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ABSTRACT 

Grant, Elige Buckhanan.  Ph.D.  The University of Memphis.  August, 2010.  Gladwin 
Tensor Strainmeter Calibration using Seismic Data: Instrument Calibration Methods and 
Wave Gradiometry Applications.  Major Professor:  Dr. Charles A. Langston. 

 

Calibration coefficients yielding the borehole coupling parameters and corrections to 

misalignment errors have been calculated for seven borehole Gladwin Tensor Strainmeter 

(GTSM) instruments, in southern California, associated with the Plate Boundary 

Observatory (PBO). The calibration coefficients are derived from a linear relationship 

between the strain field measured in the borehole and the reference strain field derived at 

the surface. In this study, we derived the reference formation strains (i.e., areal strain, 

differential normal strain, and shear strain) at the surface from broadband data collected 

by the Anza Seismic Network in southern California. We find reasonable agreement 

between the calibration coefficients derived here using seismic data and the calibration 

coefficients derived elsewhere using theoretical earth tide measurements. We tested 

whether each strainmeter required different calibration coefficients over time and found 

no time dependency over a ~2 year period. We also investigated potential instrument 

orientation errors during the calibration process and determined that the seven borehole 

GTSM instruments in this study required correction factors ranging from 3 to 50 degrees. 

Accurate reference formation strains are necessary to ensure accurate calibration of 

the borehole GTSM instruments. In order to derive accurate measurements of reference 

strain, we evaluate four different methods for estimating the spatial displacement gradient 

using broadband, teleseismic data. During these experiments we identified two methods, 

one derived from spatial gradient analysis in two-dimensions (2D) and one based on 

plane-wave polynomial interpolation, that appeared to perform well consistently. During 

the calibration process we combined these two methods in order to further increase the 

accuracy of our spatial displacement gradient estimates, and therefore the accuracy of our 

reference strain estimates. 

Three interesting applications utilizing data collected by a calibrated borehole 

GTSM instrument co-located with a broadband seismic station and by a dense array of 



 

 v 

calibrated borehole GTSM instruments are discussed. We find that important 

characteristics of the seismic wavefield, including the change in geometrical spreading, 

horizontal phase velocity, and propagation direction, can all be derived at a single 

location on the surface of the earth using techniques derived from spatial gradient 

analysis in 1D and 2D.  
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CHAPTER 1 

 

Introduction 

 

The Plate Boundary Observatory (PBO) is an EarthScope project designed to 

measure and study plate deformation in the western part of North America. There are 

nearly 1300 stations that make up the PBO – they include Global Positioning System 

(GPS) stations, Borehole Strainmeter (BSM) stations, surface Laser Strainmeter (LSM) 

stations, tiltmeter stations, and seismometer stations [EarthScope, 2009]. Of the nearly 

1300 instruments, there are currently 74 borehole Gladwin Tensor Strainmeter (GTSM) 

instruments that have been deployed [UNAVCO, 2010]. However, most (if not all) GTSM 

instruments that have been installed to date have experienced problems that have brought 

the quality of their data into question [Roeloffs et al., 2004].  This body of work will 

focus on seismological calibration methods that mitigate these problems and on 

interesting applications that incorporate calibrated strainmeter data. 

 

The Plate Boundary Observatory 

 

The Plate Boundary Observatory was developed in order to study the four-

dimensional (4D) characteristics of deformation across western North America – 

especially the deformation process leading up to a large earthquake or volcanic event 

[Jackson and Bohnenstiehl, 2005]. The PBO concept was presented to the National 

Science Foundation (NSF) after gathering input from a workshop conducted in October 

1999. The Plate Boundary Observatory together with the USArray and the San Andreas 

Fault Observatory at Depth (SAFOD), collectively known as the EarthScope Project (see 

Figure 1), got underway in 2004 through financial support from the NSF. The  
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Figure 1. Illustration of the EarthScope deployment (PBO, USArray, and SAFOD) along 
western North America [EarthScope, 2009].  
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University NAVSTAR Consortium (UNAVCO) has been responsible for installing and 

maintaining all the instruments that make up the PBO.  

The PBO is composed of a variety of sensors in order to measure deformation across 

a variety of time scales. The ~1100 GPS stations, which make up the largest fraction of 

the PBO instrumentation, measure deformation associated with characteristic event times 

ranging from several days to several decades [Roeloffs et al., 2004]. In contrast, 

seismometer instruments measure deformation associated with characteristic event times 

ranging from several milliseconds to several minutes. BSM instruments bridge the gap 

between seismological and GPS technologies by measuring deformation associated with 

characteristic event times ranging from several seconds to several months (Figure 2). 

 

 

 

Figure 2. Illustration of the characteristic event time coverage for Seismological, GTSM 
and GPS Technologies (reproduced from GTSM [2010]). 
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In order to study the deformation processes that occur at time scales between that of 

the seismological and GPS technologies, it is important that the data collected by the 

BSM instruments accurately reflect the true local strain field resulting from a tectonic 

event. However, the default isotropic calibration parameters that have been adopted by 

the PBO do not take into account the local anisotropic effects associated with each 

borehole GTSM instrument [Hart et al., 1996 and Roeloffs, 2010]. Therefore, in order to 

recover the true local strain field, it is necessary to provide accurate calibration 

parameters specific to each GTSM station. 

 

Gladwin Tensor Strainmeter Instruments 

 

Gladwin Tensor Strainmeter (GTSM) instruments are billed to be a high precision, 

high stability multi-component (tensor) tool for measuring tectonic strain inside a deep 

borehole. As of July 2010, 74 of the proposed 103 GTSM instruments have been installed 

(see bottom-right image in Figure 1 for current station coverage). Boreholes typically 

extend down to depths greater than 150m, where the GTSM instrument is emplaced using 

an expansive grout to ensure proper coupling. As an example, the schematic associated 

with the installation of GTSM station B081, located in southern California, is illustrated 

in Figure (3). Each GTSM instrument consists of 4 gauges – channel 1 is orientated 60 

degrees Counter-Clockwise (CCW) from channel 0, channel 2 is orientated 120 degrees 

CCW from channel 0, and channel 3 is orientated 150 degrees CCW from channel 0. The 

fourth gauge is redundant for deriving strain information, but is important in identifying 

whether a gauge is operating inconsistently (or not at all). The four gauges measure the 

change in diameter of the instrument housing in response to various tectonic and non-

tectonic (e.g., tide, atmosphere, and pore pressure) activities. 

The deformation measured by the GTSM instrument downhole is different from the 

deformation that would have resulted in the same location had the borehole never been  
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Figure 3. Installation schematic of PBO GTSM instrument B081 located in Southern 
California [UNAVCO, 2010]. Nearly all GTSM installations also include the installation 
of a seismometer and temperature transducer; only a few also include a pore pressure 
transducer. 
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drilled. The difference in the amount of deformation at the same location before/after 

installation is due, in part, to the large difference in elastic properties between the 

downhole geology and the borehole coupled instrument. The downhole location is 

transformed from a nearly isotropic medium to an anisotropic system composed of the 

borehole geology, expansive grout, and strainmeter housing. Since measured deformation 

is not the same as the “true” deformation, it is necessary to derive scale factors that 

attempt to transform the deformation measured downhole to the theoretical deformation 

that would have occurred had the instrument not been installed. 

 

Previous Studies 

 

Gladwin and Hart [1985] and Shimada et al. [1987] both attempted to directly 

estimate the elastic parameters associated with the borehole environment. The elastic 

parameters were derived separately for the borehole geology and the expansive grout 

used to couple the BSM to the borehole. The effective response of a BSM inside a 

specific borehole was then obtained by combining the derived elastic parameters with the 

known response of a BSM instrument to deformation under ideal (i.e., isotropic) 

conditions. 

Hart et al. [1996] attempted to derive the effective response of a BSM inside a 

specific borehole by linearly relating the strain field measured by a BSM instrument to 

the strain field measured by a co-located LSM instrument. In that study, the strain field 

measured by each instrument was related to the earth’s tide. Theoretical earth tide 

measurements were also considered, however the authors found the theoretical strain 

measurements were not able to compensate for the heterogeneous effects associated with 

each borehole environment. 

Roeloffs [2010] attempted to derive the effective response of a BSM inside a specific 

borehole by linearly relating the strain field measured by a BSM instrument to the strain 

field derived from theoretical earth tide measurements. Only the theoretical strain 
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measurements at locations that were known to be consistent with previous strain 

measurements were used. That study reformulated the calibration equations, similar to 

those in Hart et al. [1996], in order to account for the effects caused by coupling between 

the vertical strain and the horizontal components of formation strain. That study also 

investigated both the relationship between the borehole GTSM and the changes in 

atmospheric pressure and the possible relationship between the borehole GTSM and the 

changes in pore fluid pressure. 

Data provided by BSM instruments are critical to studies involving many different 

important tectonic processes – they include tectonic activity associated with aseismic 

fault movement [Linde et al., 1996 and McCausland et al., 2008], tectonic activity 

creating permanent displacement offsets [Johnston et al., 2006], and tectonic activity 

indicating an imminent volcanic eruption [Sturkell et al., 2006].  

 

The Current Study 

 

In this study, we make the hypothesis that the borehole GTSM instruments 

associated with the PBO can be calibrated using reference formation strain measurements 

derived from broadband seismic data. This hypothesis was motivated by Langston and 

Liang [2008], where formation strain measurements derived from 7 PBO GTSM 

instruments (B081, B082, B084, B086, B087, B088 and B089) were compared to each 

other and to the formation strain measurements derived from broadband seismic data 

collected by a dense, 10-element subset of the Anza Seismic Network in southern 

California (see Figure 4). It was observed that the formation strain measurements derived 

from the broadband seismic data showed excellent consistency in both waveshape and 

amplitude for the 1 April 2007 M8.1 Solomon Islands earthquake (see Figure 5). In 

contrast, formation strain measurements derived from borehole GTSM instrument data 

associated with the same event were highly inconsistent in both waveshape and amplitude 

despite the relative close proximity of each station (see Figure 6).  
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Figure 4. Location of Anza Seismic Network stations and PBO GTSM stations in the 
study area. ORANGE squares indicate the location of broadband seismic instruments – 
the subset of the Anza Seismic Network used in this study did not include BVDA2, 
HWB, and SMER. BLACK triangles indicate the location of GTSM instruments. Image 
from Langston and Liang [2008]. 
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Figure 5. Illustration of the formation strain derived at each broadband seismic station in 
the 10-element subset of the Anza Seismic Network for the 1 April 2007 M8.1 Solomon 
Islands earthquake. The areal strain (a) is equal to the sum of displacement gradient 
elements u1,1 and u2,2. The differential normal strain (b) is equal to the difference between 
displacement gradient elements u1,1 and u2,2. The shear strain (c) is equal to the sum of 
displacement gradient elements u1,2 and u2,1. The rotation (d) is equal to the difference 
between displacement gradient elements u1,2 and u2,1. The vertical axis (i.e., y-axis) limits 
were set to ± 5x10-8 m/m in order to highlight the very consistent nature of strain 
measurements between all stations (i.e., the 10 traces overlap each other). Figure (9) from 
Langston and Liang [2008]. 
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Figure 6. Illustration of the formation strain derived from seven PBO GTSM 
instruments, using advertised orientation angles, inside the Anza Seismic Network in 
Southern California. For comparison, the bottom row indicates the formation strain 
derived from one of the broadband seismometers (FRD) in Figure (5a, b, c). The vertical 
axis (i.e., y-axis) limits were set to ± 0.03 micro-strain (i.e., 10-6 m/m) in order to 
highlight the inconsistent nature of strain measurements between all stations. Figure (10) 
from Langston and Liang [2008]. 
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The material in this study will cover three important aspects related to strainmeter 

calibration; in short, Chapter (2) will cover methods for deriving strain measurements 

from broadband seismic data, Chapter (3) will cover the method for calibrating borehole 

GTSM instruments using the reference strain measurements derived from seismic data, 

and Chapter (4) will cover three possible applications that incorporate the calibrated 

strainmeter data. More specifically, Chapter (2) will develop and describe several 

interpolation-based techniques to appropriately describe the formation strain at arbitrary 

locations inside an irregularly spaced seismic array. Chapter (3) will develop and 

describe the theory associated with strainmeter calibration using seismic data. This 

chapter will also illustrate the success of the calibration method. Chapter (4) will 

introduce and discuss several interesting applications based on standard array processing 

techniques and spatial gradient analysis, which both rely on data from a calibrated 

borehole instrument to work. 

The results of this study demonstrate that seismic-based calibration techniques 

appear to be a useful way of resolving the borehole coupling model, assumed here to be 

frequency independent, and any orientation errors. Accurate estimates of these 

parameters enable the “true” crustal strain associated with a variety of tectonic and non-

tectonic events to be resolved from the complex deformation signals measured by most 

borehole GTSM instruments. It should be a straightforward process to extend the 

procedure followed in this study to other borehole GTSM instruments in need of 

calibration when dense permanent or temporary broadband seismic networks are installed 

nearby. 
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CHAPTER 2 

 

Estimating Spatial Displacement Gradients using Seismic Data 

 

Abstract 

 

We compare four methods for estimating the spatial displacement gradients across 

an arbitrary, two-dimensional (2D) seismic array. The first is the seismo-geodetic method 

of Spudich et al. [1995], the second is the biharmonic spline interpolation method of 

Sandwell [1987], the third method (developed here) is also interpolation-based, and the 

fourth method is based on the 2D spatial gradient analysis (or wave gradiometry) method 

of Langston [2007b]. The seismo-geodetic method may only be applied to seismic array 

displacement data that are the result of uniform strain at any instant in time. The 

biharmonic spline interpolation method does not make any assumptions about the mode 

of wave propagation across an arbitrary 2D seismic array, except that ground 

displacements at any instant in time are smoothly varying. The second interpolation-

based method and the method based on spatial gradient analysis both assume plane-wave 

propagation and that displacements are smoothly varying across an arbitrary 2D seismic 

array. When the seismic displacements across an array are not the result of uniform 

strain, the results from the seismo-geodetic method appear to suffer from timing (or 

phase) errors. We find that these apparent timing (or phase) errors are sensitive to 

irregularities in the geometry of the seismic array. We also find that the last three 

methods can help mitigate the apparent timing (or phase) errors in the spatial 

displacement gradients.  

Experiments conducted in this study demonstrate that the method based on spatial 

gradient analysis appears to offer more accurate and precise estimates of the spatial 

displacement gradients at a specific seismic station. However, when estimating the 

displacement gradient at an arbitrary reference position inside the seismic array, we find 
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that the preferred method should be combined with one of the interpolation methods in 

order to maintain the same level of accuracy and precision. This is important for analyses 

that depend on accurate measurements of strain and rotation. 

 

Introduction 

 

Accurate measurements of the spatial displacement gradient are an important 

component to many different areas of analyses that require accurate estimates of strain, 

stress, or rotation. Such areas of analyses include earthquake hazard mitigation [Bodin et 

al., 1997 and Gomberg et al., 1999], building and infrastructure engineering [Trifunac, 

1982 and Paolucci and Smerzini, 2008], seismic phase velocity estimation [Mikumo and 

Aki, 1964 and Langston and Liang, 2008], and estimation of other wave propagation 

information [Langston, 2007a, b, c]. A short review of other studies may be found in 

Gomberg and Agnew [1996]. 

At the Earth’s surface, horizontal spatial displacement gradient estimates yield all 

the information necessary to estimate the full 3D strain tensor and a rigid body rotation. 

Accurate measurements of the spatial displacement gradients at the surface have the 

potential to provide very valuable information associated not only with seismic wave 

propagation and Earth structure, but also with local/regional deformation. Recently, 

Langston and Liang [2008] proposed linking inertial seismometry with differential (strain 

and rotation) seismometry for the purpose of calibrating differential seismometry 

instruments (e.g., borehole strainmeter instruments, or BSM instruments). The reasons 

for needing the calibration, in addition to methods for performing the calibration, are 

explained in detail in the next chapter (Chapter 3). In short, BSM instruments measure 

deformation in the ground that is different from the deformation that would have resulted 

prior to drilling/instrumentation. However, the difference between the deformation 

measured by the downhole BSM and the deformation that theoretically should have been 

measured are linearly related. In order to ensure that the linear calibration parameters (in 

the following chapter) are as accurate as possible, we review four methods (and select the 
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best) for estimating the spatial displacement gradient from seismic data collected by a 

well-calibrated broadband array at the earth’s surface. 

The seismo-geodetic method of Spudich et al. [1995] assumes that the ground 

displacements across a seismic array are the result of rigid body rotation and uniform 

strain, which is associated with uniform spatial displacement gradients, at any instant in 

time. In order for the assumption of uniform strain to be valid, the ground displacements 

at a specific instant in time should vary linearly in the direction parallel to wave 

propagation. This assumption requires that the ground displacement data be filtered such 

that the effective wavelength of a wave propagating across an array is significantly larger 

than the aperture of the array. For waves produced by large (M>7) teleseismic events, the 

seismo-geodetic method is more than adequate when considering waves that propagate 

with wavelengths that are significantly larger (i.e., > 10 times) the aperture of the seismic 

array. 

In the case involving band-limited data collected by a large aperture array, the 

effective wavelength of a wave that propagates across the array may not be large enough 

that the ground displacements vary linearly in the direction parallel to wave propagation. 

This can happen because the ground displacements derived from broadband seismic data 

are sometimes not well resolved below some low frequency limit. When the seismo-

geodetic method is applied in this situation, the spatial displacement gradients at each 

station will be different (i.e., non-uniform) and will create the potential for bias to be 

introduced in the estimate of the spatial displacement gradients at stations located toward 

the perimeter of the array. The bias is manifested in the form of an apparent timing (or 

phase) error – perimeter stations that are furthest from the source will see positive time 

(or phase) errors (i.e., seismic phases appear to arrive earlier) and perimeter stations that 

are closest to the source will see negative time (or phase) errors (i.e., seismic phases 

appear to arrive later). The magnitude of the apparent timing (or phase) errors will 

depend on the effective wavelength of the seismic wave. Since the effective wavelength 

(λe) of a seismic wave depends on both the propagation velocity (c) and frequency (f), 

i.e., λe=c/f, the components of the wavefield with higher frequency and slower 

propagation velocity will suffer from the largest apparent timing (or phase) errors.  
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For a seismic record that contains a variety of seismic phases, which travel at 

different rates of apparent horizontal speed across an array, this means that the resulting 

spatial displacement gradients cannot be corrected by simply applying a time-shift to the 

result by some constant offset. If the spatial displacement gradient estimates are off by 

even a constant phase angle, then it may not be possible to estimate this angle without a 

known reference for comparison or a priori information. With respect to the problem of 

BSM calibration, significant timing (or phase) errors will lead to time-dependent 

calibration parameters, which are neither desired nor ideal. In this case, the calibration 

parameters would have to be convolved with, instead of simply multiplied to, the raw 

BSM data to yield calibrated results in the time domain. If the spatial displacement 

gradient estimates are accurate, then the calibration parameters should not be complex if 

computed in the frequency domain. 

In order to avoid the apparent timing issues that may result from using the seismo-

geodetic method, hereafter Method (1), we investigate three additional methods for 

estimating the spatial displacement gradients: 

• Method (2) – The biharmonic spline interpolation technique developed in 

Sandwell [1987] 

• Method (3) – A plane-wave polynomial interpolation technique, developed in this 

study based on findings in Gomberg et al. [1999] 

• Method (4) – The spatial gradient analysis (wave gradiometry) method developed 

in both Langston [2007a] and Gomberg et al. [1999] 

Each interpolation-based method attempts to fit a surface, instead of a plane, through 

each component of the ground displacement data, at a single instant in time, recorded at 

arbitrary positions within a 2D plane. In this manner, the displacements and displacement 

gradients can be described at virtually any reference position within an arbitrary 2D 

seismic array when the strain field is either uniform or non-uniform across the array.  The 

first interpolation-based method, Method (2), was implemented in Smerzini et al. [2006], 
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and later in Paolucci and Smerzini [2008], where it was applied specifically to the 

problem of estimating spatial displacement gradients from dense seismic array data. This 

method allows the best-fit surface to vary both parallel to and perpendicular to the radial 

propagation direction. The second interpolation-based method, Method (3), is based on 

the argument, in Gomberg et al. [1999], that ground deformation across an array is 

primarily due to plane-wave propagation of waves (when below ~ 1Hz). In other words, 

the displacement gradients should be uniform between stations that are perpendicular to 

the radial propagation direction and should only vary between stations that are parallel to 

the radial propagation direction. Typically, the position differences between the source 

location and the receiver array location can provide an adequate estimate of the 

propagation direction across the array. If the source location is unknown, or independent 

estimates of the propagation direction across an array are desired, then there are 

additional techniques that may provide this information based on the cross-correlation of 

various seismic phases within the seismogram. 

In addition to the interpolation-based methods introduced above, Gomberg et al. 

[1999] describes a technique, Method (4), for estimating the displacement gradients from 

three-component velocity seismograms at a single station when the propagation velocity 

and direction are known. The same result in Gomberg et al. [1999] can be derived from 

the spatial gradient analysis of Langston [2007b] by assuming plane-wave propagation 

from an isotropic source (see also Langston and Liang [2008]). If the single station in 

question is an element of a 2D seismic array, the propagation velocity and direction may 

also be derived using similar cross-correlation based techniques mentioned above. 

We conduct several experiments using synthetic data to evaluate the performance of 

all the methods that estimate the spatial displacement gradients. In one experiment, we 

demonstrate the general performance characteristics of the seismo-geodetic method and 

the polynomial interpolation-based method (Method 3) using a simple three-element 

linear array. In the remaining experiments, we demonstrate specific performance 

characteristics of all methods using an array with geometry based on a subset of the Anza 

Seismic Network in southern California (see Figure 4). In these last experiments we test 
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the methods using a variety of synthetic data and real data, which are associated with the 

M8.1 Samoa Island Earthquake (2009/09/29). 

 

Deriving the Spatial Displacement Gradients from Seismic Data 

 

In this study, we discuss methods for obtaining the spatial displacement gradients 

from seismic data recorded by a two-dimensional (2D) array at the earth’s surface. 

Therefore, in estimating the displacement gradients we assume a free surface boundary 

condition (i.e., zero stress in the vertical direction at the surface). The stress tensor (τij) 

for an isotropic solid as a function of the displacement gradients (ui,j) is given by: 

€ 

i, j,k ∈ 1,2,3{ } : τ ij = λδijuk,k + µ ui, j + u j,i( ) ,   (1) 

where λ and µ are the Lamé parameters, 
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Under the assumption of a free surface boundary condition at the surface, all components 

of the stress tensor in the vertical direction are equal to zero. As described in Spudich et 

al. [1995], this leads to the relationship: 
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where 

€ 

η =
λ

λ + 2µ( )
 .     (6) 

In the next two sections, we will discuss general methods for obtaining the displacement 

gradients from seismic data. Each method is based on underlying assumptions that must 

be taken into account before application. 

 

Uniform Displacement Gradients 

 

The underlying assumption associated with the seismo-geodetic method of Spudich 

et al. [1995], Method (1), is that the displacement gradients are uniform across an array 

of seismometers at any instant in time. If we consider a N-element seismic array 

numbered according to the set 
  

€ 

M = 0,1,,N −1{ } , then we can find the displacement 

gradients at a reference station (we will denote “0”) by expanding the ground 

displacements 
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where xi, yi, and zi represent the horizontal and vertical locations of stations 

€ 

i ∈M in a 

Cartesian coordinate system (variation of Langston and Liang [2008]). Since we only 
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consider seismic data from a 2D horizontal surface array (or at least approximately 2D), 

we may assume that the differences in vertical position are zero. With the differences in 

vertical position equal to zero, the problem above can be cast into a matrix equation of 

the form Gm = d, where 
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The best-fit displacement gradients at the reference location are found, in a least-squares 

sense, by: 

€ 

G = dmT mmT( )
−1

 .    (8) 

 

Non-Uniform Displacement Gradients 

 

In some cases it may not be appropriate to assume uniform displacement gradients 

across an array. For example, if the array dimension is significantly large enough, then it 

might not be possible to adequately filter the seismic displacement data below a certain 
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frequency threshold due to instrument limitations, low frequency noise, etc. Whatever the 

case, it has been recognized here and by others [e.g., Smerzini et al., 2006 and Paolucci 

and Smerzini, 2008] that interpolating seismic displacement data may provide a quick 

way of estimating non-uniform displacement gradients across a seismic array. In addition 

to the methods based on interpolation, it is also possible to approximate the displacement 

gradients across a seismic array when the propagation velocity and propagation direction 

of each significant phase within the seismic record are known.  

 

Biharmonic Spline Interpolation 

 

The first interpolation-based method, Method (2), is an algorithm originally 

presented by Sandwell [1987] and is based on Green’s functions of the biharmonic 

operator. This algorithm was initially used to interpolate between irregularly spaced 

GEOS-3 and SEASAT altimeter data, but was later adopted by Paolucci and Smerzini 

[2008] to interpolate between seismic displacement data collected by an irregular spaced, 

dense seismic array. This interpolation method does not make any assumptions about the 

mode of wave propagation across the array, although for better performance the data 

should be smoothly varying. Displacement gradients may be found at an arbitrary 

reference point in a separate step by using the formulation in Sandwell [1987] or by 

applying a second-order finite difference scheme to seismic displacement data that have 

been interpolated onto a regular grid around the reference point (see Langston [2007b] or 

Paolucci and Smerzini [2008]).  

Method (2) produces stable results for data occupying up to three dimensions of 

space. The general solution for the ground displacement 
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where the elements of 

€ 

a j = ax
j ay

j az
j[ ] : j ∈M represent the point forces applied to a thin 

elastic beam (spline) passing through displacement data points at positions 
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p j : j ∈M  

and the operator 
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φm  is the biharmonic Green’s function in 

€ 
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The | |’s in Equation (10) indicate the magnitude of the vector between the two positions 

p and p j. The point forces (

€ 

a j : j ∈M) are found by solving the system of linear 

equations such that: 
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For a 2D seismic array, the relationship above may be cast into a matrix equation of the 

form Gm = d,  
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The best-fit estimate for the point forces are found, in a least-squares sense, by: 

€ 

m = GTG( )
−1
GTd .    (12) 

In order to describe the displacement gradient at an arbitrary reference point 

€ 

pr = xr y r zr[ ] , the point forces obtained above may be applied, using Sandwell [1987], 

to the following: 

€ 

∂u
∂x

xr

= a j  ∇φm p
r −p j( ) ⋅nx( )

j= 0

N−1

∑

∂u
∂y

yr

= a j  ∇φm p
r −p j( ) ⋅ny( )

j= 0

N−1

∑

 ,   (13) 

where  

€ 

j ∈M :∇φm p
r −p j( ) =

3 pr −p j( )pr −p j for m =1

pr −p j( ) 2lnpr −p j −1( ) for m = 2

pr −p j( )pr −p j −1
for m = 3

 

 

 
  

 

 
 
 

  , (14) 

nx and ny are unit vectors in the x- and y-direction, respectively, and the “⋅” indicates the 

dot product. 

Alternatively, seismic displacement data can be described at locations that 

correspond to a regular, symmetric arrangement around an arbitrary reference point. For 

example, one could follow Langston [2007b] and describe the displacements:  
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€ 

k ∈ 1,2,3,4{ } :uk = ux
k uy

k uz
k[ ]  ,   (15) 

around an arbitrary reference point 

€ 

pr = xr y r zr[ ] , within the original 2D array, at 

positions corresponding to: 

€ 

k ∈ 1,2,3,4{ } :pk =

xr + Δh yr + Δh[ ] for k =1

xr + Δh yr −Δh[ ] for k = 2

xr −Δh yr −Δh[ ] for k = 3

xr −Δh yr + Δh[ ] for k = 4

 

 

 
 
 
 

 

 
 
 
 

 ,  (16) 

and then compute the displacement gradients at the center of the array through: 

€ 

∂u
∂x

xr

=
1
4Δh

u1 + u2 −u3 −u4( )

∂u
∂y

yr

=
1
4Δh

u1 −u2 −u3 + u4( )

 .   (17) 

The surface created by this method exactly fits the data at the data locations. This is 

a potential drawback for spatial displacement gradient estimates if the seismic ground 

displacement data contain average or above average levels of noise. A potential 

workaround is to compute the spatial displacement gradients using different station 

combinations in order to check for data consistency or in order to compute the mean 

spatial displacement gradient estimate. 
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Plane Wave Interpolation 

 

The second interpolation method, hereafter Method (3), is an algorithm that assumes 

the observed seismic displacements are both smoothly varying across the array and the 

result of plane wave propagation at any instant in time. Instead of attempting to fit the 

observed 2D array displacement data with a 2D surface whose shape is allowed to vary 

both parallel to and perpendicular to the propagation direction (i.e., Method 2), this 

method attempts to fit the observed displacement data with a 2D surface whose shape is 

only allowed to vary parallel to the propagation direction.  This essentially converts the 

problem from a 2D interpolation problem to a 1D interpolation problem.   

The best-fit 2D polynomials, of order Q, which describe the radial (R), transverse (T) 

and vertical components of ground displacement 

€ 

ui = uT
i uR

i uz
i[ ] : i ∈M , are found by 

solving the system of linear equations such that: 

€ 

∀i ∈M :ui = a j  rd
i θ( )( )

j

j= 0

Q

∑  ,   (18) 

where the elements of 

€ 

a j = aT
j aR

j az
j[ ] : j ∈ 0,1,...,Q{ } represent the polynomial 

coefficients and the elements 

€ 

rd
i θ( ) : i ∈M  represent the relative radial positions between 

each station 

€ 

i ∈M and an arbitrary reference point 

€ 

pr = xr y r zr[ ] , within the original 

2D array. The relative radial distances along a propagation path according to the 

propagation direction (θ) may be found using the dot product: 

€ 

i ∈M : rd
i θ( ) = sinθ cosθ[ ] ⋅ x i − xr y i − yr[ ]  .  (19) 

It is possible to cast the relationship in Equation (18) into a matrix equation of the form 

Gm = d, for example the best fit 3rd order polynomial may be found by setting: 
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 .   

The best-fit estimate for the polynomial coefficients are found, in a least-squares sense, 

by: 

€ 

m = GTG( )
−1
GTd .    (20) 

For any Q > 0, the displacement gradients at the arbitrary reference point 

€ 

pr = xr y r zr[ ]  

are simply: 
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 .  (21) 

The drawback of Method (3) is that the propagation direction must be known prior to 

application. In general, the propagation direction can be derived from the relative location 

between the origin source location and the reference location on an ellipsoidal earth. If 

the source location is unknown, cross-correlation methods may be used to determine the 

propagation direction of specific seismic phases across an array. 

 

Plane Wave Gradiometry 

 

Spatial gradient theory for 2D seismic arrays [Langston, 2007b] describes a 

relationship between the radial displacement gradient, the radial displacement, and the 

radial slowness at any instant in time during the seismic record. Following Langston 

[2007a], the displacement of a propagating wave may be described as: 

€ 

u t,r,θ( ) =Gr r( )R θ( ) f t − t0( ) =Gr r( )R θ( ) f t − sr r( ) r − r0( )( )  ,  (22) 

where t is the time relative to the origin time (t0), r is the radial distance relative to the 

origin location (r0), θ is the radial propagation direction, Gr is the geometrical spreading 

term, R is the radiation pattern term, and sr is the radial slowness. The corresponding 

radial and azimuthal derivatives may then be described, respectively, as: 
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€ 

∂u t,r,θ( )
∂r

= u' t,r,θ( ) =
Gr ' r( )
Gr r( )

u t,r,θ( ) − sr r( ) + sr ' r( ) r − r0( )[ ]u
•

t,r,θ( )

∂u t,r,θ( )
∂θ

=
R' θ( )
R θ( )

u t,r,θ( )
. (23) 

Under the assumption of plane wave propagation, isotropic source, and constant 

horizontal slowness, the above relationship simplifies to: 

€ 

∂u t,r,θ( )
∂r

= −sr u
•

t,r,θ( )

∂u t,r,θ( )
∂θ

= 0
 ,   (24) 

because the functions describing the geometrical spreading, radiation pattern, and radial 

slowness are assumed constant for all r (i.e., their rate of change as a function of distance 

is naught). Under these assumptions, the displacement gradients at the arbitrary reference 

point 

€ 

pr = xr y r zr[ ]  may be described by: 
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 . (25) 

This is the result of Method (4) and should resemble the result from Method (3) – this is 

because the first-order polynomial coefficients (a1) are attempting to describe the same 

result. This is essentially the same result in Gomberg et al. [1999]. 

The drawback of Method (4) is that both the propagation direction and propagation 

slowness must be known prior to application. In general, the propagation direction can be 

derived from the relative location between the origin source location and the reference 
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location on an ellipsoidal earth. However, in order to determine the propagation 

slowness, it is necessary to employ techniques such as beam-forming or cross-correlation. 

One method is to assume that the time offsets (T), relative to a reference station/location 

(p0), are related to the relative x and y position differences and horizontal slowness in the 

x and y directions: 
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  .  (26) 

The appropriate time offsets, at any instant in time, may be obtained by attempting to find 

those offsets that lead to the best correlation between a suitable window of data from a 

reference location (for a single component of motion) and the seismogram data from the 

remaining stations within an array. For example, one could define a window of data such 

that the length W = V*2+1, where V represents the number of data samples to the “left” 

and “right” of a data sample at a specific instant in time. As this window slides in the 

direction of increasing time (i.e., from “left” to “right”), the appropriate time lags at each 

instant in time are expected to change since the window will begin to sample different 

seismic phases, which generally travel at different rates of apparent horizontal slowness 

across a 2D array. In addition to conventional grid-search based correlation techniques in 

the time domain, one can utilize optimization algorithms (such as those found in the 

Optimization Toolbox within MATLAB) in order to quickly converge to an optimum 

time lag for each station pair (see Appendix 1 for an implementation example) or a set of 

optimum time lags for a group of stations at each instant in time. 
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Hybrid Methods 

 

In order to provide more constraint on the estimates of the spatial displacement 

gradients at arbitrary locations inside a seismic array, it may be useful to combine a few 

of the methods described above. For example, estimates of the spatial displacement 

gradients derived at each seismometer location using Method (4) can be combined with 

the observed ground displacements, also at each seismometer location, in order to provide 

better constraint on the point forces or the polynomial coefficients when using Method 

(2) or Method (3), respectively. Another possibility is to use the propagation direction 

and slowness information in conjunction with a small time window of ground 

displacements at a single station, to create a virtual linear seismic array aligned in the 

propagation direction. Method (3) is potentially the only method suitable for performing 

interpolation on the data derived from the virtual linear seismic array. The second option 

also lends itself to a useful way of estimating the potential error in the spatial 

displacement gradient – namely because creating a virtual array using data from all the 

stations within the seismic array can create independent estimates of the displacement 

gradient at an arbitrary location. The variance, weighted variance, or standard deviation 

of the independent estimates can be used to describe the potential error about some mean, 

or weighted mean, displacement gradient estimate at a specific instant in time. 

 

Performance Tests 

 

A series of experiments were developed in order to determine the performance of 

each method for both simplified synthetic data and real data. We use synthetic data that 

are very simplistic in nature and without added noise because we felt it necessary to first 

gauge the performance of each method under ideal/perfect conditions. With the exception 

of the 1D tests, we perform our analysis using synthetic data under the assumption that 

the data were collected by a 2D array with essentially the same dimensions/geometry as a 
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sub-set of the Anza seismic network and the Plate Boundary Observatory (PBO) Gladwin 

Tensor Strain-Meter (GTSM) instruments in southern California (see Figure 4). The real 

data are associated with the M8.1 Somoa Islands Earthquake of 2009 September 29. 

 

Synthetic Data: One-Dimensional (1D) Tests 

 

This particular experiment is meant to illustrate the behavior of the errors in 

accuracy of the displacement gradients, which are estimated using either Method (1) or 

Method (3), from synthetic displacement data “recorded” by a 3-element linear array. The 

array is designed such that the reference station (station “0”), where the displacement 

gradient is calculated, is always situated between the other two stations (stations “1” and 

“2”). The synthetic displacement data correspond to a sinusoidal wave with unit 

amplitude and unit wavelength. The array dimension (Δ = distance between station “1” 

and “2” in percent of wavelength) and the array geometry (A/B, where A [or B] 

represents the distance between station “1” [ or “2”] and “0” in percent of Δ) are allowed 

to vary over a specified range in order to determine the errors in displacement gradient 

accuracy using either Method (1) or (3). In order for either method to work properly, it is 

important that the smallest wavelength of a seismic disturbance is much greater than the 

largest dimension of an array. The following examples illustrate how the errors in 

accuracy depend on both the dimension of the array as well as the irregularity of the array 

geometry. The 3-element array of a particular dimension/geometry scenario is allowed to 

sample one complete wave cycle before the mean error and standard deviation (STD) of 

the errors along this cycle are computed. 

Figures (7) and (8) illustrate the expected errors, using Method (1), in displacement 

gradient accuracy for 50×4 different array dimension/geometry scenarios (i.e., 200 

combinations from 50 different array dimensions and 4 different geometry scenarios) for 

the 3-element linear array. The chief result of this simple example is that the expected 

errors in accuracy are expected to increase under two general circumstances when using 

this method: 1) when the array dimension becomes an increasingly  
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Figure 7. Example illustrating the different displacement gradient results obtained from 
different one-dimensional (1D) array geometry scenarios. In this example the largest 
array dimension (length between Station 1 and 2) is 25% of the wavelength of the 
simulated seismic disturbance (a sine wave). The array geometry ratio is indicated in 
terms of the relative percent distance between station 0 and (station 1)/(station 2). The 
BLUE line indicates the normalized displacement amplitude over the course of one 
complete wave cycle. The MAGENTA triangles indicate the displacement amplitude at 
stations 1 and 2 for the different array geometry ratios. The MAGENTA square indicates 
the displacement amplitude at station 0. Given the displacement data recorded at the 3-
element array for the different array geometry ratios, the RED line indicates the 
displacement gradient one would find at station 0 using the method based on uniform 
displacement gradients. 
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Figure 8. The above figure illustrates the expected errors in accuracy if the example 
experiment in Figure (7) were repeated for the same geometry ratios, but for a variety of 
array dimensions and relative array locations (i.e., different array sample locations along 
the wave cycle). A single array configuration consists of a constant array dimension and 
geometry ratio. As an array configuration samples different parts of the wave cycle the 
error in the accuracy can either improve or become worse. Therefore, the performance of 
each array configuration is evaluated by running statistics on the set of errors associated 
with the errors in displacement gradients computed at each location along the wave cycle. 
The GREEN lines plotted above indicate the expected normalized average errors in 
displacement gradient, after sampling an entire wave cycle, as the array dimension 
increases for a given array geometry ratio. Similarly, the RED / BLUE lines plotted 
above indicate the expected normalized average errors in displacement gradient ± one 
standard deviation (STD), respectively. 
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significant fraction of the smallest apparent wavelength, and 2) when the array geometry 

is irregular. Noise was not considered in the example, but is expected to result in yet 

additional increases to the errors in accuracy.  

Figures (9) and (10) illustrate the expected errors, using Method (3), in displacement 

gradient accuracy for 50×4 different array dimension/geometry scenarios for the 3-

element linear array (same scenarios as above). In this example, the displacement 

gradients are estimated after obtaining the best quadratic fit (i.e., y=Ax2+Bx+C) through 

the synthetic displacement data. The chief result of this simple example is that, like 

Method (1), the expected errors in accuracy are expected to increase when the array 

dimension becomes an increasingly significant fraction of the smallest apparent 

wavelength. However, unlike Method (1), it appears that the errors in accuracy decrease 

when the array geometry becomes more irregular. Noise was also not considered in the 

example, but is expected to result in an increase to the errors in accuracy.  

 

Synthetic Data: Two-Dimensional (2D) Tests 

 

The geometry of most 2D seismic arrays at the surface is irregular. Therefore, an 

array will sample different parts of an incoming wave when the wave propagates across 

that array in different directions – even if the other properties of the wave (i.e., amplitude, 

wavelength, etc.) are virtually identical.  This set of experiments is meant to illustrate the 

behavior of the errors in accuracy of the displacement gradients and interpolated ground 

displacements, which are both estimated using the first 3 methods, from synthetic 

displacement data “recorded” by a 10-element 2D sub-array of the Anza seismic network. 

The synthetic displacement data correspond to a sinusoidal plane wave with unit 

amplitude that propagates across the array in different directions (θ) and with different 

wavenumbers (k = ω/c = 2π/λ: where ω is the radial frequency, c is the apparent 

horizontal velocity, and λ is the apparent horizontal wavelength). In order to simplify the 
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Figure 9. Example illustrating the different displacement gradient results obtained from 
different one-dimensional (1D) array geometry scenarios. In this example the largest 
array dimension (length between Station 1 and 2) is 25% of the wavelength of the 
simulated seismic disturbance (a sine wave). The array geometry ratio is indicated in 
terms of the relative percent distance between station 0 and (station 1)/(station 2). The 
BLUE line indicates the normalized displacement amplitude over the course of one 
complete wave cycle. The MAGENTA x’s indicate the displacement amplitude at 
stations 1 and 2 for the different array geometry ratios. The MAGENTA square indicates 
the displacement amplitude at station 0. Given the displacement data recorded at the 3-
element array for the different array geometry ratios, the RED line indicates the 
displacement gradient one would find at station 0 using the method based on non-uniform 
displacement gradients where the best-fit quadratic function (y=Ax2 + Bx + C), in a least-
squares sense, is found through the displacement data points. 
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Figure 10. The above figure illustrates the expected errors in accuracy if the example 
experiment in Figure (9) were repeated for the same geometry ratios, but for a variety of 
array dimensions and relative array locations (i.e., different array sample locations along 
the wave cycle). A single array configuration consists of a constant array dimension and 
geometry ratio. As an array configuration samples different parts of the wave cycle the 
error in the accuracy can either improve or become worse. Therefore, the performance of 
each array configuration is evaluated by running statistics on the set of errors associated 
with the errors in displacement gradients computed at each location along the wave cycle. 
The GREEN lines plotted above indicate the expected normalized average errors in 
displacement gradient, after sampling an entire wave cycle, as the array dimension 
increases for a given array geometry ratio. Similarly, the RED / BLUE lines plotted 
above indicate the expected normalized average errors in displacement gradient ± one 
standard deviation (STD), respectively. 
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example, we only consider the vertical component of ground displacement. The equation 

used to describe the vertical ground displacement at each station in our experiments is: 

€ 

∀i ∈ 0,1,...,9{ } : uz
i t,k,c,θ( ) = sin k ct − rd

i θ( )( )( )  ,  (27) 

where k = 0.001, 0.002, … , 0.1 radians/kilometer, c = 2 kilometers/second, and θ = 0, 1, 

… ,180 degrees. 

The main concern with the following experiments, is that real data have low-

frequency limitations (e.g., low-frequency noise, instrumentation sensitivity, etc.) that, in 

turn, limit the effectiveness of each method for estimating the displacement gradients. 

With real data, the most practical way to empirically determine the optimum method for 

estimating displacement gradients consists of determining the optimum method for 

estimating the ground displacements. As in Paolucci and Smerzini [2008], we can ignore 

the ground displacement data at one station and then use the ground displacement data 

from the remaining stations to “predict” the ground displacements at the omitted (or 

leave-out) station. By conducting this Leave-Out Station Scenario (LOSS) for each of the 

stations in the array using each method for a particular data set, one can get a rough idea 

of how well that particular method will work when used to estimate the spatial 

displacement gradients at arbitrary positions within the array.  In this experiment we 

perform a LOSS for two stations within the Anza seismic network (LVA2 and FRD) for 

the range in k and θ, discussed above, using the first three methods. The results of this 

experiment are briefly described below. For a visual aid to the description below, 

supplemental Figures (A1) – (A8) are available in Appendix (1). 

In the LOSS experiment, the spatial displacement gradients derived from each 

method were used to predict the ground displacements at LVA2 or FRD (depending on 

which was left out). The errors between the “predicted” ground displacements and the 

“observed” ground displacements are compared for each LOSS. The errors associated 

with each method are used to predict the largest resolvable wavenumber at Anza stations 

LVA2 and FRD. The largest resolvable wavenumber corresponds to the point where the 

mean error between the “predicted” ground displacements and the “observed” ground 

displacements exceeds 10%. Before we list the results, it may be helpful to describe the 
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range in k, discussed above, in terms of the frequency by assuming some lower bound on 

the propagation velocity. If we assume this lower bound is equal to 3 km/s, then the range 

in k becomes the range f = 0.0005, 0.001, … , 0.05 Hz. The results from performing the 

LOSS for LVA2 and FRD using Method (1), Method (2), Method (3) based on a 

quadratic fit (hereafter Method 3a), and Method (3) based on a cubic fit (hereafter 

Method 3b), and Method (4), are indicated in Table (1). The chief results of this 

experiment are that each method appears to perform better than the last, in terms of 

predicting the ground displacements for each LOSS, but Method (2) appears to perform 

much worse than the other methods under extrapolation, even with “perfect” data. The 

results of this experiment using Method (4) are not shown in Appendix (1) because, due 

to the simplicity of the synthetic waveforms, the “predicted” ground displacements were 

virtually identical to the “observed” ground displacements, for the range in k and θ 

discussed above, for each LOSS.  

We find that the predicted largest resolvable wavenumber (or frequency), using the 

results from the previous experiment, are often over-estimated. Therefore, in this next 

experiment we attempt to determine the high-frequency limitations of each method 

specifically for a sub-set of the Anza seismic array surrounding a selected group of PBO 

GTSM instruments in southern California. In other words, although the lowest wave-

number limit will be dictated by the quality of data, this experiment should immediately 

identify the largest wave-number limit because of the simplicity of the synthetic 

waveforms. We chose PBO GTSM station B087, which is approximately co-located with 

Anza seismic station FRD, and station B088, which is approximately 5 km from Anza 

seismic station LVA2.  

Similar to the previous experiment, Table (2) lists the largest resolvable wavenumber 

and frequency results (assuming a propagation velocity of 3 km/s) from computing the 

displacement gradients at B087 and B088 using Method (1), Method (2), Method (3a), 

Method (3b), and Method (4). For a visual aid to the description below, supplemental 

Figures (A9) – (A16) are available in Appendix (1). The chief results of this experiment 

are similar (in a relative sense) to the results from the previous experiment, except that 

the errors in accuracy are greater for the same range in k and θ.  
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Table 1. A list of the largest resolvable wavenumber (k) estimates and frequency (f) 
estimates (assuming propagation velocity of 3 km/s) that result from performing a Leave 
Out Station Scenario (LOSS) experiment for Anza stations LVA2 and FRD. The largest 
resolvable wavenumber and frequency corresponds to the point where the mean error 
between the “predicted” ground displacements and the “observed” ground displacements 
exceeds 10% at each LOSS. The wavenumber range studied here was between 0.001 
rad/km and 0.1 rad/km. In some cases the error did not exceed 10% within the range 
specified, however, the list indicates whether the largest resolvable wavenumber and 
frequency was greater than or less than the range in this study. 

LVA2 FRD 
Estimation 

Method k @ 10% f3 km/s @ 10% k @ 10% f3 km/s @ 10% 

Method 1 0.045 rad/km 0.02 Hz 0.083 rad/km 0.04 Hz 

Method 2 < 0.001 rad/km < 0.0005 Hz > 0.1 rad/km > 0.5 Hz 

Method 3a 0.054 rad/km 0.026 Hz 0.091 rad/km 0.043 Hz 

Method 3b 0.073 rad/km 0.035 Hz > 0.1 rad/km > 0.5 Hz 

Method 4 > 0.1 rad/km > 0.5 Hz > 0.1 rad/km > 0.5 Hz 
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Table 2. A list of the largest resolvable wavenumber (k) estimates and frequency (f) 
estimates (assuming propagation velocity of 3 km/s) that result from estimating the 
spatial displacement gradients at PBO GTSM stations B088 and B087. The largest 
resolvable wavenumber and frequency corresponds to the point where the mean error 
between the “predicted” spatial displacement gradients and the “observed” spatial 
displacement gradients exceeds 10% at each PBO GTSM. The wavenumber range 
studied here was between 0.001 rad/km and 0.1 rad/km. In some cases the error did not 
exceed 10% within the range specified, however, the list indicates whether the largest 
resolvable wavenumber and frequency was greater than or less than the range in this 
study. 

B088 B087 
Estimation 

Method k @ 10% f3 km/s @ 10% k @ 10% f3 km/s @ 10% 

Method 1 0.014 rad/km 0.007 Hz 0.037 rad/km 0.018 Hz 

Method 2 < 0.001 rad/km < 0.0005 Hz > 0.1 rad/km > 0.5 Hz 

Method 3a 0.051 rad/km 0.024 Hz 0.068 rad/km 0.032 Hz 

Method 3b 0.099 rad/km 0.047 Hz > 0.1 rad/km > 0.5 Hz 

Method 4 > 0.1 rad/km > 0.5 Hz > 0.1 rad/km > 0.5 Hz 
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Again, the results of this experiment using Method (4) are not shown in Appendix (1) 

because, due to the simplicity of the synthetic waveforms, the “predicted” displacement 

gradients were virtually identical to the “observed” displacement gradients, for the range 

in k and θ discussed above, at each PBO GTSM.  

 

Real Data: M8.1 Samoa Islands Earthquake (2009/09/29) 

 

Data collected by seismic instruments are never perfect. Instead of introducing 

random errors – associated with differences in the propagation velocity, propagation 

angle, contamination from scattered waves, instrument response irregularities, etc. – into 

the synthetic data sets above, we illustrate the performance of each method as they are 

applied to real data, collected by the same 10-element subset of the Anza Seismic 

Network, that correspond to the M8.1 Samoa Islands Earthquake (2009/09/29). In this 

experiment, we again attempt to first predict the ground displacements for the same two 

LOSS experiments (for FRD and LVA2) described in the previous experiment. After 

gauging the performance of each method for each LOSS, we compare the predicted 

displacement gradient estimates for all four methods at stations FRD and LVA2. 

Figures (11) and (12) are histograms that illustrate the distribution of errors 

associated with performing the LOSS experiment using each method at stations FRD and 

LVA2, respectively. Supplemental Figures (A17) – (A19) and (A20) – (A22) that 

illustrate all three components of the predicted ground displacement for stations FRD and 

LVA2, respectively, are located in Appendix (1). The example involving station FRD 

demonstrates that all four methods are able to predict the ground displacements at a 

station with several other seismic stations nearby. However, the example involving 

station LVA2 demonstrates that Method (2), and to some extent Method (1), is not well 

suited for predicting the ground displacements at a relatively isolated station that is 

located towards the perimeter of the seismic array.  
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Figure 11. Illustrates a histogram of the errors in all three components of the predicted 
ground displacement at FRD, illustrated in Figures (A17) – (A19), after comparing the 
results from Methods (1), (2), (3a), (3b) and (4) to the actual ground displacements 
observed at FRD. The size of the error is expressed in percent of the maximum, absolute 
amplitude associated with each component of motion. The size of each histogram bar 
represents the total number of predicted amplitudes, expressed in percent of the total 
number of amplitudes in the time window (1701 samples), that occur within that specific 
error range (i.e., between 0 and 1 percent error, or between 1 and 2 percent error, etc.). 
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Figure 12. Illustrates a histogram of the errors in all three components of predicted 
ground displacement at LVA2, illustrated in Figures (A20) – (A22), after comparing the 
results from Methods (1), (2), (3a), (3b) and (4) to the actual ground displacements 
observed at LVA2. The size of the error is expressed in percent of the maximum, 
absolute amplitude associated with each component of motion. The size of each 
histogram bar represents the total number of predicted amplitudes, expressed in percent 
of the total number of amplitudes in the time window (1701 samples), that occur within 
that specific error range (i.e., between 0 and 1 percent error, or between 1 and 2 percent 
error, etc.). 
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Unlike the synthetic experiment immediately above, we do not have independent 

displacement gradient data at each station in order to compare the performance of each 

method. However, since Method (4) appears to be the most consistent in terms of 

yielding low errors for each LOSS, we choose to compare the performance of each of the 

first three methods for estimating the displacement gradient against the result from 

Method (4). Figures (13) – (15) illustrate the horizontal displacement gradients that 

correspond to each component of the ground displacement for station FRD using all four 

methods. Supplemental Figures (A22) – (A24) illustrate the result for station LVA2. 

Figures (16) and (17) are histograms that illustrate the distribution of errors associated 

with the difference between the result of each of the first three methods and the result of 

Method (4) at stations FRD and LVA2, respectively. The example involving station FRD 

demonstrates that all four methods are somewhat consistent at a station toward the 

interior of a seismic array. Nearly all the displacement gradient amplitudes are within ± 

%10 of the result from Method (4). The example involving station LVA2 demonstrates, 

again, that Method (2) is not well suited when applied to a station toward the perimeter of 

a seismic array. The distribution in Figure (17) appears to indicate that the results from 

Method (1) and Method (3) differ from the result of Method (4) to a similar degree. 

However, the reasons for these differences are not so similar. Figures (18) and (19) 

illustrate a good example of the type of expected differences between the result of 

Method (1) and the result of Method (4). The amplitude result of Method (1) appears to 

be reasonably accurate compared to Method (4), however the result is out of phase. As 

mentioned previously, this timing error (or phase error) is due to the bias in the estimate 

of the displacement gradient caused by an uneven amount of stations to the “left” and 

“right” of the reference station relative to the radial propagation direction. The 

differences related to the estimates resulting from Method (3), illustrated in the 

BOTTOM-LEFT panel in Figure (19), are likely due to the irregularities/ inconsistencies 

in the ground displacements across the seismic array caused by any combination of the 

reasons described above (i.e., local site effects, instrumentation, response, calibration, 

etc.). 
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Figure 13. Illustrates the horizontal displacement gradients (i.e., ∂/∂x and ∂/∂y) 
associated with the east-west component of ground displacement (i.e., ux) at FRD using 
Methods (1), (2), (3a), (3b), and (4). The error plots indicate the difference between each 
of the results from the first three methods and the result from Method (4). The original 
seismograms correspond to the 29 September 2009 M8.1 Samoa Island earthquake band-
pass filtered between 0.005 Hz and 0.05 Hz with a 4-pole Butterworth acausal filter. 
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Figure 14. Illustrates the horizontal displacement gradients (i.e., ∂/∂x and ∂/∂y) 
associated with the north-south component of ground displacement (i.e., uy) at FRD using 
Methods (1), (2), (3a), (3b), and (4). The error plots indicate the difference between each 
of the results from the first three methods and the result from Method (4). The original 
seismograms correspond to the 29 September 2009 M8.1 Samoa Island earthquake band-
pass filtered between 0.005 Hz and 0.05 Hz with a 4-pole Butterworth acausal filter. 
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Figure 15. Illustrates the horizontal displacement gradients (i.e., ∂/∂x and ∂/∂y) 
associated with the vertical component of ground displacement (i.e., uz) at FRD using 
Methods (1), (2), (3a), (3b), and (4). The error plots indicate the difference between each 
of the results from the first three methods and the result from Method (4). The original 
seismograms correspond to the 29 September 2009 M8.1 Samoa Island earthquake band-
pass filtered between 0.005 Hz and 0.05 Hz with a 4-pole Butterworth acausal filter. 
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Figure 16. Illustrates a histogram of the errors associated with the differences in the 
estimated horizontal displacement gradients at FRD, illustrated in Figures (13) – (15), 
after comparing the results from the first three methods to the results from Method (4). 
The size of the error is expressed in percent of the maximum, absolute amplitude 
associated with the result from Method (4). The size of each histogram bar represents the 
total number of predicted amplitudes, expressed in percent of the total number of 
amplitudes in the time window (1701 samples), that occur within that specific error range 
(i.e., between 0 and 1 percent error, or between 1 and 2 percent error, etc.). 
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Figure 17. Illustrates a histogram of the errors associated with the differences in the 
estimated horizontal displacement gradients at LVA2, illustrated in Figures (A22) – 
(A24), after comparing the results from the first three methods to the results from Method 
(4). The size of the error is expressed in percent of the maximum, absolute amplitude 
associated with the result from Method (4). The size of each histogram bar represents the 
total number of predicted amplitudes, expressed in percent of the total number of 
amplitudes in the time window (1701 samples), that occur within that specific error range 
(i.e., between 0 and 1 percent error, or between 1 and 2 percent error, etc.). 
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Figure 18. Illustrates a version of Figure (A22) that has been zoomed in around the 
Rayleigh wave. Notice that the result from Method (1) appears to be consistent in 
amplitude, but inconsistent in phase, when compared to the result from Method (4). The 
result from Method (2) appears to be inconsistent with respect to both amplitude and 
phase, when compared to the result from Method (4). In this time window, nearly all the 
displacement gradient estimates predicted by Method (3a) and (3b) are consistent with 
respect to both amplitude and phase, when compared to the result from Method (4). 
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Figure 19. (TOP-LEFT) Illustration of the seismograms representing the east-west 
component of the ground displacement arranged according to radial distance relative to 
Anza station LVA2. (TOP-RIGHT) Illustration of the estimates of the radial 
displacement gradient, associated with the east-west component of the ground 
displacement for the same time-window in the adjacent figure, according to each of the 
four methods. (BOTTOM-LEFT) Illustration of the ground displacement at each of the 
Anza seismic stations (open and close BLUE circles) according to the radial distance 
relative to LVA2. (BOTTOM-RIGHT) Illustration of the sub-set of the Anza seismic 
array used to compute displacement gradients and approximate propagation direction of 
the Rayleigh wave at the reference seismic station: LVA2. 
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Discussion 

 

Four methods for deriving the spatial displacement gradient from seismic data across 

a 2D surface array have been reviewed in this paper. We reviewed each method with 

specific interest to their performance after being applied to both synthetic and real 

seismic data collected by a large aperture (> 10km) surface array. Under these conditions 

we find that Method (4), based on the findings in Gomberg et al. [1999] and the spatial 

gradient analysis of Langston [2007b], is likely to offer the most accurate estimate of the 

spatial displacement gradient when the assumption of plane-wave propagation is valid 

and the propagation slowness / direction can be determined accurately. However, when 

estimating the displacement gradient at arbitrary locations inside the seismic array, it may 

be necessary to implement a hybrid method that consists of using Method (4) to 

determine the displacement gradients at each seismic station location and then using 

either Method (2) or (3) to interpolate the displacement gradient result to the arbitrary 

location with the array.  

The results of this study will directly impact the way borehole Gladwin Tensor 

Strain-meter (GTSM) instruments are calibrated in the future. Currently borehole GTSM 

instruments, which make up a significant portion of the Plate Boundary Observatory 

(PBO) facility, are calibrated based on the strain information associated with the earth’s 

tides. The raw strain information derived from the borehole GTSM instrument is 

compared to known/theoretical earth tide strain and the linear relationship, between the 

two sets of data, is used to calibrate future GTSM instrument recordings. Instead of using 

data associated with the earth’s tidal forces, it is now possible to derive much of the 

necessary calibration information using data associated with large teleseismic 

earthquakes and applying the methods reviewed in this paper. In order to simplify the 

calibration process, the linear relationship between the raw strain information derived 

from the borehole GTSM instrument and the reference strain information derived from 

seismic data is determined in the frequency domain. If the reference strain information 
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derived from the seismic data contain timing (or phase) errors, then the calibration 

coefficients that linearly relate the raw GTSM instrument data to the reference strain may 

be complex, instead of real. The imaginary parts will lead to timing (or phase) errors in 

the calibrated GTSM instrument data that may affect the accuracy of any physical 

relationships (i.e., phase velocity) derived from their data in the future. The necessary 

information for implementing this type of borehole GTSM instrument calibration may be 

found in the next chapter (Chapter 3). 
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CHAPTER 3 

 

Calibrating Gladwin Tensor Strainmeters using Seismic Data 

 

Abstract 

 

Teleseismic data collected by the southern California Anza seismic network have 

been used for calibrating nearby borehole GTSM instruments of the Plate Boundary 

Observatory (PBO). We find reasonable agreement between the calibration coefficients 

derived here using seismic data and the coupling coefficients derived in other studies 

using theoretical calculations of earth tides. This study investigates whether the coupling 

coefficients necessary to calibrate the borehole instrument have changed since each 

station has been installed. We find that the coefficients necessary for calibrating data 

collected over the course of 2 years are remarkably stable. During the course of 

calibration, we discovered that some stations had misalignment errors approaching 50 

degrees. 

 

This study provides an overview of the process necessary to compute the necessary 

calibration coefficients that linearly relate the raw instrument gauge strains, recorded by 

borehole GTSM instruments, to the reference formation strains derived from seismic 

data. The calibration method implemented here is based on the method developed in Hart 

et al. [1996]. We also discuss several methods for performing the necessary first step of 

deriving formation strain information from seismic data, including the assumptions and 

limitations associated with each. The process used to derive formation strain information 

is a hybrid method based on the methods developed in Gomberg et al. [1999], Langston 

[2007b], and the previous chapter. We also discuss two general methods – a multi-station 

seismic approach and a single-station seismic approach – for deriving the coupling 

coefficients necessary for GTSM calibration, including error analysis. The results of this 

study suggests that it should be possible to calibrate the remaining GTSM instruments 
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inside the PBO network that also have either a nearby array of seismic instruments or a 

single, co-located seismic instrument. 

 

Introduction 

 

The goal of the Plate Boundary Observatory (PBO) is to monitor and study the strain 

field associated with the interaction between the Pacific, the Juan de Fuca, and the North 

American plates along the west coast of the United States. The PBO is composed of a 

variety of sensors to measure the ongoing deformation; these include Global Positioning 

System (GPS) receivers and several types of strain-meter instruments (see Figure 1). In 

this study we concentrate on borehole Gladwin Tensor Strain-Meter (GSTM) 

instruments, which make up a significant portion of the PBO strain-meter network. 

Borehole GTSM instruments obtain measurements that may be related to the areal strain, 

differential normal strain, and shear strain – collectively known as the formation strain – 

from any three of the four built-in strain gauges [GTSM, 2010]. Areal strain describes 

two-dimensional (2D) isotropic deformation – deformation is equal in every direction 

with respect to the horizontal plane. Differential normal strain and shear strain describe 

2D anisotropic deformation – deformation is not the same in every direction with respect 

to a reference plane. One of the intended purposes of the borehole GTSM instruments is 

to provide very important information regarding the source mechanisms of tectonic 

events, such as aseismic slip, that would otherwise be undetected (see Figure 2) by 

current seismological and/or geodetic instruments [Wyatt, 1988]. Unfortunately, these 

instruments have proved to be problematic because of the inconsistent nature of the 

measurements recorded by the borehole GTSM instruments. 

As with any instrument, it is important that the measurements are as accurate as 

possible in order to reduce the amount of uncertainty associated with their physical 

meaning – this is especially the case with the borehole GTSM instruments. In order to 

eliminate any potential accuracy problems related to the coupling of the GTSM 

instruments with the inside of a borehole, the sensors are often emplaced using expansive 

grout to ensure a constant state of compression [GTSM, 2010]. However, as discussed in 
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Hart et al. [1996], the combination of several factors – the expansive grout, misalignment 

during the emplacement process, and heterogeneities associated with local borehole 

geology – can cause the instruments to measure a distorted version of the true local strain 

field. Figure (20) illustrates a good example of processed long-period strain data that are 

largely inconsistent despite being collected from an array with aperture significantly 

smaller than the wavelength of the recorded disturbance. At these wavelengths, the 

inconsistencies are more likely related to effects associated with local small-scale 

heterogeneities than to effects associated with wave propagation. Since the measurements 

collected by borehole GTSM instruments do not always reflect actual local strains, they 

rely on accurate calibration methods to relate what is measured to what ought to be 

measured.  

One approach to calibrating borehole GTSM instruments, offered by Gladwin and 

Hart [1985] and Shimada et al. [1987], is to attempt direct estimation of the elastic 

properties associated with the borehole coupling environment. However, as noted by 

Hart et al. [1996], this approach is complicated and tends to increase uncertainty, rather 

than reduce it. The second approach, offered in Hart et al. [1996] and reformulated here, 

is based on the assumption that the “true” reference formation strain can be linearly 

related to the instrument strain measured by the GTSM gauges. In the study by Hart et al. 

[1996], borehole GTSM instruments were calibrated by using earth tide measurements, 

collected by a co-located laser strain-meter (LSM) instrument, as the “true” reference 

strains. However, not all borehole GTSM instruments are co-located with an LSM 

instrument to facilitate the calibration process. Instead, other studies rely on theoretical 

earth tide calculations in order to serve as the reference strains during calibration (see 

Roeloffs [2010]).  

In some cases, several additional corrections must be accounted for prior to 

analyzing strain data. These include corrections to the strain data for effects caused by an 

error in the instrument alignment (if the borehole coupling model is derived 

independently), by earth tide or ocean loading, by changes in atmospheric pressure, and 

by changes in pore fluid pressure [Roeloffs, 2010]. Corrections for the strain caused by 

the earth’s tide and ocean loading are collectively known as the theoretical tides. The  
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Figure 20. Illustration of the formation strain derived from seven PBO GTSM 
instruments, using Equation (34) and the advertised orientation angles, inside the Anza 
Seismic Network in Southern California. The areal strain is equal to the sum of strain 
tensor elements ε11 and ε22. The differential normal strain is equal to the difference 
between strain tensor elements ε11 and ε22. The shear strain is equal to the sum of strain 
tensor elements ε12 and ε21. Formation strain in the above figure corresponds to the 29 
September 2009 M8.1 Samoa Island earthquake band-pass filtered between 0.01 Hz and 
0.03 Hz with a 4-pole Butterworth acausal filter. The vertical axis (i.e., y-axis) limits 
were set to ± 300 nm/m in order to highlight the inconsistent nature of strain 
measurements between all stations. 
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strain estimates associated with the theoretical tides can be computed, using software 

such as the SPOTL package [Agnew, 1996], at a particular location and removed from the 

calibrated strain data (i.e., strain data that has had the coupling response and orientation 

error removed). Corrections for the strain caused by changes in atmospheric pressure are 

found by linearly relating these pressure changes to the changes in strain measured by the 

instrument downhole (a brief description of software available for this type of correction 

may be found in UNAVCO [2004]). Corrections for the strain caused by changes in the 

pore fluid pressure may be found by deriving a relationship between these pressure 

changes and the changes in the strain measured by the instrument downhole [Roeloffs, 

2010]. However, depending on fluid flow conditions, this set of corrections could affect 

not only the amplitude of the strain traces, but also the phase of the strain traces. Only a 

few borehole PBO GTSM instruments have co-located instruments that measure these 

changes in pore fluid pressure (personal communication with E. Roeloffs [2010]), so 

removing this effect (if it is present) is possible only at those select GTSM site locations. 

In this study, we present a novel approach to borehole GTSM calibration by deriving 

the reference strain information from broadband seismic data. Recently, Langston and 

Liang [2008] discovered that strain information derived from seismic data collected by 

the Anza Seismic Network, using techniques similar to that of Spudich et al. [1995], were 

much more consistent than the strain information derived from the PBO GTSM 

instruments located inside the same network (see Figure 21).  This realization led to the 

hypothesis that the “true” reference strain information necessary to calibrate the borehole 

GTSM instruments could be obtained from seismic data. We test this hypothesis by 

determining whether the linear relationship between the reference strains and the 

borehole GTSM instrument strains are consistent between the method of calibration in 

this study and the previous methods of calibration. Since the other methods of calibration 

involve waves with oscillation periods several orders of magnitude greater than even the 

largest associated with teleseismic waves, we assume that the linear relationship between 

the reference strains and the instrument strains are frequency independent. 
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Figure 21. Illustration of the formation strain derived/predicted from broadband seismic 
data, collected by the Anza Seismic Network, at the same seven PBO GTSM instrument 
locations described in Figure (20). The areal strain is equal to the sum of strain tensor 
elements ε11 and ε22. The differential normal strain is equal to the difference between 
strain tensor elements ε11 and ε22. The shear strain is equal to the sum of strain tensor 
elements ε12 and ε21. Formation strain in the above figure corresponds to the 29 
September 2009 M8.1 Samoa Island earthquake band-pass filtered between 0.01 Hz and 
0.03 Hz with a 4-pole Butterworth acausal filter. The vertical axis (i.e., y-axis) limits 
were set to ± 100 nm/m in order to highlight the very consistent nature of strain 
measurements derived from broadband seismic data. 
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Previously, in Chapter (2), we discussed several methods related to estimating the 

spatial displacement gradient in order to obtain the reference formation strain necessary 

for calibration. We also discussed potential timing (or phase) errors that can be 

introduced into the spatial displacement gradient estimates from using the seismo-

geodetic technique of Spudich et al. [1995]. In this study, we chose to develop a hybrid 

process consisting of a mix between the methods based on the results from Gomberg et 

al. [1999] and Langston [2007b], and the polynomial interpolation method described in 

the previous chapter. The purpose of this hybrid process is to eliminate as much of the 

timing (or phase) errors that might have been introduced as a result of using the seismo-

geodetic technique. 

 

Data and Processing 

 

As previously noted in Langston and Liang [2008], the Anza Seismic Network in 

southern California provides a dense 2D seismic array excellent for deriving long-period 

strain measurements associated with large teleseismic events. We select a 10-element 

sub-set of the Anza broadband seismic stations that surround 7 borehole GTSM 

instruments. The instruments associated with the Anza Seismic Network are three-

component Streckeisen STS-2 seismometers with Reftek 24-bit digitizers. At each site 

location, where the local geology may consist of either crystalline plutonic or 

metamorphic basement rocks, the seismometers are secured to a concrete pad that is 

either poured directly on the crystalline rock outcropping (KNW, RDM, TRO) or poured 

over rebar stakes inside a hole dug from the top weathered layer [Vernon, 1989]. Specific 

information for each Anza seismic station is listed inside Table (3). The general process 

for emplacing each GTSM instrument includes drilling a borehole to ~150m, logging the 

geological/geophysical properties of the borehole, protecting the borehole with steel 

casing, pumping expansive grout to the bottom of the borehole, and finally lowering the 

GTSM instrument into the expansive grout [UNAVCO, 2010]. Specific information for 

each PBO borehole station location is listed inside Table (4). Additionally, the 

orientations of each of the four instrument gauges for each station are listed in Table (5). 
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Table 3. List of station names, location, and local geology associated with a sub-set of 
the Anza Seismic Network in southern California. Except for station TRO, all the stations 
are located at an elevation of 1321m ± 200m. Since the smallest wavelengths of interest 
are on the order of 500 times larger than the differences in elevation, the array is assumed 
to have uniform elevation. Information from Vernon [1989]. 

Station Name Location (Lat. / Lon. / Elev.) Geology 

BZN 33.4915° / -116.6662° / 1314m 
Decomposed tonalite, part 

of the Coahuila Valley 
Pluton 

CRY 33.5653° / -116.7365° / 1151m Tonalite, part of the 
Coahuila Valley Pluton 

FRD 33.4947° / -116.6014° / 1176m Tonalite, part of the 
Coahuila Valley Pluton 

KNW 33.7141° / -116.7111° / 1521m 
Tonalite, part of the San 

Jacinto Mountain Intrusive 
Complex 

LVA2 33.3492° / -116.5694° / 1439m Granodiorite, part of the 
Collins Valley Pluton 

PFO 33.6116° / -116.4586° / 1288m 
Decomposed quartz diorite-

granodiorite, part of the 
Haystack Pluton 

RDM 33.6299° / -116.8470° / 1390m Larded gneiss, part of the 
Coahuila Valley Pluton 

SND 33.5519° / -116.6121° / 1396m 
Decomposed tonalite, part 

of the Coahuila Valley 
Pluton 

TRO 33.5234° / -116.4248° / 2655m 
Quartz diorite-granodiorite, 

part of the Santa Rosa 
Pluton 

WMC 33.5736° / -116.6734° / 1280m Alluvium and sediment, 
approximately 60m thick 
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Table 4. List of station names, location and local geology associated with a sub-set of the 
PBO borehole GTSM instruments inside the Anza Seismic Network. All seven borehole 
GTSM instruments were installed on dates between 2006 June 10 and 2007 January 28. 
Information from UNAVCO [2010]. 

Station Name Location (Lat. / Lon. / Elev. / Install Depth) 

Borehole Geology 
/ 

P-wave Velocity at 
Install Depth 

B081 33.7111° / -116.7142° / 1467m / 243m Granite 
~5500 m/s 

B082 33.5982° / -116.5960° / 1375m / 243m Gneiss 
~4000 m/s 

B084 33.6116° / -116.4564° / 1271m / 159m Granite 
~5000 m/s 

B086 33.5575° / -116.5310° / 1392m / 240m Granite 
~4800 m/s 

B087 33.4955° / -116.6027° / 1139m / 161m Granite 
~5000 m/s 

B088 33.3750° / -116.6205° / 1404m / 160m Granite/Gneiss 
~4400 m/s 

B089 33.5999° / -116.5961° / 1362m / 133m Folded Gneiss 
~4000 m/s 
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Table 5. List of orientation angles associated with each of the four gauges built into the 
GTSM instrument. The angles are measured clockwise from north (i.e., 0°). The 
orientation of all the gauges relative to Channel 0 are the same – Channel 1 is 60° 
counter-clockwise from Channel 0, Channel 2 is 120° counter-clockwise from Channel 0, 
and Channel 3 is 150° counter-clockwise from Channel 0. Information from UNAVCO 
[2010]. 

Station Name Channel 0 
Orientation 

Channel 1 
Orientation 

Channel 2 
Orientation 

Channel 3 
Orientation 

B081 3.2° 303.2° 243.2° 213.2° 

B082 324.8° 264.8° 204.8° 174.8° 

B084 197° 137° 77° 47° 

B086 316.5° 256.5° 196.5° 166.5° 

B087 340.7° 280.7° 220.7° 190.7° 

B088 216.2° 156.2° 96.2° 66.2° 

B089 291° 231° 171° 141° 
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The raw broadband seismic velocity data and broadband GTSM instrument data are 

initially corrected to remove the response of each instrument (see Table 6 and 7). The 

broadband data are then low-pass filtered and decimated to one sample per second before 

cutting the traces to equal length, removing the mean, and applying a two-pole 

Butterworth band-pass filter in both the forward and backward direction (i.e., acausal). 

The low-frequency cut-off used in the band-pass filter depends on the signal-to-noise 

ratio, which is related to both the size of the teleseismic event and its relative distance 

from southern California (see Table 8). All data were band-pass filtered between 0.01 and 

0.03 Hz, in order to avoid low-frequency noise on the low-end and spatial aliasing on the 

high-end, during the process of deriving the necessary strain information from the 

seismic data. The “cleaned” seismic velocity data are then integrated once in the 

frequency domain to obtain the ground displacements.  Size, location, and other 

information associated with the teleseismic events used in this study are tabulated in 

Table (8). Table (9) and Table (10) indicate whether data were available for each station-

event pair during the calibration process. 

 

Methods 

 

In continuum mechanics, the strain tensor (ε) describes the deformation resulting 

from differential motion within a body. For three-dimensional (3D) deformation, the 

tensor is a symmetric 3x3 square matrix described by spatial derivatives of the 

displacement field (u) with respect to the coordinate system (x) and is defined by 

  ,   (28) 

where i, j, and k are indices that range from 1 to 3. However, if the displacement 

gradients are small, then the higher order term (∂uk/∂xi
.∂uk/∂xj), in Equation (28), is often 

neglected. Following Frank [1966] and Hart et al. [1996], the formation strain (s) 

describes 2D horizontal deformation through the areal strain (ea), the differential normal  



  64 

Table 6. Instrument response information corresponding to the broadband Anza seismic 
instruments used in this study. Removing the instruments response from the raw 
broadband data yields the corrected velocity time-series in units of meters per second 
(m/s). Information from IRIS [2010]. 

Stations Zeros Poles Gain Constant 

BZN 

KNW 

0.00 + i0.00 

0.00 + i0.00 

-15.15 + i0.00 

-318.6 + i401.2 

-318.6 – i401.2 

-0.037 + i0.037 

-0.037 – i0.037 

-15.99 + i0.00 

-417.1 + i0.00 

-187.2 + i0.00 

-100.9 + i401.9 

-100.9 – i401.9 

-7454.0 + i7142.0 

-7454.0 – i7142.0 

+3.614501958E+21 

CRY 

FRD 

LVA2 

PFO 

RDM 

SND 

TRO 

WMC 

0.00 + i0.00 

0.00 + i0.00 

-15.15 + i0.00 

-318.6 + i401.2 

-318.6 – i401.2 

-0.037 + i0.037 

-0.037 – i0.037 

-15.99 + i0.00 

-417.1 + i0.00 

-187.2 + i0.00 

-100.9 + i401.9 

-100.9 – i401.9 

-7454.0 + i7142.0 

-7454.0 – i7142.0 

+4.535642826E+21 
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Table 7. Instrument response information corresponding to the PBO borehole GTSM 
instruments. Removing the instruments response from the raw broadband data yields the 
corrected strain time-series in units of meters per meter (m/m). Information from IRIS 
[2010]. 

Stations Zeros Poles Gain Constant 

B081 

B082 

B084 

B086 

B087 

B088 

B089 

0.00  + i0.00 0.00  + i0.00 +1.00E+10 
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Table 8. Teleseismic waves from 20 events were used to perform strainmeter calibration. 
The date, location, and magnitude are indicated for each of the events. The approximate 
great circle propagation distance between the source and array network, in addition to the 
approximate wave propagation direction across the array, are also indicated.  

EQ 
No. 

Date                 
(YYYY / MM / DD) 

Location                                      
(Lat. / Lon. / Depth) 

EQ 
Mag. 

Prop. 
Dist. 

Prop. 
Azi. 

1 2007 / 01 / 13 46.24° / 154.52° / 10 km 8.1 7707 km 131° 

2 2007 / 08 / 01 -15.60° / 167.68° / 120 km 7.2 9400 km 69° 

3 2007 / 08 / 15 -13.39° / -76.60° / 39 km 8.0 6621 km 314° 

4 2007 / 09 / 02 -11.61° / 165.76° / 35 km 7.2 9414 km 74° 

5 2007 / 09 / 10 2.97° / -77.96° / 15 km 6.8 5309 km 302° 

6 2007 / 09 / 28 22.01° / 142.67° / 260 km 7.5 9985 km 114° 

7 2007 / 11 / 14 -22.25° / -69.89° / 40 km 7.7 7713 km 315° 

8 2007 / 11 / 16 -2.31° / -77.84° / 122 km 6.8 5717 km 307° 

9 2007 / 11 / 29 14.94° / -61.27° / 156 km 7.4 5976 km 276° 

10 2007 / 12 / 09 -26.00° / -177.51° / 152 km 7.8 8848 km 52° 

11 2008 / 04 / 09 -20.07° / 168.89° / 33 km 7.3 9492 km 65° 

12 2008 / 07 / 05 53.88° / 152.89° / 632 km 7.7 7611 km 139° 

13 2008 / 11 / 24 54.20° / 154.32° / 492 km 7.3 7495 km 139° 

14 2009 / 03 / 19 -23.04° / -174.66° / 31 km 7.6 8474 km 53° 

15 2009 / 05 / 28 16.73° / -86.22°/ 19 km 7.3 3583 km 294° 

16 2009 / 09 / 29 -15.49° / -172.10° / 18 km 8.1 7821 km 57° 

17 2009 / 10 / 07 -13.01° / 166.51° / 45 km 7.7 9399 km 72° 

18 2009 / 10 / 07 -12.52° / 166.38° / 35 km 7.8 9393 km 72° 

19 2010 / 01 / 12 18.44° / -72.57° / 13 km 7.0 4708 km 280° 

20 2010 / 02 / 27 -36.12° / -72.90° / 22 km 8.8 8708 km 326° 
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Table 9. In some cases, data corresponding to a teleseismic event was not available for 
all Anza Seismic Array stations used in this study. Stations that did (or did not) have data 
for a particular event are indicated with a “” (or a “”). 

EQ 
No. B

Z
N

 

C
R

Y
 

FR
D

 

K
N

W
 

L
V

A
2 

PF
O

 

R
D

M
 

SM
E

R
 

SN
D

 

T
R

O
 

W
M

C
 

1            

2            

3            

4            

5            

6            

7            

8            

9            

10            

11            

12            

13            

14            

15            

16            

17            

18            

19            

20            
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Table 10. In some cases, data corresponding to a teleseismic event was not available for 
all PBO GTSM stations inside the Anza Seismic Array used in this study. Stations that 
did (or did not) have data for a particular event are indicated with a “” (or a “”). 

EQ 
No. B081 B082 B084 B086 B087 B088 B089 

1        

2        

3        

4        

5        

6        

7        

8        

9        

10        

11        

12        

13        

14        

15        

16        

17        

18        

19        

20        
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strain (γ1), and the shear strain (γ2). The formation strain is related to the components of 

the strain tensor by 

  .    (29) 

 

Process for Estimating the Formation Strain using Seismic Data 

 

The result of Chapter (2) was that the spatial displacement gradients estimated using 

the method based on Spatial Gradient Analysis (i.e., Method 4) were consistently more 

accurate, especially in the frequency band necessary for strainmeter calibration in this 

study. However, this was the case only when the spatial displacement gradients were 

calculated at specific seismometer station locations. In order to ensure the accuracy of the 

spatial displacement gradients at locations between broadband seismometers, it is 

necessary to incorporate additional methods, such as interpolation-based methods (i.e., 

Methods 2 and 3 discussed in the previous chapter).  

In this study, we developed a 4-step process for obtaining accurate displacement 

gradient estimates at PBO GTSM station locations inside the Anza Seismic Network. The 

first step consisted of identifying the propagation slowness and propagation direction of 

the major seismic phases as they moved across the seismic network. We chose to 

implement a time-domain cross-correlation method, similar to that described in Chapter 

(2). The time-domain cross-correlation method consisted of identifying and picking 

windows around major seismic phases, and then solving for the propagation slowness and 

propagation azimuth that resulted in the best alignment of the seismograms. This process 

was repeated for all the seismic phases that appeared to yield the largest levels of strain. 

The second step consisted of calculating the radial displacement gradients at every 

instant in time, within a selected time window, at each station using formulation similar 

to Method (4) from the previous chapter, i.e.,  
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where the position 

€ 

pr = xr y r zr[ ]  describes the location of a specific seismometer, sT 

and sR describe the transverse and radial propagation slowness, and θ is the propagation 

direction.  

In the third step, we determine the relative radial distances associated with each of 

the 
  

€ 

i ∈M = 0,1,,N −1{ } seismometers, with respect to the reference GTSM station in 

question, along the propagation path according to the propagation direction information, 

derived above, using 

€ 

i ∈M : rd
i θ( ) = sinθ cosθ[ ] ⋅ x i − xr y i − yr[ ]  .  (31) 

In the last step, we construct a matrix equation of the form WGm = Wd, where 

  

€ 

G =

rd
0( )
3

rd
0( )
2

rd
0 1

rd
1( )
3

rd
1( )
2

rd
1 1

   

rd
N−1( )

3
rd
N−1( )

2
rd
N−1 1

3 rd
0( )
2

2 rd
0( ) 1 0

3 rd
1( )
2

2 rd
1( ) 1 0

   

3 rd
N−1( ) 2 rd

N−1( ) 1 0

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 ,  

€ 

m =

aT
3 aR

3

aT
2 aR

2

aT
1 aR

1

aT
0 aR

0

 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

  , 

 



  71 

  

€ 

d =

uR
0 uT

0

uR
1 uT

1

 

uR
N−1 uT

N−1

−sR ˙ u R
0 −sT ˙ u T

0

−sR ˙ u R
1 −sT ˙ u T

1

 

−sR ˙ u R
N−1 −sT ˙ u T

N−1

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  , and   

 

W is a diagonal matrix containing the inversion weights. The reason the weights are 

important is because the ground displacement amplitudes in the upper half of d may be 

an order of magnitude different than the corresponding displacement gradient amplitudes 

in the lower half of d. Therefore, it is necessary to weight the data matrix such that the 

ground displacements and the corresponding displacement gradients equally contribute to 

the final polynomial coefficients. For a GTSM instrument at an arbitrary reference point 

€ 

pr = xr y r zr[ ]  inside the seismic network, the displacement gradients necessary for 

deriving the formation strains in Equation (29) are found by: 
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Process for Performing Strainmeter Calibration 

 

The basic assumption made in Hart et al. [1996], is that the strain is small enough to 

assume that a linear relationship exists between the instrument strain measured by each 

gauge (e) and the reference formation strains (sR) through the model 

€ 

e = SsR ,    (33) 

 

where S is the calibration matrix. Ideally, if the borehole GTSM instruments required no 

calibration, the instrument strain measured by each gauge would be related to the 

formation strain through an orientation matrix (O) by 
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where the angles (θ) represent the orientation of the strain-meter gauge measured 

counter-clockwise from the x1-axis (i.e., east). However, if the instrument strain measured 

by each gauge is not exactly related to the reference formation strain through O, and there 

is high confidence that the orientation angles are correct, then it is likely that a linear set 

of coupling coefficients (K) are needed to properly relate what is measured by each 

gauge to what should be measured by each gauge. The calibration matrix (S) necessary 

for relating the instrument strain (e) to reference strain (sR), in this case, is the result from 

taking the product between the orientation matrix (O) and the linear coupling coefficients 

(K): 

€ 

OKsR = SsR = e  .    (35) 
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Conceptually, the calibration coefficients in S are like an additional instrument 

response that needs to be removed from the GTSM instrument data in order to yield the 

“true” formation strain data. We make the assumption that the necessary calibration 

coefficients in S are real, constant through time, and independent of frequency. This 

assumption allows the necessary calibration coefficients to be found in either the time 

domain or the frequency domain using the same simple mathematical relationship – 

namely multiplication/division. In this study, we choose to compute S in the frequency 

domain because the inversion process and the error analysis associated with finding the 

calibration coefficients are much easier to implement. In the frequency domain (strain 

terms in the frequency domain are denoted by “^”), the system of linear equations to be 

solved is: 
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 .   (36) 

The components of the calibration matrix can be found by regularizing the inversion 

using strain amplitudes corresponding not only to several different frequencies, but to 

several different strain-inducing events, i.e., earthquakes, as well (explained in Appendix 

2). For example, if we consider the formation strain amplitudes for M frequency 

increments 
  

€ 

ω1,  ω2,    ,  ωM( )  and N strain-inducing events, then we can horizontally 

concatenate the MN 3-element column vectors such that: 

  

€ 

ˆ R = ˆ s 1,2,,M( ), 1
R ˆ s 1,2,,M( ), 2

R
 ˆ s 1,2,,M( ), N

R[ ]  ,  (37) 

where, for example: 
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The same process is repeated for the instrument strain amplitudes for the same M 

frequency increments and N strain-inducing events (i.e., earthquakes) such that: 

  

€ 

ˆ C = ˆ e 1,2,,M( ), 1 ˆ e 1,2,,M( ), 2  ˆ e 1,2,,M( ), N[ ]  ,  (39) 

and the new system of equations to be solved is: 

€ 

S ˆ R = ˆ C  .    (40) 

The calibration coefficients in S are then found by performing the following set of 

operations: 

€ 

S = ˆ C ̂  C T * ˆ R ̂  C T *( )
−1

 ,    (41) 

where “T*” denotes the complex conjugate transpose.  

Our original assumption that S is both real and constant means that an appropriate 

estimate of S may be applied in either the time or frequency domain. However, when 

computing the calibration coefficients in the frequency domain, it is possible that 

consistent timing (or phase) errors between the instrument strain and the reference strain 

will cause S to be complex. In order to ensure that no erroneous timing (or phase) errors 

are introduced into the calibration coefficients, it is important to not only compute the 

reference strains accurately, but also compute S for a large number and diverse set of 

teleseismic events.  
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Results and Analysis 

 

The results in this section will focus on PBO GTSM station B081, because it is the 

only borehole instrument (of the 7 in this study) that has a set of calibration coefficients 

derived through independent analysis (see Roeloffs [2010]). A brief overview of the 

results from the remaining 6 borehole instruments will follow. The results in each section 

will focus on three issues: 1) alignment and phase errors, 2) the derived calibration 

coefficients, and 3) anisotropic-coupling (or cross-coupling) versus isotropic-coupling 

models.  

Alignment errors were calculated in two different ways. The first method involves a 

process where the “cleaned” instrument gauge strains were converted to formation 

strains, using a variety of increments to the advertised orientation angles, then normalized 

before comparing them to the normalized, “cleaned” reference formation strains. The 

increment angle that resulted in the smallest difference between the normalized, adjusted 

instrument formation strains and the normalized reference formation strains were stored 

for each teleseismic event. Finally the mean and standard deviation of all the estimated 

angle adjustments for a specific station were computed. The list of the adjustment angles 

associated with each teleseismic event and borehole instrument are list in Table (11). The 

second method involves a process where the orientation angles are incrementally changed 

until the trace of K = inv(OT O) OT S is maximized, where K is the coupling model. 

The coupling model (K) is an important consideration during the calibration process 

because it identifies the nature of the instrument coupling inside the borehole. If the 

instrument were isotropically coupled inside the borehole, then each component of the 

formation strain derived from the borehole instrument would scale by a constant. 

However, if the instrument were anisotropically coupled inside the borehole, then each 

component of the formation strain derived from the borehole instrument would scale by 

some linear combination of the reference formation strains. The default calibration  
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Table 11. Angle adjustments (a), measured counter-clockwise, for each station were 
derived from each teleseismic event based on the alignment fit between the normalized 
instrument formation strains with the normalized reference formation strains. Also, the 
phase angles (b) necessary to promote alignment are indicated to the right of the back-
slash. Stations that did not have data for a particular event are indicated with a “”. 

EQ 
No. 

B081   
a°/ b° 

B082   
a°/ b° 

B084   
a°/ b° 

B086   
a°/ b° 

B087   
a°/ b° 

B088   
a°/ b° 

B089   
a°/ b° 

1  19°/ 13° 22°/ 12°  -47°/ 10°   

2 10°/ 14° 14°/ 11° 26°/ 7° 0°/ 10° -45°/ 11° 10°/ 2° -4°/ 9° 

3 4°/ 6° 22°/ 10° 24°/ 6° 5°/ 8° -50°/ 0° -19°/ 9° -7°/ 8° 

4 8°/ 13° 15°/ 12° 22°/ 10°  -45°/ 11° 9°/ 3° -6°/ 10° 

5  18°/ 5° 21°/ 7° 5°/ 17° -47°/ 8° -30°/ 7° -13°/ 8° 

6 3°/ 16° 20°/ 9° 24°/ 9° 5°/ 17°  -21°/ 1° -12°/ 10° 

7 2°/ 14° 21°/ 8° 25°/ 8° 6°/ 7°  -24°/ 8° -13°/ 8° 

8 1°/ 4° 18°/ 5° 23°/ 4° 3°/ 7° -44°/ 7° -19°/ 7° -8°/ 8° 

9 4°/ 0° 16°/ 3°   -44°/ 7° -15°/ 5° -10°/ 4° 

10  16°/ 0°   -49°/ 1° -19°/ 0° -5°/ 2° 

 

CONTINUED ON NEXT PAGE 
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Table 11. (cont.) Angle adjustments (a), measured counter-clockwise, for each station 
were derived from each teleseismic event based on the alignment fit between the 
normalized instrument formation strains with the normalized reference formation strains. 
Also, the phase angles (b) necessary to promote alignment are indicated to the right of the 
back-slash. Stations that did not have data for a particular event are indicated with a “”. 

EQ 
No. 

B081   
a°/ b° 

B082   
a°/ b° 

B084   
a°/ b° 

B086   
a°/ b° 

B087   
a°/ b° 

B088   
a°/ b° 

B089   
a°/ b° 

11 11°/ 7°  28°/ 9°  -45°/ 12° 10°/ 7° -3°/ 12° 

12   22°/ 9° 4°/ 17° -51°/ 11° -27°/ 12° -14°/ 9° 

13 3°/ 9° 21°/ 9° 21°/ 8° 2°/ 6° -51°/ 10° -19°/ 9° -8°/ 9° 

14 9°/ 14° 17°/ 11° 26°/ 10° 0°/ 10° -57°/ 15° 13°/ 9° -4°/ 8° 

15  18°/ 12° 23°/ 10° 3°/ 33° -49°/ 7° 18°/ 7° -9°/ 11° 

16 16°/ 4° 19°/ 10° 29°/ 6° 6°/ 9° -53°/ 8° 15°/ 4° 0°/ 6° 

17 11°/ 13° 18°/ 21° 26°/ 17° 2°/ 16° -47°/ 19°  -3°/ 21° 

18 11°/ 13° 18°/ 21° 26°/ 17° 2°/ 16° -47°/ 19°  -3°/ 21° 

19 3°/ 4° 15°/ 3° 22°/ 9° 1°/ 6° -43°/ 5° -10°/ 5° -10°/ 6° 

20 4°/ 3° 22°/ 5° 25°/ 2° 6°/ 4° -52°/ -4° -18°/ 5° -5°/ 6° 

(a
) M

E
A

N
 

± 
ST

D
 

6.6° ± 
4.4° 

18° ± 
2.4° 

25° ± 
3.5° 

3.3° ± 
2.0° 

-48° ± 
3.8° 

-10° ± 
16° 

-7.3° ± 
4° 

(b
) M

E
A

N
 

± 
ST

D
 

8.9° ± 
5.2° 

9.3° ± 
5.6° 

8.9° ± 
3.7° 

12° ± 
5.5° 

8.7° ± 
5.9° 

5.8° ± 
3.2° 

9.3° ± 
4.9° 
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coefficients provided by PBO assumes an isotropic coupling model for all borehole 

instruments in the network, which correspond to the following relationship: 
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=OKsR = SsR   .  (42) 

The validity of an isotropic coupling model is tested for each borehole instrument below. 

 

Calibration for PBO GTSM instrument: B081 

 

An example of the level of disagreement between the “cleaned” raw instrument 

formation strain and the “cleaned” reference formation strain is illustrated in Figure (22). 

The amplitudes and phase associated with both areal strain estimates are remarkably 

similar. When we normalize the “cleaned” raw instrument formation strain and compare 

to the normalized reference formation strain, there is very close agreement with the areal 

strain and reasonable agreement with the shear strain (see Figure 23). However, the 

amplitudes and phase associated with the differential normal strain are quite different.  

There are 1162 sets of 4 complex instrument gauge strain and 3 complex reference 

formation strain amplitudes from 15 teleseismic events that were compiled together, 

inside the frequency band between 0.01 and 0.03 Hz, before inverting for the calibration 

coefficients. The normalized probability density function in Figures (24) and (25) 

illustrate the real and imaginary components, respectively, resulting from repeatedly 

(1000 realizations) selecting a random subset of 58 (~5%) of the 1162 sets of instrument 

and reference strain amplitudes before inverting for the calibration  
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Figure 22. Example of the difference between the “cleaned” instrument formation strain 
at B081 and the “cleaned” reference formation strain derived from seismic data at the 
same GTSM location. Formation strain in the above figure corresponds to the 29 
September 2009 M8.1 Samoa Island earthquake band-pass filtered between 0.01 Hz and 
0.03 Hz with a 4-pole Butterworth acausal filter. The vertical axis (i.e., y-axis) limits 
were set to ± 200 nm/m in order to highlight the consistencies/inconsistencies between 
the two measurements of the formation strain. 
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Figure 23. Example of the difference between the normalized, “cleaned” instrument 
formation strain at B081 and the normalized, “cleaned” reference formation strain 
derived from seismic data at the same GTSM location. Formation strain in the above 
figure corresponds to the 29 September 2009 M8.1 Samoa Island earthquake band-pass 
filtered between 0.01 Hz and 0.03 Hz with a 4-pole Butterworth acausal filter.  
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Figure 24. Illustration of the normalized probability density functions (PDF) associated 
with the REAL calibration coefficients derived for B081 using seismic data.  The 
normalized PDF (BLUE line) about each coefficient value is the result from randomly 
selecting 58 (~5%) of the available 1162 sets of instrument and reference strain 
amplitudes, performing an inversion (similar to Equation 41) using these data, and 
repeating (1000 iterations total). The mean of the normalized PDF is indicated by the 
GREEN solid line, while the standard deviation about the mean is indicated by RED solid 
lines. The result from inverting all 1162 sets of strain information is indicated by the 
BLACK dashed line.  
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Figure 25. Illustration of the normalized probability density functions (PDF) associated 
with the IMAGINARY calibration coefficients derived for B081 using seismic data.  The 
normalized PDF (BLUE line) about each coefficient value is the result from randomly 
selecting 58 (~5%) of the available 1162 sets of instrument and reference strain 
amplitudes, performing an inversion (similar to Equation 41) using these data, and 
repeating (1000 iterations total). The mean of the normalized PDF is indicated by the 
GREEN solid line, while the standard deviation about the mean is indicated by RED solid 
lines. The result from inverting all 1162 sets of strain information is indicated by the 
BLACK dashed line.  



  83 

coefficients. The calibration coefficients, along with their standard deviation, are 

summarized in Table (12).  

In addition to the calibration process, we attempted to derive the alignment error 

associated with B081 using the second method described above. We found that the 

second method yielded an alignment error of 6.8 degrees (compare to 6.6 degrees derived 

from the first method). After properly accounting for the alignment error we observed 

that the diagonal elements of the coupling model are very similar to those in the nominal 

isotropic coupling model provided by PBO (see Table 13). However, there are also 

significant cross-coupling terms, which indicate that an isotropic coupling model is not 

valid for station B081. Other evidence that an isotropic coupling model is not valid is 

illustrated in Figure (26), where the cross-coupling terms in Table (13) were neglected 

and the strainmeter result calibrated assuming an isotropic coupling model. Poor fit is 

clearly observed between the differential normal strain traces. 

Figure (27) illustrates a remarkable finding that the coefficients necessary to 

calibrate B081 over the past two years are reasonably similar. The point at each group 

number, in this figure, represents the calibration coefficients derived for a specific set of 

4 teleseismic events. Group number 1 consists of events 2, 3, 4, and 6; Group number 2 

consists of events 3, 4, 6, and 7; etc. according to the data coverage listed in Table (10). 

To further illustrate the consistency of the derived calibration coefficients, we calibrated 

events 3 and 16 and displayed their results in Figures (28) and (29) to demonstrate that 

the calibration coefficients in Table (12) are in fact stable over the last 2 years. 

Next we compared our calibration result with the result obtained in Roeloffs [2010], 

which is listed in Table (14). Although the calibration coefficients are very similar, only 1 

of the calibration coefficients predicted by earth tide strains fall within one standard 

deviation of the result presented here. In Figure (30), we illustrate the relative consistency 

between using our result and the result obtain in Roeloffs [2010] and find reasonably 

good agreement.  
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Table 12. Derived calibration coefficients for B081 using seismic data. Calibration 
coefficients with imaginary parts are neglected. The coefficient values are the result from 
inverting 1162 sets of instrument strain and reference strain amplitudes. The standard 
deviation associated with each distribution in Figure (24) is indicated to the right of each 
respective coefficient value. The 4x3 calibration coefficient matrix relates the 3x1 
reference formation strain to the 4x1 instrument gauge strain through Equation (36). 

B081                            
Derived 

Calibration 
Coefficients 

Areal Strain (ea) 
Differential Normal 

Strain (γ1) 
Shear Strain (γ2) 

Gauge 0 0.963 ± 0.056 -1.455 ± 0.056 0.557 ± 0.051 

Gauge 1 0.647 ± 0.041 0.211 ± 0.037 -1.405 ± 0.034 

Gauge 2 0.284 ± 0.046 0.609 ± 0.037 0.902 ± 0.041 

Gauge 3 0.538 ± 0.056 -0.397 ± 0.053 1.329 ± 0.047 

 

 

 

Table 13. Derived coupling model associated with B081. The 3x3 coupling model relates 
the 3x1 reference formation strain to the 3x1 instrument formation strain through 
Equation (35). Two standard deviations (a , b) are listed for each coupling coefficient, 
where “a” is related to the standard deviation in each calibration coefficient presented in 
the table above and “b” is related to the uncertainty in the alignment correction listed in 
Table (11). 

B081                            
Derived Coupling 

Model 

Reference               
Areal Strain (ea) 

Reference               
Differential Normal 

Strain (γ1) 

Reference               
Shear Strain (γ2) 

Instrument              
Areal Strain (ea) 

1.237 ±           
(0.040 , 0.000) 

-0.344 ±           
(0.044 , 0.000) 

-0.001 ±           
(0.036 , 0.000) 

Instrument    
Differential Normal 

Strain (γ1) 

-0.757 ±           
(0.083 , 0.043) 

2.468 ±           
(0.084 , 0.067) 

-0.109 ±           
(0.075 , 0.429) 

Instrument              
Shear Strain (γ2) 

-0.224 ±           
(0.084 , 0.118) 

-0.247 ±           
(0.081 , 0.380) 

2.797 ±           
(0.071 , 0.050) 
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Table 14. Derived calibration coefficients for B081 from Roeloffs [2010] using 
theoretical earth tides (E. T.) as the reference strain. The 4x3 calibration coefficient 
matrix relates the 3x1 reference formation strain to the 4x1 instrument gauge strain 
through Equation (36). 

B081                            
Derived 

Calibration 
Coefficients (E. T.) 

Areal Strain (ea) 
Differential Normal 

Strain (γ1) 
Shear Strain (γ2) 

Gauge 0 0.84 -1.35 0.18 

Gauge 1 0.43 0.62 -0.98 

Gauge 2 0.12 0.72 0.73 

Gauge 3 0.51 -0.56 0.96 
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Figure 26. Illustration of the result from calibrating the instrument data associated with 
event 16 (2009/09/29) recorded by B081 using the calibration coefficients obtained from 
neglecting the cross-coupling terms in the coefficients listed in Table (13), GREEN solid 
line. The reference formation strains derived in this study are also illustrated for 
comparison, RED dashed line. 
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Figure 27. Illustration of the consistency between the REAL calibration coefficients 
derived for B081 at different periods of time over a 2-year period. The calibration 
coefficient result from each group (RED circle) represents 332 strain amplitude sets 
associated with 4 teleseismic events. The groups are organized such that group number 1 
represents events 2, 3, 4, and 6; group number 2 represents events 3, 4, 6, and 7; etc. 
according to data coverage listed in Table (10). The result from inverting all 1162 sets of 
strain information is indicated by the BLACK dashed line.  
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Figure 28. Illustration of the result from calibrating the instrument data associated with 
event 3 (2007/08/15) recorded by B081 using the calibration coefficients listed in Table 
(12). 
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Figure 29. Illustration of the result from calibrating the instrument data associated with 
event 16 (2009/09/29) recorded by B081 using the calibration coefficients listed in Table 
(12). 
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Figure 30. Illustration of the result from calibrating the instrument data associated with 
event 16 (2009/09/29) recorded by B081 using the calibration coefficients obtained from 
Roeloffs [2010] in Table (14), BLUE solid line. The reference formation strains derived 
in this study are also illustrated for comparison, RED dashed line. 
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Calibration for PBO GTSM instrument: B082 

 

There are 1411 sets of 4 complex instrument strain and 3 complex reference strain 

amplitudes from 18 teleseismic events that were compiled together, inside the frequency 

band between 0.01 and 0.03 Hz, before inverting for the calibration coefficients. 

Supplemental Figures (A26) and (A27) associated with the normalized probability 

density function illustrate the real and imaginary components, respectively, resulting 

from repeatedly (1000 realizations) selecting a random subset of 71 (~5%) of the 1411 

sets of instrument and reference strain amplitudes before inverting for the calibration 

coefficients. The calibration coefficients, along with their standard deviation, are 

summarized in Table (15).  

In addition to the calibration process, we attempted to derive the alignment error 

associated with B082 using the second method described above. We found that the 

second method yielded an alignment error of 20.3 degrees (compare to 18 degrees 

derived from the first method). After properly accounting for the alignment error we 

observed that the diagonal elements of the coupling model are very similar to those in the 

nominal isotropic coupling model provided by PBO (see Table 16). However, there are 

also significant cross-coupling terms, which indicate that an isotropic coupling model is 

not valid for station B082. 
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Table 15. Derived calibration coefficients for B082 using seismic data. Calibration 
coefficients with imaginary parts are neglected. The coefficient values are the result from 
inverting 1411 sets of instrument strain and reference strain amplitudes. The standard 
deviation associated with each distribution in Figure (A26) is indicated to the right of 
each respective coefficient value. The 4x3 calibration coefficient matrix relates the 3x1 
reference formation strain to the 4x1 instrument gauge strain through Equation (36). 

B082                            
Derived 

Calibration 
Coefficients 

Areal Strain (ea) 
Differential Normal 

Strain (γ1) 
Shear Strain (γ2) 

Gauge 0 1.125 ± 0.103 -1.329 ± 0.112 -0.938 ± 0.092 

Gauge 1 0.947 ± 0.064 1.089 ± 0.052 -0.797 ± 0.047 

Gauge 2 0.168 ± 0.043 0.017 ± 0.041 1.309 ± 0.037 

Gauge 3 0.354 ± 0.042 -1.337 ± 0.038 0.723 ± 0.039 

 

 

 

Table 16. Derived coupling model associated with B082. The 3x3 coupling model relates 
the 3x1 reference formation strain to the 3x1 instrument formation strain through 
Equation (35). Two standard deviations (a , b) are listed for each coupling coefficient, 
where “a” is related to the standard deviation in each calibration coefficient presented in 
the table above and “b” is related to the uncertainty in the alignment correction listed in 
Table (11). 

B082                            
Derived Coupling 

Model 

Reference               
Areal Strain (ea) 

Reference               
Differential Normal 

Strain (γ1) 

Reference               
Shear Strain (γ2) 

Instrument              
Areal Strain (ea) 

1.425 ±           
(0.046 , 0.000) 

-0.183 ±           
(0.046 , 0.000) 

-0.216 ±           
(0.038 , 0.000) 

Instrument    
Differential Normal 

Strain (γ1) 

0.032 ±           
(0.113 , 0.010) 

2.836 ±           
(0.111 , 0.041) 

-0.173 ±           
(0.097 , 0.250) 

Instrument              
Shear Strain (γ2) 

-1.192 ±           
(0.122 , 0.007) 

0.375 ±           
(0.134 , 0.239) 

2.982 ±           
(0.106 , 0.025) 



  93 

 

Calibration for PBO GTSM instrument: B084 

 

There are 1411 sets of 4 complex instrument strain and 3 complex reference strain 

amplitudes from 18 teleseismic events that were compiled together, inside the frequency 

band between 0.01 and 0.03 Hz, before inverting for the calibration coefficients. 

Supplemental Figures (A30) and (A31) associated with the normalized probability 

density function illustrate the real and imaginary components, respectively, resulting 

from repeatedly (1000 realizations) selecting a random subset of 71 (~5%) of the 1411 

sets of instrument and reference strain amplitudes before inverting for the calibration 

coefficients. The calibration coefficients, along with their standard deviation, are 

summarized in Table (17).  

In addition to the calibration process, we attempted to derive the alignment error 

associated with B084 using the second method described above. We found that the 

second method yielded an alignment error of 26.8 degrees (compare to 25 degrees 

derived from the first method). After properly accounting for the alignment error we 

observed that the diagonal elements of the coupling model are a lot larger than those in 

the nominal isotropic coupling model provided by PBO (see Table 18). In addition, there 

are also significant cross-coupling terms, which indicate that an isotropic coupling model 

is not valid for station B084. 
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Table 17. Derived calibration coefficients for B084 using seismic data. Calibration 
coefficients with imaginary parts are neglected. The coefficient values are the result from 
inverting 1411 sets of instrument strain and reference strain amplitudes. The standard 
deviation associated with each distribution in Figure (A30) is indicated to the right of 
each respective coefficient value. The 4x3 calibration coefficient matrix relates the 3x1 
reference formation strain to the 4x1 instrument gauge strain through Equation (36). 

B084                            
Derived 

Calibration 
Coefficients 

Areal Strain (ea) 
Differential Normal 

Strain (γ1) 
Shear Strain (γ2) 

Gauge 0 0.723 ± 0.082 -0.658 ± 0.071 2.367 ± 0.081 

Gauge 1 1.438 ± 0.055 -1.824 ± 0.055 -1.064 ± 0.046 

Gauge 2 0.661 ± 0.062 1.949 ± 0.052 -1.029 ± 0.054 

Gauge 3 0.393 ± 0.069 1.796 ± 0.060 1.136 ± 0.064 

 

 

 

Table 18. Derived coupling model associated with B084. The 3x3 coupling model relates 
the 3x1 reference formation strain to the 3x1 instrument formation strain through 
Equation (35). Two standard deviations (a , b) are listed for each coupling coefficient, 
where “a” is related to the standard deviation in each calibration coefficient presented in 
the table above and “b” is related to the uncertainty in the alignment correction listed in 
Table (11). 

B084                            
Derived Coupling 

Model 

Reference               
Areal Strain (ea) 

Reference               
Differential Normal 

Strain (γ1) 

Reference               
Shear Strain (γ2) 

Instrument              
Areal Strain (ea) 

1.865 ±           
(0.061 , 0.000) 

-0.247 ±           
(0.056 , 0.000) 

0.145 ±           
(0.056 , 0.000) 

Instrument    
Differential Normal 

Strain (γ1) 

-0.874 ±           
(0.122 , 0.073) 

4.610 ±           
(0.106 , 0.080) 

-0.495 ±           
(0.106 , 0.551) 

Instrument              
Shear Strain (γ2) 

-0.547 ±           
(0.118 , 0.111) 

-0.372 ±           
(0.112 , 0.565) 

4.487 ±           
(0.119 , 0.094) 
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Calibration for PBO GTSM instrument: B086 

 

There are 1162 sets of 4 complex instrument strain and 3 complex reference strain 

amplitudes from 15 teleseismic events that were compiled together, inside the frequency 

band between 0.01 and 0.03 Hz, before inverting for the calibration coefficients. 

Supplemental Figures (A34) and (A35) associated with the normalized probability 

density function illustrate the real and imaginary components, respectively, resulting 

from repeatedly (1000 realizations) selecting a random subset of 58 (~5%) of the 1162 

sets of instrument and reference strain amplitudes before inverting for the calibration 

coefficients. The calibration coefficients, along with their standard deviation, are 

summarized in Table (19).  

In addition to the calibration process, we attempted to derive the alignment error 

associated with B086 using the second method described above. We found that the 

second method yielded an alignment error of 2.3 degrees (compare to 3.3 degrees derived 

from the first method). After properly accounting for the alignment error we observed 

that the diagonal elements of the coupling model are slightly different than those in the 

nominal isotropic coupling model provided by PBO (see Table 20). However, there are 

also significant cross-coupling terms, which indicate that an isotropic coupling model is 

not valid for station B086. 
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Table 19. Derived calibration coefficients for B086 using seismic data. Calibration 
coefficients with imaginary parts are neglected. The coefficient values are the result from 
inverting 1162 sets of instrument strain and reference strain amplitudes. The standard 
deviation associated with each distribution in Figure (A34) is indicated to the right of 
each respective coefficient value. The 4x3 calibration coefficient matrix relates the 3x1 
reference formation strain to the 4x1 instrument gauge strain through Equation (36). 

B086                            
Derived 

Calibration 
Coefficients 

Areal Strain (ea) 
Differential Normal 

Strain (γ1) 
Shear Strain (γ2) 

Gauge 0 1.099 ± 0.047 -0.131 ± 0.052 -1.641 ± 0.037 

Gauge 1 0.305 ± 0.045 1.242 ± 0.039 0.233 ± 0.043 

Gauge 2 0.635 ± 0.083 -1.310 ± 0.065 1.164 ± 0.072 

Gauge 3 0.481 ± 0.053 -1.626 ± 0.047 -0.510 ± 0.047 

 

 

 

Table 20. Derived coupling model associated with B086. The 3x3 coupling model relates 
the 3x1 reference formation strain to the 3x1 instrument formation strain through 
Equation (35). Two standard deviations (a , b) are listed for each coupling coefficient, 
where “a” is related to the standard deviation in each calibration coefficient presented in 
the table above and “b” is related to the uncertainty in the alignment correction listed in 
Table (11). 

B086                            
Derived Coupling 

Model 

Reference               
Areal Strain (ea) 

Reference               
Differential Normal 

Strain (γ1) 

Reference               
Shear Strain (γ2) 

Instrument              
Areal Strain (ea) 

1.165 ±           
(0.048 , 0.000) 

-0.216 ±           
(0.042 , 0.000) 

-0.202 ±           
(0.042 , 0.000) 

Instrument    
Differential Normal 

Strain (γ1) 

-0.150 ±           
(0.100 , 0.045) 

3.083 ±           
(0.086 , 0.029) 

-0.464 ±           
(0.089 , 0.230) 

Instrument              
Shear Strain (γ2) 

-0.634 ±           
(0.105 , 0.012) 

-0.304 ±           
(0.091 , 0.216) 

3.279 ±           
(0.091 , 0.040) 
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Calibration for PBO GTSM instrument: B087 

 

There are 1411 sets of 4 complex instrument strain and 3 complex reference strain 

amplitudes from 18 teleseismic events that were compiled together, inside the frequency 

band between 0.01 and 0.03 Hz, before inverting for the calibration coefficients. 

Supplemental Figures (A38) and (A39) associated with the normalized probability 

density function illustrate the real and imaginary components, respectively, resulting 

from repeatedly (1000 realizations) selecting a random subset of 71 (~5%) of the 1411 

sets of instrument and reference strain amplitudes before inverting for the calibration 

coefficients. The calibration coefficients, along with their standard deviation, are 

summarized in Table (21).  

In addition to the calibration process, we attempted to derive the alignment error 

associated with B087 using the second method described above. We found that the 

second method yielded an alignment error of -51.5 degrees (compare to -48 degrees 

derived from the first method). After properly accounting for the alignment error we 

observed that the diagonal elements of the coupling model are smaller than those in the 

nominal isotropic coupling model provided by PBO (see Table 22). In addition, there are 

also significant cross-coupling terms, which indicate that an isotropic coupling model is 

not valid for station B087. 
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Table 21. Derived calibration coefficients for B087 using seismic data. Calibration 
coefficients with imaginary parts are neglected. The coefficient values are the result from 
inverting 1411 sets of instrument strain and reference strain amplitudes. The standard 
deviation associated with each distribution in Figure (A38) is indicated to the right of 
each respective coefficient value. The 4x3 calibration coefficient matrix relates the 3x1 
reference formation strain to the 4x1 instrument gauge strain through Equation (36). 

B087                            
Derived 

Calibration 
Coefficients 

Areal Strain (ea) 
Differential Normal 

Strain (γ1) 
Shear Strain (γ2) 

Gauge 0 0.184 ± 0.025 0.944 ± 0.022 -0.403 ± 0.020 

Gauge 1 0.578 ± 0.025 0.169 ± 0.025 0.583 ± 0.025 

Gauge 2 0.166 ± 0.036 -1.246 ± 0.031 -0.598 ± 0.031 

Gauge 3 -0.165 ± 0.022 -0.442 ± 0.022 -0.663 ± 0.020 

 

 

 

Table 22. Derived coupling model associated with B087. The 3x3 coupling model relates 
the 3x1 reference formation strain to the 3x1 instrument formation strain through 
Equation (35). Two standard deviations (a , b) are listed for each coupling coefficient, 
where “a” is related to the standard deviation in each calibration coefficient presented in 
the table above and “b” is related to the uncertainty in the alignment correction listed in 
Table (11). 

B087                            
Derived Coupling 

Model 

Reference               
Areal Strain (ea) 

Reference               
Differential Normal 

Strain (γ1) 

Reference               
Shear Strain (γ2) 

Instrument              
Areal Strain (ea) 

0.551 ±           
(0.013 , 0.000) 

-0.150 ±           
(0.014 , 0.000) 

-0.213 ±           
(0.014 , 0.000) 

Instrument    
Differential Normal 

Strain (γ1) 

0.202 ±           
(0.071 , 0.087) 

2.583 ±           
(0.061 , 0.042) 

0.565 ±           
(0.060, 0.164) 

Instrument              
Shear Strain (γ2) 

0.645 ±           
(0.039 , 0.032) 

-0.142 ±           
(0.039 , 0.343) 

1.206 ±           
(0.037, 0.085) 
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Calibration for PBO GTSM instrument: B088 

 

There are 1411 sets of 4 complex instrument strain and 3 complex reference strain 

amplitudes from 18 teleseismic events that were compiled together, inside the frequency 

band between 0.01 and 0.03 Hz, before inverting for the calibration coefficients. 

Supplemental Figures (A42) and (A43) associated with the normalized probability 

density function illustrate the real and imaginary components, respectively, resulting 

from repeatedly (1000 realizations) selecting a random subset of 71 (~5%) of the 1411 

sets of instrument and reference strain amplitudes before inverting for the calibration 

coefficients. The calibration coefficients, along with their standard deviation, are 

summarized in Table (23).  

In addition to the calibration process, we attempted to derive the alignment error 

associated with B088 using the second method described above. We found that the 

second method yielded an alignment error of -14.1 degrees (compare to -10 degrees 

derived from the first method). After properly accounting for the alignment error we 

observed that the diagonal elements of the coupling model are larger than those in the 

nominal isotropic coupling model provided by PBO (see Table 24). In addition, there are 

also significant cross-coupling terms, which indicate that an isotropic coupling model is 

not valid for station B088. 
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Table 23. Derived calibration coefficients for B088 using seismic data. Calibration 
coefficients with imaginary parts are neglected. The coefficient values are the result from 
inverting 1411 sets of instrument strain and reference strain amplitudes. The standard 
deviation associated with each distribution in Figure (A42) is indicated to the right of 
each respective coefficient value. The 4x3 calibration coefficient matrix relates the 3x1 
reference formation strain to the 4x1 instrument gauge strain through Equation (36). 

B088                            
Derived 

Calibration 
Coefficients 

Areal Strain (ea) 
Differential Normal 

Strain (γ1) 
Shear Strain (γ2) 

Gauge 0 2.911 ± 0.106 -2.616 ± 0.102 1.619 ± 0.095 

Gauge 1 1.360 ± 0.041 -0.565 ± 0.048 -1.322 ± 0.036 

Gauge 2 -0.380 ± 0.046 1.781 ± 0.041 -0.087 ± 0.038 

Gauge 3 0.389 ± 0.050 0.265 ± 0.046 1.426 ± 0.045 

 

 

 

Table 24. Derived coupling model associated with B088. The 3x3 coupling model relates 
the 3x1 reference formation strain to the 3x1 instrument formation strain through 
Equation (35). Two standard deviations (a , b) are listed for each coupling coefficient, 
where “a” is related to the standard deviation in each calibration coefficient presented in 
the table above and “b” is related to the uncertainty in the alignment correction listed in 
Table (11). 

B088                            
Derived Coupling 

Model 

Reference               
Areal Strain (ea) 

Reference               
Differential Normal 

Strain (γ1) 

Reference               
Shear Strain (γ2) 

Instrument              
Areal Strain (ea) 

2.316 ±           
(0.063 , 0.000) 

-0.722 ±           
(0.058 , 0.000) 

0.128 ±           
(0.058 , 0.000) 

Instrument    
Differential Normal 

Strain (γ1) 

-3.776 ±           
(0.150 , 1.004) 

4.930 ±           
(0.140 , 1.471) 

-0.769 ±           
(0.129 , 1.867) 

Instrument              
Shear Strain (γ2) 

0.812 ±           
(0.088 , 2.124) 

-1.362 ±           
(0.094 , 2.819) 

3.302 ±           
(0.078 , 0.910) 



  101 

 

Calibration for PBO GTSM instrument: B089 

 

There are 1494 sets of 4 complex instrument strain and 3 complex reference strain 

amplitudes from 19 teleseismic events that were compiled together, inside the frequency 

band between 0.01 and 0.03 Hz, before inverting for the calibration coefficients. 

Supplemental Figures (A46) and (A47) associated with the normalized probability 

density function illustrate the real and imaginary components, respectively, resulting 

from repeatedly (1000 realizations) selecting a random subset of 75 (~5%) of the 1494 

sets of instrument and reference strain amplitudes before inverting for the calibration 

coefficients. The calibration coefficients, along with their standard deviation, are 

summarized in Table (25).  

In addition to the calibration process, we attempted to derive the alignment error 

associated with B089 using the second method described above. We found that the 

second method yielded an alignment error of -6.5 degrees (compare to -7.3 degrees 

derived from the first method). After properly accounting for the alignment error we 

observed that the last two diagonal elements of the coupling model are significantly 

larger than those in the nominal isotropic coupling model provided by PBO (see Table 

26). In addition, there are also significant cross-coupling terms, which indicate that an 

isotropic coupling model is not valid for station B089. 
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Table 25. Derived calibration coefficients for B089 using seismic data. Calibration 
coefficients with imaginary parts are neglected. The coefficient values are the result from 
inverting 1494 sets of instrument strain and reference strain amplitudes. The standard 
deviation associated with each distribution in Figure (A46) is indicated to the right of 
each respective coefficient value. The 4x3 calibration coefficient matrix relates the 3x1 
reference formation strain to the 4x1 instrument gauge strain through Equation (36). 

B089                            
Derived 

Calibration 
Coefficients 

Areal Strain (ea) 
Differential Normal 

Strain (γ1) 
Shear Strain (γ2) 

Gauge 0 -0.239 ± 0.087 3.130 ± 0.065 -1.460 ± 0.071 

Gauge 1 0.242 ± 0.134 0.011 ± 0.073 2.607 ± 0.098 

Gauge 2 1.432 ± 0.075 -2.506 ± 0.064 -1.542 ± 0.058 

Gauge 3 0.655 ± 0.082 -0.010 ± 0.071 -3.317 ± 0.065 

 

 

 

Table 26. Derived coupling model associated with B089. The 3x3 coupling model relates 
the 3x1 reference formation strain to the 3x1 instrument formation strain through 
Equation (35). Two standard deviations (a , b) are listed for each coupling coefficient, 
where “a” is related to the standard deviation in each calibration coefficient presented in 
the table above and “b” is related to the uncertainty in the alignment correction listed in 
Table (11). 

B089                            
Derived Coupling 

Model 

Reference               
Areal Strain (ea) 

Reference               
Differential Normal 

Strain (γ1) 

Reference               
Shear Strain (γ2) 

Instrument              
Areal Strain (ea) 

0.947 ±           
(0.077 , 0.000) 

0.282 ±           
(0.037 , 0.000) 

-0.408 ±           
(0.053 , 0.000) 

Instrument    
Differential Normal 

Strain (γ1) 

-1.908 ±           
(0.169 , 0.089) 

6.506 ±           
(0.136 , 0.088) 

-0.167 ±           
(0.142 , 0.806) 

Instrument              
Shear Strain (γ2) 

-0.505 ±           
(0.216 , 0.270) 

0.175 ±           
(0.131 , 0.907) 

5.780 ±           
(0.164 , 0.079) 
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Discussion 

 

The results from this study suggest that borehole strainmeter instruments can be 

successfully calibrated using reference strain information derived from seismic data. We 

demonstrated for one PBO GTSM instrument, i.e., B081, that the calibration coefficients 

derived here can give results similar to those derived by other studies that may use 

theoretical earth tide strain measurements as the reference (see Roeloffs [2010]). This 

suggests that the coefficients necessary for calibration are remarkably stable for a large 

range of characteristic event times that span many orders of magnitude. We also 

developed and implemented processes for identifying problems with borehole readings 

associated with instrument misalignment. Although most PBO GTSM stations inside the 

Anza Seismic Network were within ± 10 degrees of the advertised orientation angles, 

there were 3 stations (B082, B084, and B087) with orientation errors that ranged between 

18 and 54 degrees.  

We also introduced a potentially useful method of empirically estimating the 

uncertainty in the calibrated strainmeter result by selecting random subsets of the raw 

instrument strain and reference strain amplitudes, in the frequency domain, and creating a 

statistical distribution of the predicted calibration coefficients. However, special care 

must be taken in selecting an appropriate subset size – a subset size that is too large will 

create an unreasonably tight distribution, while a subset size that is too small will create 

an unreasonably broad distribution (not to mention numerical instability in the inversion 

process). In this study, we selected and had reasonable success with a subset size that was 

approximately equal to 5% of the total dataset.  

We also found that the PBO’s default isotropic coupling model is not supported by 

the calibration parameters derived here. Due to the nature of the emplacement process 

and the borehole instrument housing material, it is likely that the vast majority of PBO 

GTSM instruments will require a location-specific cross-coupling model in order to 

reconcile the, sometimes large, differences between the measured formation strain and 

the “true” formation strain.  
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CHAPTER 4 

 

Viewing the Seismic Wavefield through Calibrated GTSM Instrument Data 

 

Abstract 

 

We discuss three techniques that use calibrated borehole Gladwin Tensor 

Strainmeter (GTSM) instrument data in order to analyze various aspects of the seismic 

wavefield. The first two techniques take advantage of the unique measurement tool 

created by a co-located borehole GTSM instrument and a broadband seismometer. The 

first technique, based on spatial gradient analysis in one-dimension (1D), was developed 

in Langston and Liang [2008] for seismic waves originating from an isotropic source and 

polarized in one direction. With the propagation direction known, this technique enables 

the information related to the change in geometrical spreading and horizontal phase 

velocity to be derived from the calibrated areal strain and radial ground velocity 

measurements at a single location. The second technique, developed here, enables 

information related to the propagation direction and horizontal phase velocity to be 

derived from the calibrated areal strain, calibrated normal differential strain, and 

horizontal ground velocity measurements at a single location. This second technique 

assumes plane-wave propagation from an isotropic source, so the geometrical spreading 

and radiation pattern terms are considered constant. The third technique takes advantage 

of dense borehole GTSM arrays that may exist within the PBO deployment. With all the 

GTSM instruments within an array calibrated, it will be possible to apply various array 

processing techniques to recover different aspects of the seismic wavefield, including the 

propagation direction and horizontal phase velocity. In this study, we chose to apply a 

frequency/wavenumber beam-forming technique, although other array processing 

techniques based on correlation, stacking, or other smoothing operations are just as easy 

to implement. 
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Combining co-located borehole GTSM instrument data with broadband seismometer 

data is only the beginning. The combination of a co-located borehole GTSM instrument 

data with a horizontal rotation-meter and a broadband seismometer would enable the 

entire seismic wavefield, available through gradiometry analysis, to be decomposed at a 

single point on the earth. Such a “point seismic array” would yield important properties 

of the seismic wavefield that could not have been identified in the past without a dense 

array of seismometers. 

 

Introduction 

 

The usual practice for analyzing the seismic wavefield with the spatial gradient 

analysis technique of Langston [2007a, b, c] involves using data exclusively from a dense 

seismic array. In the one-dimensional (1D) case, the spatial displacement gradients 

derived from a seismic array, in addition to the radial ground displacement and velocity, 

are used to derive properties about the seismic wavefield associated with the change in 

the geometrical spreading factor and phase velocity. In the two-dimensional (2D) case, 

the spatial displacement gradients derived from a seismic array, in addition to both 

components of the horizontal ground displacement and velocity, are used to derive 

properties about the seismic wavefield that not only include the parameters in the 1D 

case, but also the propagation azimuth and azimuthal radiation pattern.  

The problem with using seismic data exclusively is that the aperture of the array 

limits the high frequency resolution of the spatial displacement gradients through an 

inverse-proportional relationship. Therefore, the motivation behind this study is to be 

able to derive most of the above properties without having to rely on techniques for 

estimating the spatial displacement gradients that may not be well suited above a specific 

high frequency threshold. For example, during the strainmeter calibration process in the 

previous chapter (Chapter 3), the ~40km aperture of the 10-element array subset of the 

Anza Seismic Network in southern California (see Figure 4) limited our high frequency 

resolution to approximately 0.03 Hz waves. However, with a borehole GTSM instrument 
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co-located with a broadband seismometer, we show here that it is possible to increase the 

high frequency resolution to a point that is only limited by the quality of data and/or 

sample rate(s) of the co-located instruments.  

In this study, we develop and describe two techniques for deriving useful 

information about the wavefield using data collected by a borehole GTSM instrument co-

located with a broadband seismometer. We also discuss an additional technique for 

deriving information about the wavefield using data collected by a dense array of 

borehole GTSM instruments. The first technique was presented in Langston and Liang 

[2008] and, under the assumption that the propagation direction of a wave from an 

isotropic source is known, enables information about the change in geometrical spreading 

and horizontal phase velocity to be derived from data collected by a borehole GTSM 

instrument and a co-located broadband seismometer. The second technique is developed 

here and, under the assumption that a propagating plane-wave originates from an 

isotropic source, enables information about the propagation direction and horizontal 

phase velocity to be derived from data collected by a borehole GTSM instrument and a 

co-located broadband seismometer. The third technique, discussed here, is an array 

processing technique for decomposing a plane-wave field using a frequency/wavenumber 

beam-forming approach. Other array processing techniques associated with correlation, 

stacking, or other smoothing operations are just as applicable in processing data collected 

by a dense array of borehole GTSM instruments, but are not discussed here. 

In order to demonstrate the effectiveness of each technique for different types of 

seismic waves, one set of data from a regional earthquake and one from a teleseismic 

earthquake are considered for examples in this study. We again employ the same set of 7 

borehole GTSM instruments inside the Anza Seismic Network, but we can only employ 

seismic stations FRD, KNW, and PFO because they are the only ones effectively co-

located with B087, B081, and B084, respectively (see Figure 4). We chose the M5.5 

Chino Hills earthquake (2008/07/29) as the regional earthquake and the M7.0 Haitian 

earthquake (2010/01/12) as the teleseismic earthquake. For each earthquake, the idea is to 

process the data using each technique for different frequency bands in order to better 

describe seismic phases that might travel with different center or dominant frequencies. 
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We find that important information can be derived using each of the three techniques, 

which may be able to address topics related to wave scattering, regional velocity 

variation, seismic phase identification/interpretation, etc. However, if it were possible to 

incorporate a horizontal rotation-meter into the setup described above, for a borehole 

GTSM instrument co-located with a broadband seismometer, then the entire wavefield 

could be characterized using spatial gradient analysis in 2D. 

 

Methods 

 

In this section, we will describe the formulation necessary to characterize the seismic 

wavefield using various combinations of borehole GTSM instruments and broadband 

seismometers. The first two methods use data from a calibrated borehole GTSM 

instrument co-located with a broadband seismometer in order to characterize properties 

about the seismic wavefield associated with changes in geometrical spreading, horizontal 

phase velocity, and propagation direction. The third method uses data from a dense array 

of borehole GTSM instruments to infer properties about the seismic wavefield associated 

with horizontal phase velocity and propagation direction. 

 

Method One: Polarized Plane-Wave from Isotropic Source 

 

As described in Langston and Liang [2008], the assumption that the propagation 

direction of an incoming wave originating from an isotropic source is known leads to an 

equality between the areal strain (ea) and the radial displacement gradient (∂/∂r) of the 

radial ground displacement (ur).  Under these conditions, Equation (23) becomes: 
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€ 

ea =
∂ur t,r,θ( )

∂r
= ARur t,r,θ( ) − BR ur

•

t,r,θ( )

0 =
∂ur t,r,θ( )

∂θ
=
R' θ( )
R θ( )

ur t,r,θ( )
  ,  (43) 

where 

€ 

AR =
Gr ' r( )
Gr r( )

BR = sr r( ) + sr ' r( ) r − r0( )[ ]
  .  (44) 

The object is then to find the coefficients AR and BR at each time step from the 

combination of the areal strain data derived from a single, calibrated borehole GTSM 

instrument and the radial ground displacement and velocity data from a co-located 

broadband seismometer. If the geometrical spreading and the horizontal phase velocity 

are reasonably constant, then AR should approach zero and BR should approach the 

negative of the radial slowness. 

 

Method Two: Plane-Wave from Isotropic Source 

 

As described in Gomberg et al. [1999], the assumption that a plane-wave 

propagating from an isotropic source at constant horizontal phase velocity leads to the 

following relationship for the diagonal elements of the 2D strain tensor (see Equation 28) 

when the spatial displacement gradients are small: 

€ 

ε11 = u1,1 = −sr ˙ u 1 sin θ( )
ε22 = u2,2 = −sr ˙ u 2 cos θ( )

  ,  (45) 

where sr is the radial slowness, θ is the propagation direction, 

€ 

˙ u 1 is the east-west 

component of ground velocity, 

€ 

˙ u 2 is the north-south component of ground velocity. In the 

above equation, the radial slowness term may be described in terms of the horizontal 

slowness in the east-west and north-south directions through: 
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€ 

s1 = sr sin θ( )
s2 = sr cos θ( )

  ,   (46) 

respectively. From here, it is straightforward to relate the horizontal slowness in the east-

west and north-south directions to the apparent propagation direction through: 

€ 

s1
s2

= tan θ( )  .   (47) 

The object is then to find the horizontal slowness in the east-west and north-south 

directions at each time step from the combination of the areal strain and differential 

normal strain data derived from a single, calibrated borehole GTSM instrument and the 

two horizontal components of ground velocity data from a co-located broadband 

seismometer. When the diagonal elements of the 2D strain tensor are derived from: 

€ 
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ε22
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  ,   (48) 

the horizontal slowness in the east-west and north-south directions may be determined at 

a time step i by selecting a window of ground velocity data ± m (m>0) time steps about 

time step i and relating it to the calibrated strain data corresponding to the same time 

window. This inverse problem may be cast in the form of Gm=d, where 

  

€ 

G =

− ˙ u 1 i + m( ) − ˙ u 2 i + m( )

 

− ˙ u 1 i( ) − ˙ u 2 i( )
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€ 

m =

s1 i( )

s2 i( )
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€ 

d =

ε11 i + m( ) ε22 i + m( )

 

ε11 i( ) ε22 i( )

 

ε11 i −m( ) ε22 i −m( )

 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

 . 

The best fit estimates of the horizontal slowness in the east-west and north-south 

directions at a time step i may be found, in a least squares sense, through: 

€ 

m = GTG( )GTd  .   (49) 

Using the result in Equation (49), the apparent propagation direction may be determined 

through the relationship in Equation (47) and the radial slowness may be determined by 

finding the magnitude of vector m. 

 

Method Three: Plane-Wave from Isotropic Source 

 

Unlike spatial gradient analysis, which is founded on a formulation that obeys the 

fundamental physics associated with wave propagation, array processing techniques often 

rely on forming beams, stacking, correlation, etc. in order to decompose the basic 

characteristics of propagation from a plane-wave field [Langston, 2007b]. As an example, 

we choose to employ a frequency/wavenumber beam-forming approach to process 

calibrated strain data collected by a dense array of borehole GTSM instruments. The 

processing associated with this approach is very straightforward when carried out in the 



  111 

frequency domain. The first step is to select a window of time domain data and to choose 

an appropriate 1D frequency range and 2D wavenumber range to form beams. The 

second step is to Fourier transform the time domain data, from a specific component of 

motion recorded by each station in the array for the same window in time, into the 

frequency domain where the bulk of processing will be done. Next, the phase of the data 

at each frequency increment are adjusted according to a specific horizontal slowness in 

the east-west (or x-) and north-south (or y-) direction. The fourth step is to sum the phase-

delayed data at each frequency, square the sum, and then sum the squared-summed-

phase-delayed data over the frequency band of interest. This scalar is stored in a matrix at 

the row and column that correspond to the specific horizontal slowness vector in 

question. When this matrix is fully populated, the values may be normalized to a range 

between 0 and 1. The final step is to identify the direction and slowness of different 

waves propagating across the array, within the specified time window, from the peaks 

that correspond to the horizontal slowness values that result in the most coherent beams. 

The formation strain information derived from calibrated borehole GTSM 

instrument data should yield waveforms that are similar enough in nature that the 

standard array processing techniques, such as the one described above, can be applied. 

Each component of the formation strain describes the relationship between that strain 

measurement and a type of seismic wave (i.e., P-wave, S-wave, or Surface wave). 

Therefore, an informative exercise is to form beams using different components of the 

formation strain in order to better characterize these different wave types.  

 

Results 

 

Examples of the three applications discussed in this study are presented here using 

data collected from a regional seismic event, the M5.5 Chino Hills earthquake 

(2008/07/29), and a teleseismic event, the M7.0 Haitian earthquake (2010/01/12). In this 

study, we can apply the three techniques to data collected by the same set of 7 borehole 

GTSM instruments inside the Anza Seismic Network, as the previous chapters, and Anza 
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broadband seismometers FRD, KNW, and PFO (see Figure 4). The choice of these three 

seismometers is based on the fact that they are nearly co-located with borehole GTSM 

stations, namely B087, B081, and B084, respectively. A nominal distance of 99m, 387m, 

and 281m separates the three sets of stations, respectively.  

We analyze various seismic phases throughout the seismic and strain records by 

band-pass filtering the data over different frequency intervals in order to highlight phases 

that may have different center or dominant frequencies. The maximum frequency interval 

used in these analyses depend upon several factors: 1) the quality of data (i.e., the signal-

to-noise ratio), 2) the minimum sample rate between the borehole GTSM instruments and 

the broadband seismic instruments (i.e., 20 vs. 40 samples-per-second), 3) the actual 

distance between the borehole GTSM instrument and “co-located” broadband 

seismometer, and 4) timing issues between the two types of instruments. With respect to 

the third consideration, we expect to see the two techniques that utilize data from co-

located instruments begin to breakdown at higher frequency intervals for station pair 

KNW and B081 first. 

 

Regional Event: M5.5 Chino Hills earthquake (2008/07/29) 

 

We first examine an example of applying Method (1) to the combination of 

calibrated areal strain, radial ground displacement, and radial ground velocity associated 

with the M5.5 Chino Hills earthquake (2008/07/29). In order to reduce redundancy, we 

only look at data collected by the station pair created from borehole GTSM station B087 

and co-located Anza seismometer FRD (see Figure 31). Method (1) was applied to this 

set of data for 5 different frequency intervals ranging from 0.05 to 2.0 Hz. Figures (32) 

and (4.03) illustrate only the 2 lower frequency intervals, namely 0.33 to 0.66 Hz and 

0.05 to 0.33 Hz, because the other results are difficult to interpret (see supplemental 

Figures A50 – A55 in Appendix 3). There is very little consistency in the slowness 

estimates associated with the P-wave (~0.1 s/km), S-wave (~0.15 s/km), and the Rayleigh 

wave (~0.15 s/km) in Figure (32). However, for lower frequency bands the method  
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Figure 31. Data used for Method (1) include the areal strain (TOP), the radial ground 
velocity (MIDDLE), and the radial ground displacement (BOTTOM). Calibrated strain 
data correspond to borehole GTSM station B087 and the seismic data correspond to Anza 
broadband seismometer FRD. The original seismograms correspond to the 29 July 2008 
M5.5 Chino Hills earthquake band-pass filtered between 0.05 Hz and 2.0 Hz with a 4-
pole Butterworth acausal filter. 
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Figure 32. The result of applying Method (1) to the data corresponding to Figure (31) 
band-pass filtered between 0.33 Hz and 0.66 Hz with a 4-pole Butterworth acausal filter. 
Instability (or “glitches”) in 1D spatial gradient result is likely due to interfering waves at 
a particular point in time or due to an inappropriate assumption of propagation model. 
The RED, GREEN, and YELLOW translucent bars illustrate P-wave (0.1 s/km), S-wave 
(0.15 s/km), and Rayleigh wave phases (0.15 s/km), respectively. The inconsistent nature 
of the slowness estimates does not make this method a good candidate for other regional 
seismic events. 
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Figure 33. The result of applying Method (1) to the data corresponding to Figure (31) 
band-pass filtered between 0.05 Hz and 0.33 Hz with a 4-pole Butterworth acausal filter. 
Instability (or “glitches”) in 1D spatial gradient result is likely due to interfering waves at 
a particular point in time or due to an inappropriate assumption of propagation model. 
The most consistent section of the record is between 125 and 137 seconds, where stable 
estimates of the slowness ~0.15 s/km appear to be given. 
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appears to produce stable slowness estimates of 0.15 s/km between the P- and S-wave in 

Figure (33). The negative slowness estimates indicate that this method may not be 

suitable at high frequencies for analyzing regional earthquakes because of the underlying 

assumption of a plane wave field propagating in a single direction from an isotropic 

source. 

We next examine an example of applying Method (2) to the combination of 

calibrated formation strain and horizontal ground velocity associated with the same 

regional earthquake described above. Again, to reduce redundancy, we only look at data 

collected by the station pair created from borehole GTSM station B087 and co-located 

Anza seismometer FRD (see Figure 34). Method (2) was applied to this set of data for the 

same 5 different frequency intervals described above. Figures (35) and (36) illustrate only 

the 2 lower frequency intervals, namely 0.33 to 0.66 Hz and 0.05 to 0.33 Hz, in order to 

compare the results between this method and method above (see supplemental Figures 

A56 – A61 in Appendix 3). The results illustrated in Figures (35) and (36) indicate that 

this method is able to produce stable results associated with both the propagation 

direction and radial propagation slowness for regional seismic events. Figure (35) 

illustrates consistent P-wave slowness values of ~0.13 s/km, S-wave slowness values of 

~0.2 s/km, and Rayleigh wave slowness values of ~0.17 s/km. However, at one point the 

propagation direction jumps down suddenly. By applying Method (2) over a suite of 

frequency intervals, it may be possible to characterize a variety of seismic phases that 

may be associated with different center or dominate frequencies. When we decreased the 

filter range in Figure (36), the sudden propagation drop around 158 seconds in Figure 

(35) is nearly gone. It’s possible that scattered waves interacted with that part of the 

record and caused the inconsistent direction measurements. 

Finally, we examine an example of applying Method (3) to areal strain data, 

associated with the same earthquake described above, collected by the dense array of 

calibrated borehole GTSM instruments. Since B082 and B089 are effectively co-located, 

we only consider the data from one of these instruments. Method (3) was only applied to 

this set of data for one frequency interval, namely between 0.05 an 0.1 Hz, because the 

aperture of the 7-element borehole GTSM array is ~40km. A beam was created using  
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Figure 34. Data used for Method (2) include the diagonal elements of the 2D strain 
tensor (TOP – BLUE and RED) and the two horizontal components of the ground 
velocity (MIDDLE – BLUE and RED). Calibrated strain data correspond to borehole 
GTSM station B087 and the seismic data correspond to Anza broadband seismometer 
FRD. The original seismograms correspond to the 29 July 2008 M5.5 Chino Hills 
earthquake band-pass filtered between 0.05 Hz and 2.0 Hz with a 4-pole Butterworth 
acausal filter. 
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Figure 35. The result of applying Method (2) to the data corresponding to Figure (34) 
band-pass filtered between 0.33 Hz and 0.66 Hz with a 4-pole Butterworth acausal filter. 
The dashed line in the “Azimuth” plot indicates the predicted propagation direction 
across the array had the waves originated from an isotropic source and traveled through 
an isotropic medium. Instability (or “glitches”) in inversion for the horizontal slowness 
parameters are likely due to interfering waves within the specific time window. at a 
particular point in time or due to an inappropriate assumption of propagation model. The 
RED, GREEN, and YELLOW translucent bars illustrate P-wave (0.13 s/km), S-wave (0.2 
s/km), and Rayleigh wave phases (0.17 s/km), respectively, while the GRAY translucent 
bar may be associated with either back-scattered or interfering waves. 
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Figure 36. The result of applying Method (2) to the data corresponding to Figure (34) 
band-pass filtered between 0.05 Hz and 0.33 Hz with a 4-pole Butterworth acausal filter. 
The dashed line in the “Azimuth” plot indicates the predicted propagation direction 
across the array had the waves originated from an isotropic source and traveled through 
an isotropic medium. Instability (or “glitches”) in inversion for the horizontal slowness 
parameters are likely due to interfering waves within the specific time window. The 
RED, GREEN, and YELLOW translucent bars illustrate P-wave (0.18 s/km), S-wave 
(0.28 s/km), and Rayleigh wave phases (0.3 s/km), respectively. The GRAY translucent 
bar in this figure does not seem to contain the same jump in propagation direction 
associated with the previous frequency increment. The derived azimuth of the waves 
inside this GRAY bar also appears to be more consisted with the expected propagation 
direction. Therefore, it may not be likely that the jump in the propagation direction in 
Figure (35) is related to back-scattering. 
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the single most dominant waveform in the areal strain record, and the back-azimuth result 

indicated in Figure (37) was approximately 6 degrees from the back-azimuth estimated 

from the relative location between the source and center of array (i.e., B086). The radial 

slowness estimate appears to be 20% smaller than the result indicated for the same time 

window in Figure (36) using Method (2). However, this could be explained by the fact 

that higher frequency waves, which do not sample the crust as deep, dominate the signal 

in that same figure. Another interesting concept, illustrated in Figure (38), is to use the 

waves in the coda to map out potential sources of scattering in the region surrounding the 

paired borehole GTSM instrument and broadband seismometer. In a similar manner, it 

may also be possible map anisotropy by analyzing a large number of coda waves that 

propagate across the point array to determine whether a statistically significant 

relationship may be found related to the direction of wave propagation and the horizontal 

slowness. 

 

Teleseismic Event: M7.0 Haitian earthquake (2010/02/12) 

 

We first examine an example of applying Method (1) to the combination of 

calibrated areal strain and radial ground velocity associated with the M7.0 Haitian 

earthquake (2010/01/12). In order to reduce redundancy, we only look at data collected 

by the station pair created from borehole GTSM station B087 and co-located Anza 

seismometer FRD (see Figure 39). Method (1) was applied to this set of data for 3 

different frequency intervals ranging from 0.008 to 0.05 Hz. Figures (40) and (41) 

illustrate only the 2 upper frequency intervals, namely 0.03 to 0.05 Hz and 0.01 to 0.03 

Hz (see supplemental Figures A62 – A66 in Appendix 3). The results indicate that this 

method is relatively well suited for analyzing teleseismic earthquakes because, at these 

source/station distances, we observe very little change in the propagation direction. The 

S/Ps/Ss phases are consistently around slowness values of ~0.12 s/km for both Figure 

(40) and (41). The Love wave is not well resolved in either figure because only the radial 

components of velocity and displacement are used in this analysis. The 



  121 

 

 

Sx (s/km) 

S y (s
/k

m
) 

Maximum Value:
Slowness = 0.228  Back!Azimuth = 293.20 

!0.5 0 0.5
!0.5

0

0.5

0

0.2

0.4

0.6

0.8

1

250 300 350 400
95

100

105

110

115

120

125

130

So
ur

ce
 D

is
ta

nc
e 

(k
m

) 

Time (seconds) 

M5.5 Chino Hills Earthquake (2008/07/29) 
 Filtered between 0.050 and 0.100 Hz 

280 290 300 310 320 330 340 350
95

100

105

110

115

120

125

130

Time (seconds) 

So
ur

ce
 D

is
ta

nc
e 

(k
m

) 

 Time Windowed Section of above  

 

Figure 37. The result of applying Method (3) to the data corresponding to the 29 July 
2008 M5.5 Chino Hills earthquake band-pass filtered between 0.05 Hz and 0.1 Hz with a 
4-pole Butterworth acausal filter. The vertical red lines in the LEFT panels indicated the 
time window used to form beams in the frequency/wavenumber domain. The frequency 
interval considered, in this case, ranged from 0.05 to 0.1 Hz and the 2D wavenumber 
interval ranged from -0.5 to 0.5 s/km in both the east-west (or x) and north-south (or y) 
direction. The “true” back-azimuth estimated from the relative location between the 
source and B086, which is approximately the center of this 7-elment borehole GTSM 
array, was found to be ~287 degrees (compare to ~293 degrees above).  
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Figure 38. The result of applying Method (3) to the data corresponding to the 29 July 
2008 M5.5 Chino Hills earthquake band-pass filtered between 0.05 Hz and 0.1 Hz with a 
4-pole Butterworth acausal filter. Nearly identical setup as Figure (37), where instead a 
window is selected around apparent incoherent noise. However, beam-forming analysis 
indicates that some of the noise may be coherent after all. In fact, the back-azimuth 
indicated above may be related to waves back-scattered from sections of the San Andreas 
Fault, which runs approximately from the south-east to the north-west, located to the 
north of the study location. 
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Figure 39. Data used for Method (1) include the areal strain (TOP – BLUE), the radial 
ground velocity (MIDDLE – BLUE), and the radial ground displacement (BOTTOM – 
BLUE). Calibrated strain data correspond to borehole GTSM station B087 and the 
seismic data correspond to Anza broadband seismometer FRD. The original seismograms 
correspond to the 12 January 2010 M7.0 Haitian earthquake band-pass filtered between 
0.008 Hz and 0.05 Hz with a 4-pole Butterworth acausal filter. 
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Figure 40. The result of applying Method (1) to the data corresponding to Figure (39) 
band-pass filtered between 0.03 Hz and 0.05 Hz with a 4-pole Butterworth acausal filter. 
Instability (or “glitches”) in the 1D spatial gradient result is likely due to interfering 
waves at a particular point in time or due to an inappropriate assumption of propagation 
direction. The RED, GREEN, and YELLOW translucent bars illustrate S/Ps/Ss waves 
(0.12 s/km), Love wave (nearly non-existent on radial component), and Rayleigh waves 
(0.2 s/km). The waves inside the GRAY translucent bar appear to propagate with near 0 
slowness, however, we speculate that wave scattering may be causing this result. 
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Figure 41. The result of applying Method (1) to the data corresponding to Figure (39) 
band-pass filtered between 0.01 Hz and 0.03 Hz with a 4-pole Butterworth acausal filter. 
Instability (or “glitches”) in 1D spatial gradient result is likely due to interfering waves at 
a particular point in time or due to an inappropriate assumption of propagation direction. 
The RED, GREEN, and YELLOW translucent bars illustrate S/Ps/Ss waves (0.13 s/km), 
Love wave (nearly non-existent on radial component), and Rayleigh waves (0.23 s/km). 
Again, the waves inside the GRAY translucent bar appear to propagate with near 0 
slowness, however, without additional information we speculate that wave scattering may 
be causing this result. 
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inconsistencies observed with the Rayleigh wave in Figure (40) are cleared up by moving 

to a lower frequency band in Figure (41). Here the Rayleigh wave slowness values are 

consistently between 0.2 and 0.3 s/km.  

We next examine an example of applying Method (2) to the combination of 

calibrated formation strain and horizontal ground velocity associated with the same 

teleseismic earthquake described above. Again, to reduce redundancy, we only look at 

data collected by the station pair created from borehole GTSM station B087 and co-

located Anza seismometer FRD (see Figure 42). Method (2) was applied to this set of 

data for the same 3 different frequency intervals described above. Figures (43) and (44) 

illustrate only the 2 upper frequency intervals, namely 0.03 to 0.05 Hz and 0.01 to 0.03 

Hz, in order to compare the results between this method and method above (see 

supplemental Figures A67 – A71 in Appendix 3). The results illustrated in Figures (43) 

and (44) indicate that this method is able to produce stable results associated with both 

the propagation direction and radial propagation slowness for teleseismic events. We 

observe very consistent estimates of the propagation direction across the “point seismic 

array” in both Figure (43) and (44). Slowness values for S/Ps/Ss phases are consistently 

~0.13 s/km between both figures. Slowness values for the Rayleigh wave become more 

consistent at lower frequency bands, reaching ~0.3 s/km. After the Rayleigh wave, we do 

not see the bizarre propagation characteristics observed for the same waves using Method 

(1). It would be possible to explain the near-zero slowness values derived from the 

previous method had the waves propagated across the “point seismic array” 

perpendicular to the assumed propagation direction. However, we do not observe such a 

shift in the propagation direction during the same time period using Method (2). Another 

explanation for the inconsistent nature of the slowness results between Method (1) and 

Method (2) may be related to the techniques themselves. The slowness information 

derived using Method (2), at each point in time, is an average over a time window while 

the same slowness information derived using Method (1) is essentially done on a point-

by-point basis. It appears, in these two example data sets, that averaging the strain and 

seismic information over a small time window yields much more stable estimates of the 

propagation information. 
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Figure 42. Data used for Method (2) include the diagonal elements of the 2D strain 
tensor (TOP – BLUE and RED) and the two horizontal components of the ground 
velocity (MIDDLE – BLUE and RED). Calibrated strain data correspond to borehole 
GTSM station B087 and the seismic data correspond to Anza broadband seismometer 
FRD. The original seismograms correspond to the 12 January 2010 M7.0 Haitian 
earthquake band-pass filtered between 0.008 Hz and 0.05 Hz with a 4-pole Butterworth 
acausal filter. 
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Figure 43. The result of applying Method (2) to the data corresponding to Figure (42) 
band-pass filtered between 0.03 Hz and 0.05 Hz with a 4-pole Butterworth acausal filter. 
The dashed line in the “Azimuth” plot indicates the predicted propagation direction 
across the array had the waves originated from an isotropic source and traveled through 
an isotropic medium. Instability (or “glitches”) in inversion for the horizontal slowness 
parameters are likely due to interfering waves within the specific time window. The 
RED, GREEN, and YELLOW translucent bars illustrate S/Ps/Ss waves (0.13 s/km), Love 
wave (nearly non-existent on the above components), and Rayleigh waves (0.3 s/km). 
The waves inside the GRAY translucent bar appear to propagate between 0.1 s/km and 
0.25 s/km using this method. It is unclear what causes near 0 estimates of the slowness in 
Figure (40) and (41). 
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Figure 44. The result of applying Method (2) to the data corresponding to Figure (42) 
band-pass filtered between 0.01 Hz and 0.03 Hz with a 4-pole Butterworth acausal filter. 
The dashed line in the “Azimuth” plot indicates the predicted propagation direction 
across the array had the waves originated from an isotropic source and traveled through 
an isotropic medium. Instability (or “glitches”) in inversion for the horizontal slowness 
parameters are likely due to interfering waves within the specific time window. The 
RED, GREEN, and YELLOW translucent bars illustrate S/Ps/Ss waves (0.12 s/km), Love 
wave (nearly non-existent on the above components), and Rayleigh waves (0.27 s/km). 
The waves inside the GRAY translucent bar appear to propagate between 0.1 s/km and 
0.3 s/km using this method. 
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Discussion 

 

In this study we examine three potentially useful applications for data collected by a 

borehole GTSM instrument co-located with a broadband seismometer. These applications 

are based on either array processing techniques or spatial gradient analysis (also called 

“wave gradiometry”). However, before applying either method, special care must be 

taken in order to ensure that all the underlying assumptions associated with that method 

are maintained during the course of analysis. In addition, the most important assumption 

to initially verify is that the borehole GTSM instruments are properly calibrated. The 

results of this study indicate that depending on the specific array configuration, whether a 

“point array” or a dense array of borehole GTSM instruments, very useful information 

related to the seismic wavefield can be derived by making simple assumptions about the 

characteristics associated with propagation. Specifically, these techniques enable 

estimates of the change in geometrical spreading, horizontal phase velocity, and 

propagation direction. From this information, it may be possible to characterize potential 

sources of wave scattering and local anisotropy. Creating maps of this information across 

a specific region, which contain the types of array configurations described here, would 

certainly be enlightening. Finally, the applications described in this study are merely a 

stepping-stone to the ultimate goal of forming a co-located 3-element array consisting of 

a borehole GTSM instrument, a horizontal rotation-meter, and broadband seismometer. 

Such a “point array” would enable all the properties associated with wave gradiometry to 

be fully characterized at a single location on the surface of the earth without having to 

make the same simplifications/ assumptions found in this study. 
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CHAPTER 5 

 

Conclusions 

 

We discussed and offered solutions to the problems associated with measurements 

currently made by borehole Gladwin Tensor Strainmeter (GTSM) instruments associated 

with the Plate Boundary Observatory (PBO). In addition, we demonstrated that the 

coefficients derived from seismic data in this study were successful in calibrating and 

aligning seven borehole GTSM instruments located in southern California. Finally, we 

discussed techniques that can take advantage of calibrated GTSM instrument data in 

order to derive useful propagation information associated with seismic wave fields. 

 

Estimating Spatial Displacement Gradients using Seismic Data 

 

Four methods for estimating the spatial displacement gradient using seismic data 

were presented and tested in this study. The first was the seismo-geodetic method of 

Spudich et al. [1995], the second was the bi-harmonic spline interpolation method of 

Sandwell [1987], the third was the plane-wave polynomial interpolation method 

(developed here), and the fourth was the method based on the spatial gradient analysis in 

Langston [2007b]. Both synthetic and real sets of data were used in a variety of tests in 

order to quantify the consistency of each method under different conditions. We found 

that the third and fourth methods in Chapter (2) were able to calculate accurate spatial 

displacement gradients more consistently than the first two methods, especially in cases 

where estimates of the spatial displacement gradient were needed at arbitrary locations 

toward the perimeter of the array. We found that this was because; 1) the seismo-geodetic 

method tends to introduce bias into the spatial displacement gradient result when the 

displacements are not uniform across the seismic array and especially when the gradient 
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result is derived at a location with an un-even geometrical distribution of stations in the 

surrounding area, and 2) the biharmonic spline method is not an effective tool for 

extrapolation in virtually all circumstances. The results of this study were used to decide 

the choice of spatial displacement gradient estimation to use in the calibration study (i.e., 

Chapter 3). 

 

Calibrating GTSM Instruments using Seismic Data 

 

We presented a method based on the calibration technique of Hart et al. [1996] for 

successfully deriving the linear relationship between the instrument strain recorded by a 

borehole GTSM and the reference strain derived from a dense array of seismometers. We 

also presented a method for quantifying the uncertainty in the estimated calibration 

coefficients by observing how the coefficient estimates vary with different subsets of the 

amplitude information across the entire 20-event catalog. We found that, in general, the 

calibration coefficients for each station do not exhibit significant variation across the ~2 

year time period between January 2007 and February 2009. When we compared our 

calibration result for B081 against the calibration result from Roeloffs [2010], we found 

reasonably good agreement. We also discovered that the default isotropic coupling model 

for each of the seven borehole GTSM instruments, considered in this study, is not valid. 

All seven stations required additional cross-coupling parameters in order to reconcile the 

differences between the measured instrument strains and the reference strains derived 

from broadband seismometers. We also observed, in some cases, significant errors 

associated with misalignment up to 50 degrees off the specified instrument orientation 

(see Table 3.09 for specific values). 
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Viewing the Seismic Wavefield through Calibrated GTSM Data 

 

We discussed three techniques that utilize calibrated borehole GTSM data. The first 

two techniques required data collected by a “point seismic array,” which consists of a 

borehole GTSM instrument collocated with either a broadband seismometer, a horizontal 

rotation-meter, or both. In this study, we discussed and demonstrated that important 

characteristics of seismic wave fields can be decomposed at a single location on the 

earth’s surface using data collected by co-located strain and seismic instruments. We also 

demonstrated that simple array processing techniques can be applied to strain data 

collected by a dense network of calibrated borehole GTSM instruments to determine the 

horizontal phase velocity and propagation direction of a wave that traverses an array.   

 

Future Work 

 

The results of this study demonstrate that borehole GTSM instruments can be 

calibrated using strain information derived from seismic data. Unfortunately, not all 

borehole GTSM instruments are surrounded by a dense, high-quality seismic network 

like the Anza array in southern California. Instead it may be necessary to setup PASCAL 

experiments for individual borehole GTSM stations or small groups of borehole GTSM 

stations that need calibration. After leaving a small group of broadband seismometers in 

the field for at least one year, enough data corresponding to large (M>7) teleseismic 

events should be available to be applied to the borehole strainmeter calibration process 

described in this study. Alternatively, a single broadband seismometer may be installed at 

the same location as a borehole GTSM in order to perform the necessary calibration. As 

described in Chapter (2), the spatial displacement gradients needed to estimate the 

reference formation strains can be determined at a single location when the ground 

velocity, propagation direction, and horizontal wave slowness is known. The broadband 

seismometer would provide the ground velocity measurements, the source location 
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relative to the station location would provide the propagation direction, and simple 

models of earth structure may be assumed in order to derive the apparent slowness 

associated with each major phase within the seismogram. 

We hope the popularity of “point arrays” grows over time to the point where 

broadband seismic instruments are routinely installed at the same location as a borehole 

strainmeter, a horizontal rotation-meter, or both. This is because all the properties of the 

seismic wave field that can be described by spatial gradient analysis in 2D may 

characterized at a single “point” location on the surface of the earth. The measurement 

capabilities of a tool such as this would be unprecedented. 

Since some borehole GTSM instruments in this study exhibited large alignment 

errors (not to mention the unknown alignment errors associated with the co-installed, 

short-period borehole seismometers), it might be beneficial to include the type of analysis 

performed here as an additional form of control in tidal calibration software [e.g., Agnew, 

1996] currently available today. Other considerations for the future include an easy-to-

use Matlab® software program capable of performing all the necessary calibration related 

analyses described in this study. 



  135 

BIBLIOGRAPHY 

 

Agnew, D. C. (1996), SPOTL: Some programs for ocean-tide loading, SIO Ref. Ser. 96-

8, Scripps Institution of Oceanography, La Jolla, CA. 

Bodin, P., et al. (1997), Dynamic Deformations of Shallow Sediments in the Valley of 

Mexico, Part I: Three-Dimensional Strains and Rotations Recorded on a Seismic 

Array, Bulletin of the Seismological Society of America, Vol. 87, p. 528 – 539. 

EarthScope Website (2009), [http://www.earthscope.org]. 

Frank, F. C. (1966), Deduction of Earth strains from survey data, Bulletin of the 

Seismological Society of America, Vol. 56, p. 35 – 42. 

Gladwin, M. T. and Hart, R. H. G. (1985), Design parameters for borehole strain 

instrumentation, Pure and Applied Geophysics, Vol. 123, p. 59 – 80. 

Gladwin, M. T., et al. (1985), Tidal calibration of borehole vector strain instruments 

(abstract), Eos: Transactions of the American Geophysical Union, Vol. 66, p. 

1057. 

Gladwin Tensor Strainmeter (GTSM) Technologies Website (2010), 

[http://www.gtsmtechnologies.com]. 

Gomberg, J., et al. (1999), The strain in the array is mainly in the plane (waves below 1 

Hz), Bulletin of the Seismological Society of America, Vol. 89, p. 1428 – 1438. 

Hart, R. H. G., et al. (1996), Tidal calibration of borehole strain meters: Removing the 

effects of small-scale inhomogeneity, Journal of Geophysical Research, Vol. 101, 

No. B11, p. 25553 – 25571. 

Incorporated Research Institutions for Seismology (IRIS) Website (2010), 

[http://www.iris.edu]. 



  136 

Jackson, M. E. and K. R. Bohnenstiehl (2005), EarthScope Plate Boundary Observatory 

GPS and Strainmeter Site Permitting: A Perspective Two Years into the 

Construction Phase, Seismological Research Letters, Vol. 76, No. 6, p. 671 – 672. 

Johnston, M. J. S. et al. (2006), Continuous borehole strain and pore pressure in the near 

field of the 2004 M 6.0 Parkfield, California, Earthquake: Implications for 

nucleation, fault response, earthquake prediction, and tremor, Bulletin of the 

Seismological Society of America, Vol. 96, p. S56 – S72.  

Langston, C. A. (2007a), Spatial gradient analysis for linear seismic arrays, Bulletin of 

the Seismological Society of America, Vol. 97, p. 265 – 280.  

Langston, C. A. (2007b), Wave gradiometry in two dimensions, Bulletin of the 

Seismological Society of America, Vol. 97, p. 401 – 416.  

Langston, C. A. (2007c), Wave gradiometry in the time domain, Bulletin of the 

Seismological Society of America, Vol. 97, p. 926 – 933.  

Langston, C. A. and Liang, C. (2008), Gradiometry for polarized seismic waves, Journal 

of Geophysical Research, Vol. 113, B08305. 

Linde, A. T. et al. (1996), A slow earthquake sequence on the San Andreas fault, Nature, 

Vol. 283, p. 65 – 68. 

McCausland, W. A. et al. (2008), New insights into Cascadia slow slip events using Plate 

Boundary Observatory borehole strainmeters, Eos, Transactions, American 

Geophysical Union, Vol. 89, No. 53, Fall Meeting Supplement, Abstract G21B-

0691. 

Paolucci, R. and Smerzini, C. (2008), Earthquake-induced Transient Ground Strains from 

Dense Seismic Networks, Earthquake Spectra, Vol. 24, No. 2, p. 453 – 470. 

Roeloffs, E. (2010), Tidal calibration of PBO borehole strainmeters: The role of vertical 

and shear coupling, Journal of Geophysical Research, Vol. 115, B06405. 



  137 

Roeloffs, E., et al. (2004). Review of borehole strainmeter data collected by the U.S. 

Geological Survey, 1985-2004, PBO Standing committee, EarthScope, 55 pp. 

Sandwell, D. T. (1987), Biharmonic spline interpolation of GEOS-3 and SEASAT 

altimeter data, Geophysical Research Letters, Vol. 2, p. 139 – 142. 

Shimada, S. et al. (1987), Coseismic strain steps observed by three-component borehole 

strainmeters, Tectonophysics, Vol. 144, p. 207 – 214. 

Smerzini, C., et al. (2006), Surface ground strains evaluated from weak motion records of 

dense seismograph arrays: the case of Parkway Valley, New Zealand, 

Proceedings of the 1st European Conference on Earthquake Engineering and 

Seismology, Geneva, Paper No. 879. 

Spudich, P., et al. (1995), Transient stresses at Parkfield, California, produced by the 

M7.4 Landers earthquake of June 28, 1992: Observations from the UP-SAR dense 

seismograph array, Journal of Geophysical Research, Vol. 100, No. B1, p. 675 – 

690. 

Spudich, P. and Fletcher, J. B. (2008), Observation and Prediction of Dynamic Ground 

Strains, Tilts, and Torsions Caused by the Mw 6.0 2004 Parkfield, California, 

Earthquake and Aftershocks, Derived from UPSAR Array Observations, Bulletin 

of the Seismological Society of America, Vol. 98, p. 1898 – 1914. 

Sturkell, E. et al. (2006), Volcano geodesy and magma dynamics in Iceland, Journal of 

Volcanology and Geothermal Research, Vol. 150, p. 14 – 34. 

University NAVSTAR Consortium (UNAVCO) (2004), Critical design of PBO borehole 

strainmeter network, Plate Boundary Observatory, Boulder, Colorado, 72 pp.  

University NAVSTAR Consortium (UNAVCO) Website (2010), 

[http://pboweb.unavco.org]. 

Vernon, F. L. (1989), Analysis of data recorded on the ANZA seismic network, Ph.D. 

Thesis. University of California San Diego. 



  138 

Wessel, P., and W. H. F. Smith (1998), New, improved version of generic mapping tools 

released, Eos, Transactions, American Geophysical Union, Vol. 79, No. 579. 

 



  139 

APPENDIX 1 

 

Supplemental Information for Chapter Two 

 

Summary 

 

A supplemental script written in Matlab® is included in this appendix in order to 

illustrate a particularly useful set of optimization tools. In this example, the minimization 

problem consists of a very simple objective function associated with the correlation 

between two windows of seismic data. The timelag that results in the smallest misfit 

between the two windows of seismic data is returned. See the next section for the 

example. 

Supplemental figures are included in this appendix in order to provide the reader 

with additional visual verification/insight to the words and figures available in Chapter 

(2). The synthetic data in Figures (A1) – (A16) were generated based on an array 

configuration similar to the Anza Seismic Network, in Southern California, and a 7-

element subset of the Plate Boundary Observatory (PBO) GTSM instruments inside the 

Anza network (see Figure 4). The main purpose of Figures (A1) – (A16) is to identify the 

largest resolvable wavenumber associated with each method of spatial displacement 

gradient estimation for an array configured similar to a 10-element subset of the Anza 

Seismic Network. Figures (A1) – (A8) illustrate the result from performing a Leave Out 

Station Scenario (LOSS) for Anza seismic stations FRD and LVA2, where the synthetic 

seismic displacement data at the remaining 9 stations are used to predict the 

displacements at the “left out” station (see pages 33 – 40 for more details). Figures (A9) – 

(A16) illustrate the result from predicating the spatial displacement gradients at PBO 

GTSM stations B087 and B088, where the synthetic seismic displacement data at all 10 

stations are used to estimate the spatial displacement gradient at each PBO GTSM station 

(see pages 33 – 40 for more details). 



  140 

The main purpose of Figures (A17) – (A24) is to illustrate the performance of each 

method of spatial displacement gradient estimation, for the same 10-element subset of the 

Anza Seismic Network, for the 2009/09/29 M8.1 Samoa Island earthquake. Figures 

(A17) – (A21) illustrate the result from performing a Leave Out Station Scenario (LOSS) 

for Anza seismic stations FRD and LVA2, where the real seismic displacement data at 

the remaining 9 stations are used to predict the displacements at the “left out” station (see 

pages 40 – 50 for more details). Figures (A22) – (A24) are similar to Figures (14) – (16), 

except the LOSS is performed on Anza station LVA2. 
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Sample Program 

 
function timelag = tlag_search(Trace01, Trace02, dt) 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%   “tlag_search” searches for the “timelag” that results in the best  
%   correlation between “Trace01” and “Trace02”. Let “N01” and “N02”   
%   be equal to the number of time samples in “Trace01” and “Trace02”, 
%   respectively. “N01” and “N02” must not be equal, “N02” must be     
%   greater than “N01” and both must be ODD. The center of both        
%   “Trace01” and “Trace02” must correspond to the same instant in     
%   time or else the time-lag result is meaningless. 
%    
%   - INPUT PARAMTERS - 
%   “Trace01” = window from reference seismogram (col/row vector) 
%   “Trace02” = window from seismogram to compare (col/row vector) 
%   “dt” = time increment of “Trace01” and “Trace02” (scalar) 
%    
%   - OUTPUT PARAMTERS – 
%   “timelag” = time-lag resulting from best correlation (scalar) 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
     
    N01 = numel(Trace01); 
    N02 = numel(Trace02); 
         
    if  mod(N01,2) == 0 || mod(N02,2) == 0  
        error('N01 and N02 must be ODD!'); 
    end 
    if N01 >= N02 
        error('N02 must be greater than N01!'); 
    end 
         
    N01mid = (N01-1)/2 + 1; 
    N02mid = (N02-1)/2 + 1; 
    Ndiff = (N02-N01)/2; 
     
    t02 = 0:dt:(N02-1)*dt; 
    t01 = t02(Ndiff+1:N02-Ndiff); 
     
    timelag = fminbnd(@fun01, -Ndiff*dt, Ndiff*dt); 
     
    % “fun01” accepts “trylag” as input, and outputs “sse”, 
    % the sum of squares error, between “Trace01” and interpolated 
    % time-lag data from “Trace02”.  
    function sse = fun01(trylag) 
         
        temp02 = spline(t02,Trace02,t01+trylag); 
        sse = sum(abs(Trace01-temp02).^2); 
         
    return 
    end 
return 
end 
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Figure A1. Illustrates the errors resulting from performing a Leave Out Station Scenario 
(LOSS) using Method (1) to predict the displacements at Anza station LVA2. 
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Figure A2. Illustrates the errors resulting from performing a Leave-Out Station Scenario 
(LOSS) using Method (1) to predict the displacements at Anza station FRD. 
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Figure A3. Illustrates the errors resulting from performing a Leave Out Station Scenario 
(LOSS) using Method (2) to predict the displacements at Anza station LVA2. 
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Figure A4. Illustrates the errors resulting from performing a Leave Out Station Scenario 
(LOSS) using Method (2) to predict the displacements at Anza station FRD. 
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Figure A5. Illustrates the errors resulting from performing a Leave Out Station Scenario 
(LOSS) using Method (3a) to predict the displacements at Anza station LVA2. 
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Figure A6. Illustrates the errors resulting from performing a Leave Out Station Scenario 
(LOSS) using Method (3a) to predict the displacements at Anza station FRD. 
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Figure A7. Illustrates the errors resulting from performing a Leave Out Station Scenario 
(LOSS) using Method (3b) to predict the displacements at Anza station LVA2. 
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Figure A8. Illustrates the errors resulting from performing a Leave Out Station Scenario 
(LOSS) using Method (3b) to predict the displacements at Anza station FRD. 
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Figure A9. Illustrates the errors resulting from estimating the displacement gradients 
using Method (1) at PBO GTSM instrument B088. 
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Figure A10. Illustrates the errors resulting from estimating the displacement gradients 
using Method (1) at PBO GTSM instrument B087. 

 



  152 

 

LVA2  

FRD  

PFO  

SND  
TRO  

WMC  

BZN  

CRY  

RDM  

KNW  

B088  

East!West Distance (kilometers)  

N
or

th
!S

ou
th

 D
ist

an
ce

 (k
ilo

m
et

er
s)

  
Station coverage with respect to: B088  

 

 

!30 !20 !10 0 10 20 30

0

10

20

30

40

50 ANZA Seismometer
PBO GTSM

Azimuth (degrees)  

M
ea

n 
Er

ro
r (

pe
rc

en
t) 

 

Azimuth VS. Mean Errors for Station: B088  

 

 

0 20 40 60 80 100 120 140 160 180
0

10

20

30

40

50

60

70

80

90

100
k = 0.001
k = 0.100
10% Error

Mean Error (percent)  

W
av

en
um

be
r (

ra
di

an
s/k

ilo
m

et
er

)  

Wavenumber VS. Mean Errors for Station: B088  

 

 

0 10 20 30 40 50 60 70 80 90 100

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

MEAN(error)
MEAN(error) + STD(error)
MEAN(error) ! STD(error)
10% Error

Azimuth (degrees)  

W
av

en
um

be
r (

ra
di

an
s/k

ilo
m

et
er

)  

Mean Errors for Station: B088  
Wavenumber VS. Azimuth  

 

 

0 20 40 60 80 100 120 140 160 180

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

M
ea

n 
Er

ro
r (

pe
rc

en
t)

0

5

10

15

20

25

30

35

40

45

50

 

Figure A11. Illustrates the errors resulting from estimating the displacement gradients 
using Method (2) at PBO GTSM instrument B088. 
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Figure A12. Illustrates the errors resulting from estimating the displacement gradients 
using Method (2) at PBO GTSM instrument B087. 
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Figure A13. Illustrates the errors resulting from estimating the displacement gradients 
using Method (3a) at PBO GTSM instrument B088. 
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Figure A14. Illustrates the errors resulting from estimating the displacement gradients 
using Method (3a) at PBO GTSM instrument B087. 
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Figure A15. Illustrates the errors resulting from estimating the displacement gradients 
using Method (3b) at PBO GTSM instrument B088. 
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Figure A16. Illustrates the errors resulting from estimating the displacement gradients 
using Method (3b) at PBO GTSM instrument B087. 
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Figure A17. Illustrates the errors in the predicted east-west component of displacement 
at FRD using Methods (1), (2), (3a), (3b), and (4). Original seismogram corresponds to 
the 29 September 2009 M8.1 Samoa Island earthquake band-pass filtered between 0.005 
Hz and 0.05 Hz with a 4-pole Butterworth acausal filter. 
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Figure A18. Illustrates the errors in the predicted north-south component of displacement 
at FRD using Methods (1), (2), (3a), (3b), and (4). Original seismogram corresponds to 
the 29 September 2009 M8.1 Samoa Island earthquake band-pass filtered between 0.005 
Hz and 0.05 Hz with a 4-pole Butterworth acausal filter. 
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Figure A19. Illustrates the errors in the predicted vertical component of displacement at 
FRD using Methods (1), (2), (3a), (3b), and (4). Original seismogram corresponds to the 
29 September 2009 M8.1 Samoa Island earthquake band-pass filtered between 0.005 Hz 
and 0.05 Hz with a 4-pole Butterworth acausal filter. 
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Figure A20. Illustrates the errors in the predicted east-west component of displacement 
at LVA2 using Methods (1), (2), (3a), (3b), and (4). Original seismogram corresponds to 
the 29 September 2009 M8.1 Samoa Island earthquake band-pass filtered between 0.005 
Hz and 0.05 Hz with a 4-pole Butterworth acausal filter. 
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Figure A21. Illustrates the errors in the predicted north-south component of displacement 
at LVA2 using Methods (1), (2), (3a), (3b), and (4). Original seismogram corresponds to 
the 29 September 2009 M8.1 Samoa Island earthquake band-pass filtered between 0.005 
Hz and 0.05 Hz with a 4-pole Butterworth acausal filter. 
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Figure A22. Illustrates the errors in the predicted vertical component of displacement at 
LVA2 using Methods (1), (2), (3a), (3b), and (4). Original seismogram corresponds to the 
29 September 2009 M8.1 Samoa Island earthquake band-pass filtered between 0.005 Hz 
and 0.05 Hz with a 4-pole Butterworth acausal filter. 
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Figure A23. Illustrates the horizontal displacement gradients (i.e., ∂/∂x and ∂/∂y) 
associated with the east-west component of ground displacement (i.e., ux) at LVA2 using 
Methods (1), (2), (3a), (3b), and (4). The error plots indicate the difference between each 
of the results from the first three methods and the result from Method (4). The original 
seismograms correspond to the 29 September 2009 M8.1 Samoa Island earthquake band-
pass filtered between 0.005 Hz and 0.05 Hz with a 4-pole Butterworth acausal filter. 
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Figure A24. Illustrates the horizontal displacement gradients (i.e., ∂/∂x and ∂/∂y) 
associated with the north-south component of ground displacement (i.e., uy) at LVA2 
using Methods (1), (2), (3a), (3b), and (4). The error plots indicate the difference between 
each of the results from the first three methods and the result from Method (4). The 
original seismograms correspond to the 29 September 2009 M8.1 Samoa Island 
earthquake band-pass filtered between 0.005 Hz and 0.05 Hz with a 4-pole Butterworth 
acausal filter. 
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Figure A25. Illustrates the horizontal displacement gradients (i.e., ∂/∂x and ∂/∂y) 
associated with the vertical component of ground displacement (i.e., uz) at LVA2 using 
Methods (1), (2), (3a), (3b), and (4). The error plots indicate the difference between each 
of the results from the first three methods and the result from Method (4). The original 
seismograms correspond to the 29 September 2009 M8.1 Samoa Island earthquake band-
pass filtered between 0.005 Hz and 0.05 Hz with a 4-pole Butterworth acausal filter. 

 



  167 

APPENDIX 2 

 

Supplemental Information for Chapter Three 

 

Summary 

 

Supplemental details explaining the reasoning behind the formulation associated 

with Equation (37) are located in the next section.  

Supplemental figures are included in this appendix in order to provide the reader 

with additional visual verification/insight to the words and figures available in Chapter 

(3). This collection of figures illustrates the result of calibrating borehole GTSM 

instruments B082, B084, B086, B087, B088, and B089. For each borehole GTSM 

station, there are figures that illustrate: 1) the probability density functions (PDFs) 

associated with each complex calibration coefficient estimate derived from frequency 

domain information, 2) the consistency of the best fit calibration coefficients, in a least 

squares sense, across a period of more than 2 years, and 3) an example of the formation 

strain information derived from each calibrated borehole GTSM instrument. 
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Linear Dependence of the Formation Strain derived using Seismic Data 

 

The reason formation strain amplitude data is required from multiple strain-inducing 

events is due to our assumption of plane-wave propagation across a seismic array. Under 

the assumption of plane-propagation across a 2D seismic array at the surface, the 

elements of the 2D strain tensor (ε) are: 
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 , (A1) 

where sx and sy are the propagation slowness in the x- and y-direction according to a 

Cartesian coordinate system (positive x points east and positive y points north), 

€ 

˙ u x and 

€ 

˙ u y 

are the x- and y-components of the seismic velocity, and θ is the propagation azimuth 

(measured clockwise from north) across the array [Gomberg et al., 1999]. The above may 

be simplified to: 
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In terms of the formation strain,  
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The question becomes, when the formation strain derived from seismic data are assumed 

to have resulted from plane-wave propagation across the array in a single direction, are 

the estimates of the formation strain actually linearly independent from one another? This 

can be determined by finding the rank of A, for example: 
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where the indices i, j, and k (i≠j, i≠k, j≠k) are used to denote the formation strain at a 

specific instant in time, the slowness in the x- and y-direction at a specific instant in time, 

and the x- and y-components of the seismic velocity at a specific instant in time. It can be 

shown that, regardless of whether or not the slowness in Equation (A4) is constant 

through time, the rank of A is less than 3. However, it can also be shown that if the 

formation strain amplitudes at different instances in time are the result of plane-wave 

propagation from more than one direction, then the formation strain amplitudes contain 

enough linear independence such that the rank of A is 3. The example in Equation (A4) 

represents the horizontal concatenation of 3 column vectors of the formation strain. 

However, concatenating more than 3 formation strain vectors are likely to help produce 

more robust estimates of the calibration coefficients during the inversion process 

explained in the above sections.  
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Figure A26. Illustration of the normalized probability density functions (PDF) associated 
with the REAL calibration coefficients derived for B082 using seismic data.  The 
normalized PDF (BLUE line) about each coefficient value is the result from randomly 
selecting 71 (~5%) of the available 1411 sets of instrument and reference strain 
amplitudes, performing an inversion (similar to Equation 41) using these data, and 
repeating (1000 iterations total). The mean of the normalized PDF is indicated by the 
GREEN solid line, while the standard deviation about the mean is indicated by RED solid 
lines. The result from inverting all 1411 sets of strain information is indicated by the 
BLACK dashed line. 
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Figure A27. Illustration of the normalized probability density functions (PDF) associated 
with the IMAGINARY calibration coefficients derived for B082 using seismic data.  The 
normalized PDF (BLUE line) about each coefficient value is the result from randomly 
selecting 71 (~5%) of the available 1411 sets of instrument and reference strain 
amplitudes, performing an inversion (similar to Equation 41) using these data, and 
repeating (1000 iterations total). The mean of the normalized PDF is indicated by the 
GREEN solid line, while the standard deviation about the mean is indicated by RED solid 
lines. The result from inverting all 1411 sets of strain information is indicated by the 
BLACK dashed line. 
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Figure A28. Illustration of the consistency between the calibration coefficients derived 
for B082 at different periods of time over a 2-year period. The calibration coefficient 
result from each group (RED circle) represents 332 strain amplitude sets associated with 
4 teleseismic events. The groups are organized such that group number 1 represents 
events 1, 2, 3, and 4; group number 2 represents events 2, 3, 4, and 5; etc. according to 
data coverage listed in Table (10). The result from inverting all 1411 sets of strain 
information is indicated by the BLACK dashed line.  
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Figure A29. Illustration of the result from calibrating the instrument data associated with 
event 16 (2009/09/29) recorded by B082 using the calibration coefficients listed in Table 
(12). 
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Figure A30. Illustration of the normalized probability density functions (PDF) associated 
with the REAL calibration coefficients derived for B084 using seismic data.  The 
normalized PDF (BLUE line) about each coefficient value is the result from randomly 
selecting 71 (~5%) of the available 1411 sets of instrument and reference strain 
amplitudes, performing an inversion (similar to Equation 41) using these data, and 
repeating (1000 iterations total). The mean of the normalized PDF is indicated by the 
GREEN solid line, while the standard deviation about the mean is indicated by RED solid 
lines. The result from inverting all 1411 sets of strain information is indicated by the 
BLACK dashed line.  
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Figure A31. Illustration of the normalized probability density functions (PDF) associated 
with the IMAGINARY calibration coefficients derived for B084 using seismic data.  The 
normalized PDF (BLUE line) about each coefficient value is the result from randomly 
selecting 71 (~5%) of the available 1411 sets of instrument and reference strain 
amplitudes, performing an inversion (similar to Equation 41) using these data, and 
repeating (1000 iterations total). The mean of the normalized PDF is indicated by the 
GREEN solid line, while the standard deviation about the mean is indicated by RED solid 
lines. The result from inverting all 1411 sets of strain information is indicated by the 
BLACK dashed line.  
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Figure A32. Illustration of the consistency between the calibration coefficients derived 
for B084 at different periods of time over a 2-year period. The calibration coefficient 
result from each group (RED circle) represents 332 strain amplitude sets associated with 
4 teleseismic events. The groups are organized such that group number 1 represents 
events 1, 2, 3, and 4; group number 2 represents events 2, 3, 4, and 5; etc. according to 
data coverage listed in Table (10). The result from inverting all 1411 sets of strain 
information is indicated by the BLACK dashed line.  
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Figure A33. Illustration of the result from calibrating the instrument data associated with 
event 16 (2009/09/29) recorded by B084 using the calibration coefficients listed in Table 
(17). 
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Figure A34. Illustration of the normalized probability density functions (PDF) associated 
with the REAL calibration coefficients derived for B086 using seismic data.  The 
normalized PDF (BLUE line) about each coefficient value is the result from randomly 
selecting 58 (~5%) of the available 1162 sets of instrument and reference strain 
amplitudes, performing an inversion (similar to Equation 41) using these data, and 
repeating (1000 iterations total). The mean of the normalized PDF is indicated by the 
GREEN solid line, while the standard deviation about the mean is indicated by RED solid 
lines. The result from inverting all 1162 sets of strain information is indicated by the 
BLACK dashed line.  
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Figure A35. Illustration of the normalized probability density functions (PDF) associated 
with the IMAGINARY calibration coefficients derived for B086 using seismic data.  The 
distribution of the coefficient values (BLUE line) are the result from inverting for the 
calibration coefficients over 1000 iterations of randomly selecting 5% (or ~58) of the 
1162 sets of instrument strain and reference strain amplitudes. The peak of the 
normalized PDF is indicated by the BLACK dashed line, while the result from inverting 
all 1162 sets of strain information is indicated by the GREEN solid line. 
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Figure A36. Illustration of the consistency between the calibration coefficients derived 
for B086 at different periods of time over a 2-year period. The calibration coefficient 
result from each group (RED circle) represents 332 strain amplitude sets associated with 
4 teleseismic events. The groups are organized such that group number 1 represents 
events 2, 3, 5, and 6; group number 2 represents events 3, 5, 6, and 7; etc. according to 
data coverage listed in Table (10). The result from inverting all 1162 sets of strain 
information is indicated by the BLACK dashed line.  
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Figure A37. Illustration of the result from calibrating the instrument data associated with 
event 16 (2009/09/29) recorded by B086 using the calibration coefficients listed in Table 
(19). 
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Figure A38. Illustration of the normalized probability density functions (PDF) associated 
with the REAL calibration coefficients derived for B087 using seismic data.  The 
normalized PDF (BLUE line) about each coefficient value is the result from randomly 
selecting 71 (~5%) of the available 1411 sets of instrument and reference strain 
amplitudes, performing an inversion (similar to Equation 41) using these data, and 
repeating (1000 iterations total). The mean of the normalized PDF is indicated by the 
GREEN solid line, while the standard deviation about the mean is indicated by RED solid 
lines. The result from inverting all 1411 sets of strain information is indicated by the 
BLACK dashed line.  
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Figure A39. Illustration of the normalized probability density functions (PDF) associated 
with the IMAGINARY calibration coefficients derived for B0847 using seismic data.  
The normalized PDF (BLUE line) about each coefficient value is the result from 
randomly selecting 71 (~5%) of the available 1411 sets of instrument and reference strain 
amplitudes, performing an inversion (similar to Equation 41) using these data, and 
repeating (1000 iterations total). The mean of the normalized PDF is indicated by the 
GREEN solid line, while the standard deviation about the mean is indicated by RED solid 
lines. The result from inverting all 1411 sets of strain information is indicated by the 
BLACK dashed line.  
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Figure A40. Illustration of the consistency between the calibration coefficients derived 
for B087 at different periods of time over a 2-year period. The calibration coefficient 
result from each group (RED circle) represents 332 strain amplitude sets associated with 
4 teleseismic events. The groups are organized such that group number 1 represents 
events 1, 2, 3, and 4; group number 2 represents events 2, 3, 4, and 5; etc. according to 
data coverage listed in Table (10). The result from inverting all 1411 sets of strain 
information is indicated by the BLACK dashed line.  



  185 

 

800 1000 1200 1400 1600 1800 2000
!100

!50

0

50

100

Areal Strain (ea)
N

an
oS

tra
in

 (n
m

/m
)

 

 
Calib. Ins. (Anisotropic)
Reference

800 1000 1200 1400 1600 1800 2000
!100

!50

0

50

100

Differential Normal Strain (!1)

N
an

oS
tra

in
 (n

m
/m

)

 

 
Calib. Ins. (Anisotropic)
Reference

800 1000 1200 1400 1600 1800 2000
!100

!50

0

50

100

Shear Strain (!2)

N
an

oS
tra

in
 (n

m
/m

)

Time (seconds)

 

 
Calib. Ins. (Anisotropic)
Reference

 

Figure A41. Illustration of the result from calibrating the instrument data associated with 
event 16 (2009/09/29) recorded by B087 using the calibration coefficients listed in Table 
(21). 
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Figure A42. Illustration of the normalized probability density functions (PDF) associated 
with the REAL calibration coefficients derived for B088 using seismic data.  The 
normalized PDF (BLUE line) about each coefficient value is the result from randomly 
selecting 71 (~5%) of the available 1411 sets of instrument and reference strain 
amplitudes, performing an inversion (similar to Equation 41) using these data, and 
repeating (1000 iterations total). The mean of the normalized PDF is indicated by the 
GREEN solid line, while the standard deviation about the mean is indicated by RED solid 
lines. The result from inverting all 1411 sets of strain information is indicated by the 
BLACK dashed line.  
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Figure A43. Illustration of the normalized probability density functions (PDF) associated 
with the REAL calibration coefficients derived for B088 using seismic data.  The 
normalized PDF (BLUE line) about each coefficient value is the result from randomly 
selecting 71 (~5%) of the available 1411 sets of instrument and reference strain 
amplitudes, performing an inversion (similar to Equation 41) using these data, and 
repeating (1000 iterations total). The mean of the normalized PDF is indicated by the 
GREEN solid line, while the standard deviation about the mean is indicated by RED solid 
lines. The result from inverting all 1411 sets of strain information is indicated by the 
BLACK dashed line.  



  188 

 

1 3 5 7 9 11 13
1

2

3

4

S(1,1)

1 3 5 7 9 11 13

!4

!3

!2

!1

REAL

S(1,2)

1 3 5 7 9 11 13
0

1

2

3

S(1,3)

1 3 5 7 9 11 13

0

1

2

3

S(2,1)

1 3 5 7 9 11 13

!2

!1

0

1

S(2,2)

1 3 5 7 9 11 13
!3

!2

!1

0

S(2,3)

1 3 5 7 9 11 13
!2

!1

0

1

S(3,1)

Co
ef

fic
ie

nt
 N

um
be

r

1 3 5 7 9 11 13
0

1

2

3

S(3,2)

1 3 5 7 9 11 13
!2

!1

0

1

S(3,3)

1 3 5 7 9 11 13

!1

0

1

2

S(4,1)

1 3 5 7 9 11 13

!1

0

1

2

S(4,2)

Group Number
1 3 5 7 9 11 13

0

1

2

3

S(4,3)

 

Figure A44. Illustration of the consistency between the calibration coefficients derived 
for B088 at different periods of time over a 2-year period. The calibration coefficient 
result from each group (RED circle) represents 332 strain amplitude sets associated with 
4 teleseismic events. The groups are organized such that group number 1 represents 
events 2, 3, 4, and 5; group number 2 represents events 3, 4, 5, and 6; etc. according to 
data coverage listed in Table (10). The result from inverting all 1411 sets of strain 
information is indicated by the BLACK dashed line.  
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Figure A45. Illustration of the result from calibrating the instrument data associated with 
event 16 (2009/09/29) recorded by B088 using the calibration coefficients listed in Table 
(23). 
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Figure A46. Illustration of the normalized probability density functions (PDF) associated 
with the REAL calibration coefficients derived for B089 using seismic data.  The 
normalized PDF (BLUE line) about each coefficient value is the result from randomly 
selecting 74 (~5%) of the available 1494 sets of instrument and reference strain 
amplitudes, performing an inversion (similar to Equation 41) using these data, and 
repeating (1000 iterations total). The mean of the normalized PDF is indicated by the 
GREEN solid line, while the standard deviation about the mean is indicated by RED solid 
lines. The result from inverting all 1494 sets of strain information is indicated by the 
BLACK dashed line.  
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Figure A47. Illustration of the normalized probability density functions (PDF) associated 
with the IMAGINARY calibration coefficients derived for B089 using seismic data.  The 
normalized PDF (BLUE line) about each coefficient value is the result from randomly 
selecting 74 (~5%) of the available 1494 sets of instrument and reference strain 
amplitudes, performing an inversion (similar to Equation 41) using these data, and 
repeating (1000 iterations total). The mean of the normalized PDF is indicated by the 
GREEN solid line, while the standard deviation about the mean is indicated by RED solid 
lines. The result from inverting all 1494 sets of strain information is indicated by the 
BLACK dashed line.  



  192 

 

1 3 5 7 9 11 13 15
!2

!1

0

1

S(1,1)

1 3 5 7 9 11 13 15

2

3

4

5

REAL

S(1,2)

1 3 5 7 9 11 13 15

!3

!2

!1

0

S(1,3)

1 3 5 7 9 11 13 15

!1

0

1

2

S(2,1)

1 3 5 7 9 11 13 15

!1

0

1

2
S(2,2)

1 3 5 7 9 11 13 15
1

2

3

4

S(2,3)

1 3 5 7 9 11 13 15

0

1

2

3

S(3,1)

Co
ef

fic
ie

nt
 N

um
be

r

1 3 5 7 9 11 13 15

!4

!3

!2

!1

S(3,2)

1 3 5 7 9 11 13 15

!3

!2

!1

0

S(3,3)

1 3 5 7 9 11 13 15
!1

0

1

2

S(4,1)

1 3 5 7 9 11 13 15
!2

!1

0

1

S(4,2)

Group Number
1 3 5 7 9 11 13 15

!5

!4

!3

!2

S(4,3)

 

Figure A48. Illustration of the consistency between the calibration coefficients derived 
for B089 at different periods of time over a 2-year period. The calibration coefficient 
result from each group (RED circle) represents 332 strain amplitude sets associated with 
4 teleseismic events. The groups are organized such that group number 1 represents 
events 2, 3, 4, and 5; group number 2 represents events 3, 4, 5, and 6; etc. according to 
data coverage listed in Table (10). The result from inverting all 1494 sets of strain 
information is indicated by the BLACK dashed line.  
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Figure A49. Illustration of the result from calibrating the instrument data associated with 
event 16 (2009/09/29) recorded by B089 using the calibration coefficients listed in Table 
(25). 
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APPENDIX 3 

 

Supplemental Information for Chapter Four 

 

Summary 

 

Supplemental figures are included in this appendix in order to provide the reader 

with additional visual verification/insight to the words and figures available in Chapter 

(4). The strain and seismic records illustrated in this section correspond to the M5.5 

Chino Hills earthquake (2009/07/29), in southern California, and the M7.0 Haitian 

earthquake (2010/01/12). All the figures in Chapter (4) associated with Methods (1) and 

(2) are essentially a subset of the figures found in this section. The purpose for 

duplicating these figures is to illustrate the performance of each method for different 

frequency intervals for the same example events described above. 
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Figure A50. Data used for Method (1) include the areal strain (TOP – BLUE), the radial 
ground velocity (MIDDLE – BLUE), and the radial ground displacement (BOTTOM – 
BLUE). Calibrated strain data correspond to borehole GTSM station B087 and the 
seismic data correspond to Anza broadband seismometer FRD. The original seismograms 
correspond to the 29 July 2008 M5.5 Chino Hills earthquake band-pass filtered between 
0.05 Hz and 2.0 Hz with a 4-pole Butterworth acausal filter. 
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Figure A51. The result of applying Method (1) to the data corresponding to Figure (A50) 
band-pass filtered between 0.05 Hz and 2.0 Hz with a 4-pole Butterworth acausal filter. 
Instability (or “glitches”) in 1D spatial gradient result is likely due to interfering waves at 
a particular point in time or due to an inappropriate assumption of propagation direction. 
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Figure A52. The result of applying Method (1) to the data corresponding to Figure (A50) 
band-pass filtered between 1.0 Hz and 2.0 Hz with a 4-pole Butterworth acausal filter. 
Instability (or “glitches”) in 1D spatial gradient result is likely due to interfering waves at 
a particular point in time or due to an inappropriate assumption of propagation direction. 
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Figure A53. The result of applying Method (1) to the data corresponding to Figure (A50) 
band-pass filtered between 0.66 Hz and 1.0 Hz with a 4-pole Butterworth acausal filter. 
Instability (or “glitches”) in 1D spatial gradient result is likely due to interfering waves at 
a particular point in time or due to an inappropriate assumption of propagation direction. 
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Figure A54. The result of applying Method (1) to the data corresponding to Figure (A50) 
band-pass filtered between 0.33 Hz and 0.66 Hz with a 4-pole Butterworth acausal filter. 
Instability (or “glitches”) in 1D spatial gradient result is likely due to interfering waves at 
a particular point in time or due to an inappropriate assumption of propagation direction. 
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Figure A55. The result of applying Method (1) to the data corresponding to Figure (A50) 
band-pass filtered between 0.05 Hz and 0.33 Hz with a 4-pole Butterworth acausal filter. 
Instability (or “glitches”) in 1D spatial gradient result is likely due to interfering waves at 
a particular point in time or due to an inappropriate assumption of propagation direction. 
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Figure A56. Data used for Method (2) include the diagonal elements of the 2D strain 
tensor (TOP – BLUE and RED) and the two horizontal components of the ground 
velocity (MIDDLE – BLUE and RED). Calibrated strain data correspond to borehole 
GTSM station B087 and the seismic data correspond to Anza broadband seismometer 
FRD. The original seismograms correspond to the 29 July 2008 M5.5 Chino Hills 
earthquake band-pass filtered between 0.05 Hz and 2.0 Hz with a 4-pole Butterworth 
acausal filter. 
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Figure A57. The result of applying Method (2) to the data corresponding to Figure (A56) 
band-pass filtered between 0.05 Hz and 2.0 Hz with a 4-pole Butterworth acausal filter. 
The dashed line in the “Azimuth” plot indicates the predicted propagation direction 
across the array had the waves originated from an isotropic source and traveled through 
an isotropic medium. Instability (or “glitches”) in inversion for the horizontal slowness 
parameters are likely due to interfering waves within the specific time window. 
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Figure A58. The result of applying Method (2) to the data corresponding to Figure (A56) 
band-pass filtered between 1.0 Hz and 2.0 Hz with a 4-pole Butterworth acausal filter. 
The dashed line in the “Azimuth” plot indicates the predicted propagation direction 
across the array had the waves originated from an isotropic source and traveled through 
an isotropic medium. Instability (or “glitches”) in inversion for the horizontal slowness 
parameters are likely due to interfering waves within the specific time window. 
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Figure A59. The result of applying Method (2) to the data corresponding to Figure (A56) 
band-pass filtered between 0.66 Hz and 1.0 Hz with a 4-pole Butterworth acausal filter. 
The dashed line in the “Azimuth” plot indicates the predicted propagation direction 
across the array had the waves originated from an isotropic source and traveled through 
an isotropic medium. Instability (or “glitches”) in inversion for the horizontal slowness 
parameters are likely due to interfering waves within the specific time window. 
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Figure A60. The result of applying Method (2) to the data corresponding to Figure (A56) 
band-pass filtered between 0.33 Hz and 0.66 Hz with a 4-pole Butterworth acausal filter. 
The dashed line in the “Azimuth” plot indicates the predicted propagation direction 
across the array had the waves originated from an isotropic source and traveled through 
an isotropic medium. Instability (or “glitches”) in inversion for the horizontal slowness 
parameters are likely due to interfering waves within the specific time window. 



  206 

 

120 130 140 150 160 170 180
!100

!50

0

50

100

N
an

oS
tra

in
 (n

m
/m

)

M5.5 Chino Hills Earthquake (2008/07/29)
Recorded by FRD and B087

Filtered between 0.050 and 0.330 Hz  ! !  145 Point (7.25 sec) Moving Window

 

 
!ux / !x

!uy / !y

120 130 140 150 160 170 180
!5

0

5
x 10!4

V
el

oc
ity

 (m
/s

)

 

 
North!South Component
East!West Component

120 130 140 150 160 170 180
!180
!120
!60

0
60

120
180

A
zi

m
ut

h 
(d

eg
re

es
)

 

 

Estimated Propagation Direction
Back!Azimuth + 180o

120 130 140 150 160 170 180
0

0.1

0.2

0.3

0.4

0.5

Time (seconds)

Sl
ow

ne
ss

 (s
/k

m
)

 

 
Estimated Radial Slowness

 

Figure A61. The result of applying Method (2) to the data corresponding to Figure (A56) 
band-pass filtered between 0.05 Hz and 0.33 Hz with a 4-pole Butterworth acausal filter. 
The dashed line in the “Azimuth” plot indicates the predicted propagation direction 
across the array had the waves originated from an isotropic source and traveled through 
an isotropic medium. Instability (or “glitches”) in inversion for the horizontal slowness 
parameters are likely due to interfering waves within the specific time window. 
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Figure A62. Data used for Method (1) include the areal strain (TOP – BLUE), the radial 
ground velocity (MIDDLE – BLUE), and the radial ground displacement (BOTTOM – 
BLUE). Calibrated strain data correspond to borehole GTSM station B087 and the 
seismic data correspond to Anza broadband seismometer FRD. The original seismograms 
correspond to the 12 January 2010 M7.0 Haitian earthquake band-pass filtered between 
0.008 Hz and 0.05 Hz with a 4-pole Butterworth acausal filter. 
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Figure A63. The result of applying Method (1) to the data corresponding to Figure (A62) 
band-pass filtered between 0.008 Hz and 0.05 Hz with a 4-pole Butterworth acausal filter. 
Instability (or “glitches”) in 1D spatial gradient result is likely due to interfering waves at 
a particular point in time or due to an inappropriate assumption of propagation direction. 
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Figure A64. The result of applying Method (1) to the data corresponding to Figure (A62) 
band-pass filtered between 0.03 Hz and 0.05 Hz with a 4-pole Butterworth acausal filter. 
Instability (or “glitches”) in 1D spatial gradient result is likely due to interfering waves at 
a particular point in time or due to an inappropriate assumption of propagation direction. 
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Figure A65. The result of applying Method (1) to the data corresponding to Figure (A62) 
band-pass filtered between 0.01 Hz and 0.03 Hz with a 4-pole Butterworth acausal filter. 
Instability (or “glitches”) in 1D spatial gradient result is likely due to interfering waves at 
a particular point in time or due to an inappropriate assumption of propagation direction. 
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Figure A66. The result of applying Method (1) to the data corresponding to Figure (A62) 
band-pass filtered between 0.008 Hz and 0.01 Hz with a 4-pole Butterworth acausal filter. 
Instability (or “glitches”) in 1D spatial gradient result is likely due to interfering waves at 
a particular point in time or due to an inappropriate assumption of propagation direction. 
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Figure A67. Data used for Method (2) include the diagonal elements of the 2D strain 
tensor (TOP – BLUE and RED) and the two horizontal components of the ground 
velocity (MIDDLE – BLUE and RED). Calibrated strain data correspond to borehole 
GTSM station B087 and the seismic data correspond to Anza broadband seismometer 
FRD. The original seismograms correspond to the 12 January 2010 M7.0 Haitian 
earthquake band-pass filtered between 0.008 Hz and 0.05 Hz with a 4-pole Butterworth 
acausal filter. 
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Figure A68. The result of applying Method (2) to the data corresponding to Figure (A67) 
band-pass filtered between 0.008 Hz and 0.05 Hz with a 4-pole Butterworth acausal filter. 
The dashed line in the “Azimuth” plot indicates the predicted propagation direction 
across the array had the waves originated from an isotropic source and traveled through 
an isotropic medium. Instability (or “glitches”) in inversion for the horizontal slowness 
parameters are likely due to interfering waves within the specific time window. 
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Figure A69. The result of applying Method (2) to the data corresponding to Figure (A67) 
band-pass filtered between 0.03 Hz and 0.05 Hz with a 4-pole Butterworth acausal filter. 
The dashed line in the “Azimuth” plot indicates the predicted propagation direction 
across the array had the waves originated from an isotropic source and traveled through 
an isotropic medium. Instability (or “glitches”) in inversion for the horizontal slowness 
parameters are likely due to interfering waves within the specific time window. 
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Figure A70. The result of applying Method (2) to the data corresponding to Figure (A67) 
band-pass filtered between 0.01 Hz and 0.03 Hz with a 4-pole Butterworth acausal filter. 
The dashed line in the “Azimuth” plot indicates the predicted propagation direction 
across the array had the waves originated from an isotropic source and traveled through 
an isotropic medium. Instability (or “glitches”) in inversion for the horizontal slowness 
parameters are likely due to interfering waves within the specific time window. 
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Figure A71. The result of applying Method (2) to the data corresponding to Figure (A67) 
band-pass filtered between 0.008 Hz and 0.01 Hz with a 4-pole Butterworth acausal filter. 
The dashed line in the “Azimuth” plot indicates the predicted propagation direction 
across the array had the waves originated from an isotropic source and traveled through 
an isotropic medium. Instability (or “glitches”) in inversion for the horizontal slowness 
parameters are likely due to interfering waves within the specific time window. 
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