total colouring.

Hulgan [26] further conjectured that if G is a graph with maximum degree 3,

then χat(G) ≤ 5.

For graphs of larger maximum degree, Liu, An, and Gao [29] showed that if G

is a graph with ∆(G) = ∆ sufficiently large and δ(G) ≥ 32
√

∆ ln ∆, then

χat(G) ≤ ∆ + 1026 + 2
√

∆ ln ∆.

2.1.3 Results

Following an argument similar to that used by Hatami [23] to prove the upper

bound given in equation (2.1), in joint work with T. Coker [15], the following

upper bound for χat(G) was found.
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Theorem 2.1.5. There exists C0 > 0 such that for every graph G,

χat(G) ≤ χ′′(G) + C0.

Applying Molloy and Reed’s [31] upper bound on χ′′(G), yields an upper

bound on χat(G) in terms of ∆(G).

Theorem 2.1.6. There exists C ′ > 0 such that for every graph G,

χat(G) ≤ ∆(G) + C ′.

The idea of the proof of Theorem 2.1.5 is to begin with a proper total

colouring and recolour of some of the vertices and edges so that the resulting

colouring remains a proper total colouring and becomes adjacent vertex

distinguishing, but in such a way that the number of new colour added is

bounded by an absolute constant. While the process of recolouring vertices is

deterministic, the edges to be recoloured are chosen at random and probabilistic

techniques are used to show that there is a ‘good’ choice of edges for recolouring

in a way to obtain an adjacent vertex distinguishing total colouring.

Different techniques are used to deal with vertices of relatively small degree

and those with high degree that are not distinguished from some neighbour by

the initial proper total colouring. In Section 2.2 it is shown that any proper total

colouring can be redefined on the vertices to obtain a proper total colouring that

distinguishes vertices of degree at most ∆(G)/2 from each of their neighbours.

Probabilistic techniques come into play in Section 2.3, where it is shown that

given any proper total colouring, there is a subset of the edges that can be

recoloured with no more than a constant number of new colours so that vertices

of degree more than ∆(G)/2 are distinguished from their neighbours. Finally, in

Section 2.4, these previous two results are combined to prove Theorem 2.1.5.
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The proof that the edges of a graph G can be recoloured appropriately

requires an assumption that the maximum degree of G is at least as large as a

fixed constant. However, once Theorem 2.1.5 is proved for graphs with

sufficiently large maximum degree, it immediately holds for all graphs,

potentially with a larger constant C0.

Since different techniques are applied to the subgraph induced by the vertices

of ‘low degree’ and to that induced by the vertices of ‘high degree’, it will be

convenient to use the following notation.

Definition 2.1.7. For any graph G = (V,E), set

V` = {v ∈ V : deg(v) ≤ ∆(G)/2} and

Vh = {v ∈ V : deg(v) > ∆(G)/2}.

Vertices in the set V` are said to be vertices of low degree, while vertices in the set

Vh are said to be vertices of high degree.

In this chapter, the following notation for graphs is used. For any graph

G = (V,E) and for sets of vertices A,B ⊆ V , let the set of edges between A and

B be denoted E(A,B) = {uv ∈ E : u ∈ A and v ∈ B}. This notation is used

even if the sets A and B are not disjoint.

Given F ⊆ E, let G[F ] be the subgraph of G induced by the edges in F . For

v ∈ V , let the degree of v in F be degF (v) = |{f ∈ F : v ∈ f}| and denote by

F (v) = {vw ∈ F : w ∈ N(v)}, the edges of F that are incident to v.

If ϕ is a total colouring of G and D ⊆ V ∪ E, then let the set of colours

appearing in D be ϕ[D] = {ϕ(v) : v ∈ D ∩ V } ∪ {ϕ(uv) : uv ∈ E ∩D}.
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2.2 Vertices of low degree

The vertices of low degree in a graph G, as in Definition 2.1.7, are those with

degree at most ∆(G)/2. Since a vertex of low degree in G has relatively few

neighbours compared to ∆(G), any total colouring of G with more than ∆(G)

colours can be adjusted by recolouring some vertices so that every vertex of V` is

distinguished from all of its neighbours. Recall that since χ′′(G) ≥ ∆(G) + 1, if ϕ

is a proper total k-colouring of G, then k ≥ ∆(G) + 1.

Proposition 2.2.1. Let G = (V,E) be a graph and let ϕ be a proper total

colouring of G. There exists a proper total colouring ϕ′ of G with

ϕ′|E∪Vh = ϕ|E∪Vh such that for every v ∈ V`, the colouring ϕ′ distinguishes v from

each of its neighbours.

Proof. Fix a graph G and ϕ, a proper total k-colouring of G. Let ψ0 be a proper

total k-colouring of G with the property that among the proper total

k-colourings of G that agree with ϕ on E ∪ Vh, the map ψ0 has the fewest vertices

in V` not distinguished from one of its neighbours. More precisely, among the

total colourings

{ψ : ψ is a proper total k-colouring of G with ψ|E∪Vh = ϕ|E∪Vh}

ψ0 is such that the quantity

|{u ∈ V` : ∃ v ∈ N(u) ∩ V` with Cψ0(u) = Cψ0(v)}|

is minimised. It will be shown that, in fact, every vertex in V` is distinguished

from each of its neighbours with respect to ψ0. It suffices to show that every

vertex in V` is distinguished from each of its neighbours in V`. Note that every

vertex v ∈ V` is distinguished from every u ∈ N(v) ∩ Vh since |Cψ0(v)| < |Cψ0(u)|.
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Figure 2.2: Example of colours unavailable for vertex u

Suppose that there is a vertex u ∈ V` not distinguished by ψ0 from one of its

neighbours. The vertex u will be recoloured so that the resulting total colouring

is both proper and distinguishes u from all of its neighbours.

Consider which colours in [1, k] should not be used to recolour u if the

resulting colouring is to be proper and distinguish u from its neighbours. These

colours are ψ0[N(u)] ∪ ψ0[{uv : v ∈ N(u)}] and also all i ∈ [1, k] such that there

is a vertex v ∈ N(u) with Cψ0(v) = (Cψ0(u) \ {ψ0(u)}) ∪ {u}. If i ∈ [k] is such

that there is v ∈ N(u) with Cψ0(v) = {i} ∪ Cψ0(u) \ {ψ0(u)} and i 6= ψ0(v) then

ψ0(v) ∈ {ψ0(uw) : w ∈ N(u)}. So, for every v ∈ N(u), there is at most one colour

iv ∈ [k] \ {ψ0(uw) : w ∈ N(u)} such that either iv = ψ0(v) or

Cψ0(v) = {iv} ∪ Cψ0(u) \ {ψ0(u)}.

Thus

|(∪w∈N(u){ψ0(w), ψ0(uw)})

∪ {i ∈ [k] : ∃ v ∈ N(u) with Cψ0(v) = {i} ∪ Cψ0(u) \ {ψ0(u)}}|

≤ 2 deg(u) ≤ 2∆/2 < k.

Therefore, there is at least one colour iu ∈ [k] such that if v ∈ N(u), then

iu 6= ψ0(v), iu 6= ψ0(uv) and Cψ0(v) 6= {iu} ∪ {ψ0(uw) : w ∈ N(u)}.
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Define ψ1 : V ∪ E → [k] for each x ∈ V ∪ E by

ψ1(x) =


iu if x = u,

ψ0(x) otherwise.

Then, ψ1 is a proper total colouring of G with k colours,

ψ1|E∪Vh = ψ0|E∪Vh = ϕ|E∪Vh and ψ1 has fewer vertices in V` that are not

distinguished from some neighbour than ψ0 does. This contradicts the choice of

ψ0.

Thus, ψ0 is a proper total k-colouring of G with ψ0|E∪Vh = ϕ|E∪Vh and for

every u ∈ V` and v ∈ N(u), Cψ0(u) 6= Cψ0(v).

2.3 Vertices of high degree

In the previous section, Section 2.2, it is shown that vertices can be

deterministically recoloured so that all vertices of low degree are distinguished

from their neighbours. In order to alter a proper total colouring so that vertices

of high degree are distinguished from their neighbours, a random approach is

used. Instead of recolouring vertices, edges are chosen at random to be

recoloured with a constant number of new colours.

Proposition 2.3.1. There exists ∆1 > 0 and C1 > 0 such that for every graph G

with ∆(G) ≥ ∆1 and ϕ, a proper total k-colouring of G, there is a proper total

(k + C1)-colouring, ϕ′, of G such that for every u, v ∈ Vh, if uv ∈ E, then

Cϕ′(u) 6= Cϕ′(v).

Proposition 2.3.1 is proved in two steps. First it is shown that there is a set of

edges in G that can be deleted (or uncoloured) so that, in the resulting subgraph,

most vertices are distinguished from their neighbours and so that every vertex
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has relatively few neighbours that remain undistinguished from some neighbour.

The second step consists of randomly deleting a few more edges incident to those

vertices that were potentially not distinguished from a neighbour.

Lemma 2.3.2. For every m, d ∈ Z+ with m ≥ d+ 6, and ε > 0, there exists

M = M(m, d, ε) > 0 and ∆2 = ∆2(m, d, ε) > 0 such that for every graph G with

∆(G) ≥ ∆2 and ϕ, a proper total k-colouring of G, there is a set E1 ⊆ E(Vh, V )

such that for each v ∈ V , degE1
(v) ≤M , and setting ϕ1 = ϕ|V ∪E\E1 ,

(a) for u, v ∈ Vh with uv ∈ E and deg(u) = deg(v), if degE1
(u) ≥ m, then

|Cϕ1(u)4 Cϕ1(v)| ≥ d and

(b) if v ∈ Vh, then |{u ∈ NG(v) : degE1
(u) < m}| ≤ ε∆(G).

Proof. Let G be a graph and set ∆(G) = ∆. Set λ = 4(m+ ln(3/ε)) and

M = 2eλ.

Set p = λ/∆ and select X ⊆ E(Vh, V ) randomly, with each edge in E(Vh, V )

included in X independently with probability p.

Set E1 = E1(X) = X \ {uv ∈ E : degX(u) > M} so that every vertex is

contained in at most M edges from E1, as in Figure 2.3.

M incident
edges in X

M + 1 incident
edges in X

E1

X \ E1

Figure 2.3: Edges contained in X and E1.
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For every v ∈ Vh and u ∈ N(v) ∩ Vh with deg(u) = deg(v), define the

following events, depending on the randomly chosen set of edges X:

Auv =
{

degE1
(u) ≥ m and |Cϕ1(u)4 Cϕ1(v)| < d

}
Bv =

{
|{u ∈ NG(v) : degE1

(u) < m}| > ∆ε
}
.

If E1 is such that none of these events occur, then E1 is a set of edges that

satisfy conditions (a) and (b) of the statement of the theorem. The Lovász Local

Lemma (Theorem 1.2.6) is used to show that

P

 ⋂
uv∈E(Vh,Vh)

Auv ∩
⋂
v∈Vh

Bv

 > 0.

That is, with positive probability, the set E1 satisfies both conditions (a) and (b).

To prove this, estimates on P(Auv) and P(Bv) are required.

Claim: For each v ∈ Vh and u ∈ N(v) ∩ Vh, if deg(v) = deg(u), then

P(Auv) ≤ 2M+dpm−d+1.

Proof of Claim: Fix u, v ∈ Vh with uv ∈ E and deg(u) = deg(v). In order to

estimate P(Auv), it is convenient to condition on the following event. For any

D ⊆ Cϕ(u) \ {ϕ(u)} with m ≤ |D| ≤M , let ZD be the event that

ϕ[{uw ∈ E1 : w ∈ N(u)}] = D. That is, ZD is the event that D is the set of

colours contributed to Cϕ(u) by E1. For each such set D, define

t = t(D) = |D \ Cϕ(v)| and ` = `(D) = |D ∩ Cϕ(v)|.

Fix such a set D, let t = t(D) and ` = `(D) and suppose that ZD holds. Set

s = |Cϕ(u) \ Cϕ(v)|. Since deg(u) = deg(v), then |Cϕ(v) \ Cϕ(u)| = s also.

Since s− t ≤ |Cϕ1(u) \ Cϕ(v)|, if s− t ≥ d, then

P(|Cϕ1(u)4 Cϕ1(v)| < d | ZD) = 0.
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From now on, assume that s− t < d and so s < t+ d ≤ t+ `+ d ≤M + d.

Suppose that E1(v) is such that |Cϕ1(u)4 Cϕ1(v)| ≤ d− 1 < d. Note that

Cϕ1(u)4 Cϕ1(v) is the disjoint union of the four sets Cϕ1(v) \ Cϕ(u),

Cϕ1(u) \ Cϕ(v), Cϕ1(v) ∩D, and Cϕ1(u) ∩ ϕ[E1(v)]. Note that, by the definition

of s, t and `,

|Cϕ1(u) \ Cϕ(v)| = s− t,

|Cϕ1(v) ∩D| = `− |D ∩ ϕ[E1(v)]|, and

|Cϕ1(v) \ Cϕ(u)| = s− |ϕ[E1(v)] \ Cϕ(u)|.

Thus,

d− 1 ≥ |Cϕ1(u)4 Cϕ1(v)|

= |Cϕ1(u) \ Cϕ(v)|+ |Cϕ1(u) ∩ ϕ[E1(v)]|+ |Cϕ1(v) \ Cϕ(u)|+ |D ∩ Cϕ1(v)|

≥ (s− t) + (s− |ϕ[E1(v)] \ Cϕ(u)|) + (`− |D ∩ ϕ[E1(v)]|).

Therefore,

|ϕ[E1(v)] \ Cϕ(u)|+ |ϕ[E1(v)] ∩D| ≥ (s− t) + s+ `− d+ 1

= 2(s− t) + t+ `− d+ 1

≥ m− d+ 1.

That is, considering the colours deleted from the set Cϕ(v) when the edges in

E1 are removed from the graph, at least m− d+ 1 colours are either contained in

the set Cϕ(v) \ Cϕ(u) or else from the set D ∩ Cϕ(v) since these two sets are

disjoint. Recall that, by definition of s and `, |Cϕ(v) \ Cϕ(u)| = s and
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|D ∩ Cϕ(v)| = `. Thus, since s+ ` ≤ d+ t+ ` ≤M + d,

P(|Cϕ1(u)4Cϕ1(v)| < d | ZD)

≤ P(|ϕ[E1(v)] \ Cϕ(u)|+ |ϕ[E1(v)] ∩D| ≥ m− d+ 1 | ZD)

≤ P(|ϕ[X(v)] \ Cϕ(u)|+ |ϕ[X(v)] ∩D| ≥ m− d+ 1 | ZD)

≤ 2s2`pm−d+1

≤ 2M+dpm−d+1

uniformly, for all choices of D. Thus, for each uv ∈ E(Vh),

P(Auv) ≤ 2M+dpm−d+1.

Claim: There exists a constant c0 such that if v ∈ Vh then P(Bv) ≤ 3e−c0∆.

Proof of Claim: Given v ∈ Vh, consider the event Bv that

|{u ∈ N(v) : degE1
(u) < m}| > ε∆. Set

Vm = {u ∈ Vh : degX(u) < m},

VM = {u ∈ Vh : degX(u) > M}, and

VN = {u ∈ Vh : ∃ w ∈ VM ∩N(u) with uw ∈ X}.

Then, by the definition of E1,

{u ∈ Vh : degE1
(u) < m} ⊆ Vm ∪ VM ∪ VN

and so by the pigeonhole principle, if |{u ∈ N(v) : degE1
(u) < m}| > ε∆, then

one of the following three events occurs: either |N(v) ∩ Vm| > ε∆/3,

|N(v) ∩ VM | > ε∆/3, or |N(v) ∩ VN | ≥ ε∆/3. The probability of each of these

three events is considered separately, although the calculations are similar.
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Case 1: Consider the event |N(v)∩ VM | > ∆ε/3. Note that for each w ∈ VM , the

quantity degX(w) is a binomial random variable with parameters degG(w) and p.

E(|N(v) ∩ VM |) =
∑

w∈N(v)

P(w ∈ VM)

=
∑

w∈N(v)

P(degX(w) > M)

≤
∑

w∈N(v)

P(Bin(∆, p) > M)

≤
∑

w∈N(v)

eM−p∆
(
p∆

M

)M
(by Lemma 1.2.1)

≤ ∆eM−λ
(
λ

M

)M
. (since λ = p∆)

Changing the status of any one edge in X changes the size of the set VM by

at most 2 and if |N(v) ∩ VM | ≥ a, this event can be certified by the status of a

collection of at most Ma edges. Since M = 2eλ and λ ≥ ln(3/ε), it follows that

eM−λ(λ/M)M ≤ e−λ(1/2M) < ε/3. Thus, by Theorem 1.2.4,

P(|N(v) ∩ VM | ≥ ∆ε/3) ≤ exp

(
−(∆ε/3−∆e−λ(eλ/M)M)2

2 · 22M∆ε/3

)
= exp

(
−3∆

(ε/3− e−λ(eλ/M)M)2

8Mε

)
.

Case 2: Now, consider the event |N(v) ∩ VN | ≥ ε∆/3. Fix u ∈ N(v). Then,

P(u /∈ (VM ∪ Vm) and ∃w ∈ N(u) ∩ VM with uw ∈ X)

≤ P(∃ w ∈ N(u) ∩ VM with uw ∈ X)

≤
∑

w∈N(u)

P(w ∈ NM and uw ∈ X)

=
∑

w∈N(u)

P(w ∈ NM | uw ∈ X)P(uw ∈ X)
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=
∑

w∈N(u)

eM−λ
(
λ

M

)M
p (as above)

≤ ∆peM−λ
(
λ

M

)M
= λe−λ

(
λe

M

)M
.

Thus,

E(|{u ∈ N(v) : ∃ uw ∈ X with w ∈ VM}|) ≤ ∆λe−λ
(
λe

M

)M
.

Changing the status of one edge, say wz, with respect to X to obtain X ′

changes the status in Vm of at most 2 vertices (w and z) and only if either w or z

had exactly M or M + 1 incident edges in X. For example, suppose wz /∈ X and

X is changed to X ′ = X ∪ {wz}. If degX(w) = M , then degX′(w) = M + 1 and

at most M + 1 new vertices u ∈ N(v) are such that uw ∈ X ′. Similarly in the

case where degX(w) = M + 1 and X ′ is obtained from X by removing the edge

wz. Thus, changing the status of one edge in X changes the value of |N(v) ∩ VN |

by at most 2M + 2, taking into account the two endpoints of the vertices of the

affected edge. As before, the event that |N(v) ∩ VN | ≥ a can be certified by the

status of a collection of at most Ma edges. By the choice of M and λ,

ε/3 > λe−λ
(
λe
M

)M
and so by Theorem 1.2.4,

P(|N(v) ∩ VN | > ∆ε/3) ≤ exp

(
−

(∆ε/3−∆λe−λ
(
λe
M

)M
)2

2(2M + 2)2M∆ε/3

)

= exp

(
−3∆

(ε/3− λe−λ(λe/M)M)2

8M(M + 1)2ε

)
.
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Case 3: Finally, consider the event |N(v) ∩ Vm| > ∆ε/3.

E(|N(v) ∩ Vm|) =
∑

w∈N(v)

P(w ∈ Vm)

=
∑

w∈N(v)

P(degX(w) < m)

≤ deg(v)P(Bin(∆/2, p) < m)

≤ deg(v)e−(m−p∆/2)2/(2p∆/2) (by Lemma 1.2.1)

= deg(v)e−(m−λ/2)2/λ.

Talagrand’s inequality (Theorem 1.2.4) is applied to the random variable

Y (v) = deg(v)− |N(v) ∩ Vm| = |{u ∈ N(v) : degX(u) ≥ m}|. Note that

E(Y (v)) = deg(v)− E(|N(v) ∩ Vm|). As in Case 1, changing the status of any

edge changes the value of deg(v)− |N(v) ∩ Vm| by at most 2 and the the event

deg(v)− |N(v)∩ Vm| ≥ a can be certified by a collection of at most ma edges. By

the choice of λ, (m− λ/2)2/λ ≥ ln (3/ε) and therefore, since e−(m−λ/2)/λ < ε/3,

by Theorem 1.2.4,

P(|N(v) ∩ Vm| > ∆ε/3)

= P(deg(v)− |N(v) ∩ Vm| < deg(v)−∆ε/3)

= P(deg(v)− |N(v) ∩ Vm| − E(Y (v)) < E(|N(v) ∩ Vm| −∆ε/3)

≤ P(deg(v)− |N(v) ∩ Vm| − E(Y (v)) < ∆e−(m−λ/2)2/λ −∆ε/3)

≤ exp

(
− (∆ε/3−∆e−(m−λ/2)2/λ)2

2 · 22(m(∆/2−∆e−(m−λ/2)2/λ) + (∆ε/3−∆e−(m−λ/2)2/λ)/6)

)

= exp

(
−∆

(ε/3− e−(m−λ/2)2/λ)2

8(m(1
2
− e−(m−λ/2)2/λ) + (ε/18− e−(m−λ/2)2/λ/6))

)
.
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Set

c0 = min

{
3(ε/3− e−λ(eλ/M)M)2

8εM
,
3(ε/3− λe−λ(eλ/M)M)2

8εM(M + 1)2
,

(ε/3− e−(m−λ/2)2/λ)2

8(m(1
2
− e−(m−λ/2)2/λ) + (ε/18− e−(m−λ/2)2/λ/6))

}
.

Then, P(|N(v) ∩ A| > ε∆) ≤ 3e−c0∆. Thus, for each v ∈ Vh,

P(Bv) ≤ 3e−c0∆.

In order to apply the Lovász Local Lemma, it remains to determine how

many of the events Auv and Bw are not mutually independent. Let

u, v, w, z ∈ Vh. The events Auv and Awz are independent if d({u, v}, {w, z}) ≥ 4,

the event Auv is independent of Bw if d({u, v}, w) ≥ 5 and Bu is independent of

Bw if d(u,w) ≥ 6. Fix u and v. For every vertex w with d({u, v}, w) ≤ 4, there

are at most ∆ vertices z ∈ N(w) and so, for ∆ ≥ 2, the event Auv is independent

of all but at most

(1 + ∆ + ∆(∆− 1) + ∆(∆− 1)2 + ∆(∆− 1)3 + ∆(∆− 1)4)∆ ≤ ∆6

other events Awz and all but at most

1 + ∆ + ∆(∆− 1) + ∆(∆− 1)2 + ∆(∆− 1)3 + ∆(∆− 1)4 ≤ ∆5

events Bw. Meanwhile, the event Bv is independent of all but at most

(1 + ∆ + ∆(∆− 1) + ∆(∆− 1)2 + ∆(∆− 1)3 + ∆(∆− 1)4)∆ ≤ ∆6
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events Awz and all but at most

1 + ∆ + ∆(∆− 1) + ∆(∆− 1)2 + ∆(∆− 1)3 + ∆(∆− 1)4 ≤ ∆5

events Bw.

Set γ1 = ln ∆/∆7 and γ2 = 1/∆5 and let uv ∈ E(Vh). Recall that λ and M

are constants that depend only on m and ε. Using the inequality (1− t) ≥ e−t−t
2
,

which is valid for t < 0.68,

γ1(1− γ1)∆6

(1− γ2)∆5

=
ln ∆

∆7

(
1− ln ∆

∆7

)∆6 (
1− 1

∆5

)∆5

≥ ln ∆

∆7
e− ln ∆/∆(1+ln ∆/∆7)e−(1+1/∆5)

≥ ln ∆

5∆7
(for ∆ ≥ 4)

≥ 2M+dλm−d+1

∆m−d+1
(for ∆ large, m− d+ 1 ≥ 7)

≥ P(Au,v).

Similarly,

γ2(1− γ1)∆6

(1− γ2)∆5

=
1

∆5
e− ln ∆/∆(1+ln ∆/∆7)e−(1+1/∆5)

≥ 1

∆5
e− ln ∆(1+ln ∆/∆)e−1+1/∆5

≥ 1

5∆5
(as above)

≥ 3e−c0∆ (for ∆ large)

≥ P(Bv).

Therefore, since γ1, γ2 ∈ (0, 1), by the Lovász Local Lemma (Theorem 1.2.6),

the probability that none of the events

{Auv : uv ∈ E(Vh, Vh)} ∪ {Bv : v ∈ Vh}
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occurs is positive and hence there is a set E1 of edges satisfying conditions (a)

and (b).

Next, by deleting a few more edges from G, the vertices in Vh that might not

have been distinguished from one of their neighbours in G[E \ E1] can be made

to have colour sets different from their neighbours. For simplicity of presentation,

for each α ∈ (0, 1), define

Vα = Vα(G) = {v ∈ V (G) : deg(v) > α∆(G)}.

In the proof of Proposition 2.3.1, only α = 1/2 is used, in which case Vα = Vh.

The following lemma is stated in a general form with α arbitrary.

Lemma 2.3.3. For each M > 0, B ≥ 2, and α, β > 0 with α > β, there is a

∆3 > 0 so that the following holds. Let G = (V,E) be a graph with ∆(G) ≥ ∆3,

let E1 ⊆ E be such that ∆(G[E1]) ≤M , let ϕ be proper total colouring of G, and

let L ⊆ Vα be such that if v ∈ Vα then |N(v) ∩ L| ≤ β∆(G). There exists a set of

edges, E2 ⊆ E \ E1 so that, setting ϕ2 = ϕ|V ∪E\(E1∪E2),

(a) if u ∈ L then degE2
(u) = B,

(b) if v /∈ L and deg(v) > α∆(G), then |E2 ∩ E(v)| ≤ B − 1, and

(c) if u, v ∈ L with uv ∈ E, then Cϕ2(u) 6= Cϕ2(v).

Proof. Fix M > 0, B ≥ 2, and α, β > 0 with α > β. Fix a graph G = (V,E) and

E1 ⊆ E with ∆(G[E1]) ≤M . Set ∆ = ∆(G). Let ϕ be a proper total colouring

of G and let L ⊆ Vα be such that if v ∈ Vα, then |N(v) ∩ L| ≤ β∆.

Note that for each u ∈ L, |N(u) \ L| ≥ α∆− β∆ ≥ B +M as long as

∆3 ≥ B+M
α−β . Select E2 at random as follows: for each u ∈ L, select a set of B

edges in E \ E1 from u to N(u) \ L uniformly at random to be E2(u) and let

E2 = ∪u∈LE2(u). By construction, condition (a) is satisfied for any such set E2.
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For each v ∈ Vα \ L and {u1, u2, . . . uB} ⊆ N(v) ∩ L, let Av,{u1,u2,...,uB} be the

event that all of the edges vu1, vu2, . . . , vuB belong to E2. For each u, v ∈ L with

uv ∈ E, let Bu,v be the event that Cϕ2(u) = Cϕ2(v).

Again using the Local Lemma, Theorem 1.2.6, it is shown that the

probability that none of the events Av,{u1,u2,...,uB} or Bu,v occur is strictly positive

and hence there is a choice of E2 that satisfies the conditions (b) and (c).

Fix v ∈ Vα \ L and fix {u1, . . . , uB} ⊆ N(v) ∩ L. A bound on the probability

of the event Av,{u1,u2,...,uB} is found as follows. For each i = 1, 2, . . . , B,

P(vui ∈ E2) ≤
(

deg(ui)−|N(u)∩L|−M−1
B−1

)(
deg(ui)−|N(u)∩L|−M

B

)
=

B

deg(ui)− |N(u) ∩ L| −M

≤ B

α∆− β∆−M

=
B

(α− β)∆−M
.

For each i 6= j, the events that vui ∈ E2 and that vuj ∈ E2 are independent and

since Av,{u1,u2,...,uB} = ∩Bi=1{vui ∈ E2},

P(Av,{u1,u2,...,uB}) ≤
(

B

(α− β)∆−M

)B
.

Now consider an event Buv. Given u, v ∈ L with uv ∈ E, fix

CB ⊆ ϕ[E(u, V \ (L ∪ E1))] with |CB| = B. Conditioning on the event

CB = ϕ[E2(u)], either

P(Cϕ2(u) = Cϕ2(v) | CB = ϕ[E2(u)]) = 0

or there is exactly one set of B colours Cv,B with Cϕ(u) \ CB = Cϕ(v) \ Cv,B.

31



Thus,

P(Cϕ2(u) = Cϕ2(v) | CB = ϕ[E2(u)]) ≤ 1(
deg(v)−|N(v)∩L|−M

B

)
≤ 1(

(α−β)∆−M
B

)
≤
(

B

(α− β)∆−M

)B

uniformly for all choices of CB and hence

P(Bu,v) ≤
(

B

(α− β)∆−M

)B
.

Two events of the form Av1,{u1,...,uB} and Av2,{w1,...,wB} are independent

whenever {u1, . . . , uB} ∩ {w1, . . . , wB} = ∅ and events Av1,{u1,...,uB} and Bu,w are

independent if {u1, . . . , uB} ∩ {u,w} = ∅. Similarly, two events Bu,w and Bu′,w′

are independent if {u,w} ∩ {u′, w′} = ∅.

Fix v1 and {u1, . . . , uB} with v1 ∈ ∩Bi=1N(ui) and consider the number of

choices for vertices v2 and {w1, . . . , wb} so that v2 ∈ ∩Bi=1N(wi) and

{w1, . . . , wB} ∩ {u1, . . . , uB} 6= ∅. For each i = 1, . . . , B, if ui ∈ {w1, . . . , wB},

then since deg(ui) ≤ ∆, there are at most ∆ choices for the vertex v2 ∈ N(ui).

Given such a vertex v2, since degL(v2) ≤ β∆, there are at most
(
β∆
B−1

)
choices for

the vertices {w1, . . . , wB} \ {ui}. Thus, Av1,{u1,...,uB} is independent of all but at

most B∆
(
β∆
B−1

)
events of the type Av2,{w1,...,wB}.

Consider now the number of choices for u, w ∈ L, with uw ∈ E and such that

{u,w} ∩ {u1, . . . , uB} 6= ∅. There are B choices for u in the set {u1, . . . , uB}.

Given such a vertex u, there are at most β∆ choices for w. Thus, Av1,{u1,...,uB} is

independent of all but at most Bβ∆ events of the type Bu,w. Similarly, an event

Bu,w is independent of all but at most 2∆
(
β∆
B−1

)
events of the type Av2,{w1,...,wB}

and all but 2β∆ events of the type Bu′,w′ .
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Therefore, by Theorem 1.2.6, since, for ∆ sufficiently large in terms of α, β,

and B,

(
B

(α− β)∆−M

)B (
Bβ∆ +B

(
β

B − 1

)B−1

∆B−1 + 1

)
e ≤ 1,

there is a choice of E2 that satisfies conditions (b) and (c) in the statement of the

lemma.

Proof of Proposition 2.3.1. Set ε = 1/3, m = 10, d = 4 and let ∆2 > 0 and

M > 0 be given by Lemma 2.3.2. Set α = 1/2, β = 1/3, B = 2 and let ∆3 be

given by Lemma 2.3.3. Let G = (V,E) be a graph with

∆(G) = ∆ ≥ max{∆2,∆3} and let ϕ be a total k-colouring of G.

Let E1 ⊆ E be given by Lemma 2.3.2 and for L = {v ∈ Vh : degE1
(v) < 8} let

E2 ⊆ E \ E1 be given by Lemma 2.3.3. As before, let ϕ2 = ϕ|V ∪E\(E1∪E2). By the

choice of E1 and E2, ∆(G[E1 ∪E2]) ≤M + 2 and so by Vizing’s theorem, there is

a proper edge colouring, ψ, of G[E1 ∪ E2] with M + 3 colours. Let these M + 3

colours be disjoint from the set of colours used by ϕ. Define a total colouring ϕ′

of G as follows

ϕ′(x) =


ϕ(x), for x ∈ V ∪ E \ (E1 ∪ E2);

ψ(x), for x ∈ E1 ∪ E2.

The map ϕ′ is a proper total (k +M + 3)-colouring of G. For each u, v ∈ Vh

with uv ∈ E, if u /∈ L, then |Cϕ2(u)∆Cϕ2(v)| ≥ d− (B +B − 1) = 4− (2 + 1) > 0

and so Cϕ′(u) 6= Cϕ′(v). If u, v ∈ L and uv ∈ E, then Cϕ2(u) 6= Cϕ2(v) by the

choice of E2 and so Cϕ′(u) 6= Cϕ′(v).
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2.4 Proof of Theorem 2.1.5

Proof of Theorem 2.1.5. Let G = (V,E) be a graph with ∆(G) ≥ ∆1 and let ϕ

be a proper total colouring of G with χ′′(G) colours. By Proposition 2.3.1, there

is a proper total (χ′′(G) + C1)-colouring of G such that for each u, v ∈ Vh, if

uv ∈ E, then Cϕ′(u) 6= Cϕ′(v).

By Proposition 2.2.1, there is a proper total colouring ϕ′′ with

ϕ′′|E∪Vh = ϕ′|E∪Vh that distinguishes every vertex in V` from each of its

neighbours. By the choice of ϕ′′, if v ∈ Vh, then Cϕ′′(v) = Cϕ′(v) and hence ϕ′′

distinguishes each vertex in V from every one of its neighbours.

Following through the calculations in the proofs carefully, it can be shown

that for ε = 1/3, m = 10, d = 4 and B = 2, one can take λ = 39 and M = 81.

While this estimate is likely not optimal, and does not seem apply to many

real-world examples, it shows that for a graph G with ∆(G) ≥ exp(1058), then

χat(G) ≤ χ′′(G) + 84. Given the extremely strong condition on maximum degree,

it would be desirable to improve the lower bound on the maximum degree or to

extend this type of result to other related problems on vertex distinguishing

colourings.
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Chapter 3

Modified bootstrap percolation

3.1 Introduction

In the study of ‘bootstrap percolation’, vertices of a graph are called sites, and

these sites can be in one of two possible states: ‘infected’ or ‘uninfected’. For any

graph G and r ∈ Z+, the bootstrap process on G with parameter r is an update

rule for the state of sites defined as follows: infected sites remain infected forever

and every uninfected site with at least r infected neighbours becomes itself

infected. This process is applied repeatedly and an initial configuration of

infected vertices is said to percolate if all vertices eventually become infected.

Bootstrap percolation was introduced by Chalupa, Leath, and Reich [13] who

examined the behaviour of a bootstrap process on infinite regular trees.

In the questions examined here, the initial configuration of infected sites is

chosen at random with each site infected, independently with some probability p.

One of the central questions is for which values of p is percolation either likely or

unlikely. Recall that, for any set A and p ∈ (0, 1) a random subset X ⊆ A where

each element of A is included in X independently with probability p is denoted

by X ∼ Bin(A, p).
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Much progress has been made on these problems when the graph G is a

square grid. In this case, for some n ∈ N, the vertices of G are the elements of

[1, n]× [1, n] with two vertices x,y joined by an edge iff ‖x− y‖1 = 1. The sites

are often thought of, not as points, but as 1× 1 squares and two sites are

adjacent in the graph exactly when the two squares share an edge.

The bootstrap update rule with parameter r = 2 is defined as follows: Given

X ⊆ [n]2,

B(X) = X ∪ {x ∈ [n]2 : |(N(x) ∪ {x}) ∩X| ≥ 2}.

A set X0 ⊆ [n]2 of initially infected sites is said to percolate with respect to B iff

⋃
t≥0

B(t)(X0) = [n]2.

In general, for any set of sites X0, define 〈X0〉B =
⋃
t≥0 B(t)(X0). The set 〈X0〉B is

called the span of X0 in B.

If X0 ∼ Bin([n]2, p), write Pp(X0 percolates in B) for the probability that the

set X0 percolates in B. The critical probability function for bootstrap percolation

is defined as

pc([n]2, 2) = inf{p : Pp(X0 percolates in B) ≥ 1/2}.

Bounds on the critical probability function for bootstrap percolation on the

grid were first given by Aizenman and Lebowitz [2]. A sharp bound for the

critical probability was given by Holroyd [24] who proved that for n ∈ N,

pc([n]2, 2) =
π2/18 + o(1)

log n
.

Even sharper results were given by Gravner and Holroyd [20] who improved

the upper bound, and by Gravner, Holroyd and Morris [21] who improved the
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lower bound for the critical probability. They showed that there are constants

C > 0 and c > 0 so that for each n ∈ N,

π2

18 log n
− C(log log n)3

(log n)3/2
≤ pc([n]2, 2) ≤ π2

18 log n
− c

(log n)3/2
.

A useful feature in the analysis of bootstrap percolation is that once a site

becomes infected, it remains infected. Here, a modification of the bootstrap

process is considered, where sites can both become infected and also return to

being uninfected. The new update rule, defined below (3.1), again depends on

the infection of nearby sites.

For n ∈ N, define the modified update rule for [n]2 as follows. For any

X ⊆ [n]2,

M(X) = B(X) \ {x ∈ X : |(N(x) ∪ {x}) ∩X| = 1}. (3.1)

From a set of initially infected sites, those with at least 2 infected neighbours

become infected, but in contrast to usual bootstrap percolation, infected sites

with no infected neighbours become uninfected, or ‘recover’. This occurs

simultaneously for all sites and the process is repeated.

Given any set X0 ⊆ [n]2, for each t ≥ 0, define

Xt+1 =M(Xt).

The set X0 is said to percolate with respect to M if there is a tM such that

XtM = [n]2. Unless otherwise specified, here, a set will be said to percolate if it

percolates in the process M. For any n ∈ N, and 0 < p < 1, consider

X0 ∼ Bin([n]2, p) and set

I(n, p) = Pp(X0 percolates) = Pp(∃ tM with XtM = [n]2). (3.2)
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Define the critical probability function for M by

pc([n]2,M) = inf{p : I(n, p) > 1/2}.

Unlike the usual bootstrap update rule B, the sequence

X0,M(X0),M(2)(X0), . . . is not, in general, monotone. For example, if the grid is

initially infected with a checkerboard pattern, the the sets (Xt)t≥0 alternate

between X0 and [n]2 \X0, two checkerboard patterns. For this reason, it does not

make sense to talk about the span of a set of infected sites in the modified

process M. However, it is sometimes helpful to compare the effect of the process

M to that of B and even in the context of the modified bootstrap process, the

span in B of a set of sites will occasionally be considered.

In joint work with T. Coker [16], bounds on the critical probability for the

modified bootstrap update rule M were determined, together with estimates on

the probability of percolation.

Theorem 3.1.1. There exists a constant λM > 0 such that for every ε > 0 and

{p(n)}n∈N ⊆ (0, 1),

I(n, p(n)) =


1− o(1) if p(n) >

√
λM+ε
logn

o(1) if p(n) <
√

λM−ε
logn

The values for I(n, p(n)) for each of the two ranges of values for p(n) in

Theorem 3.1.1 give the following immediate formulation for the critical

probability for the modified bootstrap update rule.

Corollary 3.1.2. For all n ∈ N,

pc([n]2,M) =

(
λM + o(1)

log n

)1/2

.
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Each of the two cases of the proof of Theorem 3.1.1 are proved separately and

more detailed information is given on the probability of percolation above or

below the critical probability. In Chapter 4, a lower bound is given on the value

I(n, p) for p sufficiently small. This is used to give an upper bound for

pc([n]2,M).

Similarly, in Chapter 5 an upper bound on I(n, p) is given for certain values

of n and p that can be used to give a lower bound on pc([n]2,M).

In each case, in order to analyze the process given by the update rule M, the

set of initially infected sites is altered to create a set on which the rule M is

nearly monotone and the probability of percolation has not changed too much.

This alteration is done in different ways for each case.

If an infected site x ∈ X0 has a neighbour in X0, then when the update rule

M is applied, both x and its neighbour remain infected in all subsequent sets Xt.

However, if x shares a corner with another infected site, then for every t ≥ 0,

x ∈ X2t, but as in Figure 3.1, it might be the case that x /∈ X2t+1.

Figure 3.1: Sites whose infection status alternates

In general, the configurations of infected sites that percolate with respect to

the usual bootstrap process B need not percolate with respect to the modified

update rule M. There are configurations which percolate with respect to B but

for which all vertices become uninfected in the modified process M.

With this in mind, an alternate initial infection scheme is considered in which

sites are infected in pairs so that every infected site either shares an edge or a

corner with another infected site. This process is detailed in Section 3.2.
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Because of these two different types of pairs, it is often useful to consider

both pairs of sites sharing an edge and pairs of sites sharing a corner as

neighbours of different types. For r ≥ 0 and a site x ∈ [n]2, define two different

balls of radius r in the grid, centered at x,

Br(x) = {y ∈ [n]2 : ‖x− y‖1 ≤ r}, (3.3)

B∗r (x) = {y ∈ [n]2 : ‖x− y‖∞ ≤ r}. (3.4)

For any x ∈ [n]2, the set B1(x) is precisely the set {x} ∪N(x) while the set

B∗1(x) is the set containing x together with the sites either sharing an edge or

corner with x.

Often, it is not just square grids that are of interest, but also ‘rectangles’

contained in the grid. A set R ⊆ [1, n]2 is called a rectangle if there are a1 ≤ a2

and b1 ≤ b2 with R = [a1, a2]× [b1, b2]. A rectangle R is said to be internally

spanned by the initially infected sites X0 if there is a tR so that

M(tR)(X0 ∩R) = R. In other words, based only on the initially infected sites

inside the rectangle R, every site in R eventually becomes infected. For

p ∈ (0, 1), and X0 ∼ Bin(R, p), let I(R, p) denote the probability that the

rectangle R is internally spanned.

A rectangle R = [a1, a2]× [b1, b2] is said to be horizontally traversable from

left to right by X0 if R \ ({a2} × [b1, b2]) ∪ ({a1 − 1} × [b1, b2]) is internally

spanned by X0 ∪ {a1 − 1} × [b1, b2]. That is, if all sites in the column

{a1 − 1} × [b1, b2] are infected then the sites in X0 will cause the infection to

spread to all of R except possibly the final column, depending only on the sites

that are infected inside the rectangle R. The events that the rectangle R is

horizontally traversable from right to left, vertically traversable from bottom to

top, or vertically traversable from top to bottom are defined similarly.
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The following notation for rectangles is used throughout. For a rectangle

R = [a1, a2]× [b1, b2], the dimensions of R, denoted by dim(R) is the pair of

side-lengths of R: dim(R) = (a2 − a1 + 1, b2 − b1 + 1). The length of the shorter

side of R is denoted short(R) = min{a2 − a1 + 1, b2 − b1 + 1}, the length of the

longer side of R is denoted long(R) = max{a2 − a1 + 1, b2 − b1 + 1} and the

semi-perimeter of R is φ(R) = (a2 − a1 + 1) + (b2 − b1 + 1) = short(R) + long(R).

3.2 Infection with pairs of sites

As described in Section 3.1, the effect of the modified bootstrap process M on

infected sites that have an infected neighbour can be more easily understood

than the effect of M on sites with no infected neighbours. There is still

considerable difficulty in dealing with sites that have infected neighbours since

the events that two particular sites both have infected neighbours are not, in

general, independent.

With this in mind, a new infection scheme is defined where pairs of

neighbouring sites are infected simultaneously.

For each x ∈ [n]2, consider the four pairs of sites

T(1,1)(x) = {x,x + (1, 1)}, T(1,−1)(x) = {x,x + (1,−1)},

T(1,0)(x) = {x,x + (1, 0)}, and T(0,1)(x) = {x,x + (0, 1)}. (3.5)

Call each of these pairs of sites a 2-tile. In order to be precise about the position

of such pairs, for each 2-tile in (3.5), call x the anchor of the 2-tile. The anchor

of a 2-tile is the left-most, bottom-most site. In Figure 3.2, these are the black

squares while the non-anchor sites are grey squares.

The 2-tiles of the first three types, T(1,1)(x), T(1,0)(x), and T(1,−1)(x) are said to

be of width 2 while the 2-tiles of the last type, T(0,1)(x) are said to be of width 1.
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Figure 3.2: Pairs of sites forming 2-tiles

Given p > 0, let Xtiles be a random configuration of 2-tiles on the grid [n]2

with each of the 2-tiles with anchor in [n]2:

⋃
x∈[n]2

{T(1,1)(x), T(1,−1)(x), T(1,0)(x), T(0,1)(x)}

included independently with probability p2. Note that, in general, Xtiles might

contain many overlapping 2-tiles. To avoid confusion, the measure on

configurations of 2-tiles on the grid is denoted P2.

Any configuration of 2-tiles is naturally associated with the set of sites in the

grid that are contained in some 2-tile. A configuration of 2-tiles, Xtiles is said to

percolate if the set of sites in some 2-tile of Xtiles percolates. Similarly a rectangle

R will be said to be traversable in any one of the four directions with respect to

Xtiles if R is traversable in that direction by the set of sites in some 2-tile.

It is shown, in Chapters 4 and 5, that the probability that a random

configuration of infected sites percolates (in M) can be approximated by the

probability that a random configuration of 2-tiles percolates.

One advantage to working with 2-tiles is that since every infected site has a

neighbour, either along an edge or at a corner, if Xtiles is a configuration of 2-tiles

then any rectangle R is traversable by Xtiles under M exactly when R is

traversable by Xtiles with respect to the usual bootstrap process, B. Thus, as in

usual bootstrap percolation, the only obstacle to crossing R is a pair of adjacent

columns containing no infected sites.
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Given a configuration of 2-tiles, a column is called 2-occupied if it contains

the anchor of a 2-tile of width 2, a column is 1-occupied if it contains the anchor

of a 2-tile of width 1, and a column is unoccupied if it does not contain the

anchor of any 2-tile. A column is said to be occupied if it is either 1-occupied or

2-occupied. Note that a column might be unoccupied and yet contain the

non-anchor of some 2-tile. Call a column empty if it does not contain any sites

from any 2-tiles. A pair of empty adjacent columns is called a double gap.

As in the study of usual bootstrap percolation (see for example, Holroyd [24,

Lemma 7]), the probability that a rectangle R contains no double gaps is defined

recursively in terms of the number of columns in R. The following function

appears as the characteristic function of the recurrence relation that arises in the

analysis of infection by 2-tiles and a few helpful facts about it are first proved.

Definition 3.2.1. For each u ∈ (0, 1), set

F (u, x) = Fu(x) = x3 − (1− u4)x2 − u4(1− u4)x− u8(1− u3)

= (x− 1)(x2 + u4x+ u8) + u11

and let β(u) be the largest real root of Fu(x).

In fact, for any u, the polynomial Fu(x) has exactly one root in (0, 1), and

this root is the largest. Since Fu(0) = −u8(1− u3) < 0 and Fu(1) = u11 > 0,

there is at least one root in (0, 1). Consider the derivative

d

dx
F (u, x) = F ′u(x) = 3x2 − 2(1− u4)x− u4(1− u4).

As F ′u(0) = −u4(1− u4) < 0 and F ′u(1) = 1 + u4 + u8 > 0, the function Fu has a

relative maximum less than zero and a relative minimum between 0 and 1. Since

Fu(x) is a polynomial of degree 3 in x, Fu(x) has exactly one root in (0, 1). In
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order to obtain bounds on the value of β(u) in terms of u, note that

Fu(1− u11) = −u15(1 + u4 − 2u7 − u11 + u18) < 0,

and hence 1− u11 ≤ β(u) ≤ 1. With a little more work, it can be shown that for

any u ∈ (0, 1), β(u) ∈ (1− u11, (6(1− u))1/3) and that if 0 < u ≤ 1/2, then

β(u) ∈ (1− u11, 1− u12).

Lemma 3.2.2. Fix p ∈ (0, 1) and let R be a rectangle of dimension (m,h). Set

u = (1− p2)h and let Xtiles be a random configuration of 2-tiles, each included

independently with probability p2. Then,

(1− u8)β(u)m ≤ P2(R is horizontally traversable by Xtiles) ≤ β(u)m−1.

Proof. Fix h ≥ 1 and set u = u(p, h) = (1− p2)h. Let C be any column of sites of

height h, a rectangle of dimension (1, h), then

P2(C is 1-occupied) = 1− (1− p2)h = 1− u

P2(C is 2-occupied) = 1− (1− p2)3h = 1− u3

P2(C is either 1 or 2-occupied) = 1− (1− p2)4h = 1− u4

P2(C is unoccupied) = (1− p2)4h = u4

Considering only the squares inside the relevant rectangle, for each m ≥ 0, let

Rm = [m]× [h] and set

Am = P2(Rm horiz. trav.) = P2(Xtiles has no double gaps in Rm).

In order to obtain bounds on the value of Am, a recursion for the sequence

{Am}m≥0 is defined. Let the columns of R be denoted C1, C2, . . . , Cm. When
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m ≥ 3, there are three distinct ways to traverse a rectangle of width m:

(a) either Cm is occupied and R \ Cm is traversable, or

(b) Cm is unoccupied, Cm−1 is occupied and R \ (Cm−1 ∪ Cm) is traversable, or

finally

(c) Cm−1 and Cm are both unoccupied, the column Cm−2 is 2-occupied and the

first m− 3 columns of R are traversable.

The first few values of Am can be calculated exactly: A0 = 1, A1 = 1, and

A2 = 1− P2(C1 is unoccupied)2 = 1− u8.

Considering the three cases above, for each m ≥ 3, a recurrence relation for

the sequence {Am}m≥0 is given by

Am = (1− u4)Am−1 + u4(1− u4)Am−2 + u8(1− u3)Am−3.

Recall that β(u) is a real root in (0, 1) of the polynomial

Fu(x) = x3 − (1− u4)x2 − u4(1− u4)x− u8(1− u3). Instead of solving the

recursion exactly, the goal is to show that for all m, the value of Am is close to

β(u)m. The proof proceeds by induction on m.

The base cases can be checked directly,

(1− u8)β(u)0 = (1− u8) < 1 = A0 < β(u)−1 (since β(u)−1 > 1)

(1− u8)β(u) < 1 = A1 = β(u)0

Since β(u) < 1, then (1− u8)β(u)2 < (1− u8) = A2 and since u ∈ (0, 1),

A2 = 1− u8 < 1− u11 < β(u).

The rest follows by induction, using the fact that β(u) is a zero of the

characteristic equation for the recurrence for the sequence {Am}.
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In what follows, a few basic properties of the function β(u) are used: the

rough bounds already given and the properties stated in the following lemma.

Lemma 3.2.3. In the interval (0, 1), the function β(u) is continuous, decreasing,

and concave.

Proof. By the implicit function theorem, since F (u, x) is a continuously

differentiable function, so is β(u) on any open interval for which ∂F
∂x

(u, β(u)) 6= 0.

Now

∂F

∂x
(u, x) = 3x2 − 2(1− u4)x− u4(1− u4)

=
3

x

(
x3 − 2

3
(1− u4)x2 − 1

3
u4(1− u4)x

)
=

3

x

(
F (u, x) +

1

3
(1− u4)x2 +

2

3
u4(1− u4)x+ u8(1− u3)

)
>

3

x
F (u, x) (for u, x ∈ (0, 1))

Thus, for any u ∈ (0, 1), ∂F
∂x

(u, β(u)) > 3
β(u)

F (u, β(u)) = 0. Further,

∂F

∂u
(u, x) = 4u3x2 − 4u3x+ 8u7x− 8u7 + 11u10

= 4u3(x2 − (1− 2u4)x− 2u4(1− 11/8u3)).

Since for all u ∈ (0, 1), β(u) > 1− u11 > 1− 2u4,

∂F

∂u
(u, β(u)) = 4u3

(
β(u)(β(u)− (1− 2u4))− 2u4(1− 11/8u3)

)
> 4u3

(
(1− u11)(1− u11 − 1 + 2u4)− 2u4 + 11/4u7

)
= 4u10(11/4− u4 − 2u8 + u15)

= 4u10(3/4 + (1− u7)(1− u8) + (1− u4) + u7(1− u))

> 0.
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Thus, for all u ∈ (0, 1), the function β(u) is differentiable and hence continuous

with

β′(u) = −
∂F
∂u

(u, β(u))
∂F
∂x

(u, β(u))
< 0

and hence β(u) is decreasing.

To see that β is concave note that by differentiating implicitly,

β′′(u) = −

(
∂2F
∂u2

(
∂F
∂x

)2
+ ∂2F

∂x2

(
∂F
∂u

)2 − 2 ∂2F
∂u∂x

∂F
∂x

∂F
∂u(

∂F
∂x

)3

)
(u, β(u)).

As above,
(
∂F
∂x

)3
(u, β(u)) > 0 and to see that

(
∂2F

∂u2

(
∂F

∂x

)2

+
∂2F

∂x2

(
∂F

∂u

)2

− 2
∂2F

∂u∂x

∂F

∂x

∂F

∂u

)
(u, β(u)) > 0, (3.6)

expanding the above expression yields

(
∂2F

∂u2

(
∂F

∂x

)2

+
∂2F

∂x2

(
∂F

∂u

)2

− 2
∂2F

∂u∂x

∂F

∂x

∂F

∂u

)
(u, x)

= 2u6(−1 + u4 + 3x)(11u7 + 8u4(−1 + x) + 4(−1 + x)x)2

− 8u6(−1 + 2u4 + 2x)(11u7 + 8u4(−1 + x) + 4(−1 + x)x)(u8

+ u4(−1 + 2x) + x(−2 + 3x)) + 2u2(55u7 + 28u4(−1 + x)

+ 6(−1 + x)x)(u8 + u4(−1 + 2x) + x(−2 + 3x))2

= −120u14 + 374u17 + 48u18 − 242u20 − 308u21 + 72u22 + 242u24

− 66u25 − 204u10x+ 440u13x+ 624u14x− 1760u17x+ 36u18x+ 726u20x

+ 264u21x− 72u22x− 240u6x2 + 440u9x2 + 924u10x2 − 1628u13x2

− 792u14x2 + 1452u17x2 − 84u18x2 − 48u2x3 + 984u6x3 − 1320u9x3

− 1224u10x3 + 1320u13x3 + 288u14x3 + 192u2x4 − 1296u6x4 + 990u9x4

+ 504u10x4 − 252u2x5 + 552u6x5 + 108u2x6
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= F (u, x)(108u2x3 + (−144u2 + 444u6)x2 + (48u2 − 600u6 + 990u9

− 48u10)x+ 192u6 − 330u9 + 24u10 + 222u13 − 108u14)+

+ 2u9x2((55− 18u+ 29u4 + 36u5 − 102u8 + 36u9)+

+ ux(18 + 31u3 − 72u4 + 191u7 − 72u8 − 132u10 + 45u11 + 18u12)+

+ u5(1− u)(36 + 36u+ 36u2 − 38u3 − 2u4 − 2u5 + 42u6 − 13u7+

− 31u8 − 31u9 − 21u10))).

Then inequality (3.6) follows since F (u, β(u)) = 0 and

55− 18u+ 29u4 + 36u5 − 102u8 + 36u9

= 36 + (1− u)(19 + u(1 + u+ u2 + 30u3 + 66u4 + 66u5 + 30u6

+ 36u6(1− u))) > 0,

18 + 31u3 − 72u4 + 191u7 − 72u8 − 132u10 + 45u11 + 18u12

= 18 + u3(31− 72u+ 191u4 − 72u5 − 132u7 + 45u8 + 18u9)

= 18 + u3

(
283

28
+ 63

(
u− 3

14

)2

+ 50u4 + 72u4(1− u) + 69u4(1− u3)

+ 45u(1− u6)(1− u) + 18(1− u7)(1− u2)

)
> 0

36 + 36u+ 36u2 − 38u3 − 2u4 − 2u5 + 42u6 − 13u7 − 31u8 − 31u9 − 21u10

= 33 + (1− u)(3 + 39u+ 75u2 + 37u3 + 35u4 + 33u5 + 75u6

+ 62u7 + 31u8) > 0.

Following similar notation to that used in the study of the usual bootstrap

percolation, it is often convenient to use the following functions in place of β(u).

Set

g(x) = − log (β(e−x)).
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For p ∈ (0, 1), define

q = q(p) = (− log (1− p2))1/2.

When p is small, q2 ∼ p2, with the advantage that for any p > 0 and h ∈ Z+,

β((1− p2)h) = e−g(hq
2). (3.7)

Since β(u) is defined for u ∈ [0, 1], then g(x) is defined for x ∈ (0,∞) and has

the following useful properties.

Fact 3.2.4. The function g(x) = − log (β(e−x)) is decreasing, convex and

integrable on (0,∞).

Proof of Fact. Since β(u) is a decreasing function of u, then

∂
∂x

(β(e−x)) = −e−xβ(e−x) > 0. Thus, since − log x is decreasing in x, the

function g is decreasing.

The function β(e−x) is concave since

∂2

∂x2
(β(e−x)) = e−x(β′′(e−x)e−x + β′(e−x)) < 0.

This is used to show that g is convex as follows. Let a, b > 0 and fix t ∈ [0, 1].

Since β(e−x) is concave, β(e−(ta+(1−t)b)) ≥ tβ(e−a) + (1− t)β(e−b) and so since the

function − log x is both decreasing and convex in x then

g(ta+ (1− t)b) = − log
(
β(e−(ta+(1−t)b))

)
≤ − log

(
tβ(e−a) + (1− t)β(e−b)

)
≤ t(− log β(e−a)) + (1− t)(− log β(e−b))

= tg(a) + (1− t)g(b).

To see that g is integrable, note that since β(e−x) ≥ 1− e−11x, then
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g(x) ≤ − log (1− e−11x) and so

∫ ∞
0

g(x) dx ≤
∫ ∞

0

− log(1− e−11x) dx

=

∫ ∞
0

(∑
k≥1

e−11kx

k

)
dx

=
∑
k≥1

(∫ ∞
0

e−11kx

k
dx

)
=
∑
k≥1

1

11k2
=
π2

66
<∞.

Thus, g is convex and
∫∞

0
g(x) dx <∞.

Set λ = λM =
∫∞

0
g(x) dx and for n > 0, set λn =

∫ n
1/n

g(x) dx. The exact

value of λ is not used in any of the proofs that follow, but it can be shown that

λ ≈ 0.0779.

The results of Holroyd [24] on the critical probability for usual bootstrap

percolation can be directly applied to the model of infection by 2-tiles with the

function g as given in equation (3.7) and λ as above. For {p(n)}n≥1 ⊆ (0, 1), let

Xtiles(n) a random configuration of 2-tiles in [n]2, with each 2-tile included in

Xtiles independently with probability p(n)2. Then, for all ε > 0, if for all n ≥ 1,

p(n)2 < λ−ε
logn

then

P2(Xtiles(n) percolates) = o(1).

Similarly, for all ε > 0, if for all n ≥ 1, p(n)2 > λ+ε
logn

, then

P2(Xtiles(n) percolates) = 1− o(1).

It remains to show that, indeed, the model of infection by 2-tiles is a good

approximation for the probability of percolation in the modified process M when
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single sites are initially infected. In Chapters 4 and 5, two different alterations of

an initially infected set of sites are given to obtain lower and upper bounds,

respectively, on the probability of percolation.
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Chapter 4

Lower bound for probability of

percolation

4.1 Traversing rectangles

In this chapter, it is shown that for certain values of p and n, it is very likely that

the grid, [n]2, percolates in the modified bootstrap process when sites are initially

infected independently with probability p.

Given a configuration of infected sites X, a new configuration X− is defined so

that X− ⊆ X and with the property that every site in X− has a neighbour in X−

either sharing an edge or a corner. The configuration X− can then be compared

to configurations of 2-tiles. This is accomplished most simply in the cases where

there is no ambiguity with regards to assigning 2-tiles to pairs of sites in X−.

Throughout, let X1 ⊆ R be the set of initially infected sites; each site infected

independently with probability p. As before, let Xtiles be a configuration of 2-tiles

on the sites in R with each 2-tile occurring independently with probability p2.

Given a configuration of 2-tiles, Xtiles, define |Xtiles| to be the number of squares

in the grid that are contained in at least one 2-tile. If there is a site is contained
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in more than one 2-tile, of the configuration Xtiles, the site is only counted once

for |Xtiles|.

A configuration of sites, X0, where every site is contained in some 2-tile can

be most easily compared to a configuration of 2-tiles if X0 determines exactly one

configuration of 2-tiles. With this in mind, it will be useful to keep track of pairs

of 2-tiles that could cause ambiguity. Recall that for any site (x1, x2) in the grid,

B∗1((x1, x2)) = {(y1, y2) : max{|x1 − y1|, |x2 − y2|} ≤ 1}.

Definition 4.1.1. A pair of 2-tiles {x,x1} and {y,y1} forms a triple if

B∗1({x,x1}) ∩ {y,y1} 6= ∅.

Thus, two tiles that overlap form a triple and also two 2-tiles that touch,

either along an edge or at a corner, form a triple. These are called triples since

they involve at least 3 sites and so occur in the set X0 with probability at most

p3.

Definition 4.1.2. For any n ∈ N and X ⊆ [n]2, define X− ⊆ X as follows:

X− = {x ∈ X : B∗1(x) ∩X 6= {x}}.

If x ∈ X and B∗1(x) ∩X = {x}, call x an isolated site.

Since X− ⊆ X, if X− percolates, then so does X. However, since every site in

X− has a neighbour in X− sharing an edge or a corner, the set X− can be

compared to a configuration of 2-tiles and the estimates from Lemma 3.2.2 on the

probability of traversing a rectangle can be used. In the following lemma, a lower

bound is given for the probability that a rectangle of a particular scale is

horizontally traversable. In further proofs, this lower bound is used for rectangles

of height either slightly smaller or slightly larger than p−2 and so rectangles are
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considered whose height is in the interval [p−15/8, p−17/8]. In order to better

control the errors that occur, only rectangles of width at most p−1/4 are

considered.

Lemma 4.1.3. There is a p0 > 0 so that for all p < p0, h = h(p) with

p−15/8 ≤ h ≤ p−17/8, m = m(p) with 1 ≤ m ≤ p−1/4 and rectangle R of dimension

(m,h), if X1 ∼ Bin(R, p) then,

P(R is horiz. trav. by X1) ≥ e−463hmp5/2(1− (1− p2)8h)e−mg(q
2h).

Proof. Fix p, h, and m with p−15/8 ≤ h ≤ p−17/8 and 1 ≤ m ≤ p−1/4. Let R be a

rectangle of dimension (m,h) and define a set of configurations of 2-tiles

Q = {A | A is a configuration of 2-tiles in R, containing no triples with

|A| ≤ hmp3/2}.

The configurations of 2-tiles in Q are, essentially, those that can be

unambiguously compared to configurations of infected sites. In later estimates, it

is useful to assume that |Xtiles| is not too large and so the condition |A| ≤ hmp3/2

is included also.

Given a configuration A of 2-tiles, let A1 be the set of sites that are contained

in some 2-tile from A and let Q1 = {A1 | A ∈ Q} be the configurations of

infected sites corresponding to the configurations of 2-tiles in Q.

First, it is shown that the probability of the event |Xtiles| > hmp3/2 is

relatively small. If at least hmp3/2 sites are covered by 2-tiles in Xtiles, then at

least 1
2
hmp3/2 different 2-tiles were included in Xtiles. Note that, for p sufficiently

small, 4hmp2 < hmp3/2

2
. Thus, by tail estimates for binomial random variables
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given in Lemma 1.2.1,

P2(|Xtiles| > hmp3/2) ≤ P
(

Bin(4hm, p2) >
1

2
hmp3/2

)
≤ exp

(
hmp3/2

2

)
(8p1/2)hmp

3/2/2

≤ exp

(
hmp3/2

2

)
(e−5)hmp

3/2/2 (for p ≤ e−10/64)

= e−2hmp3/2 .

In order to compare this term with those involving β(u), note that since

u = (1− p2)h ≤ e−11p2h and β(u) ≥ 1− u11,

β(u) ≥ 1− e−11p2h ≥ 1− e−11p1/8 ≥ e−p
−3/8 ≥ e−hp

3/2

.

Thus, P2(|Xtiles| > hmp3/2) ≤ e−hmp
3/2
β(u)m.

Fix A ∈ Q. Since A contains no triples, the configuration A consists of

exactly |A|/2 tiles. Thus,

P2(Xtiles = A) = (p2)|A|/2(1− p2)4|R|−|A|/2

= p|A|(1− p2)4|R|−|A|/2.

In order to bound the probability that X−1 = A1, note that X−1 = A1 if the

following three events occur:

• E1: the event that A1 ⊆ X1,

• E2: the event (B∗1(A1) \ A1) ∩X1 = ∅, and

• E3: the event that every site x ∈ X1 \ A1 is isolated.
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Since E1 is independent of E2 ∩ E3,

P(X−1 = A1) = P(E1 ∩ E2 ∩ E3) = P(E1)P(E2 ∩ E3) = p|A|P(E2 ∩ E3).

To obtain an upper bound on |B∗1(A1) \ A1|, note that if x1 and x2 are two sites

sharing an edge, then |B∗1({x1,x2}) \ {x1,x2}| = 10 whereas if x1 and x2 are two

sites sharing a corner, then |B∗1({x1,x2}) \ {x1,x2}| = 12. In both cases,

|B∗1({x1,x2}) \ {x1,x2}| ≤ 6|{x1,x2}| and in general, there are at most 6|A| sites

in B∗1(A1) \ A1,

P(E2) = (1− p)|B∗1 (A1)\A1| ≥ (1− p)6|A|.

The event E3 is the intersection of a collection of decreasing events: that for each

site outside of A1, none of the 4 possible sets of sites forming tiles is included in

X1. Thus, by Lemma 1.2.2, P(E3) ≥ (1− p2)4(|R|−|A|). Since E2 and E3 are both

decreasing events, applying Lemma 1.2.2 again yields

P(E2 ∩ E3) ≥ P(E2)P(E3) ≥ (1− p)6|A|(1− p2)4(|R|−|A|).

Thus,

P(X−1 = A1) ≥ p|A|(1− p)6|A|(1− p2)4(|R|−|A|)

= p|A|(1− p2)4|R|−|A|/2(1− p)6|A|

≥ P2(Xtiles = A)(1− p)6|A|

≥ P2(Xtiles = A)e−7p|A|

≥ P2(Xtiles = A)e−7hmp5/2 (since |A| ≤ hmp3/2) (4.1)
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Let C = {A : A ⊆ R and R is traversable by A}. Then,

P(X1 ∈ C) ≥ P(X−1 ∈ C ∩ Q1)

=
∑

A1∈Q1∩C

P(X−1 = A1)

≥
∑

A∈Q∩C

P2(Xtiles = A)e−7hmp5/2 (by inequality (4.1))

= e−7hmp5/2P2(Xtiles ∈ C ∩ Q)

= e−7hmp5/2 [P2(Xtiles ∈ C)− P(Xtiles ∈ C \ Q)] .

By Lemma 3.2.2, with u = (1− p2)h, the probability of traversing satisfies

P2(Xtiles ∈ C) ≥ β(u)m(1− u8) and so it remains to find an appropriate upper

bound for P(Xtiles ∈ C \ Q). First,

P2(Xtiles ∈ C \ Q)

≤ P2(Xtiles ∈ C and Xtiles contains a triple) + P2(|Xtiles| > hmp3/2)

≤
∑

T a triple

P2(Xtiles ∈ C and T ⊆ Xtiles) + e−hmp
3/2

β(u)m.

Fix a triple T and consider P2(Xtiles ∈ C and T ⊆ Xtiles). Note that the sites in

the triple T are contained in at most 4 different columns of R. Removing the

columns containing sites from T produces two smaller rectangles R1 and R2 both

of height h. If Xtiles crosses R, there are rectangles R′1 and R′2 obtained from R1

and R2 by removing at most one column from each so that R′1 and R′2 are of

height h and of width m1 and m2 (respectively) with m1 +m2 ≥ m− 6 and with

the property that R′1 is traversable by Xtiles ∩R′1 and R′2 is traversable by

Xtiles ∩R′2. Thus,

P2(R is traversable by Xtiles and T ⊆ Xtiles)
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≤ P2(R′1 is trav. by Xtiles ∩R′1)P2(R′2 is trav. by Xtiles ∩R′2)P2(T ⊆ Xtiles)

≤ β(u)m1+m2−2(p2)2

≤ β(u)m−8p4.

For each site x ∈ R, consider the possible number of triples that contain x as one

of the anchor sites. There are 4 different 2-tiles that contain x as the anchor site.

If {x,x2} is a 2-tile, then |B∗1({x,x2})| ≤ 14 and for each of the sites

y ∈ B∗1({x,x2}), there are at 8 different 2-tiles that contain y. Since x could be

the anchor site of one of two 2-tiles, the number of triples that contain x as one

of the anchor sites is at most 4 · 14 · 8/2 = 224. Thus

∑
T a triple

P2(R is traversable by Xtiles and T ⊆ Xtiles) ≤ 224hmp4β(u)m−8

and so

P2(Xtiles ∈ C \ Q) ≤ e−hmp
3/2

β(u)m + 224hmp4β(u)m−8

= β(u)m(e−hmp
3/2

+ 224hmp4β(u)−8)

Since

β(u) ≥ 1− e−11p2h ≥


(1− e−11)p2h p1/8 ≤ p2h ≤ 1

1− e−11 1 ≤ p2h

It follows that β(u)−8 ≤ (1− e−11)−8p−1.

Thus,

e−hmp
3/2

+ 224hmp4β(u)−8 ≤ e−hmp
3/2

+ 224hmp4(1− e−11)−8p−1

≤ e−hmp
3/2

+ 225hmp3

≤ e−p
−3/8

+ 225hmp3 (since hm ≥ p−15/8)
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≤ p9/8 + 225hmp3

≤ 226hmp3. (since hm ≥ p−15/8)

Combining these bounds yields

P(X1 ∈ C) ≥ e−7hmp5/2(1− u8 − 226hmp3)β(u)m

≥ e−7hmp5/2(1− u8)

(
1− 226hmp3

1− u8

)
β(u)m.

Now, by calculations similar to those in previous estimates,

226hmp3

1− u8
≤ 226hmp3

1− e−8p2h

≤


227p3/4 p1/8 ≤ p2h ≤ 1

227p5/8 1 ≤ p2h ≤ p−1/8

≤ 227p5/8 (since m ≤ p−1/4 and p2h ≤ p−1/8)

and so

P(X1 ∈ C) ≥ e−7hmp5/2(1− u8)

(
1− 226hmp3

1− u8

)
β(u)m

≥ e−7hmp5/2(1− u8)(1− 227p5/8)β(u)m

≥ e−7hmp5/2(1− u8)e−454p5/8β(u)m (for p small)

≥ e−7hmp5/2−454hmp15/8p5/8(1− u8)β(u)m

≥ e−463hmp5/2(1− u8)β(u)m.

Therefore, for p sufficiently small,

P(R is horiz. trav. by X1) ≥ e−463hmp5/2(1− u8)β((1− p2)h)m
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= e−463hmp5/2(1− u8)e−mg(q
2h)

yielding the desired lower bound.

4.2 Lower bound on I(n, p)

In the previous section, a bound on the crossing probability of a rectangle is

given in terms of the function β. This is used here to establish a bound on the

probability that a large, but not arbitrarily large, rectangle is internally spanned

when sites are initially infected at random.

Lemma 4.2.1. There exists a p1 > 0 such that if p < p1, then

I(bp−17/8c, p) ≥ exp

(
−2λ+ 2p1/9

p2

)
.

Proof. Fix p ∈ (0, 1) and set m = bp−1/4c and let h0 be the smallest integer in

[p−15/8, 2p−15/8] such that bp−17/8c − h0 is divisible by m. Set

n = (bp−17/8c − h0)/m

and for j = 1, 2, . . . , n, set hj = j ·m+ h0. In particular hn = bp−17/8c and

p−15/8(1− 3p1/4) ≤ n ≤ p−15/8.

Setting N = bp−17/8c, the square [N ]2 is internally spanned if the following

three events all occur:

• The sites (1, 1), (2, 2), . . . , (h0, h0), and (1, 2) are initially infected,

• for j = 1, 2, . . . , n− 1, the rectangles [hj + 1, hj+1]× [1, hj] are horizontally

traversable from left to right and the rectangles [1, hj]× [hj + 1, hj+1] are

vertically traversable from bottom to top, and
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• for each j = 1, 2, . . . , n, the rectangle {hj} × [1, hj−1] and the rectangle

[1, hj−1]× {hj} each contain two adjacent infected sites.

Let S denote the intersection of these three events. Note that

P({hj+1} × [1, hj] contains two adjacent infected sites) ≥ 1− (1− p2)(hj−1)/2.

Since S is the intersection of increasing events, by Lemma 4.1.3 and Harris’s

Lemma (Lemma 1.2.2),

P(S) ≥ ph0+1

(
n−1∏
j=0

P(X1 crosses [hj + 1, hj+1]× [1, hj])(1− (1− p2)(hj−1)/2)

)2

≥ ph0+1

(
n−1∏
j=0

e−463hjmp
5/2

(1− (1− p2)8hj)e−mg(q
2hj)(1− (1− p2)(hj−1)/2)

)2

= ph0+1

(
n−1∏
j=0

e−463hjmp
5/2

(1− e−8q2hj)e−mg(q
2hj)(1− e−q2(hj−1)/2)

)2

.

Each of the terms in the above expression is simplified separately. First, since

m = hj − hj−1, and q ≥ p,

n−1∑
j=0

mg(q2hj) =
1

q2

n−1∑
j=0

mq2g(q2hj)

≤ 1

p2

∫ ∞
0

g(x) dx =
λ

p2
.

Similarly,

n−1∑
j=0

hjmp
5/2 ≤

n−1∑
j=0

hjp
9/4 (since m ≤ p−1/4)

≤ nhnp
9/4

≤ p−15/8p−17/8p9/4

=
p1/4

p2
,
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n−1∑
j=0

− log(1− e−8q2hj) ≤ 1

8mq2

∫ ∞
0

(
− log(1− e−x)

)
dx

≤ p1/4(π2/24)

p2

n−1∑
j=0

− log(1− e−q2(hj−1)/2) ≤ 2

q2m

∫ ∞
0

(
− log(1− e−x)

)
dx

≤ p1/4(2π2/3)

p2
.

Finally,

ph0+1 = exp((h0 + 1) log p)

≥ exp((p−15/8 + 1) log p)

= exp

(
−(−p1/8 log p)(1 + p15/8)

p2

)
≥ exp

(
−p

1/9

p2

)
. (for p small enough)

Combining these yields

I(bp−17/8c, p) ≥ P(S)

≥ exp

(
−(p1/9 + 2(463p1/4 + p1/4π2/24 + p1/42π2/3 + λ)

p2

)
≥ exp

(
−2p1/9 + 2λ

p2

)
,

completing the proof of the lemma.

The bound from Lemma 4.2.1 can be further extended to estimating the

probability that an arbitrarily large rectangle is internally spanned.
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Lemma 4.2.2. There is a p2 > 0 such that if p < p2 and n > p−17/8,

I(n, p) ≥ exp

(
−(2λ+ 3p1/9)

p2

)
.

Proof. The idea of the proof that the grid [n]2 is internally spanned if the

sub-square [1, bp−17/8c]2 is internally spanned and the rest of the grid contains

many rows and columns with pairs of adjacent, initially infected sites that allow

the infection to spread one row and column at a time from this sub-square.

In particular, [n]2 is internally spanned if the following events occur

• the square [bp−17/8c]2 is internally spanned, and

• for each j = bp−17/8c+ 1, . . . , n, the rectangles {j} × [1, j − 1] and

[1, j − 1]× {j} both contains pairs of adjacent sites that are initially

infected.

Let S ′ be the above event and note that S ′ is the intersection of many

independent events.

For each j = bp−17/8c+ 1, . . . , n, let Sj be the event that {j} × [1, j − 1]

contains a pair of adjacent sites that are initially infected. Note that

P(Sj) = P([1, j − 1]× {j} contains a pair of adj. initially inf. sites) also. Then,

as in the proof of the previous lemma, P(Sj) ≥ 1− (1− p2)bj/2c and hence

P

 n⋂
j=bp−17/8c+1

Sj

2

=
n∏

j=bp−17/8c+1

P(Sj)
2

≥
n∏

j=bp−17/8c+1

(1− (1− p2)bj/2c)2

= exp

2
n∑

j=bp−17/8c+1

log(1− e−q2(j−1)/2)


≥ exp

(
− 2

p2

∫ ∞
q2(bp−17/8c+1)/2

− log(1− e−x) dx
)
.
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It is straightforward to check that if k ≥ 1, then∫∞
k

(− log(1− e−x)) dx ≤ 5
4
e−k. Thus,

P(∩nj=bp−17/8c+1Sj)
2 ≥ exp

(
−5/2e−q

2(bp−17/8c+1)/2

p2

)

≥ exp

(
−5/2e−p

−1/8/4

p2

)

≥ exp

(
−p

1/9

p2

)
.

and so I(n, p) ≥ exp
(
−p1/9

p2

)
I(bp−17/8c, p) and by the previous lemma,

I(n, p) ≥ exp

(
−p

1/9

p2

)
exp

(
−2p1/9 + 2λ

p2

)
= exp

(
−3p1/9 + 2λ

p2

)

as claimed.

Following an argument similar to that used by Holroyd [24] for the analysis of

the usual bootstrap process, Lemma 4.2.2 is used to show that if p2 log n > λ,

then I(n, p) is close to 1.

Theorem 4.2.3. For every ε > 0, there exists n0 ∈ Z+ such that if n ≥ n0 and

p ∈ (0, 1) with p ≥
√

λ+ε
logn

then

I(n, p) ≥ 1− 3 exp(−nε/6).

Proof. Fix ε > 0 and n0 ≥ 0 large enough so that Lemma 4.2.2 applies for any p

with p ≤
√

λ+ε/2
logn0

.

Fix n ≥ n0 and p ∈ (0, 1) with p ≥
√

λ+ε
logn

. Note that if p′ < p then

I(n, p′) ≤ I(n, p) and so it suffices to prove the theorem for p =
√

λ+ε
logn

.

Instead of randomly infecting all sites at once, sites are infected in two

‘rounds’. Two random configurations of infected sites are independently coupled
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so that a large sub-rectangle of [n]2 is likely to be internally spanned by sites

from the first configuration and that, using only sites from the second

configuration, the infection is able to spread row by row and column by column

from this rectangle to the entire grid.

Set p1 =
√

λ+ε/2
logn

and p2 = ε/2
logn

. Let X0 ∼ Bin([n]2, p), X1 ∼ Bin([n]2, p2), and

X2 ∼ Bin([n]2, p2). Let the two probability spaces associated with X1 and X2 be

coupled independently so that X1 ∪X2 ⊆ X0 since p1 + (1− p1)p2 ≤ p for n ≥ 75.

Set ` =
⌊
exp

(
ε

8p21

)⌋
. Note that since λ < 1/8,

` =

⌊
exp

(
ε

8p2
1

)⌋
= bn

ε
8(λ+ε/2) c ≤ nε < n.

Divide the grid [n]2 into bn/`c2 disjoint `× ` sub-grids, with potentially some

remainder: {[k`+ 1, (k + 1)`]× [j`+ 1, (j + 1)`] : k, j ∈ [0, bn/`c − 1]}. For each

of these `× ` sub-grids, the probability that the sub-grid is internally spanned by

X1 is I(`, p1). The probability that none of these `× ` sub-grids are internally

spanned is

(1− I(`, p1))bn/`c
2 ≤ (1− I(`, p1))

n2

2`2

≤ exp

(
− n

2

2`2
I(`, p1)

)
.

Now,

n2

2`2
I(`, p1) ≥ n2

2nε/8λ
exp

(
−2λ+ 3p

1/4
1

p2
1

)
(by Lemma 4.2.2)

≥ 1

2
n2− ε

8λ exp

(
−2λ+ 3p

1/4
1

λ+ ε/2
log n

)

≥ 1

2
n2− ε

8λ exp
(
−
(

2− ε

λ

)
log n

)
=

1

2
n2− ε

8λn−2+ ε
λ

65



=
1

2
n

7ε
8λ

≥ n
3ε
4λ .

(
for n ≥ exp

(
1

2ε

))

Let S be the event that at least one `× ` sub-grid is internally spanned by X1.

Then, since λ ≤ 1/12,

P(S) ≥ 1− exp(−n9ε). (4.2)

Next, consider the probability that an internally spanned `× ` sub-grid,

together with sites in X2 will percolate in [n]2. As in Lemma 4.2.2 the

probability of this occurring is bounded below by the probability that, in many

rows and columns, there are pairs of adjacent infected sites.

Let Ar be the event that for every k and j with 0 ≤ k ≤ bn/`c − 1 and

1 ≤ j ≤ n, the row [k`+ 1, (k + 1)`]× {j} contains at least two adjacent infected

sites in X2. Then

P(Ar) ≥ (1− (1− p2
2)(`−1)/2)nbn/`c ≥ (1− exp(−p2

2(`− 1)/2))n
2/`

≥ exp

(
−2n2

`
e−p

2
2`/3

)

Now, for n large enough, (log n)2 ≤ ε2

12
n

ε
72(λ+ε/2) and so

p2
2`

3
=
ε2bnε/8(λ+ε/2)c

12(log n)2
≥ n

ε
9(λ+ε/2) .

Similarly, for n sufficiently large, depending on ε,

2n2− ε
8(λ+ε/2) exp(−n

ε
9(λ+ε/2) ) ≤ exp(−n

ε
10(λ+ε/2) ) ≤ exp(−nε/6),

and hence

P(Ar) ≥ exp(−e−nε/6). (4.3)
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Define, similarly, Ac to be the event that for every k and j with

0 ≤ k ≤ bn/`c − 1 and 1 ≤ j ≤ n, the column {j} × [k`+ 1, (k + 1)`] contains at

least two adjacent infected sites in X2. Then P(Ac) = P(Ar) and since the events

Ac and Ar are both increasing events, by Harris’s Lemma (Lemma 1.2.2),

P(Ac ∩ Ar) ≥ P(Ac)P(Ar). Now, if both events S and Ac ∩ Ar occur, then [n]2 is

internally spanned by the set of initially infected sites X1 ∪X2. Thus,

I(n, p) ≥ P(S)P(Ac ∩ Ar)

≥ P(S)P(Ac)P(Ar)

≥ (1− exp(−n9ε)) exp(−2e−n
ε/6

) (by eqns. (4.2) and (4.3))

≥ 1− 2 exp(−nε/6)− exp(−n9ε)

≥ 1− 3 exp(−nε/6).

For n sufficiently large, depending on ε and if p ≥
√

λ+ε
logn

, then

I(n, p) ≥ 1− 3 exp(−nε/6).

In particular, for every ε > 0 and any sequence {p(n)}n∈N ⊆ (0, 1) with the

property that for all n ∈ N, p(n) ≥
√

λ+ε
logn

, then

I(n, p(n)) ≥ 1− 3 exp(−nε/6) = 1− o(1)

and so with high probability, a random set of initially infected sites

X0 ∼ Bin([n]2, p(n)) percolates in the modified bootstrap process. Thus the

critical probability satisfies

pc([n]2,M) ≤

√
λ+ o(1)

log n
.
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Chapter 5

Upper bound for probability of

percolation

5.1 Traversing rectangles and growing

rectangles

To obtain an upper bound for the probability of percolation in the modified

bootstrap process, an alteration of the initial configuration is defined that is

different from the one given in Chapter 4. An initial configuration of infected

sites X is altered to produce a new configuration X+ that can be more easily

compared to the process of infecting sites with 2-tiles, but in such a way that if

X percolates in M, then so does X+. The idea is to uninfect isolated sites that

do not affect the final infection status of any of their neighbours, while including

some new infected sites next to isolated sites that have a chance of affecting

whether or not their neighbours become infected.

For convenience, set

e1 = (1, 0), e2 = (0, 1), e3 = (−1, 0) and e4 = (0,−1).
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Recall the definitions of two different types of distances on the grid: balls in the

`∞ metric are written B∗r (x) while balls in the `1 metric are written B(x) (see 3.3

and 3.4).

Definition 5.1.1. For any X ⊆ Z2, define X+ ⊆ Z2 as follows:

• if x ∈ X with B∗1(x) ∩X 6= {x}, then x ∈ X+.

• if x ∈ X with B2(x) ∩X = {x} then x /∈ X+.

• if x ∈ X is isolated and for some i ∈ {1, 2, 3, 4}, x + 2ei ∈ X, then

– if B2({x,x + ei,x + 2ei}) ∩X \ {x,x + 2ei} = ∅ then x /∈ X+, and

– if B2({x,x + ei,x + 2ei}) ∩X \ {x,x + 2ei} 6= ∅ then x,x + ei ∈ X+.

Figure 5.1 shows the configurations of infected sites in X that are uninfected

in X+. The shaded sites represent infected sites and uninfected sites are

represented by sites containing empty circles.

Figure 5.1: Sites from X that are uninfected

Figure 5.2 shows an isolated site x with x,x + 2e1 ∈ X. If any other site

inside the outlined region is infected (in X), then x and x + e1 (the site

containing a shaded circle) are included in X+.
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Figure 5.2: Sites included in X+

Call any such configuration of three infected sites in X a triplet. In Figure

5.3, the different types of triplets are shown with the associated sites marked

with an empty circle.

Figure 5.3: Six types of triplets

Considering rotations and reflections, there are 2 triplets of each of the first

and second type, 8 triplets of each of the third and fourth type, and 4 triplets of

each of the fifth and sixth types. Thus, in total, there are 28 different triplets.

As before, pairs of infected points that form one of the four 2-tiles are called a

double. By definition, every site contained in a configuration X+ is either

contained in a double in X, or associated with a set of three points in X that

form a triplet.

In the next lemma, it is shown how the probability that a rectangle R is

traversable by the set X+ can be compared to the probability that R is
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traversable by a configuration on 2-tiles. As in Chapter 4, first, rectangles with

height close to p−2 are considered.

Lemma 5.1.2. Let B > 1, Z > 0, m ∈ N and set

Q1(B,Z,m) = 1500Bm+
30Bm+ 3·253

Z

(1− e−11Z)m−1
.

There exists p0 = p0(B,Z,m) > 0 such that for all h ∈ N with Z ≤ hp2 ≤ B and

every rectangle R of dimension (m,h), if p < p0 and X ∼ Bin(R, p) then

P(R is horizontally traversable) ≤ (1 + pQ1(B,Z,m))e−g(hq
2)(m−1).

Proof. Fix p > 0, B > 1, Z > 0, m ∈ N and let h ∈ N be such that Z ≤ hp2 ≤ B.

Let R be a rectangle of dimension (m,h). Similarly to the proof of Lemma 4.1.3,

let

Q = {A ⊆ R : every site in A has a neighbour, A contains no triplets and

|A| ≤ |R|p}

and let C be the collection of configurations of infected sites for which R is

horizontally traversable from left to right in the process M. Fix A ∈ Q and let

X ∼ Bin(R, p). Since R will be horizontally traversable by X+ if R is

horizontally traversable by X,

P(R is horiz. trav. by X) ≤ P(R is horiz. trav. by X+).

If X+ = A, then since A contains no triplets and any site in X+ \X is contained

in a triple, A ⊆ X. Further, any site in X \ A is isolated and not contained in a

triplet. In order to deal with independent events, consider the following two
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events:

• E1: every site in A is in X, and

• E2: there are no doubles or triplets in X ∩ (R \B3(A)).

Since E1 and E2 are independent, P(X+ = A) ≤ P(E1)P(E2) = p|A|P(E2). In

order to bound P(E2), a version of Janson’s inequality (Theorem 1.2.5) is used.

Let (Bi)i∈I be the sequence of events that a particular double or triplet occurs

in X ∩ (R \B3(A)). For each site x, there are 4 different doubles containing x as

the left-most and bottom-most site and there are 28 different triplets containing

x as the left-most and bottom-most site. Thus, there are at most 4|R \B3(A)|

such doubles and at most 28|R \B3(A)| such triplets. Consider the number of

sites in |B3(A)|. For any double {x1,x2}, one can verify that

|B3({x1,x2})| = 32 = 16|{x1,x2}|.

Thus, since every site in the configuration A is contained in a double,

|B3(A)| ≤ 16|A|.

Then E2 = ∩i∈IBi and this event depends only on the

|R \B3(A)| ≥ |R| − 16|A| independent events that a particular site is initially

infected or not. In order to apply Theorem 1.2.5 a bound is required for the sum

of probabilities of events Bi ∩Bj for which Bi and Bj are not independent.

Consider the number of overlapping doubles and triples. For each site x,

there are 4 doubles containing x as the anchor and 2 sites in the double that

could be overlapping with another double. For the sites in the first double, there

are 8 different doubles containing that site. In this way each pair of overlapping

doubles is counted twice and so there are at most 32|R \B3(A)| different pairs of

overlapping doubles.
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Similarly, since there are 28 different triplets, there are at most

4 · 2 · 3 · 28 = 672 different pairs of a triple and an overlapping double that x as

its anchor at at most 28 · 28 · 32/2 = 3528 pairs of triples that contain x as the

lowest left-most site of one of the triplets. Therefore, in all, there are

672|R \B3(A)| different pairs of a double and a triplet that overlap and at most

3528|R \B3(A)| pairs of overlapping triplets. Since a pair of distinct doubles that

overlap contain at least 3 sites, a double and a triple that overlap contain at least

3 sites and a pair of distinct triplets that overlap contain at least 4 sites,

∑
Bi,Bj not indep.

P(Bi ∩Bj) ≤ (32 + 672)|R \B3(A)|p3 + 3528|R \B3(A)|p4

≤ 710|R \B3(A)|p3

when p ≤ 1/588. Similarly,
∑

i∈I P(Bi) ≤ (4p2 + 28p3)|R \B3(A)| and applying

Theorem 1.2.5,

P(E2) = P(∩i∈IBi) ≤ exp(−(4p2 + 28p3)|R \B3(A)|) exp(710|R \B3(A)|p3)

= exp((−4p2 + 682p3)|R \B3(A)|)

≤ exp((−4p2 + 682p3)(|R| − 16|A|))

≤ exp(−4|R|p2 + 64p2|A|+ 682p3|R|)

≤ exp(−4p2|R|+ 746p3|R|). (since |A| ≤ |R|p)

Thus, since the event that X+ = A is contained in the intersection of

independent events E1 and E2,

P(X+ = A) ≤ p|A| exp(−4p2|R|+ 746|R|p3)

= p|A|(1− p2)4|R|−|A|/2(1− p2)−4|R|+|A|/2 exp(−4p2|R|+ 746|R|p3)

= P2(Xtiles = A)(1− p2)−4|R|+|A|/2 exp(−4p2|R|+ 746|R|p3)
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≤ P2(Xtiles = A)(1− p2)−4|R| exp(−4p2|R|+ 746|R|p3).

For p sufficiently small, 1− p2 ≥ e−(p2+p4) and for x small enough, ex ≤ 1 + 2x.

Thus,

(1− p2)−4|R| exp(−4p2|R|+ 746|R|p3) ≤ exp(4|R|(p2 + p4)− 4p2|R|+ 746|R|p3)

≤ exp(750|R|p3)

≤ exp

(
750

B

p2
mp3

)
= exp(750Bmp)

≤ 1 + 1500Bmp.

Therefore,

P(X+ = A) ≤ P2(Xtiles = A)(1 + 1500Bmp).

This inequality can be used to compare the probability that R is traversable by

X+ to that of R being traversable by a random configuration of 2-tiles,

conditioned on either configuration being in the collection Q.

Consider now the probability that X+ /∈ Q. Since every site in X+ has a

neighbour, if X+ /∈ Q then either X+ contains a triplet or |X+| > |R|p. Let

{Tj}j∈J be the collection of sets of sites in R that form triplets and consider first

the probability that X+ contains one of the triplets Tj. If Tj ⊆ X+ then either

Tj ⊆ X or else one of the sites in Tj is associated with another triplet contained

in X. In particular, if Tj * X, then every site in Tj \X is adjacent to at least 2

sites in X and together with sites in Tj ∩X, there are at least 4 sites in X. If a

site x ∈ Tj \X is associated with another triplet in X, then either

{x + (−1, 0),x + (1, 0)} ⊆ X or {x + (0,−1),x + (0, 1)} ⊆ X. Very roughly then

P(Tj ⊆ X+) ≤ p3 + 33p4. Since there are at most 28|R| different triplets in R and
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|R| = hm ≤ Bm/p2,

P(∪j∈J{Tj ⊆ X+}) ≤
∑
j∈J

P(Tj ⊆ X+) ≤ 28|R|(p3 + 27p3) ≤ 30Bmp (5.1)

as long as p ≤ 1/378.

It is slightly more complicated to determine the probability that |X+| ≥ |R|p

since the events that any two sites are included in X+ are not independent.

Since the membership in X+ of any site is determined by at most 25

independent events, the initial infection of sites in X within a ball of radius 3,

then a version of Talagrand’s inequality [34] can be used to bound the probability

that X+ is large.

For every site x ∈ R,

P(x ∈ X+) ≤ 8p2 + 100p3 ≤ 10p2

when p is sufficiently small. Thus E(|X+|) ≤ 10|R|p2. Changing the initial

infection status of one site changes the value of |X+| by at most 25 and for any r,

the event that |X+| ≥ r can be certified by the initial infection status of 25r

sites. Thus, applying Talagrand’s inequality (Theorem 1.2.4),

P(|X+| ≥ |R|p) ≤ exp

(
−(|R|p− 10|R|p2)2

2 · 253|R|p

)
≤ exp

(
− |R|p

3 · 253

)
(for p ≤ 1/30)

≤ exp

(
− Zm

3 · 253p

)
(since h ≥ Z/p2)

≤ 3 · 253p

Zm
(using e−x ≤ 1/x) (5.2)

Thus, the probability that X+ is not a configuration in Q can be estimated as
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follows. Combining the two inequalities (5.1) and (5.2), yields

P(X+ /∈ Q) ≤ P(X+ contains a triplet) + P(|X+| ≥ |R|p)

≤ 30Bmp+
3 · 253p

Zm
. (5.3)

Finally, it is possible to bound from above the probability that R is

horizontally traversable by X+ using Lemma 3.2.2,

P(X+ ∈ C) ≤ P(X+ ∈ C ∩ Q) + P(X+ /∈ Q)

≤
∑

A∈C∩Q

P(X+ = A) + 30Bmp+
3 · 253p

Zm

≤
∑

A∈C∩Q

P2(Xtiles = A)(1 + 1500Bmp) + 30Bmp+
3 · 253p

Zm

≤ P(Xtiles ∈ C)(1 + 1500Bmp) + 30Bmp+
3 · 253p

Zm

≤ e−g(hq
2)(m−1)(1 + 1500Bmp) + 30Bmp+

3 · 253p

Zm

= e−g(hq
2)(m−1)

(
1 + 1500Bmp+

30Bmp+ 3·253p
Zm

(1− e−11hp2)m−1

)

≤ e−g(hq
2)(m−1)

(
1 + p

(
1500Bm+

30Bm+ 3·253

Z

(1− e−11Z)m−1

))

= e−g(hq
2)(m−1) (1 + pQ1(B,Z,m)) .

Thus P(R is horiz. trav. by X) ≤ e−g(hq
2)(m−1) (1 + pQ1(B,Z,m)).

In Lemma 5.1.2, the width of the rectangle being traversed is arbitrary.

However, for large values of m, part of the error term, Q1(B,Z,m), might

become too large for this lemma to be useful for upper bounds on the the

probability of percolation. Instead of considering the probability of traversing a

large rectangle all at once, it is useful to consider traversing ‘strips’ of a fixed

width one at a time. There can potentially be dependence between the
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probability of crossing adjacent strips, but this can be dealt with by ignoring the

infection configuration in a few columns. The following lemma gives the details.

Lemma 5.1.3. Fix B > 1, Z > 0, p < p0 and h ∈ [Z/p2, B/p2]. For any

m,w ∈ N with w < m and any rectangle R of dimensions (m,h),

P(R is horiz. trav.) ≤ (1 + pQ1(B,Z,w))m/w+1e−g(hq
2)m(1−11/w).

Proof. Fix w < m and a rectangle R of dimension (m,h). Let ` ∈ N and

0 ≤ r < w be such that m = `w + r. Let R be any rectangle of dimension (h,m)

and divide R into ` sub-rectangles, R1, R2, . . . , R`, each of height h and width w,

with a remainder sub-rectangle of width r, denoted R0.

For each i = 0, 1, 2, . . . , `, it might not be the case that Ri is horizontally

traversable by X since this event might depend on sites in adjacent

sub-rectangles.

Since membership in the set X+ depends only on the initial infection of sites

within distance 3, at least it is true that the sub-rectangle of Ri obtained by

deleting 3 columns from each side is horizontally traversable by (X ∩Ri)
+.

Denote these sub-rectangles by R′0, R
′
1, . . . , R

′
`. Set

Q1 = max{Q1(B,Z, r − 3), Q1(B,Z,w − 6)}.

Applying Lemma 5.1.2 to the sub-rectangles R′0, R
′
1, . . . , R

′
`,

P(R is horiz. trav. by X+)

≤
∏̀
i=0

P(R′i is horiz. trav. by X+)

≤ (1 + pQ1)`e−g(hq
2)(w−7)`(1 + pQ1)e−g(hq

2)(r−4)

≤ (1 + pQ1)`+1e−g(hq
2)(w`+r−7`−4)
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≤ (1 + pQ1)m/w+1e−g(hq
2)(m−(7`+4))

≤ (1 + pQ1)m/w+1e−g(hq
2)m(1−11/w)

yielding the desired bound on the probability that R is traversable.

In the analysis of the upper bound on the probability of percolation, rather

than considering only the probability that rectangles are traversable, the

probability that an infected rectangle grows into a larger infected rectangle

because of the infected sites around it is also used.

Definition 5.1.4. For any two rectangles R ⊆ R′ and X ∼ Bin(R′, p), let

D(R,R′) be the event that R′ is internally spanned by R ∪X.

Essentially, this is the event that the four rectangles surrounding R in R′ are

traversable by the sites in X \R. The following lemma shows that even though

these events are not independent, they are nearly so.

Lemma 5.1.5. For every B ≥ 1, Z ≥ 0 and c ∈ (0, 1/6), there exist T ≥ 0 and

p1 = p1(Z, c) such that for all p ≤ p1 and all m, n, s and t with

Z/p2 ≤ m,n ≤ B/p2, and s, t ≤ T/p2 if R ⊂ R′ are two rectangles with

dimensions (m,n) and (m+ s, n+ t), respectively, then

P(D(R,R′)) ≤ 3(1 + pQ1(B,Z, d11/ce))
12
11
c(s+t)+4e16g(Z)−(1−6c)(sg(nq2)+tg(mq2)).

Proof. Fix B > 1, Z > 0, c ∈ (0, 1/6), p > 0 and let R be a rectangle of

dimension (m,n) and let R′ be a rectangle of dimension (m+ s, n+ t) with

R ⊆ R′. Suppose, without loss of generality that s ≤ t. Let R′ = [a1, a2]× [b1, b2]

and R = [c1, c2]× [d1, d2]. The rectangle R′ is decomposed into R together with

the following 8 sub-rectangles, as in Figure 5.4,

R1 = [a1, c1 − 1]× [b1, d1 − 1] R2 = [c1, c2]× [b1, d1 − 1]
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R3 = [c2 + 1, a2]× [b1, d1 − 1] R4 = [c2 + 1, a2]× [d1, d2]

R5 = [c2 + 1, a2]× [d2 + 1, b2] R6 = [c1, c2]× [d2 + 1, b2]

R7 = [a1, c1 − 1]× [d2 + 1, b2] R8 = [a1, c1 − 1]× [d1, d2].

R1 R2 R3

R4RR8

R7 R6 R5

Figure 5.4: Decomposition of the rectangle R′

Let X ∼ Bin(R′, p). If the event D(R,R′) occurs, then each of the rectangles

R3 ∪R4 ∪R5 and R7 ∪R8 ∪R1 are horizontally traversable and each of the

rectangles R5 ∪R6 ∪R7 and R1 ∪R2 ∪R3 are vertically traversable. The

probability of each of these events individually can be approximated by Lemma

5.1.3, but these events are not independent. Conditioning on the infected sites in

the corner rectangles, R1, R3, R5, and R7, it is possible to approximate the

probability of these events by slightly different events that are independent of

each other.

Set Y = X+ ∩ (R1 ∪R3 ∪R5 ∪R7). Since |R1 ∪R3 ∪R5 ∪R7| = st, then

E|Y | ≤ st(8p2 + 100p3) ≤ 9stp2 for p ≤ 1/100.

The events that two particular sites are contained in X+ are not independent,

however, if d(x,y) ≥ 7, then the events {x ∈ X+} and {y ∈ X+} are independent

since they each depend on the initial infection of disjoint sets of sites.

The grid, Z2, can be decomposed into 25 disjoint sets C1, . . . , C25 such that

for each i ∈ [1, 25] and x,y ∈ Ci, d(x,y) ≥ 7. Indeed, set B = B5(0) and for each
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b ∈ B, define Cb = {b + x(4, 3) + y(3,−4) : x, y ∈ Z}. These sets {Cb : b ∈ B}

are disjoint, |B| = 25 and for any x,y ∈ Cb, if x 6= y, then d(x,y) ≥ 7 and hence

the events {x ∈ X+} and {y ∈ X+} are independent.

Now, if |Y | ≥ cs, then for some b ∈ B, the expected number of sites in

Cb ∩ Y satisfies |Cb ∩ Y | ≥ cs/25. For each b ∈ B, E(|Cb ∩ Y |) ≤ 9p2st/25 and

thus by Lemma 1.2.1, for T ≤ c/9,

P
(
|Cb ∩ Y | ≥

cs

25

)
≤
(

9p2st/25

cs/25

)cs/25

=

(
9p2t

c

)cs/25

≤
(

9T

c

)cs/25

.

Thus, P(|Y | ≥ cs) ≤ 25
(

9T
c

)cs/25
. Chose T = T (c, Z) ≤ c

9

(
1
25
e−2(1−6c)g(Z))

)25/c
.

Since g is a decreasing function, g(mq2), g(nq2) ≤ g(Z) and hence

25

(
9T

c

)cs/25

≤ e−2s(1−6c)g(Z) ≤ e−(1−6c)(sg(nq2)+tg(mq2)) ≤ e−(1−6c)sg(nq2) ≤ 1.

Similarly, for s ≤ T/p2 ≤ c/(9p2),

P(|Y | ≥ ct) ≤ 25

(
9T

c

)ct/25

≤ e−2t(1−6c)g(Z).

Consider the probability of the event D(R,R′) conditioned on |Y | ≤ cs. If

every column of R′ that contained sites of X+ ∩ (R1 ∪R3 ∪R5 ∪R7) were

removed, the rectangles R4 and R8 would be split into as most cs+ 2

sub-rectangles of height n and total width at least s− cs.

If D(R,R′) occurs, then in particular, each of these sub-rectangles is

horizontally traversable by the sites in X+. However, the membership of sites in

X+ might depend on initially infected sites in the deleted columns or adjacent
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rectangles. In order to obtain a set of rectangles for which the events that each

are horizontally traversable are independent, two further columns on either side

of each sub-rectangle are removed. Since this might also depend on sites in Y ,

delete 2 further rows from the top and bottom of each sub-rectangle to ensure

that the events are independent of the sites in Y . Let the sub-rectangles be of

widths s1, s2, . . . , sj and note that
∑j

i=1 si ≥ s− cs− 4(cs+ 2) = s(1− 5c)− 8.

Set w = d11/ce, let Q1 = Q1(B,Z,w) and apply Lemma 5.1.3 using w for the

widths of the strips. Then by the choice of w, and since g is decreasing,

P(R4 and R8 are horiz. trav. | |Y | ≤ cs)

≤
j∏
i=1

(1 + pQ1)si/w+1e−g((n−4)q2)si(1−11/w)

≤ (1 + pQ1)s/w+cs+2e−(s(1−5c)−8)(1−11/w)g(nq2)

≤ (1 + pQ1)s/w+cs+2e−g(nq
2)(s(1−6c)−8)

≤ (1 + pQ1)
12
11
sc+2e8g(Z)−g(nq2)s(1−6c)).

Similarly, conditioning on the event that |Y | ≤ ct,

P(R2 and R6 are vert. trav. | |Y | ≤ ct) ≤ (1 + pQ1)
12
11
ct+2e8g(Z)−t(1−6c)g(mq2).

Consider the event D(R,R′) conditioned on the following three possible

ranges for the values of |Y |: |Y | ≤ cs, cs < |Y | ≤ ct, and |Y | > ct.

P(D(R,R′)| |Y | ≤ cs)P(|Y | ≤ cs)

≤ P(D(R,R′) | |Y | ≤ cs)

≤ (1 + pQ1)
12
11
c(s+t)+4 exp

(
16g(Z)− (1− 6c)(tg(mq2) + sg(nq2))

)
,

P(D(R,R′)| cs < |Y | ≤ ct)P(cs < |Y | ≤ ct)
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≤ P(D(R,R′) | cs < |Y | ≤ ct)P(cs < |Y |)

≤ (1 + pQ1)
12
11
ct+2 exp

(
8g(Z)− t(1− 6c)g(mq2)

)
e−(1−6c)sg(nq2)

≤ (1 + pQ1)
12
11
c(s+t)+4 exp

(
16g(Z)− (1− 6c)(tg(mq2) + sg(nq2))

)
,

P(D(R,R′)| |Y | > ct)P(|Y | > ct)

≤ P(|Y | > ct)

≤ e−(1−6c)(sg(nq2)+tg(mq2))

≤ (1 + pQ1)
12
11
c(s+t)+4 exp

(
16g(Z)− (1− 6c)(sg(nq2) + tg(mq2))

)
.

Combining these yields,

P(D(R,R′)) ≤ 3(1 + pQ1)
12
11
c(s+t)+4 exp

(
16g(Z)− (1− 6c)(sg(nq2) + tg(mq2))

)
,

the desired upper bound for the probability that the infection grows from the

rectangle R to the rectangle R′.

5.2 Hierarchies

As in the study of the usual bootstrap process, the notion of a ‘hierarchy’ is used

to account for the different ways in which small internally spanned rectangles can

either join together or grow into larger rectangles through the update process.

The definitions and results in this section are similar to the notion of hierarchies

in [24], though on a different scale with respect to the parameter p and with some

small changes to deal with sites that could become uninfected.

Definition 5.2.1. A hierarchy for a rectangle R, is a pair

H = (GH, {Ru}u∈V (GH)), where GH is a finite directed rooted tree with all edges

directed away from the root and with maximum out-degree 3, together with a

collection of rectangles {Ru}u∈V (GH) such that
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• if r is the root of GH, then Rr = R,

• if u→ v in GH, then Ru ⊇ Rv

• if u has three children, then at least one child has as its corresponding

rectangle a single site.

• if u has two or three children and at least one child v has short(Rv) > 2,

then Ru is internally spanned by the rectangles corresponding to its

children.

Vertices with out-degree 0 are called seeds, vertices with out-degree 1 are called

normal and vertices with out-degree 2 or 3 are called splitters.

As in the analysis of usual bootstrap percolation, hierarchies are thought of as

constructed ‘bottom up’ using initially infected sites: two rectangles are joined to

create a ‘parent’ when their sites span a single larger rectangle. There is a slight

modification to deal with the case when one of these rectangles is a single site. In

this case, in order to remain consistent with the definition of X+, a single site is

only joined to another rectangle if the site is part of a triplet among the initially

infected sites. In this case, the rectangles joined will be those that correspond to

sites in the triplet.

Proposition 5.2.2. Let R be a rectangle, X ⊆ R and set X∗ = X ∩X+.

Suppose R is internally spanned by X. Then, there exists a hierarchy

H = (G, {Ru}u∈V (G)) for R and {Xu}u∈V (G) with Xu ⊆ X∗ ∩Ru such that

• the root r ∈ V (G) has Rr = R,

• the rectangles corresponding to the seeds of H are all the individual sites in

X∗,

• every vertex that is not a seed has out degree at least 2,

83



• if u and w are both children of a vertex v, then Xu ∩Xw = ∅,

• if v is not a seed and has at least one child u with short(Ru) > 2, then Rv is

internally spanned by the rectangles corresponding to its children.

Proof. Note that by the definition of X+, every site in the set X∗ is either part of

a double or a triplet of sites in X and the only sites in X \X∗ are those that do

not contribute to the final infection of any other sites before they recover

themselves. Thus, R is internally spanned by X iff R is internally spanned by X∗.

The hierarchy H can be constructed recursively. Let R0
1, R

0
2, . . . , R

0
k be the

individual sites in X∗ and let these correspond to the seeds of the hierarchy H.

Given a partially constructed hierarchy H, if there exist two vertices u and v with

no parent so that d(Ru, Rv) ≤ 2, add a new vertex to GH by the following rules:

Case 1: If neither Ru nor Rv is a single site add a new vertex w as the parent

of u and v with Rw the smallest rectangle that contains Ru ∪Rv and set

Xw = Xu ∪Xv.

Case 2: If Ru = x is a single site, then by the choice of X∗, the site x is part

of either a double or a triplet. The sites that form either the double or triplet

containing x might already be a part of another rectangle, but in either case,

there is either another rectangle R′u or two rectangles R′u and R′′u with no parents

that contain the sites associated with the double or triplet containing x. Add a

new vertex w as in the previous case and join either the rectangle and the site or

the two rectangles and the site.

This process continues until there are no more sites or rectangles that have

yet to be joined. Since R is internally spanned by X∗, this process will stop only

when the last remaining vertex with no parent is a root that corresponds to the

rectangle R. The resulting directed graph and collection of rectangles have the

desired properties, by induction.
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Definition 5.2.3. Given an initial infection X of R, the hierarchy H is said to

occur (with respect to X) iff

• for every seed u, if the short side of Ru is the horizontal side then in every 4

adjacent columns in the the rectangle Ru, there are at least 2 initially

infected sites within distance 2 (similarly for sets of 4 adjacent rows if the

short side of Ru is vertical),

• for every normal vertex u with u→ v ∈ E(GH), the event D(Rv, Ru) holds,

and these events occur disjointly.

For any rectangle Ru let J(Ru) be the event, as above, that in every 4

adjacent columns, there are at least 2 initially infected sites within distance 2 if

the short side of Ru is horizontal and similarly for set of 4 adjacent rows if the

short side of Ru is vertical.

The condition that these events occur disjointly is included so that by the van

den Berg-Kesten inequality (Lemma 1.2.3),

P(H occurs) ≤
∏
w seed

P(J(Rw))
∏

u normal
u→v

P(D(Ru, Rv)).

Note that the event that some hierarchy for a rectangle R occurs is not

equivalent to the event that the rectangle R is internally spanned. Rectangles

corresponding to seeds might have two initially infected sites within distance two

in every set of 4 adjacent columns without being internally spanned. However, as

long as the rectangles corresponding to seeds are not too large, the difference will

be small. The definition is made in this way because, by Proposition 5.2.2, if R is

internally spanned by X, then there is a hierarchy H for R that occurs. The

number of these hierarchies might be too large compared to the probability that

a particular hierarchy occurs to give reasonable estimates on the probability that
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R is internally spanned. For this reason, it is useful to consider the following

types of hierarchies where the difference in dimensions between parent and child

rectangles are not arbitrarily small.

Definition 5.2.4. Given Z > T > 0 and p > 0, the hierarchy H is said to be

good for Z, T , and p if the rectangles {Ru}u∈V satisfy the following additional

conditions on their dimensions:

• if v is a seed, then short(Rv) < 2Z/p2,

• if v is not a seed, then short(Rv) ≥ 2Z/p2,

• if u is normal with child v, then φ(Ru)− φ(Rv) ≤ T/p2

• if u is normal with u→ v and v is also normal, then φ(Ru)− φ(Rv) ≥ T
2p2

,

and

• if u is a splitter and v is a child of u, then φ(Ru)− φ(Rv) ≥ T
2p2

.

Next, it is shown that there exist hierarchies that are both good and occur for

rectangles that are internally spanned.

Proposition 5.2.5. Let Z > T > 0, p > 0 and let R be a rectangle and let

X ⊆ R. If R is internally spanned by X, then there exists a hierarchy H that is

good for Z, T and p and that occurs.

Proof. The proof proceeds by induction on R. If short(R) < 2Z/p2, then take GH

to be a single isolated vertex r and Rr = R. If R is internally spanned, then

H = (GH, {Rr}) is a good hierarchy that occurs.

Assume now that short(R) ≥ 2Z/p2. Then φ(R) ≥ 4Z/p2. Construct a

sequence R ⊇ R1 ⊇ . . . from Proposition 5.2.2 going down the tree from the root,

always talking Ri to be the largest rectangle. Let m ≥ 1 be the smallest such

that φ(R)− φ(Rm) ≥ T
2p2

and consider the following three cases.
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Case 1: If T
2p2
≤ φ(R)− φ(Rm) ≤ T

p2
, then let H′ = (G′, {Ru}u∈V ′) be a good

hierarchy rooted at r′ that occurs for Rm. Let r be a new vertex and define a

new hierarchy rooted at r with Rr = R as follows. Set

G = (V ′ ∪ {r}, E(G′) ∪ {r → r′}) and then H = (G, {Ru}u∈V (G)) is the desired

hierarchy.

Case 2: If φ(R)− φ(Rm) > T/p2 and m = 1, let R′1 be the other rectangle from

the tree in Proposition 5.2.2. Note that by construction,

φ(R′1) ≤ φ(R1) ≤ φ(R)− T
2p2

. Let H1 and H2 be good hierarchies that occur for

R1 and R′1, respectively. Construct a good hierarchy for R by adding a new

vertex r as the root, with edges joining it to the roots of the trees for H1 and H1.

Case 3: If φ(R)− φ(Rm) > T/p2 and m ≥ 2, let R′m be the other rectangle

contained in Rm−1 from the tree in Proposition 5.2.2. Let H1 and H2 be good

hierarchies that occur for Rm and R′m respectively. For i = 1, 2, denote the root

of Hi by ri. Let r and u be two new vertices and set Rr = R and Ru = Rm−1.

Define a new hierarchy H with GH = GH1 ∪GH2 ∪ {r → u, u→ r1, u→ r2},

rooted at r. Since φ(R)− φ(Rm−1) < T
2p2

and φ(R)− φ(Rm) ≥ T/p2 imply that

φ(Rm−1)− φ(R′m) ≥ φ(Rm−1)− φ(Rm) ≥ T

p2
− T

2p2
=

T

2p2

then, H is a good hierarchy for T, Z and p.

Good hierarchies are useful because there are not too many of them for

rectangles of certain dimensions. Fix B ≥ 1, p > 0 and let R be a rectangle with

short(R) ≤ long(R) ≤ B/p2. Let Z, T > 0 and let H be a hierarchy for R that is

good for Z, T and p. By the definition of good hierarchies, for every directed path

of length two in GH, u→ v → w, the rectangles Ru and Rw satisfy
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φ(Ru)− φ(Rw) ≥ T
2p2

. Thus, the height of the tree GH is at most

2
2B/p2

T/(2p2)
+ 1 =

8B

T
+ 1.

Since the out-degree of each vertex is at most 3, there are at most 38B/T+2

vertices in GH. Set M = M(B, T ) = 38B/T+2.

The number of rooted trees on M vertices is M ·MM−2 = MM−1 and so there

are at most MM−1 different rooted trees among all those belonging to a good

hierarchy for R. Consider now the number of different collections of rectangles

corresponding to hierarchies. In R, the number of different rectangles is

(
long(R) + 1

2

)(
short(R) + 1

2

)
≤ (B/p2 + 1)4

4
≤
(
B

p2

)4

.

Thus, for any rooted tree G on at most M vertices, there are at most (B/p2)4M

different collections {Ru}u∈V (G) such that for each u ∈ V (G), Ru is a rectangle

contained in R. Therefore, in total, there are at most

MM−1

(
B

p2

)4M

= MM−1B4Mp−8M (5.4)

different good hierarchies for the rectangle R. While this number might be very

large, it turns out to be small enough compared to the probability that a given

hierarchy occurs to give a reasonable upper bound on the probability that the

rectangle R is internally spanned.

5.3 Upper bound on I(n, p)

The following definitions and lemmas can be found in the paper by Holroyd [24].

Although, in that article, the function g is different, the proofs use only the
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properties that the function g is continuously differentiable, positive, decreasing

and convex. The function g, given by equation (3.7), has these properties, by

definition and by Fact 3.2.4.

Definition 5.3.1. Let a = (a1, a2) and b = (b1, b2) with for i = 1, 2, 0 ≤ ai ≤ bi.

Define

W (a,b) = inf

{∫
γ

g(y) dx+ g(x)dy | γ : a→ b piecewise linear path

}
.

The function W and its properties are used to bound the term

exp(tg(mq2) + sg(nq2)) arising in Lemma 5.1.5. The following, Lemmas 5.3.2,

5.3.3, 5.3.4, 5.3.5, are from Holroyd [24] (Propositions 12, 13, 14, and 15).

Lemma 5.3.2. Let a,b, c ∈ (R+)2 with a ≤ b ≤ c. Then

W (a,b) +W (b, c) ≥ W (a, c).

Lemma 5.3.3. If a ≤ b, then W (a,b) ≤ (b1 − a1)g(a2) + (b2 − a2)g(a1).

Lemma 5.3.4. If a = (a1, a2) with a1 +a2 = A and b = (B,B) with A ≤ B, then

W (a,b) ≥ 2

∫ B

A

g(x) dx.

Lemma 5.3.5. For every z, Z with 0 < z ≤ Z and a,b, c,d, r ∈ (R+)2 with

a ≤ b, c ≤ d, r ≥ b,d, (2Z, 2Z) and r ≤ b + d + (a, a), there exists s ∈ (R+)2

with s ≤ r and s ≤ a + c such that

W (a,b) +W (c,d) ≥ W (s, r)− 2zg(Z).
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Definition 5.3.6. For rectangles R ⊆ R′, set

U(R,R′) = W (q2 dim(R), q2 dim(R′)).

This definition is useful since if R is a rectangle of dimension (m,n) and R′ is

a rectangle of dimension (m+ s, n+ t) with R ⊆ R′, then by Lemma 5.3.3,

U(R,R′)

q2
≤ sg(mq2) + tg(nq2).

The following lemma, adapted from a corresponding result in [24], shows that

every hierarchy is associated with a rectangle called a ‘pod’ that can be used to

bound the sum of the values U(Rv, Ru) over all normal vertices in the hierarchy.

Lemma 5.3.7. Fix Z, T, q with 3q2 < Z, let H be a good hierarchy for the

rectangle R with root r and let Ns(H) be the number of vertices in GH that are

splitters. There exists a rectangle S = S(H) with S ⊆ R and

dim(S) ≤
∑
w seed

dim(Rw),

and ∑
u→v

u normal

U(Rv, Ru) ≥ U(S,R)− 6Ns(H)q2g(Z).

Proof. The proof proceeds by induction on the number of vertices in GH. If

|V (GH)| = 1, then take S = R.

If |V (GH)| > 1, consider separately the cases where the root r is a normal

vertex or a splitter. If r is a normal vertex with child u, let H′ be the

sub-hierarchy with root u and apply the induction hypothesis to H′ to get a

rectangle S ′ ⊆ Ru. The hierarchy H′ has the same number of splitters as the
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hierarchy H and the same seeds. Thus dim(S ′) ≤
∑

w∈V (GH′ ) seed dim(Rw) and

∑
v→w

U(Rw, Rv) ≥ U(Ru, R) + U(S,Ru)− 6Ns(H′)q2g(Z)

≥ U(S,R)− 6Ns(H)q2g(Z). (by Lemma 5.3.2)

Suppose now that r is a splitter and let u and v be two children of r that

correspond to the two largest rectangles among the children of r. If r has a third

child that corresponds to a single site, it is disregarded. Let H1 and H2 be the

two sub-hierarchies with roots u and v respectively. Then, since r is a splitter,

Ns(H) = Ns(H1) +Ns(H2) + 1. Also, dim(Ru) + dim(Rv) ≥ dim(R)− (3, 3),

accounting for the case when there is a third vertex that corresponds to a site in

a triplet.

Let S1 ⊆ Ru and S2 ⊆ Rv be given by the induction hypothesis and for

i = 1, 2 set si = q2 dim(Si), r1 = q2 dim(Ru), r2 = q2 dim(Rv) and r = q2 dim(R).

By Lemma 5.3.5, there exists s ≤ r with s ≤ s1 + s2 such that

W (s1, r1) +W (s2, r2) ≥ W (s, r)− 2(3q2)g(Z).

Let S be a rectangle in R of dimension 1
q2

s. Then

dim(S) ≤ dim(S1) + dim(S2)

≤
∑

w seed in H1

dim(Rw) +
∑

w seed in H2

dim(Rw)

=
∑

w seed in H

dim(Rw).

Also, by the choice of s, U(S1, R1) + U(S2, R2) ≥ U(S,R)− 6q2g(Z) and by the
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choice of S1 and S2,

∑
x,y∈V (H)

x→y

U(Ry, Rx)

=
∑

x,y∈V (H1)
x→y

U(Ry, Rx) +
∑

x,y∈V (H1)
x→y

U(Ry, Rx)

≥ U(S1, Ru)− 6q2Ns(H1)g(Z) + U(S2, Rv)− 6q2Ns(H1)g(Z)

≥ U(S,R)− 6q2g(Z)− 6q2Ns(H1)g(Z)− 6q2Ns(H2)g(Z)

= U(S,R)− (Ns(H1) +Ns(H2) + 1)6q2g(Z)

= U(S,R)− 6q2Ns(H)g(Z).

By induction, the result holds for all good hierarchies, H.

Using the notion of pods, the following upper bound is given on the

probability that squares of a particular size are internally spanned. Recall that in

Section 3.2, for B ≥ 1 the value λB was defined to be λB =
∫ B

1/B
g(x) dx ≤ λ.

Theorem 5.3.8. For every ε > 0, there is a B0 = B0(ε) > 0 such that for

B > B0 there exists p0 = p0(ε, B) such that if 0 < p < p0 then

I(bB/p2c, p) ≤ exp

(
ε− 2(1− 7/B)λB

p2

)
.

Proof. Fix ε > 0, B > 1 and p > 0. Set L = bB/p2c, c = 1/B, fix Z > 0 and let

T be given by Lemma 5.1.5. By the van den Berg-Kesten inequality (Lemma

1.2.3), for any hierarchy H that is good for Z, T and p with respect to [L]2,

P(H occurs) ≤
∏
w seed

P(J(Rw))
∏

u normal
u→v

P(D(Ru, Rv)).

Consider first the terms P(D(Rv, Ru)). Set Q1 = Q1(B,Z, d11/ce). By
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Lemma 5.1.5, for a normal vertex u and u→ v with dim(Ru) = (m+ s, n+ t)

and dim(Rv) = (m,n),

P(D(Rv, Ru))

≤ 3(1 + pQ1)
12
11
c(s+t)+4e16g(Z)−(1−6c)(sg(nq2)+tg(mq2))

≤ 3(1 + pQ1)
24
11
cT/p2+4 exp

(
16g(Z)− (1− 6c)

U(Rv, Ru)

q2

)
≤ exp

(
log 3 +

(
24cT

11p2
+ 4

)
pQ1 + 16g(Z)− (1− 6c)

U(Rv, Ru)

q2

)
≤ exp

(
(log 3 + (24cT/11 + 4)Q1 + 16g(Z))

p
− (1− 6c)U(Rv, Ru)

q2

)
.

Set Q2 = Q2(B,Z) = log 3 + (24cT/11 + 4)Q1 + 16g(Z). Then, Q2 is a constant

that depends only B, Z since T and c depend only on B and Z and

P(D(Rv, Ru)) ≤ exp(Q2/p) exp

(
−(1− 6c)

U(Ru, Rv)

q2

)
. (5.5)

Let N1(H) be the number of normal vertices in GH and let N0(H) be the number

of seeds. Recall that the number of vertices in the hierarchy H is at most

M = 38B/T+2 and so N1(H) and N0(H) are both at most a constant that depends

only on B and Z, since T depends on B and Z. Let S be a pod rectangle for H

given by Lemma 5.3.7. Then, dim(S) ≤
∑

w seed dim(Rw) and

∑
u normal
u→v

U(Rv, Ru) ≥ U(S,R)− 6Ns(H)q2g(Z).

Combining this with inequality (5.5),

∏
u normal
u→v

P(D(Ru, Rv)) ≤
∏

u normal
u→v

exp

(
Q2

p
− (1− 6c)U(Ru, Rv)

q2

)
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= exp

N1(H)Q2

p
− (1− 6c)

q2

∑
u normal
u→v

U(Ru, Rv)


≤ exp

(
N1(H)Q2

p
− (1− 6c)

q2

(
U(S,R)− 6Ns(H)q2g(Z)

))
≤ exp

(
N1(H)Q2p+ 6Ns(H)g(Z)q2

p2
− (1− 6c)

U(S,R)

q2

)
.

Let p be small enough so that N1(H)Q2p+ 6Ns(H)g(Z)q2 ≤ ε/3, then

∏
u normal
u→v

P(D(Ru, Rv)) ≤ exp

(
ε/3

p2
− (1− 6c)

U(S,R)

q2

)
. (5.6)

To estimate the probability of the events J(Rw), suppose without loss of

generality that the short side of Rw is horizontal and consider blong(Rw)/4c

disjoint sets of 4 adjacent columns in Rw. In one set of 4 adjacent columns, there

are at most 32 short(Rw) ≤ 32Z/p2 pairs of sites within distance 2. The

probability that at least one of these pairs are both initially infected is at most

32Z and hence

P(J(Rw)) ≤ (32Z)blong(Rw)/4c ≤ (32Z)φ(Rw)/8−1.

Thus, using the fact that dim(S) ≤
∑

w seed dim(Rw),

∏
w seed

P(J(Rw)) ≤ (32Z)
P
w seed φ(Rw)/8−3/4

≤ (32Z)φ(S)/8−N0(H)

= exp

(
log(32Z)φ(S)

8
− log(32Z)N0(H)

)
.
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Let p be small enough so that − log(32Z)N0(H) ≤ ε
3p2

. Then

∏
w seed

P(J(Rw)) ≤ exp

(
log(32Z)φ(S)

8
+
ε/3

p2

)

and so

P(H occurs) ≤ exp

(
log(32Z)φ(S)

8
+
ε/3

p2
+
ε/3

p2
− (1− 6c)

U(S,R)

q2

)
= exp

(
2ε/3

p2
+

log(32Z)φ(S)

8
− (1− 6c)U(S,R)

q2

)
.

Consider two different cases, depending on the size of the semi-perimeter of

the rectangle S.

Case 1: If φ(S) ≤ 1
Bq2

, then applying Lemma 5.3.4 with q2φ(S) = A ≤ 1/B,

U(S,R) = W (q2 dim(S), q2 dim(R)) ≥ 2

∫ B

1/B

g(x) dx = 2λB

and so

exp

(
−(1− 6c)

q2
U(S,R)

)
≤ exp

(
−2(1− 6c)

q2
λB

)
.

Then,

P(H occurs) ≤ exp

(
2ε/3

p2
− (1− 6c)U(S,R)

q2

)
≤ exp

(
2ε/3

p2
− 2(1− 6c)λB

q2

)
.

Case 2: If, on the other hand, φ(S) > 1
Bq2

, then

− log(32Z)φ(S)

8
≥ − log(32Z)

8Bq2
.
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Choose Z > 0 to be small enough so that

− log(32Z)

8B
≥ 2λ ≥ 2(1− 6c)λB.

Then,

P(H occurs) ≤ exp

(
2ε/3

p2
+

log(32Z)φ(S)

8

)
≤ exp

(
2ε/3

p2
− 2(1− 6c)λB

q2

)
.

Finally, recall that for M = 38B/T+2, there are at most MM−1B4Mp−8M

different good hierarchies H. Let p be small enough so that

MM−1B4Mp−8M ≤ exp
(
ε/3
p2

)
. Then,

I(L, p) ≤
∑
H

P(H occurs)

≤MM−1B4Mp−8M exp

(
2ε/3

p2
− 2(1− 6c)λB

q2

)
= exp

(
ε/3

p2
+

2ε/3

p2
− 2(1− 6c)λB

q2

)
= exp

(
ε

p2
− 2(1− 6c)λB

q2

)
.

Let p be small enough so that q2

p2
≤ 1−6c

1−7c
. Then,

I(L, p) ≤ exp

(
ε− 2(1− 7c)λB

p2

)
.

In order to extend Theorem 5.3.8 to give an upper bound on the probability

that an arbitrarily large rectangle percolates, the following lemma is used. If a

large rectangle R is internally spanned, it might not be possible to guarantee that
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R will contain internally spanned squares of a particular scale, but the following

shows that it is at least possible to guarantee the existence of internally spanned

rectangles of a particular scale. Lemma 5.3.9 is an immediate analogue to a

result on usual bootstrap percolation given in [2].

Lemma 5.3.9. Fix a rectangle R, k ∈ N with long(R) ≥ 2k, and X0 ⊆ R. If R is

internally spanned by X0, then there exists a rectangle T ⊆ R with

long(T ) ∈ [k, 2k] that is internally spanned by X0.

While Theorem 5.3.8 gives an upper bound on the probability of percolation

for any large enough rectangle and small enough probability of initial infection, it

remains to show how this can be used to give a bound on the critical probability.

Theorem 5.3.10. For every ε > 0, there exists n0 = n(ε) such that for every

n ≥ n0, if p < 0 is such that p ≤
√

λ−ε
logn

, then

I(n, p) ≤ n−
ε

2(λ−ε) .

Proof. Fix ε > 0 and let B = B(ε) and p0 = p0(ε) be given by Theorem 5.3.8 and

with B large enough so that λ− (1− 6/B)λB < ε/12. Let n0 = n0(B, ε) be large

enough so that
√

λ−ε
logn0

< p0 and if n ≥ n0, then n ≥ B logn
λ−ε .

Fix n > n0 and p > 0 with p ≤
√

λ−ε
logn

. Note that if p ≤ p′, then by coupling,

I(n, p) ≤ I(n, p′) and so it suffices to prove the result assuming that p =
√

λ−ε
logn

.

By the choice of n0, n > B logn
λ−ε = B/p2. Set R = [n]2.

Set K = bB/p2c and k = bB/2p2c so that 2k ≤ K < n. By Lemma 5.3.9, if R

is internally spanned, then there is an internally spanned rectangle T ⊆ R with

long(T ) ∈ [k, 2k]. Thus,

I(n, p) ≤
∑
T⊆R

long(T )∈[k,2k]

I(T, p).
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In R, there are at most n2(2k)2 ≤ n2K2 such rectangles T . By the choice of K,

and for n sufficiently large,

K2 ≤ B2

p4
=
B2(log n)2

(λ− ε)2
≤ n

ε
6(λ−ε) .

It remains to determine an upper bound on the probability of such a

rectangle being internally spanned. Fix such a rectangle T of dimension (a, b)

and suppose without loss of generality that a ≤ b and that T = [1, a]× [1, b].

Consider one particular way in which the rectangle [1, K]2 can be internally

spanned. The rectangle [K]2 is internally spanned if T is internally spanned and

every column of the rectangle [a+ 1, K]× [K] contains two adjacent initially

infected sites and every row of the rectangle [a]× [b+ 1, K] contains two adjacent

initially infected sites. Since these events are all independent,

I(K, p) ≥ I(T, p)(1− (1− p2)bK/2c)K−b(1− (1− p2)bb/2c)K−a

≥ I(T, p)(1− e−p2(K−1)/2)K(1− e−p2(k−1)/2)K

≥ I(T, p)(1− e−p2(k−1)/2)2K

≥ I(T, p)(1− e−(B/4−1))2K

≥ I(T, p) exp(−4Ke−B/4+1) (for B ≥ 5)

≥ I(T, p) exp

(
−4Be−B/4+1

p2

)
.

Hence for any T ⊆ R with long(T ) ∈ [k, 2k], by Theorem 5.3.8 applied to [K]2,

I(T, p) ≤ exp

(
4Be−B/4+1

p2
+
ε− 2(1− 7/B)λB

p2

)
.
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Let B be large enough so that 4Be−B/4+1 ≤ ε/6. Since (1− 7/B)λB > λ− ε
12

,

I(T, p) ≤ exp

(
ε/6 + ε− 2(λ− ε/(12))

p2

)
= exp

(
4ε/3− 2λ

p2

)
= exp

(
(4ε/3− 2λ) log n

λ− ε

)
= n

−(2λ−4ε/3)
λ−ε = n−2− 2ε/3

λ−ε .

Therefore, the probability that [n]2 is internally spanned can be bounded above as

I(n, p) ≤ n2K2n−(2+2ε/3)

≤ n2n
ε

6(λ−ε)n−2− 2ε/3
λ−ε

= n
−ε

2(λ−ε)

as claimed.

In particular, by Theorem 5.3.10 for each ε > 0 and sequence {p(n)}n∈N with

the property that for each n ∈ N,

p(n) ≤

√
λ− ε
log n

then I(n, p(n)) = o(1).

This implies that for every ε > 0, there is an nε such that for all n ≥ nε,

pc([n]2,M) ≥

√
λ− ε
log n

.

Combining Theorems 5.3.10 and 4.2.3, this shows that the critical probability for
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the update rule M satisfies

pc([n]2,M) =

√
λ+ o(1)

log n
.

A remaining open problem would be to determine a more exact expression for

the critical probability pc([n]2,M) following the results of Gravner and Holroyd

[20] and Gravner, Holroyd and Morris [21] for the critical probability for usual

bootstrap percolation.

Recently, Balogh, Bollobás and Morris [5, 6] gave sharp thresholds for

bootstrap processes in grids of any dimension. It would also be of interest to

consider the effect of a modification of the bootstrap update rules in higher

dimensions to allow for the possibility of recovery.
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[19] P. Erdős and A. Rényi, On random graphs I, Publ. Math. Debrecen 6

(1959), 290–297. 1

[20] J. Gravner and A. E. Holroyd, Slow convergence in bootstrap

percolation, Ann. Appl. Probab. 18 (2008), 909-928. 36, 100

[21] J. Gravner, A. E. Holroyd and R. Morris, A sharper threshold for

bootstrap percolation in two dimensions, arXiv:1002.3881v1

[math.PR] (2010). 36, 100

[22] T. E. Harris, A lower bound of the critical probability in a certain

percolations process, Proc. Cambridge Philos. Soc. 56 (1960), 13–20.

2, 7

[23] H. Hatami, ∆ + 300 is a bound on the adjacent vertex distinguishing

edge chromatic number, J. Combin. Theory Ser. B 95 (2005),

246–256. 3, 12, 15

[24] A. Holroyd, Sharp metastability threshold for two-dimensional

bootstrap percolation, Probab. Theory Related Fields 125 (2003),

195–224. 4, 5, 36, 43, 50, 64, 82, 88, 89, 90

[25] J. Hulgan, Concise proofs for adjacent vertex-distinguishing total

colorings, Discrete Math. 309 (2009), 2548–2550. 15

[26] J. Hulgan, Graph Colorings with Constraints, Diss. University of

Memphis, 2010. 15

103



[27] S. Janson, Poisson approximations for large deviations, Random

Structures Algorithms, 1 (1990), 221–229. 2, 9

[28] S. Janson, T.  Luczak, and A. Rucinski, Random graphs,

Wiley-Interscience, New York, 2000. 9

[29] X. S. Liu, M. Q. An, and Y. Gao, An upper bound for the adjacent

vertex-distinguishing total chromatic number of a graph, J. Math.

Res. Exposition 29 (2009), 343–348. 15

[30] C. McDiarmid, and B. Reed, Concentration for self-bounding

functions and an inequality of Talagrand, Random Structures

Algorithms 29 (2006), 549–557. 8

[31] M. Molloy, and B. Reed, A bound on the total chromatic number,

Combinatorica 18 (1998), 241–280. 14, 16

[32] J. von Neumann, Theory of Self-Reproducing Automata, Univ. Illinois

Press, Urbana, 1966. 4

[33] D. Reimer, Proof of the van den Berg-Kesten conjecture, Combin.

Probab. Comput. 9 (2000), 27-32. 7

[34] M. Talagrand, Concentration of measure and isoperimetric

inequalities in product spaces, Inst. Hautes Études Sci. Publ. Math.

81 (1995), 73–205. 2, 8, 75

[35] M. Talagrand, New concentration inequalities in product spaces,

Invent. Math. 126 (1996), 505–563. 8

[36] S. Ulam, Random processes and transformations, Proc. Internat.

Congr. Math. (1950), 264–275. 4

104



[37] V. Vizing, Some unsolved problems in graph theory, Russ. Math.

Surv. 23 (1968), 125–141. 14

[38] H. Wang, On the adjacent vertex-distinguishing total chromatic

numbers of the graphs with ∆(G) = 3, J. Comb. Optim. 14 (2007),

87–109. 15

[39] Z. Zhang, X. Chen, J. Li, B. Yao, X. Lu, and J. Wang, On

adjacent-vertex-distinguishing total coloring of graphs, Sci. China

Ser. A 48 (2005), 289–299. 2, 3, 13, 14

[40] Z. Zhang, L. Liu, and J. Wang, Adjacent strong edge coloring of

graphs, Appl. Math. Lett. 15 (2002), 623–626. 2, 12

105


	Probabilistic Problems in Graph Theory
	Recommended Citation

	List of Figures
	Preface
	Introduction
	Probability tools and notation

	Vertex-distinguishing total colourings
	Introduction
	Vertex distinguishing edge colourings
	Total colourings
	Results

	Vertices of low degree
	Vertices of high degree
	Proof of Theorem 2.1.5

	Modified bootstrap percolation
	Introduction
	Infection with pairs of sites

	Lower bound for probability of percolation
	Traversing rectangles
	Lower bound on I(n,p)

	Upper bound for probability of percolation
	Traversing rectangles and growing rectangles
	Hierarchies
	Upper bound on I(n,p)

	Bibliography

