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Abstract 

Ramshur, John Thomas. M.S. The University of Memphis. August/2010. Design, 

Evaluation, and Application of Heart Rate Variability Software (HRVAS). Major 

Professor: Amy L. de Jongh Curry, Ph.D. 

The analysis of heart rate variability (HRV) has become an increasingly popular and 

important tool for studying many disease pathologies in the past twenty years. HRV 

analyses are methods used to non-invasively quantify variability within heart rate.  

Purposes of this study were to design, evaluate, and apply an easy to use and open-source 

HRV analysis software package (HRVAS). HRVAS implements four major categories of 

HRV techniques: statistical and time-domain analysis, frequency-domain analysis, 

nonlinear analysis, and time-frequency analysis. Software evaluations were accomplished 

by performing HRV analysis on simulated and public congestive heart failure (CHF) 

data. Application of HRVAS included studying the effects of hyperaldosteronism on 

HRV in rats. Simulation and CHF results demonstrated that HRVAS was a dependable 

HRV analysis tool. Results from the rat hyperaldosteronism model showed that 5 of 26 

HRV measures were statistically significant (p<0.05). HRVAS provides a useful tool for 

HRV analysis to researchers. 
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1 Introduction  

The analysis of heart rate variability (HRV) has become a standard tool for studying a 

wide variety of clinical and research topics. These areas have ranged from autonomic 

nervous system (ANS) regulation, risk stratification for sudden cardiac death, diabetic 

neuropathy, pharmaceutical evaluations, to psychological disorders  [1-5]. Heart rate 

variability, in its simplest form, is the variation in time between consecutive heart beats. 

HRV analysis attempts to non-invasively quantify these variations which in some 

instances can be markers of pathophysiology.  Heart rate (HR), like many physiological 

set points, e.g., blood pressure and temperature, is not a static parameter, but rather 

changes within a range in reaction to bodily demands.  Healthy cardiovascular systems 

are ready to quickly detect and respond to changing needs placed upon the system in 

order to restore homeostasis and permit directed activities. Conversely, it is often shown 

that invariant HR is linked to disease systems such as heart failure [2, 6]. HRV provides a 

means to assess overall cardiac health and its regulating system. 

1.1 Background 

In 1963 Hon and Lee were among the first to show the clinical significance of HRV 

by noting that changes in interbeat intervals (IBI) preceded both fetal distress and 

changes in overall heart rate [7]. In the late 1960’s and early 1980’s others began to 

describe physiological rhythms contained within the beat-to-beat HR signal [8-10]. A 10-

year study relating short-term IBI differences to autonomic neuropathy was published in 

1985 by Ewing et al. [11]. Wolf et al. contributed substantially to the HRV community in 

1977 by showing an association between higher mortality risks after myocardial 
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infarction and reduced HRV [12]. Again during the 1980’s HRV was established as a 

“strong and independent predictor” for post-infarction mortality [13-15]. The decades of 

1970 and 1980 also produced strong evidence relating reduced HRV to severity of 

diabetic autonomic neuropathy [16, 17]. 

The increasing availability and computational power of personal computers have 

contributed much to the increase in HRV analysis. In 1981, a signal analysis tool for 

quantifying spectral components of a time series was applied to HR fluctuations by 

Akselrod et al [18]. From the 1990’s to present there has been a greater effort to describe 

HRV as a nonlinear signal, and not just combinations of periodic oscillations [19-26]. 

1.2 Physiological Origins of HRV 

In the absence of any outside influences spontaneous and periodic activation of the 

pacemaker cells within the sinoatrial (SA) node determines the intrinsic heart rate. Action 

potentials from the SA node spread throughout the atria to the atrioventricular (AV) node. 

The AV node provides a propagation delay that allows for complete atrial depolarization 

before action potentials propagate through the bundle of His, Purkinje fibers, and 

ultimately throughout the ventricles. 

Modulation of this inherent HR is accomplished by autonomic nervous system 

innervations, the intrinsic cardiac nervous system, reflexes, respiration, and humeral 

inputs. These modulating mechanisms not only act on the SA node but also on the 

atrioventrical (AV) node, myocytes, conduction pathways, and both coronary and 

peripheral vasculature. Correspondingly, cardiac chronotropism (heart rate), inotropism 

(contractility), dromotropism (conduction), and vascular dilation/contraction are adjusted 

to meet the dynamic cardiovascular demands of the body. The ultimate goal of the 
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cardiovascular system is to sustain and associated level of arterial blood pressure to 

ensure sufficient organ perfusion. 

1.2.1 Parasympathetic Nervous System 

Efferent nerve fibers of the parasympathetic nervous system (PNS) originate in 

collections of neurons in the dorsal vagal nucleus and the nucleus ambiguous of the 

medulla. From the medulla PNS neurons descend to cardiac tissues via the tenth cranial 

nerve (vagus) to a series of ganglia in and near the heart. Postsynaptic PNS neurons 

innervate the SA node, AV node, myocytes, conduction pathways, and coronary 

vasculature of the heart. The left vagal nerve primarily innervates the AV node while the 

right vagal nerve innervates the SA node. However, there is some crossover between the 

two. 

Effects of PNS activation on the cardiovascular system are mediated by the 

neurotransmitter acetylcholine. Acetylcholine (ACh) binds to postsynaptic M2 muscarinic 

receptors in both cardiac tissue and vessels. Acetylcholine decreases inotropy, 

chronotropy, and dromotropy in the heart and causes vasodilation in vessels including 

coronary arteries. 

1.2.2 Sympathetic Nervous System 

Efferent sympathetic nervous system (SNS) nerve fibers descend from centers in the 

medulla through the spinal cord and exit at the T1-L2 dorsal roots. Presynaptic neurons 

synapse with postganglionic neurons of paravertebral ganglia. These postganglionic 

neurons innervate the SA node, AV node, conduction system, myocytes, coronary 

vasculature, and other vessels. 
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Sympathetic neurons release the neurotransmitter norepinephrine (NE) which binds to 

postsynaptic β1, β2, and α1 adrenergic receptors on the heart with a higher affinity for β1. 

These receptors increase chronotropy, dromotropy, and inotropy. NE also binds to 

presynaptic α2-adrenoceptors at the heart and acts as a negative feedback loop that 

reduced NE release.  

At vessels, NE binds to postsynaptic α2 and α1-adrenoceptors to produce 

vasoconstriction and binds to β2-adrenoceptors to produce vasodilation. As with cardiac 

tissue, presynaptic binding of NE to α2-adrenoceptors in vessels produces a negative 

feedback reducing NE release. NE also binds to presynaptic β2 receptors, but produces a 

positive feedback of NE release. “Overall effects of sympathetic activation are to increase 

cardiac output, systemic vascular resistance (both arteries and veins), and arterial blood 

pressure” [27]. 

1.2.3 Intrinsic Cardiac Nervous System 

Traditionally the ANS was thought to be the only nervous system directly associated 

with HR modulating capabilities. However, recent evidence has shown that there is an 

intrinsic cardiac network (ICN) capable of mediating intracardiac reflexes. In addition to 

the classically described parasympathetic postganglionic neurons, the ICN includes 

sensor neurons, interneurons, and catecholaminergic neurons [28].  “Thus, neural control 

of HR is likely a function of both the intrinsic cardiac and autonomic nervous system” 

[28]. 
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1.2.4 Reflex Control 

The previous few sections primarily discussed efferent pathways and mechanism for 

modulating HR and other cardiovascular significant events. Cardiovascular control, as 

with most physiological control systems, is not a simple feed-forward control system. 

Autonomic feedback loops or feedback reflexes exist to allow hemodynamic 

homeostasis. Receptor types involved in reflex control can include pressure, stretch, 

chemical, pain, and thermal receptors. 

Reflexes involved in autonomic control of HR are many, e.g., baroreceptor, 

Baingridge, Cushing, pain, diving, and temperature reflex. The most often described 

reflex associated with HR, in context to HRV, is the baroreceptor reflex or baroreflex 

[29-31]. Baroreceptors located in the aortic arch and carotid sinus synapse with neurons 

that project superiorly to the brainstem. The aortic arch is innervated by afferent neurons 

from the aortic nerve which combines with other afferent neurons in the vagus nerve. 

Afferent neurons innervating the carotid sinus receptors connect to the brainstem using 

the glossopharyngeal nerve (cranial nerve IX). Both groups of afferent neurons synapse 

with interneurons of the nucleus tractus solitaries (NTS) within the brainstem and 

modulate the activity of both the PSN and SNS. Excitatory interneurons from the NTS, 

which normally are excited by tonic baroreceptor activity, stimulate vagal activity and 

inhibit sympathetic activity. Connections also exist between the NTS and hypothalamus.  

To illustrate how the baroreflex works, consider the course of events that occur in 

response to a person moving from supine to standing. Gravity simultaneously causes 

blood to pool in the venous system and decreases venous return, which results in lower 

central venous pressure, ventricular preload, and thus decreased arterial blood pressure. 
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Reduced arterial pressure results in less baroreceptor firing. The NTS responds by 

reducing parasympathetic outflow and un-inhibiting (increasing) sympathetic outflow. 

These ANS changes produce increases in chronotropy, inotropy, and vascular resistance. 

The inability of the body to react in this manner would result in syncope (fainting). 

Other types of reflexes incorporate chemical sensitive receptors. These 

chemoreceptors are typically sensitive to partial pressures of O2 (pO2), CO2 (pCO2), and 

to pH. Peripheral chemoreceptors within the carotid and aortic bodies, like the 

baroreceptors, project to the medulla via the sinus (then the glossopharyngeal) nerve and 

the vagus nerve respectively. Peripheral chemoreceptors increase firing in response to 

reduced arterial pO2 (hypoxemia), increased pCO2 (hypercapnia), and increased pH 

(acidosis). Central chemoreceptors located in the medulla regions that control 

cardiovascular and respiratory activity respond similarly, but not directly in response to 

hypoxia.  

1.2.5 Respiratory Sinus Arrhythmia 

Another type of reflex often mentioned in HRV literature is the respiratory sinus 

arrhythmia (RSA) [32]. RSA is a cyclic modulation in the HR correlated with respiration. 

Vagal afferent nerves in the lungs are excited during inhalation due to distention. The 

result is similar to the increased baroreceptor firing of the baroreflex. Increase afferent 

vagal activity during inhalation produces lowered vagal efferent activity and increased 

sympathetic activity, thereby increasing HR. The opposite is true for expiration. 
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1.2.6 Humoral Control 

Lastly there exist means of modulating HR (directly and indirectly) by circulating and 

localized release of humoral substances. Indirect effects on the heart and vessels come 

from changes in blood volume. One set of humoral substances are the circulating 

catecholamines released from the adrenal medulla and sympathetic nerves that innervate 

blood vessels. The adrenal medulla primarily releases epinephrine, and sympathetic 

nerves primarily release norepinephrine. Both of these releases causes increase in HR, 

however, other reflex controls may secondarily lead to a decrease [27]. Natriuretic 

peptides, arginine vasopressin, nitric oxide, neuropeptides Y, and factors related to the 

renin-angiotensin-aldosterone system (see Chapter 5) also contribute to changes in HR 

[27, 33].  

1.2.7 ANS Components of HRV 

HRV studies describe distinct oscillations contained in IBI time series linked to 

autonomic influences of HR [34-38]. With the use of computer analysis and 

pharmacological studies, two primary HR oscillations have been defined. The high 

frequency (HF) oscillation  is often associated with the RSA and has nominal range of 

0.15-0.4 Hz [39]. Because RSA is regarded as being mediated by vagus activity, the HF 

oscillation is often denoted as a measure of vagal activity [40].  The other primary HR 

oscillation described in HRV is the low frequency (LF) oscillation existing between 0.04-

0.15 Hz [39]. This band includes the 10 second rhythm or Mayer wave [41]. Some 

controversy exists on whether only sympathetic activity is represented in the LF 

oscillation, but most consider LF a combination of sympathetic and vagal activity [40].  
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To validate the aforementioned HR oscillations, both electrophysiological and 

pharmacological studies have been performed on the SNS and PNS [34, 35, 37, 42]. 

Selectively blocking or stimulating sympathetic activity, vagal activity, or both provided 

a means to link frequency bands with the ANS branches. Specifically, an antagonist for 

the muscarinic acetylcholine receptors, atropine, was used in vagal blockades, while beta-

adrenergic antagonists such as propranolol were used for sympathetic blockade. 

These studies further revealed that the vagal mediated changes of HR are faster than 

sympathetically mediated changes [40]. The primary reason for differences of response 

rates is attributed to the receptor processes and postsynaptic responses. It was 

demonstrated that the majority of molecules involved in muscarinic binding processes are 

mostly located within the cell membrane [43]. Conversely, adrenergic receptor binding 

processes involve secondary messaging pathways before membrane ion channel changes 

and thus causing a longer response time [43]. 

In addition to LF and HF oscillations, two lesser described HR oscillations exist 

below 0.04 Hz. The very low frequency oscillation (VLF; 0.003-0.05 Hz) and ultra low 

frequency oscillation (ULF; below 0.003 Hz) have been studied less than the preceding 

two bands. Thermoregulatory cycles and fluctuations of plasma renin activity may 

contribute to VLF [44-46]. Circadian rhythms are typically the acknowledged primary 

contributor to the ULF frequency band [40, 44]. These two oscillations, particularly ULF, 

are often contaminated with low frequency trends resulting from possible intrinsic non-

stationarities of IBI signals [47]. 

The above descriptions of physiological mechanisms that affect HR are by no means 

an exhaustive list. Heart rate is controlled by many feed-back and feed-forward systems 

http://en.wikipedia.org/wiki/Competitive_antagonist
http://en.wikipedia.org/wiki/Acetylcholine_receptor
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that are directly and/or indirectly integrated together. The complex interplay of these 

systems leads to variations in HR that are used in HRV analysis.  

1.3 Justification and Purpose of Research 

HRV analysis has become a widespread tool used by researchers and clinicians and 

the interest is continuing to increase. A literature search in the National Library of 

Medicine’s Medline database show that more than 1,000 HRV articles were published in 

2009, over 4,000 in the last 5 years, and a two fold increase in HRV publication per year 

compared to 10 years ago. Interest has increase to the point that commercial HRV 

software is now available for clinicians to aid in cardiovascular disease diagnosis, and for 

continuous monitoring. Disease classification, treatment planning, progress monitoring, 

and outcome predicting are primary goals in health care that generate much interest with 

HRV. 

Though the use of HRV is prevalent, there is a continuing need for software packages 

that include updated and validated HRV analysis methods in an easy to use platform for 

both researchers and clinicians. Because any novel techniques and some current 

techniques can produce obscure results, there is a need for interpretive methods to give 

physiological meaning to HRV analysis particularly for clinicians. Another need in HRV 

analysis is to standardize analysis techniques and to characterize HRV measures for 

specific populations of pathophysiology such as heart failure and models of induced heart 

failure such as hyperaldosteronism. 

The purposes of this study are three fold: (1) Design a HRV analysis software 

package with the intended consequence of developing an understanding of techniques 
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used in HRV analysis, (2) evaluate the software using simulated and public data, and (3) 

apply the software by studying the effects of hyperaldosteronism on HRV in rats. 

1.4 Thesis Guide 

Chapter 2 introduces several techniques used in HRV analysis. Each of these 

techniques was implemented within the Heart Rate Variability Analysis Software 

(HRVAS). Chapter 3 describes specific design elements of HRVAS. Chapter 4 discusses 

two evaluations that were performed to validate HRVAS. Chapter 5 discusses the 

application of HRVAS to study hyperaldosteronism in rats. Finally, Chapter 6 includes an 

overall summary of the research presented.  
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2 HRV Analysis 

This chapter describes several analysis methods used in HRV. The first section 

describes techniques used to process IBI time series prior to HRV analysis. The 

remaining four sections describe four major categories of HRV analysis. These four 

major categories include: time based metrics (e.g., variance); frequency based metrics 

that evaluate powers or ratios of powers within certain frequency bands; nonlinear based 

metrics that evaluate complexity and self-similarity; and time-frequency metrics that 

expand on frequency based metrics by monitoring them through time. For alternative 

overviews of HRV analysis see articles by Seely et al. [48], Acharya et al. [49], Berntson 

et al. [40], and Malik et al. [39]. 

2.1 IBI Extraction 

Data series used in HRV analysis are time series containing beat-to-beat intervals 

extracted from ECG signals. Temporal locations of beats are frequently based on the R-

wave because it is often the easiest wave to distinguish. R waves typically have the 

largest amplitudes compared to surrounding P, Q, S, and T waveforms. Thus a beat-to-

beat interval can be defined as the time difference between consecutive R peaks (RR 

interval). Because the R wave is not the only temporal marker for beat locations, e.g., 

QRS complex, some use the term IBI as a generalization to represent any beat-to-beat 

intervals.  Additionally, RR intervals originating from normal sinus rhythms are 

sometimes referred to as NN (normal-to-normal) intervals. Thus, standard nomenclature 

of “NN” is used in place of IBI or RR to indicate IBI’s containing no ectopic intervals. 

Many authors, including this research, interchangeably use IBI, RR, or NN (normal-to-

normal) to represent IBI series assuming ectopic beats have been corrected.   
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Fig. 1 shows a hypothetical ECG and how IBI’s are determined based on R waves. 

IBI(1) and IBI (2) represent the first and second data point of the IBI time series signal. 

The IBI time series of an ECG segment containing N beats is given by 

    1 ( ) :1 1IBI n beat n beat n n N       (2.1) 

where beat(n) is the time location of the nth beat. 

 

 

Fig. 1 – Determination of IBI. Simulated ECG containing three beats with arbitrary units 

of time and amplitude. Time intervals corresponding to the IBI are indicated by IBI(1) 

and IBI(2). ECG morphology is shown by five characteristic waves P, Q, R, S, and T. 

 

2.2 Preprocessing 

Preprocessing of IBI time series data is frequently required before HRV analysis to 

reduce analysis errors. The three primary types of IBI preprocessing are ectopic 
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beat/interval correction, detrending, and IBI resampling. HRV analysis errors due to 

ectopic beats and IBI trends have been reported by Thuraisingham [50] and Colak [51]. 

In the context of IBI, ectopic beats refer to any IBI based on one or more abnormal beats. 

Any abnormal IBI due to a false/missed beat, fiducial point misalignment, or cardiac 

ectopy may be considered ectopic. 

IBI time series also contain slowly varying trends that are generally assumed to be 

inherent to most biological signals including IBI. Some HRV analysis methods assume 

that IBI signals are stationary or absent of low frequency trends. Specifically, power 

spectrum estimations based on Fourier transform require that the random variable of 

interest be wide sense stationary (the mean does not change with time) [52]. To alleviate 

any non-stationarities within IBI time series, detrending is often used before HRV 

analysis [51, 53, 54]. In addition to stationarity, these methods require evenly sampled 

IBI, which is inherently not the case for IBI signals. Fig. 2 illustrates an IBI time series 

before and after removing both ectopic intervals and low frequency trend. 
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Fig. 2 – IBI signal before and after detrending and ectopic interval removal. IBI time 

series from healthy human. 

 

2.2.1 Ectopic Interval Detection 

Before ectopic intervals can be corrected they must first be detected or marked. Here 

three detection techniques are discussed. Although the term filter is used in this section, 

no change to the original IBI occurs during ectopic interval detection. The percentage 

filter locates intervals that change by more than a user defined percentage (often 20%) 

from the previous interval [55]. This method locates any sudden or abrupt IBI changes. 

Another method used to detect ectopic intervals is the standard deviation filter which 

marks outliers as being intervals that lie beyond the overall mean IBI by a user defined 

value of standard deviations (often 3 SD) [55]. Lastly, the median filter acts as an 
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impulse rejection filter with threshold to delineate ectopic intervals [50]. The median 

filter of a random variable x of length N using a threshold of τ is given by  

 

 

  
 

( )
( )

1.483 ( )

if D , then not ectopic; else ectopic

x n med x
D n

med x n med x

n 




 



 (2.2) 

2.2.2 Ectopic Interval Correction 

Four correction techniques are described to replace ectopic intervals found during the 

detection process. The first technique is to simply remove any ectopic intervals found. 

Simple ectopic interval removal has been shown to be as effective as other replacement 

methods [56]. Another method replaces any ectopic interval with the mean value of w 

neighboring IBI intervals centered on the ectopic interval using Equation (2.3) . 

Similarly, the median method replaces ectopic intervals with the median value of w 

neighboring IBI intervals centered on the ectopic interval using Equation (2.4) [50]. 

Lastly, cubic spline replacement replaces ectopic intervals using cubic spline 

interpolation. 
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 (2.4) 

2.2.3 IBI Detrending 

Several methods of detrending exist in the literature to remove low frequency trends 

including: linear detrending, polynomial detrending, wavelet detrending, wavelet packet 

detrending, and smoothing priors detrending.  
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2.2.3.1 Linear and Polynomial Detrending 

Two of the simplest methods used for detrending IBI series are linear and polynomial 

detrending [57-59]. Linear detrending is accomplished by removing a linear least-

squares-fit from the IBI series. Similarly, polynomial detrending removes a second or 

third order polynomial fit (in a least squares sense) from the IBI series.  

2.2.3.2 Wavelet Detrending  

Wavelet detrending is accomplished by decomposing the original IBI time series into 

a tree of approximation and detail coefficients using discrete wavelet transform (DWT) 

(see Section 2.5.2.2). Each decomposed sub-band is associated with a range of 

frequencies with the highest level of approximation containing the lowest frequencies. 

Removing the low frequency trend can be accomplished by two methods. The first 

method sets all the wavelet coefficients of the highest level approximation (lowest 

frequency) to zero, and then performs an inverse DWT. The alternative method 

reconstructs only the highest approximation sub-band which is then subtracted from the 

original IBI series [50]. Either method effectively applies signal detrending. 

2.2.3.3 Wavelet Packet Detrending 

Detrending using wavelet packets works similar to the detrending method based on 

DWT mentioned in the previous section. Instead of decomposing the signal using DWT 

the discrete wavelet packet transform (DWPT) is used (see Section 2.5.2.2). Wavelet 

coefficients of sub-bands that contain frequency components of any unwanted trend are 

set to zero. Reconstruction of the IBI series using inverse DWPT produces a detrended 

IBI series [60]. As before, an alternative detrending approach using DWPT is to 
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decompose the signal, reconstruct any unwanted components, and subtract the unwanted 

components from the original signal.   

2.2.3.4 Smoothing Priors 

The final detrending method to be discussed is the smoothing priors approach [60, 

61].  In the smoothing priors approach a N-1 long, an equally sampled IBI time series is 

represented as the combination of  stationary and trend components, 
stationary trendz z z  . 

This method computes a stationary signal from the original. The estimated stationary 

component is written as 

   1
2

2 2
ˆˆ T

stationaryz z z 


    Hθ I I D D  (2.5) 

where 
 1 xN M

H R is the observation matrix. For simplification, an identity matrix is 

used in place of the observation matrix H . ˆ
λθ  

represents the estimate of the regression 

parameters with   as the regularization parameter and    3 x 1

2

N N 
D R  is the second 

order difference matrix. 

2.2.4 IBI Resampling 

In addition to most Fourier based power spectrum estimates (see Chapter 2.4) 

requiring signal stationarity; they also require time series that are regularly sampled in 

time. Spectrum estimates taken from irregularly time sampled signals can introduce 

additional harmonics into the power spectrum [62]. For this reason, IBI time series must 

be resampled prior to some power spectrum estimates. Commonly used resampling 

schemes are cubic spline and linear interpolation [63]. 
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2.3 Time-Domain Analysis 

2.3.1 Statistical Measures 

Time domain HRV analyses are often classified as statistical or geometric methods. 

Statistical time-domain measures are statistical based measures calculated directly from 

the IBI series. Time domain measures include: mean IBI, the standard deviation of the 

NN interval series (SDNN), the root mean square of successive differences of the IBI 

series (RMSSD), the number of successive differences that are greater than x 

milliseconds (NNx),  and the percentage of total intervals that successively differ by more 

than x milliseconds (pNNx) [64].  

Two variants of the SDNN are used with longer datasets. The first step in both of 

these variations involves separating the IBI series into non-overlapping segments. For 

human IBI’s the segment lengths are often five minutes [39]. The first variant is the 

SDNN index or SDNNi, Equation (2.6) , and is computed by finding the standard 

deviation of each IBI segment and then returning the mean value of standard deviations. 

The SDANN measure is computed in the opposite manner, Equation (2.7). SDANN 

computes the mean IBI of each segment and then returns the standard deviation of all 

means. SDNNi and SDANN are represented mathematically using the following 

equations: 

  
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1 M

i

SDNNi SDNN i
M 
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where SDNN(i) represents the SDNN value of the i
th

 IBI segment, meanIBI(i) represent 

the mean IBI value of the i
th

 IBI segment, and M is the total number of segments. 

2.3.2 Geometric Measures 

Geometric HRV measures are based on calculations taken from a geometric pattern 

who’s basis lies with the IBI series [39]. The most common geometric pattern used is the 

histogram of IBI. Two measures based on the IBI histogram are the HRV triangular index 

(HRVti) and the triangular interpolation of the NN interval histogram (TINN). Fig. 3 

represents the histogram of a hypothetical IBI series where D(t) is the density distribution 

of IBI. The maximum value of D(t) is represented by Y and is located at t=X. HRVti is 

the value obtained by dividing the area integral of D(t) by the maximum value Y. If the 

distribution D(t) is on a discrete horizontal scale then the area integral is just the total 

number of IBI intervals NIBI. Therefore HRVti is obtained by 

 .IBIN
HRVti

Y
  (2.8) 

For the computation of TINN the values N and M are established on the time axis and 

a triangular function q(t) constructed such that q(t)=0 for M ≤ t ≤ N.  The peak of the 

triangle occurs at q(X)=Y. The triangle base defined by M and N are determined by 

minimizing the integral
2

0
( ( ) ( ))D t q t dt



 .  Finally, TINN is expressed in milliseconds 

and computed using [39] 

 .TINN M N   (2.9) 
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Fig. 3 – Histogram of hypothetical IBI time series. D(t) represents the sample 

distribution. q(t) represents a triangular function fitted to D(t) by minimizing the integral 

of the squared difference between D(t) and q(t). Y = D(X) = max(D). 

 

2.4  Frequency-Domain Analysis 

Fluctuations in HR are often thought to be periodic and occurring on many time 

scales [65]. Quantifying these fluctuations within the IBI time series can be done by 

calculating the power spectrum density (PSD). The PSD presents spectral power density 

of a time series as a function of frequency. Therefore, PSD estimates can give 

information about the amount of power in which certain frequencies contribute to a time 

series.  

In general, frequency-domain HRV analysis is concerned with four previously 

mentioned frequency oscillations or bands [39]: ULF, VLF, LF, and  HF. For humans 

ULF, VLF, LF, and HF frequency bands are defined to be 0-0.0033 Hz, 0.003-0.04 Hz, 

0.04-0.15 Hz, and 0.15-0.4 Hz respectively. The ULF and VLF are often ignored due to 
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the lack of long data recordings needed to accurately resolve these frequencies or due to 

the use of IBI detrending techniques that may destroy information within those bands.  

Typical HRV measures taken from frequency-domain analysis are powers within 

frequency bands and ratios of powers. The amount of power contained within a frequency 

band is obtained by integrating the PSD between the band frequency limits. Measures of 

spectral power are reported as absolute (aVLF, aLF, aHF), percentage of the sum of aLF 

and aHF (pLF, pHF), or normalized to total power (nLF, nHF). In addition to the power 

measures, the ratio of LF to HF (LFHF) provides a so called sympatho-vagal balance. 

Finally, less commonly mentioned measures are the peak frequencies within the VLF, 

LF, and HF bands. 

Estimating the PSD can be performed using many methods, but methods based on 

Fast-Fourier Transform (FFT) and autoregressive (AR) modeling are perhaps the most 

popular in spectral analysis of HRV [65]. Classical power spectrum estimates developed 

by Bartlett (1948), Blackman and Tukey (1958), and Welch (1967) are examples of 

methods based on FFT [66]. Because the FFT makes no assumptions on how the data are 

generated the classical methods are often referred to as non-parametric. The AR power 

spectrum methods do make assumptions and are therefore called parametric. Contributing 

to the popularity of the FFT based estimates are their simplicity, broad understanding, 

and ease of computation using modern computers and software.  

However, both FFT and AR based PSD estimates have prerequisites that are seldom 

if ever met by biological signals such as cardiac IBI series [67]. Both methods require the 

analyzed time signal to be stationary and evenly sampled, which is inherently not the case 

with IBI signals [52, 66]. The commonly used linear and cubic spline resampling were 
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shown to overestimate the LFHF ratio with an error that is greater than the error between 

population differences [68]. Consequently, other methods such as the Lomb-Scargle 

periodogram and methods based on wavelet transforms are becoming popular [32, 69-

73]. Lomb-Scargle does not require resampling and wavelet transform based estimates do 

not require stationarity [74]. Despite the aforementioned limitations of FFT and AR 

based PSD estimates, they are widely used in HRV. 

2.4.1 Welch Periodogram 

To understand Welch’s periodogram one must first understand the discrete Fourier 

transform (DFT), the basic periodogram, and the modified periodogram. The N-point 

DFT of a random variable X(n) is given by 
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Practical computations of the DFT use the FFT for speed advantages. The periodogram, 

extension of the DFT, is a basic method of estimating power spectral density of a time 

series and is given by 
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Reducing spectral leakage of the periodogram can be accomplished by incorporating a 

weighted windowing function w(n), e.g., Hamming and Hanning, to the input series. Data 

near the edges of the time series are given less weight compared to data nearer the center. 

Thus, the modified periodogram is given by 
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where  
1

2

0

1/
M

n

U M w n




  . Finally, in an effort to reduce the variance of the periodogram 

estimation, the Welch method separates the data series into N overlapping segments.  As 

with the modified periodogram the Welch method applies a weighting window to reduce 

spectral leakage, but weighting is applied to each segment. Finally an averaged PSD is 

calculated using all segments. Power spectral density by the Welch periodogram is given 

by 
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where  ,M iP f  is the i
th

 modified periodogram from the data series. 

2.4.2 Burg Periodogram 

Autoregressive spectral estimation methods differ from non-parametric methods in 

that they attempt to model the data instead of estimating the PSD directly. Several 

modeling methods exist for AR spectrum estimation, but the Burg method is the most 

common in HRV [49, 75, 76].  

The power spectrum of a p
th

 order autoregressive process is given by 
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where εp is the total  least square error, fs is the sample rate, and pa are the Burg AR 

model parameters [77]. Boardman, et al. suggests that a model order of p=16-20 is a 

sound choice for HRV in human IBI resampled at 2-4 Hz [78]. 
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2.4.3 Lomb-Scargle Periodogram 

As mentioned before the Lomb-Scargle periodogram (LSP) method of estimating 

PSD does not require resampling. The LSP only uses available data. Conceptually LSP 

estimates the frequency spectrum by performing a least squares fit of sinusoids to the 

data. Unlike Welch’s periodogram weighted windowing functions are not applied to data 

in LSP because standard weighting methods cannot be applied to unevenly sampled data. 

The LSP of a non-uniformly sampled, real-valued data sequence X of length N for 

arbitrary times tn is defined by 
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where x  and σ
2
 are the mean and variance of the time series, and 
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    
     

    
  .  τ is a frequency dependent time delay, 

defined to make the periodogram insensitive to time shift[69-71]. A more detailed 

description of the LSP appears in [70, 79].  Clifford et al. showed that ectopic beat 

removal of up to 20% of the data points in an IBI signal does not introduce a 

“significant” error in frequency-domain HRV measures based on LSP [68]. Because of 

the resistance to errors from data removal and resampling, LSP could be the preferred 

power spectrum estimation method for HRV. Comparison of the Welch, Burg, and 

Lomb-Scargle (LS) periodograms are presented in Fig. 4. 
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Fig. 4 – Comparison of PSD estimates. Estimates include (a) Welch periodogram, (b) 

Burg autoregressive periodogram, and (c) Lomb-Scargle periodogram estimates. HRV 

frequency bands are labeled as very low frequency (VLF, 0-0.04 Hz),  low frequency 

(LF, 0.04-0.15 Hz), and high frequency (HF, 0.15-0.4 Hz). PSD’s computed using 

preprocessed IBI from healthy human. Powers represent percent of total power. 

 

2.5 Time-Frequency Analysis 

HRV analysis by means of frequency-domain methods can only yield information 

about how IBI signal power is distributed in the frequency domain. They provide no 
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insight into the temporal evolution of the spectrum. Methods used to allow simultaneous 

viewing of both time and frequency information are often termed time-frequency 

analyses. Like frequency-domain analysis, time-frequency HRV analysis quantifies VLF, 

LF, and HF related measures. The two primary types of time-frequency analysis used are 

the windowed Fourier transform (also called short-time Fourier transform, STFT) and the 

continuous wavelet transform [80].  To include spectral estimation methods other than 

the Fourier transform, the term windowed periodogram will be used in place of 

windowed Fourier transform. This generalization allows the inclusion of the windowed 

Burg periodogram and windowed Lomb-Scargle periodogram. 

2.5.1 Windowed Periodogram 

The windowed power spectrum is an extension of the basic PSD. As the term implies, 

the data is broken down into consecutive (overlapping or not) segments or windows. The 

PSD is then computed for each segment. This is similar to the technique use by Bartlett 

and Welch. However, those methods lose any temporal information by averaging all 

PSD’s into a single PSD. Unlike Welch’s method, the windowed periodogram can use 

other techniques to compute the PSD, e.g. Burg periodogram. Plotting PSD values onto a 

two-dimensional plane with frequency and time as the vertical and horizontal axes 

respectively produces a spectrogram as seen in Fig. 5. 

Two alternatives are the windowed Burg periodogram and the windowed Lomb-

Scargle periodogram [81, 82]. For the windowed Burg periodogram the entire data series 

is first resampled and then broken into segments of equal lengths. Finally, the PSD is 

computed for each segment using the Burg periodogram. 
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The windowed Lomb-Scargle periodogram is computed in almost the same manner. 

First, the data is broken into segments of equal lengths of time [71]. Due to the uneven 

sampling of IBI’s, each segment can contain differing number of data points. Finally, the 

LSP for each segment is computed.  
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Fig. 5 – Spectrogram and waterfall plot for windowed periodograms. Plots generated 

using preprocessed IBI from healthy human. Plots include (a) Spectrogram using 

windowed Bug periodogram. (b) Spectrogram using windowed LSP (c) Waterfall plot 

containing Burg periodograms of each five minute segment of IBI. 

 

HRV quantification from time-frequency analysis using windowed periodograms can 

be accomplished two ways. The first method computes an averaged or global power 

spectrum and then calculates typical frequency-domain HRV measures, e.g., LF, HF, and 

LFHF. Averaging the power spectrum eliminates any time resolution and defeats some of 
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the purpose of time-frequency analysis, but it provides a way to help control variances by 

averaging many power spectrums [83]. Alternatively, HRV measures can be calculated 

for each segment, and then an average HRV measure computed. The second method 

produces discretely instantaneous frequency-domain measures that are a function of time, 

e.g., LF(t) and LFHF(t). 

From the LFHF instantaneous time series, another index can be extracted called the 

ratio of LFHF ratios (rLFHF) [81].  This measure represents the “global” sympathetic-

parasympathetic equilibrium [81]. Imagine a line drawn through LFHF =1 on the 

instantaneous LFHF plot. Above this line (LFHF >1) there is a sympathetic dominance. 

Below this line (LFHF <1) there is a parasympathetic dominance. The rLFHF ratio is 

obtained by calculating the ratio of the bounded area above the line LFHF=1 to the 

bounded area below. 

2.5.2 Wavelet Transforms 

Wavelet transforms are a relatively recent, but enormously popular tool for analyzing 

and compressing many types of time signals. The term wavelet implies a small wave and 

is of finite length and energy [84]. Like Fourier transform the wavelet transform separates 

a signal into its fundamental components. However, unlike the Fourier transform, wavelet 

transforms can be applied to non-stationary signals and are not limited to a single set of 

basis waveforms for signal decomposition. Fourier transforms rely on the sinusoid 

waveform, whereas wavelet transforms have an infinite set of basis waveforms or mother 

wavelets as long as they satisfy predefined mathematical criteria. This property may 

provide access to information that could be obscured by methods like Fourier analysis 

[85]. Acharya et al. state  that “bio-signals usually exhibit self-similarity patterns in their 
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distribution, and a wavelet which is akin to its fractal shape would yield the best results in 

terms of clarity and distinction of patterns” [85]. 

The following summary of Acharya’s [49] understanding of wavelet transform 

concepts provides an efficient explanation. The wavelet transform correlates a mother 

wavelet with sections of the original signal to produce wavelet coefficients. The mother 

wavelet is shifted/translated in time to generate a set of coefficients along the time signal. 

Next the mother wavelet is contracted or dilated to create coefficients along the time 

series at varying time scales. Here the term scale is analogous to frequency or more 

precisely the pseudo frequency (average frequency). Scaled wavelets are normalized so 

each one contains the same amount of energy. The scale can be thought of as the wavelet 

width and the translation as its location in time. Larger scale values represent smaller 

wavelet size and thus higher frequencies. 

This research is concerned with the continuous wavelet transform (CWT), the discrete 

wavelet transform (DWT), and discrete wavelet packet transform (DWPT). The major 

differences between the three are how the wavelet function is scaled and translated. 

2.5.2.1 Continuous Wavelet Transform 

For a given signal x(t) and wavelet function 
, ( )a b t , the CWT coefficients are given by 
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where ( )t 
is the complex conjugate of the mother wavelet ( )t , α is the dilation 

parameter, and τ is the location parameter. The bivariant function W(τ,α) shows the 

similarity of x(t) to a wavelet scaled by α at a given time τ [65]. Theoretically the CWT 

wavelet coefficients are calculated for infinitesimally small translations and scale factors. 
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However, practical implementations of the CWT must balance the number of translations 

and scales to produce acceptable computational times. Most programmatic 

implementations of the CWT allow the user to specify the number of scales to use for 

computation. Plotting CWT coefficients onto a two-dimensional plane with scale and 

location as the vertical and horizontal axes produces a scalogram as seen in Fig. 6.  

 

 

Fig. 6 – CWT scalogram of IBI data. CWT computed using preprocessed IBI from 

healthy human with DOG2 wavelet [86]. The frequency axis is displayed using a log 

scale and represents the equivalent frequency of CWT scales [86]. 

 

2.5.2.2 Discrete Wavelet Transform 

In the case of DWT and DWPT, the scaling and translations are done in a less smooth 

or more discrete manner. Scaling and translating for the DWT are based on powers of 2 

or dyadic blocks, e.g., 2
1
, 2

2
, etc. The dilation function is often represented as a tree of 
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low and high pass filters. The first step of the tree decomposes the original signal into 

detail (high frequency) and approximation (low frequency) components. Detail and 

approximation components for three levels of decomposition are represented in Fig. 7-a 

by A and D. Only the approximations are further split into finer components in the DWT. 

For DWPT both branches of the tree are split into finer components. Fig. 7-b shows the 

tree for DWPT for 3 levels of decomposition. 
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Fig. 7 – DWT decomposition tree. Decomposition trees showing the breakdown of an 

arbitrary original signal into three levels using (a) discrete wavelet transform and (b) 

wavelet packet transform. Horizontal axis shows frequency range as a fraction of the 

Nyquist frequency. DWPT can extract all frequency bands with equal resolution. 

Diagram modified from Tanaka and Hargens [87]. 

  

Quantification of HRV measures from time-frequency analysis by CWT is 

accomplished in a similar manner to that employed for the windowed periodogram. 

Similar in that both can use either the instantaneous or global power spectrums [88].  To 
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obtain HRV measures using instantaneous power methods, the squared modulus of the 

wavelet coefficients is integrated over the desired frequency band [f1 f2]. To integrate 

over a frequency band wavelet scales must be changed to frequencies. The time-scale 

map (scalogram) must be interpreted in terms of a time-frequency map (spectrogram). 

The instantaneous power of the frequency band [f1 f2] is given by  
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The wavelet equivalent to an averaged periodogram is the global wavelet spectrum and is 

given by 
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2.6 Nonlinear Analysis 

On the basis that HR control may contain nonlinear components, there is an 

increasing interest to study HRV using methods other than the standard linear methods, 

i.e., time-domain and spectral analysis. These methods are often included under the 

umbrella term nonlinear HRV analysis. It has been shown that loss of IBI signal 

complexity [50, 89] and loss of fractal like scaling behaviors [90, 91] may be a general 

feature of cardiac pathology. Poincaré plot analysis, entropy based measures, and fractal 

based measures are but a few HRV analysis techniques used. 

2.6.1 Poincaré Plot 

The Poincaré plot or first-return map, named after Henry Poincaré, is a plot of IBI 

intervals versus the previous IBI interval. Poincare plots are a type of nonlinear analysis 
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used to quantify self-similarity [92]. HRV measures based on Poincaré plots are based on 

the idea that each IBI is influenced by the previous one [22]. Thus, pairs of successive 

IBI form an attractor in the Poincare’ plot. Often an ellipse is fitted to the plotted data 

with the long axis along the line of identity defined by y x . Fig. 8 illustrates the 

Poincare’ plot generated using healthy human IBI data. If the center or attractor of the 

ellipse is located at the mean IBI ( IBI ), then 2y x IBI    defines the line 

perpendicular to the line of identify and passing through the mean [93]. Points above the 

line of identity indicate a longer IBI than the preceding IBI, and points below the line of 

identity indicate a shorter IBI than the preceding. Standard deviations along the line of 

identity (SD2) and perpendicular to the line of identity (SD1) represent the magnitude of 

the major and minor axes of the ellipse respectively. SD1 represents the SD of the 

instantaneous beat-to-beat variability or short term variability. SD2 represents the SD of 

the continuous or long-term variability [92, 94]. In reality the ellipse is primarily a visual 

aid and the numerical values of the standard deviations SD1 and SD2 contain the 

important data. Also, the ratio of SD1 to SD2 has been suggested to be strongly 

associated with mortality in adults with postoperative ischemia [95, 96].  
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Fig. 8 – Poincare' Plot using healthy human IBI data. 

 

2.6.2 Sample Entropy 

Sample entropy (SampEn) is an embedded entropy that attempts to quantify a signal’s 

complexity or rate of new information generation [97].   To understand how sample 

entropy is calculated a few definitions follow. Let Xi={x1,…, xi,…xN} represent the 

original N-long IBI series. Let um+1[i]={xi,xi+1,…,xi+m} and um[i]= {xi,xi+1,…,xi+m-1} 

represent m+1 and m length vectors/sequences taken from X. Also, let the distance d be 

the maximum absolute distance between the components of two vectors and is given by 

   [ ], [ ] max [ ] [ ] : 0 1d i j i k j k k m      u u u u .  
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For each i  ≤  N-m a template vector um[i] is compared to all other m length vectors 

um[j] where i ≠ j and j ≤ N-m. The number of j that satisfy d(u[i],u[j]) ≤ r is set as m

in . 

The unconditional probability of randomly selecting two m length sequences from a 

signal that have a distance less than r using the relative frequency methods is 

/ ( )m m

i iC n N m  . Furthermore the averaged probability is given by 
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Similarly 1m

in  , 1m

iC  , and 
1m 
are calculated for vector lengths of m+1. Finally 

sample entropy is determined by 

      1, , ln /m mSampEn m r N r r       (2.20) 

Fundamentally, SampEn can be described as the negative logarithm of the conditional 

probability of randomly selecting two m-length sequences, from a signal, that have a 

distance less than r between them given that they also have a distance less than r if their 

lengths are increased to m+1. If SampEn is zero, then consecutive sequences are 

identical. Larger values of SampEn represent higher complexity. 

2.6.3 Detrended Fluctuation Analysis 

Fractal scaling or self-similarity are concepts based on the idea that a system or shape 

can be fragmented into smaller parts where each part resembles one another but on 

different scales [48]. The Sierpenski triangle is classic example of fractal geometry. A 

few examples of fractals occurring in nature include snowflakes, shorelines, crystals, and 

some ferns. For the case of IBI, the scale is time. Detrended fluctuation analysis (DFA) 

[98] tries to quantify the fractal like or self-similar properties of non-stationary time 
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series [99, 100]. “This technique is a modification of root-mean-square analysis of 

random walks applied to non-stationary signals” [101].  The root-mean-square fluctuation 

of an integrated and detrended time series is measured at different scales and plotted 

against the size of the scale onto a log-log plot (see Fig. 9).  

First consider an IBI time series of length N. The IBI series is integrated using  

    
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where y(k) is the k
th

 value of the integrated series, IBI(i) is the i
th

 interbeat interval, and 

IBI is the average interbeat interval for the entire time series. The integrated time series 

is then separated into segments of length n. A least squares line is fit to the data in each 

segment to define the local trend denoted by yn(k). Next, the integrated time series is 

detrended by subtracting the local trend, yn(k) from each segment. Finally, the root-mean-

squared fluctuation of the integrated and detrended time series is calculated by 
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where m represents the window or scale size. F(m) is computed on a user defined range 

of time scales. The linear relationship between log(F) and log(n) represents the scaling 

exponent, α, of the interbeat interval time series. Often two distinct linear regions on the 

log-log plot are used to describe the short term scaling, α1, and the long term scaling, 

α2[100]. These two regions are separated by a breakpoint located around 12-16 beats 

[100]. Fig. 9 shows the DFA plot for a typical human IBI signal with a break point at 12 

beats. 
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Fig. 9 – Detrended fluctuation analysis using healthy human data. Short term scaling 

exponent and long term scaling exponents are represented by α1 and α2. The breakpoint 

is located at 12 beats. 
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3 Software Design 

3.1 Introduction 

HRV software packages exist in the form of commercial (HRVLive [102] ), 

publically available without source code (Kubios [62]), and open source such as ECGLab 

[81, 103], KARDIA[104], and the PhysioToolkit [105] . All these HRV programs offer 

useful tools for HRV analysis, but they also have disadvantages. The obvious 

disadvantages of commercial packages are the cost, lack of user customization, and 

possibly proprietary algorithms, but the advantage is often an active technical support 

staff and refined product. Additionally, commercial software typically does not offer 

recent or more advanced analysis methods that researchers may want to evaluate. 

Software packages that are available to the public without available source code cannot 

be customized and often have limited or no technical support. Finally, open source code 

packages give the user complete customization, but are often not as refined and easy to 

use as commercial software. Many require the knowledge of alternative operating 

systems such as Linux, and lower level programming languages. Neither of these 

knowledge sets is prevalent with clinicians. 

The analysis software HRVAS was developed using MATLAB version 2008b 

(Mathworks, Natick, MA). HRVAS contains all needed analysis options and results in a 

single graphical user interface (GUI). HRVAS also includes batch processing, a feature 

not available in other HRV software packages. HRVAS is open source and un-compiled. 

Open source code allows for user updates and customization. Analysis results are 

displayed in a tab group to allow for future additional analysis modules and to aid in 

keeping all components within a single GUI.  
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3.2 Graphical User Interface  

The graphical user interface (GUI) consists of three primary components (see Fig. 

10). The upper most plot shows the IBI intervals, trend line, and any ectopic intervals. 

Double clicking this graph will show both the unprocessed and preprocessed IBI. The 

lower left grey area contains all analysis options available to the user. All analysis 

options can be saved and reloaded to allow for quick selection of frequently used options. 

Any options present in the GUI on exit are saved and reloaded the next time HRVAS is 

opened. 

 The lower right section of Fig. 10 contains analysis results. Each set of results 

associated with time-domain, frequency-domain, time-frequency, Poincaré, and nonlinear 

analysis are contained in a labeled tab (see Appendix A). The use of tabs allows for 

future HRV analysis additions. Double clicking on any of plot will redraw it onto a 

separate figure for custom editing and exporting for documents or presentations. 

The frequency-domain analysis tab allows for plotting of Welch periodogram, Burg 

periodogram, and Lomb-Scargle periodogram. The time-frequency tab allows for 

displaying of spectrogram, surface plot, waterfall plot, global power spectrum and 

instaneous LF, HF, and LFHF powers. Time-frequency plots can be drawn using 

windowed Burg periodogram, windowed LSP, or CWT.  

Input data types used by HRVAS are .ibi and .txt files. The expected format of input 

files is an ASCII file with one or two columns of data. Two column files must include IBI 

time stamps (seconds) in the first column and IBI values (seconds) in the second column. 

Files containing only one data column must include only IBI values. Exported analysis 

results are saved to a Microsoft Excel® file. 
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In an effort to reduce the total files needed for using HRVAS, each major HRV 

analysis type, e.g., time-domain, uses only one MATLAB m-file. Similarly, the GUI is 

generated using only one MATLAB m-file. 

 

 

Fig. 10 – HRVAS graphical user interface. The upper most plot is of the IBI intervals and 

trend line. The lower left gray area contains all analysis options. The lower right section 

contains analyses results. 

 

3.3 HRV Analysis in HRVAS 

Fig. 11 represents the analysis process used by HRVAS to compute HRV measures. 

The order of preprocessing in HRVAS is ectopic interval detection, ectopic interval 
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replacement, and IBI detrending. HRV analysis details were discussed in the previous 

chapter. 

A batch processing feature allows for unattended analysis of many IBI or RR interval 

files. For batch processing all files must be contained within a single directory. At 

completion all analysis data is exported to a Microsoft Excel file. 
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Fig. 11 – HRV analysis process flowchart. 
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3.4 Conclusion 

The design of HRVAS provides an easy to use interface in which to compute and 

display HRV analysis. Future considerations for improvements include moving all 

analysis options to individual tabs, simplifying the export function, and allowing the user 

to select which HRV analyses are computed. Not having to perform all HRV analyses 

will save processing time and resources. HRVAS will be made available to the public at 

http://hrvas.sourceforge.net/ and at the project’s homepage 

https://sourceforge.net/projects/hrvas/. HRVAS is distributed free of charge under the 

terms of GNU public license so that other users can modify the code and adjust the 

program’s performance according to their own requirements. 
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4 Software Evaluation 

4.1 Introduction 

This chapter presents two evaluations that help validate analysis results obtained from 

HRVAS. The first evaluation consisted of computing time-domain, frequency-domain 

and time-frequency HRV measures based on computer simulated ECG signals. The 

second evaluation involved computing all HRV measures using public data from healthy 

and congestive heart failure human subjects in an effort to distinguish between groups 

and compare to previous work. More specifically, the hypothesis was that CHF causes 

reduction in HRV. 

4.2 Simulated Data 

4.2.1 Methods 

4.2.1.1 Data 

Computer simulated ECG with IBI were generated to evaluate the reliability of some 

HRV measures obtained from HRVAS. The simulation algorithm was implemented in 

MATLAB using the ECGSYN model [106]. ECGSYN generates both ECG signals and 

locations of all P, Q, R, S, and T waves. R wave locations were used to generate IBI time 

series. Three hundred, 30-minute synthetic ECG segments and three hundred, five-minute 

synthetic ECG segments were generated with sample rates of 256 Hz. Each segment had 

a mean HR of 60 bpm (beats/min) and standard deviation of 1 bpm. The ECG generated 

contained oscillations centered at 0.1 and 0.25 Hz to represent the center frequency of 
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hypothetical LF and HF contributions respectively. Furthermore, the ratio of LF to HF 

power was specified to be 1.0. 

4.2.1.2 HRV Analysis 

Time-domain, frequency-domain, and time-frequency HRV measures were computed 

using HRVAS for comparison with parameters used in generating the synthetic ECG. 

Mean IBI, SDNN, mean HR, and SDHR were computed for time-domain HRV measures. 

Peak LF, peak HF, nLF,  nHF, and LFHF ratios were computed using Welch, Burg, and 

Lomb-Scargle periodograms. Peak LF, peak HF, nLF, nHF, and LFHF ratios were also 

computed in a time-frequency manner using windowed Burg periodogram, windowed 

LSP, and CWT for the 30-minute segments only. Analysis options included: IBI resample 

rate (4 Hz), Welch window width (1024 pts.), Welch window overlap (512 pts.), Burg 

model order (16), TF window width (300 s), and TF window overlap (150 s). Frequency 

bands were specified as 0.04-0.15 Hz for LF and 0.15-0.4 Hz for HF. 

Statistical evaluations were performed by inspecting 90% confidence intervals for 

both time and frequency-domain measures. LFHF rations were further considered by 

performing equivalence test [107]. A confidence interval of indifference was determined 

using empirical data from the CARLA study [108]. Confidence intervals of LFHF mean 

differences which remain within the interval of indifference are considered to be 

indifferent from the expected LHFH value of 1.0.  

4.2.2 Results 

HRV analysis using HRVAS produced values that closely corresponded with 

parameters used for synthetic ECG generation. Results are presented as mean with 90% 
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confidence interval (CI). Time-domain HRV values computed for the 5-minute 

simulations included: mean IBI, 999.7 (999.7-999.7) ms; SDNN, 16.7 (16.6-16.8) ms; 

mean HR, 60.0 (60.0-60.0) bpm; SDHR, 1.0 (1.0 -1.0) bpm. Time-domain HRV values 

computed for the 30-minute simulations included: mean IBI, 999.6 (999.6-999.6) ms; 

SDNN, 16.6 (16.6-16.6) ms; mean HR, 60.0 (60.0-60.0) bpm; SDHR, 1.0 (1.0-1.0) bpm. 

Peak LF and peak HF were 0.10 (0.10-0.10) Hz and 0.25 (0.25-0.25) Hz respectively 

for all spectral HRV methods and data lengths. Fig. 12 shows the LF and HF peaks 

present in the Lomb-Scargle spectrogram and global power spectrum of a representative 

synthetic IBI time series.  

 

 

Fig. 12 – Lomb-Scargle spectrogram and global PSD for simulated IBI (LFHF=0.5) 

 

Results for nLF and nHF are summarized in Table 1. Results for LFHF ratios are 

summarized in Table 2. For 5-minute simulations, the Burg periodogram (0.10-0.26) 

produced the most deviation from the expected value of 1.0 and extended beyond the 

interval of indifference of -0.2 to 0.2. LSP produced the most accurate LFHF value (0.02-

0.10). For 30-minute simulations, the Burg periodogram (-0.10 to -0.08) produced the 
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largest mean difference while the Welch (0.05-0.06) and LS (0.03-0.08) periodograms 

produced the least mean difference from expected. All three methods had mean 

differences within the interval of indifference determined by equivalence test seen in Fig. 

13. Time-Frequency based measures of LFHF for 30-minute simulations showed that the 

windowed Burg periodogram (0.02-0.05) produced the largest mean difference from the 

expected simulated data. The windowed LSP (0.01-0.04) and CWT (0.02-0.03) produced 

LFHF mean differences slightly lower than the windowed Burg method. All three time-

frequency methods produced LFHF mean differences within the interval of indifference. 

 

Table 1 – nLF and nHF results of simulated IBI 

Duration PSD Estimate nLF (%) nHF (%) 

  Mean (90% CI) Mean (90% CI) 

5 min. Welch 0.51 (0.49-.52) 0.49 (0.48-0.51) 

 Burg 0.50 (0.49-0.51) 0.50 (0.49-0.51) 

 LS 0.50 (0.49-0.50) 0.50 (0.50-0.51) 

30 min. Welch 0.51 (0.51-0.51) 0.49 (0.49-0.49) 

 Burg 0.47 (0.46-0.47) 0.53 (0.53-0.54) 

 LS 0.51 (0.50-0.51) 0.49 (0.49-0.50) 

 Win. Burg 0.51 (0.50-0.51) 0.49 (0.49-0.50) 

 Win. LS 0.50 (0.50-0.51) 0.50 (0.49-0.50) 

 CWT 0.51 (0.50-0.51) 0.49 (0.49-0.50) 
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Table 2 –LFHF results of simulated IBI 

Duration PSD Estimate LFHF (90% CI) Mean Diff (90% CI) 

5 min. Welch 1.13 (1.08-1.18) 0.13 (0.08-0.18) 

 Burg 1.18 (1.10-1.26) 0.18 (0.10-0.26) 

 LS 1.06 (1.02-1.10) 0.06 (0.02-0.10) 

30 min. Welch 1.06 (1.05-1.06) 0.06 (0.05-0.06) 

 Burg 0.90 (0.89-0.92) -0.10 (-0.11 - -0.08) 

 LS 1.05 (1.03-1.08) 0.05 (0.03-0.08) 

 Win. Burg 1.04 (1.02-1.05) 0.04 (0.02-0.05) 

 Win. LS 1.03 (1.01-1.04) 0.03 (0.01-0.04) 

 CWT 1.03 (1.02-1.03) 0.03 (0.02-0.03) 

 Expected/Ideal 1.00 0.00 
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Fig. 13 – LFHF equivalence test. Values are displayed as mean difference with error bars 

representing the 90% confidence interval. The grayed area represents the confidence 

interval of indifference and is bound by -0.2 to 0.2. 

 

4.2.3 Discussion 

Time-domain HRV analysis results for both 5-minute and 30-minute simulations 

were indifferent compared to the expected parameters used for simulation. Spectral HRV 

measures produced LFHF ratios within the interval of indifference except for the 5-

minute Burg periodogram. Due to a lower nLF and higher nHF powers, the windowed 

Burg periodogram produced a mean LFHF ratio of less than 1.0. The Burg model order 

could have played a role in this deviation from expected LFHF ratio. 
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4.3 Congestive Heart Failure 

5.8 million Americans are living with heart failure with 670,000 new cases and 

56,600 deaths annually [109]. Heart failure is a condition in which the heart has a 

decreased ability to fill and pump blood to the tissues of the body. In congestive heart 

failure (CHF), this decrease causes a backup or congestion of blood in the returning 

vessels. Heart failure can result from pathologies such as coronary artery disease, 

myocardial infarction, high blood pressure, and cardiomyopathy [110]. As a result of 

heart failure, marked changes in autonomic function appear including high sympathetic 

activity and reduced vagal-cardiac activity [28]. Studies have shown that HRV associated 

with heart failure is reduced compared to healthy [6, 111-113].  

4.3.1 Methods 

4.3.1.1 Data 

To evaluate the viability of HRVAS on real data, HRV analysis was performed on 

two public, human datasets taken from the MIT/BIH RR interval database of 

physiological signals hosted at Physionet [105]. The MIT/BIH database included beat 

annotations of long-term (~24h) ECG recordings that were digitized at 128 samples per 

second. Beat annotations, provided in the database, were obtained by automated analysis 

with manual review and correction. The healthy/control group (NSR) originally included 

54 subjects (30 men, 24 women) aged 24-76 years and having normal sinus rhythm. Two 

subjects were excluded due to large numbers of ectopic beats (greater than 2% of total). 

The CHF group originally included 29 subjects (8 men, 21 women) aged 34-79 years and 
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having congestive heart failure (NYHA classes I, II, or III). Ten subjects were excluded 

due to ectopic beat counts exceeding 2% of the total IBI count. 

4.3.1.2 HRV Analysis 

Physionet annotation files were batch converted to IBI files using a custom shell 

script program combined with Physionet’s ann2rr function[105]. HRV analyses were 

performed using HRVAS’s batch processing feature. The computer system used for this 

project did not provide enough RAM for detrending and HRV analysis of these datasets. 

Therefore all HRV analyses were implemented on the High Performance Computing 

(HPC) system at the University of Memphis using 4 GB of memory on a single server 

node.  

IBI preprocessing included ectopic interval detection, ectopic interval removal, and 

detrending. Ectopic interval detection was performed using the percent filter (20%) and 

standard deviation filter (3 SD). Detrending was accomplished using the wavelet packet 

detrending technique with a cutoff frequency of 0.0391 Hz [60]. Frequency bands for 

VLF, LF, and HF were 0-0.04 Hz, 0.04-0.15 Hz, and 0.15-0.4 Hz respectively[39]. Only, 

LSP based Frequency-domain and time-frequency measures were computed. A complete 

list of HRV analysis options used is presented in Table 3. 
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Table 3 – HRVAS Analysis Options for NSR/CHF Datasets 

Analysis Parameter (value) or Method 

Ectopic Detection Std. Dev. Filter (3 SD), Percent Filter (20%) 

Ectopic Correction Remove Ectopic 

Detrending Wavelet Packet (cutoff frequency - 0.039 Hz) 

Time-Domain pNNx (50 ms), SDANN (5 min), HRVti and TINN (32 bin 

histogram) 

Freq.-Domain VLF (0-0.04 Hz), LF (0.04-0.15 Hz), HF (0.15-0.4 Hz), 

Interpolation Rate (2 Hz), Points in PSD (512 pts) 

Nonlinear SampEn (r=0.2 std, m=2), DFA (n=4 to 64 beats, Break Point 

=11 beats) 

Time-Freq. Window (300 s), Overlap (150 s) 

 

4.3.1.3 Statistical Analysis 

Statistical analyses were performed using SPSS v16 (SPSS, Chicago, IL). Each HRV 

statistic was checked for normality by visually inspecting both the histograms and the Q-

Q plots and by considering the Shapiro-Wilk normality test (α=0.05). If both groups 

passed the normality test for a given HRV measure, a two-sample, two-tailed t-test 

(α=0.05) was used to determine between group significance. Levene’s test (α=0.05) for 

equality of variances was used to determine whether to assume equal or unequal 

variances. If either group failed normality test, group significance was determined by the 

non-parametric Mann-Whitney U test (α=0.05). Some HRV measures were able to be 

transformed into normal distributions using a log transform, but this had no effect on 

statistical outcomes of any HRV measure. Therefore, only p values using non-parametric 

test were reported for any non-normally distributed HRV measure. 
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4.3.2 Results 

All HRV measures showed a significant difference (p<0.05) between healthy and 

CHF subjects except the following: RMSSD, TINN, aTotal, aHF (time-freq.), SD1, and 

DFA-α1. Table 4 summarizes the HRV analysis results. Statistics are presented as mean ± 

standard deviation for NSR vs. CHF respectively.  

All significant time-domain measures were lower for CHF compared to NSR and 

included: mean IBI (783.33±78.41 vs. 685.44±84.98 ms), SDNN (29.22±9.36 vs. 

21.09±11.53 ms), pNN50 (5.53±5.24 vs. 2.92±2.26 %), SDANN (26.36±8.28 vs. 

16.69±7.91 ms), and HRVti (3.07±1.01 vs. 1.80±0.72).   

For frequency-domain measures both nLF power (0.73±0.12 vs. 0.6±0.17 ms
2
) and 

LFHF ratio (3.57±2.12 vs. 2.1±1.74) were reduced in CHF. Conversely, aHF power 

(0.007±0.006 vs. 0.012±0.009 ms
2
) and nHF power (0.27±0.12 vs. 0.4±0.17 n.u.) were 

significantly higher in CHF. All but one significant time-frequency measure were lower 

in CHF compared to NSR and included: aLF power (313.67±211.85 vs. 164.74±207.08 

ms
2
), aTotal power (432.77±277.65 vs. 277.94±333.06 ms

2
), nLF power (60.84±149.55 

vs. 3.04±3.58 %). The nHF power (0.26±0.1 vs. 0.41±0.12 n.u.) obtained by time-

frequency analysis was higher in CHF compared to NSR. 

Nonlinear HRV analysis showed lower values in CHF obtained by Poincare long-

term measure SD2 (194.13±38.99 vs. 95.96±48.14 ms), SampEn (0.78±0.53 vs. 

0.53±0.17), and α1 of the DFA plot (1.28±0.18 vs. 0.89±0.24).  
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Table 4 – HRV Analysis Results for NSR/CHF Datasets 

Measure (units) Sig. Mean ± SD Mean ± SD

MeanIBI (ms) *** 783.33 ± 78.41 685.44 ± 84.98

SDNN (ms) *** 29.22 ± 9.36 21.09 ± 11.53

pNN50 (%) * 5.53 ± 5.24 2.92 ± 2.66

RMSSD (ms) ns 25.70 ± 9.15 23.27 ± 11.31

SDANN (ms) *** 26.36 ± 8.28 16.69 ± 7.91

HRVti *** 3.07 ± 1.01 1.80 ± 0.72

TINN (ms) ns 82.93 ± 38.43 90.51 ± 62.78

aLF (ms
2
) ns 0.02 ± 0.01 0.01 ± 0.01

aHF (ms
2
) * 0.007 ± 0.006 0.012 ± 0.009

aTotal (ms
2
) ns 0.02 ± 0.01 0.03 ± 0.01

nLF (n.u.) *** 0.73 ± 0.12 0.60 ± 0.17

nHF (n.u.) *** 0.27 ± 0.12 0.40 ± 0.17

LFHF (%) *** 3.57 ± 2.12 2.10 ± 1.74

aLF (ms
2
) *** 313.67 ± 211.85 164.74 ± 207.08

aHF (ms
2
) ns 104.67 ± 85.43 81.93 ± 78.76

aTotal (ms
2
) ** 432.77 ± 277.65 277.94 ± 333.06

nLF (n.u.) *** 0.74 ± 0.10 0.59 ± 0.12

nHF (n.u.) *** 0.26 ± 0.10 0.41 ± 0.12

LFHF (%) *** 3.57 ± 1.95 1.67 ± 0.82

rLFHF (%) *** 60.84 ± 149.55 3.04 ± 3.58

SD1 (ms) ns 20.07 ± 12.17 17.92 ± 9.11

SD2 (ms) *** 194.13 ± 38.99 95.96 ± 48.14

SampEn *** 0.78 ± 0.30 0.53 ± 0.17

DFA-α1 *** 1.28 ± 0.18 0.89 ± 0.24

DFA-α2 ns 1.08 ± 0.11 1.16 ± 0.18

ns = not significant,  * = p<0.05,  ** = p<0.01,  *** = p<0.005

Nonlinear

CHFHealthy

Time Domain

Freq. Domain

Time-Freq
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4.3.3 Discussion 

HRV analysis results based on time-domain and nonlinear methods followed previous 

findings and expectations. As expected, the results of time-domain analysis show an 

increase in HR and reduction of HRV in CHF compared to NSR. SD2 from the Poincare’ 

plot suggest a reduction in long-term variability in the CHF dataset. Similarly, the lower 

SampEn values in CHF data suggest lower IBI signal complexity. Values of DFA-α1 

obtained for NSR and CHF datasets were similar to values reported by others using these 

or similar data [50, 90, 100, 114]. Ho et al. describes the observed group differences in 

DFA as a “breakdown of fractal scaling properties”  in CHF [114].  

Based on the aforementioned reports that CHF produces lower vagal activity and 

higher sympathetic activity, one would expect HF powers to be lower and LF powers to 

be higher in CHF compared to healthy. However, several studies [114-117] have showed 

seemingly contradictory results using spectral based measures as did this research. 

Guzzetti et al. (2001) [118] suggest that these observed contradictions can be explained 

by the following pathophysiological mechanisms reported in heart failure: 

 central autonomic regulatory impairment [119] 

 decreased responsiveness of sympathetic modulation [120] 

 lower HRV consequent to the stretch of SA node [121] 

 increased chemoreceptor sensitivity [122]. 

Finally, although most of the HRV measures show significant difference between 

groups, many have substantially overlapping distributions. Thus, any single observation 

may will likely fall within the values of overlap and obscure any clinical usefulness.  
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4.4 Conclusion 

Although, the HRV analysis results comparing NSR and CHF groups presented in 

this chapter were not all as expected, the results did accomplish the intended chapter 

purposes. These results were in accordance with other studies involving heart failure and 

thus provide an encouraging software evaluation. HRV analyses of synthetic data with 

user specified parameters were able to extract accurate representations of defined 

simulation parameters. Evaluation of HRVAS using both computer-simulated data and 

publicly available data helped to demonstrate its precision and value. 
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5 Software Application: HRV in Hyperaldosteronism 

5.1 Introduction 

The adrenal hormone aldosterone has a well-known and important role in regulating 

the sodium-potassium balance of the body via renal mechanisms. However, in the past 

10-15 years  evidence shows that aldosterone also produces non-renal effects particularly 

in the cardiovascular system [123]. This newer evidence has helped explain the link of 

excess aldosterone (hyperaldosteronism) to maladaptive cardiac remodeling [124, 125]. 

Cardiovascular diseases such as hypertension, heart failure, and myocardial infarction are 

marked with increases of aldosterone levels [123]. Specific aldosterone related changes in 

the cardiovascular system include vascular endothelial dysfunction [126], myocardial 

fibrosis [126], myocardial apoptosis [127], cardiac hypertrophy [124], and prolonged 

ventricular action potentials [124]. Blocking aldosterone using aldosterone antagonist 

,e.g.,  spironolactone and eplerenone, can reduce or halt maladaptive cardiac changes in 

animal models [128] and humans [127-129].  Two large trials have further shown that 

treatment with aldosterone antagonist reduces mortality and hospitalization in heart 

failure patients [130, 131]. 

Chapter 4 presented evidence that CHF causes changes in HRV, and the previous 

paragraph established a connection between hyperaldosteronism and HF. From this 

evidence one could hypothesize that a hyperaldosteronism model of HF may produce 

changes in HRV similar to CHF. Therefore, we present the following hypotheses based 

on an 8-week hyperaldosteronism study: 

1. Hyperaldosteronism reduces HRV (treatment effect) 

2. Prolonged hyperaldosteronism further reduces HRV (time effect) 
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3. The effect of time is different for control and hyperaldosteronism groups 

(interaction) 

5.2 Methods 

5.2.1 Data 

One control and one treated dataset, each consisting of 5 male, Sprague-Dawley rats 

(Harlan, Indianapolis, IN), were used. The original data collection came from an 

unpublished study [132]. Rats were purchased at 3-6 weeks old (100-225 g). Treatment 

began when rats were eight weeks old. The hyperaldosteronism treatment group 

(ALDOST) included uninephrectomy (left kidney removed), 6 weeks of subcutaneous 

aldosterone administration (Fisher Scientific International Inc., Hampton, NH) through 

implanted osmotic pumps (Alzet Model 2006, Durect Corporation, Cupertino, CA), and a 

salt diet (drinking water containing 1% NaCl and 0.4% KCl).  Aldosterone was delivered 

continuously at the rate of 0.75 µg/hr.  Radio-transmitters (PhysioTel® model CAf40, 

Data Sciences International, St. Paul, MN) were implanted in all subjects one week prior 

to treatment initiation in order to obtain baseline ECG data. The control group received 

only wireless radio-transmitters. ECG was recorded continuously for eight weeks at a 

sample rate of 1000 Hz using the Dataquest A.R.T. version 4.0 (Data Sciences 

International, St Paul, MN) acquisition system installed on a desktop PC. Seven hours of 

ECG data per subject per week were exported from Dataquest A.R.T. to ASCII files. 

MATLAB was then used to convert and compress ASCII files to MATLAB binary 

format. 



61 

 

5.2.2 ECG Filtering 

ECG filtering was necessary to maximize beat detection efficiency. High-pass 

filtering was used to remove baseline wander, and was accomplished by subtracting a low 

frequency trend line from the ECG. This trend line was produced by applying a triangular 

(two-pass) moving average filter with a window size of 750 points or (0.75 s, cutoff 

frequency ~ 0.6 Hz) to the ECG signal. Low-pass filtering to remove high frequency 

noise was accomplished using a triangular moving average filter with a window size of 3 

points or (0.003 s, cutoff frequency ~ 155 Hz). Moving average filters provided a simple, 

effective, and fast method to filter ECG. Combining the two techniques effectively 

applied a 0.6-155 Hz bandpass filter to the ECG. The window sizes were primarily 

determined via visual inspections and testing with template matching. Frequency cutoffs 

were determined by frequency response to unit impulse functions. 

5.2.3 ECG Segmentation 

ECG segments for HRV analysis were 10 minutes in duration. One segment from 

each week of treatment (10 weeks) was extracted to provide longitudinal effects of 

aldosterone on HRV. Segments were selected from the middle seven hours occurring 

during the rats 12 hour sleep or lights-on cycle. Segments were extracted from the same 

day each week.  

The process for selecting the 10-minute segment is as follows. A 10 minute moving 

window (overlap of 9 minutes) was passed over the entire seven hours of ECG data. ECG 

statistics were collected for each window. A list of usable ECG segments was constructed 

based on the statistics. Criteria for choosing a usable 10 minute segment included: mean 
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HR above 250 beats/min, total number of ectopic beats less than 1% of total beats, 

absence of significant missing data, and visual inspection of noise and ectopy. Significant 

missing data was defined as having more than 150 consecutive missing data values or 

missing more than 150ms consecutively. Segments with less than 150 consecutive 

missing data values were interpolated using cubic spline. Finally the usable 10 minute 

segment with the lowest HR was chosen for analysis. 

5.2.4 QRS Detection 

QRS complexes were located using a correlation based template matching algorithm. 

Two types of QRS templates were used for template matching. QRS templates were 

created by averaging more than 20 QRS complexes. The first type of template was a 

global template; global in the sense that one template was suitable for all subjects. Eight 

templates were created for each subject (one for each week of treatment) and compared to 

each other by computing a correlation coefficient. The template with largest cumulative 

correlation was selected for use as the global template. In general, approximately 95% of 

cases, the global template was used for template matching. The second type of template 

was a self-template. When global templates failed to yield satisfactory results for a 

particular week of data and resulted in large numbers of missed QRS complexes, a self-

template was generated based on the current ECG data. Both types of templates were 161 

samples in length to encompass the entire rat PQRST cardiac cycle. 

A sliding window was passed across the ECG signal, and a correlation coefficient 

was computed between the template and the ECG contained within each window of equal 

length. This process produced a new data series containing correlation coefficients rxy. 
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The correlation coefficient between two N length segments of ECG x and y was 

computed using the following equation: 
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 (2.23) 

Computational speed of template matching was improved using three methods. The 

first method involved reducing the number of times the sliding window translated across 

the signal. By translating every third ECG sample instead of indexing one sample, 1/3 as 

many correlation coefficients were computed. Skipped rxy values were replaced using 

cubic spline interpolation. The second method involved parallelizing a portion of the 

template matching code for multi-core processor environments and implemented on a 

laptop (Intel Core Duo T2300 @ 1.66 GHz, 2 GB DDR2). The third method combined 

both the skip indexing and parallelized methods. Skipping samples, parallelizing code, 

and a combination of the two methods reduced computation time (17.2 s original) by 

approximately 64% (6.2 s), 58% (7.3 s), and 82% (3.16 s) respectively. These data are 

based on the results of 3 simulations of each technique using an ECG segment of 600,000 

samples and a template of 161 samples in length. 

If the correlation between template and ECG segment exceeded a defined threshold 

value a detection flag was set to high. This flag was held in a high state until rxy dropped 

below a defined lower threshold (see Fig. 14). High and low thresholds were set to 0.35 

and 0.4 respectively and were determined by personal judgment based on trial and error 

testing. A QRS complex was set as the largest rxy peak between any high and low 

mailto:T2300@1.66
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detection flag switches. This double threshold method helps eliminate multiple peak 

detections within a close vicinity of one another. 
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Fig. 14 – QRS detection using template matching. Plots include (a) example template 

used for QRS detection by template matching, (b) rat ECG with detected QRS 

complexes, (c) rxy data series and peaks detected using the double threshold technique, 

and (d) state of the detection flag used in the double threshold technique. 

 

5.2.5 HRV Analysis 

Twenty-seven HRV measures were used based on the recommended procedures in 

the literature. Time-domain HRV measures considered included mean IBI, mean HR, 

pNN10, SDNN, SDNNi, HRVti, and TINN. LF and HF power in absolute and 

normalized units were considered for both frequency-domain and time-frequency 

analysis. To quantify sympatho-vagal balance LFHF was considered using both 

frequency-domain and time-frequency analysis. Similarly, the global sympatho-vagal 

equilibrium was computed using the rLFHF measure. Finally, nonlinear HRV analysis 

included DFA-α1, DFA-α1, SD1, SD2, and SampEn. Table 5 summarizes options used for 

HRV analysis. 

 



66 

 

Table 5 – HRVAS Analysis Options for Hyperaldosteronism Datasets 

Analysis Parameter (value) or Method 

Ectopic Detection Std. Dev. (3), percent (20%) 

Ectopic Correction Remove ectopic 

Detrending Smoothness Priors (155) 

Time-Domain pNNx (10 ms), SDNNi (0.5 min), HRVti and TINN (32 bins) 

Freq.-Domain VLF (0-0.16 Hz), LF (0.16-0.6 Hz), HF (0.6-3 Hz), 

Interpolation Rate (10 Hz), Points in PSD (512 pts)  

Nonlinear SampEn (r=0.5 std, m=2) [133], DFA (n=4 to 64, Break Point 

=10) 

Time-Freq. Window (30 s), Overlap (15 s) 

 

5.2.6 Statistical Analysis 

In order to check the previously stated hypotheses, several statistical techniques were 

used. Descriptive statistics were firstly provided for each variable concerning the HRV 

for both control and treated groups. As the factors in this study are time and treatment, a 

two-factor repeated measures ANOVA was used to test the main effects of each factor on 

HRV measures in addition to possible interaction effects. The assumption of sphericity 

was checked by Mauchly’s test of sphericity. When the sphericity assumption was 

violated, epsilon measures were compared to the value 0.75. If epsilon values were under 

the level of 0.75, the Greenhouse-Geisser method was used to compute the F statistic. 

Otherwise F statistic was computed by the Huynh-Feldt method. Post hoc tests were also 

performed when the main effects were significant. For the case of significance of 

interaction, a one-factor, repeated measure ANOVA was done. In this special case, the p-
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values are compared with the value 0.05 divided by 2 or 0.025. Statistical analysis was 

performed using SPSS v16 (SPSS, Chicago, IL). 

5.3 Results 

Results of HRV analysis are summarized in Table 6. The following statistics are 

presented as mean ± standard deviation for control vs. ALDOST respectively. ANOVA 

results indicated significant differences in the treatment factor between the control and 

ALDOST group for mean HR (298.9±12.3 vs. 324.4±35.3). The main effect of time was 

found to be significantly different for the following HRV measures: mean IBI (187.6 

±22.4 vs. 202.0 ±15.3), mean HR (298.9 ±21.7 vs. 324.4 ±35.3), RMSSD (3.2 ±1.3 vs. 

3.7 ±1.7), SDNN (2.3 ±0.9 vs. 2.6 ±1.1), and SD1 (2.3 ±0.9 vs. 2.6 ±1.2). Similarly, there 

were significant interactions (time*treatment) found for mean IBI, mean HR and 

RMSSD. 

Mean IBI, mean HR, and RMSSD were further analyzed by one-factor repeated 

measures ANOVA because of significant interaction between time and treatment. The 

effect of time was significant (α=0.025) on mean IBI in both controls (p=0.002) and 

ALDOST (p=0.001) groups. The effect of time was also significant on mean HR in both 

controls (p=0.002) and ALDOST (p=0.006) groups. Finally, the effect of time was not 

significant on RMSSD in controls (p=0.146) but was significant in ALDOST (p=0.005). 
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Table 6 – HRV Anaylsis Results for Hyperaldosteronism Datasets 

p-

between

Measure (units) Time Time*Treat Treatment Mean ± SD Mean ± SD

MeanIBI (ms) *** *** ns 202.02 ± 15.28 187.62 ± 22.39

MeanHR (bpm) *** *** * 298.91 ± 21.72 324.35 ± 35.31

pNN10 (%) ns ns ns 1.38 ± 2.80 2.39 ± 4.95

RMSSD (ms) * ** ns 3.18 ± 1.25 3.70 ± 1.72

SDNN (ms) * ns ns 2.31 ± 0.93 2.58 ± 1.14

SDANN (ms) ns ns ns 2.17 ± 0.86 2.44 ± 1.04

HRVti ns ns ns 7.72 ± 2.97 7.32 ± 2.38

TINN (ms) ns ns ns 6.30 ± 2.95 6.34 ± 2.90

aLF (ms
2
) ns ns ns 0.03 ± 0.03 0.02 ± 0.02

aHF (ms
2
) ns ns ns 0.15 ± 0.07 0.13 ± 0.06

aTotal (ms
2
) ns ns ns 0.19 ± 0.09 0.16 ± 0.07

nLF (n.u.) ns ns ns 0.17 ± 0.10 0.14 ± 0.07

nHF (n.u.) ns ns ns 0.83 ± 0.10 0.86 ± 0.07

LFHF (ratio) ns ns ns 0.23 ± 0.18 0.18 ± 0.12

aLF (ms
2
) ns ns ns 2.52 ± 2.83 2.74 ± 3.07

aHF (ms
2
) ns ns ns 10.53 ± 8.90 14.95 ± 15.44

aTotal (ms
2
) ns ns ns 13.85 ± 11.94 18.50 ± 18.89

nLF (n.u.) ns ns ns 0.18 ± 0.10 0.15 ± 0.06

nHF (n.u.) ns ns ns 0.82 ± 0.10 0.85 ± 0.06

LFHF (ratio) ns ns ns 0.24 ± 0.17 0.19 ± 0.09

rLFHF ratio) ns ns ns 0.03 ± 0.08 0.01 ± 0.01

SD1 (ms) ** ns ns 2.26 ± 0.88 2.62 ± 1.22

SD2 (ms) ns ns ns 8.02 ± 3.28 9.61 ± 3.21

SampEn ns ns ns 1.89 ± 0.45 1.76 ± 0.44

DFA-α1 ns ns ns 0.68 ± 0.20 0.64 ± 0.16

DFA-α2 ns ns ns 1.35 ± 0.16 1.39 ± 0.12

ns = not significant,  * = p<0.05,  ** = p<0.01,  *** = p<0.005

p-                        

within

Nonlinear

AldoControl

Time Domain

Freq. Domain

Time-Freq
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5.4 Discussion 

The majority of HRV measures showed no significant differences between treatment 

groups, effect of time, or their interaction. The five measures (mean IBI, mean HR, 

RMSSD, SDNN, and SD1) that did show significance could be questioned because of 

overlapping standard deviations, abrupt shifts in measured variability,  (see Appendix B) 

and/or consideration of study limitations. First, the mean value of all five significant 

HRV measures obtained at week eight of aldosterone treatment has a relatively large 

deviation from the previous weeks (see Appendix B). Mean IBI, SDNN, RMSSD, and 

SD1 abruptly deflects to higher values while mean HR deflects to lower values. For mean 

IBI and mean HR this deviation could be explained if an exponential response to 

treatment was expected. Also, an increasing and decreasing linear time response to 

control treatments can be observed in both mean IBI and mean HR measures respectively 

(see Appendix B). However, control conditions were expected to produce no significant 

changes with respect to time. 

Other factors and limitations are likely responsible for the unexpected significances in 

HRV. The foremost limitation to consider was the small sample size. Another limitation 

was the method used for choosing a single 10-minute IBI interval from 7 hours of ECG 

data. As discussed before, segments were chosen based on HR and ectopic interval 

criteria. The segment of lowest HR was assumed to be the segment of least movement 

and was chosen to keep the level of activity between subjects as constant as possible. 

This was a suggestion made by other HRV authors [134]. Ideally all ECG would be 

recorded during controlled and repeatable environmental and physiological conditions, 

but the available data were from previous work. Alternatively, one could segment ECG 
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using activity levels or EEG sleep stages as discussed below. Again, neither of these 

parameters was available.  

Another limitation that may have contributed to the unexpected significances was the 

inability to control for effects of sleep stages on HRV. Others have shown that, in 

humans, the sleep stage determined via EEG can affect HRV [135-139]. Because no EEG 

data were present, a possible solution could be to perform HRV analysis on 12 or 24 

hours of IBI in an effort to average out any effect of sleep cycles. Using such long data 

series increase the probability of non-stationarities. However, time-frequency and certain 

nonlinear HRV analysis methods obviate non-stationarities. During this stage of the 

study, the computing resources to perform HRV analysis on 12 or 24 hours of rat IBI data 

were not available. 

Physiological changes seen from a rat hyperaldosteronism model are possibly not 

significant enough to elucidate the reduction of HRV seen in complete CHF of humans. 

If HRV changes exist in CHF populations but not in the hyperaldosteronism rat model, 

then the HRV changes seen in human CHF may be primarily due to neural related 

changes and not cardiac remodeling. The hyperaldosteronism studies consider 

cardiovascular changes and little if any neural change. As noted in Chapter 1.2 

cardiovascular performance and neural control are closely interlinked. 

There also exists the possibility that “variability” is altered in the presented model but 

not detectable using the current methods. Let us assume that physiological changes do 

exist in the rat hyperaldosteronism model and that these changes do affect variability 

within the heart firing sequences. Perhaps the changes in variability, calculated using the 

current methods, are lost due to condensing of all cardiac events into a single time point 
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(the R-wave). Any changes in sub-beat variability such as the PR, QRS, or QT interval 

may be lost by only considering RR interval variability.  

Finally, as with most animal models of human pathophysiology, there can be 

concerns of comparing two different species and whether the model is representative. 

Some authors consider the physiological origins or meanings of HRV in rats to be similar 

to that in humans [67] but with varying working parameters. For instance, the oscillations 

seen in spectral based HRV measures, e.g. RSA and Mayer, are present in both rat and 

human but centered at differing frequencies. No one has yet to verify the significance of 

most HRV measures, particularly nonlinear measures, between species. 

5.5 Conclusion 

The rat hyperaldosteronism model of HF in the study was generally unable to 

reproduce the changes in HRV expected based on other HF studies. Given that 

improvements are made to the protocol and/or more research is done to improve the 

understanding of HRV in rats compared to humans, the model could prove useful in 

future HRV research. 
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6 Summary and Conclusions 

HRVAS provides researchers an easy to use graphical user interface, several formats 

for importing data, batch processing, and tools for exporting. Analysis features of 

HRVAS include IBI preprocessing, time-domain, frequency-domain, time-frequency, and 

nonlinear HRV analysis. Researchers also have the ability to completely customize the 

source code to suit their personal preferences or study needs. These usability and analysis 

features are all useful in studying HRV. 

Software evaluations of HRVAS using simulated data and public CHF data helped to 

demonstrate its accuracy and worth as a HRV analysis tool. Application of HRVAS to 

study HRV in rat hyperaldosteronism models further displayed value of its use as a viable 

HRV analysis tool for researchers and future interdepartmental research. 
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Appendix A – HRVAS Analysis Modules 

 

Fig. 15 – Analysis Options Module 
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Fig. 16 – Time-domain Analysis Module 

 

 

Fig. 17 – Frequency-domain Analysis Module 
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Fig. 18 – Poincaré Analysis Module 

 

 

Fig. 19 – Nonlinear Analysis Module 
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Fig. 20 – Time-frequency Analysis Module 
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Appendix B – Additional Statistics 

 

Table 7 – Test of Within-Subjects Contrast for mean IBI 

Treatment Fit Sig 

Control Linear 0.001 

 Quadratic 0.694 

 Cubic 0.457 

 Order 4 0.079 

Aldost Linear 0.000 

 Quadratic 0.008 

 Cubic 0.059 

 Order 4 0.018 

 

 

Table 8 – Tests of Within-Subjects Contrast for mean HR 

Treatment Fit Sig 

Control Linear 0.000 

 Quadratic 0.670 

 Cubic 0.476 

 Order 4 0.066 

Aldost Linear 0.001 

 Quadratic 0.018 

 Cubic 0.086 

 Order 4 0.021 
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Table 9 – Tests of Within-Subjects Contrast for RMSSD 

Treatment Fit Sig 

Control Linear 0.076 

 Quadratic 0.208 

 Cubic 0.517 

 Order 4 0.666 

Aldost Linear 0.372 

 Quadratic 0.049 

 Cubic 0.023 

 Order 4 0.129 

 

 

Table 10 – Tests of Within-Subjects Contrast for SDNN 

Treatment Fit Sig 

Control Linear 0.062 

 Quadratic 0.235 

 Cubic 0.657 

 Order 4 0.677 

Aldost Linear 0.397 

 Quadratic 0.062 

 Cubic 0.019 

 Order 4 0.251 
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Table 11 – Tests of Within-Subjects Contrast for SD1 

Treatment Fit Sig 

Control Linear 0.082 

 Quadratic 0.185 

 Cubic 0.512 

 Order 4 0.687 

Aldost Linear 0.392 

 Quadratic 0.048 

 Cubic 0.021 

 Order 4 0.128 
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Fig. 21 – Distribution of mean IBI by treatment time and treatments group 
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Fig. 22 – Distribution of mean HR by treatment time and treatments group 

 

 

Fig. 23 – Distribution of RMSSD by treatment time and treatments group 
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Fig. 24 – Distribution of SDNN by treatment time and treatments group 
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Fig. 25 – Distribution of SD1 by treatment time and treatments group 
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