
University of Memphis University of Memphis

University of Memphis Digital Commons University of Memphis Digital Commons

Electronic Theses and Dissertations

4-15-2011

Cross Calibration of Hinode's X-ray Telescope and Extreme Cross Calibration of Hinode's X-ray Telescope and Extreme

Unltraviolet Imaging Spectrometer Using X-ray Bright Points Unltraviolet Imaging Spectrometer Using X-ray Bright Points

Jason Andrew Kimble

Follow this and additional works at: https://digitalcommons.memphis.edu/etd

Recommended Citation Recommended Citation
Kimble, Jason Andrew, "Cross Calibration of Hinode's X-ray Telescope and Extreme Unltraviolet Imaging
Spectrometer Using X-ray Bright Points" (2011). Electronic Theses and Dissertations. 172.
https://digitalcommons.memphis.edu/etd/172

This Thesis is brought to you for free and open access by University of Memphis Digital Commons. It has been
accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of University of
Memphis Digital Commons. For more information, please contact khggerty@memphis.edu.

https://digitalcommons.memphis.edu/
https://digitalcommons.memphis.edu/etd
https://digitalcommons.memphis.edu/etd?utm_source=digitalcommons.memphis.edu%2Fetd%2F172&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.memphis.edu/etd/172?utm_source=digitalcommons.memphis.edu%2Fetd%2F172&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:khggerty@memphis.edu

To the University Council:

The Thesis Committee for Jason Andrew Kimble certifies that this is the final
approved version of the following electronic thesis: “Cross Calibration of Hinode's X-
Ray Telescope and Extreme Ultraviolet Imaging Spectrometer Using X-Ray Bright
Points.”

Joan T. Schmelz, Ph.D.
Major Professor

We have read this thesis and recommend
its acceptance:

Donald R. Franceschetti, Ph.D.

Firouzeh Sabri, Ph.D.

Accepted for the Graduate Council:

Karen D. Weddle-West, Ph.D.
Vice Provost for Graduate Programs

CROSS CALIBRATION OF HINODE'S X-RAY TELESCOPE AND EXTREME
ULTRAVIOLET IMAGING SPECTROMETER USING X-RAY BRIGHT POINTS

by

Jason A. Kimble

A Thesis

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

Major: Physics

The University of Memphis

May, 2011

ACKNOWLEDGMENTS

I would like to thank my advisor, Dr Joan Schmelz for all her guidance, and also

my thesis committee, Doctors Firouzeh Sabri and Donald R Franceschetti for their

support and understanding. I would also like to express my appreciation to fellow student

Jennifer Garst and to my roommate Marc Brown for their efforts in proofreading this

paper, as I write too much like I talk.

I should also mention the hard work of the many researchers who created the

instruments and masses of both data and software without which a study like this would

be completely impossible. Hinode is a Japanese mission developed and launched by

ISAS/JAXA, with NAOJ as domestic partner and NASA and STFC (UK) as international

partners. It is operated by these agencies in co-operation with ESA and the NSC

(Norway). CHIANTI is a collaborative project involving researchers at NRL (USA) RAL

(UK), and the Universities of: Cambridge (UK), George Mason (USA), and Florence

(Italy). Solar physics research at the University of Memphis is supported by NSF ATM-

0402729 as well as a Hinode subcontract from NASA/SAO.

ii

ABSTRACT

Kimble, Jason Andrew. M.S. The University of Memphis. May 2011. Cross
Calibration of Hinode's X-Ray Telescope and Extreme Ultraviolet Imaging Spectrometer
Using X-Ray Bright Points. Major Professor: Dr. Joan T. Schmelz.

The focus of the present study is to produce a cross calibration factor for Hinode's

X-Ray Telescope (XRT) and Extreme Ultraviolet Imaging Spectrometer (EIS)

instruments by using observations of X-ray bright points. Material in the center of several

bright points will be analyzed using data from EIS, and these results will be applied to

concurrent XRT data to generate a relative response ratio between the two instruments. A

secondary purpose is to investigate the thermal characteristics of bright points

themselves. The differential emission measure curves produced from the EIS

observations will themselves be valuable information about these coronal phenomena.

iii

TABLE OF CONTENTS

List of Tables vi

List of Figures vii

1 Introduction to the Sun 1
1.1 Formation of the Sun 1
1.2 Structure of the Sun 4
1.3 Solar Phenomena 9

2 Overview of Instruments 23
2.1 General Information about Hinode 23
2.2 General Comparison of Hinode's Instruments 25
2.3 Solar Optical Telescope 26
2.4 X-Ray Telescope 28
2.5 Extreme-Ultraviolet Imaging Spectrometer 30
2.6 Summary of Hinode 34

3 X-Ray Bright Points Described 36

4 Data and Analysis 41

REFERENCES 61

Appendix A: Pixel_Picker: Coalignment and Selection Software 63

Appendix B: EML_Plotter 76

Appendix C: ECHIDNA: A DEM Forward Folder 90

iv

LIST OF TABLES

1. Transmission Characteristics of the XRT Filters by Emission Line 30

2. Summary of the Instruments Aboard Hinode 34

3. XRT Image Information 44

4. Intensity Values from EIS Averaged over BP A 46

5. Intensity Values from EIS Averaged over BP B 46

6. Intensity Values from EIS Averaged over BP C 47

7. XRT Intensities Averaged over Each BP for Each Filter 47

8. Electron Density Results 50

9. Final Response Ratios 59

v

LIST OF FIGURES

1. The Layers of the Sun 5

2. Coronal Loops 21

3. The Hinode Spacecraft 24

4. Diagram of the SOT's Optical Telescope Assembly 27

5. The XRT Optical Path for both X-ray and Visible Imaging 29

6. Simplified View of the EIS Optics 33

7. Full Disk EUV Image and Magnetogram Showing Bright Points 39

8. Enlargements of the Area Shown in Figure 7 39

9. EUV Image of the Region 42

10. Averaged EIS Spectrum 43

11. XRT Image with Ti-Poly Filter 44

12. EIS Field of View in Both Instruments 45

13. Contribution Functions for the Spectral Lines of BP A 48

14. Response Functions for the XRT Filters Used 49

15. Line Ratio for Density 50

16. EM Loci Plots of Intensity Data for BP A 52

17. EIS Results for BP A 54

18. EIS Results for BP B 55

19. EIS Results for BP C 56

20. EIS / XRT Ratios for BP A 57

vi

21. EIS / XRT Ratios for BP B 58

22. EIS / XRT Ratios for BP C 58

vii

1. Introduction to the Sun

1.1 Formation of the Sun

In any discussion of a part of the sun, it becomes necessary to put the information in

context by developing a basic working knowledge of the sun as a whole. The sun can be

described in a number of ways, depending on one’s perspective; one can talk about the

sun as a celestial body and the center of our solar system,a star, a reactor producing

energy, or an object composed of different structures of certain materials undergoing

certain processes.

From the perspective of a stellar astronomer, the sun is a main sequence star of

spectral class G2. It is considered a typical example of its kind. The main sequence is a

classification of a star based on a positive correlation between the luminosity of the star

and its temperature as shown on a Hertzprung-Russel diagram(Golub and Pasachoff,

Nearest Star, 29). This is the largest group of stars. The sun’s place on the main sequence,

along with its mass are determining factors in current theories on the development and

ultimate fate of the sun. The spectral class is determined by a star's spectroscopic

characteristics, and indicates an approximate temperature of the star's radiating surface.

In this case it indicates the sun's surface is about 5800 K (Seeds, 35).

The sun is not the same as all other stars, however. Many stars are binary or

multiples, but the sun is a single star. Further, some stars are at other places on the main

sequence, or not on the main sequence at all. Stars that differ much from the sun may

have different nuclear processes as their source of energy and may be of very different

1

temperatures. As such, their internal structures may differ radically, inverting some of the

regions existing in the sun, or lacking them altogether.

The sun is a roughly spherical structure of energetic gas. Its mass is 1.989 x 1030

kg and its radius is about 6.960 x 105 km. Its average luminosity is 3.85 x 1023 kW

(Phillips, 277), which means the amount of energy reaching the earth, the solar constant,

is 1369 W/ m2, though this “constant” is only an average and can vary. Its density is about

1400 kg/m3 and it rotates differentially, about once per 26 days at the equator and about

once per 30 days at high latitudes. The sun contains many of the elements that can be

found on the earth in measurable quantities. However, from observations, the parts of the

sun that can be seen are predominantly hydrogen, which is about 91% of the sun’s

composition. Helium is the next most common, with a somewhat uncertain measurement

of about 9%. Oxygen, carbon and many other heavier elements are found in much smaller

amounts, totaling about .1% (Phillips, 101).

Like other stars, the sun contracted from a cloud of gas and interstellar material,

heating up from the release of gravitational potential energy to become a protostar. When

it began radiating, it became a T Tauri star, the last stage of formation before fusion

ignition. In this T Tauri phase, the sun developed a strong wind that swept away the

debris left over from the star formation process. After fusion ignition occurred, it

probably took about 10 million years for the sun to settle into the main sequence. Stars

like the sun tend to remain near the same point on the main sequence of the H-R diagram

that they entered, drifting little, until the ending stages of their life-cycle, which are

2

determined largely by the star's mass. This formation took place about 5 billion years ago,

and the sun is about in the middle of its life.

The sun has enough nuclear fuel to continue for about another 5 billion

years,when it will become a red giant. When this happens, only the hydrogen in the core

will be exhausted; much will still exist outside of this region. The radiating zone will

contract and the hydrogen just outside the core will be compressed and heated to the

point where it can fuse into more helium. This will in turn heat the core and provide it

with more helium. Some of the helium will begin to fuse, but at first only one reaction

can take place. Two helium atoms will fuse to become an unstable 8Be atom. When the

core temperature rises to about 100 million degrees, a third helium atom will be able to

fuse with the 8Be atom before it can decay to create stable carbon (Kutner, 178).

When the sun enters the red giant phase, it will move off of the main sequence

onto a branch of the H-R diagram. The sun as a red giant will have a surface temperature

of about half that at present, and its outer boundaries will have expanded greatly. The

increasing solar wind during the red giant phase will have increased the density of matter

in the space surrounding the sun. The sun will expend the new helium fuel in its core

fairly quickly, and this will end the red giant phase. It may then begin to pulsate as it

collapses under the force of gravity to the point that a burst of helium fusion can propel it

back out. This will expel more matter, and this, combined with the increased solar wind

from the red giant phase, will create a planetary nebula carrying carbon and heavier

elements into interstellar space. When the star has lost enough matter to this process, the

3

remaining material in the star will become compressed to electron-degenerate matter and

will slowly cool as a white dwarf.

1.2 Structure of the Sun

As to the structure of the sun, astronomers can directly observe the solar atmosphere and

surface, but below that, the traditional methods of analyzing light directly emitted by the

object of observation fails. Since the solar surface is opaque, it is not possible to detect

light emitted by the interior. However, using hypothetical models of the structure of the

sun, it is possible to deduce something of the sun's interior. Using some indirect methods

of measurement, data can be obtained on some of the properties of the regions within the

sun which can either support or invalidate these models. The sun's interior, in fact most of

its structure, can be characterized into regions that are approximately spherical shells,

each differentiated by the properties and processes of that region, as illustrated in figure

1.

The energy source for the sun is nuclear fusion, and this takes place in the core

where the pressure and temperature, about 15 million degrees (Golub and Pasachoff,

Nearest Star, 49), are high enough to maintain such a reaction. This core extends about a

tenth of the way to the surface. The main process at this point in the sun's development,

according to current understanding, requires four hydrogen atoms and results ultimately

in a helium atom and a great deal of energy. Specifically there are three processes that

combine to produce this net reaction. First two protons fuse to form a deuterium nucleus

(2H), a positron (an anti-electron) and a neutrino. After this reaction, a second reaction

4

can take place: a deuterium and a hydrogen fuse to form helium-3 (3He) and a gamma

ray. After two of this second reaction, two helium-3 nuclei fuse to form a helium-4 (4He)

and two protons. The excess positron from the initial reaction will annihilate an electron

to produce another gamma ray, and thus contribute to energy output. This process

converts hydrogen to helium, and requires hydrogen for fuel. However, it is estimated

there is enough hydrogen remaining for this process to continue for about 5 billion years

(Phillips, 53).

Outside of the core region where fusion occurs is a layer of the sun where the

pressure and temperature are not high enough to maintain fusion. The energy density of

5

Figure 1: The Layers of the Sun. A simplified diagram
of the sun's various layers. Courtesy of NASA.

this layer is high enough to keep most of the atoms completely ionized most of the time.

This being the case, there are no orbiting electrons to absorb the photons produced in the

core. These photons can only be scattered, and the majority of the energy passing through

this region from the core is in the form of these photons.

Farther out from the radiation zone is a region where the energy traveling out

from the core has diffused enough for the nuclei to hold electrons. Thus, in this region

photons may be absorbed. As such, this region is opaque. Further, the energy arriving into

this region as photons can result in the motion of these atoms, causing currents where

high energy atoms may move downward to become ionized or, more often, upward to

bring this energy to higher levels. Since this energy is transferred in this region by

convection, this is the convection zone. This zone is only about half as thick as the

radiation zone.

Above the convection zone is a thin layer of less opaque gas, only about 500 km

thick, called the photosphere. Most of the radiant energy received from the sun originates

here. This is usually considered the sun's surface, and is the deepest layer of the sun that

can be directly observed with optical instruments. The temperature in this region varies

greatly by depth, but is about 5800 K (Seeds, 147).

In the photosphere, free electrons moving within a range of speeds may become

bound to atoms, either ionized or neutral, which would result in negatively ionized atoms.

This process would result in the release of photons with a continuous range of energies.

These negative ions may lose their weakly bound electrons by absorbing photons of a

range of energies, the excess energy in the photon imparting kinetic energy to the freed

6

electrons. For this reason, the photosphere is opaque and radiates a continuous spectrum.

This is why the sun appears to approximate a black body at about 5800 K. The

photosphere is the region where such features such as sunspots, granulation, and

supergranulation are observed.

Above the photosphere is a fairly shallow region of thinner, more transparent gas

called the chromosphere. This region gets its name from its red appearance around the

photosphere during an eclipse. Still greater in extent than the photosphere, the

chromosphere averages about 5000 km through, and extends irregularly to about 9000

km. The chromosphere has a less regular shape, the boundary including spicules, short

lived columns of rising gas that reach up into the corona. Another feature of this region is

filaments, elongated dark areas. In this less dense region, the temperature rises farther out

from the surface. Due to its increasing temperature and rarity, the chromosphere has a

characteristic emission spectrum consisting mainly of Balmer hydrogen lines.

Between the chromosphere and the much hotter corona there is a section,

sometimes considered part of the chromosphere, called the transition region (Phillips,

118). In this extremely non-uniform zone, the temperature rises from the chromosphere's

temperature range up to temperatures like those found in the corona.

Outward from the transition region is the solar corona. If the chromosphere's

tendency to rise in temperature at higher altitudes is surprising, then the corona is

downright shocking, because it is at about 2 million Kelvin, though it is by no means

uniform. This very hot outer atmosphere is also extremely rarefied. Like the

chromosphere, the corona is not easy to observe with ordinary instruments except during

7

a total eclipse, where it is visible to the naked eye. Because of its extremely high

temperature, the corona has a very broad range of emission lines, but because of its

tenuousness, its luminosity is quite low compared to the rest of the sun. The corona's

boundaries and extent can be difficult to define. Often its beginning is arbitrarily

designated as anything outward of the transition region over a certain temperature, about

100,000 K (Golub and Pasachoff, The Solar Corona, 2). As this region is very dynamic,

its shape is also highly irregular, largely dominated by streamers, plumes and other large

structures. These regularly reach hundreds of thousands of kilometers outward. The

mechanism behind the extreme temperature of this outer atmosphere, which by all rights

should be of diminishing temperature, is a major mystery. This shall be explored in

further detail later.

The corona has a higher density than interstellar or even interplanetary material,

and because it can conduct heat well and is so hot, the gravitational pull of the sun is

unable to keep it perfectly trapped. This allows the outer parts of the corona to expand

continually, all the time accelerating. The outer corona is said to become the solar wind at

a point where the accelerating particles reach the acoustic speed of the outer coronal

plasma, at a distance of about 1.4 solar radii. This stream of charged particles spirals out

from the sun into interplanetary space along the sweeping magnetic field lines generated

by the sun as it spins. It is this thin and very fast ionic gas that causes cometary tails and

Earth's aurorae.

Somewhere near this point it becomes difficult to describe features as belonging

to the sun, but rather related to it, or affected by it. The region filled by the solar wind is

8

called the heliosphere, though this may be misleading as it is suspected that this may not

be spherical or even symmetrically shaped, but probably extends out 40 to 100 AU

(Phillips, 239). This boundary is called the heliopause, and at this point the solar wind

drops back to subsonic velocities

Of course the sun will have effects and send particles and light out far beyond this

point, but the regions inside this can be said to be the sun's demesne, and in a manner of

speaking they could be said to be parts of the sun. Anything beyond this is unlikely to be

relevant to the current discussion.

1.3 Solar Phenomena

To gain a better understanding of the sun's processes, it is desirable to examine a few

phenomena that occur observationally in the sun, as well as the techniques by which they

can be observed. A fairly easy phenomenon on the sun both to observe and to understand

is that known as limb darkening. When observing images of the sun optically, the area

right around the edge, or limb, of the solar disk does not appear as bright as the rest of the

image. This is a simple optical depth effect. Since the photosphere is not perfectly

opaque, the line of sight of the image can penetrate it to a certain depth. When looking

straight on to the photosphere, this depth is greater than when looking at an extreme

angle, such as at the limb. This greater depth also has a corresponding greater

temperature, and is therefore brighter. To put it another way, at the steeper angle at the

limb, the same depth will be viewed as in the center, but through more photospheric

material, and thus it will appear darker.

9

It is possible to obtain spectral information and find the spectral lines shifted

slightly one way or the other, or to find the lines crooked or 'wiggly' rather than straight.

If the source of the signal being read is moving with respect to the observer, the

wavelength of the observed radiation will be Doppler shifted. The effect will shift the

lines toward the blue end of the spectrum (shorter wavelengths) for motion toward the

observer, and toward the red end (longer wavelengths) for motion away. If there is

oscillatory or combined motion, the observed lines may wobble or be recorded as wiggly

between the two positions.

Spectra of the photosphere, when examined closely, show movement both toward

and away at about 7200 km/h. Visual observations of the photosphere show a

phenomenon known as granulation, a constantly shifting pattern on the surface of small

bright areas about 1100 km across (Phillips, 74) separated by narrow darker channels.

The bright granules appear and disappear constantly. The Doppler information shows that

the bright granules are moving upward, while the dark channels are sinking into the sun.

These bright granules are convection cells, much smaller than the ones in the convection

zone. Hot plasma, about 400 K hotter than in the darker lanes, boils to the surface, and

after it has cooled sinks back down into the photosphere, the hotter and cooler plasma

moving at about 2 km/s relative to each other.

If examined carefully, the granules may seem to oscillate slightly in brightness

with a period of about 5 minutes (Golub and Pasachoff, Nearest Star, 67). Also observed

have been Doppler shifts of spectra of the photosphere of about half a km per second,

first one direction and then the other, with periods of about five minutes. These persist in

10

an area for about half an hour before fading and being detected somewhere else. These

are the surface effects of waves traveling within the sun. These sonic helioseismic waves

travel down into the sun, are redirected by the varying density back toward the surface,

and are reflected back inward when they hit the surface. A mathematical model of the

sun, including maps of the internal structure as related earlier along with temperature and

density assumptions about internal regions, can be used to predict the behavior of these

waves. By comparing this prediction with the actual recorded waves, the model can be

tested.

Sunspots are areas on the photosphere over 1000 K cooler than the surrounding

surface. They typically appear at lower latitudes, and can last anywhere from under an

hour to over six months. At any given time less than 1% of the sun's surface is covered by

sunspots (Phillips, 168). They develop from pores, tiny dark places that generally last

under an hour. The Zeeman effect, the splitting of some spectral lines under magnetic

influence, indicates that magnetic fields are coincident with sunspots. Sunspots always

appear in pairs or groups, and the field strength has been measured at about 3000 gauss

(Golub and Pasachoff, Nearest Star, 40-41).

There are a few other structures associated with sunspots. Plages are bright areas

around sunspots that seem to be a brightening in the chromosphere caused by magnetic

field activity and that remain for a time after the sunspot is gone. Groups of sunspots are

surrounded by an area of the photosphere that is a little hotter than the surrounding

surface, and which is visibly slightly brighter, called a facula. Probably more

interestingly, above sunspots are vertical structures made up of individual filaments that

11

extend up from the spot about 10,000 km. Within this structure, in the chromosphere,

radio emissions are detected, and in the corona the temperature is lowered.

The number of these sunspots increases and decreases with a cycle of about 11

years. Throughout this period, new sunspots appear at lower latitudes, and there is a

general drift of spots toward the equatorial regions. The leading spot of any pair in each

hemisphere is of the same polarity. However, after two cycles, or what could be called a

full cycle of about 22 years, this polarity reverses (Kutner, 115). Each cycle of sunspots is

not necessarily equal in strength, as viewed by the number of spots, and any pattern in the

strength of cycles is not yet predictable.

There may be even more variation than this. There was a period of about seventy

years in the late seventeenth and early eighteenth century when sunspots were apparently

largely absent. This period is named the Maunder Minimum after the twentieth century

scientist who discovered this in historical records. During this period, few aurorae were

reported, indicating a possible period of generally less solar activity. To further support

this link to other solar activity, this period corresponds to a period in Europe known as

the Little Ice Age (Phillips, 44). In old trees alive at that time, an odd pattern of growth

rings has been shown for this period. Other sets of similar growth rings have been found,

possibly indicating other similar periods of low activity. This would tend to indicate that

the 22-year cycle is not only the cycle of the number and behavior of sunspots, but that

this might be only an indication of other processes at work.

Since sunspots are always an area of intense magnetic fields, this cycle of sunspot

activity may be indicative of a cycle of magnetic activity. The source of the sun's

12

magnetic field is of critical interest. While there is a hypothesis that the sun's magnetic

field is primordial, trapped by the collapsed plasma, it is more likely that some kind of

dynamo mechanism within the sun generates it. The interior of the sun is composed of

conductive ions. This plasma, an efficient conductor, will lock a magnetic field passing

through it into place, either dragging that field with it, or being dragged by it.

In the Babcock model, the field starts out as toroidal, with poles more or less at

the sun's rotational poles. The differential rotation causes the equatorial region of this

field to be pulled around the sun while the polar regions remain the endpoints. Kinks in

the field lines emerging through the photosphere would account for sunspots, their

pairing, the leading polarity, and their general equatorial movement through the cycle.

Toward the end of the cycle, the trailing field components move toward the poles, closing

the circumsolar loops in the field lines, neutralizing polar components of the field, and

replacing it at reduced strength. The remaining field is similar to the polar field before

this, but of opposite polarity. This new configuration is wrapped around the sun, but in

the opposite direction, and the differential rotation eventually brings it back to toroidal.

Of course other models exist. Even the dynamo theory itself, while it seems likely, is not

a certainty.

The previously mentioned solar oscillations can be used to determine some of the

specifics about the structure of the sun's interior, such as interior plasma flows, which

would generate the sun's magnetic field. Any solar model tested by observing these

waves must include any subsurface differential rotation that the observations indicate,

and in doing so should be able to account for the magnetic field characteristics.

13

One major mystery in observational science concerns the sun's energy source. The

nuclear reactions assumed to take place at the core of the sun produce neutrinos at such a

rate that the flux of these extremely non-interacting particles at the distance of the earth

should be an amazing 6 x 1014 per square meter every second. Neutrinos have almost no

interaction with matter, and are therefore hard to detect. However, some of these

neutrinos, the ones from a reaction creating boron (8B) have enough energy to interact

with a chlorine isotope (37Cl) to produce an electron. An American experiment called

Homestake used this interaction with chlorine to attempt to detect these higher energy

solar neutrinos. This experiment consisted of an enormous tank located far underground

to shield it from any other energy sources, as neutrinos pass through most matter without

interaction. Surprisingly this experiment only detected about a third of the expected

number of neutrinos (Phillips, 55).

A series of other experiments, such as the Japanese Kamiokande and its

descendents, use other detectors for the same kinds of neutrinos. The Russian and Italian

experiments use gallium to detect

lower energy neutrinos. The Canadian SNO used a tank of heavy water to detect all kinds

of them. In general, these experiments detect about half the expected neutrino flux

(Golub and Pasachoff, Nearest Star, 109).

There are a number of possible explanations for the discrepancy between detected

and expected neutrino fluxes. A hypothetical particle, the Weakly Interacting Massive

Particle, or WIMP, created early in the universe, may be responsible for some of the

energy transfer within the sun. However, this is not seen as the most likely explanation.

14

Another possibility, involving a lack of understanding of neutrinos themselves, is called

the MSW, after Mikheev, Smirnov and Wolfenstein. This is a quantum mechanical effect

that allows the neutrinos to change to another type before arriving at the detector. This

would necessitate an oscillation of neutrinos between their different forms (Phillips, 57).

It is also possible that some process within the sun prevents detection of the neutrinos, or

that a process at the core of which we are not yet aware reduces the neutrino output, or

that the exact ratio of types of nuclear reactions in the core is not what is expected from

models. As more information is gathered on the neutrino emissions, as well as on the

interior of the sun, it can be hoped that this enigma will be solved.

As the focus of the current work is on the corona, it would be useful to describe

the corona in somewhat more detail. As has been seen earlier, the solar corona is an

irregular envelope of extremely hot gas, highly ionized, that forms the upper atmosphere

of the sun. It is more circular at sunspot maximum, and more flattened at minimum.

Because it is so faint by comparison with the solar disc, the corona is not visible from the

ground except during a total solar eclipse. As it can be seen during such an event, it

seems obvious that humans would have seen the corona on a number of occasions

throughout history. However, though there are reports that seem to indicate a sighting of

the corona, the first unambiguous mention of it is by Kepler in the seventeenth century,

though he thought he was viewing the lunar atmosphere.

In 1860 observations by De la Rue and Secchi at different locations showed that

prominences (structures extending up through the corona) were solar in nature and not

effects of the earth's atmosphere, as generally believed at this time (Golub and Pasachoff,

15

The Solar Corona, 27). They showed in photographs the gradual covering of these

prominences by the moon. In 1868 Lockyer and Janssen found they were able to observe

and measure these prominences even after the occurrence of an eclipse.

Frankland and Lockyer determined that a yellow emission line observed in the

preceding eclipse did not belong to any known element. Thus they believed it to be a new

element, and named it helium. The subsequent discovery by Young and Harkness of a

green line, also not known in any element's spectrum, was initially called coronium. It

was eventually discovered that this line came from iron ionized 13 times, Fe+13. This was

instrumental in the discovery of the spectra of highly ionized states of elements.

Observation of the corona has changed much since those times. Coronagraphs,

generally built at mountain top observatories to reduce atmospheric interference, use an

occulting disc to block the photosphere and get an image of the corona. Some of these

ground-based observatories are still in use, such as the High Altitude Observatory at the

National Center for Atmospheric Research in Boulder, CO. Sounding rockets have also

been used for coronal observations. Following a ballistic trajectory, they allow about five

to fifteen minutes of observation before the instrument reenters. More recently, these

instruments have been mounted on satellites. Since the focus of the current work involves

observations made entirely by these spacecraft, a brief overview of some of the more

significant recent space-based missions is prudent.

Skylab contained the Apollo Telescope Mount, or ARM, which had eight

instruments for observing the sun between 2 and 7000 angstroms (Golub and Pasachoff,

The Solar Corona, 179). The Solar Maximum Mission ran from 1980 to 1989 and

16

carried a suite of instruments to study flares. Its instruments were sensitive over a broad

range of wavelengths. The Yohkoh satellite, launched in 1991, carried the Soft X-ray

Telescope and the Hard X-ray Telescope (SXT and HXT), as well as the Bragg Crystal

Spectrometer and the Wide Band Spectrometer. The Solar and Heliospheric Observatory

(SOHO), launched in 1995, had what was then the largest compliment of instruments for

studying the sun. It included both spectrometers as well as instruments to study the solar

wind. Specifically for studying the corona were the Solar Ultraviolet Measurements of

Emitted Radiation (SUMER), the Coronal Dynamics Spectrometer (CDS), and the

Extreme-ultraviolet Imaging Telescope (EIT). The Transition Region and Coronal

Explorer (TRACE) is a telescope with ultraviolet and extreme ultraviolet channels,

designed specifically to investigate the relationship between the surface magnetic fields

and coronal structures.

The emission in the corona is not a continuous spectrum of radiation, but rather a

set of discrete frequencies. Discrete spectral lines can be explained using the Bohr model

of the atom. Electrons occupy discrete orbitals with angular momentum restricted to

integral multiples of Planck's constant, ћ. Transitions from one orbit to another occur by

emission or absorption of a photon, and only in these discrete amounts of energy. These

energy levels correspond to the frequencies found by Fraunhofer. Balmer found the

progression of visible hydrogen lines, and now these are called Balmer lines.

Among other things, the coronal emission lines allow for the determination of the

temperature of the material from which the particular signal was emitted. For instance, Fe

XIV exists in the coronal spectrum. Since it would normally de-excite or excite to higher

17

energy by collision, it means not only that the corona is very hot, but also that it is of very

low density, around 1014 electrons per cubic meter (Phillips, 138). With a particular

mixture of elements at a particular temperature, it is possible to calculate the number of

atoms in any given volume that are in a specific ionization state and which emission lines

are produced by these. By adding up all these states, as well as electron capture and

escape contributions, it is possible to arrive at a total spectrum of the material.

Electron densities can be determined, within a certain region, by using the ratio

between a likely radiative transition of an ion excited by collision, and a metastable state,

where the decay's likelihood is a function of the density. Abundances are also necessary

to analyze spectrographic observations of the corona. Since hydrogen, which is the usual

baseline, is difficult to detect in the corona, these abundances are relative. Analyses of

different spectra can provide data to which a model abundance can be fit. Further,

measurements of the solar wind and other samples of particles originating in the corona

can show aspects of the coronal abundances.

Probably the greatest mystery about the corona is why it is so hot, even though it

is farther out from the core than other, cooler layers of the sun. For this to be the case the

corona must be continuously heated, and in some other way than simple conduction or

convection, since the material immediately below it is cooler. In fact, because the

temperature actually rises through the chromosphere and transition region, the coronal

heating mechanism must be non-radiative and must originate in the photosphere or

below. There seems to be a general agreement that the heating mechanism of the corona

is driven by the sun’s outer convection zone.

18

Different parts of the corona range from one million to ten million Kelvin. The

corona's temperature relative to the immediate inner layers requires heating by some non-

thermal source. Yet because of its low density, this requires only .01% of the sun's energy

output. This is still a very great amount, and is only small compared to the output of the

sun. It is thought that magnetic fields are basic to the heating of the corona. For example,

the coronal temperature is higher in regions near sunspots, even though the corona's

emissions are suppressed above the center of a sunspot. Further, by studying other stars, it

is known that there is a correlation between the magnetic flux at the surface and coronal-

type x-ray emissions. There is also a correlation between the rotational rates and the

coronal emissions of these stars (Golub and Pasachoff, The Solar Corona , 18).

To better understand this mechanism, it is necessary to map and model the

magnetic fields that influence the corona. However, if the magnetic fields originate below

the visible surface of the sun, the mechanism that causes them cannot be directly

observed. The coronal magnetic field strength is also difficult to measure directly. The

Zeeman effect is too small to be measured in the corona's spectral lines. However, since

the corona is affected - in fact, thought to be heated - by these fields, it should be

possible to find features that can reveal the properties of them. Coronal structures are

usually linked to magnetic fields at the solar surface, and active regions seem to be

magnetically created and direct coronal plasma.

The activity on the sun is driven by the emergence of magnetic flux lines from the

surface. This activity leads to coronal structures. These structures, being driven by the

19

magnetic cycles in the sun, must be taken into account in any solar models so that the

magnetic driving mechanism is consistent.

In the photosphere and presumably lower, the ionic currents create the magnetic

fields. In the corona, however, the density of the plasma is so low that the individual ions

become trapped around a field line, moving in a helical path along the line (Phillips, 155).

Footpoints of coronal structures are anchored in the photosphere, and are generally cooler

than the rest of the structure. Ions travelling along a field line are reflected by the denser

gas at the footpoint of the structure, but lose energy to the cooler gas below. This is one

way the corona loses energy. However these structures do not actively exchange much

thermal energy with the surrounding coronal gas. A modern model of the corona

understands it as a collection of these individual structures driven by magnetic fields

generated in lower levels of the sun. These are generally called loop models.

Structures called loops (see fig. 2) appear to emanate from the edges of sunspots

and arch up into the corona and back down again. Loops are connected to sunspot groups,

and are generally about 10,000 km long. Coronal arches (or interconnecting loops) are

fainter, more stable, and generally much larger, often hundreds of thousands of kilometers

long. Arches connect to active regions. Comparisons between magnetograms and x-ray

images show that loops and arches connect regions of opposite magnetic polarity. Their

height is generally indicative of the distance between the regions they connect.

20

There are other features, structures and phenomena in the corona, besides loops

and arches. X-ray bright points are distinct areas with intensified x-ray emissions. They

do not appear to be associated with sunspot activity. They only last a few hours, and are

up to about the size of a small group of sunspots. Bright points are always associated with

otherwise unmarked opposite polarity magnetic features in magnetograms. They are

located away from active regions, and are often seen at higher latitudes than active

regions, and are much shorter-lived (Golub and Pasachoff, The Solar Corona, 177). The

analysis presented in this thesis relates extreme ultraviolet and X-ray observations to not

21

Figure 2: Coronal Loops. An X-ray image in 171 Angstroms of
some coronal loops. Taken by the TRACE instrument on May 19,
1998 at 22:02:52 UT.

only study bright points, but also to cross-calibrate two instruments used to observe the

sun: the Hinode EUV Imaging Spectrometer (EIS) and X-Ray Telescope (XRT).

22

2. Overview of Instruments

2.1 General Information about Hinode

The Hinode spacecraft is an earth-orbiting satellite intended for solar observation.

Launched at 21:36 GMT on 22 September 2006, it is a follow-up to the Yohkoh satellite

which was launched in 1991. Originally named Solar-B, after its successful launch the

satellite was renamed Hinode which means “sunrise” in Japanese. While a number of

institutions and individuals are behind different aspects of Hinode, the overall mission,

the launch, and the satellite itself are mainly attributable to the Japan Aerospace

Exploration Agency's Institute of Space and Astronautical Science (ISAS/JAXA) (Kosugi

et al.).

Intended to help better understand the sun's variation and its mechanisms, the

mission purpose of the spacecraft is to investigate the energy transfer between the

photosphere and the solar corona and to determine the cause of phenomena such as solar

flares and coronal mass ejections, undoubtedly associated in some way with such energy

transfers (Culhane et al.). Another main focus of this mission is to measure the structure,

features, and properties of the solar magnetic field. It does this by using its optical

instruments to deduce the magnetic effects on photon emission in the solar plasma.

The vehicle itself measures 4 meters long and masses 900 kilograms. The satellite

orbits in a sun-synchronous, circular pole-to-pole orbit. At its altitude of 680 kilometers,

with a 98 minute orbital period, the vehicle is in continual solar view for about 9 months

per year (Kosugi et al.).

23

Hinode is intended to take observations in the visible, X-ray and extreme

ultraviolet ranges of wavelengths. To this end it carries three instruments observing

individually within these three ranges, so that it can encompass different approaches as

they are applicable to different types of measurements of solar phenomena. These

instruments are the Solar Optical Telescope (SOT), the X-Ray Telescope (XRT), and the

EUV Imaging Spectrometer (EIS) (see fig. 3). These instruments are designed to

compliment each other, and thus the whole forms an orbiting solar observatory.

Figure 3 The Hinode Spacecraft. Conceptual image of the Hinode spacecraft showing
relative locations of the carried instruments. Image courtesy of NASA's Hinode website.
<http://www.nasa.gov/mission_pages/hinode/instruments.html#spectrometer>

24

2.2 General Comparison of Hinode's Instruments

The Solar Optical Telescope (SOT) is a 50 cm Gregorian telescope operating in the

visible spectrum which is intended primarily for imaging the photosphere and for

spectropolarimetry. At launch, SOT was the largest space-born solar optical instrument to

date. The X-Ray Telescope (XRT) is a 30 cm grazing incidence reflecting imager

operating in the X-Ray spectrum, at wavelengths from 6 to 60 Å. EIS is an imaging

spectrometer using a normal incidence primary mirror and it operates in two wavelength

ranges in the extreme ultraviolet between 170 and 290 Å. As the current topic of interest

is activity and structures in the corona and upper transition region, the X-ray and

ultraviolet instruments are of primary focus.

As a telescope XRT boasts high spatial resolution combined with a speed of

image capture not possible with a spectrometer. An XRT image provides a true ‘snapshot’

of the emissions at the time of observation, rather than as a scan across the field of view.

In contrast, a spectrometer will take data progressively and the entire image will be built

up over this period, each part of the image reflecting both a spatial and a temporal

displacement.

From a perspective of analysis as well as data transmission and storage, XRT

allows for faster processing and interpretation than the much weightier information

provided by the companion spectrometer. However, this obviously comes with a

corresponding lack of spectral detail. Conversely while its spatial resolution is lower,

EIS is capable of far greater spectral discrimination, which is useful for multi-thermal

analysis. The two instruments when brought to bear on the same well chosen event are

25

complimentary. XRT can be co-aligned with EIS to 1 XRT pixel (Golub et al.). They can

be used to analyze the same structure with different insights. This makes them mutually

corroborative and increases the confidence in the result. Alternatively, there may be

specific events of interest that are more suited for one or the other instrument, possibly

observable only within one's spectral range. Their combination gives a wider opportunity

to observe such phenomena meaningfully. To understand the data obtainable with this

spacecraft, and any subsequent analysis, it is necessary to look at each instrument

individually in more detail.

2.3 Solar Optical Telescope

The Solar Optical Telescope, or SOT, is a Gregorian reflecting telescope operating in the

optical wavelength range. At time of launch, it was the largest space-born optical

instrument for solar observations (Culhane et al.). SOT was constructed by Lockheed-

Martin and the National Astronomical Observatory of Japan (NAOJ). In addition to

visible wavelength observations of the photosphere, it is also able to take magnetograms.

SOT consists of two modules: the Optical Telescope Assembly and the Focal

Plane Package. Being separate units, one is concerned with manipulation of photons, and

the other with detection and recording of the received properties of those photons.

However, they can be considered as the single instrument they comprise.

SOT has a 50 cm aperture, and the separation between the primary and secondary

mirrors is 1.5m (NAOJ website). It is diffraction limited in the wavelength range of 2880

– 6700 Å. This means that the optics are of sufficient quality to produce the maximum

26

theoretical angular resolution for the telescope's area in this range, which is .2 - .3 arc sec.

The CCD detector is capable of a resolution of .22 arc sec. Beyond the primary mirror

there are multiple optical paths for narrow and broad band imaging, polarimetry, and

correlation tracking for image stabilization (Kosugi) (see fig. 4). As the current objectives

relate to the corona and upper transition region, and specifically to structures that do not

radiate significantly in the visible spectrum, further detail on this instrument will not be

necessary.

Figure 4 Diagram of the SOT's Optical Telescope Assembly. Image courtesy of NAOJ's
SOT website. <http://solar-b.nao.ac.jp/sot_e/optics_e.shtml>

27

http://solar-b.nao.ac.jp/sot_e/optics_e.shtml

2.4 X-Ray Telescope

Emissions from the corona are primarily in soft X-rays, its temperature being in the

millions of kelvins (Golub et al.). Consequently, an X-ray imager is needed to resolve

structures in the plasma that makes up this region. Two complimentary methods are used

aboard Hinode to observe these structures as they appear in different wavelength regimes.

One is the use of an imaging spectrometer (EIS), which shall be discussed later, and the

other is the X-Ray Telescope, or XRT.

The body of XRT is a tube of carbon-fiber-reinforced polymer with low thermal

expansion characteristics. The entrance aperture is 341.7 +/- .1 mm and is a thin film

filter consisting of 1200 Å thickness of aluminum on a 2500 Å backing of polyimide.

Though care was taken to handle the aluminum filter in a low humidity nitrogen

atmosphere to minimize oxidation, there is an estimated 100 Å layer of aluminum oxide.

This prefilter serves to shield against the entry of visible wavelengths. It is also

important to reduce the heating of the body cavity and the elements within (Golub et al.).

Since the instrument has a secondary, visible imaging system that uses a coaxial

optical path to the X-ray optical system, there are in fact two primary elements. Treating

the visible system as a whole, it is an achromat assembly with an independent focusing

mechanism to allow alignment of the focal plane for the visible imager with that of the X-

ray imager. The X-ray primary is a grazing incidence mirror of non-conic, high order

polynomial surface (Golub et al.). This Wolter-Schwarzschild design allows for the use of

a single optic with no secondary. Although this sacrifices image quality near the center of

28

the image, these imperfections are acceptable and nearly within the tolerances of the

necessary imperfections of the manufacturing process.

The optical path passes through two filter wheels containing analysis filters,

allowing a combination of two filters. These combinations define a number of X-ray

passbands for the resultant image. Near the focal plane there is a removable glass filter

that is used when operating the visible light imager and when the X-ray imager becomes

saturated by higher than normal intensities. The shutter is a focal plane of the rotating

blade type. It has both a narrow and large opening around its circumference, and it can

either be swept across the field of view, or it can rotate the large opening into position for

an extended exposure.

The single CCD detector itself is movable by 1 mm to bring it into the focal plane

of the X-ray optics. This detector is shared by the X-ray and visible imaging systems that

operate along the same axis. Ultimately, the focal length of the optical system is 2707.5

mm, though it varies somewhat by field angle (Golub et al.) (see fig. 5).

Figure 5 The XRT Optical Path for both X-ray and Visible Imaging. Image courtesy of
NAOJ's XRT website. <http://solar-b.nao.ac.jp/xrt_e/optics_e.shtml>

29

http://solar-b.nao.ac.jp/xrt_e/optics_e.shtml

The resulting machine has a field of view of 35 arc min with optimization for 15.

It's observable wavelength range is 6 – 60 Å. Exposure times can be varied from 4 ms to

10 sec with exposures being taken as little as 2 sec apart. The transmission characteristics

of the individual filters on the filter wheels can be found in table 1. These show the

percentage transmission of the indicated spectral line for each filter, and are used with the

detector characteristics to produce the instrument's response functions. The ones shown

are the experimental values, without associated errors.

Table 1 Transmission Characteristics of the XRT Filters by Emission Line. Data from
Golub et al.

Emission Line C – K O – K Cu – L Al – K Mo – L

 wavelength 54.7 Å 23.6 Å 13.3 Å 8.33 Å 5.0 Å

Filter

Al-Mesh 23.8 80.8 93.7 94.5 77.4

Al-Poly 24.0 51.5 77.4 94.5 89.6

C-Poly 64.1 7.9 60.6 79.2 94.1

Ti-Poly 41.8 5.5 33.9 68.8 91.0

Be-Thin 5.6 0.0 26.1 77.8 90.7

Be-Med 6.8 0.0 4.5 48.9 77.2

Al-Med 0.0 0.0 2.3 22.6 2.5

Al-Thick 0.0 0.0 0.0 5.1 0.0

Be-Thick 0.0 0.0 0.0 0.0 7.8

2.5 Extreme-Ultraviolet Imaging Spectrometer

EIS, or the Extreme Ultraviolet Imaging Spectrometer aboard the Hinode spacecraft, is an

imaging spectrometer designed to observe the discrete spectral emissions of the sun's

30

corona and upper transition region at separate wavelength ranges between 170 and 290 Å.

The instrument is precise enough to allow for observation of the flow velocity of plasma

through Doppler effects.

Measurement of an observed spectral line's width compared to an emission profile

of that line allows for the interpretation of the magnetic characteristics of the emitting

plasma's environment, and accounting for a spectral line's shift gives the relative velocity

of the plasma through the phenomenon of Doppler shift. Aside from mapping the flow of

plasma on a structure, the velocity measurements of coronal plasma is important in the

observation of oscillations and shock waves, which might be a means of energy transfer

to the corona and are found associated with events such as flares. Being magnetic in

nature, these events can be studied from their magnetic characteristics as well as from

their kinetic effects on the surrounding plasma.

The optical and support components of EIS are mounted on a composite structure

with low thermal expansion characteristics, which is necessary to keep the optical

components in the correct spatial relation and orientation. Since this structure is not very

electrically conductive, the harness for the assembly is screened and the structure is

surrounded by the conductive Multi-Layer Insulation. These steps are necessary to

protect the internal electronics (Culhane et al.).

The entrance aperture for the instrument is a 1500 Å aluminum filter. This is

required to prevent the intrusion of visible and other wavelengths.

Toward the back of the optical assembly is the concave primary mirror. This

mirror is oriented so that the incoming photons strike it with normal incidence. This is a

31

significant departure from similar instruments as most materials have low reflectivity at

the operational wavelengths of this device, and so grazing incidence has generally been

used. Increased reflectivity at normal incidence is achieved through the use of a

multilayer coating on the mirror of molybdenum and silicon. Since a coating such as this

can only optimize the reflectivity of the mirror for a narrow range of wavelengths, the

mirror is coated with differently optimized coatings on each half side. This gives the

instrument its operating ranges of 170 – 210 Å for one coating and 250 – 290 Å for the

other.

Much in the manner of a telescope, the mirror focuses the incoming radiation on

to one of four interchangeable slits, allowing 1, 2, 40 and 266 arc sec widths. These are

mounted on a paddle wheel like device (see fig. 6) to allow the desired slit to be rotated

into position. Attached to the slit selection assembly is a circular blade shutter.

Beyond the slit the radiation is diffracted by a concave, reflective, aspherical

(toroidal) grating. The grating is coated on opposite halves with the same two multilayer

coatings as the mirror, and its geometry allows for stigmatic image formation. Despite the

dual coating optimized for different wavelengths, the entire grating shares the same 4200

lines per mm spacing.

The final two images, which correspond to the two wavelength ranges, are formed

on two thinned back-illuminated CCD detectors which are separated in the direction of

dispersion. These CCDs have 1024 x 2048 pixel resolution and are cooled by an external

radiator to keep them below -50 degrees C during operation (Culhane et al.).

32

Figure 6 Simplified View of the EIS Optics. Image courtesy of NAOJ's EIS website.
<http://solar-b.nao.ac.jp/eis_e/optics_e.shtml>

The primary mirror has a rotating mounting which allows it to be turned by one-

eighth arc sec steps in solar north-south. Images are taken by sweeping the mirror across

the region of interest and taking exposures at each increment. To mitigate the relatively

limited field of view of the instrument as compared to its companion instruments, the

primary mirror can be rotated in the solar east-west direction by 15 arc min to offset the

instrument pointing from that of the spacecraft.

The instrument electronics packages are separated. Most power conversion is

done outside the actual instrument in a separate housing removed about 2.5 meters distant

which minimizes noise passed to the detector electronics. Interior electronics packages

regulate the bake-out and maintenance heaters, control the CCDs, and pass their output

back to the exterior electronic packages (Culhane et al.).

33

http://solar-b.nao.ac.jp/eis_e/optics_e.shtml

The resultant instrument has a field of view of 6 by 8.5 arc min. It can offset this

field of view 15 arc min from the pointing of the spacecraft in solar east-west directions.

It has a spectral resolution of 47 mÅ at 185 Å and a 2 arc sec spacial resolution. It can

observe as many as 25 spectral lines simultaneously and is capable of rastering a region 4

by 8 arc min in less than 2 minutes (Culhane et al.). This is a short acquisition time for a

spectrometer and is important for both the observation of dynamic phenomena and the

evolution of coronal loops and other large-scale structures.

2.6 Summary of Hinode

Operating in different wavelength ranges and through different methodologies, these

three instruments, which are summarized in table 2, can be used to observe a wide range

of phenomena. However, when the capabilities of the instruments overlap, they can be

used to obtain a wider range of data about the same observable.

Table 2 Summary of the Instruments Aboard Hinode. Including their primary
operational characteristics.

SOT XRT EIS
Instrument Type Reflecting Telescope Reflecting Telescope Imaging Spectrometer
Optics Type Gregorian Grazing Incidence Normal Incidence
Size of Primary 50 cm 30 cm
Wavelength Range 2800 – 6700 Å 6 – 60 Å 170 – 210, 250 – 290 Å
Angular Resolution .3 arc sec 1 arc sec 2 arc sec
Acquisition Time 4 ms – 10 sec ~ 2 min

As a complete orbiting observatory, Hinode is capable of uploading 2 Mbps of

data and can store 8 Gbits awaiting download from its three instruments. In many ways

34

these observational tools are orders of magnitude superior to those which previous orbital

solar observatories had to offer and represent several major innovations in the field.

35

3. X-ray Bright Points Described

X-ray bright points are small, short lived features in the solar corona visible in the

X-Ray and EUV spectral range. They are around 15 to 30 arc seconds across and last

anywhere from about 2 hours to 2 days. Being regions of enhanced intensity in this

wavelength band, they appear brighter than the surrounding area. Like active regions they

are emission features, but tend to be located apart from them and are often found at

higher latitudes (Golub and Pasachoff, The Solar Corona, 177). They are always present

on the sun, but like the visible phenomenon of sunspots, their number varies over the

solar cycle. In contrast, their population varies in inverse phase with the solar cycle with

there being more of them during solar minimum with fewer during the more active period

(Harvey, 1985).

The classification of an emission feature as a bright point is not clearly prescribed,

as there is no definitive characteristic that differentiates these smaller phenomena from

larger or more long-lived emission regions. Therefor an arbitrary distinction is typically

made. Those called bright points are coronal regions of enhanced X-Ray and EUV

emission that are less than 1 arc minute across and that last less than 48 hours. It is also

important to point out that these features are not necessarily stable. They frequently

fluctuate in shape and intensity fairly rapidly, on the order of tens of minutes, and can

even produce flares (Strong et al. 1992). For this reason it is important in any analysis of

static characteristics of a bright point, or for analysis using an instrument or instruments

that take data over a significant amount of time, to ensure that the region in question is

sufficiently stable over the course of the observation. Fortunately, variations in the

36

temperature of a bright point are often indicated by fluctuations in the total X-ray

emission of the structure (Kariyappa et al. 2011). This makes it relatively simple to judge

the stability of a particular bright point by simple inspection.

Bright points were first described in 1970 from observations by X-ray telescopes

carried by rockets (Strong et al. 1992). Since X-Rays and EUV do not penetrate the

Earth's atmosphere well, direct observation of the spectrum in which bright points are

visible is not possible from the ground. So apart from sporadic rocket flights, only Skylab

was able to observe them regularly until the launch of the Soft X-ray Telescope (SXT)

aboard Yohkoh.

During these early observations a connection was noticed with another

phenomenon observed on the sun – dark points. Located in the chromosphere, these

regions of decreased emission appear in the infrared. They are typically observed using

the spectrographic line of He I at 10830 Å. Comparison of ground observations in the

infrared and these early X-Ray data seemed to show a correspondence between the X-ray

bright points and these lower altitude infrared dark points.

The dark points themselves are roughly the same size and duration as bright

points and have a similar distribution. They are absorption features in the chromosphere.

It is believed that they result from a saturation of the He I population in a triplet state,

resulting in enhanced absorption of the He I 10830 Å spectral line. Since the increase in

ionization of Helium to this state can be produced by recombination following

photoionization by UV photons, this suggests a mechanism for the relation between this

type of feature and the UV radiation producing bright points in the corona above. This

37

absorption phenomenon can be seen in relation to other emissions originating in the

corona as well.

Since the bright points could not be observed from the ground directly and orbital

observations were difficult and infrequent, dark points had been used to study bright

points. However it is now known that even though absorption phenomena always

underlie bright points, these regions are not always prominent enough to be recognized as

dark points (Golub et al. 1989). Fortunately it is no longer necessary to use dark points as

a proxy for bright points, because orbiting observatories like Yohkoh and Hinode can

now monitor them directly. Still the relationship between the two observables is notable.

Bright points are also associated with small regions of bipolar magnetic flux. A

bright point will always have one of these magnetic regions, but not every one of these

magnetic regions will also have an associated bright point. An example of the correlation

between bright points and these magnetic regions is shown in figures 7 and 8. These

bipolar flux regions can be of two natures. They can be either small ephemeral emergent

regions of bipolar flux, or a random encounter of two unipolar regions. The bright points

found with emergent regions would be like tiny active regions. While these emergent

regions are more common during the more active phases of the solar cycle, there are

more areas containing regions of discrete opposite polarity flux and more encounters of

the networks during the quiet sun. It would appear from studies of magnetograms that

about 2/3 of bright points overlie these meetings of unipolar magnetic flux, which

perhaps explains the bright point's greater population during the low points of the solar

activity cycle. There also has been observed a correlation between areas with large

38

39

Figure 7: Full Disk EUV Image and Magnetrogram Showing Bright Points. From 18
December, 2010. Left: AIA image in Fe XII 193 A. Right: HMI magnetogram. Boxes
show region of interest for Figure 2. Image courtesy of NASA and SolarMonitor.org.

Figure 8: Enlargements of the Area Shown in Figure 7. Left: AIA. Right: HMI. Bright
points labeled A, B, C and D in the AIA image are outlined. Their corresponding regions
of bipolar magnetic flux are shown in the boxes labled A through D in the HMI image.

population of bright points and areas with high concentration of discrete opposite polarity

flux. (Harvey, 1985)

The flares produced by bright points resemble microflares and tend to have an

effect on any nearby loop structures (Strong et al. 1992). This would indicate some

degree of interconnectedness with the magnetic structure of nearby features and could

further support the notion of the bright points as the result of magnetic phenomena.

As ephemeral and dynamic as they are, they appear to be relatively cool coronal

structures, only somewhat hotter than the average surrounding plasma (Saar et al., 2009).

Also bright points appear to be one of the simplest magnetic driven structures in the

corona (Longcope et al., 2001). This structural simplicity makes thermal analysis of them

over an area in their core fairly straightforward. Furthermore, they are a property of a

region of plasma rather than a discrete structure, as is a coronal loop, for example. As a

result, subtraction of any background emission is not necessary. The lack of necessity for

such a time consuming and uncertain process can make for speedy and reliable results.

Taken as a whole these qualities make bright points a good choice for the cross-

calibration of instruments that operate in their spectral range.

40

4. Data and Analysis

This analysis will use concurrent data from both EIS and XRT in order to cross-

calibrate XRT and EIS. Thus it will first be necessary to find spatially overlapping data

that is essentially taken at the same time.

An EIS scan was found on 13 May, 2007 at 16:17:20 UT. The field of view of this

image is shown on an Extreme-ultraviolet Imaging Telescope (EIT) full disk image in

figure 9. Figure 10 shows the EIS spectrum averaged over this range.

A set of full disc XRT images using different filters taken during this scan was

found. The acquisition times and filter combinations of these XRT images are

summarized in table 3. Figure 11 shows one of these XRT images.

The EIS and XRT data were processed and calibrated using standard software

available in the SolarSoft libraries (SSW). The resulting XRT images were cropped to the

EIS field of view and all the images were then coaligned using proprietary software

written in-house for this purpose. The IDL code for this software is presented in

Appendix A. Regions for analysis are then selected, and the intensity values of the pixels

in these regions are recorded using the same software. In the EIS data a particular spectral

line was eliminated from the set in the case that it had any missing pixels in the region

selected. An EIS image in one spectral line and the corresponding region of an XRT

image in one filter are shown in figure 12.

41

42

Figure 9 EUV Image of the Region. EUV image from 13 May, 2007 of the full disk of the
sun from EIT. The box shows the field of view of EIS. Image courtesy of the SOHO EIT
Consortium; SOHO is a joint ESA-NASA program.

43

Figure 10 - Averaged EIS Spectrum. 166.13 - 211.76 Angstroms and 245.61 - 291.16
Angstroms over the field of view on 13 May, 2007.

44

Table 3 XRT Image Information.
Acquisition times and filter
combinations.
FILTER A FILTER B TIME

Open Al - Mesh 16:21:05
C - Poly Open 16:26:20
Open Ti - Poly 16:19:52
C - Poly Ti - Poly 16:24:38
Al - Poly Ti - Poly 16:22:55
Thin Be Open 16:28:49
Med Be Open 16:30:23
Open Thick Al 16:18:44
Open Thick Be 16:17:02

Figure 11 - XRT Image with Ti-Poly Filter. From
data set. The box is added to show the field of
view of EIS at this time.

The intensities from the individual pixels are then averaged over each region to

provide mean intensities for each bright point, A, B and C. In the case of EIS data there is

an uncertainty for each spectral line in each pixel arising from the spectral fitting process,

and these are propagated to produce the error values. For XRT, the standard deviation

from each averaged region are used as the errors. These averaged intensities are

summarized in Tables 4 through 7.

45

Figure 12 EIS Field of View in Both Instruments. To the left: EIS image in Fe XII 195.
Regions A, B and C outlined are the bright points to be analyzed. Region D and the
Quiet region are shown for comparison. To the right: The corresponding XRT image
in the Ti-Poly filter, coaligned with the EIS image.

46

Table 4 Intensity Values from EIS Averaged over BP A. Intensity is in
ergs / cm2 / s / steradian. Peak Formation Temperature is Log of
Temperature, in Kelvins.
Element Ion Wavelength Peak Form T Intensity Error Notes

Fe VIII 185.213 5.6 51.43 15.24
Fe X 177.240 6.0 315.3 292.8
Fe X 184.537 6.0 175.4 16.92
Fe XI 180.408 6.1 619.5 105.3
Fe XI 182.169 6.1 95.39 19.39
Fe XII 192.394 6.1 113.1 8.796
Fe XII 193.509 6.1 238.0 8.672
Fe XII 195.119 6.1 397.2 11.12
Fe XIII 201.128 6.2 76.22 25.66
Fe XIII 202.044 6.2 132.4 12.65
Fe XIII 203.828 6.2 91.24 26.87
Fe XIV 264.790 6.3 Missing Pixels
Fe XV 284.163 6.3 Missing Pixels

Table 5 Intensity Values from EIS Averaged over BP B. Intensity is in
ergs / cm2 / s / steradian. Peak Formation Temperature is Log of
Temperature, in Kelvins.

Element Ion Wavelength Peak Form T Intensity Error Notes

Fe VIII 185.213 5.6 47.97 15.01
Fe X 177.240 6.0 334.0 166.1
Fe X 184.537 6.0 176.1 23.57
Fe XI 180.408 6.1 607.0 87.79
Fe XI 182.169 6.1 101.1 26.80
Fe XII 192.394 6.1 125.9 9.668
Fe XII 193.509 6.1 282.0 9.447
Fe XII 195.119 6.1 436.7 11.36
Fe XIII 201.128 6.2 86.91 21.73
Fe XIII 202.044 6.2 161.7 15.41
Fe XIII 203.828 6.2 121.4 24.90
Fe XIV 264.790 6.3 Missing Pixels
Fe XV 284.163 6.3 Missing Pixels

47

Table 6 Intensity Values from EIS Averaged over BP C. Intensity is in
ergs / cm2 / s / steradian. Peak Formation Temperature is Log of
Temperature, in Kelvins.

Element Ion Wavelength Peak Form T Intensity Error Notes

Fe VIII 185.213 5.6 113.9 15.0
Fe X 177.240 6.0 Missing Pixels
Fe X 184.537 6.0 183.5 17.91
Fe XI 180.408 6.1 545.2 32.52
Fe XI 182.169 6.1 102.2 18.71
Fe XII 192.394 6.1 116.6 11.13
Fe XII 193.509 6.1 258.9 13.91
Fe XII 195.119 6.1 419.2 14.53
Fe XIII 201.128 6.2 84.34 12.35
Fe XIII 202.044 6.2 138.9 15.19
Fe XIII 203.828 6.2 217.5 20.49
Fe XIV 264.790 6.3 41.18 10.61
Fe XV 284.163 6.3 28.40 12.75

Table 7 XRT Intensities Averaged over Each BP for Each Filter. Intensities are in Data
Number / s / pixel.

FILTER B A INT A ERROR B INT B ERROR C INT C ERROR

Al - Mesh 12.07 1.147 19.413 1.717 22.49 1.844
C - Poly 6.085 0.877 10.91 1.031 11.72 1.238
Ti - Poly 4.164 0.727 7.653 1.092 8.559 0.612
C-Poly/Ti-Poly 1.552 0.195 2.744 0.428 3.514 0.587
Al-Poly/Ti-Poly 0.821 0.204 1.352 0.353 2.444 0.376
Thin Be 0.064 0.096 0.152 0.082 0.302 0.161
Med Be 0.001 0.044 -0.010 0.028 0.004 0.033
Thick Al 0.001 0.024 0.000 0.023 0.006 0.028
Thick Be 0.004 0.015 0.000 0.017 0.000 0.017

Each spectral line detected by EIS has a contribution function which is the

sensitivity of that line as a function of temperature. This is obtained from the CHIANTI

atomic physics database (Dere et al. 1997) version 6.0.1 (Dere et al. 2009). The

contribution functions of the spectral lines used in the analysis of bright point A are

shown in figure 13. For each XRT filter there is a response function which is the

sensitivity of that filter as a function of temperature. This is taken from the SolarSoft

instrument database, and these are shown in figure 14.

48

Figure 13 Contribution Functions for the Spectral Lines of BP A. These curves are for
the coronal abundances and the Mazotta et al. ion equilibrium, and specific to the
electron density calculated for the region inside bright point A.

The standard XRT response functions assume CHIANTI coronal abundances

(Feldman, 1992) and the ionization balance calculations of Mazzota et al (1998). The

contribution functions for the EIS lines were calculated with the same assumptions.

For the electron density, pairs of density sensitive spectral lines obtained from EIS

were used. Ratios of their intensities were then used to infer electron density in the

emitting plasma. An example of a plot of such a ratio is given in figure 15. These

resultant values are then averaged to produce the density used in analysis. A summary of

the density data is shown in Table 8.

49

Figure 14 Response Functions for the XRT Filters Used. These curves are specific to the
XRT instrument, and assume the coronal abundances, but are the same for all the bright
points.

50

Figure 15 – Line Ratio for Density. Plot of the ratio of
intensities of Fe XIII spectral lines 202 and 203 vs
electron density.

Table 8 Electron Density Results. From four intensity ratios of
density sensitive pairs of lines. Ratio describes which spectral
lines are being used in the calculation. Density values for the
three bright points are in cm-3.

Ion Ratio BP A BP B BP C
Fe XIII 203 / 202 2.00E+09 2.09E+09 3.16E+09

203 / 201 7.94E+08 8.71E+08 1.10E+09
Fe XI 182 / 180 5.28E+08 7.24E+08 1.15E+09
Fe XII 186 / 195 2.10E+08 2.35E+08 4.02E+08

Mean 8.83E+08 9.80E+08 1.45E+09

If the plasma is isothermal, then the intensity is equal to the instrument sensitivity

times the emission measure (EM), the amount of emitting material. For EIS, Intensity ∝

G(T) × EM where G(T) is the contribution function of the spectral line. For XRT,

Intensity ∝ Resp(T) × EM, where Resp(T) is the response function for each filter. Solving

each of these equations for the emission measure gives us a set of Emission Measure Loci

plots, which will give an idea of the comparability of the data. An automated procedure

for producing these plots was written in-house, and its code is given in Appendix B.

Figure 16 shows a comparison using this technique between the EIS and the XRT data for

bright point A.

The intersections of the curves representing different spectral lines or filters in the

EM Loci plots show the agreement of the data with the isothermal approximation

inherent in the technique. Ideally, if the approximation holds, all the lines would intersect

at the same spot. Since this is not the case for these data, we will drop the isothermal

approximation and do a full multithermal analysis.

51

52

Figure 16 EM Loci Plots of Intensity Data for BP A. Top: EIS. Bottom:
XRT. These plots show the shape of the contribution (in the case of EIS)
and response (in the case of XRT) functions, adjusted with respect to each
other by intensity.

Multithermal plasma requires a Differential Emission Measure (DEM) analysis.

This method will begin with the EIS data. For EIS, Intensity ∝ ∑ G(T) DEM(T) ∆T,

where the DEM is the emission measure for the temperature range ∆T. The DEM

distribution is produced from the spectral line data using a forward folding method. A

model DEM curve is generated and theoretical intensities are calculated for each spectral

line using the equation above. In this manual method of forward folding, a human

operator manipulates the DEM curve and observes the results of this manipulation on the

error plot. The error plot shows the ratios of the theoretical intensities of the spectral lines

and the observed values. Guided by the ratio points, the error bars, and a χ2 value, this

process is continued until a DEM is obtained which gives results consistent with the

observed values. A software procedure written in IDL for manipulating these DEM

curves and observing the ratio plots in real time was produced in-house, and its code is

given in Appendix C.

The EIS data from the three bright points were analyzed in this manner to produce

DEM curves characterizing the bright point plasma. The resulting DEM curves and the

ratio error plots are shown in figures 17, 18 and 19 for bright points A, B and C

respectively.

53

54

Figure 17 EIS Results for BP A. Top: Differential Emission Measure
curve for BP A. Bottom: Error plot for each spectral line for the fit of the
DEM to the observed data.

55

Figure 18 EIS Results for BP B. Top: Differential Emission Measure
curve for BP B. Bottom: Error plot for each spectral line for the fit of the
DEM to the observed data.

56

Figure 19 EIS Results for BP C. Top: Differential Emission Measure
curve for BP C. Bottom: Error plot for each spectral line for the fit of the
DEM to the observed data.

These DEM curves were then used to predict the XRT intensity in each of the

bright points. For XRT, Intensity ∝ ∑ Resp(T) DEM(T) ∆T, where Resp(T) is the

response function of the particular filter combination. The result is a set of predicted

intensities, one for each XRT filter. These are then divided by the observed intensities to

produce the ratio plots shown in figures 20, 21 and 22. The resulting ratios are shown in

table 9. Taking a weighted mean for the different filters and bright points gives the

instrument cross-calibration factor of .25 +/- .01.

57

Figure 20 EIS / XRT Ratios for BP A. Plot of the final ratios between the
theoretical response of XRT to the data produced by EIS and the observed
XRT data. Data shown is for BP A. Values from this and subsequent two
plots are used to produce a weighted mean ratio value.

58

Figure 21 EIS/XRT Ratios for BP B.

Figure 22 EIS/XRT Ratios for BP C.

This value of .25 represents the EIS-XRT instrument cross-calibration factor, the

goal of the present study. Thus, in order to use XRT and EIS data together, the observed

XRT intensities must be multiplied by a factor of .25, or conversely, the EIS intensities

must by multiplied by a factor of 4.0.

This allows XRT and EIS to be used concurrently on the same data set, which is

an obvious goal of the Hinode mission, as the instruments are in many ways

complimentary. This is the first time an XRT-EIS cross-calibration factor has been found

using x-ray bright points. Now that such a procedure is established, and with the tools

available, it should not be difficult to duplicate the procedure for other bright point data

sets and attempt to verify this result. A detailed examination of table 9 will show that the

results for bright point A are about a factor of two different from those of bright points B

and C. The most plausible explanation for this is that there was a small flare in bright

59

Table 9 Final Response Ratios. The response ratios between EIS and XRT,
their errors and the final weighted mean and propagated error.

BP A BP A ERR BP B BP B ERR BP C BP C ERR

Al-mesh 0.4189 0.0397 0.2433 0.0215 0.2892 0.0237
C-poly 0.3661 0.0528 0.2117 0.0200 0.2473 0.0261
Ti-poly 0.4103 0.0717 0.2141 0.0306 0.2406 0.0172
C-poly/Ti-poly 0.4232 0.0532 0.1888 0.0295 0.1904 0.0318
Al-poly/Ti-poly 0.7171 0.1784 0.2876 0.0752 0.2100 0.0323
Be-thin 5.0203 7.5107 0.5096 0.2734 0.4152 0.2210
Be-med 80.0726 2.351E+3 1.097E+6 3.047E+12 6.7478 61.0535
Al-thick 9.2066 332.7653 4.076E+4 9.224E+10 0.1874 0.9272
Be-thick 0.2597 1.0508 1.115E+3 1.927E+9 0.2874 14.4654

Weighted
Mean .25 Error .01

point A during the observations. Future work will add more simultaneously observed

bright points to the cross-calibration analysis to determine the validity of this explanation.

60

REFERENCES

Culhane, J.L., Harra, L.K., James, A.M., Al-Janabi, K., Bradley, L.J., Chaudry, R.A., et
al.: 2007, Solar Phys. 243, 19-61.

Feldman, U: 1992, Phys. Scr., 46, 202

Golub, L., DeLuca, E., Austin, G., Bookbinder, J., Caldwell, D., Cheimets, P., et al.:
2007, Solar Phys. 243, 63-83.

Golub, L., Harvey, K. L., Herant, M., Webb, D. F.: 1989, Solar Physics. 124, 211-217.

Golub and Pasachoff. Nearest Star: The Surprising Science of Our Sun. Cambridge,
Massachusetts: Harvard University Press, 2001.

Golub and Pasachoff. The Solar Corona. Cambridge, Massachusetts: Cambridge
University Press, 1997.

Harvey, Karen L.: 1985, Ast. J. Phys. 38, 875-83.

Kariyappa, R., Deluca, E. E., Saar, S. H., Golub, L., Damé, L., Pevtsov, A. A.,
Varghese, B. A.: 2011, Astronomy and Astrophysics. 526, id.A78.

Kosugi, T., Matsuzaki, K., Sakao, T.,Shimizu, T., Sone, Y., Tachikawa, S., et al.: 2007,
Solar Phys. 243, 3-17.

Kutner, Marc L. Astronomy: A Physical Perspective. 2nd Ed. Cambridge, Massachusetts
Cambridge University Press, 2003.

Longcope, D. W., Kankelborg, C. C., Nelson, J. L., Pevtsov, A. A.: 2001, The
Astrophysical Journal. 553, Issue 1, 429-439.

Mazzotta, P., Mazzitelli, G., Colafrancesco, S., Vittorio, N.: 1998, Astronomy and
Astrophysics Supplement. 133, 403-409.

NAOJ: National Astronomical Observatory of Japan. SOT: Solar Optical Telescope -
Optics. <http://solar-b.nao.ac.jp/sot_e/optics_e.shtml>: retrieved 05/14/2010.

NASA: National Aeronautics and Space Administration. Hinode: Mission to the Sun:
Scientific and Technical Info.
<http://www.nasa.gov/mission_pages/hinode/instruments.html#spectrometer>:
retrieved 5/14/2010.

61

http://www.nasa.gov/mission_pages/hinode/instruments.html#spectrometer
http://solar-b.nao.ac.jp/sot_e/optics_e.shtml

Phillips, Kenneth J. H. Guide to the Sun. Cambridge, Massachusetts: Cambridge
University Press, 1995.

Saar, S., Farid, S., Deluca, E.: 2009, Cool Stars, Stellar Systems and the Sun. Proceedings
of the 15th Cambridge Workshop on Cool Stars, Stellar Systems and the Sun. AIP
Conference Proceedings. 1094, 756-759.

Seeds, Michael A. Foundations of Astronomy. 8th Ed. Toronto, Ontario: Thomson
Brooks/Cole, 2005.

SolarSoft Software Library, The (SSW). <http://www.lmsal.com/solarsoft/>: retrieved
4/1/2010.

Strong, Keith T., Harvey, Karen, Hirayama, Tadashi, Nitta, Nariaki, Shimizu, Toshifumi,
Tsuneta, Saku: 1992, Astron. Soc. Japan. 44, L161-L166.

TCD SolarMonitor.org team. SolarMonitor.org.
<http://www.solarmonitor.org/index.php ?date=20101219&indexnum=1 >: retrieved
2/11/2011.

62

http://www.solarmonitor.org/index.php?date=20101219&indexnum=1
http://www.solarmonitor.org/index.php
http://www.lmsal.com/solarsoft/

Appendix A
Pixel_Picker: Coalignment and Selection Software

;Written for IDL using widgets for the X display
;PIXEL_PICKER INSTRUCTIONS

;You'll need to build a multidimensional image array. Array needs to be of the form [x,
y, n], where x is x coordinates, y is y coordinates, and n is the number of images.

;Names array is a list of the names of the filters or spectral lines in which the images are
taken. It can be any identifier, but its numbering must match the numbering n of
the image array. Just build the arrays in order; if you mix up an image and its
name, the program will believe you.

; img = [[[imga]], [[imgb]], [[imgc]], [[imgd]], [[imge]], [[imgf]]]
; Or whatever your image arrays are called

; names = ['94','131','171','193','211','335']
; Or whatever your images are

; IDL> help, names
; You should get these
; NAMES STRING = Array[6]
; IDL> help, img
; IMG FLOAT = Array[200, 200, 6]

; a = pixel_picker(img, names = names)
;Calling sequence

;Names could also be an INT or FLOAT array. It shouldn't really care. Names is optional
and can be left out:

; a = pixel_picker(img)
;Calling sequence without names array

;After you click 'DONE', the output, a, will be of the form:

; ** Structure <29c4204>, 8 tags, length=960256, data length=960256, refs=1:
; SUBIMG FLOAT Array[200, 200, 6]
; RANGEX LONG Array[2]
; RANGEY LONG Array[2]
; OFFSET LONG Array[2, 6]
; SELECTED_ABS LONG Array[2, 3]
; SELECTED_SUB LONG Array[2, 3]

63

; INTENSITIES FLOAT Array[3, 6]
; NAMES STRING Array[6

;A.SUBIMG will be the coaligned, zoomed images that were current when 'DONE' was
clicked.

;A.RANGEX and A.RANGEY will be the coordinate ranges, in terms of absolute
coordinates in the original image array, that the output subimages cover.

;A.OFFSET is the value of the offset for each image. [c, n] where c=0 => x, c=1 => y.
To get the absolute coordinates of a coordinate of a pixel in a subarray, you would
add the minimum range value and subtract the offset value. (Images moved 1 pixel
to the right now reflect x coordinates of -1.)

;A.SELECTED_ABS is the set of coordinates of selected pixels in terms of the original
image array. It is of the form [c, m], where m is the number of the selected pixel,
and c is the x-y coordinates. It is not specified for each image, and as such, you
would have to subtract the offset of that image to get the coordinates of the selected
pixel for that image.

;A.SELECTED_SUB is the set of coordinates of selected pixels in terms of the returned
subarray. They are already offset, and so they represent the actual coordinates
(OFFSET already included) of each selected pixel in the returned subarray.

;A.INTENSITIES is the set of intensity values for the selected pixels. They are in the
form [m, n], where m is the number of the selected pixel, and n is the number of the
image. A.INTENSITIES[1, 3] is the intensity value of the second selected pixel in
the fourth image.

;A.NAMES is the same array of names you may or may not have given PIXEL_PICKER
when you started it. It is here as a reminder of which image is which.

; end of comments

FUNCTION IMGevent, ev, m ;

cursor, x, y, /nowait, /data
x = long(x + .499)
y = long(y +.499)

if m.zoomed eq 1 then begin
 if x gt m.zoomx[1] - m.zoomx[0] then x = m.zoomx[1] - m.zoomx[0] ;+

m.xoffset[m.index]
 if y gt m.zoomy[1] - m.zoomy[0] then y = m.zoomy[1] - m.zoomy[0] ;+

64

m.yoffset[m.index]
 if x lt 0 + m.xoffset[m.index] then x = 0
 if y lt 0 + m.yoffset[m.index] then y = 0
endif
if m.zoomed eq 0 then begin
 if x gt n_elements(m.datai[*,0]) + m.xoffset[m.index] - 1 then x =

n_elements(m.datai[*,0]) + m.xoffset[m.index] - 1
 if y gt n_elements(m.datai[0,*]) + m.yoffset[m.index] - 1 then y =

n_elements(m.datai[0,*]) + m.yoffset[m.index] - 1
 if x lt 0 + m.xoffset[m.index] then x = 0 + m.xoffset[m.index]
 if y lt 0 + m.yoffset[m.index] then y = 0 + m.yoffset[m.index]
endif

xcoord = widget_info(ev.top, find_by_uname = 'XCOORD')
ycoord = widget_info(ev.top, find_by_uname = 'YCOORD')
xabs = widget_info(ev.top, find_by_uname = 'XABS')
yabs = widget_info(ev.top, find_by_uname = 'YABS')
int = widget_info(ev.top, find_by_uname = 'INT')
widget_control, xcoord, set_value = strcompress(x)
widget_control, ycoord, set_value = strcompress(y)
xa = x + m.zoomx[0];
ya = y + m.zoomy[0];
xao = xa - m.xoffset[m.index]
yao = ya - m.yoffset[m.index]
widget_control, xabs, set_value = strcompress(xao)
widget_control, yabs, set_value = strcompress(yao)
widget_control, int, set_value = strcompress(m.datai[xao,yao])
zxmin=widget_info(ev.top, find_by_uname = 'ZOOMXMIN')
zymin=widget_info(ev.top, find_by_uname = 'ZOOMYMIN')
zxmax=widget_info(ev.top, find_by_uname = 'ZOOMXMAX')
zymax=widget_info(ev.top, find_by_uname = 'ZOOMYMAX')
widget_control, zxmin, set_value = strcompress(m.zoomx[0])
widget_control, zxmax, set_value = strcompress(m.zoomx[1])
widget_control, zymin, set_value = strcompress(m.zoomy[0])
widget_control, zymax, set_value = strcompress(m.zoomy[1])

if m.mode eq 0 then begin
 if ev.clicks eq 1 then begin
 plots, x, y, psym = 1, symsize = 7
 m.storex1 = xa
 m.storey1 = ya
 endif
 if ev.release eq 1 then begin
 m.doplot = 1

65

 if xa eq m.storex1 or ya eq m.storey1 then goto, nozoom
 if m.storex1 lt xa then m.zoomx = [m.storex1, xa] else m.zoomx = [xa, m.storex1]
 if m.storey1 lt ya then m.zoomy = [m.storey1, ya] else m.zoomy = [ya, m.storey1]
 m.zoomed = 1
 endif
 NOZOOM:
endif

if m.mode eq 1 then if ev.clicks eq 1 then begin
; if m.zoomed eq 1 then begin
; x = x + m.zoomx[0]
; y = y + m.zoomy[0]
; endif
 if m.map[xa, ya] eq 0 then m.map[xa,ya] = 1 else m.map[xa,ya] = 0
 if m.map[xa, ya] eq 0 then msg = ' unselected.' else msg = ' selected.'
 print, ' (',strcompress(x),', ',strcompress(y),') ABSOLUTE (', strcompress(xa),', ',

strcompress(ya), ') INTENSITY(', strcompress(m.names[m.index]) ,') = ',
strcompress(m.datai[x+m.zoomx[0]-m.xoffset[m.index],y+m.zoomy[0]-
m.yoffset[m.index]]), msg

 m.doplot = 1
endif

if m.mode eq 2 then begin
 if ev.press gt 0 then begin
 if ev.press eq 4 then begin
 m.index = m.index + 1
 if m.index gt m.number then m.index = 0
 m.datai = m.data[*,*,m.index]
 label = widget_info(ev.top, find_by_uname = 'LAYERlabel')
 widget_control, label, set_value = strcompress(m.index)
 m.doplot = 1
 xoffset = widget_info(ev.top, find_by_uname = 'OFFX')
 widget_control, xoffset, set_value = strcompress(m.xoffset[m.index])
 yoffset = widget_info(ev.top, find_by_uname = 'OFFY')
 widget_control, yoffset, set_value = strcompress(m.yoffset[m.index])
 endif else begin
 m.index = m.index - 1
 if m.index lt 0 then m.index = m.number
 m.datai = m.data[*,*,m.index]
 label = widget_info(ev.top, find_by_uname = 'LAYERlabel')
 widget_control, label, set_value = strcompress(m.index)
 m.doplot = 1
 xoffset = widget_info(ev.top, find_by_uname = 'OFFX')
 widget_control, xoffset, set_value = strcompress(m.xoffset[m.index])

66

 yoffset = widget_info(ev.top, find_by_uname = 'OFFY')
 widget_control, yoffset, set_value = strcompress(m.yoffset[m.index])
 endelse
 endif
endif

return, m

END

PRO pixel_picker_event, ev
COMMON PPBlock, output

widget_control, ev.top, get_uvalue = m
widget_control, ev.id, get_uvalue = uval
mode = widget_info(ev.top, find_by_uname = 'MODElist')
widget_control, mode, get_value = mode
m.mode = mode
m.doplot = 0

doquit = 0

CASE uval of
 'QUIT' : DOQUIT = 1
 'IMGplot' : m = IMGevent(ev, m)
 'ZOUT' : begin
 m.zoomed = 0
 m.doplot = 1
 m.zoomx = [0, n_elements(m.datai[*,0]) - 1]
 m.zoomy = [0, n_elements(m.datai[0,*]) - 1]
 endcase
 'NEXT' : begin
 m.index = m.index + 1
 if m.index gt m.number then m.index = 0
 m.datai = m.data[*,*,m.index]
 label = widget_info(ev.top, find_by_uname = 'LAYERlabel')
 widget_control, label, set_value = strcompress(m.index)
 m.doplot = 1
 xoffset = widget_info(ev.top, find_by_uname = 'OFFX')
 widget_control, xoffset, set_value = strcompress(m.xoffset[m.index])
 yoffset = widget_info(ev.top, find_by_uname = 'OFFY')

67

 widget_control, yoffset, set_value = strcompress(m.yoffset[m.index])
 endcase
 'PREV' : begin
 m.index = m.index - 1
 if m.index lt 0 then m.index = m.number
 m.datai = m.data[*,*,m.index]
 label = widget_info(ev.top, find_by_uname = 'LAYERlabel')
 widget_control, label, set_value = strcompress(m.index)
 m.doplot = 1
 xoffset = widget_info(ev.top, find_by_uname = 'OFFX')
 widget_control, xoffset, set_value = strcompress(m.xoffset[m.index])
 yoffset = widget_info(ev.top, find_by_uname = 'OFFY')
 widget_control, yoffset, set_value = strcompress(m.yoffset[m.index])
 endcase
 'LEFT' : begin
 m.xoffset[m.index] = m.xoffset[m.index] - 1
 OFFX = widget_info(ev.top, find_by_uname = 'OFFX')
 widget_control, OFFX, set_value = strcompress(m.xoffset[m.index])
 m.doplot = 1
 endcase
 'RIGHT' : begin
 m.xoffset[m.index] = m.xoffset[m.index] + 1
 OFFX = widget_info(ev.top, find_by_uname = 'OFFX')
 widget_control, OFFX, set_value = strcompress(m.xoffset[m.index])
 m.doplot = 1
 endcase
 'UP' : begin
 m.yoffset[m.index] = m.yoffset[m.index] + 1
 OFFY = widget_info(ev.top, find_by_uname = 'OFFY')
 widget_control, OFFY, set_value = strcompress(m.yoffset[m.index])
 m.doplot = 1
 endcase
 'DOWN' : begin
 m.yoffset[m.index] = m.yoffset[m.index] - 1
 OFFY = widget_info(ev.top, find_by_uname = 'OFFY')
 widget_control, OFFY, set_value = strcompress(m.yoffset[m.index])
 m.doplot = 1
 endcase
 'COLORlist' : begin
 widget_control, ev.id, get_value = color
 if color eq 2 then color = 3
 m.color = color
 m.doplot = 1
 endcase

68

 'CONTRAST' : begin
 widget_control, ev.id, get_value = contrast
 m.contrast = 1 - (.01 * contrast)
 m.doplot = 1
 endcase
 ELSE :
endcase

if m.doplot eq 1 then begin
 img = shift(m.datai, m.xoffset[m.index], m.yoffset[m.index])
 minimg = min(m.datai)
 if m.yoffset[m.index] ne 0 then for i = 0, abs(m.yoffset[m.index]) - 1 do begin
 if m.yoffset[m.index] lt 0 then img[*, n_elements(img[0, *]) - 1 - i] = minimg else

img[*, 0 + i] = minimg
 endfor
 if m.xoffset[m.index] ne 0 then for i = 0, abs(m.xoffset[m.index]) - 1 do begin
 if m.xoffset[m.index] lt 0 then img[n_elements(img[*, 0]) - 1 - i, *] = minimg else

img[0 + i, *] = minimg
 endfor
 if m.zoomed eq 1 then begin
 sz = 1000 / (7 *

n_elements(img[m.zoomx[0]:m.zoomx[1],0])>n_elements(img[0,m.zoomy[0]:m.zo
omy[1]])) ; This is about the best I can do - don't know of a way to make this
more consistent

 loadct, m.color, /silent
 plot_image, img[m.zoomx[0]:m.zoomx[1], m.zoomy[0]:m.zoomy[1]]^m.contrast,

/isotropic, title = strcompress(m.index) + ' - ' + strcompress(m.names[m.index])
 if m.color eq 0 or m.color eq 1 then loadct, 11, /silent else loadct, 24, /silent
 if m.color eq 0 or m.color eq 1 then cval = 255 else cval = 25
 indices = where(m.map[m.zoomx[0]:m.zoomx[1], m.zoomy[0]:m.zoomy[1]] eq 1,

count)
 if count ne 0 then begin
 arind = array_indices(m.map[m.zoomx[0]:m.zoomx[1], m.zoomy[0]:m.zoomy[1]],

indices)
 arind[0,*] = arind[0, *]; + m.xoffset[m.index]
 arind[1,*] = arind[1, *]; + m.yoffset[m.index]
 plots, arind, psym = 6, symsize = sz, color = cval
 endif
 loadct, m.color, /silent
 endif
 if m.zoomed eq 0 then begin
 sz = 1000 / (7 * n_elements(img[*,0])>n_elements(img[0,*]))
 loadct, m.color, /silent
 plot_image, img^m.contrast, /isotropic, title = strcompress(m.index) + ' - ' +

69

strcompress(m.names[m.index])
 if m.color eq 0 or m.color eq 1 then loadct, 11, /silent else loadct, 24, /silent
 if m.color eq 0 or m.color eq 1 then cval = 255 else cval = 25
 indices = where(m.map eq 1, count)
 if count ne 0 then begin
 arind = array_indices(m.map, indices)
 arind[0,*] = arind[0, *]; + m.xoffset[m.index]
 arind[1,*] = arind[1, *]; + m.yoffset[m.index]
 plots, arind, psym = 6, symsize = sz, color = cval
 endif
 loadct, m.color, /silent
 endif
endif

widget_control, ev.top, set_uvalue = m

if DOQUIT eq 1 then begin
 subimg = 0
 rangex = 0
 rangey = 0
 offset = 0
 intensities = 'na'

 rangex = m.zoomx
 rangey = m.zoomy

 selected = where(m.map eq 1, count)
 if count ne 0 then selected_absolute = array_indices(m.map, selected) else

selected_absolute = 'NONE'
 selected_abs = selected_absolute
 for i = 0, m.number do begin
 img = shift(m.data[*,*,i], m.xoffset[i], m.yoffset[i])
 minimg = min(m.data[*,*,i])
 if m.yoffset[i] ne 0 then for j = 0, abs(m.yoffset[i]) - 1 do begin
 if m.yoffset[i] lt 0 then img[*, n_elements(img[0, *]) - 1 - j] = minimg else img[*, 0 +

j] = minimg
 endfor
 if m.xoffset[i] ne 0 then for j = 0, abs(m.xoffset[i]) - 1 do begin
 if m.xoffset[i] lt 0 then img[n_elements(img[*, 0]) - 1 - j, *] = minimg else img[0 + j,

*] = minimg
 endfor
 if m.zoomed eq 1 then begin
 subimgi = img[m.zoomx[0]:m.zoomx[1], m.zoomy[0]:m.zoomy[1]]
 rangexi = m.zoomx

70

 rangeyi = m.zoomy
 endif else begin
 subimgi = img
 rangexi = [0, n_elements(img[*, 0]) - 1]
 rangeyi = [0, n_elements(img[0, *]) - 1]
 endelse
 if n_elements(subimg) eq 1 then subimg = subimgi else subimg = [[[subimg]],

[[subimgi]]]
 ; if n_elements(rangex) eq 1 then rangex = rangexi else rangex = [[rangex], [rangexi]]
 ; if n_elements(rangey) eq 1 then rangey = rangeyi else rangey = [[rangey], [rangeyi]]
 if n_elements(offset) eq 1 then offset = [m.xoffset[i], m.yoffset[i]] else offset =

[[offset], [m.xoffset[i], m.yoffset[i]]]

 if count ne 0 then for j = 0, count - 1 do begin
 xa = selected_absolute[0,j] - m.xoffset[i]
 ya = selected_absolute[1,j] - m.yoffset[i]
 selected_abs[0,j] = xa
 selected_abs[1,j] = ya
 if j eq 0 then intensity = m.data[xa, ya, i] else intensity = [intensity, m.data[xa, ya,

i]]
 endfor
 if count ne 0 then begin
 if i eq 0 then intensities = intensity else intensities = [[intensities] , [intensity]]
 endif

 endfor

 selected_sub = selected_absolute
 if count ne 0 then begin
 selected_sub[0, *] = selected_sub[0,*] - m.zoomx[0]
 selected_sub[1, *] = selected_sub[1,*] - m.zoomy[0]
 endif

 ;selected_sub = 0
 ;if m.zoomed eq 1 and count ne 0 then begin
 ; selected = where(m.map[m.zoomx[0]:m.zoomx[1], m.zoomy[0]:m.zoomy[1]] eq 1,

count)
 ; ind = array_indices(m.map[m.zoomx[0]:m.zoomx[1], m.zoomy[0]:m.zoomy[1]],

selected)
 ; for i = 0, count - 1 do begin
 ; selected_subi = ind[*,i]
 ; if n_elements(selected_sub) eq 1 then selected_sub = selected_subi else selected_sub

= [[selected_sub], [selected_subi]]
 ; for j = 0, m.number - 1 do if n_elements(intensitiesi) eq 1 then intensitiesi =

71

m.data[m.zoomx[0]:m.zoomx[1], m.zoomy[0]:m.zoomy[1], j]
 ; endfor
 ;endif else selected_sub = selected_absolute

 output = {subimg:subimg, rangex:rangex, rangey:rangey, offset:offset,

selected_abs:selected_absolute, selected_sub:selected_sub, intensities:intensities,
names:m.names}

 widget_control, ev.top, /destroy
endif

END

FUNCTION pixel_picker, data, names = names

COMMON PPblock, output

dim = size(data)

if dim[0] lt 2 or dim[0] gt 3 then begin
 print, 'ERROR - Array must be 2 or 3 dimensional. [X, Y] or [X, Y, N]'
 return, 0
endif

if dim[0] eq 2 then number = 0
if dim[0] eq 3 then number = dim[3] - 1

loadct, 0, /silent

PPbase = widget_base(Title = 'Pixel Picker', column = 2)
CONTROLbase = widget_base(PPbase, /column) ; , /kbrd_focus_events
DISPLAYbase = widget_base(PPbase, /column)

IMGplot = widget_draw(DISPLAYbase, xsize = 1000, ysize = 1000, uvalue = 'IMGplot',
uname = 'IMGplot', /button_events, /motion_events)

MODElist = cw_bgroup(CONTROLbase, ['ZOOM', 'SELECT', 'STEP'], uname =
'MODElist', uvalue = 'MODElist', set_value = 0, /exclusive)

DISPbase = widget_base(CONTROLbase, frame = 3, /column)
COLORgroup = cw_bgroup(DISPbase, ['GREY', 'BLUE', 'RED'], uname = 'COLORlist',

uvalue = 'COLORlist', set_value = 0, label_top = 'COLOR', /exclusive, /row)
CONTRASTslider = widget_slider(DISPbase, title = 'BRIGHT CORRECTION', value =

72

0, uvalue = 'CONTRAST', uname = 'CONTRAST', minimum = -50, maximum =
99, /align_center)

ZOOMbase = widget_base(CONTROLbase, frame = 3, /column)
ZOOMlabel = widget_label(ZOOMbase, value = 'ZOOMED:', /align_center)
ZOOMbase2 = widget_base(ZOOMbase, row = 2)
ZOOMXmindisp = cw_field(ZOOMbase2, title = 'X', value = '0', uvalue =

'ZOOMXMIN', uname = 'ZOOMXMIN', xsize = 4)
ZOOMXmaxdisp = cw_field(ZOOMbase2, title = '', value = '0', uvalue =

'ZOOMXMAX', uname = 'ZOOMXMAX', xsize = 4)
ZOOMYmindisp = cw_field(ZOOMbase2, title = 'Y', value = '0', uvalue =

'ZOOMYMIN', uname = 'ZOOMYMIN', xsize = 4)
ZOOMYmaxdisp = cw_field(ZOOMbase2, title = '', value = '0', uvalue =

'ZOOMYMAX', uname = 'ZOOMYMAX', xsize = 4)

ZObutton = widget_button(CONTROLbase, value = 'ZOOM OUT', uvalue = 'ZOUT',
uname = 'ZOUT')

LDbase = widget_base(CONTROLbase, frame = 3, /column)
LAYERtitle = widget_label(LDbase, value = 'IMAGE LAYER')
LAYERbase = widget_base(LDbase, /row)
PREVbutton = widget_button(LAYERbase, value = 'PREV', uvalue = 'PREV', uname =

'PREV', sensitive = number)
LAYERlabel = widget_label(LAYERbase, value = strcompress(0), uvalue =

'LAYERlabel', uname = 'LAYERlabel')
NEXTbutton = widget_button(LAYERbase, value = 'NEXT', uvalue = 'NEXT', uname =

'NEXT', sensitive = number)

OFFSETbase = widget_base(CONTROLbase, frame = 3, /column)
OFFSETlabel = widget_label(OFFSETbase, value = 'IMAGE OFFSET')
OFFXbase = widget_base(OFFSETbase, column = 3, /base_align_center)
OFFYbase = widget_base(OFFSETbase, column = 3, /base_align_center)
DOWNbutton = widget_button(OFFYbase, value = 'DOWN', uvalue = 'DOWN', uname

= 'DOWN', sensitive = number)
OFFYlabel = widget_text(OFFYbase, value = '0', uvalue = 'OFFY', uname = 'OFFY',

xsize = 4)
UPbutton = widget_button(OFFYbase, value = ' UP ', uvalue = 'UP', uname = 'UP',

sensitive = number)
LEFTbutton = widget_button(OFFXbase, value = 'LEFT', uvalue = 'LEFT', uname =

'LEFT', sensitive = number)
OFFXlabel = widget_text(OFFXbase, value = '0', uvalue = 'OFFX', uname = 'OFFX',

xsize = 4)
RIGHTbutton = widget_button(OFFXbase, value = 'RIGHT', uvalue = 'RIGHT', uname =

73

'RIGHT', sensitive = number)

COORDbase = widget_base(CONTROLbase, frame = 3, column = 2, /align_center)
xlabel = widget_label(COORDbase, value = 'X')
xcoord = widget_text(COORDbase, value = '', uvalue = 'XCOORD', uname =

'XCOORD', xsize = 5)
xabslabel = widget_label(COORDbase, value = 'ABS X')
xabscoord = widget_text(COORDbase, value = '', uvalue = 'XABS', uname = 'XABS',

xsize = 5)
ylabel = widget_label(COORDbase, value = 'Y')
ycoord = widget_text(COORDbase, value = '', uvalue = 'YCOORD', uname =

'YCOORD', xsize = 5)
yabslabel = widget_label(COORDbase, value = 'ABS Y')
yabscoord = widget_text(COORDbase, value = '', uvalue = 'YABS', uname = 'YABS',

xsize = 5)

INTvalue = cw_field(CONTROLbase, title = 'INTENSITY: ', value = '', uname = 'INT',
uvalue = 'INT', xsize = 9)

QUITbutton = widget_button(CONTROLbase, value = 'DONE', uvalue = 'QUIT', uname
= 'QUIT') ;, sensitive=0

widget_control, PPbase, /realize
widget_control, IMGplot, get_value = plotvalue
wset, plotvalue

map = make_array(dim[1], dim[2])

if keyword_set(names) then layernames = names else layernames =
strcompress(indgen(n_elements(data[0,0,*])))

if dim[0] eq 2 then datai = data else datai = data[*,*,0]
m = {data:data, datai:datai, names:layernames, map:map, mode:0, plotvalue:plotvalue,

storex1:0, storey1:0, zoomx:[0,dim[1]], zoomy:[0,dim[2]], zoomed:0, doplot:0,
index:0, number:number, xoffset:lonarr(number + 1), yoffset:lonarr(number + 1),
color:0, contrast:1.0}

widget_control, PPbase, set_uvalue = m

plot_image, m.datai, /isotropic, title = strcompress(m.index) + ' - ' +
strcompress(m.names[m.index])

xmanager, 'pixel_picker', PPbase

loadct, 0, /silent

74

help, output, /str

sz = size(output.intensities)

print, ''

if size(output.intensities, /type) ne '7' then begin
 disp = ['x', 'y', string(output.names)]
 len = 7 > max(strlen(strcompress(output.names))) + 2
 for i = 0, sz[1] - 1 do disp = [[disp], [strcompress(output.selected_abs[0,i]),

strcompress(output.selected_abs[1,i]),
strcompress(transpose(output.intensities[i,*]))]]

 for i = 0, n_elements(disp[*,0]) - 1 do begin
 for j = 0, n_elements(disp[0, *]) - 1 do begin
 for k = 0, len - strlen(disp[i,j]) do disp[i,j] = ' ' + disp[i,j]
 endfor
 endfor
 print, disp
endif

return, output

END

75

Appendix B
EML_Plotter

; EML_PLOTTER
; Written by Jason Kimble - Solarlab - University of Memphis - September 10, 2010
; This is a widget driven program to create Emission Measure Loci plots
; It will accept .GENX files containing a data structure called LINES with tags: logt[],

iobs, iobs_err, emis[], element, ion and wavelength.
; These are the same type of files generated by GENX_MAKER and are the same type

accepted by DEM_INTERACTIVE.
; Will also save EML plots to an IDL save file and restore these plots. Will also generate

PostScript output.
; It is hoped that this program will be sufficiently versatile to generate plots suitable for

publications directly, thus saving time scripting these plots by hand.
; This program replaces the more limited GENX_EML_PLOTTER.
; Calling sequence is 'EML_PLOTTER'. It is a procedure and takes no arguments.

FUNCTION EML_MAKE_ARRAYS, lines
; function to create and populate the ARRAYS structure to be put in the MANIP structure

ARRAYS = {EM:lines[0].logt, temp:lines[0].logt} ; Defines the ARRAYS
structure based on the number of elements in the LINES data

ARRAYS = REPLICATE(arrays, n_elements(lines)) ; Extends the
ARRAYS structure to match the dimensions of the LINES structure

for i = 0, n_elements(lines) - 1 do begin ; For each element in LINES
 for j = 0, n_elements(lines[i].logt) - 1 do begin ; For each element in the data

arrays
 if lines[i].emis[j] eq 0 then arrays[i].EM[j] = 0 else arrays[i].EM[j] =

alog10(lines[i].iobs) - alog10(lines[i].emis[j]) ; Defines the elements of the
ARRAYS data

 endfor
endfor

return, arrays ; Sends the resulting ARRAYS
structure back to the starting routine

END

76

FUNCTION EML_ASK, eventop, MSG
; Generates a yes/no dialog to check whether the user wants to quit the program

QUITbase = widget_base(Title = 'ARE YOU SURE?', group_leader = eventop, /modal,
column = 1)

QUITmsg = widget_label(QUITbase, value = MSG)
BUTTONbase = widget_base(QUITbase, column = 2)
YESbutton = widget_button(BUTTONbase, value = 'YES', uvalue = 'YES', uname =

'YES')
NObutton = widget_button(BUTTONbase, value = 'NO', uvalue = 'YES', uname = 'YES')

widget_control, QUITbase, /realize
ev = widget_event(QUITbase)
widget_control, ev.id, get_value = choice
widget_control, ev.top, /destroy
return, choice

END

FUNCTION EML_FETCH_PARAMS, manip, eventop, thisevent
; Extracts all the entered parameters from the widget interface to be used in generating

the plot

wiids = manip.wiids ; Extracts the
structure containing widget ids

widget_control, wiids.xmin, get_value = xmin & manip.xmin = xmin ; Gets
the Minimum X value from the widget interface

widget_control, wiids.xmax, get_value = xmax & manip.xmax = xmax ;
Maximum X value

widget_control, wiids.ymin, get_value = ymin & manip.ymin = ymin ;
Minimum Y value

widget_control, wiids.ymax, get_value = ymax & manip.ymax = ymax ;
Maximum Y value

widget_control, wiids.widthslider, get_value = width & manip.width = width ; Gets
the line width value

widget_control, wiids.styleselect, get_value = style & manip.style = style ; Line style
value

widget_control, wiids.keyswitch, get_value = keyon & manip.keyon = keyon ;

77

Legend switch
widget_control, wiids.keyselect, get_value = keypos & manip.keypos = keypos ;

Legend position

widget_control, wiids.paletteslider, get_value = palette & manip.palette = palette ; Color
palette value

widget_control, wiids.offsetslider, get_value = offset & manip.offset = offset ;
Color offset value

widget_control, wiids.titleswitch, get_value = titleon & manip.titleon = titleon ; Show
title switch

widget_control, wiids.titlefield, get_value = title & manip.title = title ; Title
value

widget_control, wiids.interswitch, get_value = interswitch & manip.interswitch =
interswitch ; Plot-intersection switch

return, manip ; Sends MANIP
structure containing these values back to the event handling routine

END

FUNCTION EML_LOAD, manip, filename, eventop
; Loads a saved file and sets all parameters, except for the plot and widget ids, which are

retained

winid = manip.winid
wiids = manip.wiids
restore, filename
manip.winid = winid
manip.wiids = wiids

widget_control, wiids.xmin, set_value = manip.xmin; & manip.xmin = xmin ; sets the
Minimum X value from the widget interface

widget_control, wiids.xmax, set_value = manip.xmax; & manip.xmax = xmax ;
Maximum X value

widget_control, wiids.ymin, set_value = manip.ymin; & manip.ymin = ymin ;
Minimum Y value

widget_control, wiids.ymax, set_value = manip.ymax; & manip.ymax = ymax ;
Maximum Y value

widget_control, wiids.widthslider, set_value = manip.width ;&; manip.width = width ;

78

sets the line width value
widget_control, wiids.styleselect, set_value = manip.style ;&; manip.style = style ; Line

style value
widget_control, wiids.keyswitch, set_value = manip.keyon ;&; manip.keyon = keyon ;

Legend switch
widget_control, wiids.keyselect, set_value = manip.keypos ;&; manip.keypos = keypos ;

Legend position

widget_control, wiids.paletteslider, set_value = manip.palette ;&; manip.palette =
palette ; Color palette value

widget_control, wiids.offsetslider, set_value = manip.offset ;&; manip.offset = offset ;
Color offset value

widget_control, wiids.titleswitch, set_value = manip.titleon ;&; manip.titleon = titleon ;
Show title switch

widget_control, wiids.titlefield, set_value = manip.title ;&; manip.title = title ; Title
value

widget_control, wiids.interswitch, set_value = manip.interswitch ;& manip.interswitch =
interswitch ; Plot-intersection switch

return, manip
END

FUNCTION EMLplot, manip, ps=ps
; This creates the plot from the data and settings in the MANIP routine

if not(keyword_set(ps)) then wset, manip.winid ; Only
sets the window (for good measure) if it is not plotting to a postscript file

loadct, 0, /silent ; Sets the color
table to 0

if (manip.xmin ge manip.xmax or manip.ymin ge manip.ymax) then begin ;
Finds max and min range values if entered values are not valid - minimum greater
than maximum, or equal to each other

 xmax = max(manip.arrays.temp)
 xmin = min(manip.arrays.temp)
 ymax = max(manip.arrays.em)
 ytest = 5000 ; Looks for a

minimum value for y that is greater than 0
 for i = 0, n_elements(manip.arrays) - 1 do begin

79

 yt = where(manip.arrays[i].em gt 0)
 ytest = [ytest, manip.arrays[i].em[yt]]
 endfor
 ymin = min(ytest)
endif else begin ; Otherwise, if

the range values are valid, extracts them
 xmax = manip.xmax
 ymax = manip.ymax
 xmin = manip.xmin
 ymin = manip.ymin
endelse

if manip.titleon eq 0 then plot, [-50] , [-50], xrange = [xmin, xmax], yrange = [ymin,
ymax], xtitle="log T (K)", ytitle="log EM (cm!S!E-5!N)", /xstyle, /ystyle else
plot, [-50], [-50], xrange = [xmin, xmax], yrange = [ymin, ymax], title =
manip.title, xtitle="log T (K)", ytitle="log EM (cm!S!E-5!N)", charsize = 1.3,
/xstyle, /ystyle ; Creates plot, dependent on whether the title is set to be displayed

for i = 0, n_elements(manip.arrays) - 1 do begin ; Steps through
 X = 0 ; Incrimentally

creates X and Y plotting arrays containing no zeroes
 Y = 0
 for j = 0, n_elements(manip.arrays[i].EM) - 1 do begin
 if manip.arrays[i].EM[j] ne 0 then begin
 if Y[0] NE 0 then Y = [Y, manip.arrays[i].EM[j]] else Y = manip.arrays[i].EM[j]
 if X[0] NE 0 then X = [X, manip.arrays[i].temp[j]] else X = manip.arrays[i].temp[j]
 endif
 endfor
 style = manip.style ; Extracts style

value

 if manip.keyon eq 1 then begin ; When Legend

is set to plot
 case manip.keypos of ; Checks

chosen legend position
 0 : begin ; Top left

Legend position
 XKey = [xmin + ((xmax - xmin) / 20), xmin + 1.7 *((xmax - xmin)/20)] ; Finds x

ranges for line sample
 YKey = [ymax - ((i+1) * (ymax - ymin) / 35) , ymax - ((i+1) * (ymax - ymin) /

35)] ; Finds y ranges for line sample
 LabelX = XKey[1] + ((xmax - xmin) / 50) ; Finds starting

X coordinate for Legend Label
 LabelY = YKey[0] - ((ymax - ymin) / 35) * .1 ; Finds

80

starting Y coordinate for Legend Label
 endcase
 1 : begin ; As previous,

but for bottom left position
 XKey = [xmin + ((xmax - xmin) / 20), xmin + 1.7 * ((xmax - xmin)/20)]
 YKey = [ymin + ((i+1) * (ymax - ymin) / 35), ymin + ((i+1) * (ymax - ymin) /

35)]
 LabelX = XKey[1] + ((xmax - xmin) / 50)
 LabelY = YKey[0] - ((ymax - ymin) / 35) * .1
 endcase
 2 : begin ; As previous,

but for Top Right potion
 XKey = [xmax - 1.4 * ((xmax - xmin) / 20), xmax - .7*((xmax-xmin)/20)]
 YKey = [ymax - ((i+1) * (ymax - ymin) / 35) , ymax - ((i+1) * (ymax - ymin) /

35)]
 LabelX = XKey[0] - ((xmax - xmin) / 50) * 5.5
 LabelY = YKey[0] - ((ymax - ymin) / 35) * .1
 endcase
 3 : begin ; As previous,

but for Bottom Right
 XKey = [xmax - 1.4 * ((xmax - xmin) / 20), xmax - .7*((xmax-xmin)/20)]
 YKey = [ymin + ((i+1) * (ymax - ymin) / 35), ymin + ((i+1) * (ymax - ymin) /

35)]
 LabelX = XKey[0] - ((xmax - xmin) / 50) * 5.5
 LabelY = YKey[0] - ((ymax - ymin) / 35) * .1
 endcase
 endcase
 endif
 case style of ; Determines which

style of line differentiation was selected
 0 : oplot, X, Y, thick = manip.width ; Plots with no

stylistic differences
 1 : begin ; Differentiated

by color
 loadct, manip.palette, /silent ; Loads the

color table selected
 oplot, X, Y, thick = manip.width, color = (i * (254 / (n_elements(manip.arrays))))

+ manip.offset ; plots using that color
 if manip.keyon eq 1 then begin
 oplot, XKey, YKey, thick = manip.width, color = (i * (254 /

(n_elements(manip.arrays)))) + manip.offset ; plots the Legend, if selected
 loadct, 0, /silent ; Reloads color table

zero
 if NOT(KEYWORD_SET(PS)) then xyouts, LabelX, LabelY, manip.name[i], size =

81

1.2 else xyouts, LabelX, LabelY, manip.name[i], size = .8 ; Plots the Labels in
the Legend

 endif
 endcase
 2 : begin ; Differentiated

by line style
 if i lt 6 then oplot, x, y, linestyle = i, thick = manip.width else oplot, x, y, psym = (7 -

i), linestyle = 0, symsize = 1.5, thick = manip.width ; plots different line styles for
the first 6 lines, and then connected symbols for any further ones

 if manip.keyon eq 1 then begin ; If Legend is
set to plot

 if i lt 6 then oplot, XKey, YKey, linestyle = i, thick = manip.width else oplot, XKey,
YKey, psym = (7 - i), linestyle = 0, symsize = 1.5, thick = manip.width ; plots
line samples in different line styles for the first 6 lines, and then connected symbols
for any further ones

 if NOT(keyword_set(ps)) then xyouts, LabelX, LabelY, manip.name[i], size = 1.2
else xyouts, LabelX, LabelY, manip.names[i], size = .8 ; Plots
Labels

 endif
 endcase
 endcase
endfor

if manip.interswitch eq 1 then begin ; When set to
plot intersection

 loadct, 11, /silent ; Loads a red
table

 oplot, [xmin, xmax], [manip.intery, manip.intery] ; Plots the
horizontal line in red

 oplot, [manip.interx, manip.interx], [ymin, ymax] ; Plots the
vertical line in red

 loadct, 0, /silent ; Reloads color
table zero

endif

return, 1 ; Sends back
the value 1, indicating a successful plot

end

PRO EML_PLOTTER_event, ev

82

; Event handler routine. Main routine while the widget interface is active.
COMMON EML_block, h, c, number, number_points, lines, text, plotid ; ###

REMOVE ???

doquit = 'NO' ; Initializes the
end program indicator

widget_control, ev.top, get_uvalue = manip ; Gets the MANIP
structure from the top level widget's uvalue

widget_control, ev.id, get_uvalue = uval ; Gets the
uvalue identifier of the widget that generated the event

case uval of ; Determines
what kind of event

 'QUIT' : doquit = EML_ASK(ev.top, 'Are you sure you want to quit?')
; QUIT button clicked - ask to end program

 'PLOTwindow' : if manip.interswitch eq 1 and ev.press eq 1 then begin ; Plot
window clicked in, only relevant if set to plot an intersection

 cursor, x1, y1, /nowait, /data ; gets the
coordinates clicked on - not a good way to do this with widget graphics

 manip.interx = x1 & manip.intery = y1 ; Sets the
intersection coordinates

 print, '(', strcompress(x1), ' , ', strcompress(y1), ')' ; Prints the
intersection coordinates just chosen

 endif
 'SAVE' : begin ; Save button

clicked
 savefile = dialog_pickfile(title = 'Please enter a filename to save.', filter =

['*_EML.sav;*_EML.SAV;*_eml.sav;*_eml.SAV'], /write, /overwrite_prompt) ;
Prompts for a save file name

 if savefile eq '' then GOTO, NOSAVE ; If
cancel clicked in the file selection dialog, nul string causes save routine to abort

 saveext = strsplit(savefile, '_', /extract)
 saveext = saveext[n_elements(saveext) - 1]
 saveext = strupcase(saveext)
 if saveext ne 'EML.SAV' then savefile = savefile + '_EML.SAV' ; Checks file

name and extension for format
 print, 'Saving ', savefile, '.' ; Prints saving message
 save, manip, filename = savefile ; Saves MANIP

structure in save file
 NOSAVE: ; Routine exit

point
 endcase
 'PS' : begin ; PostScript

button clicked

83

 psfile = dialog_pickfile(title = 'Please select or enter title of Postscript file.', filter =
['*.ps;*.PS'], /write, /overwrite_prompt) ; PostScript File name dialog

 if psfile eq '' then GOTO, NOPS ; If cancel
clicked in file selection, nul string causes PS routine to abort

 psext = strsplit(psfile, '.', /extract)
 psext = psext[n_elements(psext) - 1]
 psext = strupcase(psext)
 if psext ne 'PS' then psfile = psfile + '.PS' ; Checks for correct

file extension
 print, 'Creating Postscript file: ', psfile, '.' ; Prints saving message
 SET_PLOT, 'PS' ; sets the plot to

postscript
 DEVICE, FILE=psfile, /landscape, /medium, /COLOR, BITS=8 ;

Sets the device characteristics and filename
 pssuccess = EMLplot(manip, /ps) ; Invokes plot

function with PS keyword set to keep wset from atempting to set the window
 device, /close ; finalizes the

file
 set_plot, 'x' ; Sets plot back to the x

server
 NOPS: ; routine exit

point
 endcase

 'LOAD' : begin ; LOAD saved EML button clicked
 filename = dialog_pickfile(Title = 'SAVED EML FILE TO LOAD?', filter =

'*_EML.SAV;*_eml.SAV;*_EML.sav;*_eml.sav', /read, /must_exist)
 if filename eq '' then GOTO, NOLOAD ; Nul string indicates cancel clicked,

and skips routine
 doload = EML_ASK(ev.top, 'Are you sure you want to overwrite your current EML?

Unsaved plot will be lost!') ; Double checks that current plot is no longer wanted
 if doload eq 'YES' then manip = EML_LOAD(manip, filename, ev.top) ; Calls the

LOAD function, which resets all data and parameters, if yes was selected
 NOLOAD:
 endcase

 else : manip = EML_FETCH_PARAMS(manip, ev.top, ev.id) ;

Any other widget event triggers a refresh of parameters
endcase

plotsuccess = EMLplot(manip) ; Plots
during each event

widget_control, ev.top, set_uvalue = manip ; Puts current

84

version of MANIP structure with current parameters into the top level widget
uvalue

if doquit eq 'YES' then begin ; When quit
program indicator set, which happens when QUIT button clicked

 loadct, 0, /silent ; Reloads color
table zero

 widget_control, ev.top, /destroy ; Destroys top
level widget and all its children

endif

end

PRO EML_PLOTTER
; Main routine. More is done in the event handler, but this is the parent routine. Widgets

are defined and created, and all parameters are defined and initialized.
COMMON EML_block, h, c, number, number_points, lines, text, plotid

filename = dialog_pickfile(title = 'Please select a GENX file containing LINES data.',
filter = ['*.genx;*.GENX;*.GenX;*.GENx;*.genX'], /must_exist) ; prompts for
the file to use

if filename eq '' then GOTO, THEEND ; When
cancel button in file dialog is clicked, nul string causes the entire program to abort

rd_genx, filename, lines, header = header, text = text ; Reads
the selected .GENX file, placing the data into the LINES structure, the header into
a header variable, and the index into index variable

h = 6.62620e-27 ; erg * seconds ; ### REMOVE ??? Probably not
necessary

c = 2.9979250e10 ; cm / second ; ### REMOVE ??? Probably not
necessary

number = n_elements(lines) ; ### REMOVE ??? Don't know if
this is used

number_points = n_elements(lines[0].logt) ; ### REMOVE ??? Don't know if
this gets used

EMLbase = widget_base(Title = 'EML Plotter: ' + file_basename(filename), column = 2)
; Defines top level widget

CONTROLbase = widget_base(EMLbase, /column)

85

; Defines container widget for the controls
PLOTbase = widget_base(EMLbase, column = 1) ;

Defines container widget for the plot window

RANGEbase = widget_base(CONTROLbase, column = 1, frame = 5, /base_align_center)
; Defines container widget for the range widgets

RANGElabel = widget_label(RANGEbase, value = 'RANGE', /align_center)
; Label for the range fields

Xbase = widget_base(RANGEbase, /row) ;
Container for the x range fields

XMin = cw_field(Xbase, Title = 'X Min: ', uvalue = 'RANGE', uname = 'XMIN',
/floating, /return_events) ; Minimum x value field widget

XMax = cw_field(Xbase, Title = 'X Max: ', uvalue = 'RANGE', uname = 'XMAX',
/floating, /return_events) ; Maximum x value field widget

Ybase = widget_base(RANGEbase, /row) ;
Container for the y range fields

YMin = cw_field(Ybase, Title = 'Y Min: ', uvalue = 'RANGE', uname = 'YMIN',
/floating, /return_events) ; Minimum y value field widget

YMax = cw_field(Ybase, Title = 'Y Max: ', uvalue = 'RANGE', uname = 'YMAX',
/floating, /return_events) ; Maximum y value field

STYLEbase = widget_base(CONTROLbase, row = 2)
; Container widget for the style controls

LINESTYLEbase = widget_base(STYLEbase, frame = 5, /column)
; Container widget for the line style controls

STYLElabel = widget_label(LINESTYLEbase, value = 'LINE STYLE')
; Label widget for the style selector

STYLEselect = cw_bgroup(LINESTYLEbase, ['None', 'Line Colour', 'Line Style'],
uvalue = 'STYLE', uname = 'STYLE', set_value = 0, /exclusive) ; Style selector
widget (radio buttons)

PALETTEbase = widget_base(STYLEbase, /column, frame = 5, /base_align_center)
; Container widget for the controls to select color palette

PALETTElabel = widget_label(PALETTEbase, value = 'PALETTE')
; Label widget for the color palette controls

PALETTEslider = widget_slider(PALETTEbase, minimum = 12, maximum = 38, value =
34, xsize = 100, uvalue = 'PALETTE', uname = 'PALETTE', /drag) ; Slider control
widget for color palette selection

OFFSETlabel = widget_label(PALETTEbase, value = 'COLOR OFFSET')
; Color offset label widget

OFFSETslider = widget_slider(PALETTEbase, minimum = 0, maximum = 255, value =
0, xsize = 100, uvalue = 'OFFSET', uname = 'OFFSET', /drag) ; Color offset
slider control widget

86

WIDTHbase = widget_base(STYLEbase, /column, frame = 5, /base_align_center)
; Container widget for the line width control

WIDTHlabel = widget_label(WIDTHbase, value = 'LINE WIDTH')
; Label widget for the line width control

WIDTHslider = widget_slider(WIDTHbase, minimum = 0, maximum = 5, value = 1,
xsize = 50, uvalue = 'WIDTH', uname = 'WIDTH', /drag) ; Line width slider
control widget

TITLEbase = widget_base(STYLEbase, frame = 5, /column)
; Container widget for the Title controls

TITLElabel = widget_label(TITLEbase, value = 'TITLE') ;
Label widget for the title controls

TITLEfield = cw_field(TITLEbase, uvalue = 'TITLE', uname = 'TITLE', title = '',
/string, /return_events) ; Title entry field widget

TITLEswitch = cw_bgroup(TITLEbase, ['SHOW TITLE'], uvalue = 'TITLESWITCH',
uname = 'TITLESWITCH', /nonexclusive) ; Title display switch widget
(checkbox)

KEYbase = widget_base(STYLEbase, frame = 5, /column) ;
Legend controls container widget

KEYlabel = widget_label(KEYbase, value = 'LEGEND') ;
Label widget for the legend controls

KEYswitch = cw_bgroup(KEYbase, ['SHOW LEGEND'], uvalue = 'KEYSWITCH',
uname = 'KEYSWITCH', /nonexclusive) ; Legend display switch widget
(checkbox)

KEYselect = cw_bgroup(KEYbase, ['Upper Left', 'Lower Left', 'Upper Right', 'Lower
Right'], label_top = 'Position', column = 2, set_value = 0, uvalue = 'KEYSELECT',
uname = 'KEYSELECT', /exclusive) ; Label location selection widget (radio
buttons)

EXTRAbase = widget_base(CONTROLbase, /row) ;
Container widget for left over controls

OUTbase = widget_base(EXTRAbase, frame = 5, /column)
; Output controls container widget

OUTlabel = widget_label(OUTbase, value = 'OUTPUT') ;
Output label widget

SAVEbutton = widget_button(OUTbase, value = 'SAVE PLOT DATA', uvalue = 'SAVE',
uname = 'SAVE') ; Save data button widget

PSbutton = widget_button(OUTbase, value = 'MAKE POSTSCRIPT', uvalue = 'PS',
uname = 'PS') ; Create PostScript file button widget

LASTbase = widget_base(EXTRAbase, /column) ;
Container for leftover bits

INTERswitch = cw_bgroup(LASTbase, ['PLOT INTERSECTION'], uvalue =

87

'INTERSWITCH', uname = 'INTERSWITCH', /nonexclusive) ; Intersection
plotting switch control widget (checkbox)

LOADbutton = widget_button(LASTbase, value = 'LOAD SAVED EML', uvalue =
'LOAD', uname = 'LOAD') ; LOAD saved EML button

QUITbutton = widget_button(LASTbase, value = 'QUIT', uvalue = 'QUIT', uname =
'QUIT') ; QUIT program button widget

TEXTlabel = widget_label(CONTROLbase, value = 'FILE INFO')
; File info display widget label

FILEtext = widget_text(CONTROLbase, value = text, ysize = 6, /wrap, /scroll) ;
File info display widget

PLOTwindow = widget_draw(PLOTbase, xsize = 1000, ysize = 1000, uname =
'PLOTwindow', uvalue = 'PLOTwindow', /button_events) ; Plot window widget

wiids = {Xmin:Xmin, Xmax:Xmax, Ymin:ymin, ymax:ymax, styleselect:styleselect,
paletteslider:paletteslider, offsetslider:offsetslider, widthslider:widthslider,
keyswitch:keyswitch, keyselect:keyselect, titleswitch:titleswitch, titlefield:titlefield,
interswitch:interswitch, text:text} ; Structure that contains widget IDs for all
control widgets (not containers or labels)

widget_control, EMLbase, /realize ;
Realizes the top level widget

widget_control, PLOTwindow, get_value = winid ;
Gets the window number for the plot window widget

if where(tag_names(lines) eq 'INSTRUMENT') ne -1 then begin
 if lines[0].instrument eq 'XRT' then name = lines.elem else name = lines.elem +

lines.ion + strcompress(lines.wave)
endif else name = lines.elem + lines.ion + strcompress(lines.wave)

arrays = EML_MAKE_ARRAYS(lines)
; Invokes the function to build the ARRAYS structure

manip = {winid:winid, arrays:arrays, name:name, xmin:0.0, xmax:0.0, ymin:0.0,
ymax:0.0, width:1, style:0, keypos:0, keyon:0, palette:34, offset:0, wiids:wiids,
title:'', titleon:0, interx:0.0, intery:0.0, interswitch:0} ; Builds the MANIP structure
and initializes its tags

manip.winid = winid ; passes
the Window ID for the plot widget to its tag in the MANIP structure

plotsuccess = EMLplot(manip) ;
Invokes the first plot

widget_control, EMLbase, set_uvalue = manip ;
Puts the MANIP array safely into the top level widget's uvalue for passing to the

88

handler routine
xmanager, 'EML_PLOTTER', EMLbase ;

Starts the event handler

THEEND: ;
Program exit point

END

89

Appendix C
ECHIDNA: A DEM Forward Folder

; written by Jason Kimble, Solar Lab, University of Memphis, Summer 2010.
; IDL - Written for X display and 'nix directory structure, requires use of widgets.
; A forward folder for the manipulation of Differential Emission Measures.
; Will return a plot of predicted verses observed intensities.
; Calling sequence - 'ECHIDNA'.
; Accepts *.genx files containing data structures named lines, containing tags: logt[], iobs,

iobs_err, emis[], element, ion and wavelength.
; These files are the ones created by a program called GENX_MAKER, and are of the

same type as accepted by DEM_INTERACTIVE.
; Uses emissivity arrays obtained from the CHIANTI atomic physics database.

; "[...] another monster, irresistible, in no wise like either to mortal men or to the undying
gods, even the goddess fierce Echidna who is half a nymph with glancing eyes and
fair cheeks, and half again a huge snake,

; great and awful, with speckled skin, eating raw flesh beneath the secret parts of the
holy earth. And there she has a cave deep down under a hollow rock far from the
deathless gods and mortal men.

; There, then, did the gods appoint her a glorious house to dwell in: and she keeps guard
in Arima beneath the earth, grim Echidna, a nymph who dies not nor grows old all
her days."

; - Hesiod - Theogony [300 - 305]

function ECHIDNA_arrange_lines, lines
; arranges the lines structure entries by their peak formation temperatures, and then for

entries with the same peak formation
; temperatures, by wavelength

; arranges the lines entries by peak formation temperature (hopefully)
maxindex = make_array(n_elements(lines)) ; creates array to hold indices of

maximum contribution function for each line
for i = 0, n_elements(lines) - 1 do maxindex[i] = where(lines[i].emis eq

max(lines[i].emis)) ; finds index of the maximum of the emissivity array
for each line

sortindex = sort(maxindex) ; puts the placement order of the array of indices of
maximum emissivity into an array

lines_sorted = lines ; creates a temporary structure to hold the sorted
lines structure entries

for i = 0, n_elements(lines) - 1 do lines_sorted[i] = lines[sortindex[i]] ; puts in each
element of the temporary structure the ordered element of the lines structure

lines = lines_sorted ; copies the sorted lines back into the lines structure

90

; arranges the lines entries of equivalent formation temperature by wavelength (I think)
for i = 0, n_elements(lines) - 1 do maxindex[i] = where(lines[i].emis eq

max(lines[i].emis)) ; refills the maxindex array to match the previously sorted
lines

number_peak_temps = 1 ; sets the initial number of identical
peak formation temperatures to at least 1

for i = 1, n_elements(maxindex) - 1 do if maxindex[i] ne maxindex[i - 1] then
number_peak_temps = number_peak_temps + 1 ; counts the number of
unique peak formation temperatures

peak_temps = make_array(number_peak_temps) ; makes an array to hold the different
temperatures

count = 1 ; initializes a counting variable
tempgroup = 0 ; initializes a variable to indicate which

group of identical temperatures
for i = 1, n_elements(maxindex) - 1 do begin ; counts how many entries

there are with each temperature value
 if maxindex[i - 1] eq maxindex[i] then count = count + 1 else begin
 peak_temps[tempgroup] = count
 tempgroup = tempgroup + 1
 count = 1
 endelse
 peak_temps[tempgroup] = count
endfor
startindex = total(peak_temps, /cumulative) ; this and following places the starting index

for each group of identical temperatures
startindex = startindex - peak_temps
for j = 0, number_peak_temps - 1 do begin ; sorts individual groups of same

temperatures by wavelength entry values
 if peak_temps[j] gt 1 then begin ; no point if unique temperature
 wavesortarray_index = make_array(peak_temps[j]) ; arrays for sorting by

wavelength
 wavesortarray = wavesortarray_index
 for i = 0, peak_temps[j] - 1 do wavesortarray_index[i] = startindex[j] + i ; puts

indices of same temperatures in array
 for i = 0, peak_temps[j] - 1 do wavesortarray[i] = lines[wavesortarray_index[i]].wave ;

pust wavelengths in array
 wavesortindexorder = sort(wavesortarray) ; gets the arrangement order of

indices of wavelengths in each group
 for i = 0, peak_temps[j] - 1 do lines_sorted[wavesortarray_index[i]] =

lines[wavesortarray_index[wavesortindexorder[i]]] ; puts values in by sorted order
 endif
endfor
lines = lines_sorted ; copies sorted lines entries into lines structure
return, lines ; sends back newly sorted lines structure

91

end

function ECHIDNA_plot, manip, eventtop, displayonly = displayonly, ps = ps
; creates the DEM and ratio plots from current data in the manipulation structure
; entire ratio plot recalculated each time - not very efficient but probably necessary
; modifies the manipulation structure entries
; requires manipulation structure and id of top level widget. also accepts a display only

switch that will prevent from sending
; the structure back to the top level widget's uvalue

if keyword_set(PS) then errlabelsize = .9 else errlabelsize = 1.5
if not keyword_set(displayonly) then plottype = manip.plottype else plottype = 0

binstep = abs(manip.bins[1] - manip.bins[0]) ; finds difference between temperature
bins - they must be evenly spaced for this to work right

integral = make_array(n_elements(manip.lines)) ; calculates the sum of the products of
the contribution functions, the dem value and the temperature bin widths for each
line

for i = 0, n_elements(manip.lines) - 1 do begin
 for j = 0, n_elements(manip.bins) - 1 do begin
 integral[i] = integral[i] + ((10 ^ manip.dem[j]) * manip.lines[i].emis[j] *

manip.binwidths[j])
 endfor
endfor
manip.predicted = integral ; places the integrals for each line in a predicted array in

the manipulation structure
ratio_y = manip.predicted/manip.observed ; calculates the predicted over observed

values
;ratio_err = ((manip.predicted - manip.observed) / manip.lines.iobs_err) ^ 2 ;

calculatees error values for the ratios - got this one from Monster
; been using this one: ratio_err = abs(manip.predicted / (manip.observed -

manip.lines.iobs_err) - manip.predicted / manip.observed) ; calculates error
values for the ratios from observational errors - direct, brute force approach

ratio_err = (manip.lines.iobs_err * manip.predicted) / (manip.observed ^ 2) ;
calculates error values for the ratios - got this one from the CHIANTI user's guide -
matches little red stats book

;X2 = ((manip.observed - manip.predicted) ^ 2) / ((ratio_err) ^ 2)
X2 = ((ratio_y - 1) ^ 2) / ((ratio_err) ^ 2)
X2 = TOTAL(X2)
RX2 = X2 / (n_elements(manip.lines) - 1)

92

manip.ratio_y = ratio_y
manip.ratio_err = ratio_err
manip.chi_squared = RX2
if not keyword_set(ps) then wset, manip.RATIOdraw ; sets the plotting window to the

ratio plot
ploterr, ratio_y, ratio_err, xrange = [-1, n_elements(manip.observed)], psym = 4, /xs,

yrange = [-1, 3], /xstyle, /ystyle ; plots the ratios with error bars
oplot, [-2, n_elements(manip.observed) + 2], [1, 1], linestyle = 1 ; overplots a

horizontal line at y = 1
for i = 0, n_elements(manip.lines) - 1 do begin ; outputs individual line info onto the

ratio plot
 elem = manip.lines[i].elem + ' ' + manip.lines[i].ion
 if where(tag_names(manip.lines) eq 'WAVE') ne -1 then wave = manip.lines.wave
 if where(tag_names(manip.lines) eq 'INSTRUMENT') ne -1 then begin
 if manip.lines[0].instrument eq 'XRT' then begin
 elem = manip.lines[i].elem
 wave = strarr(n_elements(manip.lines.wave))
 endif
 endif
 xyouts, i, ratio_y[i] - (ratio_err[i] + .15), elem, alignment = .5, charsize = errlabelsize
 peakformationtemp = manip.bins[where(manip.lines[i].emis eq

max(manip.lines[i].emis))]
 peakformationtemp = strtrim(peakformationtemp)
 peakformationtemp = strsplit(peakformationtemp, '.', /extract)
 peakformationtemp = peakformationtemp[0] + '.' + strmid(peakformationtemp[1], 0, 1)
 peakformationtemp = strcompress(peakformationtemp)
 xyouts, i, ratio_y[i] + (ratio_err[i] + .1), peakformationtemp, alignment = .5, charsize =

errlabelsize
 xyouts, i, ratio_y[i] - (ratio_err[i] + .25), strcompress(wave[i]), alignment = .5, charsize

= errlabelsize
endfor
xyouts, n_elements(manip.observed) - 2.5, 2.8, 'X!U2!N = ' + strcompress(RX2),

charsize = errlabelsize
if keyword_set(ps) then begin
 device, /close
 DEVICE, FILE=ps, /landscape, /medium, /COLOR, BITS=8
endif
if not keyword_set(ps) then wset, manip.DEMdraw ; sets the plot window to the DEM

plot - must be set last to make that plot sensitive to pointer control
if plottype eq 0 then begin
 plot, manip.bins, manip.last_dem, yrange = [manip.ymin, manip.ymax]

,/xs,/ys,ylog=ylog,xtitle='log!d10!n(T [K])',ytitle='DEM', xmargin = 10, ymargin =
5, charsize = 1, linestyle = 2, /device;, _extra=e ; plots old DEM in dotted line

 oplot, manip.bins, manip.dem ; overplots current DEM

93

endif else if plottype eq 1 then begin
 plot, manip.bins, alog10((10^manip.last_dem) * manip.binwidths), yrange =

[manip.ymin + 4, manip.ymax + 5] ,/xs,/ys,ylog=ylog,xtitle='log!d10!n(T
[K])',ytitle='EM', xmargin = 10, ymargin = 5, charsize = 1, linestyle = 2, /device;,
_extra=e ; plots old DEM in dotted line

 oplot, manip.bins, alog10((10^manip.dem) * manip.binwidths) ; overplots current
DEM

endif
if manip.SHOWbins eq 1 then BEGIN ; conditionally plots the boundaries of the

temperature bins in dotted lines, depending on an entry in the manip structure
 binwidths = alog10(manip.binwidths) ; gets the width for each temperature bin in

plot space
 dem = manip.dem
 if manip.plottype eq 1 then dem = dem + alog10(manip.binwidths)
 for i = 0, n_elements(manip.bins) - 1 do begin ; plots two vertical and one horizontal

side for each temp bin
 ls = 1
 oplot, [(manip.bins[i] - binstep/2), (manip.bins[i] - binstep/2)], [0, dem[i]], linestyle =

ls
 oplot, [(manip.bins[i] + binstep/2), (manip.bins[i] + binstep/2)], [0, dem[i]], linestyle =

ls
 oplot, [(manip.bins[i] - binstep/2), (manip.bins[i] + binstep/2)], [dem[i], dem[i]],

linestyle = ls
 endfor
endif
if not keyword_set(displayonly) then widget_control, eventtop, set_uvalue = manip ; puts

the manip structure back in top level widget's uvalue unless told not to
return, manip ; sends back the manipulation structure
end

function ECHIDNA_YorN, title = title, msg = msg, eventop = eventop
; function to produce an interrupting (modal) yes or no dialog box and return the selection

ECHIDNA_YorN_base = widget_base(title = title, /modal, group_leader = eventop,
uvalue = 'NO', column = 1, /base_align_center) ; defines widgets

message_label = widget_label(ECHIDNA_YorN_base, value = msg)
button_container = widget_base(ECHIDNA_YorN_base, frame = 2, column = 2)
yes_button = widget_button(button_container, value = ' YES ', uvalue = 'YES',

uname = 'YES', /align_center)
no_button = widget_button(button_container, value = ' NO ', uvalue = 'NO', uname

94

= 'NO', /align_center)
widget_control, ECHIDNA_YorN_base,

/realize ; realizes widgets
ev =

widget_event(ECHIDNA_YorN_base)
; waits for and retrieves widget event

widget_control, ev.id, get_uvalue =
choice ; fetches the value of
the clicked button

widget_control, ev.top,
/destroy ; destroys
widgets

return, choice ;
returns the choice made

end

function display_info, manip
; displays information from the header and text entries in the .GENX file providing the

lines information being studied in a separate text window

tnames = tag_names(manip.lines) ; gets an array of tags from the
lines structure

if where(tnames eq 'INSTRUMENT') ne -1 then begin ; makes sure that it
containes the tag 'INSTRUMENT,' a newer tag from a newer version of
GENX_MAKER

 ; finds and prepares the instrument name
 instr_txt = 'INSTRUMENT: ' + manip.lines[0].instrument
 ; finds and prepares the abundance file name
 Abund_file = manip.lines[0].abundance_filename
 abund_file = strsplit(abund_file, '/', /extract)
 abund_file = abund_file[n_elements(abund_file) - 1]
 abund_txt = 'ABUND FILE: ' + abund_file
 ; finds and prepares the ion equilibrium file name
 ioneq_file = manip.lines[0].ioneq_filename
 ioneq_file = strsplit(ioneq_file, '/', /extract)
 ioneq_file = ioneq_file[n_elements(ioneq_file) - 1]
 ioneq_txt = 'IONEQ FILE: ' + ioneq_file
 ; finds and prepares the electron density value
 density_txt = 'ELEC DENS: '+strcompress(manip.lines[0].density)
 note_txt = manip.text ; finds any additional notes provided

95

by the user at file creation
 info_txt = [instr_txt, abund_txt, ioneq_txt, density_txt, note_txt] ; puts all informational

elements into an array for display
endif else begin ; if the 'INSTRUMENT' tag (and

therefor other informational tags) do not exist, indicates that there is no available
information

 info_txt = 'DATA NOT AVAILABLE'
endelse
; defines widgets to display file information
ECHIDNA_info_box = widget_base(title = 'Data Info') ;, xsize = 400, ysize = 400
INFObox = widget_text(ECHIDNA_info_box, value = info_txt, /wrap, xsize = 65, ysize

= 12, /scroll)
widget_control, ECHIDNA_info_box, /realize

return, 1
end

function ECHIDNA_load_DEM, manip, eventop
; allows the loading of a presaved (or separately created) DEM curve

DEM_load_file = dialog_pickfile(title = 'Please select saved DEM to load.', filter =
['*.SAV;*.sav;*.GENX;*.GenX;*.GENx;*.genX;*.genx'], path =
manip.genx_path, /read, /must_exist) ; prompts for the file containing the DEM -
allows .GENX of IDL's .SAV formats

if DEM_load_file eq '' then goto,
LOADEND
; checks to see that a file has been selected/entered

tempname = strsplit(DEM_load_file, '.',
/extract)
; separates off the file extension

tempname = tempname[n_elements(tempname)
-1] ;
gets the file extension

if tempname eq 'SAV' or tempname eq 'sav' then restore, filename = DEM_load_file else
rd_genx, DEM_load_file, DEM, text=NOTE ; restores
IDL .SAV files or reads .GENX files

if keyword_set(DEM) then
begin ; checks to
make sure the DEM structure exists in the loaded file

 check = tag_names(DEM)
 if where(check eq 'DEM') ne -1 then begin
 if array_equal(dem.line, manip.lines.chianti) ne 1 then a =

96

DIALOG_MESSAGE('WARNING: Loaded DEM is for different set of
lines!') ; provides warning message if line information in the loaded
DEM does not match the current working lines

 if array_equal(DEM.logt, manip.bins) ne 1 then a =
DIALOG_MESSAGE('WARNING: Loaded DEM has different temperature
resolution or range!') ; provides warning message if the temperature array
resolution is different in the file

 if keyword_set(header) then NOTE = [NOTE,
header] ; if the file
contains a header, adds it to the notational information

 DEM_load_file = strsplit(DEM_load_file, '/',
/extract) ; separates the
loaded filename from the path

 DEM_load_file = DEM_load_file[n_elements(DEM_load_file) -
1] ; sets the loaded filename

 ECHIDNA_info_box = widget_base(title = 'Loaded DEM Info - ' +
DEM_load_file) ; creates a base widget
to display the information

 INFObox = widget_text(ECHIDNA_info_box, value = NOTE, /wrap, xsize = 65, ysize
= 12, /scroll) ; creates a text widget in the base
widget in which to display the information

 widget_control, ECHIDNA_info_box,
/realize ; realizes
the widgets - this displays the notational information contained within the loaded
DEM file

 manip.dem = dem.DEM ; sets
the new DEM

 manip.bins = dem.logt ; sets the
new temperature array (in case it is different from the previous)

 widget_control, eventop, set_uvalue = manip ;
places the manip structure, with the new DEM, into the uvalue of the top level
widget

 manip = ECHIDNA_plot(manip,
eventop) ; replots the DEM

 endif else a = DIALOG_MESSAGE('FILE ERROR: File does not contain recognizable
DEM curve.')

endif else a = DIALOG_MESSAGE('FILE ERROR: File does not contain recognizable
DEM curve.') ; displays error message if the file does not contain DEM
and temperature arrays

LOADEND:
return, manip
end

97

pro ECHIDNA_save_event, ev
; event handler routine for ECHIDNA_save function - uses information from the save

menue and prompts for filename to save DEM and line data

widget_control, ev.top, get_uvalue = manip ; fetches the manip structure
from he top level widget's uvalue

widget_control, ev.id, get_uvalue = uval ; fetches the uvalue of the
widget generating the even (either cancel or accept)

if uval eq 'CANCEL' then widget_control, ev.top, /destroy ; ends routine when
cancel is clicked

if uval eq 'ACCEPT' then begin ; starts process if accept is
clicked

 textID = widget_info(ev.top, find_by_uname = 'INFOBOX') ; fetches the widget
id of the text widget containing any notational information entered by the user

 selectionID = widget_info(ev.top, find_by_uname = 'FILE_TYPE') ; fetches the
widget id of the selector for the type of file being created

 widget_control, textID, get_value = note ; puts contents of the notation
widget into the variable 'note'

 widget_control, selectionID, get_value = selection ; gets the type of file being
created

 ; if informational tags already exist, passes them to the NOTE array
 if where(tag_names(manip.lines) eq 'INSTRUMENT') ne -1 then NOTE = [NOTE,

'INSTRUMENT: ' + manip.lines[0].instrument, 'ABUND FILE: ' +
manip.lines[0].abundance_filename, 'IONEQ FILE: ' +
manip.lines[0].ioneq_filename, 'ELEC DENSITY: ' +
strcompress(manip.lines[0].density)] else NOTE = [NOTE, 'Missing Further Info.']

 if selection eq 0 then fil = ['*.SAV;*.sav'] else if selection eq 1 then fil =
['*.GENX;*.genx;*.GenX;*.genX;*.GENx'] ; selection 0 sets the save file
filter to .GENX type, 1 makes a .SAV file

 savename = dialog_pickfile(title = 'DEM file to save?', /write, /overwrite_prompt, filter
= fil, path = manip.genx_path) ; prompts for name of file to be saved

 if savename ne '' then
begin ; checks to
make sure a file name has been entered

 savename2 = strsplit(savename, '.',
/extract) ; separates off the file
extension from indicated file name

 savename3 =
savename2[0] ; sets
the first part of the save file

 if n_elements(savename2) gt 2 then for i = 1, n_elements(savename2) - 2 do
savename3 = [savename3, '.', savename2[i]] ; rejoins the rest of the file, minus
the file extension (in case a previous file has been selected)

98

 savename3 = strjoin(savename3)
 savename1 = strsplit(savename3, '_',

/extract) ; separates the file name
into portions that may contain the '_DEM' indicator

 if savename1[n_elements(savename1) - 1] eq 'DEM' then
begin ; determines the existence of the
'_DEM' indicator in the file name and removes if found, in case of overwriting a
previous file

 savename3 = savename1[0]
 if n_elements(savename1) gt 2 then for i = 1, n_elements(savename1) - 2 do

savename3 = [savename3, '_', savename1[i]]
 endif
 savename3 =

strjoin(savename3) ;
puts filename back together and removes resulting whitespace

 savename3 = strcompress(savename3)
 if selection eq 0 then savename = savename3 + '_DEM.SAV' else if selection eq 1 then

savename = savename3 + '_DEM.GENX' ; adds the '_DEM' indicator to
filename and appropriate extension

 header = 'Saved DEM information. Created by ECHIDNA on ' + systime() + ' from the
file ' + manip.genx_name + '.' ; creates file header containing the time and
filename of the lines data file

 DEM = {DEM:manip.DEM, EM:(manip.DEM + alog10(manip.binwidths)),
LOGT:manip.bins, LINE:manip.lines.chianti, RATIOS:manip.ratio_y,
RATIO_ERRORS:manip.ratio_err, CHI_SQUARED:manip.chi_squared} ;
creates structure for DEM data, including the CHIANTI identification of the lines

 if selection eq 0 then save, filename = savename, header, DEM,
NOTE ; invokes appropriate save procedure for
the file type being created

 if selection eq 1 then wrt_genx, savename, DEM, text= [header, NOTE], /xdr, /replace
 print, 'Saving DEM structure in ' + savename +

'.' ; indicates the save is being
completed

 endif
 widget_control, ev.top, /destroy
endif

end

function ECHIDNA_save, manip, groupleader

99

; function to save DEM curve in a structure in a file - this section creates the widgets and
calls the event routine

; defines the widgets in the save menu
SAVEbase = widget_base(/column, uvalue = manip, group_leader = groupleader, /modal)
file_type_label = widget_label(SAVEbase, value = 'Select type of save file.')
file_type = cw_bgroup(SAVEbase, ['IDL save file', 'GENX file'], uvalue = 'FILE_TYPE',

uname = 'FILE_TYPE', /exclusive)
infobox_label = widget_label(SAVEbase, value = 'Enter any additional notes here.')
infobox = widget_text(SAVEbase, uvalue = 'INFOBOX', uname = 'INFOBOX', /editable,

ysize = 3)
enter_button = widget_button(SAVEbase, value = 'ACCEPT', uvalue = 'ACCEPT',

uname = 'ACCEPT')
cancel_button = widget_button(SAVEbase, value = 'CANCEL', uvalue = 'CANCEL',

uname = 'CANCEL')

; realizes the widgets and starts the handler routine
widget_control, SAVEbase, /realize
xmanager, 'ECHIDNA_save', SAVEbase
return, 1
end

function ECHIDNA_reset_mode, manip, eventtop
; checks to see what mode is selected and resets to that mode after a transient mode

opperation
; requires manipulation structure and id of top level widget

 MESSAGEtext = widget_info(eventtop, find_by_uname = 'MESSAGEtext') ;
finds widget id of the message box

 MODElist = widget_info(eventtop, find_by_uname = 'MODElist') ;
finds widget id of the mode list box

 ind = widget_info(MODElist, /list_select) ; gets current
selection of the mode list

 case ind of ; sets the mode based
on selected index of mode list

 0 : manip.mode = 'CLICK'
 1 : manip.mode = 'BINDRAG'
 2 : manip.mode = 'DRAW'
 endcase
 case ind of ; gets text for message

100

box based on mode list selection
 0 : newtext = manip.message.CLICK
 1 : newtext = manip.message.BINDRAG
 2 : newtext = manip.message.DRAW
 endcase
 widget_control, MESSAGEtext, set_value = newtext ; sets message

box text
 widget_control, eventtop, set_uvalue = manip ; sends

manipulation structure back to top level widget uvalue
 return, manip ; sends back

manipulation structure
end

pro ECHIDNA_EVENT, ev
; event handling procedure for the program - determines what manipulation is being done,

and which instructions are being issued by user
; interprets menus and pointer activity
; procedure is called whenever an event is detected in a widget

;print, ev.id ###REMOVE
widget_control, ev.TOP, get_uvalue = manip ; retrieves the manipulation

structure from the uvalue of the top level widget
widget_control, ev.ID, get_uvalue=uval ; gets the identity of which

widget has been activated - whether plot window or control

DEMdraw = widget_info(ev.top, find_by_uname = 'DEMdraw') ; finds id of the
DEM plot window

RATIOdraw = widget_info(ev.top, find_by_uname = 'RATIOdraw') ; finds
id of the RATIO plot window

widget_control, DEMdraw, get_value = DEMdraw ; finds plot
window value of the DEM plot

widget_control, RATIOdraw, get_value = RATIOdraw ; finds plot
window value of the RATIO plot

manip.DEMdraw = DEMdraw ; puts
plot window value of DEM plot in manipulation structure

manip.RATIOdraw = RATIOdraw ; puts plot
window value of RATIO plot in manipulation structure

if where(tag_names(ev) eq 'RELEASE') ne -1 then begin ; This is here, since the !
MOUSE structure does not respond until the following event

101

 if ev.release gt 0 then begin ; This keeps track of the current state of the
mouse button, and though it is unfortunately messy and complicated, seems to
work ok.

 manip.clicked = 0
 widget_control, ev.top, set_uvalue = manip
 endif
endif

if uval eq 'MODElist' then begin ; calls the mode reset function if the
mode list has been changed

 manip = ECHIDNA_reset_mode(manip, ev.TOP)
endif
if uval eq 'LOAD' then begin ; if the load button is clicked, calls the load function
 manip = ECHIDNA_load_DEM(manip, ev.TOP)
endif
if uval eq 'ZERO' then begin ; sets the DEM array to baseline value

if ZERO DEM button clicked
 manip.last_DEM = manip.dem ; puts current DEM in

old DEM array for undo function
 DEM = fltarr(n_elements(manip.DEM)) ; creates a new DEM

array full of zeros
 DEM = DEM + manip.baseline ; adds the baseline

value to new DEM array
 manip.DEM = DEM ; puts new DEM array in the

manipulation structures DEM entry
 manip = ECHIDNA_plot(manip, ev.TOP) ; calls plot function

with new zeroed DEM
endif

if uval eq 'ZERObin' then begin ; in the event the zero
DEM button clicked

 if manip.mode ne 'ZERObin' then begin
 manip.mode = 'ZERObin' ; sets the mode to zero

the DEM in a temperature bin
 MESSAGEtext = widget_info(ev.top, find_by_uname = 'MESSAGEtext') ; gets

message text to indicate what the next click will do
 widget_control, MESSAGEtext, set_value = manip.message.ZEROBIN ; sets the

message box to this text
 widget_control, ev.top, set_uvalue = manip ; puts the

manipulation array in the top level widget's uvalue
 endif else manip = ECHIDNA_reset_mode(manip, ev.TOP)
endif

if uval eq 'UNDO' then begin ; in the event the undo button is

102

clicked
 switch_dems = manip.dem ; stores the current DEM array
 manip.dem = manip.last_dem ; sets current DEM

array as previous DEM array
 manip.last_dem = switch_dems ; sets the old DEM

array as stored DEM
 manip = ECHIDNA_plot(manip, ev.TOP) ; calls plot function

with new DEMs
endif

if uval eq 'BINS' then begin ; in the event the show bins button is
clicked

 if manip.SHOWbins eq 0 then manip.SHOWbins = 1 else manip.SHOWbins = 0 ;
swaps the show bins tag value in the manipulation array

 manip = ECHIDNA_plot(manip, ev.TOP) ; calls
plot function with new tag value

endif

if uval eq 'INFO' then a = DISPLAY_INFO(manip)

if uval eq 'YRANGEmin' then begin ; in the event a new minimum y range
value entered

 widget_control, ev.id, get_value = ymin ; gets the new value
 manip.ymin = ymin ; sets the current value to the new

value
 manip = ECHIDNA_plot(manip, ev.TOP) ; calls plot function with new

value
endif
if uval eq 'YRANGEmax' then begin ; in the event a new maximum y

range value enteredMODElist = widget_list(CONTROLcontainer, value =
['CLICK', 'DRAG BIN', 'DRAW'], uvalue = 'MODElist', uname = 'MODElist', ysize
= 3)

 widget_control, ev.id, get_value = ymax ; gets the new value
 manip.ymax = ymax ; sets the current value to the new

value
 manip = ECHIDNA_plot(manip, ev.TOP) ; calls plot function with the

new value
endif

if uval eq 'BASELINEUP' or uval eq 'BASELINEDOWN' then begin ; in the event
the baseline up or down buttons clicked

 blindex = where(manip.DEM eq manip.baseline) ; finds indices of all
bins where DEM value is at baseline

103

 if uval eq 'BASELINEUP' then begin ; if baseline up was clicked, then add 1 to all
DEM values at baseline and to the baseline value

 manip.baseline = manip.baseline + 1
 if blindex[0] ne -1 then for i = 0, n_elements(blindex) - 1 do manip.DEM[blindex[i]] =

manip.baseline
 endif
 if uval eq 'BASELINEDOWN' then begin ; if baseline down was clicked, subtract 1

from all DEM values at baseline and to baseline value
 manip.baseline = manip.baseline - 1
 if blindex[0] ne -1 then for i = 0, n_elements(blindex) - 1 do manip.DEM[blindex[i]] =

manip.baseline
 endif
 widget_control, ev.top, set_uvalue = manip ; puts mainipulation

array in uvalue of top level widget
 Blabel = widget_info(ev.top, find_by_uname = 'BASELINElabel') ; finds

id of baseline value label
 widget_control, Blabel, set_value = strcompress(manip.baseline) ; sets the baseline

value label to the new baseline
 manip = ECHIDNA_plot(manip, ev.TOP) ; calls plot

function with new baseline value
endif

if uval eq 'PS' then begin ; routine for creating a postscript file from the plots
 ps_name = dialog_pickfile(Title = 'Name of Postscript file?', /write, /overwrite_prompt,

path = manip.genx_path, filter = '*.eps;*.EPS') ; prompts for postscript file
name

 if ps_name ne '' then
begin ;
only executes if a non-null filename is entered

 tempname = strsplit(ps_name, '.', /extract)
 if n_elements(tempname) lt 2 then tempname = [tempname, '.EPS'] else

tempname[n_elements(tempname) - 1] = '.EPS' ; prepares the postscript file
name for the DEM plot

 ps_ratios = tempname ;
prepares the postscript file name for the ratio plot

 ps_ratios[n_elements(ps_ratios) - 1] = '_RATIOS.EPS'
 ps_ratios = strcompress(strjoin(ps_ratios))
 ps_name = strcompress(strjoin(tempname))
 SET_PLOT, 'PS' ; sets the plot to postscript
 DEVICE, FILE=ps_ratios, /landscape, /medium, /COLOR, BITS=8 ; sets the

plotting device to the FIRST file being created, the ratio plot
 manip = ECHIDNA_plot(manip, ev.TOP, /displayonly, ps=ps_name) ; calls the

plot function with no alteration of the plot data, and with the postscript name
 device, /close ; finalizes the file

104

 set_plot, 'x' ; returns the plot to the screen
 print, 'DEM plot saved to ' + ps_name + '.'
 print, 'Ratio plot saved to ' + ps_ratios + '.'
 endif
endif

if uval eq 'PRINT' then begin ; something seems to be
wrong with IDL's control of the printer - not yet functional ###REMOVE

 SET_PLOT, 'PRINTER'
 manip = ECHIDNA_plot(manip, ev.TOP, /displayonly, /ps)
 SET_PLOT, 'X'
endif

if uval eq 'SAVE' then begin ; calls the save function when save is
clicked

 widget_control, ev.top, sensitive = 0
 a = ECHIDNA_save(manip, ev.top)
 widget_control, ev.top, sensitive = 1
endif

if uval eq 'PLOTTYPE' then begin
 plottype_id = widget_info(ev.top, find_by_uname = 'PLOTTYPE')
 widget_control, plottype_id, get_value = plottype
 manip.plottype = plottype
 widget_control, ev.top, set_uvalue = manip
 manip = ECHIDNA_plot(manip, ev.TOP)
endif

if uval eq 'QUIT' then begin
 QUITECHIDNA = ECHIDNA_YorN(title = 'QUIT?', msg = 'Are you sure you want to

quit ECHIDNA?', eventop = ev.TOP) ; if QUIT button clicked, asks
whether to quit

 if QUITECHIDNA eq 'YES' then widget_control, ev.top, /destroy ; if YES is selected
to quit, kills all widgets

endif

if uval eq 'DEMdraw' then begin ; indicates DEM plot was where the event originated
 if ev.press eq 1 then begin ; if event is that the moust button was pressed,

before it was released
 manip.clicked = 1
 manip.last_DEM = manip.dem ; changes previous DEM to current DEM for

undo function
 cursor, x1, y1, /nowait, /data ; This is very ill advised. However, if the plot function

plots the DEM curve last, then it should be the current direct graphics window, and

105

the CURSOR procedure should work.
 bin_index1 = where(min(abs(x1 - manip.bins)) eq abs(x1 - manip.bins)) ;

determines which temperature bin has been clicked in
 if manip.plottype eq 1 then y1 = y1 - alog10(manip.binwidths[bin_index1])
 if manip.mode eq 'BINDRAG' or manip.mode eq 'DRAW' then manip.storex =

bin_index1
 if n_elements(bin_index1) gt 1 then bin_index1 = bin_index1[0] ; if for some

reason it identifies two adjacent temperature bins, it just takes the lower one
 manip.DEM[bin_index1] = y1 ; sets the y value

retrieved from the plot window event as the new DEM value for that temp bin
 manip = ECHIDNA_plot(manip, ev.TOP) ; calls plot

function with new DEM value
 if manip.mode eq 'ZERObin' then begin ; when mode is to zero

a bin, sets that bin's DEM value to baseline and calls plot function
 manip.DEM[bin_index1] = manip.baseline
 manip = ECHIDNA_plot(manip, ev.TOP)
 endif
 endif

 ; Following is a separate section since the !MOUSE structure does not respond until the

following event. It is necessary to keep track of the current state of the mouse
button in the context of the program, rather than use the system variables.

 if manip.mode eq 'BINDRAG' or manip.mode eq 'DRAW' then begin ; when mode is
something other than just to click

 bin_index_current = manip.storex ; sets a current bin according to stored x value
 if manip.clicked eq 1 and ev.release ne 1 then begin ; as long as the mouse button

is still down (indicated by the clicked tag not being reset to 0 by a mouse release
event), does the following

 cursor, x2, y2, /nowait, /data ; See above note on use of CURSOR.
 if manip.mode eq 'DRAW' then bin_index_current = where(min(abs(x2 -

manip.bins)) eq abs(x2 - manip.bins)) ; resets current bin index only if mode is
draw

 if manip.plottype eq 1 then y2 = y2 - alog10(manip.binwidths[bin_index_current])
 if n_elements(bin_index_current) gt 1 then bin_index_current =

bin_index_current[0] ; if current bin index was identified as two adjacent bins,
takes the lower one

 manip.dem[bin_index_current] = y2 ; sets the DEM value in the current bin
(whether or not it has been changed because of draw mode)

 manip = ECHIDNA_plot(manip, ev.TOP) ; calls plot function with new DEM
value

 endif
 endif

 if manip.mode eq 'GROUP' then begin ; NOT YET IMPLIMENTED

106

 endif

 if manip.mode eq 'UNGROUP' then begin ; NOT YET IMPLIMENTED
 endif

 if ev.release eq 1 and manip.mode eq 'ZERObin' then manip =

ECHIDNA_reset_mode(manip, ev.TOP) ; resets mode only after a
mouse button release (so draw or drag won't kick in)

endif

end

pro ECHIDNA
; main procedure - reads files, creates structures and defines and calls widgets

set_plot, 'X'
!p.multi = [0,0,0,0,0]
genx_name = dialog_pickfile(filter = ['*.genx;*.GENX;*.GenX;*.genX;*.GENx'], Title =

'Select .GENX file containing spectral line information.', get_path = genx_path) ;
prompts for genx file

if not(keyword_set(genx_name)) then goto, ECHIDNA_END
; ends in the event a file was not selected

rd_genx, genx_name, lines, text = text, header = header
; reads the genx file

genx_name = strsplit(genx_name, '/', /extract) ; extracts the filename
from the path

genx_name = genx_name[n_elements(genx_name) - 1]
genx_name = strcompress(genx_name)

lines = ECHIDNA_arrange_lines(lines) ; calls the function to
arrange the lines in the lines structure

binstep = abs(lines[0].logt[1] - lines[0].logt[0]) ; finds difference between temperature
bins - they must be evenly spaced for this to work right

binwidths = make_array(n_elements(lines[0].logt)) ; finds width of temperature bins
for i = 0, n_elements(lines[0].logt) - 1 do begin ; creates array of temperature width for

each bin - temperature differences are log, but bins are made linearly in log space
 binwidths[i] = (10^(lines[0].logt[i] + (binstep/2))) - (10^(lines[0].logt[i] -

107

(binstep/2)))
endfor

message = {CLICK:'Click in the DEM plot window to set a new point.',
BINDRAG:'Click and drag individual bins up or down.', DRAW:'Click and draw
DEM curve.', ZEROBIN:'Click in a bin to set its value to the baseline.'} ; the text
for the message window

manip = {lines:lines, DEM:fltarr(n_elements(lines[0].logt)),
LAST_DEM:fltarr(n_elements(lines[0].logt)),
predicted:make_array(n_elements(lines)),
observed:make_array(n_elements(lines)),
bins:make_array(n_elements(lines[0].logt)), DEMdraw:0, RATIOdraw:0,
SHOWbins:0, BASELINE:18, MODE:'CLICK', ymin:17, ymax:26,
message:message, header:header, text:text, genx_name:genx_name,
genx_path:genx_path, ratio_y:fltarr(n_elements(lines)),
ratio_err:fltarr(n_elements(lines)), chi_squared:double(0), storex:0.0, storey:0.0,
clicked:0, plottype:0,binwidths:binwidths } ; creates manip structure

for i = 0, n_elements(manip.lines) - 1 do manip.observed[i] = manip.lines[i].iobs ; puts
observed values into structure

for i = 0, n_elements(manip.dem) - 1 do manip.dem[i] = manip.baseline ;
initializes DEM values

manip.last_dem = manip.dem ;
initializes previous DEM values

manip.bins = manip.lines[0].logt ; sets
bins to the log of temp values

; Defines widgets for holding controls and displays
scrsize = get_screen_size() ; Determines the size of the screen
xsize = (scrsize[0] -415) / 2 ; Determines the x size of each of the two plot

windows in terms of screen size
ysize = xsize ; Determines the ysize of the two plot windows in terms of screen

size
menuwidth = scrsize[0] / 20
ECHIDNAbase = widget_base(title = 'DEM Editor - '+ genx_name, xoffset=200,

yoffset=200, column=3, uvalue = manip, /base_align_center) ; main base widget
defined

CONTROLcontainer = widget_base(ECHIDNAbase ,frame=5, /column, xsize = 115)
DEMcontainer = widget_base(ECHIDNAbase, /column, /grid_layout)
RATIOcontainer = widget_base(ECHIDNAbase, /column, /grid_layout)

; the list of modes
MODElist = widget_list(CONTROLcontainer, value = ['CLICK', 'DRAG BIN', 'DRAW'],

uvalue = 'MODElist', uname = 'MODElist', ysize = 3)

108

; Chooses type of plot - which value is being plotted on the Y axis
plot_type = cw_bgroup(CONTROLcontainer, ['DEM Plot', 'EM Plot'], uvalue =

'PLOTTYPE', uname = 'PLOTTYPE', set_value = 0, /exclusive)

; these are mode control buttons
UNDObutton = widget_button(CONTROLcontainer, value = 'UNDO', uvalue = 'UNDO')
ZEROBINbutton = widget_button(CONTROLcontainer, value = 'ZERO 1 BIN', uvalue =

'ZERObin')
BINSbutton = widget_button(CONTROLcontainer, value = 'SHOW BINS', uvalue =

'BINS')
INFObutton = widget_button(CONTROLcontainer, value = 'SHOW DATA INFO',

uvalue = 'INFO')

; defines widgets to display and enter y range values
YRANGEcontainer = widget_base(CONTROLcontainer, frame = 5, /column,

/base_align_center)
YRANGElabel = widget_label(YRANGEcontainer, value = 'Y-RANGE', /align_center)
YRANGEmax = cw_field(YRANGEcontainer, title = 'MAX', uvalue = 'YRANGEmax',

value = manip.ymax, uname = 'YRANGEmax', xsize = 3, /long, /return_events)
YRANGEmin = cw_field(YRANGEcontainer, title = 'MIN', uvalue = 'YRANGEmin',

value = manip.ymin, uname = 'YRANGEmin', xsize = 3, /long, /return_events)

; defines widgets to display and change the baseline value
BASELINEcontainer = widget_base(CONTROLcontainer, frame = 5, column=1, uvalue

= manip.baseline)
BASELINEUPbutton = widget_button(BASELINEcontainer, value = 'RAISE

BASELINE', uvalue = 'BASELINEUP')
BASELINElabel = widget_label(BASELINEcontainer, value =

strcompress(manip.baseline), uvalue = 'BASELINElabel', uname =
'BASELINElabel')

BASELINEUPbutton = widget_button(BASELINEcontainer, value = 'LOWER
BASELINE', uvalue = 'BASELINEDOWN')

; these are more buttons
LOADDEMbutton = widget_button(CONTROLcontainer, value = 'LOAD DEM', uvalue

= 'LOAD')
SAVEDEMbutton = widget_button(CONTROLcontainer, value = 'SAVE DEM', uvalue =

'SAVE')
MAKEPSbutton = widget_button(CONTROLcontainer, value = 'MAKE

POSTSCRIPTS', uvalue = 'PS')
PRINTbutton = widget_button(CONTROLcontainer, value = 'PRINT / PDF', uvalue =

'PRINT', sensitive = 0)
ZERODEMbutton = widget_button(CONTROLcontainer, value = 'ZERO DEM', uvalue

109

= 'ZERO')
QUITbutton = widget_button(CONTROLcontainer, value = 'QUIT', uvalue = 'QUIT')

; defines a message box to display current action
MESSAGEtext = widget_text(CONTROLcontainer, value = manip.message.CLICK,

uname = 'MESSAGEtext', ysize = 5, xsize = 16,/align_left, /wrap) ;,
/dynamic_resize, /sunken_frame, frame = 2 xsize = 112,

; defines the plotting window widgets
DEMdraw = widget_draw(DEMcontainer, xsize = xsize, ysize = ysize, uvalue =

'DEMdraw', uname = 'DEMdraw', /BUTTON_EVENTS, /MOTION_EVENTS)
;xsize = 800, ysize = 800, , xsize = 1000, ysize = 800

RATIOdraw = widget_draw(RATIOcontainer, xsize = xsize, ysize = ysize, uvalue =
'RATIOdraw', uname = 'RATIOdraw') ;, xsize = 1000, ysize = 800

; Realizes the widgets
widget_control, ECHIDNAbase, /realize

; sets initial modes and plots initial flat DEM curve
widget_control, MODElist, set_list_select = 0
widget_control, DEMdraw, get_value = DEMdraw
widget_control, RATIOdraw, get_value = RATIOdraw
manip.DEMdraw = DEMdraw
manip.RATIOdraw = RATIOdraw
widget_control, ECHIDNAbase, set_uvalue = manip
manip = ECHIDNA_plot(manip, 0, /displayonly) ; plots the initial DEM, but does not

place the manip array in the top level widget's uvalue, as it is not yet running

; calls the handler routine
xmanager, 'ECHIDNA', ECHIDNAbase

;dem_out = demacs(lines[0].logt)

ECHIDNA_END: ; goto point to exit program

end

110

	Cross Calibration of Hinode's X-ray Telescope and Extreme Unltraviolet Imaging Spectrometer Using X-ray Bright Points
	Recommended Citation

	Approval Page
	Title
	Acknowledgments
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Chapter 1. Introduction to the Sun
	Chapter 2. Overview of Instruments
	Chapter 3. X-ray Bright Points Described
	Chapter 4. Data and Analysis
	References
	Appendix A. Pixel_Picker: Coalignment and Selection Software
	Appendix B. EML_Plotter
	Appendix C. ECHIDNA: A DEM Forward Folder

