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Abstract 

Han, Lu. M.S. The University of Memphis. August/2010. Implementation of 
AutoTutor Lite. Major Professor: Mohammed Yeasin. 

The Intelligent Tutoring System (ITS) is a very efficient form of e-Learning, but 

most of the current existing ITSs usually require advanced computational 

resources and specialized client software installation. Thus, there is a need for 

an ITS that is accessible online and is less computationally demanding. The 

immediate objective of this thesis is to describe the implementation of an online 

tutoring system that requires fewer computational resources. This system is 

called AutoTutor Lite, which runs in a web browser. Another objective is to use 

the Learner’s Characteristics Curves (LCC) as the evaluation method in 

AutoTutor Lite. By utilizing the semantic representation, the LCC technology is 

successfully integrated into AutoTutor Lite. In the final system test and evolution, 

AutoTutor Lite meets all the design requirements, and LCC plays an important 

role in the system.  
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Chapter 1 Introduction 

The concept of an Intelligent Tutoring System (ITS) was first proposed in 

1970 in order to provide a highly efficient form of e-Learning (Carbonell, 1970). 

After decades of research, many successful ITSs have been designed and 

developed. Most of the existing ITSs produced combine well understood human 

learning principles with computer technology to achieve maximum learning. 

Typically, ITSs start as research projects in a university or institute for academic 

research purposes, so the nature of such systems and implementation methods 

produces highly effective learning systems, but also introduces difficulties when 

scaling up. Furthermore those systems usually require advanced computational 

resources and specialized client software installation. For example, AutoTutor 

(Graesser, et al., 2004), an exemplar of ITS, has a specialized client installation 

and requires intensive computation for the backend language space. All of these 

reasons prevent people from using ITS widely and also influence the growth of e-

Learning markets. However, new technologies like Rich Internet Applications 

(RIAs) make it possible to solve these problems. It enables researchers and 

developers to create new ITSs in a simpler and more productive way. Therefore, 

the goal of this study is to address the implementation of a lightweight and more 

efficient version of an ITS, namely AutoTutor Lite.  

Another problem that exists is that most ITSs cannot easily take 

advantage of the learner’s previous contributions or tutoring history. For example, 

when the learner constantly repeats previous answers, the tutoring systems have 

difficulty providing accurate feedback.  The Learner’s Characteristic Curves 
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(LCC) (Hu & Martindale, 2008) technology is used to evaluate the learner’s 

performance by tracking and comparing the learner’s previous and current 

contribution. Therefore, another objective in this study is to utilize LCC as the 

evaluation method in the AutoTutor Lite in order to provide better performance. 

The following two questions/issues are explored in the thesis:  

1. Is it possible to develop an ITS deliverable online using the latest Rich 

Internet Application (RIA) technology?  

2. How can LCC be used as a simple student model for such a version of 

ITS, namely AutoTutor Lite?  

This study provides a solution to the above questions. Specifically, it is 

primarily focused on technical details; hence the final outcome of the study is the 

implementation of a prototype ITS developed on the Flash platform, namely 

AutoTutor Lite, that answers the above questions.  At the same time, the LCC 

technology is used in AutoTutor Lite to evaluate the learner’s performance. When 

the system was tested on pre-defined test case scripts, its behavior and 

response were as expected. 

Since an ITS is not a traditional computer application, many factors 

beyond technology affect the system performance. For example, there are many 

content related parameters like learning thresholds and dialogue turn limits. A 

good pre-defined learning threshold can give the learner proper challenges and 

encouragements. Therefore, those parameters should be well-defined according 

 to the content, knowledge level of the learner, and learning environment in order 

to challenge and encourage the learner properly. In the implementation of 
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AutoTutor Lite, those parameters are defined just for the system functionality 

test. Therefore future experimentation is needed to setup those parameters in 

order to tune up the system performance. 

Another issue that needs to be discussed further is the LCC technology, 

as it is a powerful indicator of the learner’s performance in AutoTutor Lite. 

Additionally, I haven’t made complete use of the LCC outputs. Some AutoTutor 

data and further experiments are needed to take full advantage of the LCC 

technology. 
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Chapter 2 Literature Review 

In this chapter, a discussion about the ITS and its related theories and 

technologies will be made. Also the AutoTutor, one successful exemplar ITS from 

which AutoTutor Lite borrows features, will be reviewed. 

ITS: Intelligent Tutoring System   

Ong and Ramachandran (2003) defined the Intelligent Tutoring System as 

“A virtual training assistant that captures the subject matter and teaching 

expertise of experienced trainers provides a captivating new option” (p. 2). It has 

been studied and researched for decades by people from different backgrounds, 

such as education, psychology, and computer science. 

Intelligent tutoring systems date from the Artificial Intelligence (AI) 

research in the late 1950’s. Some famous researchers such as Alan Turing, John 

McCarthy, and Marvin Minsky attempted to make a computer act and respond 

like a human (Turing, 1950). Based on the rapid evolution of computer 

technology - especially the AI technology - researchers found that by utilizing the 

power of computers, machines can emulate human thinking. With further 

research, the machine could perform any task human associated with human 

thought, especially instruction. 

Benjamin Bloom (1984) defined the “two sigma problem”. In his 

experiments, he observed that average students who received one-on-one 

tutoring performed two standard deviations better than students who received  
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traditional classroom instruction. In other words, the experiments indicated the 

importance of individual instruction and tutors to the students’ learning process, 

particularly in problem-solving domains. Based on the research and development 

of AI, people tried to capture the effective behaviors and responses of human 

tutors and create an optimal form of e-Learning  using computer AI technologies 

in tutoring, teaching, and training (Carbonell, 1970). 

ITS is used in Computer-Based Training (CBT) and Computer-Based 

Learning (CBL). Some researchers found that compared to traditional human 

tutors, ITS not only inherited features from e-Learning, but also provided better 

assistance and more apparent intervention under certain conditions (Merrill, 

Reiser, Ranney, & Trafton, 1992). ITS is now widely used in traditional education, 

military training, and industry training. For example the Carnegie Learning 

Algebra Tutor (Anderson J. R., 1992) is one of the most widely used ITS in 

school. If, under certain conditions, a carefully designed ITS can be as effective 

as human tutors, it will have substantial benefits for society (Corbett, Koedinger, 

& Anderson, 1997). 

Natural language is one of the best choices when the system 

communicates with the user. It is also more efficient for knowledge presenting 

and authoring. Therefore, when an ITS processes the information and prepares 

feedback or instruction, it may use natural language. Additionally, domain 

knowledge can be provided to the ITS in natural language.  

Here are some existing ITSs developed in recent years:  
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1. Stottler Henke Associates, Incorporated (SHAI) developed a simulation-

based ITS for U.S. Navy officer tactical training. This ITS is used as part of the 

Tactical Action Officer (TAO) training program in high-level tactical skills (Stottler, 

2000). 

2. Carnegie Learning developed a suite of ITS-based "cognitive tutors" in 

secondary-level math subjects (Anderson, Corbett, Koedinger, & Pelletier, 1995). 

3. AutoTutor, developed by University of Memphis, helps students learn by 

holding a conversation in natural language.  It appears as an animated agent that 

acts as a dialog partner with the learner (Graesser, Chipman, Haynes, & Olney, 

2005). 

In terms of system behavior, all of the above ITSs are similar, even though 

they may focus on different topics or different fields. In terms of technology or 

architecture, those systems were implemented in different ways because there is 

no constraint on what kinds of technologies developers may use to build an ITS. 

 
Autotutor: An Successful Exemplar of ITS  

In the study, AutoTutor is used as an exemplar ITS. All the discussions 

and research on ITS are primarily based on the AutoTutor.  

With one or more talking heads, AutoTutor acts as an agent that simulates 

a human tutor by making dialogues with a learner in natural language (Graesser, 

Jackson, & McDaniel, 2007). It is an intelligent tutoring system developed by 

researchers at the Institute for Intelligent Systems at the University of Memphis. 

Currently there are several versions of AutoTutor for different topics: The 

computer literacy version is designed to help students learn basic computer 
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literacy topics covered in an introductory course (e.g., hardware, operating 

systems, and the Internet) (Graesser, VanLehn, Rose, Jordan, & Harter, 2001). 

The conceptual physics version is designed to help students learn Newtonian 

physics (VanLehn et al., 2007). Critical Thinking is a version of AutoTutor that 

aspires to teach scientific inquiry skills to students (Graesser et al., 2008). 

ARIES(Acquiring Research Investigative and Evaluative Skills) is a newer 

version of AutoTutor which teaches scientific inquiry by a trialogue among two 

animated agents and the human learner. It is an extension of the previous Critical 

Thinking AutoTutor (Millis et al., 2006).  

AutoTutor works by having a conversation with the learner. AutoTutor 

appears as an animated agent that acts as a dialog partner to the learner. The 

animated agent delivers AutoTutor's dialog moves with synthesized speech,  

intonation, facial expressions, and gestures. Students are encouraged to 

articulate lengthy answers that exhibit deep reasoning, rather than to recite small 

bits of shallow knowledge. For some topics, there are graphical displays and 

animations.  

In the interface module, AutoTutor includes one or two agents according 

to the versions, which are created in Curious Labs Poser 4 and are controlled by 

the Microsoft® speech engine. In the later version, ARIES, there are two agents 

created by Media Semantics, Inc. For the expert or domain module, AutoTutor 

puts all problems and answers into a particular domain which is organized in a 

curriculum script. For each problem, the curriculum script contains an ideal 

answer, expected good answers, misconceptions, anticipated question-answer 
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pairs, a list of important concepts, and all problem-related dialog moves. The 

problem-related dialog moves currently being used by AutoTutor are Hint, 

Prompt, Prompt Completion, Pump, Assertion, Summary, and Feedback 

amongst others. Here is an example conversation between the AutoTutor and a 

relatively verbose, knowledgeable student about Computer literacy (Graesser, 

Wiemer-Hastings, Wiemer-Hastings, Kreuz, & TRG, 1999). 

AutoTutor: When you turn on the computer, how is the operating system first 
activated and loaded into RAM? 

When the computer is turned on a file is automatically booted up. 
AutoTutor: Anything else? 
This file contains the operating system. 
AutoTutor: What else? 
The operating system is then read into RAM and activated. 
AutoTutor: Right. The CPU executes instructions in ROM, which help the 

operating system to start. 
After being read to ROM the OS is activated. 
AutoTutor: Right. Let’s review what we’ve just gone over. The operating 

system must first be stored on the hard disk. When you turn on the computer, the 
CPU executes instructions stored in ROM. These instructions help boot the operating 
system. The operating system is then loaded from the hard disk into RAM.  

 
 

More specifically speaking, AutoTutor is comprised of the following 

modules and utilities (Mathews, Jackson, Olney, Chipman, & Graesser, 2003). 

1. Language Analysis module 

2. Assessment module 

3. Dialog Management module 

4. Logging module 

5. Avatar/Client module 

6. Speech act classification module (SAC) 

7. Latent Semantic Analysis (LSA) utility 

8. Question answering utility 
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9. Curriculum script utility 

10. Parser utility 

11. Log utility 

 

 

Figure 1. AutoTutor Basic Architecture (Graesser, Chipman, Haynes, & Olney, 
2005, p. 615) 

 

Figure 1 illustrates the basic architecture of AutoTutor and its modules and 

utilities. Among those modules and utilities, especially for the research in this 

thesis concerning AutoTutor Lite, the most relevant modules are Avatar/Client 

Module, Dialog Management module, Assessment Module and Latent Semantic 

Analysis (LSA) utility. 

1. The Avatar/Client Module contains an animated agent on screen during 

the entire tutoring session for gestures, emotions, and voice delivery. It is created 

in Curious Labs Poser 4 and controlled by Microsoft Agent (Mathews et al., 
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2003). The dialog during the tutoring session is synchronized with the agent’s 

emotions, gestures, and speech (Person et al., 2000). 

2. The Dialog Management module, or Dialog Advancer Network (DAN) 

manages the conversation that occurs between a student and the AutoTutor. 

This module is comprised of a set of customized dialog pathways that is tailored 

to a particular student’s speech act categories. It enables AutoTutor to adapt 

each dialog move to the preceding student turn and respond appropriately. A 

pathway may include one or a combination of the following components: 

Discourse markers (e.g., "Okay" or "Moving on"), AutoTutor dialog moves (e.g., 

Positive Feedback, Pump, or Assertion), Answers to questions, or Canned 

expressions (e.g., "That's a good question, but I can't answer that right now"). For 

each topic in AutoTutor, knowledge is divided into several parts, called 

expectations (Graesser et al., 2005). AutoTutor guides the student in articulating 

the expectations through a number of dialogue moves. AutoTutor Dialog moves 

mainly contain pumps, hints, prompt and assertions and it follows a particular 

order: Pump, Hint, Prompt, Assertion then Pump, Hint, Prompt and Assertion 

(Graesser et al., 2004). As long as the student satisfies the expectations, 

AutoTutor will exit the cycle. 

There are two types of pumps in the Dialog moves. The first, specific 

Pumps, are associated with the specified dialog topic (like "What else do you 

think about XXX?"). They are used to encourage the students to type more. The 

second pumps are General Pumps (like “what else?”) which are used to get the 

student to do more talking as well as specific pumps. 
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Hints and Prompts are for the student to fill in missing words. Hints and  

prompts are carefully selected in the expert module to produce content in the 

answers that fill in missing content words, phrases, and propositions.  For 

example, a Hint to get the student to articulate the expectation “The magnitudes 

of the forces exerted by the two objects on each other are equal” might be “What 

about the forces exerted by the vehicles on each other?” This Hint would ideally 

elicit the answer “The magnitudes of the forces are equal.” A prompt to get the 

student to say “equal” would be “What are the magnitudes of the forces of the 

two vehicles on each other?” AutoTutor adaptively selects those Hints and 

Prompts that fill missing constituents and thereby achieves pattern completion 

(Graesser et al., 2004). 

Assertions are used when students cannot fill in the content of an 

expectation after multiple conversational turns. AutoTutor will simply express the 

expectation as an Assertion.  

AutoTutor ends up generating a high proportion of Pumps and Hints for 

articulate students with high knowledge but more Prompts and Assertions for low 

verbal, low knowledge students. This is because students with high knowledge 

tend to talk more by Pumps and Hints, while students with low knowledge tend to 

learn more through Assertions (Jackson, Mathews, Lin, Olney, & Graesser, 

2003). After a multi-turn dialog move, all the expectations will be covered, and 

the main question is answered and evaluated (Graesser, Jeon, Yang, & Cai, 

2007). 

3. The Assessment Module uses Latent Semantic Analysis (LSA) utility to  
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assess students’ contributions and evaluate students’ performances. AutoTutor’s  

Assessment module compares the material in the curriculum script to students’ 

contributions using LSA, which measures the conceptual similarity of the two text 

sources (Mathews et al., 2003). 

 
LSA: Latent Semantic Analysis 

Before moving on to the next discussion, a brief review of Latent Semantic 

Analysis talked about previously will be given. 

Landauer, Foltz and Laham (1998) first defined the Latent Semantic 

Analysis as "a theory and method for extracting and representing the contextual-

usage meaning of words by statistical computations applied to a large corpus of 

text” (p. 259). It was originally introduced for information retrieval (Deerwester, 

Dumais, Furnas, & Landauer, 1990). 

Based on the analysis of  a large collection of corpus, Latent Semantic 

Analysis (LSA) uses points in a very high dimensional semantic space to 

represent a single word and any set of words-such as sentences, paragraphs, or 

essays- either taken from the original corpus or new. One of the key aspects of 

LSA is the vector representation. In other words, any single word or collection of 

words in the semantic space can be represented as a vector in the LSA space, 

and they can also be considered as the points in the high dimensional semantic 

space. A lot of natural language analysis can be done based on the vector 

representation. Landauer, Foltz and Laham (1998) also mentioned that "Word 

and passage meaning representations derived by LSA have been found capable 

of simulating a variety of human cognitive phenomena, ranging from acquisition 
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of recognition vocabulary to sentence-word semantic priming and judgments of 

essay quality" (p. 260).  

One important concept in LSA is the term “weight”, which will be used in 

later discussion. It represents the relative frequency of a term in the corpus of 

text. Higher frequency terms are often function words, which primarily have a 

syntactic rather than semantic role in language, while those words with lower 

frequency are usually content words which play the semantic roles in language 

(Riordan & Jones, 2009). Therefore, in the LSA, lower frequency terms usually 

have a higher weight while higher frequency terms usually have a lower weight. 

For example, in the sentence “I am a student”, “I”, “am” and “a”, which are used 

more in daily life, would appear more in corpus of text, while “student” appears 

less in the corpus. The weights of “I”, “am” and “a” from LSA space will be lower 

than the weight of “student”.  This is more representative of how these words 

used in daily life. 

Another concept that is used in later discussion is the nearest neighbor 

term. After processing a large collection of corpora, LSA can represent the words 

used in them. Any single term or set of terms like phrases, sentences or  

paragraphs - either taken from the original corpora or new - could be represented 

by very high dimensional vectors. Therefore, the similarity between different 

terms can be measured by the cosine value of the vectors, and the nearest 

neighbor term of the target term can be defined as the term with related vector 

 
 has the highest cosine value with the target term related vector. 
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 The goal of this thesis is to focus on the utilization of LSA data in LCC 

and AutoTutor Lite, so the review of LSA is stopped here. More information about 

LSA can be found from the references. 
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Chapter 3 AutoTutor Lite Architecture 

The architecture of AutoTutor Lite follows the general architecture of ITS 

but also has some differences. Usually an ITS architecture includes four 

modules: the interface module, the expert module or domain module, the tutor 

module, and the student module (Martha Campbell Polson, 1988). 

 The interface module is used by students to interact with the ITS. In most 

cases, it is a graphical user interface. Sometimes this module will play a multi-

media simulation of what the students are learning (e.g., Physics topic: Throw a 

pumpkin) to illustrate the domain knowledge. In AutoTutor Lite, Flash UI 

components are mainly used as interface module. It is used to present 

knowledge to the user and receive the user’s response. Therefore, the 

communication between the user and the system is handled in this module.   

The expert module or domain module contains the domain knowledge. 

Domain knowledge is the material that represents expertise in the problem 

domain the ITS is teaching. It should have an abundance of specific and detailed 

knowledge derived from people who have years of experience in a particular 

domain (Martha Campbell Polson, 1988). In AutoTutor Lite, the domain 

knowledge is stored on the host server in XML format. The Content Handler 

Module in AutoTutor Lite is responsible for managing the domain knowledge. 

The tutor module sends the corresponding feedback to the students and  

the next action to the interface module after receiving the information about the 

mismatches, just like what a human tutor would do in such situations. In 

AutoTutor Lite, the design of the tutor module is adopted from AutoTutor. By 
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referring to the pre-defined reaction rules, the tutor module in AutoTutor Lite will 

send out feedback and next action. 

The student module is one of the most important modules in an ITS. The 

performance of the whole system relies heavily on this module. It contains the 

descriptions of students’ knowledge and responses. According to Clancey and 

Soloway (1990), its basic responsibility is to deliver to the tutor module “an 

interpretation of a piece of behavior in terms of the various sequences of 

production rules that might have produced that piece of behavior” (p. 34). During 

the tutoring process, mismatches between students’ responses and knowledge 

and the experts’ pre-provided responses and knowledge are used to decide the 

next action of the system. In AutoTutor Lite, the LCC technology is used in the 

student module to evaluate the student’s responses, which are semantically 

represented. Therefore, the LCC Analysis module and Evaluation module are 

working together in AutoTutor Lite as the student module. 

The following discussion is focused on the design of the student module 

around the LCC, Semantic Representation, and the LCC in Evaluation. 

 
LCC: Learner's Characteristic Curve  

Consider a typical scenario in human tutoring where a tutor asks the 

student to answer a question that requires an elaborate verbal answer. Most 

often, students may not have the complete answer. What would be a reasonable 

way for an ITS to react to a sequence of incomplete answers? We consider two  

types of tutoring strategies: proactive tutoring and reactive tutoring. In proactive 

tutoring, the tutor will give the student some instructional feedback or 
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suggestions in order to guide the student to find the ideal answer. That is what 

AutoTutor does.  In reactive tutoring, the tutor only provides the evaluation result 

of a student's answer, such as “good” or “bad”. The Learner's Characteristic 

Curves (LCC) (Hu & Martindale, 2008) is a technology for reactive tutoring. It can 

provide an evaluation feedback based on a student's answer and the ideal 

answer. Though LCC presents the strategy of reactive tutoring, it can also be 

used in active tutoring to evaluate a student's answer and help the tutoring 

system provide more accurate instructional feedback. Figure 2 is the screenshot 

of LCC. 

 

Figure 2. Screenshot of Standalone LCC Demo 

The concept behind LCC is as follows:  
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1. Assuming there are three data sets at the beginning - expected 

contribution, learner’s current contribution, and learner’s previous contribution: 

a. The expected contribution data set contains the instructional 

content or expected answers. 

b. The learner’s current contribution data set only contains the 

learner’s input after the last submission. 

c. The learner’s previous contribution data set contains the learner’s 

cumulative inputs through and including the last submission. At the beginning of 

the tutoring, it may be empty since no input has been provided. 

2. Represent the contributions by semantic vectors. (Keywords/Weighted 

Keywords/Extended Weighted Keywords semantic representation will be 

discussed in the later chapter.)  

3. Find the overlaps of the three sets of data by using the matching method 

to compute the similarity among the three data sets. (There are several ways to 

compute the similarity which will be discussed in later chapters). 

 

 

Figure 3. LCC RN, RO, IN and IO Demonstration 
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Therefore,  like in Figure 3 each current contribution can be categorized 

as in the Table 1: 

Table 1  

LCC RN, RO, IN and IO Table 

 Old New 

Relevant R-O R-N 

Irrelevant IR-O IR-N 

 

Because the current contribution is divided into 4 sets, only 3 of the sets 

are independent. In other words, if any 3 sets of the contribution are given, the 

missing set could be recovered. 

4. By analyzing the learner’s current contribution turn by turn, 4 sets of data 

will be available: Relevant and New, Relevant and Old, Irrelevant and New, 

Irrelevant and Old. Visualizing the 4 sets of data, the following 4 curves, which 

are the so called Learner’s Characteristics Curves, could be drawn. 
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Figure 4. LCC Curve Demonstration 

5. Based on the characteristics curves in Figure 4, provide feedback to the 

learner. 

It is understandable that a human tutor would offer positive feedback when 

a student is constantly providing relevant and new (RN) contributions. 

Furthermore, if a student is actively constructing relevant answers, one would 

see a non-decreasing value for the (RN) in a sequence of responses. In the 

same fashion, other cells can be used as an indication of a student's knowledge. 

For example, an increasing value for the (IN) would indicate a lack of relevant 

knowledge. 

Semantic Representation  

As stated in the discussion above, one important pre-requisite in LCC is 

the Semantic Representation . In LCC there are three ways to semantically 

represent the contributions: keyword representation, weighted keyword 
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representation, and extended weighted keyword representation (Hu, Cai, 

Wiemer-Hastings, Graesser, & McNamara, 2007). The pumpkin problem 

example from AutoTutor will be used in the following semantic representation to 

illustrate the differences among each semantic representation. 

The following processing will be applied to each term in Current 

Contribution, Previous Contribution, and Expected Contribution before they are 

semantically represented. 

1. Assuming all the terms from the contributions exist in the same semantic 

space. Each term is indexed by an integer  , where   ranges from 1 to the total 

number of terms in the semantic space, say  . 

2. Equivalently, each term ( th) can be represented as an  -dimensional 

vector such that all the elements of the vector are zero, except the  th element. 

3. The semantic representation for a collection of terms like phrases, 

sentences, and paragraphs will be the sum of vectors for each term. 

Keyword Representation is the simplest semantic representation. It only 

considers the existence of the term. The value of the  th element in the 

corresponding vector for each term is 1. 

Example: The pumpkin will move the same.  

Terms in keyword representation (Duplicates are removed):  

the, pumpkin, will, move, same  

In semantic space the vector representation will be the sum of all term 

vectors, like the vector in Equation 1. 
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Weighted Keyword Representation will consider the weight information for 

each term in addition to the existence of the term. Each term is weighted by a 

value between 0 and 1. The value is determined by the relative frequency of 

each term in the LSA space. The higher the frequency of a term is, the lower the 

value is. In the implementation, the weight information is coming form TASA 

(Touch-stone Applied Science Associates) LSA space. In other words, the 

nonzero elements in the vector representation in the semantic space are real 

numbers between 0 and 1 instead of having 1 for the nonzero elements in Table 

2, as they are in "Keyword Representation". 

Example: The pumpkin will move the same.  

Weighted Keyword representation (Duplicates are removed):  
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Table 2  

Weighted Keyword Representation Example 

Word Weight 
the 0.008165 
pumpkin 0.67533 
will 0.131253 
move 0.267978 
same 0.172617 

 

In LCC semantic space, the vector representation will be the sum all 

existing term vector, and the value for non zero term dimensions will be the 

weight for the corresponding terms, like the vector in Equation 2: 

 

 =

⎝⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎛

 000…0.0081650.675330 0 0.131253……0.267978  0.172617  …000…
⎠⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎞

 

 

Equation (2) 
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Extended Weighted Keyword Representation is based on weighted 

keyword representation. In addition to Weighted Keyword Representation, 

Extended Weighted Keyword Representation also represents the information of 

nearest neighbor terms and their weights of the existing terms. In the 

implementation, the number of nearest neighbor terms is up 9. This semantic 

representation can represent much richer information than the previous two. In 

AutoTutor Lite implementation, the Extended Weighted Keyword Representation 

is the default semantic representation. 

Example: The pumpkin will move the same.  

Extened Weighted Keyword representation (Duplicates are removed):   
 

Table 3  

Extended Weighted Keyword Representation Example 

Word Weight Word Weight Word Weight Word Weight Word Weight 
the 0.008165 pumpkin 0.67533 will 0.131253 move 0.488872 same 0.172617 
of 0.625410 vegetable 0.448989 continue 0.352125 vacate 0.934212 alike 0.421355 
this 0.571235 pie 0.569672 future 0.315445 shift 0.486437 similar 0.310399 
a 0.596546 squash 0.602953   walk 0.330017 like 0.119999 
and 0.570214 seed 0.518115   leave 0.302977 opposite 0.382836 
in 0.600245 orange 0.469565   motion 0.413654 equal 0.363444 
  halloween 0.658093   run 0.276726 different 0.191179 
  patch 0.519182   stop 0.294419 exact 0.442184 
  head 0.236682   haul 0.613292 thing 0.23982 
      go 0.177455 alike 0.421355 

 

In LCC semantic space, the vector representation will be the sum of all 

existing term vectors plus their neighbor term vector, and the value for nonzero 

elements in the vector will be the weight value of each corresponding term, like in 

Equation 3 
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 =

⎝⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎛

 

 000…0.0081650.67533  0.1312530.267978  0.172617  …00.1774550.330017…000.519182… ⎠⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎞

 Equation (3) 

 

Evaluation of Learner's Contribution using LCC  

The basic idea of evaluation of learner's contribution in LCC is to compute 

the similarity among the learner's current contribution, previous contribution, and 

expected contribution based on semantic representations. According to the three 

types of Semantic Representation, there are up to nine different evaluation 

methods, including cross semantic representation matching. However, the 

Keyword Representation doesn't contain any weight information although 1 could 

be considered as the weight value for elements in the vector representation. In 

order to reduce the time required for computation, it should not be used for 

matching with other two semantic representations. Therefore, only five matching 

types are used in the evaluation: keyword to keyword matching, weighted 

keyword to weighted keyword matching, weighted keyword to extended weight 
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keyword matching, extended weighted keyword to weighted keyword matching, 

and extended weighted keyword to extended weighted keyword matching. All five 

matching types are listed in Table 4. 

 
Table 4  

Semantic Representation Matching Matrix 

 Keyword 
Representation 

Weighted 
Keyword 
Representation 

Ext-Weighted 
Keyword 
Representation 

Keyword 
Representation 

O N/A N/A 

Weighted Keyword 
Representation 

 
N/A 

 
O 

 
O 

Ext-Weighted 
Keyword 
Representation 

 
N/A 

 
O 

 
O 

 

Keyword Matching is a matching method that only considers the shared 

keywords between two semantic representations. It is a traditional string 

matching method. The following 3 steps are used to decompose the current 

contribution into 8 parts (New, Old, Rel, Irr, RO, RN, IO, and IN) and calculate 

the LCC scores: 

1. Assuming the Current Contribution and Expected Contribution are already 

in form of keyword representation, when keyword matching is used in LCC, first 

find the shared keywords from Current Contribution and Expected Contribution, 

which form Relevant Contribution. The rest of the keywords from the Current 

Contribution are the Irrelevant Contribution when compared to the Expected 

Contribution. 
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Figure 5. LCC Rel and Irr Contribution 

 

Figure 6. LCC New and Old Contribution 

2. Apply the Keyword Matching to Relevant Contribution and Previous 

Contribution, Irrelevant Contribution and Previous Contribution. The matched 

keywords will be the RO Contribution and RN Contribution while the unmatched 

keywords will be the IO Contribution and IN Contribution. As a result, the 

learner's Current Contribution will be decomposed into RN, RO, IN and IO using 

LCC technology. 
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Figure 7. LCC R-N and R-O Contribution 

 

Figure 8. LCC I-N and I-O Contribution 

3. Finally, compute the score for each contribution. Because the keyword 

matching simply considers the existence of  keywords, the number of keywords 

in each contribution (RO, RN, IO, and IN) will be used as scores in each 

contribution of LCC. 

Weighted Keyword Matching and Ext-Weighted Keyword Matching are 

more complex than Keyword Matching in terms of LCC score computation since 

the weight information is considered. Some vector computation is needed.   
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The same steps as in Keyword Matching will be used to find the overlap of 

the contributions, the only difference being that the Current Contribution, the 

Expected Contribution and the Previous Contribution are in the form of Weighted 

Keyword Representation or Ext-Weighted Keyword Representation. Through the 

same procedure the current contribution will be decomposed into eight sets of 

contribution: New, Old, Rel, Irr, RO, RN, IO, and IN. Since in the semantic space 

those 8 collections of terms can be considered as 8 vectors, vector 

representations will be used to calculate the LCC scores. Here are the definitions 

of the LCC scores: 

RO Score: 

cos(   ,    ) =    ⋅     (   ⋅    ) ∗ (   ⋅    ) Equation (4) 

 
RN Score:  

    cos(   ,   ) =    ⋅     (   ⋅    ) ∗ (   ⋅    ) Equation (5) 

 
IO Score:  

cos(   ,    ) =    ⋅     (   ⋅    ) ∗ (   ⋅    ) Equation (6) 

 

IN Score:  

cos(   ,    ) =    ⋅    (   ⋅    ) ∗ (   ⋅   ) Equation (7) 
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According to the principle of the dot product, the LCC score definitions can 

be simplified as follows: 

RO Score: 

cos(   ,   ) =   ⋅    (   ⋅    ) ∗ (   ⋅    ) Equation (8) 

 
RN Score:  

   cos(   ,    ) =   ⋅    (   ⋅    ) ∗ (   ⋅   ) Equation (9) 

 
IO Score:  

cos(   ,   ) =   ⋅    (   ⋅    ) ∗ (   ⋅    ) Equation (10) 

 
IN Score:  

   cos(   ,   ) =   ⋅    (   ⋅    ) ∗ (   ⋅   ) Equation (11) 

 
Here is a simple example script: 

Question: What will you see and do when you visit Memphis? 
Target Answer: You will get BBQ Ribs from Corky's. You will be able to visit the 

Human Rights Museum. There is a great university in Memphis. You may also watch a 
basketball game in FedEx Forum. Downtown Memphis is also a fun place to be. You will 
never want to miss the Peabody Museum. The Peabody Hotel ducks will make you 
never forget your visit. 

Previous Contribution:  Visit Fedex forum. Eat fish and fried chicken. Try BBQ 
and ribs, stay near Mississippi River. 

Current Contribution: Visit University of Memphis and Fedex institute of 
Technology. 
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According to the definition equations, the LCC output scores are:  

RN Score: 0.3461 

RO Score: 0.4169 

IN Score: 0.2245 

IO Score: 0.0122 
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Chapter 4 Implementation of AutoTutor Lite 

The following tools and technologies are used to develop AutoTutor Lite, 

which implements the LCC algorithm: 

Development Tool: Adobe Flex builder 3 (Flex IDE based on Eclipse) 

Development Language: ActionScript 3 and MXML 

Webservice platform: Delphi 

Web host: Windows server 2003 + IIS 

Speech engine and agent: Products from Media Semantics, Inc 

We chose the Flash platform as the project development platform for the 

following reasons: 

1. Great cross-platform capability. As long as the browser has the Flash 

plug-in, a Flash file can be running on any system. Additionally, the Flash 

platform is dominant among all Rich Internet Application (RIA) platforms. 

2. Strong capability for multimedia integration. Flash applications can easily 

integrate multimedia components like picture, voice, and speech agents. It also 

supports fantastic animations and an amazing look and feel when compared to 

traditional web applications 
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UI Description 

Generally speaking, there are two UI stages in AutoTutor Lite: the Seed 

Question State and the Expectation State. Both states contain the speech agent 

and share the same theme style. 

Seed Question state is the first UI state displayed to the user. It displays a 

seed question, which can be considered the overall question for the topic. It also 

contains a response Panel and a submit button for the user to enter responses. 

 

 

Figure 9. Screenshot of Seed Question State 
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In Figure 9, the seed question in the seed question panel is “What 

thoughts come to mind based on what you have just heard?” The user is to type 

his response in the response panel. 

The Expectation state contains more visualized components than the first 

Seed Question State. It has the following components: 

a) Seed Question Display Panel 

b) Tutor Dialogue Panel 

c) History Panel 

d) User Response Panel 

e) Score Panel 

The Seed Question Display Panel and User Response Panel are the 

same as in the Seed Question State. The Tutor Dialogue Panel displays the 

tutor’s dialogue to the user including Hints, Feedbacks, and Assessments. In 

other words, this panel maintains the dialogue with the users. The History Panel 

contains all history interaction data, including both tutor and user data. The Score 

Panel shows the user’s coverage scores, which represent how much the user’s 

contribution covers the target answer. There are four independent 

expectation/subtopic coverage scores and an overall score. The independent 

expectation coverage score is the measurement of the specified expectation, 

while the overall coverage score is the average of all the expectation coverage 

scores. 
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Figure 10. Screenshot of Expectation State 

In the Figure 10, the AutoTutor Lite is in the Expectation state. After a 

couple of dialog moves, the History panel displays the dialog history between 

AutoTutor Lite and the user. The Tutor Dialog Panel will display the next hint or 

prompt. In the Score Panel, the overall coverage score is 5%, which is about the 

average of the 4 expectation coverage scores (10%, 3%, 4% and 1%). 
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Basic Architecture 

The following diagram illustrates the high level architecture of AutoTutor 

Lite. 

 

 

Figure 11. AutoTutor Lite High Level Architecture 

The compiled Flash file is hosted on the web server. Users can access the 

AutoTutor Lite application via a web browser. All of the content scripts are stored 

on the host server in XML format. During the interaction between the user and 

AutoTutor Lite, AutoTutor Lite will call the Agent Speech Engine Webservice for 

speech data and the LCC Search Engine Webservice for semantic data. 

In the project, there are three main folders and one MXML file under the 

root folder of the source. 
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Figure 12. AutoTutor Lite Project Structure 

In Figure 12, the jko folder contains all the visualized and non-visualized 

components and classes. The Media folder contains all the media files such as 

pictures and icons. The xmlfiles contains all the data files, which are in the format 

of XML. The ATLite.mxml file is the main canvas, which is the container for all 

other visualized components.  

In a classic Flex project, there are two types of program files: 

MXML files and ActionScript files. MXML files are mainly used on 

visualized components while ActionScript files are mainly used on non-

visualized components or classes like logic classes and computation 

classes. 
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AutoTutor Lite Logic Process 

The Logic Process Flowchart of AutoTutor Lite is below: 

 

 

Figure 13. AutoTutor Lite Logic Process Flowchart 

AutoTutor Lite includes five main modules: Content Handler Module, View 

Module, LCC Analysis Module, Evaluation Module, and Action Decision Module. 

At the beginning, the Content Handler Module retrieves the seed question 

from the main content script, and the view module displays the question to the 

user. Next, the user enters the answer to the View Module. Then, the LCC 

Analysis Module will perform the LCC analysis by calling the LCC webservice 

after receiving the user’s interaction data. The LCC analysis result is sent to the 

Evaluation Module for further evaluation based on some pre-defined thresholds. 

The final evaluation is sent to the Action Decision Module, in which tutor 

feedback and the next tutor move will be determined. Based on the next tutor 

move decision, the Content Handler Module will retrieve the corresponding script 
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from the main content script and send it to the View Module. Now a full dialog 

turn is completed and the system is ready for the user’s next input. 

 

 

Figure 14. AutoTutor Lite Class Structure 

In the above screenshot of the AutoTutor Lite development environment, 

there are 6 subfolders, which contain the major source codes of the project and 

correspond to the main modules of the system. 

The content folder contains the Content Handler Module. This module will 

parse the content XML files and return the required content script to the View 

Module. 

The view folder contains all the visualized components of the two UI 

states. It is the View Module and also the Interface Module in the general ITS  

architecture. It is on top of a basic canvas: ATLite.mxml. All tutor actions will be 

displayed on this module for the user.  Specifically, the component AvatarC in the 

view folder loads the speech agent and the component cbLib is used to 
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communicate with the speech engine webservice. The user’s interaction with the 

tutor system relies on the view module.  

The lcc folder contains the two classes for the LCC Analysis Module, 

which will focus on the interaction data and perform LCC analysis. This module 

will send the user’s interaction data to the LCC webservice engine and get the 

semantic data. Based on the return data and LCC analysis, the LCC Analysis 

Module will pass the LCC score (RN, RO, IN and IO) to the Evaluation Module. 

The evaluation folder contains the classes for the Evaluation Module. In 

AutoTutor Lite there are two scores involved in the Evaluation Module.  

First is the LCC score, sent in by the LCC Analysis Module. The 

Evaluation Module will compare the LCC score (in the current version, only the 

RN score is used) with a pre-defined threshold, which is a mean (number 

between 0 and 1) with a standard deviation, for example 0.5±0.1. Therefore, the 

threshold divides the scope between 0 and 1 into 3 intervals:  

1. Below the mean minus one standard deviation 

2. Between the mean minus one standard deviation and the mean plus one 

standard deviation 

3. Above the mean plus one standard deviation 

Corresponding to the 3 intervals, three types of user performance status 

 are defined: “Low Contribution”, “Moderate Contribution”, and “Current 

Expectation Covered”. Every time an LCC score arrives, the evaluation module 

will output the user’s performance type based on the threshold. 



41 

 

The second score is the Expectation Coverage Score which counts the 

cumulative user coverage for the expectation. If the Expectation Coverage Score 

is above the mean plus one standard deviation, the expectation will be marked 

as covered. The output of the user performance status is also “Current 

Expectation Covered”. Because there are multiple expectations in one topic, 

AutoTutor Lite launches the questions and hints for each expectation in default 

order. If the user’s contribution covers expectations other than the current 

targeted one, the Evaluation Module considers the user’s performance as “Other 

Expectation Covered”. If all the expectations are covered, the user performance 

status will be “All Expectation Covered”. This status information is sent to the 

Action Decision Module. 

The actions folder contains the Action Decision Module. The primary 

component of this module is the pre-defined Tutor Navigation Rule XML. It 

defines tutor actions and user performance in the following format: 

 <Tutor LastAction="TAHint"> 
  <Student Response="AllExpectationCovered"> 
   <Actions> 
    <Action>TAPositiveFeedback</Action> 
    <Action>TATRNS</Action>    
    <Action>TASummary</Action> 
   </Actions> 
  </Student> 
  <Student Response="OtherExpectationCovered"> 
   <Actions> 
    <Action>TANeutralFeedback</Action> 
    <Action>TATRND</Action> 
   <Action>TASummarizeNewlyCoveredExpectations</Action> 
    <Action>TATRNH</Action>    
    <Action>TAHint</Action> 
   </Actions> 
  </Student> 
  <Student Response="CurrentExpectationCovered"> 
   <Actions> 
    <Action>TAPositiveFeedback</Action> 
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    <Action>TATRNS</Action>    
 <Action>TASummarizeNewlyCoveredExpectations</Action> 
    <Action>TAChooseNewExpectation</Action> 
    <Action>TATRNH</Action>    
    <Action>TAHint</Action> 
   </Actions> 
  </Student> 
  <Student Response="ModerateContribution"> 
   <Actions> 
    <Action>TANeutralFeedback</Action> 
    <Action>TATRNH</Action>    
    <Action>TAHint</Action> 
   </Actions> 
  </Student> 
  <Student Response="LowContribution"> 
   <Actions> 
    <Action>TANegativeFeedback</Action> 
    <Action>TATRNH</Action>   
    <Action>TAHint</Action> 
   </Actions> 
  </Student> 
 </Tutor> 

 
This Tutor Navigation Rule XML is inherited from AutoTutor, so most of 

the student responses and tutor action types are the same as AutoTutor. 

However in AutoTutor Lite some tutor action types are removed, such as prompts 

and pumps, in order to simplify AutoTutor Lite. Additionally, one more tutor action 

type called “Tutor Transition” is added, which is used after the AutoTutor Lite 

finishes feedback and before it asks for a new hint or prompt in order to make the 

tutor dialog move much smoother.  

Each tutor action is decided by a previous tutor action and previous user  

response status. Therefore, there are two inputs and one output for the action 

module. The two input variables are the Tutor current action type and the user 

response type received from the evaluation module. The output is a collection of 

tutor actions. This module could be considered as a rule reading and searching 

module. 
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The wordprocess folder contains some semantic utility classes, such as a 

string cleanup utility and a regular expression utility. It will be used by other 

modules when some common string processes are needed. 

  



44 

 

Chapter 5 Results 

The project is past the internal test (Alpha version). The majority of the 

code for the project is finished. The following links are for compiled versions for 

testing purposes: 

AutoTutor Lite Debug Version 

AutoTutor Lite Testing Version 

The following script is used to test the AutoTutor Lite: 

Exp 1: The adversaries the United States currently faces and is likely to 
face for many years to come are continuously and consciously evaluating our 
strengths and weaknesses, aiming to avoid our strengths and attack our 
vulnerabilities. 

Exp 2: The United States Government should therefore constantly assess 
its effectiveness in using all instruments of national power (diplomatic, 
information, military, and economic), striving to learn and adapt more quickly and 
effectively than our adversaries. 

Exp 3: Learning organizations may defeat insurgencies; armies that fail to 
learn and adapt quickly learning organizations do not. 

Exp 4: Effective learning organizations encourage individuals to pay 
attention to the rapidly changing situations that characterize COIN campaigns 
rapid enemy innovation, shifting attitudes of local populations, local civilian 
leadership turmoil. 

 
 

Three major test cases are used to test the AutoTutor Lite: 

1. Completely correct input 

2. Partially correct input 

3. Completely incorrect input 

Single case and random mixed cases are used during the test. For 

example, the following log XML is one of the test cases: 

  <assessment > 
    <Round > 
      <Tutor >undefined</Tutor> 
      <TAActions> 
        <TAAction>TAQuestion</TAAction> 
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      </TAActions> 
    </Round> 
    <Round> 
      <newInput>constantly assess its effectiveness in using all instruments of national 
power (diplomatic, information, military, and economic)</newInput> 
      <STDResponse>OtherExpectationCovered</STDResponse> 
      <TAActions> 
        <TAAction>TAPositiveFeedback</TAAction> 
        <TAAction>TAPositiveFeedback</TAAction> 
        <TAAction>TAChooseNewExpectation</TAAction> 
        <TAAction>TATRNH</TAAction> 
        <TAAction>TAHint</TAAction> 
      </TAActions> 
      <newTutor >Good Answer! The United States Government should therefore 
constantly assess its effectiveness in using all instruments of national power diplomatic 
information military and economic striving to learn and adapt more quickly and effectively 
than our adversaries What about this:What are the enemies of the United States are 
constantly doing?</newTutor> 
    </Round> 
    <Round > 
      <SemanticsScore> 
        <ExpScoreLCC Exp="1">0.011779759512184485</ExpScoreLCC> 
        <ExpScoreLCC Exp="2">0.6586057879543086</ExpScoreLCC> 
        <ExpScoreLCC Exp="3">0.05170962593895807</ExpScoreLCC> 
        <ExpScoreLCC Exp="4">0.05129273393585995</ExpScoreLCC> 
        <AveScore>20</AveScore> 
      </SemanticsScore> 
      <newInput>COIN campaigns rapid enemy innovation, shifting attitudes of local 
populations, local civilian leadership turmoil.</newInput> 
      <STDResponse >OtherExpectationCovered</STDResponse> 
      <TAActions> 
        <TAAction>TANeutralFeedback</TAAction> 
        <TAAction>TATRND</TAAction> 
        <TAAction>TATRND</TAAction> 
        <TAAction>TATRNH</TAAction> 
        <TAAction>TAHint</TAAction> 
      </TAActions> 
      <newTutor >Your contribution does not really answer the question that I was asking, 
but it was not a bad answer. Let me summarize the answer for you. Effective learning 
organizations encourage individuals to understand the operating environment paying 
close attention to its rapidly changing nature  This is especially vital in COIN which may 
be characterized by frequent rapid enemy innovation shifting attitudes of local 
populations and local civilian leadership turmoil  
Let's try this question: Why are adversaries of the United States constantly evaluating 
the United States? </newTutor> 
    </Round> 
  </assessment> 
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Based on the internal tests, the AutoTutor Lite meets the expected 

requirements. The LCC algorithm plays an important role in the evaluation 

module. The overall performance is acceptable. 
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Chapter 6 Conclusion 

In the study, an online tutoring system, namely AutoTutor Lite, is 

implemented based on the ITS theories and some recent computer technologies. 

This new tutoring system inherits features from ITS - an optimal form of e-

Learning using advanced AI - and AutoTutor, a successful exemplar of ITS. 

Since AutoTutor Lite is developed on the most popular RIA platform - the Adobe 

Flash Platform - it eliminated the need for specialized client software installation 

required by most existing ITSs. It also features the LCC technology as the 

evaluation method, which is a new method to evaluate learners' performance by 

tracking their learning characteristic curves. Several types of semantic 

representation and matching methods, which are used for natural language 

processing in AutoTutor Lite, are also discussed in the study. According to the 

internal test and evaluation, the AutoTutor Lite meets the expected requirements, 

and its behavior and response followed the original design purpose.  

The following future works are needed: 

1. Optimize the thresholds for content. In the current version, the 

threshold is pre-defined only for the functionality test. It is not evaluated based on 

the topic or the user. This is also the first time the LCC technology is used in an 

ITS. New experiment data and previous training data are needed to optimize the 

thresholds in order to properly evaluate user performance. 

2. Utilize other LCC scores besides RN. In the current version, only the 

RN score is used for evaluation, while other scores (RO, IN, IO) are also very 

important. Since each user’s input is divided into four sets: (RN, RO, IN, and IO), 
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only three of the sets are independent. The goal will be to find the equation 

below:            = ℱ(  ,  ,   ) Equation (12) 
 

Therefore, some data analysis will be applied to previous AutoTutor user 

data in order to find the relationship between user performance and all LCC 

scores (RN, RO, IN and IO). 
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