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Abstract 

 

 Reynolds, Robert Kenneth Jr.  M.S. The University of Memphis. May 2011.  Real-

time Object Classification Using a Custom Sparse Array Profile Sensor on an Embedded 

Microcontroller.  Major Professor: Eddie L. Jacobs, D. Sc. 

 

 

 This thesis presents implementation of data acquisition and object classification 

algorithms on a low-resource microcontroller for real-time, broad-scale object 

classification using a low-cost sparse detector imaging sensor.  The sensor is designed to 

detect and classify objects into the broad categories of human, vehicle, or animal, making 

note of objects of high interest.  This paper encompasses software for implementation 

onboard a low-resource microcontroller platform to acquire, process, and classify crude 

images of subjects for classification purposes.  This paper also encompasses 

improvements made to a prototype hardware system to form a custom sensor array from 

commercially available, off-the-shelf hardware components.  The sensor is designed for 

deployment scenarios to monitor vast geographic areas where broad monitoring is 

required with low false-alarm rates generated by objects of less interest. 
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1 Introduction 

1.1 Profiling Sensors 

Persistent security monitoring is required to protect areas from intruders.  

Resources are often limited for persistent monitoring, especially when the area of patrol 

covers vast geographical regions that are largely uninhabited.  Example scenarios 

include, but are not limited to, the protection of military installations and border 

monitoring.  Border monitoring along the US-Mexican border is of particular interest, 

where large quantities of illegal drugs are often smuggled on foot into the United States 

along drug routes.  The vast, rugged terrain of the US Southwest is too large to monitor 

with limited manpower resources.  Deployment of Unattended Ground Systems (UGS) is 

a potential solution to monitoring, but is expensive due to the relatively high cost of 

detector systems that they employ.  Additionally, UGS systems are often unable to 

distinguish between humans and animals that occur naturally in the deployment 

environment, resulting in a large number of false alarm detections.   

A relatively low-cost profiling sensor system was conceptualized by Ronnie Sartain 

[1] to improve the number of false alarm detections.  Requirements for the sensor system 

include low cost, minimal power consumption, low bandwidth, easy deployment and 

concealment, and the ability to reduce false alarm detections by classifying objects 

automatically.  Objects are classified into three broad categories as either human, vehicle, 

or animal.  The sensor operates by gathering a crude image of an object, referred to as a 

silhouette, as it passes through the sensor.  Classifications are performed based upon the 

shape of the silhouette.  Objects classified as animals by the sensor are likely natural 

inhabitants of the deployment area and pose no cause for alarm.  Human and vehicle 
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classifications, though, likely have no business in the remote area and are worthy of 

further review by either other sensor systems or human patrol dispatching. 

 Concealment is an important requirement in the design of the profile sensor.  If 

the sensor is discovered, it can be defeated or destroyed.  Drug smuggling teams have 

been known to look particularly for sensors along frequently used trails.  The system 

must also be able to operate for long periods of time with little or no maintenance.  

Routine maintenance to the sensor could easily expose its location and possibly counter 

its concealment.  With little to no maintenance to replace batteries, power requirements 

must therefore be minimal.  Manpower required to replace batteries on a routine basis can 

become expensive, especially if a large number of sensors are deployed.   

 Low bandwidth communications are also a requirement for the system.  Sending 

large amounts of data requires that a transmitting radio utilize a larger bandwidth, thereby 

requiring more power to make the transmission possible.  Detection events of naturally 

dwelling animals need not be reported, further reducing power requirements.  It should be 

noted that the sensor need only indicate unusual detection events.  Drug cartels 

employing smugglers have become quite sophisticated lately in counter-detection 

techniques.  Cartels have been known to employ electronic „sniffer‟ teams to detect and 

counter surveillance systems.  A high-bandwidth radio is more likely to be detected and 

countered than a low bandwidth radio. 

 Cost is another major requirement for the sensor.  The SBI.net project under 

development for border security by the Department of Homeland Security has an 

estimated price tag of nearly $1 million dollars per mile of border [2].  Monitoring the 

entire 2000 mile border between the US and Mexico with such a system places an 
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enormous burden on taxpayers.  A more cost effective system is therefore warranted.  

The profile sensor system is defined to be a low cost system in means of construction, 

deployment, maintenance, and replacement. 

 Sartain‟s profile sensor operates by employing a series of optical trip wire (OTW) 

detectors along a vertical column, spaced approximately 5 inches apart with the beams 

facing the same direction in a parallel configuration as illustrated in Figure 1-1.  Active 

retro-reflector detectors are employed in a staring configuration, each sending out a 

signal to an individually mated reflector.  The relatively short range of the retro-reflective 

elements (approximately five meters) makes the profile sensor particularly suited for 

narrow pathways and bottleneck areas created by natural landforms. 

   

 
Figure 1-1.  Dog and human passing through the parallel detector beams of a sparse 

sensor array. 

 

This configuration forms a type of electronic fence, commonly referred to as a 

sparse sensor array.  Objects are „scanned‟ as they pass through the array of detectors.  
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The OTW detectors work in a strictly digital format; a beam is either continuous or 

broken, returning an on or off state, respectively.  By making note of exactly when an 

individual detector is tripped and reset, the amount of time that an object spent within the 

gates can be calculated.  Timing between all the detectors is synchronized by their 

placement along the same plane.   Thus, when the time series of the states of all the 

detectors are shown together, a crude image of the object is shown as it passed through 

the beams of the detector.  This crude image, referred to as a silhouette or profile, is 

unique to the object and can be used to classify the object.  An example silhouette of a 

horse is displayed in Figure 1-2. 

 

 
Figure 1-2.  Example profile from a sparse sensor array. 

 

 The sparse sensor array has advantages over traditional imaging sensors in the 

fact that it can be used to monitor areas over great distances.  The divergent field-of-view 

of a traditional imaging sensor, such as a camera, is unable to distinguish between small 

objects near the sensor and large objects that are far away.  Both objects fill the field of 

view of the sensor, but without knowing the distance from the sensor, calculating the 
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object‟s exact height is impossible.  The sparse sensor array, though, can determine the 

height of the passing object independently of the distance from the object to the sensor 

array.  However, detector elements must be placed at least the same height as the passing 

objects it is to detect.  This makes the sensor array quite tall and makes it more difficult 

to hide. 

 Silhouettes are classified by observing features and making a comparison to 

silhouettes of known classifications.  One of the easiest features to extract from a 

silhouette is performed by noting the ratio of its height to its width.  It was noticed that 

the profiles of humans, walking upright, have a very high height-to-width ratio as 

compared to those of vehicles and animals.  More robust feature extraction techniques 

have also been implemented to make a reliable classification.  However, these additional 

feature extraction and classification techniques require additional computational 

resources.   

This paper encompasses hardware improvements made to the detector array to aid 

in both deployment as well as concealment.  Additionally, this paper discusses 

implementation of a microcontroller to form a standalone sensor system capable of 

acquiring and classifying a profile independently of human intervention. 

1.2 Review of prior efforts 

Requirements for a robust UGS with low false-detection are discussed by Sartain 

[1].  The sensor must be able to properly classify passing objects as either human, 

vehicle, or animal.  The sensor must meet requirements of UGS systems fielded already, 

such as having relatively low-cost, small, low power consumption, lightweight, and 

covert deployment.  A prototype sparse sensor array was realized by Russomanno et al 
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[3] by implementing 16 commercially-off-the-shelf (COTS) near-infrared, retro-reflective 

detectors for a proof of concept study.   Each of the  CX-RVM5 active near-infrared 

detectors manufactured by SunX corporation is mated to their own individual reflector; 

maximum distance separation between the detector to its reflector is 5 meters [4].    The 

status of the OTW beams is either broken or unbroken, creating an off or on signal, 

respectively.  These signals are recorded by computer through the means of a USB data 

acquisition system [5] to form a complete profiling sensor. 

 

 
Figure 1-3.  CX-RVM5 Near-IR retroreflective detector [2]. 

 

Data recorded by the sensor is two dimensional with respect to a height-to-width 

observation.  The width of the profile is a measure of the amount of time that an object 

breaks the beams of the array.  This time is a function of the object‟s physical length and 

the velocity that it travels.  Assuming that most objects travel at a normal walking speed, 

the profile „width‟ becomes a representation of the object‟s length as it passes through the 

sensor.   

 Classification of an object to the broad categories of human, vehicle, or animal is 

performed by monitoring various features of the profiles.  Classification is typically 

performed though post-processing algorithms.  High classification rates were reported by 

Russomanno et al. [2] for the broad categories of human vs. non-human on initial data 

collected.  Yeasin et al. [6] was able to further identify additional features on profiles by 
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means of various machine learning algorithms.  Humans with no packs/small packs, 

humans with large packs, and miscellaneous objects were correctly classified 83% to 

91% for individual classification algorithms. 

 Prior data collection events with the prototype profile sensor array have created an 

extensive library of animal, vehicle, and animal profiles [7].  Additional field collections 

have expanded this library to over 1000 profiles.  Profile lengths of this library are based 

solely on the amount of time that the object remains in the field of view of the sensor.  

Data collection events revealed that the profile generated by an object depends on the 

speed at which it moves through the sensor‟s field of view as well as the object‟s physical 

length.  As a result, the profile length of fast moving large object could potentially be the 

same length as a smaller, slowly moving object.  Chari et al. [8] discuss a technique in 

which velocity can be estimated for an object, thereby calculating a more accurate width 

of the object, improving classification rates to as high as 99%.   

 Klett et al. propose an alternative approach to a profiling sensor by placing the 

entire detector array behind a single optical system [9].  This approach greatly reduces 

the amount of hardware required to acquire a profile, aiding in concealment.  A variety of 

passive technologies are available to acquire data on a passing subject, including focal 

plane arrays and linear arrays, pyroelectric  and microbolometer detectors.  A 128-

element pyroelectric array has been prototyped by the US Army Night Vision Electronic 

Sensors Directorate (NVESD)  and is illustrated in Figure 1-4 [10].   Data collected with 

this type of sensor have led to significant advancements in the development of 

classification algorithms. 
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Figure 1-4.  A prototype 128 element pyroelectric array designed by NVESD, Dept. of 

the Army [10]. 

 

 Passive systems such as the linear array and conventional imaging systems are 

advantageous in that their hardware is typically much smaller than the OTW system.  

However, the high resolution data generated by the linear array and conventional imaging 

system must be converted to a binary image for useful data extraction, requiring 

additional computational resources.  Russomanno et al [11] proposed a method of 

concealment in which the detectors of a sparse sensor array are distributed horizontally 

along the path of travel. 

 A primary feature used in classifying a particular profile is the profile‟s height to 

width ratio [1, 10].  Estimation of an object‟s velocity can be used to make a more 

accurate width calculation, thereby yielding a better height-to-width ratio and increased 

likelihood of proper classification [8]. Classification rates as high as 99% have been 

achieved by the incorporation of velocity estimation on data collected by a long-wave 

infrared (LWIR) camera. 



9 

 

 Additional work includes the development web-service interface tools designed to 

interface to a network of independent, autonomous sensors [12].  Sensor systems such as 

the sparse sensor array can be tasked to provide notification that an object was detected 

across the network-centric environment.  Geographical Information System (GIS) has 

been utilized in the development of software to monitor, locate, task, and retrieve 

information from multiple sensors across geographical areas [13]. 

1.3 Preview of Thesis 

This thesis presents three contributions towards continuing development of the 

sparse sensor detector: 

1. Improvement of prototype hardware. 

2. Implementation and analysis of classification algorithms onto a low-resource 

microcontroller for real-time classification. 

3. Implementation of a reconfigurable prototype custom sensor array. 

Major hardware enhancements and algorithms presented within this thesis expand the 

framework for continuing research with the sparse sensor array. 

1.4 Thesis Statement 

A relatively low-cost microcontroller can be utilized for real-time broad-scale object 

classification for custom optical trip wire profiling sensor systems. 
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2 Hardware Improvements 

2.1 PVC Profile Sensor 

Deployment of the prototype conventional profile sensor is hindered by its large 

size.   Additionally, individual detector elements, although durable, do require some type 

of protection from potential damage caused by shipment to deployment areas.  Both these 

problems were alleviated with the construction of a profile sensor array made of PVC 

pipe designed with deployment and scalability in mind.  Detectors of this array are 

housed within a T-section of 1-1/2” pipe coupling with the detector beam direction 

passing through the perpendicular axis.  Housing also protects the sensor from ambient 

light shining in; sunlight is somewhat blocked.  If necessary, 1-1/2” tubes can be added 

for additional shading.  Two T-couplings with their internal detectors are paired into two-

element module with detectors 5” apart from each other, similar to the profile sensor 

prototype.   

 

 
Figure 2-1.  Paired detectors mounted within PVC housings. 
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Eight detector pairs are stacked at 5” intervals to make a profile sensor virtually 

equivalent to the prototype discussed earlier.  Detector pairing modularity also lends 

itself to quick replacement; if a single detector is found to be defective, the pairing can be 

removed and quickly replaced.   Electrical connections are made with a standard RJ-45 

connection for each pair, eliminating the need for tedious connections during pairing 

replacement.  The base section and intermediate spacers between each T section are 

composed of Schedule 40 PVC pipe for rigidity and are not glued.  Friction fits are strong 

enough for most joints and allow the sensor to be decomposed for storage and shipment 

in a single Pelican 1660 case [14]. 
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3 Microcontroller coupled with vertically oriented detector elements 

3.1 Microcontroller Hardware 

The optical trip-wire profiling sensor has been shown to be an effective means of 

gathering silhouette profiles of subjects as they pass through its beams.  Post-processing 

techniques have shown that these profiles can subsequently be classified into broad-scale 

classifications.  Progression of the sensor development calls for the incorporation of data 

acquisition resources and profile classification algorithms into a single, field-ready 

package that does not require the use of a personal computer.  Application scenarios 

require that the system be left alone with no user interface after initial setup.  Thus, the 

requirement of a keyboard, mouse, monitor, operating system, and other requirements of 

a typical computer are no longer needed.  A simple system capable of acquiring data, 

processing and classifying it, and reporting on its classification can be implemented using 

a microcontroller. 

The microcontroller chosen for this particular implementation is a Rabbit® 4000 

microprocessor.  The microprocessor operates at 60 MHz and can support up to 16 MB of 

memory [15].  The microcontroller alone, though, requires an interface and is mounted to 

a BL4S200 single-board-computer (SBC) manufactured by Digi International ®.  This 

particular system was chosen for its small size and capabilities in handling data 

acquisition, mathematical operations necessary for classification routines, memory, SD 

card onboard data storage, and network I/O capability.  The SBC‟s native language of 

Dynamic C facilitates transition of the classification routines originally developed in 

Matlab to the embedded environment language.  Though very similar to the traditional C 

language, Dynamic C is specially designed for programming embedded systems, and 
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features quick compile and interactive debugging [16].  The system is also somewhat 

scalable through the use of its RabbitNet interface, allowing for expansion to other boards 

of similar manufacture.  The RabbitNet RN1600 expansion kit from Digi was similarly 

acquired to provide a low-level interface to the system during initial setup.   

 

 
Figure 3-1. Digi® BL4S200 Single Board Computer [17]. 

 

Data lines from each of the 16 detectors in the near-IR profiling sensor are hard-wired 

directly into two 8-bit DIO ports on the microcontroller and are represented as 16-bit 

integer values. By representing an unbroken beam as a digital „1‟ and a broken beam as a 

„0‟, values from each port are combined to form an integer value using the equation: 

 

 
             

 

   

 (3.1) 

 

 

In equation (3.1), P0 is the sensing element value from port 0 (representing the 

lower 8 optical trip line elements), P1 is the value from port 1 (representing the upper 8 

elements), si is the state for a particular detector, that is, an optical trip line element at 

position i within the upper or lower bank of elements.  Values P0 and P1 are combined 
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using bitwise operations.  The binary value of P1 is upward shifted by 8 bits, effectively 

multiplying its value by 2
8
 or 256.  P0 is then added to the shifted value of P1, forming a 

single 16-bit unsigned integer used to represent a particular time sample.  This is a 

necessary step in minimizing the data requirements for implementation on system with 

limited memory resources.  A single unbroken beam (optical trip wire) is represented as a 

1 by the trans-receiver element; a broken beam is a 0. Thus, a single time sample with no 

unbroken beams will be represented by the value 65535, and a single sample with all 16 

beams broken will be represented by a value of 0. 

Each detector is wired independently from a common power source within the 

controller box.  Although all detectors are currently powered from the same source, 

capabilities exist on the microcontroller to power each detector completely independently 

from the others, allowing the ability to terminate any particular detector from the 

microcontroller.  This feature could be exploited in order to lower the system power 

requirements as well as to remove communication from a single errant detector.  For 

example, if a problematic detector beam looses alignment with its mated reflector or is 

blocked by uncleared shrubbery, its power may be turned off at the microcontroller.  

Provided that adequate bi-directional communications exist between the microcontroller 

and a monitoring station, an operator could terminate power from his station to the single 

detector and restore the system to an operable state without having to make a call to the 

field.  However, a minimal number of detectors should be powered down to avoid loss of 

data from passing objects of interest. Ground return lines are tied together.  Russomanno 

and Chari have determined that profiles of interest can be correctly classified with a 98% 

success rate with as few as four detectors [2].  However, these four detectors are located 
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at specific heights.  Arbitrary combinations of four detectors are not likely to recreate 

such results. 

 Data lines from each detector are also connected to a legacy 37-pin connection 

from the first profile sensor prototype in parallel, allowing for simultaneous data 

collection between the microcontroller and the prototype data collection system.   

Simultaneous collection is necessary to determine the microcontroller sampling rate.  

Laboratory experimentation with the microcontroller revealed that its data acquisition 

rate is significantly less than the PC-based USB data acquisition system, lowering the 

overall time resolution.  Though normally an undesirable effect, the lowered resolution is 

actually advantageous in the case of a low-resolution microcontroller; lowered time 

resolution requires less memory resources required to store the data of a silhouette.  The 

microcontroller‟s data acquisition rate is buffered by code written during development 

that indicates the sensor‟s status as it acquires a silhouette.  This buffered rate was found 

by simultaneous collection of silhouettes by both the PC-based USB system and the 

microcontroller.  Profiles generated by the two systems should be identical except for the 

number of samples in each; the profile acquired by the microcontroller‟s lower sampling 

rate will appear to be a compressed version of the PC acquired profile.  A ratio is taken 

between the number of samples required to represent the profiles of the two systems.  The 

CX-RVM5-PN detector element has a 1 millisecond response time [4], limiting the PC 

data acquisition system to a sampling rate of 1 kHz.  With this known 1 kHz PC sampling 

rate in mind, the microcontroller‟s data acquisition rate is then simply a multiplication of 

the sample size ratios.  This technique found that the microcontroller acquires data from 

all 16 of its detector input lines at approximately 21.3 Hz, far less than the 1 kHz system 
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utilized to acquire the library data with the original sparse sensor array prototype.  Even 

so, this lowered sampling is sufficient to provide enough details for low-velocity subjects 

passing through the sensor‟s field of view.  This lowered rate may also help eliminate 

noise introduced by inconsequential artifacts of the subject, such as a vehicle antenna, 

spare tire rack, horse lead, etc., while also reducing the amount of memory resources 

required.  It should be noted that the microcontroller acquisition rate can be increased by 

eliminating the buffering caused by updating the sensor‟s status.  Unbuffered, the 

microcontroller‟s data port collection rate quickly exceeds the memory resources of the 

system.  Array overflows occur within 2 seconds of the start of data acquisition at this 

unbuffered acquisition rate.  Lengthy and slow travelling objects passing through the 

detector quickly exceed this short time limitation and cause the microcontroller to fail.  

 The SBC hardware was packaged in an enclosure to provide protection from the 

elements during field data collection events.  This enclosure contains connections for the 

simultaneous data collection by both the microcontroller hardware as well as the PC-

based system.  The interior of the enclosure was lined with aluminum tape in an attempt 

to eliminate problems associated with electro-static discharge.  It should be noted that the 

addition of this aluminum tape may cause cooling problems when fielded in hot summer 

conditions if no cooling is added; additional testing is warranted to determine if 

additional cooling will be required. 

 The SBC and profile sensor array of 16 detectors draw approximately 800 mA  

(1000 mA peak) of current at 12 VDC.  Power is supplied to the system via a N-sized 12 

V DC connection on the SBC enclosure.  Laboratory and field collections have utilized a 
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common 110 VAC to 12 VDC transformer, although other possible sources such as 

batteries or solar panels could also be utilized. 

3.2 Feature Extraction and Classification 

 Several classification algorithms have been analyzed in prior works for the 

profiling sensor.  However, as previously discussed, these algorithms were executed off-

line and were not limited by the resources of the host computer.  However, for this 

implementation, the design of the classification algorithm is constrained by the 

requirement to implement it on a low-resource platform such as the Rabbit BL4S200 

embedded controller.  The single feature of height/width ratio works well for 

discriminating humans versus other objects, but fails to make a proper discrimination 

between animals and vehicles.  Figure 4-1 illustrates the height and width features of 

each of the samples within the time based sample library [7].  These two parameters form 

the single height/width ratio.   
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Figure 3-2.  Height/Width Ratio feature for samples in the Profile Sensor 'Timing' library. 
 

 Coupled with velocity calculations to create an accurate width, the height/width 

ratio  has provided a 99% classification rate with a pyroelectric sensor [8].  However, 

without incorporation of velocity, the width of an acquired sample is the number of the 

time samples required for the subject to pass through the sensor.  Since this time t is a 

function of both the physical width d of the object as well as its velocity v as expressed 

by equation 3.2,  

 

         (3.2) 
 

the average velocity must be known to make a reasonable estimation of the profile‟s 

width.  However, with the vertical array alone, velocity calculation is impossible.   
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 The height-to-width feature has been demonstrated to distinguish between 

humans and non-human objects with a 90% classification rate [2].  However, the feature 

fails to properly distinguish between vehicles and animals.  A more robust feature 

extraction method, referred to as the six-feature technique, was implemented to make the 

distinction between animals and vehicles. 

 The six-feature extraction technique operates by centering an acquired profile into 

a „box‟ of fixed width.  The fixed width of the box is defined by the longest sample 

length within the signature library.  The height of the box is tailored to the maximum 

height of the subject.  The box is then partitioned into six sections by horizontal halving 

and by making two vertical partitions at 1/3 and 2/3 the length of the box as shown in 

Figure 4-2. The number of „off‟ instances in each of the six boxes is counted and 

normalized by the highest value count among the six sections. This process generates six 

features for each profile.  

 

 
(a) 

 
(b) 

 
(c) 

Figure 3-3.  Human, animal and vehicle profiles and derived feature spaces. 
 

Note that the width of the six-feature box is different between the PC-acquired 

higher sampled library data and slower microcontroller rate of 21 Hz.  This collection 

rate difference can be accounted for by defining a smaller „box‟ for the slower-rate SBC 
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collected data. The size ratios of the two box widths are the same as the acquisition rates.  

For example, a box of 10,000 samples recorded at 1 kHz represents 10 seconds of data.  

To record the same 10 seconds at 21 Hz on the embedded controller, a box size of only 

210 is required. This size difference is accounted for during the pixel count normalization 

process of the six features. Although down-sampling the library data will yield profiles of 

approximately the same length as those collected directly by the slower SBC, this is an 

unnecessary computational step. Values will be normalized by the highest pixel count no 

matter the length of the six-feature box. 

 The statistical means and standard deviations of the six features for each class are 

then computed from the training data set. When a test object moves through the profiling 

sensor, the Naïve Bayesian distance between the test object and each of the three classes 

is computed in the feature space. The Naïve Bayesian distance between a six-feature test 

sample and the K
th

 class is represented by equation (3.3) [18]. 

 

 

       
         

   
 

 

   

 (3.3) 

 

 

NBK is the Naïve Bayesian distance to each class K, μKi and σki are the means and 

standard deviations for each of the six features within their class K, respectively, and ti is 

the test sample. The test sample is assigned to the class which has the smallest Naïve 

Bayesian distance with respect to the test sample. 

 It is also noted that this relatively simple feature extraction technique is 

specifically suited to the type of terrain described in the introduction section and shown 

in Figure 1-1. The narrow and rugged pathways in such terrains only allow for the objects 
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to move at slow speeds in confined spaces. Since the objects move between the trans-

receiver and reflector platforms, which are placed not more than 15 feet apart, effects of 

profile height variations due to range (distance from Trans-Receiver to object) are 

negligible. 

3.3 Classification Results 

The microcontroller‟s classification algorithms were tested with the vertically 

oriented sparse sensor array against a sample set of animals and humans.  During this 

data collection event it was realized that the microcontroller‟s sampling rate had been 

miscalculated during laboratory experimentation.  An initial, incorrect sampling rate of 

60 Hz was used in defining the maximum profile length and division lines of the six-

feature classification routine.  Later experiments revealed that the sampling rate to be 21 

Hz.  Profiles acquired with the slow sampling rate are much smaller, allowing them to 

easily fit within the middle sections of the six-feature classification routine.  As a result, 

most all profiles acquired were improperly classified as human when processed in real-

time.   
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4 Custom Sensor Array 

4.1 Introduction 

 The active IR sensing elements require that a subject pass through the beams to be 

detected. This requirement limits the OTW to deployments in which objects of interest 

must pass through a very constricted area.  Individual detectors must be arranged various 

heights, the highest of which must match the object to be detected.   Thus, the overall size 

of the sensor is quite large, making the system conspicuous and thwarting its 

concealment.   Requiring a subject to pass through the sensor to obtain its profile presents 

a limitation that is easy to counter.  If a person recognizes the sensor that is being used to 

monitor him/her, he/she merely needs to walk around the sensor to avoid detection.  

Good concealment is therefore essential.  Part of the concealment may be done by 

breaking the vertical array apart, and distributing the detectors along an anticipated path 

of objects of interest; thereby, reducing the obtrusive size of the single array pole and its 

reflector [2, 7].   

 Detectors of the profiling sensor are traditionally placed in a sparse vertical 

column configuration.  Since no horizontal spacing exists between the sensing elements, 

timing between the detectors is synchronized.  Acquiring a profile from the detector 

elements that are not in the same plane requires that the precise locations of the detector 

elements be known to synchronize timing between them.  Measuring these distances by 

conventional techniques is particularly time-consuming, especially if the sensor elements 

are to be placed at significant horizontal distances from each other.  Long 

setup/measurement time makes the custom configurations impractical for deployment in 
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the field, especially when deployment time is minimal; a quick method of measuring the 

distances between the profiles is therefore required. 

4.2 Hardware Configuration 

 Experimentation for the custom sensor array was realized by placing the detector 

locations at specified heights and random horizontal locations.  This setup was to be 

constructed using a 4‟x8‟ pegboard as illustrated in Figure 4-1.  The 1” grid pattern of the 

pegboard gives a readily available indexable setup pattern for sensor placement.  

Detectors are placed at random horizontal locations on rows that are vertically separated 

5” from each other, consistent with the 5” separation between detector elements of the 

column array profile sensor.  While good for experimentation within a laboratory 

environment, the 4‟x8‟ pegboard implementation is not conducive for field 

implementations.  Not only is transportation difficult, but animals traditionally studied 

during field collections (cows especially) would be leery of passing beside a 4‟x8‟ wall 

they are not accustomed to.  

 

 
Figure 4-1.  Prototype custom array utilizing a 4‟x8‟ pegboard. 
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  A more suitable implementation was realized by modifying the single-column 

PVC array.  The modularity of the PVC single-column array lends itself easily to the 

implementation of a broken array due to its construction of separable sensor elements.  

The eight sensor pairs are removed from the column array and placed on a section of 

PVC pipe to set them at their original vertical heights as illustrated in Figure 4-2.  

Horizontal spacing is random.  Note that this particular configuration is a prototype with 

horizontal distances of approximately 15-35 cm between detectors.  Actual field 

implementation would place individual detectors where maximum concealment can be 

achieved, possibly with significantly greater horizontal separation. 

 

 
Figure 4-2. Example of custom array implementation using PVC pipe. 

 

 Each near-IR break-beam detector still requires its own mated reflector.  

Reflectors are placed on PVC pipe spaced at the same random horizontal distances as 

their corresponding detectors.  Thus, beams of the 16 detectors are parallel with one 

another across a three-dimensional space.  For this particular prototype, reflector poles 
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are made the same length as the spacer poles used to hold up the detector pairings, 

allowing interchangeability.   

 Profile acquisition has traditionally been done by recording data only when a 

subject is within the beams of the near-IR detectors.  Logging begins at the first beam 

break and terminates when all 16 beams are continuous again, where it is assumed that 

the passing object is completely through the sensor array.  While this approach works for 

the traditional array where all 16 detectors lie on the same column, it fails when the 

elements are removed from the array.  Since a horizontal distance between the detectors 

is introduced by removing the detectors from the vertical column, it is possible for a 

subject passing through the detectors to fit „between‟ two elements, terminating the 

logging.  This problem is solved by logging a determined number of additional samples 

after the beams of all 16 detectors are continuous.  If a detector beam is broken within 

this period, logging continues.  Otherwise, logging terminates.  Since no profile data lies 

within the additional sampling period (because all the detector beams are continuous) the 

additional sampling period is removed from the profile.   

4.3 Simple classification technique using custom array 

A simple classifier can be implemented using the custom array by summing the 

„on‟ and „off‟ states of the detector along each row as an object passes through the sensor.  

Energy along an individual row is considered where a detector beam is broken by an 

object.  Placement of energy along a row is independent of the placement of energies of 

other rows.  The summation data along each row is normalized by the greatest summation 

value of the 16 detectors.  These normalized values express the relative amount of energy 

along the rows, where energy is considered to be made by a broken beam.  These 
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normalized values for each of the 16 rows are treated as independent features and 

compared to training data sets of human, vehicle, or animal.  The object is subsequently 

classified using Naïve Bayesian classifier.  Throughout the remainder of this paper, this 

technique will be referred to as the “Row Energy” technique. 

An interesting feature of the Row Energy technique is that the energy 

normalization along each row eliminates the necessity to consider the overall length of 

the profile.  The normalized profile of a slow moving object should be identical to the 

normalized profile as if the object were moving quickly.  This allows the row energy 

technique to be velocity independent.  Note that the normalization causes the width of all 

profiles to be equal; the particular rows that the profile‟s normalized energies lie upon are 

the features under consideration.  Also note that this normalization also allows a 

comparison to be made between the library of acquired samples to those attained by the 

lower-data sampling rate of the microcontroller.  Normalized values for each of the 16 

rows are displayed graphically in Figure 4-3 for the broad classifications of humans, 

animals, and humans.  Standard deviations for the normalizations are displayed by error 

bars along each value. 
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Figure 4-3.  Normalized energy along rows for samples of the profiling sensor library. 

 

A leave-one-out classification study against the profile sensor‟s acquired sample 

library [7] revealed that the row energy technique can obtain a 92% classification rate 

with a Mahalanobis distance classifier.  Its ease of implementation makes it particularly 

appealing for a low-resource microcontroller.  However, the technique fails to calculate 

the object‟s velocity or its direction of travel, both of which may provide valuable 

information on a passing subject.  Higher-yielding classification algorithms have been 

developed for profiles generated by the sensor with vertically oriented detectors [2, 6, 7].  

However, to utilize these algorithms, the profile must be reconstructed to appear as if it 

were generated by the sensor with vertically oriented detectors. 

4.4 Custom array profile reconstruction technique 

Detector timing for the vertical column configuration is synchronized by the placement of 

the detectors along the same column, as illustrated by Figure 4-4.  Most subjects passing 

through the sensor‟s field of view do not have a flat leading edge; therefore, their profiles 
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will illustrate a non-straight edge.  Passing a straight, vertical object through the array 

will cause all 16 detectors to trip simultaneously, as illustrated by Figure 4-5. 

 

 
Figure 4-4.  Subject passing through a vertical column sensor. 

 

 

 
Figure 4-5.  Straight vertical object passing through vertical array. 

 

Removing these detectors from the same column destroys the synchronization 

between them.  Passing the straight vertical object through an array in which the 

detectors are not vertically co-located will create a profile in which the detector elements 
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„on‟ and „off‟ times are modified by the placement of the detectors.  Figure 4-6 

illustrates the passing of a vertically straight object through a modified array.  Passing 

this rectangular „calibration rectangle‟ through the sensor is done as part of a calibration 

routine to define the distances between each detector pair.  Since it is known that the 

leading edge of this rectangular object is vertically straight, the physical location of the 

detectors can be determined by counting the number of time samples between a detector 

pair‟s first transition state.  For example, if there are X samples between detectors on 

row i and row j, then it can be assumed that the physical distance between detectors on 

rows i and j for subsequent samples should be offset by the same X number of time 

samples.  The number of samples between rows is found by searching for the first 

transition state of each row from „on‟ to „off‟, corresponding to the leading edge of the 

passing rectangle.  Similarly, the trailing edge may also be used if the calibrating vertical 

object has a vertical rear edge.  Note that the vertical calibration rectangle must be 

passed through the array at a relatively constant speed to trip the elements at their correct 

physical locations.   

 

 
Figure 4-6.  Straight vertical object passing through custom array. 
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These time differences (corresponding to the positions of the individual 

detectors) are then subtracted from the raw timing profile of each subsequent subject 

passing through the array to rebuild the proper profile.  Figure 4-7 illustrates a subject 

passing through the prototype custom array and its subsequent reconstruction.   

 

 
Figure 4-7.  Subject profile reconstruction after passing through broken array. 

 

 This technique assumes that, once in the field, all objects passing through the 

detectors of the sensor array will pass through the entire horizontal distance of the array 

and travel at a relatively constant speed. 

 It should be noted that the heights of the detectors must be known before this 

calibration routine is conducted.  Detectors are arranged in ascending order; detector 1 is 

at the bottom and detector 16 is at the top.  For purposes of this study, these detectors 

have hard-wired connections to the microcontroller.  However, it is possible to 

dynamically assign the locations of detectors at various heights.  A triangle, oriented 

with the base parallel to the ground, passed through the array will generate a profile 

where the lowest detector is engaged the longest.  The highest detector will be engaged 

the shortest period of time.  Detectors are then dynamically assigned their positions 
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based upon their „on‟ times.  This tool may be a valuable feature for quick deployment 

where detectors are arbitrarily placed with no particular attention to the heights of the 

detectors. 

4.4.1 Implementation of Profile Reconstruction 

As an illustration for this section, a custom detector arrangement was made in 

which the detectors are in a roughly diagonal configuration as shown in Figure 4-8.  

Note that detector placements do not necessarily require such an arrangement, but may 

be arranged in any particular fashion.    

 

 
Figure 4-8.  Custom profile sensor array prototype realized on PVC pipe. 

 

Also note that the element pairs do not necessarily have to lie on the same 

vertical plane: detectors in Figure 4-8 were left paired together, due to their construction.  

Figure 4-9 (a) illustrates a human carrying a 2x4 vertically through the sensor (moving 

from right to left through the sensor in Figure 4-8) as part of a calibration routine. The 

calibration routine determines the first transition state of each detector and finds the time 
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difference between the profile‟s first detector‟s trigger event and the first trigger event 

along each row.  By subtracting these time differences along their respective rows, the 

profile is „straightened‟ as shown in Figure 4-9 (b).  Note that the same 2x4, shown in 

the oval, is shown again in Figure 4-9 (b) in a more recognizable format. 

 

 
(a)      (b) 

Figure 4-9.  Person carrying a vertical object through the custom sensor array of Figure 

4-8; (a) uncorrected and (b) corrected.   Vertical beam is shown in oval. 
 

 Subsequent data acquisitions have this same row shifting routine performed on 

them.  Figure 4-10 shows the corrected profile of a person passing through the array 

without the 2x4 used for detector timing calibration.   

 

 
Figure 4-10. Corrected data sample collected through custom array. 
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This technique of shifting the start position of each of the rows appears to 

account for the random horizontal placement of detectors.  Although the array may be 

placed in any customized configuration, the specific detector locations must remain 

fixed after the calibration routine is executed.  If the array is modified, the calibration 

routine must be performed again to find the detectors‟ positions relative to one another.   

 Note that data collected from the vertical column array profile sensor consists of 

timing samples.  A slowly travelling subject will generate a profile of greater width than 

if it were to pass through the sensor quickly.  Thus, the number of time samples used to 

generate a profile alone is not an accurate measurement tool to indicate the physical 

width of the passing subject.  Merely applying the time sample shifting to each of the 

rows is not an entirely accurate method of realigning a profile since subjects may pass 

through the array at speeds other than which the detector distances were calibrated.  

Since      , the amount of shift t applied to each row is a function of the element 

distances d and the velocity v of the travelling subject, not merely a count of the number 

of time samples between rows.   Subjects with a speed  , which may be different than 

that of objects used in the calibration, will, therefore, have malformed rebuild profiles as 

illustrated in Figure 4-11 (a).  Furthermore, correcting the profiles due to time only does 

not account for the direction of travel that a subject may take through the sensor.  

Travelling in the direction opposite from what the array was calibrated causes the row 

elements to be shifted in the opposite direction as shown in Figure 4-11 (b).  Although 

this technique of profile rebuilding may work appropriately if we make the assumption 
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that subjects will always pass at the same speed, it fails when the assumption is violated.  

A more robust calculation technique is therefore required. 

 

 
(a)             (b) 

Figure 4-11.  Incorrect 'Corrected' profiles. 
 

 

4.4.2 Velocity calculation and incorporation 

A more accurate method of correctly rebuilding the profiles requires that the 

physical distances between detectors and the actual velocity of the passing subject be 

determined.  Using these parameters, a more accurate time shifting value may be 

calculated for each detector state.  Physical distances between the elements are 

determined in an identical fashion as described earlier.  However, the distance between 

any one pair of elements must be known.  Ratios of the numbers of time samples 

recorded between element pairs are computed.  Assuming that the calibration rectangle 

is passed through the sensor at a relatively constant speed, the physical distances are a 

product of the time ratios between the elements.  These distances are calculated several 

times as part of the calibration routine and averaged along each row.  Figure 4-12 

represents the positions of the detectors for the  custom array configuration of Figure 4-2 

across multiple passings of the calibration rectangle at a variety of speeds.   
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Figure 4-12.  Calculated detector positions across multiple calibration passes. 

 

The average position of each detector is calculated from multiple passings of the 

calibration rectangle through the array.  This allows for slight discrepancies generated 

by the calibrating rectangle passing through the array at a non-constant speed.   

A subject‟s velocity through the profile sensor is calculated by averaging the 

individual velocities vij generated between every possible element pair along the leading 

and trailing edges of the profile [10].  This mean velocity is given as the expression 

 

 

               
 

      
       

 

     

   

            
                      

  (4.1) 

 

Where i ≠ j, and M is the uppermost detector trigger event.  Velocity between each 

detector pair is defined as vij = dij / tij where dij is the physical distance between elements 

i and j, and tij is the number of samples between the elements i and j to the leading or 

trailing edge of the profile.  Although seemingly computationally intense, the number of 
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element pair velocity calculations is limited to M*(M-1) / 2, where the maximum value 

of M is the number of detectors in the array. This leaves a maximum of only 120 

possible calculations along each edge for a 16 detector array.  Combinations where t=0 

cause division by zero and are not considered.  The implementation of the vertically 

paired sensor detectors causes horizontal pairings to have a time difference of zero, 

thereby eliminating those particular element pair velocity calculations from 

consideration and further reducing the computational requirements of the 

microcontroller. 

 A rectangular-shaped object passing through the sensor would generate constant 

element pair velocities.  Upright, walking humans are mostly rectangular in shape, 

generating similar velocities along the horizontal element pairings for the front and rear 

edges of the profile.  However, not all profiles share this rectangular pattern.  The 

overhanging head of an animal, sloped vehicle windshields, swinging arms, etc., caused 

by premature detector triggering, can generate abnormal detector pair velocity 

calculations.  These particular velocities are eliminated by setting a threshold of a 

maximum reasonable velocity. 

 Once an overall subject velocity is calculated, the amount of time required to 

shift each row tij is calculated in samples by          , where dij is the physical 

distance between the sensor elements i and j found from the calibration routine.  Note 

that this velocity calculation is capable of generating both positive and negative values; 

with this data a direction of travel through the gates can be determined.  Figure 4-13 

illustrates the more properly reconstructed data of the same profiles found in Figure 4-11 

by this more accurate technique. 
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(a)             (b) 

Figure 4-13.  More accurately reconstructed profiles of Figure 4-11 generated by 

velocity incorporation. 
 

 Incorporation of velocity allows a more accurate profile width to be determined 

from data acquired from profiling sensors [10].  Classification algorithms, such as the 

height/width ratio and six-feature technique discussed in section 3, are based strongly on 

the width of the sample.  Improving the determination of the width of an object will 

improve the overall classification of objects by profiling sensors.  Since the velocity is 

calculated for rebuilding profiles with the custom array, it can also be utilized to 

calculate a more accurate „width‟ for the profile.  Each sample of time within the 

reconstructed profile is duplicated by the velocity value, creating a secondary profile that 

more accurately represents the physical width of the object.  This secondary array is 

referred to as a “distance” profile. 

 Note, however, that the value of the velocity is a non-integer number.  Slow 

moving objects under consideration typically generate low valued velocities.  Simply 

rounding the velocity to the nearest integer is not an accurate means of determining its 

width.  For example, consider velocity values of 1.4 and 1.6 for a particular profile.  If 

rounded down to 1, the resultant distance profile would be only half the size as if its 
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velocity were rounded up to 2.  This problem is solved by non-integer sampling [19].   

Each sample of the time profile is upsampled by a factor of five times the velocity value 

into a secondary array.  The secondary array is then downsampled by a factor of five, 

generating the distance profile.  Upsampling and downsampling by a factor of five 

allows the velocity to be multiplied in increments of 0.2.  A higher 

upsampling/downsampling rate of 10 was attempted.  However, it was found that the 

higher quickly rate caused array overflow problems on the low resource microcontroller. 

 It should be noted that the resulting widths of the „distance‟ profile are expressed 

in the same physical distance units that the individual detectors are expressed.  Physical 

distances between the detectors in this research are expressed in cm.  Generated distance 

profiles are a product of their raw profiles (expressed in a count of time samples) and 

their velocity (expressed as cm travelled per count of time samples).  Therefore, if a 

torso of a profile is 20 samples wide, it represents a torso of a passing object 

approximately 20 cm in width.   

4.5 Results 

Algorithms discussed previously in this paper have been implemented utilizing the 

Rabbit BL4S200 microcontroller discussed in section 3.  Data collection, velocity 

calculation, and profile reconstruction tasks are completed in real-time for data collected 

with the custom configuration of the active near-IR profiling sensor array.  Real-time 

classification is also performed. 

Figure 4-14 illustrates a histogram of calculated velocities for a variety of objects 

captured during a data collection event.  Note that both positive and negative velocities 

are shown.  Negative velocities represent travelling through the array in an opposite 
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direction.  Also note that most objects studied travel at walking speeds; outliers are 

made by faster moving vehicles.  Maximum vehicle speeds were kept under 5 mph due 

to the hardware configuration along a narrow roadway during the data collection event.  

 

 
Figure 4-14.  Histogram of object velocities from a data collection event. 

 

As stated previously, the computed velocities are not expressed directly in the 

form of distance per unit of time, but rather in the form of distance per samples 

collected.  However, since it is known that 21 samples are collected per second, the 

computed velocity values can be quickly transformed into a more meaningful unit such 

as meters/second or miles/hour.  Thus, for a subject‟s calculated velocity of 2 

cm/(samples * sec/ 21), this velocity is more conventionally expressed as 0.42 m/s, or 

0.93 mph.  This follows the data collected during the field study; most humans and 

animals walked through the profile sensor array at a slow pace of approximately 1 mph.   

Figure 4-15 (a) illustrates the raw data of a profile as it is acquired with the custom 

array of Figure 4-2.  The real-time reconstructed profile is shown in Figure 4-15 (b).  

This particular object creating the profile is a human with a large pack.  Note how the 
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reconstructed image appears to take on the appearance of similarly looking human 

profiles acquired by the linear array.  This rebuilt profile is now ready to be analyzed by 

classification routines such as the height-to-width ratio or six-feature extraction 

technique.  

 

 
(a)      (b) 

Figure 4-15.  Raw data acquired from custom array (a) and Reconstructed Profile (b). 
 

 The reconstructed distance profile is representative of the object‟s width.  For 

example, if the profile has X number of samples along a particular detector row in the 

„off‟ state, represented by a „0‟, then the object is likely to be X cm wide at the height of 

that particular detector.  Although various features can be extracted from the profile such 

as the object‟s height-to-width- ratio or the normalized six-feature values, to date, there 

are few samples within the library of profiles that have the physical width derived based 

on the subject‟s velocity.  Comparison of the physical width of a recently acquired 

sample to the timing width of samples within the “timing” library acquired by the profile 

sensors with the vertical array is likely to lead to fallacious results.     

The simple Row Energy technique is currently utilized as a classification tool on 

the microcontroller until future data collection events can be performed with the custom 

array.  Detector state events are summed and normalized by the highest number of 

detector events of the 16 row features, making this technique particularly appealing: the 
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“timing” library may be compared against the raw timing features of a subject test case.  

Field and laboratory experiments have yielded an 85% classification rate for humans, 

vehicles and animals when applied to a Naïve Bayesian classifier trained against 

samples of the „timing‟ library.  Real-time classification results for the Row Energy 

classification technique are displayed in the confusion matrix of Table 4-1. 

 

Table 4-1. Real-time Row Energy Classification Confusion Matrix 

  True Classification 

Real-time Row Energy 

Feature Classification 

 Human (30) Animal (32) Vehicle (29) 

Human 83% 16% 0% 

Animal 0% 100% 0% 

Vehicle 3% 22% 72% 

 

It should be noted that classifications are made upon the complete profiles.  

Profiles of most animals studied were led by a human.  The distance between the human 

leader and the following animal was not sufficient to have only one subject in the 

customized profiling sensor.  Thus, the captured profile contains both the human and the 

following animal.  For purposes of this study, these acquisitions are considered to be 

animals until the human profiles can be removed. 

Data collection events have yielded custom array profile data on 30 humans, 32 

animals, and 29 vehicles.  Example custom array profile acquisitions of humans, 

animals, and vehicles are displayed in Tables 4-2 through 4-4, respectively. 
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Table 4-2.  Example Human profiles, Real-Time Reconstruction 

 Human waking 

North  South 

Human waking 

South  North 

Two Humans 

Raw Data 

   

Reconstructed 

Profile 

   
 

 

 

Table 4-3.  Example Animal Profiles, Real-Time Reconstruction 

 
 

Large horse and 

human leader 
Medium horse and 

human leader 
Small 

Dog 
Medium horse and 

human leader 

Raw Data 

    

Reconstructed 

Profile 

    
 

 

 

Table 4-4.  Example Vehicle Profiles, Real-Time Reconstruction 

 Midsize truck, windows down SUV, front windows down 

Raw Data 

  

Reconstructed 

Profile 
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 Although completely implemented, note that the profile rebuilding process is not 

entirely correct.  Additional „noise‟ occurs on many of the rebuilt profiles.  This noise is 

due to a flaw in the real-time row re-alignment phase of the profile rebuilding process.  

This noise does not appear in the raw data directly acquired from the custom array, but 

introduces itself as part of the realignment process.  Figure 4-16 illustrates the 

introduction of this noise during the realignment process for the profile of a small dog. 

 
(a)   (b) 

Figure 4-16.  Raw (a) and rebuilt (b) profile of a dog illustrating noise introduction 

(circled in red). 
 

 Not all of the profiles processed in real-time suffer from this noise problem.  

However, those that do are likely to be misclassified by the height-to-width and six-

feature algorithms.  Future work involves repairing the profile rebuilding algorithm so 

that these classification algorithms may be implemented.  Note, however, that even with 

the added noise, the microcontroller is still capable of producing a real-time 85% 

classification rate using the row-energy technique.   
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 Data from the collection events discussed earlier was processed offline with 

Matlab through the same algorithms.  It was discovered that the noise problem is due to 

a problem with algorithm‟s implementation in C; noise is absent from the profiles.  

Figure 4-17 demonstrates the correctly rebuilt profile of Figure 4-16 without noise.   

 

 
Figure 4-17.  Rebuilt profile of Figure 4-16 without noise. 

 

 While most profiles are rebuilt properly, improper velocity calculations can 

cause malformed rebuild profiles.  Improper velocities cause data along the rows to be 

shifted by an improper amount, malforming the rebuilt profiles, and giving them lower 

aesthetic qualities than the raw profiles used to generate them.  Table 4-4 illustrates raw 

profiles and their reconstructed profiles generated for a variety of objects. 
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Table 4-5.  Post-Processed profiles demonstrating poor rebuilding 

Description Raw Profile Reconstructed Profile 

Human 

leading 

horse 

  

Human 

leading 

horse 

  

Human 

  

Human 

  

SUV 

  

Small 

Truck 

  
 

 Height-to-width ratios were also calculated for all profiles generated by the 

custom detector array for an offline classification study.  Real-time classification results 

were not possible, because prior to the data collection event, there were no values to 

compare the profile‟s height to width feature to.  A take-one-out classification study 

allowed a comparison to be conducted.  This take-one-out study revealed that the height 

to width feature had a classification rate of only 54%.  This low classification rate is 
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likely caused by poor velocity calculations, resulting in poorly generated profile widths.  

The classification confusion matrix for the height/width ratio feature is displayed in 

Table 4-5. 

Table 4-6. Height/Width Feature Confusion Matrix 

  True Classification 

Height/Width 

Feature Classification 

 Human Animal Vehicle 

Human 83% 13% 3% 

Animal 13% 16% 79% 

Vehicle 20% 9% 69% 

 

   A similar take-one-out study was conducted using the six-feature box technique 

discussed in section 3.  The percentage of correct classification is subject to the size of 

the „box‟ that the profile is placed into as well as the dividing lines that divide the profile 

into six individual areas.  Earlier studies had placed the dividing lines at arbitrary 

locations of 1/3 and 2/3 the width of the total box length, where the box length is the 

length of the longest sample within the library.  In order to optimize classification 

results, a more specific divider location is required.  Locating these specific locations is 

performed by conducting multiple take-one-out studies using the library of rebuilt 

profiles while varying the box width and divider location lines.  Divider line locations 

are defined by their distance from the center of the box housing the centered profile.  A 

study was conducted in which the divider lines were varied from 1 to half the width of 

the box, where the width of the box was varied from 100 to the largest sample size of the 

library.  Results from the multiple take-one-out studies are shown graphically in Figure 

4-18: 
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Figure 4-18.  Six-Feature classification rate % dependent upon box width and divider 

placement from center. 

 

 It was found that classification rates do not vary greatly with the size of the box.  

For consistency, the box width was set to slightly larger than the width of the largest 

sample of the reconstructed profiles.  Divider locations from center, though, have a large 

effect on the classification.  Figure 4-19 illustrates the peak six-feature classification rate 

of 86% for dividers placed at +/- 19 samples from the center of the profile. 
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Figure 4-19.  Six-Feature classification rates for box width 500, demonstrating peak 

classification rate.  

 

 Note that for this application, each sample represents 1 cm.  Placement of the 

six-feature divider lines at +/- 19 samples from the profile center makes sense; these 

dividers are spaced 38 cm apart from one another.  Most humans, walking upright, 

should be no more than 38 cm wide.  Large animals and vehicles should quickly exceed 

this limit.  Even so, small animals that were smaller than this 38 cm threshold were 

considered as part of this study.  Their improper classification as humans lowers the 

overall classification rate of the six-feature routine.  Individual classifications for the 

Six-Feature classification technique are displayed in the confusion matrix of Table 4-6, 

where the vertical divider lines are spaced at +/- 19 cm from the profile center. 
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Table 4-7. Six-Feature Classification Confusion Matrix 

  True Classification 

Six-Feature 

Classification 

 Human Animal Vehicle 

Human 87% 13% 0% 

Animal 7% 87% 7% 

Vehicle 3% 9% 86% 

 

Table 4-8 summarizes the post-processed classification rates for realigned 

profiles.  The Mahalanobis distance classification algorithm is not implemented on the 

microcontroller; future work involves implementing this classification algorithm. 

 

Table 4-8.  Classification rates for profile features 

 
Feature 

Offline, Naïve 

Bayes 

Offline, 

Mahalanobis 

„Time‟based 

library 

Height/Width 

Radio 

80% 80% 

Six-Features 

(optimized) 

87% 96% 

Row Energy 45% 92% 

“Distance” 

based library 

Height/Width 

Ratio 

55% 55% 

 

Six-Features 

(optimized) 

68% 87% 

Row Energy  86% - 
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5 Conclusions and Future Work 

5.1 Summary 

Persistent monitoring of the US border is an expensive effort in costs of manpower 

and equipment.  Low-cost monitoring equipment is required to provide a cost-effective 

means of monitoring areas against illegal aliens and drug smugglers.  Studies performed 

with sparse sensor array prototype at the Center for Advanced Sensors at the University 

of Memphis have shown that accurate classifications can be made of passing objects, 

reducing the rate of false detections caused by animals.  This thesis presented further 

improvements of the sparse sensor array by describing the acquisition and real-time 

classification of an object on a low-resource microcontroller.  A second prototype 

detector array, constructed of PVC pipe sections, allows the sensor to be disassembled 

and transported easily. 

A microcontroller was utilized to combine the steps of data acquisition and profile 

classification onto a single, low cost device.  This low resource platform solves the low 

power and low cost requirements for a UGS while minimizing false detection rates by 

discriminating between humans, vehicles, animals.  Compressed, analyzed data is stored 

locally onboard the microcontroller.  Hardware resources exist on the microcontroller 

(such as Ethernet, RS232, and RabbitNet) that would allow the microcontroller to 

communicate with an external network.   

Better concealment of the sparse sensor array was achieved by removing the 

detectors of the array out of a single, obtrusive package.  Removing the detectors from 

the single array, though, destroys the synchronization between the detectors.  Algorithms 

were implemented to properly re-synchronize the timing between rows, allowing for 
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traditional feature extractions to be utilized for classification means.  Additionally, the 

customized sensor array allows the variable of velocity to be calculated, further aiding 

classification.  A feature extraction technique was introduced where classification results 

are independent of detector placement.  Live testing of algorithms developed for the 

custom sensor array operating on the microcontroller was conducted, yielding real-time 

classification results of 85%.  Subsequent post-processing of the data was capable of 

removing noise introduced in the real-time profile reconstruction technique.  Post-

processed profiles were classified according to their height to width feature and six-

feature techniques using take-one-out studies, yielding 54% and 86% classification rates, 

respectively.   

5.2 Works in progress / Future work: 

Detectors of the custom sensor array are coupled with reflectors that are spaced at an 

equal horizontal distance from each other as their horizontally spaced detectors; beams 

from each detector are thus parallel to one another when viewed from overhead, as seen 

in Figure 5-1: 
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Figure 5-1.  Custom Array with parallel beams and multiple reflector pole pairings, 

viewed from overhead. 

 

Parallel beams present the requirements of additional hardware and setup.  A subject 

passing through the sensor will have similar profiles independent of the distance he/she 

passed from the detectors or the paired reflector poles as illustrated in Figure 5-1.  

Information can be gathered from the subject profile, but the individual pathway is 

unknown, limiting potentially valuable information if a long distance exists between the 

detector array and its reflector pole.  However, if the detector reflectors are positioned 

together along a single reflector pole, it is hypothesized that the distance from the sensor 

to the pathway of a passing subject can be calculated, as shown in Figure 5-2.   
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Figure 5-2.  Custom Array with Single Reflector Pole. 

 

 A subject passing through the sensor at pathway 1 of Figure 5-2 will generate a 

wider profile than if he/she were to pass through pathway 2 at the same speed.  A 

profile‟s width is now dependent both upon the subject‟s width and where it breaks the 

beams of the sensor‟s detectors, allowing us to infer a depth of field.  However, it should 

also be noted that varying the subject‟s velocity can appear to vary it‟s depth of field.  

For example, the profile of a fast-moving subject traveling on Figure 5-2‟s pathway 1 

near the detector array would have a similar profile as if the same subject were traveling 

slowly on pathway 2.  The speed or the depth of field can be calculated, but not both.  

However, by using the normalized row energy feature and classification technique 

described earlier, a reasonable estimate of speed can be made for the particular 

classification.  By applying this reasonable speed to the profile, a depth of field can be 

determined.   

 Note that application of this non-parallel detector beam technique can also be 

implemented by separating the reflectors and placing the detectors together along the 
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same column, reducing the amount of necessary wiring from the detectors to the 

microcontroller.  This depth of field calculation is not yet implemented.  Maximum 

detector range of the CX-RVM5 sensing element limited to 5 meters; no important 

information is gained by knowing exactly where the subject passed through the 5 meter 

wide window other than it passed through.  However, this field of view calculation will 

likely be beneficial once a longer-range detector/reflector pair is implemented into the 

detector array. 

 Additional future work involves exploitation of the microcontroller‟s Ethernet 

capabilities for data communication to an external network.  Several supplemental 

software programs have been developed for the profile sensor to aid in sensor alignment.  

These supplemental programs are to be added to the data acquisition/classifier program 

to make a single, standalone, turnkey software package.   

 Future work also includes the collection of additional samples and rigorous 

testing of the custom array configuration against a more dynamic test subject set.  

Extensive hardware testing is to be performed to determine whether cooling and 

packaging considerations have been sufficiently addressed. 
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A1.  A CD-ROM containing the profiling sensor‟s source code and related work has 

been provided to the University of Memphis Department of Electrical and 

Computer Engineering.  Table A-1 briefly describes the content of the 

directories.  Code developed in C is to be run using the Dynamic C integrated 

development environment version 10.56 or later.  Dynamic C can be acquired 

through Digi®‟s website: http://www.digi.com/products/wireless-wired-

embedded-solutions/software-microprocessors-

accessories/software/dynamicc.jsp#overview 

 

Table A-1 

PS_vert.zip Dynamic C code of a profiling sensor implementation 

using a vertically arranged row of detectors.  Six-feature 

classification routine implemented for classification. 

Vertical_library.zip Library of samples acquired through PC/USB data 

acquisition system with the vertically oriented profile 

sensor.  Data acquisition rate is approximately 1kHz. 

PS_detector_align.zip Dynamic C code used to aid in alignment of detector 

beams during profile sensor setup. 
PS_detector_placement.zip Dynamic C program used to calculate the physical 

distances between individual detectors of a custom array. 

PS_custom_array.zip Dynamic C program of a profiling sensor using a custom 

array.  Program acquires, processes, classifies, and stores 

data.  Six-feature, Height/width ratio, and Row-energy 

classification routines are implemented. 

Distance_library.zip Library of samples acquired using the Rabbit BL4S200 

microcontroller.  Data acquisition rate is approximately 21 

Hz.   

Matlab_routines.zip Various Matlab routines used to visualize binary and .txt 

based profiles into a 2-dimensional image. 
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