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ABSTRACT 

Khan, Muhammad Mahmudur Rahman.M.S.The University of Memphis. 
December, 2010. Autonomous Wireless Radar sensor Mote for Target Material 
classification. Major Professor: Khan M. Iftekharuddin, Ph.D.  

 

 An autonomous wireless sensor network consisting of different types of 

sensor modalities is a topic of intense research due to its versatility and 

portability. These types of autonomous sensor networks commonly include 

passive sensor nodes such as infrared, acoustic, seismic, and magnetic. 

However, fusion of another active sensor such as Doppler radar in the integrated 

sensor network may offer powerful capabilities for many different sensing and 

classification tasks. In this work, we demonstrate the design and implementation 

of an autonomous wireless sensor network integrating a Doppler sensor into 

wireless sensor node with commercial off the shelf components. We also 

investigate the effect of different types of target materials on return radar signal 

as one of the applications of the newly designed radar-mote network. Usually 

type of materials can affect the amount of energy reflected back to the source of 

an electromagnetic wave. We obtain mathematical and simulation models for the 

reflectivity of different homogeneous non-conducting materials and study the 

effect of such reflectivity on different types of targets. We validate our simulation 

results on effect of reflectivity on different types of targets using real toy 

experiment data collected through our autonomous radar-mote sensor network.  
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Chapter 1 

Introduction 

An autonomous wireless sensor network with different sensor modalities is an 

active research focus due to its versatility and portability of applications [1]-[5]. 

An autonomous sensor network is a collection of sensor nodes with limited  

processing, power, and communication capabilities that monitors a real world 

environment without no or limited human intervention. Each node of the network 

gathers information about the local environment, preprocesses the data, and 

transmit via wireless channels to a base station [1]. Historically, this type of 

autonomous system has used infrared, acoustic, seismic, and magnetic sensors 

for passive sensing, and optic and ultrasound sensors for active sensing. 

However, RAdio Detection And Ranging (Radar) has been conspicuously absent 

in sensor networks [2]. Radar systems are widely used in defense, meteorology 

and surveillance due to their versatility in working from a long range, in adverse 

weather where other sensors may be unavailable, or with non cooperative 

targets. Radar is an object detection system that uses electromagnetic waves to 

identify the range, altitude, direction, or speed of moving and fixed objects such 

as aircraft, ships, motor vehicles, clouds, storms and terrain [6]. In addition to the 

precise measurements about the target objects, radar systems have the 

capability to classify targets into different classes based on the Radar Cross 

Section (RCS) of different classes of objects. The capability of such classification 

is related to the electromagnetic energy reflected back from different classes of 

objects. The types of materials affect the amount of reflection from an object. 
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Electromagnetic waves through matter are governed by the permittivity, the 

permeability, and the conductivity of the materials [7][8]. The widespread 

commercial applications of the radar have been limited because the conventional 

systems are expensive, bulky, and difficult to use with very few exceptions [2]. 

Currently, with the advancement of technology many small inexpensive radar 

sensors with standard capability and low power requirements are commercially 

available [9]. Therefore, there is an opportunity to integrate a radar sensor with 

autonomous distributed wireless sensors. 

The integrated autonomous sensor system including radar sensors will add a 

powerful and robust sensing modality to the already available modalities such as 

acoustic, magnetic, vibration, and passive infrared sensors in wireless sensor 

node. Effective and intelligent design of such integration can provide a powerful 

distributed sensor network system with versatile and complementary sensor 

modalities. In the integrated system, radar offers measurements of the range, 

velocity, direction, and electromagnetic characteristics of the target to 

complement existing wireless sensor node capabilities. The intelligent 

combination of some or all of the sensor modalities in certain application 

scenarios can work as an effective tool to detect, track, and identify targets in 

wide areas. The intelligent and successful design and implementation of such an 

integrated autonomous distributed sensor network, may work as a low tier data 

gathering system for an intelligent decision support system. Furthermore, the 

successful development of this type of system using the commercially available 

low-cost products would be more useful for widespread civil and military 
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applications. There have been some efforts to integrate a Doppler sensor to the 

wireless sensor node in recent years. We discuss them briefly in Chapter 2. 

BumbleBee is a wireless node with radar integrated [11]. The Radar in 

BumbleBee operates in C-Band (5-8GHz). BumbleBee claims to detect velocity 

of moving objects with built in micro strip antenna. We plan to integrate a Ka –

band (24-40GHz) Doppler Radar into the wireless node which will detect range 

and velocity of target object simultaneously. We also use horn antenna which 

sends signal more specific to a target direction. Moreover, our target is to build 

the system with cheap, commercially available off the shelf components. 

In this thesis, we design and implement an autonomous distributed sensor 

network that integrates a low-cost tiny Doppler radar sensor with the 

commercially available wireless sensor motes for dynamic surveillance and 

tracking. Our autonomous distributed sensor network is then used to collect data 

from an indoor experimental setup. The data collected from the network is stored 

and analyzed in a computer system connected to a base station. The first part of 

the thesis deals with design and implementation of autonomous sensor network 

by integrating a Doppler radar sensor to the commercially available wireless 

sensor mote. Then we exploit the integrated wireless mote to collect Doppler to 

compute the range and velocity of moving targets. The second part of the thesis 

investigates the effect of different types of materials on the amount of reflectivity 

for Doppler radar using the same integrated sensor. The material property is an 

important factor that influences how much electromagnetic energy is reflected 

back to the source from where it emits. For simplification of the model and limited 



4 

 

scope of this thesis, we just investigate the reflectivity of the non- conducting 

materials .Since the non-conducting materials have constant permittivity and no 

conductivity, the index of the refraction is constant and real valued for different 

types of materials of this class[7][8]. Therefore, increasing the index of refraction 

increases the reflections emitting back from the material.    

We investigate the reflectivity property of different non-conducting target 

materials to classify objects. The refractive index of non-conducting materials 

and the reflectivity of plain electromagnetic wave from non-conducting materials 

can be modeled mathematically [7][8]. We modify the reflectivity model to 

incorporate Doppler principle and simulate the effects of Doppler signal reflected 

from non-conducting materials. Then reflectivity indices for the same non-

conducting materials are validated by experimentally collecting radar reflection 

data from non-conducing material surfaces using our integrated radar-mote 

autonomous system. The simulated radar signal is compared with that of 

experimental signal for verification. Finally, we classify different types of non-

conducting materials based on the radar signals reflected back from the 

corresponding material surfaces using Multiple Signal Classification (MUSIC) 

signal processing technique.  

In summary, the objectives of this thesis can stated briefly as following list, 

1. To design and implement a wireless autonomous radar mote sensor 

network integrating a Doppler radar into wireless sensor node with low 

cost commercial off the shelf components. 
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2. To investigate the effect of different types of target materials on return 

radar signal and use the newly built integrated radar mote sensor network 

as data collection tool for the investigation. 

In Chapter 2, we review relevant background research and the essential 

technologies required for this thesis. In Chapter 3, we discuss the proposed 

design and implementation of an integrated radar-mote autonomous system. 

Chapter 3 also discusses the modified reflectivity model to show how material 

property affects the reflection of electromagnetic waves. We discuss the 

theoretical derivation of the modified velocity model used to simulate the 

reflection of electromagnetic waves from a few non conducting materials. We 

also discuss a simple signal processing algorithm to classify different types of 

materials in Chapter 3. In Chapter 4, we show experimental implementation of 

our radar-mote design and discuss data collection using our integrated 

experimental setup. The comparison between simulated and experimental 

reflectivity of non-conducting materials are also shown in Chapter 4.The 

successful classification of different types of non-conducting materials based on 

the electromagnetic reflection from surface of different  materials is further 

demonstrated. Finally, we discuss our conclusion and future work in Chapter 5. 
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Chapter 2 

Background Review  

In this Chapter, we discuss relevant background related to the constituent parts 

of our autonomous wireless network such as Doppler radar sensor and wireless 

sensor motes. The capability of the sensors is also discussed from theoretical 

point of view. The theoretical model showing the relation between material 

refractive index and reflectivity of electromagnetic signal is discussed as well 

[7][8]. In this Chapter, relevant recent research efforts about integrating radar 

sensor with wireless motes and their intended applications are also reviewed. 

One of the goals of our thesis is to design and implement an autonomous sensor 

network integrating a Doppler radar to a wireless sensor mote with the 

commercial off the shelf (COTS) components effectively to provide the 

complementary benefits of different sensor modalities. The need for such an 

integrated sensor network suite is discussed in the Chapter 1.  

2.1 Previous Research efforts on integrated radar-mote sensor networks 

and their Applications 

The sensor network research field is a relatively new field. Miniature autonomous 

sensor networks that include different types of sensor modalities such vibration, 

acoustics, temperature, and pressure are developed as a result of industry-

academia cooperation. Historically, surveillance systems have used infrared, 

acoustic, seismic and magnetic for passive sensing, and optics and ultrasonic for 

active sensing. However, radar has conspicuously absent [2]. Because radar 
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systems are conventionally bulky and requires, such systems are not suitable for 

autonomous wireless sensor network platform. With the advent of the micro-

power pulse radar at Lawrence Livermore National Labs [30] in mid 1990s, the 

low power radar becomes a possibility. Subsequently, technical progress in 

sensor network led the effort to integrate radar  as one of the sensor modalities 

to sensor network platform. There have been a few successful efforts to integrate 

radar in sensor mote designed by a group of researcher from UC Berkeley and 

Ohio State University [2]. 

The Radar mote, designed by researchers at UC Berkeley and Ohio State 

University, consists of several circuit boards including a main processor and 

radio board, an optional sensor board, an ultra wideband radar sensor, and a 

power board [2]. Reference 2 uses Mica2 sensor mote and 2.4 GHz TWR-ISM-

002 radar sensor from Advantaca [10] as two main components of their radar-

enabled sensor network. The integration also includes a custom designed power 

board which provides power required for the radar and other equipments, and an 

optional Mica sensor board. These circuit boards are housed in a self-righting 

enclosure that ensures the radar’s antenna is always oriented vertically [2]. The 

authors in Ref 2 use a network of twelve Radar Motes in a surveillance 

application to successfully detect, classify, and track people and vehicles in an 

experimental scenario with moving targets [2].  

BumbleBee is another integrated radar mote sensor developed by the Samraksh 

Company [11]. The Radar used in BumbleBee is a low-power Pulsed Doppler 

Radar (PDR) that is designed to suit a variety of Wireless Sensor Network (WSN) 
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applications. Unlike traditional radars, the BumbleBee is designed to be 

compatible at a systems level with small, battery powered nodes [11]. The 

BumbleBee operates at a 5.8GHz center frequency. The key features of the 

BumbleBee include: a detection range between 1m to 10m which is controllable 

via software, coherent output (both I and Q channels), on-board internal antenna, 

60 degree conical coverage pattern, and detection of radial velocities between 

2.6cm/sec and 2.6m/sec [11]. The BumbleBee package includes a BumbleBee 

radar board, a cable to connect the BumbleBee radar board to the TelosB mote 

or TMote Sky, three alkaline batteries in a battery case, a clear plastic base, four 

2 inches post for separating the board from base and supporting software [11]. 

The supporting software of the BumbleBee includes three modules such as: a 

device driver providing the interface between BumbleBee radar board and 

TelosB mote, a data acquisition program, and a simple detector program [11]. 

The programs are written in TinyOS 2.x platform. The BumbleBee is suitable for 

variety of monitor and surveillance applications including classification of human 

activities in commercial and recreational settings, and monitoring industrial 

machinery during operation, and monitoring livestock or wildlife activity [11]. 

Although these integrated radar-mote sensor network products work well for 

certain applications, there is still room for improvement. The radars used in the 

above mentioned platform offer the velocity of a moving target. Per 

manufacturer’s claim the BumbleBee claims to have the capability to compute 

range also after complex signal processing. However, it is not produced 

simultaneously with velocity. Our plan is to improve this drawback of the system 
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mainly along with other improvements. Our radar-mote system will compute the 

range and velocity simultaneously with simple signal processing technique. We 

also plan to sample the signal with higher rate which will give more points for 

each signal and the signal is smoother.  

2.2 Autonomous sensor network   

An autonomous sensor network is a collection of sensor nodes with limited 

processing, power, and communication capabilities that monitors a real world 

environment through differing modalities. The nodes gather information about the 

local environment, preprocess the data, and transmit via wireless channels to a 

base station [1]. Generally a wireless sensor network consists of spatially 

distributed wireless sensors to cooperatively monitor physical or environmental 

conditions such as temperature, sound, vibration, pressure, motion and 

pollutants [3][5]. The development of wireless sensor networks was at first 

motivated by military applications such as battlefield surveillance. However, they 

are now used in many industrial and civilian application areas, including industrial 

process monitoring and control, machine health monitoring, environment and 

habitat monitoring, healthcare applications, home automation, and traffic control 

[3][4][12]. Figure 1 shows the typical organization of an autonomous wireless 

sensor network. 

 

 

 



 

 

 

 

 

Fig. 1: Typical Wireless Sensor Network Architecture. 

 

In addition to the one or many sensors incorporated in the sensor node each 
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monitor the activities of habitats of that area. Wild life scientists can effectively 
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geographic areas to collect data sensing different physical conditions such as 
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temperature, heat, pressure, level of water [14]. Health applications of wireless 

sensor network span from physiological data collection for humans to tracking 

and monitoring the doctors and patients in hospitals. Smart Sensors and 

Integrated Microsystems (SSIM) is a promising project by a group of scientist 

where a retina prosthesis chip consisting of 100 micro sensors are built and 

implanted in human eye [15]. A few other similar applications include glucose 

level monitors, organ monitors, cancer detectors and general health monitors 

[16]. In the battlefield, a large number of wireless sensor nodes with different 

kinds of sensor modalities are deployed to detect intrusion and track the intruder. 

The surveillance system in civil application also uses wireless sensor networks 

very effectively to monitor any area.  

2.2.2 Sensor Node Architecture  

A typical wireless sensor node has four basic components including a sensing 

unit, a processing unit or microcontroller, a transceiver unit, and a power unit 

[17]. Figure 2 shows typical sensor node architecture. Senor unit or sensing unit 

is the most important component of wireless sensor network. 

 

 

 

 

 

 

Fig.  2: Major components of a typical wireless sensor node (Ref. [12]) 



12 

 

In addition to these major components a sensor node can include a global 

positioning system or some other specific component based on the applications. 

Most of the commercial sensor nodes provide expansion slots to support the 

addition of application specific components to the existing system node. 

Sensing Unit or Sensor 

A sensor or sensing unit is a device that measures some physical quantity and 

converts it into a signal to be processed by the microcontroller [17]. The sensing 

unit generally senses the measurable change of any physical condition 

continually within a certain range of its operation. The general sensing modalities 

available with the commonly available sensor units are temperature, vibration, 

acoustic, magnetic field, pressure sensors. The sensing units may be classified 

as an active or passive based on the sensing methods. Passive sensors gather 

data from environment without actual probing or manipulation of the environment. 

Passive infrared sensing is such a sensing modality. However, for active sensing 

the sensors collect data with active manipulation of the environment. Radar, 

sonar and some seismic sensors fall into the category of the active sensors. The 

active sensors, such as radar, generate probing  signals, send them to the 

environment and receive the reflected signals. According to the direction of 

sensing, the sensor can be further classified into directional and omni-direction 

classes. Generally, most of the passive sensors such as vibration, acoustic, 

magnetic sensors are omni-directional since these sensors sense the 

measurable physical change in all directions around the sensors. Directional 
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sensors such as radar and sonar send directed signal beams through some 

directional antenna and receive the reflected response through antenna.  

Microcontroller 

A microcontroller, the processing unit in a wireless sensor node, processes the 

sensed data, controls and coordinates different activities and parts of the sensor 

nodes efficiently. Microcontrollers are preferred because of their low power 

consumption, flexibility, and expandability which are very important issues for a 

sensor node.  

Transceiver 

A transceiver is a device with which a sensor node forms a network with other 

sensor nodes by transmitting and receiving signals from other nodes. Both the 

network control signals and the sensed data are transmitted through different 

channels by the transceiver units of the sensor nodes. The sensor node 

transceiver unit generally uses the Radio Frequency (RF) for communication 

.The Industrial, Scientific and Medical (ISM) radio frequency band is commonly 

used as the standard radio frequency band of communication for sensor 

transceivers.  

Power Source 

The power source in case of sensor node is generally storage energy cells or 

battery. Although some sensors include solar cells as power sources they may 
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not be suitable for all application scenarios. Some sensors can even renew their 

energy from sensed vibration and temperature.  

Memory 

Sensor nodes need to have some kind of memory to store programs and data. 

The obvious choice of memory for sensor node is built in on chip memory from 

energy and efficiency perspective. But the standard sensor nodes also provide 

some external memory for extended user application in mind. 

2.2.3 Commercial Wireless Sensor Mote Products 

The wireless sensor network field is still a developing field and several standards 

are either being ratified or under development. We summarize the features of 

some of the commercially available standard wireless node products in Table 1.  

 

Table 1: List of commercially available sensor nodes [18][19] 

Sensor 
Node 
Name and 
Picture 

Micro-
controller 

Transceiver Program 
and 
data 
Memory 

External 
memory 

Programming Operating 
System 
Support 
 

IMote 
    

ARM core 
12 MHz 
 

Bluetooth 
with the 
range of  
30 m 

64K 
SRAM 
 

512K 
Flash 

nesC TinyOS  
support 
 
 
 

Mica2 
 
 
 

ATMEGA 
128L 
 
 
 

Chipcon 
868/916 
MHz Chip 
 

4K  
RAM 

128K 
Flash 

nesC TinyOS, 
SOS and 
MantisOS 
support 

MicaZ 
 

ATMEGA 
128L 

TICC2420 
802.15.4 or 
ZigBee 
compliant 
radio 

4K  
RAM 

128K 
Flash 

nesC TinyOS, 
SOS, 
MantisOS, 
Nano-RK 
support 
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TelosB  
 
 
 
 
 

Texas 
Instruments 
MSP430 
Micro- 
Controller 

250 kbit/s 
2.4GHz 
IEEE802.15.
4 Chipcon 
Wireless 
Transceiver 

10K 
RAM 

48K 
Flash 

nesC TinyOS, 
SOS, 
MantisOS, 
Contiki 
Support 

T-Mote sky 
 
  

Texas 
Instruments 
MSP430 
Micro- 
Controller 

250 kbit/s 
2.4GHz 
IEEE802.15.
4 Chipcon 
Wireless 
Transceiver 

10K 
RAM 

48K 
Flash 

nesC TinyOS, 
SOS, 
MantisOS, 
Contiki 
Support 

Iris Mote 
 
 

AT mega 
128 

Atmel 
AT86RF230 
802.15.4/Zig
Bee 
compliant 
radio 

8K RAM 128K 
Flash 

nesC TinyOS, 
MoteWork 
support 

BTnode 
 

Atmel 
ATmega 
128L  
(8 MHz @ 
 8 MIPS) 
 

Chipcon 
CC1000 
(433-915 
MHz) and 
Bluetooth 
(2.4 GHz) 

64 + 
180 K 
RAM 

128K 
Flash 
and 4K 
EEP-
ROM 

C and nesC BTnut and 
TinyOS 
Support 

Dot  
 

ATMEGA 
163L 

 1K RAM 8-16K 
Flash 

weC  

 

We have selected TelosB mote for the design and implementation of our 

integrated radar-mote system. Because, TelosB platform is widely accepted and 

used by people who work with sensor network. It also supports different light-

weight operating system including TinyOS. Therefore, it is reasonable to start 

with the TelosB platform although we plan to make the system generic for all 

platforms in the future. 
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2.2.4 TelosB Mote Platform Details 

Crossbow’s TelosB mote (TPR2400) is an open source platform designed 

cutting-edge implementation for the research community [23]. The TPR2400 

includes the standard features such as USB programming capability, an IEEE 

802.15.4 standard radio transceiver with built in antenna, a low power 

microcontroller (MSP430), and capability to integrate sensor boards through 

standard ports. The TelosB is successfully used in applications such as low 

power sensor network development and sensor network experimentation by 

many research groups all over the world. TelosB runs TinyOS 1.1.10.Tiny OS is 

a small, energy efficient operating system designed specifically for sensor nodes. 

The key features of the TelosB mote platform are as follows [20],  

a) IEEE 802.15.4/ZigBee compliant RF (Radio Frequency) transceiver 

b) Uses a globally compatible ISM band (2.4 to 2.4835GHz) for wireless 

communication between nodes with 20kbps data rate. 

c) Integrated on board antenna with 20m to 30m range in indoors and 75m to 

100m range in outdoors. 

d) 8MHz Texas instruments MSP430 microcontroller with 10kB RAM. 

e) 1MB external flash for data logging 

f) Programming and data collection using USB interface 

g) Low current consumption 

h) Optional sensor suite including integrated light, temperature and humidity 

sensor 
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Figure 3 shows the block diagram and a real picture of TelosB mote. 

  

 

 

 

 

 

 

Fig. 3: a) Block diagram of TelosB TPR2400 mote (left), b) TelosB TPR2400 

mote real picture (right).(Ref.20)  

 

Microcontroller in TelosB (TI MSP430) 

The central processing unit in a TelosB mote is Texas Instruments MSP430 

microcontroller. The key features of the MSP430 microcontroller are as follows 

[21], 

a) Ultra low power architecture which extends battery life. 

b) High performance analog and digital I/O system for precise 

measument.The MSP430 has 8 external ADC ports and 8 internal ADC 

ports. We can use the internal ADC ports to read internal thermistor or 

monitor the batter voltage. The external ADC ports which are available as 

part of expansion connectors to add optional sensor board or any analog 
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sensor can be used to read analog signal from the sensor. We will use 

one of the analog ports to read our radar output signal. 

c) The 16bit RISC processor controls the TelosB activities very efficiently 

and allows designing new application by programming. 

d) In-system programmable flash permits the flexible code changes, field 

upgrades and data logging. 

e) High speed UART (Universal Asynchronous Receiver /Transmitter) serial 

communication with the laptop. 

Analog to Digital Converter Module in TI MSP430 

MSP430 has a high speed analog to digital converter ADC12. It supports fast 12 

bit analog to digital conversion. The key features of the ADC12 module are as 

follows [21], 

a) It can sample as fast as 200ksps. 

b) Monotonic 12 bit converter with no missing code. 

c) Conversion can be initiated by software or Timer_A and Timer_B. 

d) Software selectable on chip reference voltage generation (1.5V or 2.5V). 

e) Software selectable internal or external reference voltage. 

f) Selectable conversion clock source. 

g) Single channel, repeat-single- channel, sequence and repeat-sequence 

modes of conversion. 

The ADC12 module can be configured with user software. We develop our own 

code module for configuring the ADC for the required operations specific to our 
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goal. We discuss the software level integration design in later sections. The ADC 

core converts an analog input to its 12 bit digital representation and stores the 

result in conversion memory. We can use two reference voltage levels VR+ and 

VR- which are selectable by programming. Here  VR+  is the upper limit and VR- is 

the lower limit of converted voltage output. The digital output NADC is equal to the 

maximum or full scale value when input signal is equal to or more than VR+ 

.Similarly the digital output is zero when the input signal is equal to or less than 

VR- .The formula of converting analog signals to digital is represented in following 

equation (1), 

 

        ���� = 4096 ∗ ������
�������   .                                    (1) 

We can turn off the ADC12 when not in use to save power. The MSP430 

microcontroller has an on chip clock, ADC12CLK, which is used both as a 

conversion clock and to generate the sampling period when the pulse sampling 

mode is selected. There are eight external and four internal analog signal inputs 

in MSP430 which can be selected as the input channels for conversion by the 

analog input multiplexer. The channel which is not selected to take input is 

generally isolated from the ADC. An intermediate node is then connected to the 

analog ground (AVss) which helps to eliminate cross talk by grounding stray 

capacitance. 

The ADC12 module contains a built-in voltage reference with two selectable 

levels such as 1.5V and 2.5V [21]. We can choose the either of the reference 
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voltages internally by programming. The external reference voltage can be given 

on pin VREF+ .When we want to use the internal reference we need to enable it by 

setting the REFON.There is another flag REF2_5V which can be used to choose 

between the reference voltages. If we set the lag REF2_5V=1 then the internal 

reference voltage is set to 2.5 whereas if we set it to 0 the reference voltage 1.5 

is selected. We can even turn off the reference voltage when it is not in used to 

save power by programming. The modes of operations are as follows [21], 

a) Single channel single conversion(A single channel is converted once) 

b) Sequence of channels(A sequence of channel is converted once) 

c) Repeat single channels(A single channel is converted repeatedly) 

d) Repeat-sequence-of channels(A sequence of channels is converted 

repeatedly) 

In our integration we use the second mode of operation where a single input 

channel is converted repeatedly until a signal to pause comes from base station. 

The ADC12 module can be configured with the user software. We have our code 

modules for configuring the ADC for the required operations specific to our goal. 

We will discuss about the software level integration design in later sections.  

Radio Transceiver (CC2420) and Antenna in TelosB 

TelosB mote uses the Chipcon CC2420 RF transceiver for wireless 

communication purpose. The CC2420 is true a single-chip 2.4GHz IEEE 

802.15.4 compliant RF transceiver designed for low power and low voltage 

wireless applications. There is extensive hardware support to facilitate features 
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such as packet handling, data buffering, burst transmissions, data encryption, 

data authentication, clear channel assessment, link quality indication, and packet 

timing information. TelosB has an integrated on board antenna enabled but if any 

application requires an external or specific antenna an external Subminiature 

version A (SMA) connector available in TelosB to add an external antenna. The 

internal antenna is an Inverted-F microstrip antenna with unidirectional radiation 

patterns. The approximate range of the onboard antenna is 20m to 30m in 

indoors and 75m to 100m in outdoors which are enough for many applications. 

TelosB Expansion Connector 

TelosB has two sets of expansion connectors which may be configured to allow 

the additional devices to be connected with the mote. The additional devices can 

be any analog sensor, light display or digital peripherals conforming to the 

standard of the TelosB mote. The two expansion connectors are: 10-pin IDC 

header at position U2 and a 6-pin IDC header at U28 [22]. The 10-pin connector 

has both the analog and digital inputs. Peripherals can be connected to the 10-

pin connector using an IDC header, IDC ribbon cable, or by a custom designed 

printed circuit board that solders directly onto the IDC header providing a robust 

connection to the module [22]. In our experimental integration we have used 

normal circuit wires to connect Doppler radar, with the expansion connector of 

the wireless mote. There is an additional 6-pin connector which is located in U28 

position of the TelosB. The 6-pin connector provides two more analog input 

channels which are also used as 12bit DAC output. The following figures show 
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the organization of different pins in the expansion connectors. Figure 4 shows 

10-pin expansion connector. 

 

 

 

 

 

Fig. 4: The organization and functionality of the 10-pin expansion connector. The 

gray texts provide the alternative functions of the pins. (Ref. [24]) 

 

2.2.5 TinyOS and Programming TelosB 

As the sensor nodes have limited memory and energy sources, the operating 

system should be very memory and energy efficient without losing the robust 

programming capability required for different applications. There are some 

embedded operating systems for wireless network platforms such as TinyOS, 

SOS, and Mantis-OS, Moteworks, and peerOS. Among them TinyOS, a 

component based operating system built specifically for the wireless sensor 

network platform, is widely accepted and supported by both the sensor network 

research community and commercial manufacturers [22][23]. 
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TinyOS is an embedded operating system written in the Network Embedded 

System C (nesC) programming languages as a set of cooperating task and 

processes [23]. nesC is a special dialect of the C programming language that is 

optimized to facilitate the efficient use of very limited memory of sensor network 

components. The application programs on TinyOS sensor platforms also written 

in nesC. The supplementary tools needed to run applications are in Java and 

some shell scripts. The associated libraries required, such as nesC compiler and 

binding utilities like toolchains are mostly written in C programming language 

[23]. TelosB sensor platform supports TinyOS and nesC. 

The TelosB motes are programmed through the onchip USB connector available 

in motes. TelosB uses a USB controller chip from Future Technology Devices 

International (FTDI) to communicate with the host computer [22]. The driver for 

FTDI must be installed in host computer to communicate with the TelosB mote. If 

the driver is installed the TelosB mote appears as COM port in windows and a 

device in Linux or UNIX device list. TinyOS supports programming TelosB mote.  

2.3 Doppler Radar  

Doppler radar system is special type of radar that exploits Doppler effect to 

measure the range and velocity of a target object [24]. The Doppler effect or 

Doppler shift is the change in frequency of a wave for an observer moving 

relative to the source of the wave [25]. The waves generally propagate in a 

medium and the velocity of the observer and the source are relative to the 

medium in which the wave propagates. The total Doppler Effect may therefore 
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result not only from the motion of the sensor and observer but also from the 

motion of the medium. However, if the wave, such as light, does not require a 

medium only the relative difference between velocity of the source and observer 

is considered [24]. If the source of the signal wave is fixed or static, the relative 

difference between the source and observer is the function of the velocity of the 

moving observer. Using this principle the Doppler radar emits microwave signal 

towards the target and the reflected signal from moving target is received and 

compared with the emitted signal to find the relative shift or Doppler shift which is 

function of target velocity. The mathematical principle to find the velocity and 

range using Doppler radar will be discussed in a later section. 

2.3.1 The Components of a Doppler Radar     

The Doppler radar consists of four major components such as transmitter, 

receiver, antenna, and transmit-receive switch. Figure 5 shows the block diagram 

of typical radar system. 

 

 

 

 

 

 

Fig. 5: A typical radar system 
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The transmitter generally includes an oscillator which generates signal wave of 

required frequency and emits toward the target or environment. Based on the 

target application domain the signal wave is directed to the environment in 

different ways using different types of antenna. An omni-directional antenna 

directs the signal in all possible directions. The directional antenna directs the 

signal wave towards a target. The receiver detects the reflected signal from a 

target through antenna, amplifies it as the reflected signal is weak compared to 

transmitted signal due to scattering loss, and sends it to a mixer. The mixer 

compares it with the transmitted signal to find out the frequency shift or Doppler 

shift which eventually helps to compute the velocity and range of a target. The 

transmitter and receiver unit may be in separate setup and use separate 

antennas, or they may be built in together sharing same antenna working as one 

electronic package. In case where they are bundled together with shared 

antenna and some other components, there should be an electronic switch to 

control the mode of transmitting and receiving. When the transmitter and receiver 

are bundled together it is termed as transceiver. We will use such a Doppler 

transceiver for designing our experimental system.  

2.3.2 Different Frequency Band Radars and their Applications 

For the electronic and electrical devices the Institute of Electrical & Electronic 

Engineers (IEEE) standard is followed by almost all manufacturers. In addition to 

this device standard, different countries may have their own standard of 

allocating frequency band for different applications. Table 2 shows a brief list of 
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the radar frequency band which are widely adopted in USA by IEEE and 

internationally by International Telecommunication Union (ITU). 

 

Table 2: Radar Frequency Band [26] 

Frequency 
Band Name 

Frequency 
Range 

Wavelength  
Range 
 

Application 

HF(High 
Frequency) 

3-30MHz 10-100m This radar is used to detect target at very long 
range like thousands of kilometers. The coastal 
radar systems generally use this band of radars. 

P < 300MHz   > 1m Here ‘P’ stands for previous which is applied 
retrospectively to earlier radars systems. 

VHF(Very 
High 
Frequency) 

30-330 
MHz 

0.9-6M Used in radio broadcasting (FM radio, amateur 
radio), television broadcasting, mobile earth 
station, radio modems, and air traffic control.  

UHF(Ultra 
High 
Frequency) 

300-1000 
MHz 

0.3-1m This range is widely used in GSM mobile cellular 
communication now. Also used in ground 
penetrating radar, television signal transmission, 
RFID (Radio Frequency Identification ) tag 

L 1-2 GHz 15-30 cm The name ‘L’ comes from long. This band was 
earlier used only for military application like long 
range air traffic control and surveillance. This 
band is now used for mobile communication 
(GSM 1800 and 1900).GPS carriers also use this 
band. 

S 2-4GHz 7.5-15cm ‘S’ comes from short. Marine radars, long range 
weather radars and terminal air traffic control use 
this band. 
 

C 4-8 GHz 3.75-7.5cm Some weather radars use this band. Also used in 
Wi-Fi communication and cordless telephone 

X 8-12 GHz 2.5-3.75cm Used in marine radar, weather forecasting, 
medium resolution mapping, and ground 
surveillance. In USA a narrow range 10.525+/- 
25MHz is used for airport radar. 

Ku 12-18GHz 1.67-2.5cm Primarily used for satellite communication. 

K 18-24 1.11-1.67cm Radar using this band is commonly used by police 
to detect speed of vehicles. Also used by the 
meteorologist for detecting clouds.  

Ka 24-40GHz 0.75-1.11 
cm 

Used for detecting speed by police. Also used in 
the photo radar which is used to trigger cameras 
to take picture of license plates of cars by police 
when required. Operating range of photo radar is 
34.3+/- 0.1GHz. 

Mm 40-300 
GHz 

7.5mm-1mm This band is still not commercially used. Used in 
research or experimental military radar. 

UWB (Ultra 
Wide Band) 

1.6-10.5 
GHz 

18.75-2.8cm Used for Through wall radar and imaging system. 
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2.3.3 Radar Output 

The radar output generally is of two forms such as reflectivity and velocity. 

Reflectivity measures the amount of precipitation exits in a particular area and 

velocity measures the speed and direction of the precipitation toward or away 

from the radar. 

Reflectivity 

There are different factors that influence how much electromagnetic energy will 

be reflected back to the source from where it emits. The factors are as follows 

[27], 

a) The material of the target ; 

b) The size of the target compared to the radar antenna ; 

c) The incident angle or the angle at which the electromagnetic beam hits a 

particular portion of the target. This depends on the shape of the target 

and its orientation to the Radar source;  

d) Reflected angle or the angle at which the radar signal is reflected back 

after hitting the target. It depends on the incident angle; 

e) The strength of the signal emitted from the radar; and 

f) The distance between the radar and the target. 

Therefore, if all of the other factors which influence the radar reflectivity remain 

constant for different types of materials, we can exploit the reflectivity to classify 

different types of materials. For example, metals naturally tend to be good 

reflective materials whereas nonmetallic objects work as weak reflectors for the 
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microwave signals. We exploit this observation to detect and classify different 

target material types using our novel integrated radar-mote system. 

Velocity   

Most of the radars determine target velocity using the Doppler effect .The 

Doppler effect or Doppler shift is defined as the change in frequency of a wave 

for an observer moving relative to the source of the wave. When a source moves 

away from an observer and emits electromagnetic wave toward the observer 

through a medium with an actual frequency �� then the stationary observer 

relative to the medium detects the waves with frequency � given by following 

equation [25], 

 

           � = � �
����� �� ,                                                                                   (2) 

 

where � is the observed frequency, �� is the actual frequency, � is the velocity of 

the wave in the medium, and �� is the velocity of the source relative to the 

medium. If the source moves away from the observer ��  is positive whereas if the 

source moves toward the radar  �� is negative. 

For moving objects, one can use the same Doppler shift principle for velocity 

computation. Suppose a doppler radar directs a beam of waves toward a moving 

target. If the target is moving away from the radar each successive radar waves 

need to travel more distance to reach the moving target and when the waves are 

reflected back and detected by the radar they have some associated delay. One 
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can obtain velocity of the target as the speed of the wave is known. When the 

target moves toward the radar we can detect the range and velocity using same 

principle as we have all the parameters known other than source velocity in Eq. 

(2). The detail mathematical background of how to detect the range and velocity 

of a moving target using Doppler radar is discussed in section 2.4. 

2.3.4 K-band Doppler Transceiver (MACS-007802-0M1R1V) Details 

We select a Ka-band Doppler transceiver from M/A-Com Tech for our integrated 

radar-mote sensor suite. It is low- cost ($20) and low-power Doppler transceiver 

which suits our goal to build a low- cost, low-power integrated radar-mote sensor 

suite with Commercial-Off-The-Shelf (COTS). This M/A-COM RF transceiver 

(Model MACS-007802-0M1RSV) is primarily used for automotive applications 

such as front and rear-ends collision detection, in ground speed measurement, 

and as motion detectors in automatic door systems [28]. The transceiver is also 

very small in size, (<1inch on each side) resembling to an ice cube, which makes 

it an excellent choice for our autonomous integrated radar-mote sensor network 

system. The radar utilizes a Gunn diode oscillator and transmits continuous wave 

at 24.125GHz. The transceiver has electronic tuning system which allows varying 

the frequency within a bandwidth of 0.3GHz. An external voltage ramp pulse can 

be applied to the electronic or voltage tune input of the radar which causes the 

radar to emit continuous frequency modulated signal of 300MHz bandwidth. The 

signal received by the radar through antenna is mixed with the transmitted wave 

and low pass filtered to produce In-phase (I) and Quadrature (Q) output which 

are available on pin 3 and 4 of the radar respectively. The key features of the 
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Doppler transceiver include low cost, small size, low power consumption (8mW 

output power), motion trajectory detection,300MHz of electronic tuning,10Hz-

5000Hz IF bandwidth, and lead free (Restriction on Hazardous Substances) [28]. 

Figure 6 and Table 3 shows the Doppler transceiver and the organization of its 

pins.  

 

 

 

 

 

 

 

 

 

Fig. 6: Doppler Transceiver (MACS-007802-0M1RSV) (Source: 

www.macomtech.com/datasheets/MACS-007802-0M1R1V.pdf ) 

 

Table 3: Pin Configuration of the Doppler Transceiver (MACS-007802-0M1RSV) 

(Source: www.macomtech.com/datasheets/MACS-007802-0M1R1V.pdf ) 
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2.4 Radar Signal processing for finding the range and range-rate of the 

target 

Consider that the Doppler radar transceiver emits a continuous frequency 

sinusoidal signal as follows [29]-[30], 

 

    ����� = cos�2П��� +Ф�,                                                                      (3) 

 

here, �� is the carrier frequency, � is time and   is some random phase. The 

transmitted signal is then propagated to a stationary target, reflected, and 

propagated back to the Doppler transceiver. The received signal is the replica of 

the transmitted signal with a propagation delay corresponding to the round trip 

time required for the propagation of the signal. If we assume that the transmitter 

and receiver are synchronized with same clock, this propagation delay can be 

represented as 

 

         %� = 2& '⁄  ,                                                                                     (4) 

 

where r is the distance between the radar and the target object in meter and c=3 

x 108 m/sec is the propagation velocity of the microwave signal. Now the received 

signal can be expressed as  

 

 �)��� = *��  �� − %�� = *��  �� − 2& '⁄   �  =  σcos,2П��� +Ф− 4П��&/'. , (5)                               
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where σ is a constant which corresponds to the target radar cross section (RCS), 

geometric attenuation of the signal and other terms related to target object and 

signal characteristics. In the receiver end of the Doppler transceiver circuitry the 

received and transmitted signals are multiplied and then filtered using low pass 

filter. The filtered signal output from the mixer is as follows, 

 

 

       /012��� = �����. �)��� = cos�2П��� +Ф� .σcos,2П��� +Ф − 4П��&/'. .    (6)  

                    

Simplifying this mixer output using trigonometric identity, 

 

      2cos a.cos b=cos�4 + 5� + cos�4 + 5�  .                   (7) 

 

We get, 

 

       /012��� = σ

6 cos,4П��� + 2Ф − 4П��&/'. + σ

6 cos,4П��&/'..                        (8)                             

This mixer output signal is the summation of two terms having frequency 2f0 and 

a constant DC bias. If the sinusoidal signal is discarded using a low pass filter we 

get the following signal as the radar output where the radar output is a function of 

target range, 

 

      7 = σ

6 cos,4П��&/'..                                                                                  (9) 
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Now based on the range Eq. (4), the range-rate or velocity expressions are 

derived. If the target object is changing the range at a constant rate  &8 meters/sec 

then, 

 

       &��� = &� + &8�,                                                                                        (10) 

 

where r0 is range at instant zero. Putting the value of r into equation (5) and 

rearranging the term we get, 

 

       �)��� = σcos 92П��� + %��� − :П;<)<
= +  Ф> ,                                            (11) 

 

where  

 

       %� = −�2&8/'� ��.                                                                                   (12) 

 

%�  is known as Doppler frequency shift [30]. From Eq. (9), it is evident that when 

an object moves away from the radar it causes the reflected signal to down shift 

slightly relative to the transmitted signal. The radar receiver mixes the transmitted 

and shifted received signal and passes it through the low pass filter. The low 

pass filtered signal after simplification with cosine identity can be expressed as, 

  

        7��� = σ

6 cos 92П�%��� − :П;<)<
= > .                                                             (13) 
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This final radar output oscillates at Doppler frequency %�.Equation (10) we see 

that Doppler frequency is proportional to range-rate or velocity of the target 

object. We can get the magnitude of range-rate &8  by capturing the 7��� signal 

with a storage oscilloscope and then computing the Fast Fourier Transform 

(FFT). 

By using the I component of the Doppler data it is possible to estimate the target 

velocity by sampling the outputs with an oscilloscope and applying FFT. 

However, if we use the I channel data only we cannot determine the direction of 

movement without ambiguity. By using the Quadrature component (Q) of dual 

channel radar we can combine I and Q into a complex signal, 

 

        /��� = 7��� + ?@��� ,                                                                           (14) 

 

where Q-channel data is the 90 degree phase shifted version of the I-channel 

data. Now applying FFT to the complex signal allows us to get rid of the twin 

peaks. In our experiment we capture I-channel and assign zero to the Q-channel. 

In the next section we briefly describe using ramp pulses for computing range 

and velocity based on the above discussion. 

We use a Doppler radar which has an electronic tuning input with frequency band 

24 to 24.3GHz. By applying different voltages to the electronic tuning input we 

can vary the frequency from a minimum value �� to a maximum value �A between 

24 to 24 GHz. In the next section, we discuss how we can use this frequency 

variation to measure target range and velocity. To cover the frequency band 
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quickly we use ramp voltages as voltage tune input which generates a 

continuous sweep from low to high frequency. This type of sweep is known as 

chirp signal. We can express the transmitted chirp signal using following 

equation, 

 

       ����� = cosA���,                                             (15) 

here, 

[  

      C��� = 2П��� + П�;D�;E� 
F �6 ,   .                (16) 

where �� and �A are minimum or starting and maximum or ending frequencies of 

the chirp signal respectively and T is the time duration of one ramp cycle. 

The transmitted signal is propagated to the target object from radar focused 

using horn antenna. The transmitted signal is reflected and propagated back to 

the receiver. We assume that the transmitter and receiver are co-located and 

synchronized. So the signal received by the radar is the replica of transmitted 

signal with a round trip propagation delay %� to the target object. We can express 

the received signal as, 

        �)��� = *��  �� − %�� = σcos A�� − %�� = cos 92П��  �� − %�� + П�;D  �;< �
F �� −

%��6>,                                 (17) 
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where σ is RCS plus geometric attenuation etc. as we discussed earlier. We can 

rearrange the terms in the above equation and get the received signal expressed 

as, 

        �)��� = σcos,C��� +Ф���. ,                                                               (18) 

where C��� is same as showed in Eq.(16) and Ф��� can be expressed as, 

 

       Ф��� = −2П%���  + П�;D  �;< �
F �%��6 − 6П�;D  �;< �

F �%��� .                         (19) 

we have derived the in-phase (I) output expression in Eq.(9).Equations (6)-(8) 

show how we can express the receive signal as summation of two terms. Using 

the same derivation procedure we can get the received signal as the summation 

of two terms in case of chirp signal pulses as, 

 

       /012��� = σ

6 cos,2A��� +Ф���. + σ

6 cosФ���.                                         (20)                      

Putting the values of A��� and Ф��� from Eqs. (17) and (19) respectively, we get a 

new expression for Eq. (20).The the former term in Eq. (20) is a chirp having 

minimum frequency 4П��  and the later term is a cosine oscillation of frequency 

6П�;D  �;< �
F �%���. As the transmitted pulse is narrowband that means 

 �� ≫ ��A  − �� � ,so we can discard the first term using a low pass filter from 

signal represented by equation (17).The in-phase (I) signal can be expressed as, 
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7��� = H
6 cosФ��� .                                                                             (21) 

Now we substitute the value of Ф��� from Eq. (19) to Eq. (21) to obtain the 

relation between cosine signal and range of the target object. In Eq. (21) we 

discard terms containing ��  as it is large compared to the Doppler frequency and 

as we have used low pass filter for getting the I signal. Finally the I signal can be 

expressed as,  

 

7��� = σ

6 cos 9:П;<)<
= + :П�;D  �;< �)

=F t>  .                                                    (22) 

Similarly, we can get the Q output as, 

 

@��� = ‒ σ6 sin 9:П;<)<
= + :П�;D  �;< �)

=F t>  .                                                (23) 

Finally, we discuss computing range and velocity using multiple chirp pulses 

which in our case is ramp pulses. If we assume that the target is moving with a 

constant velocity and we express the motion as 

 

&�M� = &� + &8M  ,                                                                                (24) 

where &�is the range of the object at time instant zero, &8 is range-rate or velocity 

of the target object and M is called slow time. The time at which each successive 

pulse is transmitted from the radar is known as slow time and fast time is the 
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typical time taken by the signal propagation. If we substitute the value of r from 

Eq. (24) into the Eqs. (22) and (23), we get the following two new equations: 

 

 7��, M� = H
6 cos O9:П;<

= + :П�;D  �;< �
=F t> �&� + &8M�P   , and                        (25) 

@��, M� = − H
6 sin O9:П;<

= + :П�;D  �;< �
=F t> �&� + &8M�P .                              (26) 

If we sample I and Q we get functions of fast time t and slow time M. Therefore, I 

and Q are two dimensional functions. I and Q vary in fast time t with frequency 

6)<�;D  �;< �
=F   which is proportional to the target range. I and Q also vary with the 

slow time with frequency 
6)8;<

=  , which is proportional to the target velocity or 

range-rate. Now we can perform a  2-dimesional FFT on the analytical signal 

/��, M� = 7��, M� + ?@��, M� and scale the graph axes properly to get an ambiguity 

function that determines the target range and velocity correctly. 

2.5 Relation between Material Refractive Index and Reflectivity of 

Microwave Signal 

Our goal in this thesis is to explore the variation of reflectivity due to material 

properties. We use a model developed for through-the-wall (TWI) Imaging in THz 

range [7][8]. The model offers the reflectivity of plain electromagnetic wave from 

different types of material surfaces in THz frequency range. Our proposed 

integrated radar-mote includes a Ka band Doppler radar. Therefore, we extend 

the existing reflectivity model to incorporate Doppler shift and relevant frequency 
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band in our experimental radar. In this section we explain the existing model 

while our modified model will be discussed in Chapter 3. 

For the existing model [7][8], we consider reflecting materials to be non-

conducting for simplicity. Since the materials are assumed to be non-conducting, 

they have no conductivity and constant permittivity. Therefore, the refractive 

index is constant and real valued for a specific material type. The authors obtain 

the reflectivity model equation from planar expansion of the Green’s functions 

and by employing spherical coordinates [8]. We represent the summary of the 

derivation of the model [8]. 

Reference 8 obtains a mathematical model to derive a transfer function of a 

reflecting medium [8]. They assume that the wave propagates into the medium 

with an index of refraction (nm).The source of the signal is located at &� = −Q�Q̂  

and coordinates are shown in Fig. 7 [8]. 

 

 

 

 

 

 

 

Fig. 7: Wave from a point source through a medium 
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The wave equation with source S�&, �� in the time domain is as follows 

 

                         ∇6U − VE
=E

WEX
WYE = S�&, ��.                                                            (27) 

Here, n is the refractive index, c is the speed of light and E is the electric field 

intensity. Now we express the source terms of angular frequency (ω) and 

oscillation frequency (v) as follows, 

 

                      S�&, �� = A
6Z [ \�&, ]�^1_Y`]∞

�∞   .                                            (28) 

Here, \�&, ]� is the source angular frequency. Using the well known identity 

] = 2a� and `] = 2a`�, we represent Eq. (28) in terms of oscillation in 

frequency domain as, 

 

                         S�&, �� = [ \�&, ��∞

�∞ ^16Z�Y`� .                                                 (29) 

Using the solution of the plane wave equation we know a time independent wave 

equation is given as follows, 

 

                        ∇6U + b6c6U = \�&, �� .                                                          (30) 

Substituting the source at point &� = −Q�Q̂   and using Green’s function, Eq. (30) 

is given as, 
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                    d∇6 + c6b6�Q�ef�&, &�� = g�& + &�� = g���g�h�g�Q + Q�� .         (31) 

Here wave number is c = 2a
λ

i  and λ is the wavelength in free space. The 

refractive index of the system is as follows, 

 

 b�Q� = 1 , b, 1 , �k& Q < 0, 0 =< Q =< m, m < Q    &^S^n^'�?�^                 (32) 

The frequency domain solution for E is given as, 

 

                    U�&, �� = f�&, &��\�&, ��`o&�                                                    (33) 

where  f�&, &�� is the Green’s function in the spatial domain. The time domain 

solution of E is computed doing the inverse Fourier Transform of Eq. (33) 

 

                  U�&, �� = [ U�&, ��^16Z�Y`�∞

�∞  .                                                   (34) 

In this work, we assume the materials to be non-conductive, therefore, the 

electromagnetic wave can propagate the medium with little damping [8]. As we 

have put the source at &� = −Q�Q̂    along the  Q̂ direction equation (31) can be 

converted in Fourier domain as follows, 

 

              pd�2, �q , Q, &�e ≅ [ [ f��, h, Q, &��^�1d6Z�s2�6Z�tqe`�`h∞

�∞
∞

�∞  .        (35) 

              f��, h, Q, &�� ≅ [ pd�2, �q , Q, &�e^1d6Z�s2�6Z�tqe`�2`�q
∞

�∞  .             (36) 
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Now substituting Eq. (36) in equation (31), using the identity in equation (35) and 

using the wave number definition, we can get homogeneous wave equation 

given as, 

 

            WE
  WuE pd�2 , �q , Q, &�e + ,c6b6�Q� − |/|6.pd�2, �q , Q, &�e = 0 .              (37) 

The solution of the Eq. (37) is given as, 

 

             pd�2, �q , Q, &�e = C^1uwxEVE�u��|y|E + z^�1uwxEVE�u��|y|E
  .               (38) 

The two terms in the right side of the equations C^1uwxEVE�u��|y|E
  and 

z^�1uwxEVE�u��|y|E
  are termed as right going wave and left going wave 

respectively. As the left going wave is reflected back to the point source, we will 

follow this one from now on. 

The solutions of the wave equations in each region must satisfy the boundary 

conditions. The boundary condition states that the wave and derivative must be 

continuous at all boundaries. Then we can compute the coefficients of each 

component wave as shown in Fig.8. 
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Fig. 8: Cross sectional view of wave front 

 

If the refractive index obeys the following conditions:  b{�Q < 0�, b0�0 =< Q =<
m� and bF�m < Q� ,we can get the solution for the co-efficient of the Green’s 

function as follows [8], 

 

                             |A }C{
z{~ = |6 9C0

z0>  .                                                         (39) 

                             |o 9C0
z0> = |: 9CF

0 >   .                                                        (40) 

                         |� }C{
z{~ = |� 9z�

0 > + 90
1>  .                                                (41) 

The reflection and transmission amplitudes can be expressed in terms of incident 

wave Ab as, 
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                       }C{
z{~ = |A�A|6|o�A|: 9CF

0 >  .                                                  (42) 

A few algebraic simplifications of Eqs. (38) and using Eqs. (39) - (42) yields the 

reflectance or reflectivity coefficient R =r*r , where 

 

& = z{
C{ = dw�F + w�0edw�{ − w�0e + d−w�F + w�0edw�{ + w�0e^16�w��

dw�F + w�0edw�{ + w�0e + d−w�{ + w�0edw�F − w�0e^16�w��
 

                                                                                                                  (43) 

Further algebraic simplification yields the reflectivity of the electromagnetic wave 

expressed as follows [8] 

 

  R = ���������������E�w��
�w���√��E��w���√��E��E�w��   .                                           (44) 

where,               w�0 = �b06 c6 − �2a�2�6 − d2a�qe6
, and                         (45) 

                      √� = �c6 − �2a�2�6 − d2a�qe6
    .                                    (46) 

Here, nm is the refractive index of the reflecting material, k is the wave number 

and  c = 2a�/' , c is the speed of light,�2 = 1/�2  and �q = 1/�q ,and λ is the 

wavelength of the electromagnetic signal. Now using the spherical coordinate 

representation we obtain, 
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2a�2 = c sin � cos ∅, 2a�q = c sin � cos ∅, and  2a�q = c cos �              (47) 

Substituting Eqs. (45) and (46) into equation (47) we get 

 

w�0 = cwb06 − S?b6�, √� = c√1 − S?b6� = c cos �                                (48) 

Now inserting the above results in Eq. (44) we obtain the reflectivity as follows 

[8], 

���� = �1 − b06 � + �b06 − 1�^16x��V� E ��1VE�

dwb06 − S?b6� + cos �e6 − dwb06 − S?b6� − cos �e6^16x��V� E ��1VE�
. 

                                                                                                                (49) 

If we consider the incident wave angle θ=0, then equation (49) yields 

 

          � = dA���E e����E �A���E����
����A�E�����A�E��E����                                                                (50) 

 

2.6 Power Spectrum Analysis with Multiple Signal Classification (MUSIC) 

Technique 

Multiple Signal Classification (MUSIC) is a widely accepted power spectrum 

estimation algorithm. The MUSIC technique has been widely used 

telecommunication, biomedical, signal processing and electromagnetic 

disciplines to solve problems such as spectrum and signal estimation, the 
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direction of arrival [33]-[37]. The MUSIC algorithm estimates the 

Pseudospectrum of a signal using Schmidt's eigenspace analysis method [31]. 

The MUSIC algorithm produces a spectral estimate of a signal performing the 

eigenvector-eigenvalue decomposition of the autocorrelation matrix of the signal 

[32]. The MUSIC spectral estimate is represented as follows, 

 

            ��������� = A
���;��∑ ������� ¡�D ���;� = A

∑ ¢�����;�¢E�� ¡�D
   ,                         (51) 

where N is the dimension of the eigenvectors, vk is the k-th eigenvector, and 

integer p is the dimension of the signal subspace. The vector e(f) consists  of 

complex exponentials, so the inner product �x£^���  amounts to a Fourier 

transform which is used to compute the Pseudospectrum estimate. The 

Pseudospectrum estimate is computed by computing FFT for each vk and 

summing their squared magnitudes. 

The MUSIC algorithm is used for extracting MUSIC Spectrum Matrix (MSM).It is 

a parametric spectra estimation method which manipulates the fact that the 

sinusoidal signal components making up a transient signal and the added 

gaussian noise are correlated [37].Let us assume that [37], 

h�b� = ��b� + ]�b�= ¤ '1 ^�V
�

1¥A
+ ]�b�, n = 1,2, … , N 

  (52) 
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represents the scattered signal of a given target recorded at certain aspect 

combination and sampled at  total of N discrete time points in presence of 

additive gaussian noise ω(n).Here x(n) is the  noise free signal component 

expressed in terms of linear combination of L complex exponentials with target 

poles si, where i=1,2,….,L. The term ci in Eq. (52) is complex valued weight co-

efficients. For an integer m which satisfies the condition L < m < N, the vector y 

(n) can be formed as [37], 

 

         h�b� = ,Q�b�  Q�b − 1� …     Q�b − ¨ + 1�.F                                   (53) 

The correlation matrix of the vector can be expressed as 

           7� = U©h�b�h�b�£ª = C«C£ + *67�×�   ,                                      (54)  

Where, E is the expected value operator denotes complex conjugate transpose, 

σ
2 is the variance of Gaussian noise, I is the unit matrix and 

          C = ,4�SA�    4�S6�   …      4�S��.                                                    (55) 

        4�S� = 1     ^��  ….        ^���0�A�  ®F
                                              (56) 

Let  �A  ≥  �6 ≥ ⋯   ≥  �6 be the eigenvalues of the correlation matrix 

IR,©^A^6 , … , ^�^��A, … , ^0ª  be the set of corresponding orthonormal eigenvectors, 

and  p = ,^��A … . . ^0. be the eigenvector matrix corresponding to these 

eigenvalues. Then the MUSIC spectrum function can defined as follows, 
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                  �������S� =  A
±�²²�±��� ,                                                       (57) 

where S = ³ + ´] is the complex frequency. The function has peak values at  

S = S1 and can be approximated by a matrix known as MUSIC spectrum matrix.   

In this thesis, MUSIC algorithm is used as a signal processing tool to extract 

target feature for classification of materials target are made of. We use the 

MUSIC algorithm as the fundamental signal processing tool to extract feature 

matrix or MUSIC Spectrum matrix (MSM) for each type of target. We use the 

“pmusic” function available in MATLAB toolbox to get the power spectrum of 

each radar signals. Figure 9 shows a sample spectrum output of a signal vector 

via MUSIC. The steps from feature extraction to classification are discussed in 

Chapter 3.   

 

 

 

 

 

 

Fig. 9: Power spectrum of signal vector via pmusic 
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2.7 WEKA Machine Learning Tool and Classification 

We use WEKA (Waikato Environment for Knowledge Analysis), a popular suite of 

machine learning software, for analyzing the data collected through integrated 

radar-mote experiments. This section provides an overview of the WEKA tool.  

2.7.1 WEKA Overview 

The Weka is written in Java, and is developed at the University of Waikato, New 

Zealand. It is free software available under the GNU General Public License 

[38][39]. The machine learning algorithms available in WEKA can either be 

applied directly to data using the WEKA Graphical User Interface (GUI) or user 

java program by calling the WEKA library. We use the WEKA GUI explorer to 

analyze the data collected through our experimental system. The WEKA GUI 

provides a starting point for launching WEKA’s main GUI applications and 

supporting tools. The GUI consists of four buttons, one for each of the four major 

WEKA applications and four menus [39].The four applications related to four 

buttons are Explorer, Experimenter, KnowledgeFlow and SimpleCLI. WEKA 

Explorer is the software environment for testing data with machine learning 

process. We use this tool for our data analysis. Therefore, we provide the details 

of this tool skipping other three in following sections. 

2.7.2 How to use WEKA? 

The WEKA explorer has tools for exploring different data manipulation tasks such 

as data preprocessing, classification, regression, clustering, association rules, 

and visualization. We use data preprocessing and classification for our data 
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manipulation. The data preprocessing tool has different types of data filters such 

as Principal Component Analysis (PCA), Normalization etc. The classification 

tool includes different types of classifiers such as naïve bayes classifier, support 

vector machine, multi layer perceptron, random forest and many more. We 

provide a brief overview of the classifiers we use in the following section. The 

function of WEKA in case of our data analysis is explained in Fig.10. The raw 

data collected from experiment is fed to the WEKA toolbox with the desired data 

format required. Then WEKA performs the preprocessing and classification to 

produce output in a specific format. The data processing is briefly discussed 

below, 

 

Fig. 10: Function of WEKA Machine Learning Tool 

Suppose each column of data represents one attribute and each row represents 

an instance of a class. We need to classify them. Typically these types of data 

are stored in a spreadsheet and database. However, WEKA expects the data in 

a specific format named as Attribute Relation File Format (ARFF). It is necessary 

to have type information about each attribute which cannot be automatically 

deduced from the attribute values. Therefore, the data must be must be 

converted to ARFF form before any algorithm is applied to the data set [40]. Most 
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of the spreadsheet and database software allow saving data in Comma 

Separated Values (CSV) format. The WEKA has tool to convert the CSV format 

data to ARFF format. In our work we plan to save the experimental data in CSV 

format.  

2.7.3 Understanding WEKA Output 

WEKA classification output offers performance measure of the classifier in 

different matrix. A few performance measures of WEKA output such as “Correctly 

Classifier Instances” are self-evident while some others such as “kappa statistic”, 

“confusion matrix” requires explanation. This section gives a brief overview of the 

different performance measures shown in WEKA output. 

Accuracy of the classifier is given in percentage as output. The accuracy can be 

represented as, 

 

C''µ&4'h = bµ¨5^& k� 'k&&^'�¶h '¶4SS?�?^` ?bS�4b'^S
�k�4¶ bµ¨5^& k� ?bS�4b'^S  , 

                                                                                                                (58) 

For any classifier precision and recall can be expressed as follows, 

 

n&^'?S?kb�C� = bµ¨5^& k� 'k&&^'�¶h '¶4SS?�?^` ?bS�4b'^S k� '¶4SS C
bµ¨5^& k� ?bS�4b'^S '¶4SS?�?^` 4S 5^¶kbf?bf �k '¶4SS C , 

                                                                                                               (59) and 
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&^'4¶¶�C� = bµ¨5^& k� 'k&&^'�¶h '¶4SS?�?^` ?bS�4b'^S k� '¶4SS C
bµ¨5^& k� ?bS�4b'^S ?b '¶4SS C  . 

                                                                                                                (60) 

Confusion matrix shows an overall picture of the performance showing the 

distribution of correctly and incorrectly classified instances. Figure 11 shows a 

typical confusion matrix given by WEKA output after applying a classifier to a 

sample data. 

 

 

 

 

Fig. 11: Confusion matrix from WEKA Classification Result with J48 classifier for 

the weather data.  

WEKA attempts to classify instances into two possible classes labeled as “yes” 

or “no”. However, for user convenience WEKA substitutes the classes with letters 

‘a’, ‘b’ respectively. The first column of the confusion matrix shows that in total 10 

instances are classified as ‘a’ and the second column shows that 4 instances are 

classified as ‘b’. The rows show the actual number of  instances under class ‘a’ 

and ‘b’. It also represents, how many instances are correctly and incorrectly 

classified. For instance, from the confusion matrix we can say that 7 of the 
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instances are correctly classified as ‘a’ whereas 2 were incorrectly classified as 

‘b’.Similar observation is evident for row two. 

ROC curve is a plot of the true positive rate against the false positive rate for the 

different possible cut points of a diagnostic test. It shows the tradeoff between 

sensitivity and specificity. The area under the curve is a measure of test 

accuracy. Kappa statistic measures the agreement of predictions with the actual 

class. In general, Kappa statistics are only appropriate for testing whether 

agreement exceeds chance levels, i.e. that predictions and actual classes are 

correlated. True positive rate is equivalent to the term “recall”. False positive can 

be represented as follows, 

 

/4¶S^ �kS?�?�^�C� = bµ¨5^& k�?bS�4b'^S  ?b'k&&^'�¶h '¶4SS?�?^` 4S '¶4SS C
�k�4¶ bµ¨5^& k� ?bS�4b'^S ^�'^n�  '¶4SS C , 

                                                                                                                   (61) 

F-measure is a combined measure of precision and recall. F-measure is 

represented as , 

/ − ¨^4Sµ&^ = 2 ∗ n&^'?S?kb ∗ &^'4¶¶
n&^'?S?kb + &^'4¶¶  . 

                                                                                                                  (62) 
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2.7.4 WEKA Classifiers overview  

WEKA provides the implementations of state-of-the-art learning algorithms. One 

can preprocess a dataset, feed it into a learning scheme, and analyze the 

resulting classifier and its performance [40]. The learning schemes are called 

classifiers in WEKA. Here, we give a brief overview of the classifiers we use in 

our work. 

J48 

J48 is an open source java implementation of the C4.5 machine learning 

algorithm in WEKA. C4.5 is an algorithm used to generate a decision tree 

developed by Ross Quinlan [42]. As the decision trees generated by C4.5 can be 

used for classification, C4.5 is often referred to as a statistical classifier [43]. The 

C4.5 algorithm builds decision tree from a set of training data using information 

entropy. Suppose we have a training set S= s1,s2,s3, …..from already classified 

samples. Now each sample si= x1,x2,x3,…. is considered a vector where x1,x2,x3, 

….. represents attributes or features of the sample. The training data is then 

augmented with a vector C=c1,c2,c3,…. where c1,c2,c3,…. represents the class to 

which the samples belong. For each node of the tree the algorithm picks one 

attribute of the data that most effectively splits its set of samples into subsets 

enriched in one class or other. The criterion to pick is the normalized information 

gain or difference in entropy that results from choosing an attribute for splitting 

data. The attribute which has the highest information gain is chosen to make 

decision. The decision tree algorithm then recurs on the smaller sub lists [43].  
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Support Vector Machines 

Support Vector Machines (SVMs) are a set of supervised learning methods used 

for classification and regression analysis. The standard SVM is a non-

probabilistic binary linear classifier. For a given input it predicts which of the two 

possible classes the input belong to. An SVM is a model representation of 

example points mapped in space such a way that examples in different 

categories are divided in clear gap. In formal notion, we can say that the SVM 

creates hyperplane or a set of hyperplanes in high dimensional space that can be 

used for classification or regression analysis [44].   

Suppose we are given a training data set D with n points [44], 

                              · = ¸�¹1, '1�|¹1º �», '1º ©−1,1ª¼1¥A
V

  .                         (57)                              

Here, '1 is either -1 or 1 and they indicate which class the point ¹1 belongs. Each 

¹1 is a  n dimensional real vector. Our target is to find maximum-margin 

hyperplane that divides points having the value of '1 = −1 from '1 = 1 .The 

hyperplane equation satisfying each ¹ is as follows, 

                                                              ½. ¹ − 5 = 0   .                                      (58) 

Here, . stands for dot product, ½  is a normal vector perpendicular to the 

hyperplane and  
{

||¾||  is the parameter that determines offset of the hyperplane 

from the origin along the vector ½. 
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Now our target is to choose  ½ and 5 such that the margin is maximum or the 

distances between parallel hyperplanes are as far apart as possible.  This 

ensures separation between data. The hyperplanes are represented with 

following Eqs. 

                                                                 ½. ¹ − 5 = 1 ,                                     (59)  

                                    and          ½. ¹ − 5 = −1 .                                            (60) 

Multiclass SVM assigns labels to instances by using support vector machines, 

where the labels are drawn from a finite set of several elements. The usual 

approach in multiclass SVM is to reduce the single multiclass problem into  

binary classification problem [44]. 

Random Forest 

Random forest is an ensemble classifier. It consists of many decision trees and 

outputs the class that is the mode of the class’s output by individual trees. Leo 

Breiman and Adele Cutler are given credit for introducing the random forest 

algorithm [44][45]. Each tree in random forest is constructed using the following 

algorithm [45], 

1. Let the number of training cases be N, and the number of variables in the 

classifier be M.  

2. We are told the number m of input variables to be used to determine the 

decision at a node of the tree; m should be much less than M. 
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3. Choose a training set for this tree by choosing N times with replacement 

from all N available training cases. Use the rest of the cases to estimate 

the error of the tree by predicting their classes. 

4. For each node of the tree, randomly choose m variables on which to base 

the decision at that node. Calculate the best split based on these m 

variables in the training set. 

5. Each tree is fully grown and not pruned. 

The random forest provides advantages such as handles large number of input 

variables, produces highly accurate classifier for many data sets, estimates 

importance of variables in determining classification. It is good for estimating 

missing data also and maintains good accuracy when portion of data is missing. 

However, random forest is prone to over fitting in some cases [45]. 

Multilayer Perceptron 

Multilayer perceptrons (MLPs) are feed forward neural networks which are 

trained with the standard back propagation algorithm. MLP consists of multiple 

layers of nodes in a directed graph that is fully connected from one layer to the 

next. Except for the input nodes, each node is a neuron or processing element 

with a nonlinear activation function. MLP utilizes a supervised learning technique 

called back propagation for training the network.  WEKA has a MLP implemented 

in it. As MLPs are supervised networks those need to be trained to obtain desired 

response. MLPs learn to transform input data into a desired response. Therefore, 
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they are widely used for pattern classification. MLPs can approximate virtually 

any input-output map with one or two hidden layers [46]-[48]. 

In MLP, an external input vector is supplied to the network by clamping it at 

nodes in the input layer. For conventional classification problems the appropriate 

node is clamped to 1 state during training while the others are clamped to 0 

[48].Consider the graph in Fig.12. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12: A neural network with 3 hidden layers. (Source: Ref.48) 
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The total input  �¿À�A, received by neuron j in layer ℎ + 1 is defined as [48], 

 

                �¿À�A = ∑ h1À½¿1À − �¿À�A1 ,                                                         (61) 

Where  h1À is the state of i-th neuron in preceding ℎ-th layer, ½¿1À is the weight of 

the connections from i-th neuron in layer ℎ to j-th neuron in layer  ℎ + 1,and  �¿À�A 

is the threshold of the  j-th neuron in layer  ℎ + 1.The output of a neuron in any 

layer  other than input layer is a monotonic nonlinear function of its inputs and 

given by following Eq. [48], 

 

              h¿À = A
A���sÃÄ

                                                                              (62) 

The learning procedure needs to determine the internal parameters of the hidden 

layers based on its knowledge of inputs and desired outputs. The procedure 

continues until the states of the neuron in output layers H are determined. 

Rotation Forest 

Rotation Forest is an ensemble of classifier which can do classification and 

regression depending on a base learner. This is a method for generating 

classifier ensembles based on feature extraction. The feature set is randomly 

split into K subsets to create training data for a base classifier. Then Principal 

Component Analysis (PCA) is applied to each of the subsets. All principal 

components are retained in the ensemble to preserve the variability information 
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in the data. Now, K axis rotations are performed to form new features for a base 

classifier. The main theme of the rotation strategy is to encourage individual 

accuracy and diversity within the ensemble simultaneously [49]. 

Combination of Classifiers 

WEKA provides methods for combining different classifiers. Different 

combinations of probability estimates can be used for combination rules. For 

instance the combination classifier may decide based on the average of 

probabilities, product of probabilities, majority voting, median of member 

classifiers [50]. Vote and Stacking are two commonly used classifiers to combine 

different base classifiers.  

In Chapter 3, we discuss detail design and implementation of integrated radar-

mote. Our goal is to develop an integrated sensor system with commercially 

available low-cost devices which can be used as an effective sensor network 

system for surveillance and tracking in complex scenario. Although our system is 

not conceptually different from the system described in section 2.1, however, it is 

built with cheap and COTS components. Our system is different from 

implementation and application perspective also. For instance, the radar used in 

our integrated radar-mote offers more capabilities than other existing systems. 

We provide the detail description of the components will be provided in next 

Chapter 3. We also we perform experiments with the prototype autonomous 

radar-mote system and other commercial sensor boards to explore the capability 

of the experimental system for surveillance and tracking application. 
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Chapter 3 

Proposed Design and Methods 

This chapter discusses the contribution of this thesis. At first, we present the 

design and implementation of our proposed integrated radar-mote sensor 

system. The design includes the hardware and software level modification 

required to incorporate a Doppler radar into the wireless sensor network system. 

A modified version of the reflectivity model based on the model explained in 

Background review Chapter 2 is proposed. The simulation of electromagnetic 

signal based on modified model is followed by discussion of the model. Finally, 

we propose the steps of classifying a few non-conducting target using MUSIC 

signal processing technique as feature extraction tool. 

3.1 Radar-Mote Integration 

The Doppler radar system and the wireless mote work individually as separate 

and stand-alone sensor systems. The systems have their own advantages as 

well as limitations. We integrate these two sensor systems to work as a single 

sensor network system to improved sensing and target tracking capabilities. 

3.1.1 Standalone Miniature Doppler Radar System  

In this section we discuss the miniature Doppler radar prior to integration with the 

TelosB mote. The miniature Doppler Radar system requires more human 

intervention to operate. Figure 13 shows the miniature Doppler radar system with 

the peripheral component connections before integration. The components of the 
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Doppler radar system include Miniature Doppler radar, DC power supply, 

Function generator, and Storage oscilloscope. 

 

 

 

 

.  

 

 

 

Fig. 13: Radar System before Integration 

 

The miniature Doppler radar has the following five pins : DC power source and 

ground pins, voltage tuning Input pin, and two output pins (In-Phase and 

Quadrature). The DC power source provides the 5V required for Doppler 

transceiver operation. The function generator provides a ramp signal of fixed 

voltage (0.3 to 5V) and frequency (1 KHz). The output of the radar signal at any 

instant can be expressed as a function of the target range and velocity. The 

detail description about Doppler radar is provided in Chapter 2.of Equation (25) 

gives the mathematical relation of the I-Channel radar output.  



63 

 

3.1.2 Wireless Mote before Integration 

Note a more detail discussion on the wireless Mote is found in Chapter 2. In this 

section we provide a brief overview of the standalone wireless mote. We use 

TelosB mote platform for our system. WiEye and SBT80 sensor boards are 

plugged into the TelosB mote. Figure14 shows a typical setup of the wireless 

network system before integration. 

 

 

 

 

 

Fig. 14: Wireless Mote before integration 

 

Figure 14 shows a toy train track, two WiEye sensor board plugged into TelosB 

mote, and a SBT80 sensor plugged into TelosB mote. WiEye sensor board has 

passive infrared (PIR), visual light, and acoustic sensor [51]. SBT80 has 8 

sensors such as visual light, infrared, acoustic, temperature, magnetometer, and 

vibration [52]. We have use acoustics and vibration sensors for our experiment. 

When the toy train comes within the field of PIR sensor it senses the event and 

sends a triggering signal to the SBT80 sensor mote. The SBT80 sensor mote 

senses the acoustic and vibration signals produced by the toy train. The wireless 
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mote can store the captured signal in the flash disk available with it or transmit it 

to a base station mote via wireless channels. The wireless motes can operate 

with little human guidance after deployment. However, wireless motes lack a 

powerful active sensor such as radar. Therefore, our target is to integrate the 

Doppler radar with the wireless mote for complementary benefits. In the 

integrated system wireless mote will add a powerful sensing unit whereas 

Doppler radar can minimize human intervention in its operation.  

3.1.3 Designing of Autonomous and Integrated Sensor System 

This section provides a detail design of the proposed integrated sensor. In 

general, standard wireless sensor mote platform is equipped with different types 

of built-in passive sensors such as light, temperature, vibration etc.The standard 

mote platform also supports the extension of the sensor modalities by allowing 

plug in of specific sensor circuit board using the standard expansion ports of the 

mote. For example WiEye and SBT80 built by Easysen are two standard sensor 

circuit boards which can work with TelosB through its expansion ports [51][52]. 

Our miniature Doppler radar has output pin which produces analog output signal. 

We plan to connect output pin of the miniature Doppler radar to the input pin of 

TelosB in our integrated autonomous sensor suite. 

3.1.3.1 Steps of Integrating Doppler Radar and Wireless Mote 

The first step of the integration is the hardware level integration of the Doppler 

radar and wireless mote. We connect the output pin of the Doppler radar to one 
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of the input pins of the TelosB mote. Figure 15 shows the initial schematic 

diagram of the integrated system. 

 

 

 

 

 

 

 

 

Fig. 15: Initial Design of the integrated Radar-mote system 

 

The next step of the integration is a software level integration. We replace the 

data capturing task using oscilloscope with that of the TelosB mote. Specifically, 

the goal is to capture the radar output data using wireless mote. Therefore, this 

step requires connecting analog radar output as analog input of the already 

available ADC of the TelosB and sampling the analog signal using the ADC12 

with the help of a user program stored in the mote. 

We modify a user program which can sample the analog signal with different 

sampling speeds by changing the program parameters. The sampled analog 
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signal is then converted to digital signal using the conversion formula in Eq. (1). 

We select the ÅÆ� equals to 1.5V and ÅÆ� equals to zero, such that the formula in 

our case is simplified as follows, 

        Å��� = 4096 ∗  ��
���    , 0< Å1V <1.5V                                       (63) 

where the maximum value of ÅÆ� can be either 1.5V or 2.5V as the ADC 

available in mote supports voltage these two maximum levels. Therefore, the 

ADC supports two ranges of voltage levels from zero to 1.5 or zero to 2.5V. The 

digital value for the analog voltages ranges from zero to 4096. Here 4096 is the 

maximum discrete value available.  

Before TelosB starts digitizing the radar signal, we need to connect the Doppler 

radar output to the TelosB mote input as shown in Fig.13.We then load the user 

program (RadarInputReadStream) into the sensing radar-mote. We also have a 

base station TelosB mote connected to a workstation via USB port. A user 

program is also loaded into the base station mote to manage the wireless 

connection between the sensing mote and the workstation. We also have a data 

collection program RadarMesseageReader running in the workstation for storing 

data collected through base station mainly. We can trigger the sensing mote with 

an ACTIVATE signal from the workstation to the sensing mote via base station. 

Figure 16 shows the basic steps performed by the user program 

(RadarInputReadStream) in TelosB from digitizing the analog radar output to 

sending it to the base station.  
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Fig. 16: Flowchart of digitizing the Radar output with wireless mote 
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Our user program defines and configures the components and modules required 

for the desired operation of digitizing an analog signal and sending it to a base 

station wireless mote. The program is written in nesC standard and compiled and 

loaded before operation. When the radar output is connected to one of the input 

ports the user program samples the analog program based on the reference 

voltage and sampling period configured earlier. The digitized data is stored in 

internal flash buffer. The wireless control module is started to initialize the 

process of sending the data to the base station. The wireless control module 

sends the data as small packets maintaining the standard wireless protocols.  

Our goal is to build an autonomous radar-mote system which can collect the data 

from field and send it to a host computer placed in a secure place. The host 

computer has more processing capability and memory compared to the tiny 

wireless motes. Therefore, we use the radar-mote only as a data gathering and 

broadcasting system. The host computer through base station can store the 

sensed data from a remote sensor mote and analyze the field data to make 

intelligent decision based on a high level decision support system. Thus, we 

designed the system where the integrated radar-mote is not directly connected to 

host computer rather connected to a distant host computer via base station 

wireless mote. The connections of the stereo Doppler transceiver is same as we 

discussed in the section 3.1.1.The only difference is that we connect the  radar 

output to one of the input  channels of the TelosB mote instead of connecting to 

the probe of a storage oscilloscope. 
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3.1.3.2 Initial Design and Test  

We perform a series of baseline experiments using the initial integrated system 

as shown in Fig.15. From our knowledge of experimenting with Doppler radar 

with different moving targets we find that radar output voltage is typically ranges 

between 0 to 200mV.We generate analog signal with voltage output similar to 

Doppler radar using the standard lab signal generator. The signal generator 

output is connected to the mote as ADC input. Fig. 17 shows the test setup with 

signal generator. 

 

 

 

 

 

 

 

 

 

 

Fig. 17: Test setup flow diagram for data capturing with wireless mote  
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The signal generator is used to generate reference output signal for test purpose. 

The signal generator output is connected to one of the input pins of the TelosB 

mote. The input pin is internally connected to the ADC12 module of the radar-

mote [21]. We load the user programs as discussed in section 3.1.3.1. 

We successfully sample the analog signal wave (ramp wave) generated by signal 

generator with maximum sampling rate of 200 KHz using our user program and 

TelosB mote. The data from radar-mote is sent to the base station and stored in 

host computer. We then reconstruct the analog signal in host computer and 

compare with the analog signal captured through storage oscilloscope. 

Comparison of data captured the by the oscilloscope and the radar-mote shows 

that these two signals are same. The ramp signals in the following Figs.18 and 

19 are captured through oscilloscope and wireless motes respectively. While 

using the stand alone radar system, the storage oscilloscope samples the signal 

at a rate of 200 KHz. At 200 KHz sampling rate, the resulting radar signal is good 

since the data have good resolution. Therefore, we try to use same sampling rate 

for sampling the analog signal with the radar-mote. Figures 18 and 19 show the 

ramp signals captured with 200 KHz sampling rate by oscilloscope and wireless 

mote respectively. 
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Fig. 18: Ramp signal captured using Storage Oscilloscope with sampling 

frequency of 200 KHz and peak to peak voltage 200mV 

 

 

 

 

 

 

 

Fig. 19: Ramp signal captured and reconstructed using wireless mote with 

sampling frequency of 200 KHz and peak to peak voltage 200mV 
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We then connect the radar output to one of the output pins of the TelosB mote as 

shown in Fig. 20 and store the radar output to a host computer through radar-

mote and base station mote. Figure 20 shows our initial design of data collection 

using the autonomous radar-mote system. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 20: Initial setup of Experimental autonomous radar-mote wireless network 

system for data collection. 

Note the experimental setup in Fig.20 is almost similar to Fig.17. However, the 

signal generator is replaced with the Doppler radar system in Fig. 20. TelosB 
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mote samples the radar signal, converts to digital and sends the digital data to 

the base station. We have a user program loaded in the base station mote to 

listen for any data output from the distant motes and to transfer the received data 

packets to the host computer. The host computer reconstructs captured sample 

signal. When we capture our signal using the signal generator as input device as 

shown in Fig.17, we obtain desired ramp output signal as shown in Fig.19. 

However, when we repeat the experiment with the radar as signal generating 

device as shown in Fig.20, we do not obtain any output signal in TelosB mote. 

We had to solve this problem exploring different solutions and testing many 

times. The final solution is discussed in next section. In principle the radar output 

signal should have been captured by the radar-mote the same way it works for 

signal generator output.  

3.1.3.3 Solving the problem of Initial Design and Final Design 

Upon research on using standard signal generator equipment and Doppler 

transceivers as input devices we note that the problem is caused due to the 

difference of output impedance between these two different devices. Standard 

lab equipment such as signal generators or oscilloscopes has high output 

impedance. Therefore,   even signal with small output voltage like  

100mV/200mV  from signal generator can drive the input pin of the ADC of the 

TelosB mote. However, the radar does not have enough power to drive the input 

pin of the ADC. We solve the problem by designing a voltage follower circuit 

between the radar output pin and the ADC input pin of the mote as shown in Fig. 

21. The voltage follower circuit works as a unity gain amplifier and analog buffer 
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for the radar output .The voltage follower circuit eliminates the loading effect and 

works as a required separation between two devices. Figure 22 show the final 

design and implementation of our radar-mote sensor system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.  21: Final Setup flow diagram of autonomous radar-mote wireless network 

system for data collection. 

 

 

 



75 

 

 

 

 

 

 

 

 

 

 

 

Fig. 22: Final circuit diagram for integration of Doppler radar and wireless sensor 

platform. 

 

3.1.3.4 Integrated Radar-Mote Sensor Data Collection and Processing 

In this section we present the test data collection using our integrated radar-mote 

system as shown in Fig.22. We store the radar output in comma separated value 

(csv) format in host computer. The stored data contains sampled digital value of 

the analog radar signal. We can obtain corresponding digital signal using the 

ADC conversion formula in Eq. (63). Figure 23 shows an example radar signal 

captured and reconstructed by the integrated radar-mote system. 
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Fig. 23: Radar signal captured and reconstructed using wireless mote 

 

In Fig. 23 the radar signal is captured with a sampling rate of 200 KHz. The 

signal contains Doppler shift which corresponds target velocity. The signal is 

checked by processing it through a Matlab program to compute range and 

velocity of the target. The Matlab program computes a two dimensional FFT of 

signal and plots them in scaled image with axes corresponding to range and 

range-rate (velocity).The background for data processing is presented in Chapter 

2. The processing of the signal in Fig.39 in Chapter 4 offers approximately 

correct range and velocity. The detail results for range and velocity computation 

is discussed in Chapter 4.  

3.2 New Doppler model for Reflectivity of non-conducting materials 

In Chapter 2, we discussed a mathematical model to shows the amount of 

reflected electromagnetic energy back to a source from an object. The model 
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offers the reflection of a plain wave from the object. In this section, we modify the 

reflection model to incorporate Doppler shift. The signal from new model offers 

range and velocity information along with the reflectivity of the object. We obtain 

simulated signal reflected back from a three non-conducting materials using the 

modified model. The simulated signals are then compared with the experimental 

signal in Chapter 4.  

3.2.1 Modifying the Reflectivity model of Microwave Signal to incorporate 

Doppler shifts. 

The reflectivity model discussed in Chapter 2 offers reflectivity of plane wave 

from different types of non-conducting surface [7][8]. This section discusses our 

modifications to the plane wave reflectivity model to incorporate Doppler 

principle. Adding Doppler shift to plane wave does not change the amplitude of 

the original signal. However, the added Doppler shift can be used to compute the 

range and velocity of the target from which the signal is reflected back to the 

source. 

The plane wave model in Eq. (50) can be re-written as follows [8], 

 

           � = �A���E �����E �A���Ç���
����A�E�����A�E��Ç���  .                                               (64) 

Here,  ] = 4a�/' , c is the speed of light, � is the frequency of the plane wave 

signal, nÈ is the refractive index of the reflecting material and L is the thickness 

of the  reflecting material. The Ka Doppler radar used in our work is dual channel 
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radar. The two outputs are: In-phase (I) and Quadrature (Q) channel outputs 

where Q-channel output is 90° phase shifted version of the I-channel radar 

received signal. The dual channel output can be expressed as, 

 

 /��� = 7��� + ?@���.                                                                          (65) 

The details of the Doppler principle are discussed in Chapter 2. We rewrite Eq. 

(9) for I (t) as follows, 

 

      7 = σ

6 cos,4π��&/'.,                                                                              (66) 

where �� is the carrier frequency, σ is a constant which corresponds to the target 

radar cross section (RCS) and  &��� = &� + &8�. Note r0 is range at instant zero and 

&8 is the rate at which the object is changing its range, range-rate or velocity of the 

object. The Q-channel signal or Q (t) can be expressed similarly as, 

 

       @ = σ

6 sin,4π��&/'. .                                                                           (67) 

Substituting Eqs. (66) and (67) into Eq.(65) and using well known identity, 

   ^12 = cos � + sin �, we can write F(t) as,      
 

          /��� = σ

6 e�ËÌÍ<Î
Ï   ,                                                                                (68) 
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and  

 

         /���  = σ

6 eÐÑ.                                                                                      (69) 

Plugging the value of ω from equation (69) to equation (64) we obtain the model 

of reflectivity that incorporates Doppler shift. The new model equation given is as, 

 

           � = �A���E �����E �A���ËÒÓ<  Î ���/Ï
����A�E�����A�E��ËÒÓ<  Î ���/Ï     .                                   (70) 

Equation (70) is our final model to obtain the reflectivity of different non-

conducting materials in our subsequent integrated Doppler radar-mote 

integration.  

3.2.2 Simulation of Doppler Signal Reflectivity for Non-conducting material 

surface 

The reflective model derived in Eq. (70) assumes the reflective materials are 

non-conducting and homogeneous. Consequently, we choose a few non-

conducting materials for reflectivity simulation. The example materials in our 

simulation are wood, paper and glass. These materials have their own refractivity 

defined by index of refraction [8] given as, 

 

           b = =
� = ÔÐ� �

ÔÐ� �Õ  ,       (71) 
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Here c is the speed of light in vacuum and � is the speed of light in the 

materials,�1  ?S  the angle of incidence of wave and �1 is the angle of reflectance of 

the wave.  

The refractive indexes of the materials depend on the frequency with which it is 

measured [8]. However, for any material the refractive index is constant for a 

frequency range. For simplicity we vary the index of refraction for the three 

materials in our experiment keeping the frequency range same as our Doppler 

radar. Therefore, the simulated signal will represent the reflectivity of Doppler 

signals from those material surfaces. Typical refractive indexes of wood, 

commonly used glass and paper are shown in Table 4. 

 

Table 4: Typical Index of refraction for non-conducting materials used in 

simulation. (Source: Ref. [7][8]) 

Materials Index of Refraction 

Wood 1.41 

Glass 1.51 

Paper 1.73 

 

Figure 24 shows the simulated reflectivity of Doppler radar signal for wood, glass, 

and paper respectively. 
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Fig. 24: Reflected Doppler radar signal from non-conducting materials 

Figure 24 confirms that our reflectivity model correctly obtains increased 

reflectivity for objects with higher refractive indices. 

 

3.3 Feature Extraction and Classification of Materials using MUSIC 

Technique  

From the simulation plot in Fig. 24 in section 3.2.2 it is obvious that different 

types of materials reflect different amounts of energy. In order to obtain a more 

quantitative measure of this observation, we now design experiments. The 

simple way to validate the observation is to compare the simulated signal with 

experimental signal. However, for large amounts of data this simple process may 
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not be feasible. The data collected through experiment will be too large to 

validate with visual observation. Therefore, we need to extract feature for each 

cases and classify them with standard machine learning techniques. Figure 25 

shows the machine learning technique we use for the classification.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 25: Methods of Feature Extraction and Classification 
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We propose a step by step validation process which offers classification matrix 

as an end result. For feature extraction we use the standard MUltiple SIgnal 

Classification (MUSIC) technique for spectrum analysis of signal. The detail of 

the MUSIC technique is discussed in Chapter 2. We have collected data using 

integrated radar-mote for many instances. The details of the experiment scenario 

and process are described in Chapter 4. After extracting we apply standard 

machine learning techniques to classify signals reflected from different material 

surfaces. We use WEKA machine learning tool for the classification steps [38]. 

The results of experiments are also discussed in Chapter 4. The detail steps for 

feature extraction and classification are shown in Fig.25. 

For robust object material classification, we need to collect Doppler radar signal 

reflected from the surface of non-conducting materials for many runs. Each 

instance of the Doppler signal reflected back from a material surface is treated as 

one run. The data collected through the integrated radar-mote system is treated 

as raw data. The raw data is preprocessed by removing any outlier noise and 

subtracting the background of the signal. We apply the MUSIC technique to the 

preprocessed signal for extracting features. Similarly, we collect feature vectors 

for the desired number of runs for all the non-conducting materials and label 

them for classification. After collecting feature vectors from available number of 

runs, we normalize the matrix with its maximum value. We then apply Principal 

Component Analysis (PCA) to reduce the dimensionality of the feature matrix. 

Finally, we apply different individual classifier and their fusion available in WEKA 
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to classify them according to the labels assigned. The classification result is 

discussed in Chapter 4.  

In this chapter we discussed our new radar-mote design and implementation. We 

also discussed corresponding data collection for the verification of our design 

and testing of the new sensor-mote system. After successful verification of our 

integrated radar-mote system we design a toy experimental scenario for 

surveillance and tracking using our novel radar-mote system in Chapter 4. In 

Chapter 4, we describe the real experiment performed with the integrated 

autonomous radar-mote system and corresponding results. We further discuss 

our modification to the reflectivity model [7][8] to incorporate Doppler shift. Both 

simulated and experimental reflectivity of some non-conducting materials is 

presented. Finally, a classification technique is proposed to classify the 

reflectivity of those non-conducting materials to confirm the simulation 

observation in Chapter 4.  
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Chapter 4 

Experiments and Results 

In previous chapters, we introduced an autonomous wireless sensor network 

consisting of several COTS sensors including Doppler radar, infrared, acoustic 

and vibration. Such sensor network platform can be used for an integrated 

surveillance and sensing system [1]. We also designed a toy experiment to 

explore the capability of our integrated radar mote. In this Chapter, we describe 

the simulation results of the reflectivity of non-conducting material, the toy 

experiment, and data collection using the integrated radar-mote sensor network 

and data processing results. The data collected from toy experiment are 

compared with the simulated reflectivity of non-conducting materials to validate 

the idea of different reflectivity for different non-conducting materials. We process 

the data with simple signal processing technique to compute the range velocity of 

the targets. We also extract feature from radar signals reflected from non-

conducting reflectors with the help of MUSIC technique described earlier. We 

demonstrate the detection, ranging and velocity estimation with our integrated 

radar-mote sensor suite and compare the results with that of the radar before 

integration. We then classify different types of non-conducting materials 

exploiting extracted features from the Doppler data. The results demonstrate that 

cheap COTS sensor may be useful to implement effective distributed intelligent 

decision support system. 
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4.1 Simulation Results on Reflectivity for selected non-conducting 

materials 

In Chapter 3, we discuss a mathematical model to relate the refractive index of a 

material and amount of reflected electromagnetic energy from such material. We 

also discuss our modification to the model incorporating Doppler shift into the 

electromagnetic wave equations as shown in Eq. (70). The simulation model in 

Eq. (70) offers synthetic reflected signal for various reflectors made of different 

materials. Appropriate signal processing of simulated signal is expected to offer 

range between the reflector and the source as well as the velocity of the moving 

reflector target. The refractive index of the non-conducting materials used in 

simulation is shown in Table 4 in Chapter 3. We plot the amplitude of reflected 

electromagnetic signals for wood, glass and paper reflector respectively in Fig.24 

in Chapter 3. 

4.2 Range-Velocity Output from Simulated signal 

Since we add Doppler shift to our reflectivity model, the simulated signal now 

shows the range and velocity of the target material along with reflectivity. Figures 

26 and 27 show the plot of velocity vs. range of the simulated signal for wood for 

an example. Note the Doppler shift is not related to amplitude of the reflected 

signal. Hence, we obtain same plot for all three materials in our experiment. We 

perform Fast Fourier Transforms (FFT) of the simulated signal and obtain 

corresponding range and velocity plots. The distance between the moving target 

and the source of the signal is 0.5m and 1 m respectively in Figs.26 and 27 and 
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the velocity of the moving reflector is 0.5m/sec for both cases. Since the Doppler 

shift expression in Eq.70 is same for all the reflectors, we show the 

corresponding plots for one example reflector (wood) in here. 

  

 

 

 

 

 

 

 

 

 

Fig. 26: Range-rate (Velocity) vs. Range plot of simulated signal when the 

distance between the reflector (wood) and the source of signal was 0.5m and the 

velocity of the target was 0.5m/sec. 
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Fig. 27: Range-rate (Velocity) vs. Range plot of simulated signal when the 

distance between the reflector (wood) and the source of signal was 0.5m and the 

velocity of the target was 0.5m/sec. 

 

The simulated velocity vs. range offers the same known velocity vs. range 

measures for our experiments. Therefore, the plots in Figs.26 and 27 show that 

our modification has successfully incorporated the Doppler shift into the new 

reflectivity model. We also collect radar signals reflected from the same materials 

used in this simulation experimentally for comparison and verification. 
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4.3 Experimental setup for Sensor Network  

In this section we discuss the experimental setup and different experiment 

scenarios using our integrated radar-mote system. Detailed descriptions of the 

sensors, sensor nodes and integration are discussed in Chapter 2 and 3. We use 

a toy train as our target. The train is run by battery power and moves round an 

oval shape track. We emulate different events by making changes to the toy train 

configurations. Figure 28 shows the experimental sensor network setup with a 

toy train on the track.  

 

 

  

 

 

 

 

Fig. 28: Experimental set up of our autonomous distributed sensor network which 

includes integrated radar-mote, SBT80 sensor mote, and WiEye sensor mote. 

The WiEye sensor platform has a number of sensors such as passive infrared, 

visual light and acoustic. The visual light sensor can detect the presence or 
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absence of light. We use WiEye wireless mote with light sensor as a “sentry” 

node which detects presence of a moving target and activate the radar-mote 

system collecting data. The other sensors in WiEye are not used in this 

experiment. We use these raw signals for computing range and velocity of the 

toy train and classifying the different materials the radar reflector is made of with 

the help of simple signal processing and classification algorithm. Figure 29 

shows the picture of the integrated radar-mote setup during experiment. Figure 

30 shows another picture which includes the moving toy train on the track and 

the radar-mote sensor system. 

 

 

 

 

 

 

 

 

 

Fig. 29: Picture of the integrated radar-mote setup during experiment. 
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Fig. 30: Picture of the Experimental scenario where toy train is moving on a track. 

  

For testing, we create three different types of reflection profiles with three non-

conducting materials such as wood, glass and paper (same materials used in 

simulation) of the train. We place these different reflection materials at the front 

of the train such that the directed beam of radar signal is reflected back from 

these reflection plates. The same setup is used for two different speeds of the toy 

train. In first case the train moves towards the radar and in the second case, the 

train is moves away from the radar. The speed of the train is slightly different for 

two cases. The movement of the target in different direction compared to the 

static radar may cause different types of incident angle for reflection of the 

electromagnetic signal. Therefore, we collect the radar data for two different 

speeds and two different distances. Table 5 summarizes different test events for 

our toy train.  
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Table 5: Different Test Configuration created with toy train 

Configuration Type Description Remarks 

Reflector  Wood, 

Glass, 

Paper,  

The front of the train holds a 

rectangular plate that works 

as a reflector. The reflector 

is made of the non-

conducting materials (wood, 

glass, paper) and   

aluminium for different 

cases. 

Due to different 

material properties 

we expect 

difference in 

amplitude of the 

reflected radar 

signal.  

 

Range  0.5m,1m The distance between the 

moving  target and the 

static radar is 0.5m and 1m 

for two different 

configuration 

Different distances 

between the static 

radar and moving 

target is computed 

from the simulated 

and experimental 

signals. 

Velocity Slow and 

fast   

The train has slightly 

different velocities while 

moving forward and away 

from the target. 

Different direction 

of the movement 

compared to the 

static radar create 

slightly different 

incident angle for 

the radar signals. 

 

4.4 Experimental Results on Reflectivity for selected non-conducting 

materials 

The simulated signal reflected from three non-conducting materials are 

discussed in section 4.2. In this section, we collect the corresponding 

experimental radar signal reflected back from rectangular reflective plate made of 

the same non-conducting materials respectively. Although the reflectivity model 
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we use does not work for conducting materials such as metal, we collect 

reflection data with a metal (tin) reflector as a test case. Figures 31, 32, 33, and 

34 show experimental signals reflected back from the same three non-conducting 

materials and a metal reflector made of wood, glass, paper and tin respectively. 

 

 

 

 

 

 
 
 
 
 
 
 

 

 

Fig. 31: Experimental Signal Reflected back from Wood 
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Fig. 32: Experimental Signal Reflected back from Glass 

 
 

 
 
 

 
 

 
 
 
 
 
 
 

 

 
 
 
 
 
 

Fig. 33: Experimental Signal Reflected back from Paper 
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Fig. 34: Experimental Signal Reflected back from Metal (Tin) 
 

The experimental signals in Figs. 31, 32, and 33 are very similar to the simulated 

signals in Figs 24 for magnitude values. Since the simulated model is a simplified 

case of reflectivity computation, the slight difference between simulation and 

experiment is expected. However, the common pattern of amplitude is consistent 

in both simulation and experiment results. The metal works as a better reflector 

of the radar signal than the non-conducting materials as shown in Fig.34. Note 

the experiment conditions are designed to match the simulation as much as 

possible. The results show that the reflectivity of the materials is an important 

factor which influences how much energy reflects back to source from a 

materials surface.  
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The phase of the signals reflected back from the same three non-conducting 

reflectors are expected to be similar since the shape of the reflectors is same for 

all three cases. We present the frequency vs. phase plot of the signals reflected 

back three non-conducting reflectors in Figs. 35, 36 and 37 respectively. 

Although the phase plots are almost similar, there is a slight shift in frequency. 

The moment the radar-mote starts sampling a signal it can be at any point of a 

ramp like wave. Therefore, we try to align all the radar signals before further 

processing. However, this alignment process is not perfect .Therefore, the slight 

shift may occur in different signals. We try to trigger the mote at the same 

distance for all the experimental cases. However, the response time of the mote 

may slightly vary for different cases as they are not collected simultaneously. 

This may cause slight delay between different signals as well.  

  

 

 

 

 

 

 

 

 

 

Fig. 35: Frequency vs. Phase Angle plot of the experimental Signal Reflected 

back from wood 
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Fig. 36: Frequency vs. Phase Angle plot of the experimental Signal Reflected 

back from Glass 

 

 

 

 

 

 

 

 

 

Fig. 37: Frequency vs. Phase Angle plot of the experimental Signal Reflected 

back from Paper 
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Figures 35, 36, and 37 demonstrate that there are slight discontinuities in phase 

plots. These artifacts may occur from quantization error of the ADC or the 

wireless mote. The comparisons between simulated and experimental results 

shown in Figs. 24, 31, 32, and 33 is feasible for only a small number of 

examples. However, to confirm whether same observation is consistently correct, 

we need to validate our results using large amounts of data. We collect data for 

many instances for all three non-conducting materials and classify data using the 

tools discussed in Chapters 2 and 3. The next section discusses our 

classification results for non-conducting materials. The steps starting from data 

preprocessing to classification are shown in a flow chart in Fig. 23 in Chapter 3. 

 

4.5 Range-Velocity Output from Experimental Signal 

The Doppler radar is expected to offer range-velocity as output. The range-

velocity output from simulated signal is shown in Figs. 26 and 27 for distances of 

0.5 m and 1m respectively. Now we process the radar data collected from the 

integrated radar-mote. We compare these range-velocity plots with the plots of 

standalone radar data.   Figures 38 and 39 show the range-rate (velocity) vs. 

range plots using the data captured through newly designed integrated radar-

mote system. Figure 38 shows the range-velocity plot when the toy train moves 

toward with a velocity of 0.5m/sec and the distance between the target and 

radar-mote is 0.5m.Similarly; Fig.39 shows the range-velocity plot when the toy 

train moves toward with a velocity of 0.5m/sec and the distance between the 

target and radar-mote is 1m. 
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Fig. 38:  Range-rate vs. Range plot when the toy train was moving toward the 

radar and the data is captured through radar-mote (range 0.5m and velocity was 

0.5m/sec). 

 

 

 

 

 

 

Fig. 39: Range-rate vs. Range plot when the toy train was moving toward the 
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Radar and the data is captured through radar-mote (range 1m and velocity 

0.5m/sec). 

For cross check and validation, we collect data for same configuration using 

stand alone radar system with the help of a storage oscilloscope. Now we 

present the plots for same configurations as the radar-mote plots. Our troy train 

moves toward the radar with velocity 0.5m/sec and the distances are 0.5 m and 1 

m respectively for two cases. Figure 40 shows the range-velocity plot when the 

toy train was moving toward with a velocity of 0.5m/sec and the distance 

between the target and radar-mote is 0.5m. In Fig. 41 all the configurations are 

the same as in Fig.40 except the distance between stand-alone radar and target 

is 1 m. 

 

 

 

 

 

 

 

Fig. 40: Range-rate vs. Range plot when the toy train was moving toward the 

radar and the data is captured through storage oscilloscope (range 0.5m and 

velocity is also 0.5m/sec). 
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Fig. 41: Range-rate vs. Range plot when the toy train was moving toward the 

radar and the data is captured through storage oscilloscope (range 1m). 

Comparing the plots in Figs. 38 and 39 to those in Figs.40 and 41 for same 

configuration for our integrated radar-mote confirms validation of our novel radar-

mote system.  

4.6 Classification Results for non-conducting materials 

One of the goals of this thesis is to explore whether we can use material 

properties, specifically refractive index of materials, to classify the materials types 

of the targets. For simplicity and limited scope of this thesis, we obtain a modified 

model for non-conducting materials as shown in Eq. (70). We collect reflected 

radar signal from three non-conducting materials such as wood, glass and paper 

with our integrated radar-mote autonomous system. The pseudo- spectrum of the 
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signal, computed with MUSIC algorithm, is selected as the feature to classify the 

non-conducting material types of the target.  

We provide a brief description of the classification process here. Each instance of 

the radar signal is treated as one run and we collect 30 instances for all three 

non-conducting reflecting materials for each configuration. We take the raw 

signal for each instance and perform preprocessing. The MUSIC technique is 

then applied to the signal to obtain feature vector for that instance following the 

steps shown in Fig. 25. Note, the machine learning techniques and WEKA 

toolbox are discussed in section 2.7 in Chapter 2. Table 6 shows the result of 

classification using different types of classifier for the three non-conducting 

materials. 

Table 6: Result of classification with Weka Machine Learning Tool 

 

Class Description 
of runs 

Test 
Training  
Split 

Total 
# of 
runs 

Classifier  Accuracy 
% 

True 
+ve 
Rate 

False 
+ve 
Rate 
 

1
ROC 

Area 

2
Kappa 

Statistic 

Glass, 
Paper, 
Wood 
 

2 velocities 
(Train 
moving  
forward  
and train  
moving 
backward)  
 and  
2 distances 
(50cm, 
100cm) 

10 fold 
cross 
validation 
(66% for 
training 
and 34% 
for 
testing) 
 

359 J48 
(A  
decision 
tree based 
classifier) 
 

79.94 0.79 0.1 0.87 0.70 

359 Support 
Vector 
Machine1 
 

95.26 0.95 0.024 0.96 0.93 

359 Support 
Vector 
Machine2 

92.75 0.92 0.036 0.95 0.89 

359 LMT: 
Logistic 
Model 
Trees 
(Decision 
tree based 

89.69 0.89 0.052   0.95 0.84 
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on logistic 
regression
) 
 

359 Random 
Forest  
(A tree 
based 
classifier) 
 

90.52 0.90 0.047 0.98 0.86 

359 Multi 
Layer 
Perceptro
n 
(MLP) 

91.64 0.91 0.042 0.98 0.87 

359 Rotation 
Forest 
(A meta 
classifier 
that  uses 
a base 
classifier) 
 

90.52 0.90   0.047 0.99 0.86 

359 Voting of 
Random 
Forest, 
LMT and 
MLP 

94.98 0.95 0.025 0.99 0.92 

359 Voting of 
Random 
Forest, 
Rotation 
Forest and 
MLP 
 

94.98 0.95 0.025 0.99 0.92 

359 Voting of 
Random 
Forest, 
Rotation 
Forest and 
LMT 

92.20 0.92 0.039   0.99 0.88 

359 Voting of 
Random 
Forest, 
SVM and 
LMT 
 

96.10 0.96 0.019 0.99 0.94 

359 Voting of 
Random 
Forest, 
SVM and 
MLP 
 

95.82 0.95 0.021 0.99 0.94 

 

In Table 6, we use the following classifiers J48, functional tree, logistic model 

tree (LMT), random forest, rotation forest, multilayer Perceptron (MLP), support 
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vector machine (SVM) and fusion of a few  better performing classifiers. We fuse 

the classifiers using the meta classifier in WEKA toolbox based on voting of the 

classifiers. Table 6 shows that Support Vector Machine and Multilayer. 

Perceptron classifiers provide the highest percentage of accuracy when 

individually compared to the other classifiers.  The fusion of four combinations of 

different classifiers such as random forest-SVM-MLP, random forest-SVM-LMT, 

random forest-rotation forest-LMT and random forest-LMT-MLP provide more 

accuracy compared to any of the individual classifiers. The classifier accuracy is 

close to 90% for most of the classifiers. The area under ROC overall, which is 

another test of accuracy, is also close to 0.9 in scale of 1.0 for most of the cases. 

The figs. 42, 43 and 44 reflects this statement about ROC also. We show the 

ROC plot for one of the fusion classifiers for all three classes wood, glass and 

paper in Figs.42, 43, and 44 respectively as an example. The Kappa statistic is a 

measure of the stability for machine learning applications. If the Kappa statistic 

value is greater than 0.6, it indicates substantial agreement for the classification 

result [53]. For most of the classifiers in Table 6 the Kappa statistic is above 0.8. 

Therefore, the classification results are substantially stable.  
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Fig. 42: The ROC curve plot for Fusion of Random Forest-SVM-MLP classifiers 

for the class wood. The x-axis and y-axis denote the False Positive rate and the 

true positive rate respectively. 

 

 

 

 

 

 

 

Fig. 43: The ROC curve plot for Fusion of Random Forest-SVM-MLP classifiers 

for the class glass. The x-axis and y-axis denote the False Positive rate and the 

true positive rate respectively. 
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Fig. 44: The ROC curve plot for Fusion of Random Forest-SVM-MLP classifiers 

for the class paper. The x-axis and y-axis denote the False Positive rate and the 

true positive rate respectively. 

From above discussion and the classification Table 6, we conclude that the 

materials property can be used as good feature to classify the target material 

type.  

4.7 Advantages of the integrated radar-mote system compared to the 

standalone Radar system 

The aim of our thesis is to integrate a powerful active sensor such as Doppler 

radar into wireless sensor mote without degrading the capabilities of the 

standalone sensor systems. Table 7 shows a summary comparison between an 

integrated radar-mote system versus standalone radar system.  
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Table 7: Comparison between Standalone Radar and Integrated Radar-Mote 

system 

Features Standalone 

Doppler 

Radar 

Integrated  

Radar-Mote 

System 

Description 

Automated 

Data 

Collection 

No Yes The standalone radar system 

usually needs human intervention 

to store data in the storage system. 

Some current digital oscilloscopes 

may have the software control over 

the data gathering. However, 

triggering the digital scope requires 

complex circuitry and system to 

operate. Whereas in the integrated 

Radar-Mote system data gathering 

system is automated with the help 

of the wireless network framework 

of the wireless motes.  

Event 

Driven 

No Yes The data capturing is triggered 

when the integrate Radar-Mote gets 

a triggering signal from a sentry 

node. In our case the WiEye sensor 

mote sends the triggering signal 

when it detects the presence of any 

object within its field of view. Similar 

ways using the other sensors 

available in the wireless node 

different triggering events can be 

designed. Whereas the data 
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capturing is not event driven in case 

of the standalone radar system. 

Large-scale 

data 

collection 

Not suitable Suitable In case of the stand alone system 

requires human intervention and 

the storage oscilloscope also takes 

at least 5 seconds to store the data 

at any instant. Therefore, the 

standalone system is not suitable 

for large scale data collection where 

one need to collect many instances 

of a repeatable event. 

 

Portability 

and Mobility 

Not easily 

portable 

and not 

suitable for 

remote 

operation. 

Yes Need large supporting systems like 

oscilloscope, signal generator and 

power supply. Therefore, the 

standalone system cannot be 

deployed at any place due to 

specific requirements of the 

supporting equipments. Whereas 

the storage oscilloscope is replaced 

with the tiny wireless mote in the 

integrated system and the motes 

are run by battery power. The work 

is going on to replace the signal 

generator and power source 

equipments with the onboard signal 

generator and power source circuit. 

That would make the integrated 

system fully portable and mobile 
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Remote 

operation 

Not suitable Suitable The integrated system can be 

triggered by the sentry nodes from 

a distant place through wireless 

communication. Similarly the base 

station node which works as bridge 

between the integrated system and 

a workstation can also be placed 

distant place from the integrated 

radar-mote. 

Power 

requirement 

High Low The wireless mote which replaces 

the storage oscilloscope is run by 3 

battery power. Whereas the scope 

requires high power source to 

operate. 

 

Therefore, we conclude that our integrated radar-mote design and 

implementation met all goals stated at the beginning of this thesis. Furthermore, 

we successfully exploit novel integrated radar-mote system for experimental 

verification of target material classification. 
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Chapter 5 

Conclusion and Future Work 

Our contribution in this thesis can be divided into two parts. The first contribution 

is a successful design and implementation of an integrated autonomous radar-

mote system. The second contribution involves experimentation and simulation 

of reflectivity of non-conducting materials. We have modified an analytical 

reflectivity model [7] [8] to incorporate Doppler shift. We obtain simulated Doppler 

signal for various non-conducting materials. Finally, we experimentally verify and 

classify the non-conducting material targets using real data collected with our 

newly designed radar-mote system. The following sections elaborate on the 

contributions of this thesis. We  also discuss the limitations and potential future 

works.  

The first goal of the thesis is to incorporate an active sensor such radar into the 

wireless mote. We successfully design and implement an autonomous radar-

mote system integrating a Ka- band Doppler radar to TelosB wireless mote. Our 

integrated radar-mote system can successfully replicate the data collection 

capabilities of a standalone radar system. The additional benefits of our 

integrated radar-mote system include increased automation, large-scale data 

collection, portability, remote operation and reduced power requirement. 

Comparing the processed signal collected through radar-mote with that of 

storage oscilloscope, we find that our radar-mote can compute range-velocity as 

correctly as the standalone radar does. We add a voltage follower circuit as an 
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analog buffer to provide required separation between the Doppler radar output 

and the TelosB mote in here.  

 The second part of the thesis   propose a modified reflectivity model [7][8] to 

obtain reflected signals from non-conducting material surfaces. The original 

model offers the reflectivity of a plane electromagnetic wave from non-conducting 

materials. We modify the model to incorporate Doppler shift into the reflectivity 

model such that the signal offers range –velocity information of the target in 

addition to reflectivity of different target materials. We simulate reflectivity of three 

non-conducting materials such as wood, glass and paper using our modified 

reflectivity model. The simulated signal is processed with FFT to compute range 

and velocity from Doppler shift. The simulation results confirm that the Doppler 

shift is successfully incorporated into the analytical reflectivity model. We 

experimentally collect reflected radar signals from the same three non-

conducting materials using our newly implemented integrated radar-mote 

system. The radar-mote autonomously captures large amount of signal for 

different configurations. Our experimental radar-mote reflection data validates 

our simulated data for the selected non-conducting materials. Finally, we 

successfully classify three non-conducting materials using the collected 

reflectivity signals. 

The contributions of this thesis are summarized as follows, 
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1. This thesis accomplishes a successful design and implementation of an 

autonomous radar-mote by integrating a Doppler radar into the wireless 

mote with Commercial off the shelf components.  

2. This thesis successfully investigates the effect of material refractive index 

on the reflectivity of non-conducting materials. A reflectivity model for non-

conducting material is successfully modified to incorporate Doppler shift 

information. The newly built integrated radar mote system is used to 

collect data for successful validation of the reflectivity model. 

Our newly designed and implemented integrated autonomous radar-mote system 

offers reasonable accuracy and efficiency. However, there is still opportunity of 

improve the system. Although the signal captured through radar-mote system 

computes the range-velocity correctly, we observe a slightly upward slope in the 

radar signal captured through the radar-mote system. We need to investigate the 

unwanted upward slope in our signal to make the system more efficient. Our 

radar-mote system is still experimental. Hence, more emphasis was placed on 

correct function rather than efficiency, mobility, and portability. The voltage tune 

input to the Doppler radar is currently provided from a standard laboratory signal 

generator. The 5V power required for the radar and voltage follower circuit is also 

provided from standard laboratory power supply device. The heavy laboratory 

equipments used in current setup pose inconveniences such as lack of portability 

and mobility. We plan to replace the standard laboratory signal generator and 

power supply equipment with equivalent circuit implementation. Since our current 

system is experimental, we use laboratory connecting wires for the connections 
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between Doppler radar, voltage follower circuit and TelosB mote. In addition, the 

random odd glitches present in some cases in the radar signal may occur due to 

these unstable connections. Once the experimental system is standardized these 

connection will be replaced with standardized soldered connections. 

Implementing the whole experimental radar-mote system in a single IC package 

would be the final target. 

We have performed our experiments in an indoor laboratory environment and 

indoor environment is always advantageous compared to outdoor. Therefore, in 

real life scenarios and in complex outdoor environment, the classification 

accuracy of our system may decrease from the current accuracy level. In this 

thesis, we explore the simple idea of classifying different non-conducting material 

reflectors. This work can be extended to explore object detection for different 

types of conducting as well as non-conducting materials in complex outdoor 

environment. For the sake of simplicity and limited scope of the thesis, we just 

consider the reflectivity of the non-conducting materials for our simulation and 

experiment. Therefore, one of the logical directions of improvement is to integrate 

the reflectivity of the conducting materials into our model. Successful integration 

of conducting materials into the model will make the model complete. 
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