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ABSTRACT 

Yan, Xiaowei. Ph.D. The University of Memphis, August, 2010. Stochastic and 
State Space Models of Carcinogenesis under Complex Situation. Major Professor: Wai-
Yuan Tan, Ph. D. 

With more and more biological mechanisms of cancer development being 

discovered, in order to improve cancer control and prevention, it becomes necessary to 

develop effective and efficient mathematical and statistical models and methods to 

incorporate the biological information, and to identify critical events in the process of 

carcinogenesis. In this dissertation, the complex nature of carcinogenesis has been 

represented by stochastic system model; combining this model with information from 

observations and prior knowledge, we have developed state space models to evaluate 

cancer gene mutations and cell proliferation at different cancer development stages. Also, 

we have proposed a generalized Bayesian method via multi-level Gibbs sampling 

procedure to predict state (stage) variables of the models. 

In this dissertation, stochastic models have been proposed for initiation, promotion 

and complete carcinomas experiments; these experiments are most commonly performed 

in cancer risk assessment of environmental agents. These stochastic models are simple 

multi-pathway models which are constructed based on biological mechanisms. The 

estimates we obtained from the models have provided quantitative evaluation of dose 

related mutation rates of major genes and cells proliferation rates; these results could be 

used to assess the risk of developing malignant tumor in the environment we live.  

More complicated stochastic and state space models have been developed for 

sporadic human colon cancer and for hereditary and non-hereditary human liver cancer. 

We have utilized the proposed models to fit to Surveillance Epidemiology and End 
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Results (SEER) data. The results imply that our models have effectively incorporated 

biological information and observations; these models fitted the data very well and the 

inferences based on estimate were very consistent with biological findings. Furthermore, 

the models reflected the complex nature of carcinogenesis. We notice that many cancers 

are developed through multiple-stage multiple-pathway. Our analyses of colon cancer 

and liver cancer have showed that some pathways are more devastated than others. This 

suggests thus it would be more efficient to intervene or treat the critical events in the 

more devastated pathways.
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1. INTRODUCTION 

Recent studies by cancer molecular biologists and cancer geneticists have shown that 

in most practical situations, the process of carcinogenesis is very complex.  

First, the process of carcinogenesis may not be time homogeneous; this is especially 

true in cancer initiation and promotion experiments and in animal carcinogenicity 

experiments as those conducted by scientists at EPA. (Many other biological and 

epidemiological evidences can be found in papers in the NCI Symposium (1985) and in 

Tan and Chen (1995)). 

Second, in most cases the same cancer is developed by several different pathways 

(Tan, 1991; Tan & Chen, 1991, 1998, 2000, 2005; Weinberg, 2007); this includes, for 

example, colorectal cancer, liver cancer, lung cancer, and melanoma among many others.  

Third, inheritance and heredity is an important factor in carcinogenesis. For 

example, family cancer history may predict cancer development speed among breast 

cancers in women, and FAP and HNPCC are well known inherited cancer cases in human 

colon cancers. Also, pediatric cancers give cancer cases for new born babies, contributing 

to pediatric cancer cases. Examples of pediatric cancer cases include medulloblastoma, 

retinoblastoma, hepatoblastoma, pediatric lung cancer and rhabdomyosarcoma. 

Fourth, it is well recognized that for most of the cancers, the process of 

carcinogenesis involves a large number of cancer genes (5 to 10 genes in most cases 

(Hopkin, 1996), but as many as 200 genes may have been involved in the origin of all 

leukemia; see Greaves, 1997). It follows that in many cases, three or more stages may be 

more appropriate to represent the true biologically supported stochastic models of 

carcinogenesis. For example, as demonstrated by Little and his associates (Little, 1995, 
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1996; Little, Murihead, Boice, & Kleinerman, 1995; Little, Muirhead, & Stiller, 1996) for 

cancers from Japanese atomic bomb survivors and radiation-induced leukemia, 

carcinogenesis is better described by three-stage models than by two-stage models 

although the same data can be fitted equally well by a three stage model as by a two-stage 

model.  

The purpose of the dissertation is to develop stochastic and state space models for 

cancer development under complex situation.  

In Chapter 1, we summarize the traditional stochastic models for carcinogenesis, and 

discuss the difficulties and disadvantages of the traditional stochastic models and the 

traditional approaches. Then we briefly introduce the biologically supported stochastic 

and state space models under realistic complex conditions. Next, some generalized 

Bayesian procedures are discussed for estimating parameters and for predicting state 

variables. 

In Chapter 2, a set of stochastic models are proposed for initiation-promotion 

experiments, which are commonly used by researchers to assess cancer risk of 

environmental agents. It this chapter we propose a simple two pathways model involving 

a generalized one stage model and a generalized two-stage model for the generation of 

papillomas and carcinomas from these experiments. 

In Chapter 3, the stochastic and state space models are proposed for human 

colorectal cancer. These models involve 2 pathways, with one pathway being a 4-stage 

model and the other pathway being a 5-stage model. Through fitting of the SEER data, 

we showed that the model we proposed was more appropriate than existing single-

pathway models. 
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In Chapter 4, we discuss some stochastic and state space models for adult liver 

cancer (Hepatocarcinoma, HCC) and for pediatric liver cancer (hepatoblastoma), the 

latter  of which incorporating hereditary segregation of genes. 

In Chapter 5, we give a brief summary of our work and propose some future 

research.  

Quantitative Carcinogenesis Modeling 

 The first sets of mathematical carcinogensis models, reflecting essential biological 

processes via pathway from a normal stem cells to a cancer cells, were proposed in 1950s 

(Nordling, 1953). Amitage-Doll model (Amitage & Doll, 1954) may be the best known 

model among them, which gave the age-specific incidence of many carcinomas, and also 

connected rate-limiting steps to the mathematical model. The model assumes that cancer 

cells are developed from a single stem cell through a series irreversible, heritable events, 

which are mutations related. However, the model completely ignores cell proliferation 

and differentiation of intermediate cells. In 1979 Moolgavkar and Venzon and in 1981 

Moolgavkar and Knudson proposed a 2-stage model, called MVK-model, in which a 

cancer tumor is developed from a single normal stem cell by clonal expansion, and 

carcinogensis is taken as the end result of two discrete, heritable and irreversible events. 

This model became the most commonly used to fit different type of carcinomas since 

then (Moolgavkar, Dewanji, & Venzon, 1988; Moolgarvkar & Luebeck, 1989; Portier & 

Bailer, 1989). The major limits of the model are:  

(1) It assumes that tumor is developed instantaneously from initiated cells at the last 

stage, which usually is not true. If this assumption is violated, then the number of cancer 

tumors is no longer Markov because it depends on the time when the last-stage initiated 
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cells are generated. In this case, Markov theories cannot be applied to cancer tumor (Tan 

& Chen, 1998). 

(2)    It has been well accepted that most of cancer tumors are developed through 

more than two stages, some cancer tumors are even compilcated, developing through 

multiple-pathway, and each pathway contains mutilple stages. So that two-stage model is 

obviously too simple to describe carcinogenesis (Tan, 2002). 

(3)   It is extremely hard to adopt the model to multiple-pathway multiple-stage 

carcinogenesis because the mathematical results become too complicated (Tan, 1991). 

(4)   Not all parameters could be identified from the incidence function and the 

probability distribution of time to tumors, because function of parameters instead of 

separate parameters is involved in the incidence function and the probability distribution.   

To overcome the limits and difficulties of the MVK-model, we proposed an 

alternative approach, in which stochastic equations were used to represent the biological 

and genetic information of carcinogenesis, and a statistical model was used to represent 

observation. By combining these models and information from other sources, we were 

able to estimate all parameters and state variables, and also provide biologically reliable 

interpretation.   

Many biological evidences have been reported to support cancer cells are developed 

through multiple pathways (Weinberg, 2007). Before discussing the detail of the new 

model we proposed and applied in multiple-pathway carcinogenesis, we would like to 

briefly review MVK model by applying it for a simplest multiple-pathway carcinogensis, 

which can be taken as an extended MVK two-stage model. Through the assumptions and 

model construction, the limits and difficulties of MVK model were revealed. Then we 
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introduced our approach to see the new approach has many advantages over the extended 

MVK model.   

We started with a simple multiple-pathway model (called extended MVK model). 

The regular MVK two-stage model of carcinogenesis assumes three types of cancer cells: 

The normal stem cells, the intermediate cells and the tumor cells. It also assumes that 

with probability one, a tumor cell will develop into malignant tumor. We denote three 

types of cancer cells by N(t), I(t) and T(t) at time t, respectively. In the extended MVK 

model, instead, two intermediate cells I1 and I2 cells are present. 

As shown in Figure 1, the extended MVK model involves a one-stage model and a 

three-stage model. In this model, a cancer tumor develops either by normal cells N to 

tumor cells T directly, or by normal cells N to tumor cells T via I1 and I2 cells. Note that 

because mutation rates are usually very small, in order that tumor cells can develop 

through three-stage pathway, the one-stage pathway must be a rare event too, which is 

actually consistent with a lot observations (Land, Parada, & Weinberg, 1983; Schwab, 

Varmus, & Bishop, 1985; Tan, 2001; Tan & Chen, 1998; Yancopoulos et al., 1984).  

 
Figure 1. A Simple Multiple-Pathway Model 
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Let N(t), I1(t), I2(t) and T(t) be the number of normal stem cells, I1 cells, I2 cells and 

cancer tumor cells at time t, respectively. To derive mathematical procedures for the 

model shown in Figure 1, we make the following assumptions. Most of the assumptions 

are the same as for MVK two-stage model. 

1. At the time t0 of birth, N(t0) = N0 is very large (N0 ≤ 108). This assumption usually 

holds for most of tissues (Moolgarkar & Knudson, 1981). 

2. The Ij, j=1, 2 cells follow a nonhomogeneous Feller-Arley birth-death process for 

cell proliferation and cell differentiation with birth rate bj(t) and death rate dj(t). 

3. Given that the cancer tumors developed from normal stem cells by one-stage 

pathway, (N → T), we assume that the probability that a normal stem cell at time t 

produces one normal stem cells and one tumor cell at time t + Δt is γ(t) Δt + o(Δt). 

Similarly, given the three-stage pathway N → I1 →I2 → T, we assume that the probability 

of a normal cell producing one normal cell and one I1 cell at time t + Δt is α1(t)Δt + o(Δt). 

And the probability that an I1 cell at time t produces one I1 cell and one I2 cell at time t + 

Δt is ω1(t)Δt + o(Δt). The probability of I2 cell yields one I2 cell and one tumor cell at 

time t + Δt is β1(t)Δt + o(Δt). 

4. As in Moolgavkar and Knudson (1981) and Tan and Brown (1987), we assume 

that the time require for the development of tumors from tumor cells is very short 

compared with the time cancer tumors developed from normal stem cells. This implies 

that with probability one tumor cells grow into tumors and that random variation for the 

time between the initiated tumor cells and cancer tumors is ignored.  

5. The birth-death processes and the mutation processes are independent of one 

another and each cell goes through the above processes independently of other cells. 
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Given above assumptions, it follows that:   

(1) The processes is basically a Markov process 

(2) Since the mutation rates are very small (10-8 ~ 10-6), also because in most cases 

the birth rates are greater than death rates for normal cells (Buick & Pollack, 1984), the 

number of normal cells is very large for all t ≥ t0. In that case, we assume the number of 

normal cells (N(t)) is a deterministic function. And because of mutation rates are very 

small so that N(t)γ(t) and N(t)α1(t) are expected to be finite. If N(t)γ(t) and N(t)α1(t) are 

finite for all t ≥ t0, it is reasonable to assume that during [t, t + Δt) the mutation processes 

from normal cells to tumor cells (one-stage pathway), to I1 cells follow Poisson processes 

with parameters N(t)γ(t)Δt + o(Δt) and N(t)α1(t)Δt + o(Δt). 

(3) As shown in Tan and Brown (1987), if the normal stem cells follow 

nonhomogeneous Feller-Arley Birth-death processes with birth rate bN(t) and death rate 

dN(t), then from above assumption (2)-(5), {N(t), Ii(t), i = 1, 2, T(t)} form a continuous 

time multiple branching process, with rates of bN(tj)Δt + o(Δt), dN(tj)Δt + o(Δt) for normal 

stem cells; bi(tj)Δt + o(Δt), bi(tj)Δt + o(Δt), in which {i = 1, 2; j =0, 1, 2, …, n}, for Ii 

cells; and 1+ o(Δt) for tumor cells.  

In MVK model, the traditional procedures to obtain the incidence function are:  

First, derive the probability generating function (PGF) of the number of intermediate 

initiated cells and cancer tumors through Kolmogorov forward equation. 

Second, use the PGF to obtain cancer incidence function and the probability 

distribution of the number of tumors.  

We will show the traditional procedures for the simple two-pathway model. 

Let: 
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P1(I, ju, u=1,2, k; t) be the conditional probability of [N(t) = I, Iu(t) = ju, T(t) = k 

|N(t0) = N0] ,  

P2(j1,j2, k; t) the conditional probability of [I1(t) = j1, I2(t) = j2, T(t) = k | I1(t0) = 1]. 

and P3(j, k; t) the conditional probability of [I2(t0) = j, T(t) = k | I2(t0) = 1]. 

Let η(x, y1, y2, z; t0, t) = η(t0, t) be the PGF of [N(t), I1(t), I2(t), T(t) | N(t0) = N0];  

η(1, y1, y2, z; t0, t) = (x, y1, y2, z; t0, t) =  (t0, t) the PGF of [I1(t), I2(t), T(t) | 

N(t0)=N0] ; and g(z; t0, t) =  (1, 1, 1, z; t0, t) the PGF of [T(t) | N(t0)= N0].  

Let ζ1(y1,y2, z; t0, t) = ζ1(t0, t) be the PGF of [I1(t), I2(t), T(t) | I1(t0)=1], and (y2, z; 

t0, t) = (t0, t) the PGF of [I2(t), T(t) | I2(t0) = 1]. 

Then 

η t , t  ∑ ∑ ∑ ∑ x y y z P i, j , j , k; t                                         (1.1) 

ζ t , t  ∑ ∑ ∑ y y z P j , j , k; t                                                          (1.2) 

and 

t , t ∑ ∑ y z P j, k; t                                                                           (1.3) 

Because the processes are Markov processes, we can write down the Kolmogorov 

forward equations for the above conditional probabilities by using standard procedures. 

Using transition probability given in Table 1, the Kolmogorov forward equations are: 

, , , ; 1 1, , , ; 1

1, , , ; ∑ 1 1, , , ; 1

1, , , ; , 1, , ; , , , ;

  , , , ;  

 , , , ;                                                           (1.4) 

and 
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, , ; 1 1, , ; 1 1, , ;

, 1, ; 1 , 1, ; 1 ,

 1, ; , , 1;

, , ;                                                                                                  (1.5) 

and 

, ; 1 1, ; 1 1, ;

, 1; , , ;                              (1.6) 

The initial conditions are: 

, , , ; ; i, j1, j2, k = 0, 1, 2… 

, , ;  , i = 1, 2 and j1, j2, k = 0, 1, 2… 

, ; ; j, k = 0, 1, 2… 

Under the assumption (2)-(5), Tan (1991) has shown that ζ ,  and ,   

satisfy the following first order partial differential equations: 

ζ , 1 1 ζ ,  

1 1 ζ ,                         (1.7) 

with initial condition ζ ,  

and  
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, 1 1 ,      (1.8) 

with initial condition , . 

Table 1  

Transition Probabilities of Simple Two-pathway Model 

Cells at time tj Cells at time tj+Δt Probability 

1 N cell 

2 N Cells bN(tj)Δt+o(Δt) 

0 Cells dN(tj)Δt+o(Δt) 

1 N cell and 1 T cell γ(tj)Δt+o(Δt) 

1 N cell and 1 I1 cell α1(tj)Δt+o(Δt) 

1 N cell 1-[ bN(tj)+ dN(tj)+ γ(tj)+ 
α1(tj)]Δt+o(Δt) 

1 I1 cell 

2 I1 Cells b1(tj)Δt+o(Δt) 

0 Cells d1(tj)Δt+o(Δt) 

1 I1 cell and 1 I2 cell ω1(tj)Δt+o(Δt) 

1 I1 cell 1-[ b1(tj)+ d1(tj)+ ω1(tj)]Δt+o(Δt) 

1 I2 cell 

2 I2 Cells b2(tj)Δt+o(Δt) 

0 Cells d2(tj)Δt+o(Δt) 

1 I2 cell and 1 T cell β1(tj)Δt+o(Δt) 

1 I2 cell 1-[ b2(tj)+ d2(tj)+ β1(tj)]Δt+o(Δt) 

1 Tumor 
1 Tumor 1+ o(Δt) 

Other Cases o(Δt) 
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If the normal stem cells follow nonhomogeneous Feller-Arley birth-death process 

with birth rate bN(t) and death rate dN(t), then ,  satisfies the following first-order 

partial differential equation: 

,

1 1 1 ,

1 1 , 1

1 ,                                                                      (1.9) 

with initial condition ,  

The solution of partial differential equation of ,  is available for most of 

important special cases. As shown in Tan (1991), if , ,  

and N(t) is a deterministic function, in this case, , , if we set t0 = 0, 

then , ; 0,  satisfies the following Ricatti equation with initial condition 

0 : 

                                 (1.10) 

Then with an assumption that the probability of tumor cell developing to cancer 

tumor is one, then solution of above differential equation can be readily solved and the 

solution is: 

exp

exp                                                                              (1.11) 

where x2 > x1 are given by 2

4 /  and 2 4 / .  
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Though solution of ,  is available, the solution of ζ ,  and ,  are 

extremely difficult even in homogenous cases. We have to add more assumptions to find 

the solution. If N(t) is very large, and γ(t) and α1(t) are very small, so that both N(t)γ(t) 

and N(t)α1(t) are finite for all t ≥ t0, we can assume Poisson distributions for the number 

of mutations from normal stem cells to tumor cells and to I1 cells and also assume 

. Then as shown in Tan (1991) the solution for  , 1, , , ; ,  

is as following: 

, exp 1 ζ , 1  

                                                                                                                            (1.12) 

In order to find , , we have to find solution for ζ , . Similar as to derive 

Ricatti equation for , the ζ , ζ  and set t0 = 0, we have following 

Ricatti equation: 

ζ ζ ζ , with initial condition 

ζ 0 .  

In general it is very difficult to solve above differential equation because  is not 

linear, thus the whole function is not linear. In order to find close form solution for above 

differential equation, we have to add further assumptions or find appropriate 

approximation. Moolgavkar and Venzon (1979) assumed d1=0, then above differential 

equation of ζ  becomes: 

ζ ζ ζ , with initial condition ζ 0 .  

By using linear approximation of  (Taylor expansion), the solution of ζ  is: 

ζ 1 y b U t                                                                  (1.13) 
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where 

 1  and . 

Cancer Incidence Function λ(t) 

After obtaining solutions for ζ , we can further obtain incidence rate λ(t) of tumor 

at time t. It has been shown by Tan (1991) that: 

1,1,0; , / 1,1,0; ,                                                              (1.14) 

where 

1,1,0; , 1,1,0; ,  

To the order O(N ): 

1,1,0; ,  1,1,0; , ζ 1,1,0; , 1

,  

where υ u, t ζ 1,1,0; u, t  

Since ζ y , y , z; t , t y , so 

,                                               (1.15) 

and , ζ , | 0, 1 , 

where ζ u, t ζ 1,1,0; u, t  and | 0, 1  is the conditional 

expected number of I2 cells at time t given T(t) = 0 and I1(u) =1, t ≥ u.  

It follows that 

ζ , | 0, 1                               

                                                                                                                             (1.16) 
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That is, incidence rate is the function of conditional expected number of the last 

stage initiated cells. 

From above incidence function, we notice that the product of some mutation rates is 

involved in the incidence function, such as , it is not possible to estimate these 

parameters separately. So that even if this model could be applied to estimate parameters, 

not all parameters are identifiable. 

As we have shown above, three major drawbacks of the MVK model or extended 

MVK model are: 

Many biological evidences indicated that in most of cases cancer tumor developed 

from multiple pathways rather than a single pathway, and each pathway contains more 

than two stages. Even we can extend the MVK two-stage to multiple-pathway multiple-

event model, it would be extremely difficult to solve partial differential equations 

involved in the model, and it is almost not possible to obtain close form of incidence rate.  

Even a model is as simple as above, the incidence function has been very difficult to 

obtain. We have also shown that in order to find close form of the solutions to differential 

equations, we have to have more assumptions, some assumptions are not realistic. For 

example, in order to obtain the solution for ζ t , Moolgavkar and Venzon have assumed 

d1 = 0.   

Even if the close form of incidence function could be derived, we have shown that 

many parameters cannot be estimated separately.  

 The MVK model is based on Markov process, which implies that with probability 1 

each cancer cell instantaneously develops into a cancer tumor. This assumption ignores 
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tumor progression (birth-death process), which is usually not true in reality (Fakir, Tan, 

Hlatky, Hahnfeldt, & Sachs, 2009).  

In order to overcome these difficulties and drawbacks, we introduce stochastic and 

state space model developed for complex system, which usually contains multiple 

pathways, multiple-stage.  

Stochastic Equations and State Space Model 

Biologists and geneticists have discovered that the same cancer can be developed 

through more than one pathway, and that each pathway contains more than two stages. 

Along single pathway models, realizing the complex nature of carcinogenesis, Chu 

(1985) and Little (1995) have developed generalized multistage stochastic model of 

carcinogenesis, extending the two-stage MVK model to models with multiple stages. 

These models and the methods were based on Markov process which would need to 

assume that the last stage cells grow instantaneously into cancer tumors as soon as they 

are generated; in this case, one may identify the last stage cell as cancer tumors (i.e., 

ignoring cancer progression). Unfortunately, in many practical situations, the Markov 

assumption is not realistic and gives confusing results (Fakir et al., 2009; Yakovlev & 

Tsodikov, 1996; Yang & Chen, 1991), especially in mouse models and in radiation 

carcinogenesis. Furthermore, even if the Markov assumption is valid,  because it is often 

impossible to obtain analytical solutions for partial differential equations of the 

probability generating function of stage variables and cancer tumors derived from 

Kolmogorov’s forward/backward equations, the methods would need to make many 

additional unrealistic assumptions and to drive approximations. Following Yang and 

Chen (1991) to postulate that cancer tumor developed by clonal expansion from a 
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primary cancer cell to account for cancer progression, Tan and Chen (1998) have 

developed an extended k-stage model and have proposed a stochastic equations approach 

to develop mathematical analysis for these models. This extended k-stage model is the 

most general model for single pathway and the stochastic equations method is very 

powerful and can be used to more complex models involving multiple pathways.  

Because many cancers involve multiple pathways, in this section we will propose a 

more generalized model involving multiple-pathways. We will illustrate how to construct 

this new model and discuss some advantages of the new model. As we will show in 

Chapters 3 and 4, these models can be used to fit cancer incidence of human colon cancer 

and liver cancer. 

In Figure 2, cancer tumor is developed from two pathways; one pathway, called I 

pathway, contains k1 stages, and another pathways, called J pathway, contains k2 stages. 

We define the Ik1 and Jk2 cells as primary cancer cells, which arise directly from Ik1-1 and 

Jk2-1 cells by mutation or genetic changes. Thus, Ik1 and Jk2 arising from other Ik1 and Jk2 

 

Figure 2. Multiple Pathways 
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cells by cell proliferation are called secondary Ik1 andJk2 cells. Therefore, cancer tumors 

either derive from primary Ik1 cells or from primary Jk2 cells by stochastic birth-death 

process.   

We define intermediate stages involved in the multiple-pathway model as discrete, 

heritable and irreversible events, denoted by Iu, u = 1, …, k1-1and Jv, v=1, …, k2-1. Iu and 

Jv initiated cells arise from (u-1)th stage in I pathway and (v-1)th stage in J pathway by 

mutation or genetic changes. Let N denote normal stem cells, and T denote cancer tumors 

arising from primary Ik1 andJk2 cells. Then the model assumes that the two pathways are 

exclusive, and assumes N→I1→ I2  → … → Ik1 and N→ J1 → J2  → … → Jk2 with Iu and 

Jv cells being subject to stochastic birth-death process. Let Iu(t), u = 1, 2, …, k1-1 denote 

the number of Iu cells at time t and Jv(t), v = 1, 2, …, k2-1 denote the number of Jv cells at 

time t, and T(t) denote the number of malignant cancer tumor at time t. We use t  = { 

Iu(t), u = 1, 2, …, k1-1,  Jv(t), v = 1, 2, …, k2-1, T(t)} to denote the set of state variables, 

and use {bu(t), du(t), αu(t)} represent the birth rate, death rate and mutation rate from Iu → 

Iu+1 at time t. Similarly, we use {bv(t), dv(t), βu(t)} denote the birth rate, death rate and 

mutation rate from Jv → Jv+1 at time t. That is, at small time interval [t, t+Δt), the 

probability that Iu cell will produce two Iu cells, zero Iu cells, and one Iu cell and one Iu+1 

cell with probability bu(t)Δt + o(Δt), du(t)Δt + o(Δt), and αu(t)Δt + o(Δt), respectively. 

The same to Jv cells. At the last stage, the malignant cancer tumors developed from a 

primary Ik1 or Jk2 cell through stochastic birth-death process with birth rate bk1(s1,t) and 

death rate dk1(s1,t) for I pathway, and bk2(s2,t) for birth rate and dk2(s2,t) for J pathway, 

where s1 and s2 are onset time of  Ik1 or Jk2 cell, respectively. 
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To derive the stochastic differential equations for above processes, let 

, ,  denote the number of birth, death, and mutated cells from Iu → Iu+1 

at time t, and BJ t , DJ t , MJ t  denote the number of birth, death, and mutated cells 

from Jv → Jv+1 at time t. Tan (2002) has shown that the conditional probability 

distribution of  , , |  is multinomial with parameters {Iu(t); bu(t)Δt, 

du(t)Δt, αu(t)Δt}. Similarly, 

, , | ~ , , , , v = 1, 2, …, k2-1. 

Then the differential equations for Iu(t), u = 1, 2, …, k1-1 and for Jv(t), v = 1, 2, …, 

k2-1 could be obtained from above distributions: 

         (1.17) 

, where , u = 0, 1,…, k1-1. 

The random noises are given by: 

ε t B t N t b t Δt D t N t d t Δt                                 (1.18) 

and 

ε t M t I t α t Δt B t I t b t Δt D t

I t d t Δt                                                                                                             (1.19) 

Based on the distribution, the random noises {ε t , u 0, 1, … , k 1} have 

condistional expectation zero. It is also easy to see ε t  are uncorrelated with state 

variables. The covariance of ε t ’s are also easy to derive, that is, to order o(Δt), the 

covariance is: 

Cov ε t Δt, ε τ Δt δ t τ E 1 δ I t α t I t b t

d t Δt o Δt , and Cov ε t Δt, ε τ Δt 0 for u w                                (1.20) 
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Similar differential equations can be derived for Jv(t) cells, v = 1, 2, …, k2-1. 

We also can develop the probability distribution of T(t) by using the I pathway for 

illustration . We use PT(s1,t) to represent the probability a primary Iu cell arising at time s1 

developing a detectable caner tumor at time t. Assume that cancer tumor is detectable 

only if it contains at least NT cancer tumor cells. As shown in Tan (2002), given an Iu cell 

arising from Iu-1 cell at time s1, the probability that this Iu cell will produce j Iu cells at 

time t is given by: 

1    1
  1                                 (1.21) 

where 

  

and   

 

Then PT(s1, t) is given by: 

PT s , t ∑ PM j NTNT                        (1.22) 

Given this probability, the conditional probability distribution of T(t) given {Ik1-1(τ), τ ≤ 

t} is a Poisson with parameter: 

,                                                           (1.23) 

That is, 

{T(t) | Ik1-1(τ), t0 ≤ τ ≤ t}~ Poisson {  }                                                       (1.24) 
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Similarly, we can derive the conditional probability distribution of T(t) given {Jk2-

1(τ), τ ≤ t}. 

Then, if tumor is developed from I pathway alone, the conditional probability of 

producing a detectable cancer tumor during [tj-1, tj) given {Ik1-1(τ), t0 ≤ τ ≤ tj} is: 

,

, ,                            

                                                                                                                            (1.25) 

Similarly, we can derive the probability of detectable tumor developed from J 

pathway alone during [tj-1, tj). 

Since the cancer tumor is developed from at least one pathway, during [tj-1, tj), the 

probability of detectable tumor is developed from at least one pathway is: 

, 1 1 , 1 , ,

, , ,                                                               (1.26) 

We have illustrated how to derive the conditional probability of state variables and 

cancer incidence function for two pathways. The conditional probability of state variables 

and cancer incidence depend on the model structure, for example, single multiple-stage 

model, or multiple-pathway multiple-event. No matter what the model structure is 

utilized, cancer incidence and conditional probability of state variables can be readily 

derived. Tan and Chen (1998) have shown that the model through stochastic differential 

equations are equivalent to the classical Markov theory method, that is, intermediate 

initiated cells and cancer tumors satisfy the same set of partial differential equations. 

Above model has also taken tumor progression of the last stage into consideration, thus 

the model is more appropriate in practice.  
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The observation model, on the other hand, depends on available data. For example, 

in cancer risk assessment studies of environmental agents, the number of animals with 

papillomas during [ti,j-1, ti,j) is observed, denoted by M(j); starting with n animals with no 

papillomas at t0, then we can construct observation model as following: 

        ~ ; ,                                                         (1.27) 

where  ,  is the probability of developing papillomas during [ti,j-1, ti,j). 

The observation model, as shown above, integrates the stochastic model with the 

observation. By incorporating differential equations with observations, and information 

from other sources, Tan and Chen (1998) proposed state space models of carcinogenesis 

for multi-stage models. It combines the basic mechanism and random variation, 

represented by stochastic differential equations, with observations (via observation 

model). Tan and Zhang (2007) and Tan and Yan (2009) applied the state space models in 

several types of cancers to study cancer tumor development. The applications have 

shown that state space models have many advantages over traditional stochastic model or 

statistical model used alone: 

 Biologists and geneticists have discovered more and more mechanisms of 

carcinogenesis, which provide a rich source in carcinogenesis modeling. The state space 

model combines information from different sources, and are easier to adapt to study 

different types of cancers. 

The state space model can provide reasonable estimation of parameters which 

usually cannot be identified by the stochastic model or statistical model alone. 

Through Gibbs sampling the state space model can provide an optimal procedure to 

estimate unknown parameters and state variables simultaneously. 
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The state space model can provide a new avenue to predict cancer incidence in the 

future.  

We have constructed the state space models for different types of cancers, the details 

are shown in the following chapters.  

Pathways of Carcinogenesis 

Stochastic differential equations are constructed based on pathways involved in 

cancer development. In this section, we will briefly introduce pathways of 

carcinogenesis. 

It has been commonly accepted that carcinogenesis is a multiple-step random 

process, and all steps reflect genetic and/or epigenetic changes, which initiate many 

mutations and promote proliferation of mutated cells, leading to cancer malignancy 

(Nettesheim & Barrett, 1985; Tan, 1991). However, because genetic changes are rare 

events and can only occur during cell cycle, it is statistically nearly impossible that all 

genetic changes occur during one cell cycle. On the other hand, though genetic changes 

can take place in any cell cycle, only certain order of genetic changes can lead to the 

completion of cascade of carcinogenesis to generate cancer tumor. The major genetic 

changes and their order form genetic pathways of carcinogenesis. For example, in human 

colon cancer, a cell with mutated ras oncogene but no other genetic changes would 

eventually be eliminated. Thus in colon cancer, mutation of ras gene has never been 

observed as an initiated early event. Molecular biological explanation is that though 

mutated ras enables the cell to enter cell cycle without growth factor and can also evoke 

MAPK pathway and the PI3K-Akt pathway to increase transcription of many genes in 

nucleus (Osada & Takahashi, 2002; Weinberg, 2007); however, it can also induce the 
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suppressor gene p14ARF to activate p53 gene via ARF-MDM2-p53 pathway, leading to 

apoptosis of cell. In contrast, if APC gene is mutated or inactivated, it would generate 

chromosome instability and LOH (loss of Heterozygosity) because the APC gene affect 

the G2 checking point during mitosis stage by interfering with microtubule and 

centrosome coursing aberrant chromosomal segregation, the daughter cells become 

aneuploidy or polyploidy (Fodde, Smit, & Clevers, 2001; Green & Kaplan, 2003), which 

would increase the fitness of the cells and also speed up mutations or inactivation of other 

genes.   

Micro-array analyses have indicated that in most human cancers, a large number of 

cancer genes are involved. However, only a few of the genes are stage and rate limiting, 

leading to a finite number of stages in the multi-stage model of carcinogenesis (Renan, 

1993). The age-dependent cancer incidence data for many human cancers imply four to 

seven rate-limiting stages from normal stem cells to malignant cancer tumors in most of 

human cancers (Renan, 1993). These stages are reflected by observable pathological 

lesions and the transition from one stage to the next higher stage may involve several 

genetic changes and/or epigenetic changes.  

In this section, we gave brief summary of cancer genetics, and some well-recognized 

carcinogenesis pathways, such as TGF-β pathway, p53 pathway, and so on. 

Usually, three types of genes contribute to cancer phenotype: oncogenes (dominant 

cancer genes), suppressor genes (recessive genes) and mis-match repair genes (MMR). 

Cancer can be initiated either by the activation of an oncogene, or by inactivating or 

silencing a suppressor gene, or a MMR gene.   
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If an oncogene is mutated or expressed at high levels, normal growth of a normal 

cell is unleashed, leading to continuous proliferating. Most oncogenes interact with many 

other genes to promote proliferation or abrogate differentiation and inhibition effects of 

many other protection devises.  

Tumor suppressor gene is a gene whose action is required for normal development. 

When this gene is mutated or inactivated, the cell can progress to cancer, usually by 

combination with other genetic changes. Because tumor suppressor genes play more 

active roles in cell cycle, for example, tumor suppressor genes either have a dampening 

or repressive effect on the regulation of the cell cycle (by controlling the gap stage (G1 

and G2)) or promote apoptosis, or control the activation of an oncogene. Stage and rate 

limiting genes are usually tumor suppressor genes (Osada & Takahashi, 2002; Weinberg, 

2007). 

Mismatch repair (MMR) genes are actually tumor suppressor genes but with special 

functions that they recognize and repair erroneous insertion, deletion and mis-

incorporation of base that arise during DNA replication and recombination, as well as 

repairing some forms of DNA damage. Mutation or deletion of MMR genes lead to 

microsatellite repeats and create a mutator phenotype, resulting in genetic instability and 

increasing mutation rates of many relevant cancer genes.  

Carcinogenesis pathway is usually represented by rate-limiting genes and their order. 

It has been observed that the same type of cancer may be developed through more than 

one pathway. For example, lung cancer may involve as many as 4 pathways, such as 

Wnt, Akt, Hedgedog, and p53 pathways. Similarly, colon cancer is also developed 

through many pathways, TGF-β, ras, MAPK, PI3k-Akt and p53 pathways. Because 
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different pathway function differently, some pathways may sequentially appear in the 

cancer development, for example, p53 pathway always appear at the last stage of cancer 

development since mutation of p53 will arrogate apoptosis and lead cells to unregulated 

proliferation, while Wnt pathway usually appears in cancer early development because 

several proteins involved in this pathway have been associated with the ability of the cell 

surface Wnt-activated Wnt receptor complex to bind axin and disassemble the 

axin/GSK3 complex, and lead to transcript some oncogenes (Nusse, 2005).  

To date, more than 40 pathways have been identified, and  more will be discovered 

in the future. We gave brief summary of several pathways which are related to cancer 

development.  

 

Figure 3. Wnt/β-Catenin Pathway 
(Copyright Reserved by “Cell Signaling Technology”) 
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Wnt/β-Catenin Pathway  

As shown in Figure 3, the Wnt is a secreted glycoprotein that binds to Frizzled 

receptors, which triggers a cascade resulting in displacement of the multifunctional 

kinase GSK-3β from the APC/Axin/GSK-3β-complex. In the presence of Wnt binding 

(On-state), Dishevelled (Dsh) is activated, seemingly at least in part by phosphorylation, 

which in turn recruits GSK-3β away from the degradation complex. This allows for 

stabilization of β-catenin levels, nuclear import and recruitment to the LEF/TCF DNA-

binding factors where it acts as an activator for transcription by displacement of 

Groucho-HDAC co-repressors. Importantly, some human cancers harbor point-mutations 

in β-catenin leading to its deregulated stabilization, and APC as well as axin mutations 

have also been documented, underscoring the involvement of abnormal activation of this 

pathway in human tumors. During development the Wnt/β-catenin pathway integrates 

signals from many other pathways including FGF, TGF-β and BMP in many different 

cell-types and tissues (Bienz, 2000; Gordon & Nusse, 2006; Willert & Jones, 2006).  

TGF-β Pathway 

As shown in Figure 4, transforming growth factor-β (TGF-β) signaling plays a 

critical role in the regulation of cell growth, differentiation, and development in a wide 

range of biological systems. In general, signaling is initiated with ligand-induced 

oligomerization of serine/threonine receptor kinases and phosphorylation of the 

cytoplasmic signaling molecules Smad2 and Smad3 for the TGF-β pathway, or 

Smad1/5/8 for the bone morphogenetic protein (BMP) pathway. Phosphorylation of 

Smads by activated receptors results in their partnering with the common signaling 

transducer Smad4, and translocation to the nucleus. Activated Smads regulate diverse 
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biological effects by partnering with transcription factors resulting in cell-state specific 

modulation of transcription. TGF-β signaling is also documented to affect Smad-

independent pathways, including Erk, SAPK/JNK and p38 MAPK pathways. Activation 

of Smad-independent pathways through TGF-β signaling is also common. Rho GTPase 

(RhoA) activates downstream target proteins, such as mDia and ROCK, to prompt 

rearrangement of the cytoskeletal elements associated with cell spreading, cell growth 

regulation, and cytokinesis (Herpin & Cunningham, 2007; Kitisin et al., 2007; Schmierer 

& Hill, 2007). 

Akt Pathway 

 

Figure 4. TGF-β Pathway 
(Copyright Reserved by “Cell Signaling Technology”) 
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The Akt (also known as protein kinase B or PKB) has become a major focus of 

attention because of its critical regulatory role in diverse cellular processes, including 

cancer progression and insulin metabolism. As shown in Figure 5, the Akt cascade is 

activated by receptor tyrosine kinases, integrins, B and T cell receptors, cytokine 

receptors, G-protein coupled receptors, and other stimuli. The three Akt isoforms (Akt1, 

Akt2, and Akt3) mediate many of the downstream events regulated by PI3K. For 

example, Akt is a major regulator of insulin signaling and glucose metabolism, with 

genetic studies in mice revealing a central role for Akt2 in these processes. Akt regulates 

cell growth through its effects on the mTOR and p70 S6 kinase pathways, as well as cell 

cycle and cell proliferation through its direct action on the CDK inhibitors p21 and p27, 

and its indirect effect on the levels of cyclin D1 and p53. Akt is a major mediator of cell 

 

Figure 5. Akt Pathway 
(Copyright reserved by “Cell Signaling Technology”) 



29 
 

survival through direct inhibition of pro-apoptotic signals such as Bad and the Forkhead 

family of transcription factors. Recently, Akt has been demonstrated to interact with 

Smad molecules to regulate TGFβ signaling (Bhaskar & Hay, 2007; Brugge, Hung, & 

Mills, 2007; Carnero, Blanco-Aparicio, Renner, Link, & Leal, 2008).  

p53 Pathway 

As shown in Figure 6, p53 is a tumor suppressor protein that regulates the expression 

of a wide variety of genes involved in Apoptosis, Growth arrest, Inhibition of cell cycle 

progression, Differentiation and accelerated DNA repair or Senescence in response to 

genotoxic or cellular Stress. When the cell is confronted with stress like DNA damage, 

hypoxia, cytokines, metabolic changes and viral infection, p53 is activated (Francoz et 

al., 2006; Hanazono et al., 2006). In addition, p53 can transcriptionally activate PTEN 

(Phosphatase and Tensin Homolog), which may further inhibit Akt activity. Therefore, 

inhibition of Akt by the inhibitors may trigger a positive feedback with perhaps 

additional anti-tumor effects.  

Cell cycle inhibition takes place when there is a block in cell-cycle division. p53 

does this by stimulating the expression of p21/WAF1/CIP1 (Cyclin Dependent Kinase 

Inhibitor-p21). This protein is an inhibitor of CDKs (Cyclin-Dependent Kinases) that 

regulate the cell cycle via perturbation of their partner cyclin. Since p21/WAF1/CIP1 

inhibits CDKs it results in inhibition of both G1-to-S and G2-to-mitosis transitions by 

causing hypophosphorylation of Rb (Retinoblastoma) and preventing the release of E2F. 

Additionally p53 can stimulate 14-3-3, a protein that sequesters Cyclin B1-CDK1 

complexes out of the nucleus. This results in a G2 block. Activated p53 may also initiate 
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apoptosis and stop cell proliferation (Akhtar, Geng, Klocke, & Roth, 2006; Zheng, Ma, 

Zhu, Zhang, & Tong, 2006). 

Mutations in p53 are associated with genomic instability and increased susceptibility 

to cancer. It is the most frequently mutated protein in all cancer with an estimated 60% of 

all cancers having mutated forms that affect its growth suppressing activities. However 

some common tumors have a higher incidence such that 90% of cervical and 70% of 

colorectal are found to have p53 mutations. The p53 protein can be inactivated in several 

ways, including inherited mutations that result in a higher incidence of certain familial 

cancers such as Li-Fraumeni syndrome (Francoz et al., 2006; Gomes & Andrade, 2006; 

Jiang et al., 2006). 

Parameters Estimation 

We have shown in section 1.2 that a state space model for a complex system usually 

contains many parameters, depending on the number of pathways and the number of 

 

Figure 6. p53 Pathway 
(Copyright Reserved by Biocarta) 
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stage in each pathway. In order to estimate the parameters simultaneously, Tan and Ye 

(2000) have developed general Bayesian procedures based on state space model, while 

the state variables are estimated by multi-level Gibbs sampling and weighted bootstrap 

procedures. In this section, we briefly introduced these procedures. 

Information coming from three sources makes these procedures possible and 

reliable: 

Prior information comes from previous studies or experiences, which give 

reasonable range or distribution of parameters. 

  Biological mechanisms, such as pathways we discussed in previous section, 

provide the information for constructing stochastic differential equations and conditional 

distribution. 

Observation is represented by statistical model, which connects the biological system 

by incidence function, and also controls the randomness of observation. 

We used two-pathway model described in section 1.1 as an example to illustrate the 

procedures. Let X be state variables {N(t), I1(t), I2(t), T(t)}, Θ the set of all unknown 

parameters {α1, α2, ω1, β1, b1, d1, b2, d2} and Y the observed data, say cancer incidence 

for each age group. Let P(θ) be the prior distribution of the parameters, constructed by 

previous studies. If the prior information is vague, then a uniform or non-informative 

prior is applied.  Let P(X|Θ) be the conditional probability density of X given the 

parameters Θ and P(Y|X, Θ) the conditional probability density of Y given X and Θ. P(X 

|Θ) is derived from the stochastic system model and P(Y|X,Θ) is derived from the 

observation model and is usually taken as likelihood function. By combining three 
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distributions, we can obtain the joint distribution of {X, Y, Θ}: P(X, Y, Θ) = P(Θ) P(X |Θ) 

P(Y |X, Θ). Then conditional distributions P(X |Y, Θ) and P(Θ| X, Y) are derived by: 

| , | | ,  

| , | | ,  

Using these conditional probability distributions, one can estimate the unknown 

parameters and predict the state variables by using the multi-level Gibbs sampling 

procedures (Liu & Chen 1998; Shephard, 1994, Tan, Zhang, Chen, & Zhu, 2008a; Tan, 

Zhang, Chen, & Zhu, 2008b). The algorithm is as following: 

(1) Given Y and initial value of Θ(0), generated X(*) from P(X|Y, Θ(0)). 

(2) Generate Θ(*) from P(Θ| X(*), Y) 

(3) Back to step (1) to generate new X(*) from updated P(X | Y, Θ(*)) 

(4) Repeat (1)-(3) till convergence. 

The convergence of the above algorithm has been proved by Tan (2002). At 

convergence, one can generate a large set of X from P(X | Y), independent on Θ, and 

generate a large set of Θ from posterior marginal distribution of P(Θ| Y), independent on 

X. Then we can use the sample means of X and Θ as estimates of X and Θ respectively, 

and use the sample variances as variances of the estimates. Alternatively, one can use 

also Efron’s bootstrap method (Efron, 1982) to estimate the standard errors of estimates.   

To implement the above procedures, one difficulty is that P(X | Y, Θ) is hard to 

derive in practice. In order to generate X from conditional distribution of P(X | Y, Θ), Tan 

and Chen (1998) have developed an indirect method based on the weighted bootstrap 

method (Smith & Gelfand, 1992). The algorithm used in weighted bootstrap method 

follows: 
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(1) Given Θ(0) and X(l) (0 ≤ l ≤ j), generate a large number of random sample of size 

N from 1 |  (from the stochastic system model), denoted them by 

{ 1 , … , 1 }. 

(2) Compute 1 | , 0,1, … , , 1 ,  and p Ω /

∑ ΩN  for k = 1, …, N. 

(3) Construct a population π with element (E1,…, EN) and with P(Ek) = p . Draw an 

element randomly from π, if the outcome is Ek, then X j 1  is the element 

X j 1  from the conditional P(X | Y, Θ).  

(4) Repeat (1)-(3) until j = TM, which is largest time point for discrete time in 

stochastic system.



34 
 

2. STOCHASTIC MODELS OF CARCINOGENESIS FOR INITIATION-
PROMOTION BIOASSAY AND APPLICATIONS 

Introduction 

To assess cancer risk of environmental agents, a common approach is to conduct 

initiation-promotion experiments using the mouse skin bioassay system to test if the 

agent can initiate cancer and/or promote cancer (Misfeld, 1980; Waters, Sandhu, 

Huisingh, Claxton, & Nesnow, 1981). For example, during the 1980’s, the US EPA had 

conducted extensive initiation-promotion experiments to test a wide range of 

environmental risk agents. These environmental agents include among others, 

benzo(a)pyrene, topside coke oven extract, coke oven main extract, Nissan extract, 

roofing tar extract, Oldsmobile extract, Mercedes extract, Caterpillar extract, residential 

extract, and Mustang extract. For each of these environmental agents, valuable data 

concerning the number of papillomas and carcinomas had been generated. Many of these 

data were summarized in the paper by Nesnow et al. (1982); to date these useful data 

have only been used to construct empirical dose- response curves without any input from 

biologically supported model of carcinogenesis.  Tan, Chen, and Wang (2001) have used 

the average number of papillomas per animal over different time points from Nissan 

extract to develop a state space model for the generation of papillomas. In this paper we 

will develop a comprehensive stochastic model of carcinogenesis for these experiments. 

We will show that even with some summary data as given in Nesnow et al. (1982), by 

using these models we will be able to extract extensive information than are possible by 

statistical methods. 
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In Section 2.2, we will develop a stochastic model for the initiation-promotion 

experiments using mouse skin bioassay. In Section 3, we will derive stochastic equations 

and probability distributions of state variables in these experiments. Using results from 

Section 2.3, in Section 2.4 we will develop statistical models and probability distributions 

for data on papillomas and carcinomas from these experiments. In Section 2.5, by using 

results from the above sections, we will develop some statistical inference procedures to 

estimate unknown genetic parameters, to validate the model and to predict future cases. 

In Section 2.6, we will apply the models and methods of this paper to analyze some 

summary data in Nesnow et al. (1982). We will show that even with some summary data 

we will be able to derive many useful results and extract some important information 

from the system. To further confirm the usefulness of our model and methods, in Section 

2.7 we will generate some Monte Carlo data to illustrate the model and methods, will 

discuss the usefulness of the model and methods. 

A Stochastic Model for Initiation-Promotion Bioassay 

In initiation-promotion bioassay experiments, mouse skin is shaved and is exposed to 

a chemical called “Initiator” for a short time period (normally a few days or a week); 

immediately following initiation the exposed mice are treated by a chemical called 

“Promoter” weekly or twice weekly until sacrifice or termination of experiment. From 

studies of molecular biology of skin cancer (DiGiovanni 1992; Hennings et al., 1993; 

Missero, D’Errico, Dotto, & Dogliotti, 2002; Weinberg, 2007, pp. 435-439; Yuspa, 

1994), carcinogenesis for this bioassay experiment to generate papillomas and 

carcinomas can best be described by a multiple pathway model involving a two-stage 



36 
 

model and an one-stage model; see Remark 1. This is represented schematically in 

Figure 7. 

In Figure 7, the animal is in stage I1 if the H-ras oncogene in a skin stem cell of the 

animal has been mutated (Brown, Buchmann, & Balmain, 1990; Missero et al., 2002; 

Weinberg, 2007, P.439). The I1 stage animal is in stage I2 if the p53 gene in an I1 cell of 

this animal has been mutated or deleted or inactivated (Missero et al., 2002; Weinberg, 

2007; Ruggeri et al., 1991); the animal is in stage I2 immediately after treatment if the 

agent can induce mutations of both the H-ras gene and the p53 gene simultaneously. 

Thus, an agent is an initiator if the agent can induce H-ras mutation in skin stem cells in 

animals and is a strong initiator if it can induce mutation of both the H-ras gene and the 

p53 gene at the same time in some skin stem cells of mice. Promoters such as TPA (12-0 

tetradecanoylphorbol-13-acetate) cannot induce genetic changes but only promote cell 

proliferation of initiated cells (Hennings et al., 1993; Weinberg, 2007). Karin, Liu, and 

Zandi (1997), Saez et al. (1995), and Weinberg (2007, P.439) have shown that promoters 

 

Figure 7. Multiple-pathway for Initiation and Promotion 
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such as TPA act synergistically with the H-ras gene protein to activate kinase Cα (PKC-

α) which in turn activates the NK- B, the AP-1 (heterodimer of c-jun and c-fos 

oncogenes) and the MAPK signal pathways to drive cell proliferation; Missero, Ramon, 

Cajal, and Dotto (1991) and Missero et al. (2002) have also noticed that promoters may 

facilitate cell proliferation of I1 cells by inhibiting TGF-β (Transforming Growth Factor 

β) activities. 

In the model in Figure 7, the Ir (r = 1, 2) cells are subjected to stochastic birth and 

death and each cell proceeds forward independently of other cells. Further, papillomas 

develop from primary I1 cells through clonal expansion (i.e., stochastic birth-death) of 

these cells, where primary I1 cells are I1 cells generated directly by normal stem cells. 

Similarly, carcinomas develop from primary I2 cells by clonal expansion (stochastic birth 

and death) of these cells, where primary I2 cells are I2 cells generated directly by mutation 

from I1 cells. From this it is clear that the two-stage model in Figure 7 is not the classical 

MVK two-stage model because the MVK model assumes that I2 cells grow 

instantaneously into carcinomas as soon as they are generated ignoring completely the 

stochastic birth and death of I2 cells; see Tan (1991, Chapter 3). 

Let t0 be the time to start the experiment and  the time to end initiation. For the 

model in Figure 7, the response variables (state variables) are the number Ir(t) (r = 1, 2) 

of Ir cells at time t (t ≥ t0), the number YP (t) of papillomas at time t and the number YC(t) 

of carcinomas at time t. 

In the next section, we will derive probability distributions of these variables under 

different bioassay experiments. 
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Remark 2.1. Because the promoter cannot induce genetic changes, the data in Table 

2 implied that carcinomas could only be derived from I2 cells generated by the initiator 

during the short initiation period. 

The Stochastic Equations and Probability Distribution of State Variables in 

Initiation-Promotion Experiments 

Let  = {Ir(t), r = 1, 2}. To derive probability distribution of the state variables, 

observe that {X(t), t ≥ t0} is a two-dimensional Markov process although YP(t) and YC(t) 

may not be Markov. For simplicity, notice further that we can make the following two 

assumptions: (a) Since the number of normal stem cells is very large (i.e., 108 ~ 109) and 

the size of organ in adult mice is stable, it is reasonable to assume that the number N(t) of 

normal stem cells at time t is a deterministic function of t and is a constant (i.e., N(t) = 

N0). (b) Because the spontaneous mutation rates from N→ Ir (r = 1, 2) and from I1→I2 are 

very small, in practice one can ignore spontaneous mutations from N → Ir (r = 1, 2) and 

from I1 → I2; thus we assume that N → Ir (r = 1, 2) mutations can only be generated by 

initiators and I1 → I2 can only be generated by initiators or mutagen (not by promoters; 

see Hennings et al., 1983). 

Experiments in Which the Agent Is Used as an Initiator 

In these experiments, similar animals are treated by the testing agent at time t0 for a 

very short period with k different dose levels (ui, i = 1, . . . ,k); then the treated animals 

are promoted by a well-known promoter such as TPA with fixed dose level weekly or 

twice weekly until sacrifice or the end of experiment. Let sj (j = 1, . . . ,m) be the time to 

start the j −th round of promotion with promotion period sj+1 −sj = 7 days when 

promotion is applied weekly or 3 and half days when promotion is applied twice weekly. 
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If the agent is an initiator, it would induce mutation of the H-ras oncogene in some 

normal skin stem cells in mice to generate I1 cells during the initiation period (t0, ] and 

hence papillomas at later times. If the agent is a strong carcinogen, with positive 

probability it may also induce mutations of both the H-ras gene and the p53 gene 

simultaneously in some skin stem cells in animals to generate I2 cells during (t0, ] and 

hence carcinomas at later times; see data Table 2 where both papillomas and carcinomas 

are generated by the initiator. 

Let αr(i) > 0 (r = 1, 2) be the mutation rate from N → Ir induced by the agent with 

dose level ui during the initiation period, where (α1(i) > α2(i) > 0). Let Xr(i) (r = 1, 2) be 

the number of Ir cells generated during (t0, ] in the animal treated by the agent with 

dose level ui. Because the αr(i) (r = 1, 2)’s are very small, the Xr(i) (r = 1, 2, i = 1, . . . ,k) 

are distributed as Poisson random variables with mean λr(i) respectively, where λr(i) = 

αr(i)N0 (r = 1, 2, i = 1, . . . ,k). That is,  

                     Xr(i) ~ Poisson{λr(i)}.                                                                    (2.1) 

The Stochastic Equations and Probability Distribution of State Variables 

Let {Br(j), Dr(j)} (r = 1, 2) denote the number of birth and the number of death of the 

Ir cells respectively in the animal during (sj, sj+1] (j = 1, . . . ,m). Because the promoter 

would not induce genetic changes but only increase the proliferation rates of Ir cells, by 

the conservation law we have the following stochastic equations for Ir(t) (r = 1, 2): 

Ir(sj+1) = Ir(sj) + Br(j) − Dr(j), j = 1, . . . ,m,                                                  (2.2) 

Ir(t) = Ir( ) = Xr(i) for ≤ t ≤ s1, i = 1, . . . ,k. 

In the above equations, notice that the {Br(j), Dr(j)} are independent of the agents 

and hence independent of the dose levels ui of the agent. Notice also that only the 
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initiated number of Ir cells at  is dependent on the agent and hence the dose levels of 

the agent. 

To derive probability distributions of the Ir(t) (r = 1, 2), let br(j) and dr(j) denote the 

probability of birth and the probability of death of the Ir cells during the time period (sj, 

sj+1] respectively. (Because sj+1−sj is a constant, one may assume (br(j) = br, dr(j) = dr).) 

These probabilities depend only on the promoter and hence are independent of the agent 

and the dose level of the agent. It is shown in Tan (2002, Chapter 8) that the conditional 

probability distribution of {Br(j), Dr(j)} given Ir(sj) is multinomial with parameters {Ir(sj), 

br, dr}. That is, 

{Br(j),Dr(j)}| Ir(sj ) ~ Multinomial{Ir(sj); br, dr}, r = 1, 2, j = 1, . . . ,m.             (2.3) 

Let f(x; N, p) denote the density at x of X ~ Binomial{N, p}. Using equation (2.2) and 

the above conditional probability distribution of {Br(j), Dr(j)} given Ir(sj), we obtain for (r 

= 1, 2, j = 1, . . . ,m, i = 1, . . . ,k): 

P{Ir(sj+1) = n2|Ir(sj) = n1} = ∑ (u; n1, br)δ(n1 − n2 + u) 

     × f{n1 − n2 + u; n1 − u,  },                                                                        (2.4)    

where Ir(s1) = Xr(i), r = 1, 2 under treatment with dose level ui and where δ(n1−n2+u) 

= 1 if n1 − n2 + u ≥ 0 and = 0 if n1 − n2 +u < 0. 

Let h(x; λr(i)) denote the density at x of the Poisson distribution Xr(i) ~ 

Poisson{λr(i)}. Then, for r = 1, 2 and i = 1, . . . ,k, the probability P{Ir(s2) = n; i} of Ir(s2) 

= n under treatment with dose level ui is: 

P{Ir(s2) = n; i} =∑∞ {u; λr(i)}∑  (v; u, br)δ(u − n + v) × f(u − n + v; u 

−v, ).                                                                                                                     (2.5)    
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 The Probability Distribution of the Number of Papillomas 

To derive probability distribution of the number of papillomas, observe that 

papillomas are produced by clonal expansion (i.e., stochastic birth and death process) of 

I1 cells generated by the initiator during the initiation period and that the I1 cells can only 

proliferate under promotion by the promoter after time s1. Let PI (s1, t) = PI (t − s1) denote 

the probability that a primary I1 cell at s1 develops into a detectable papillomas by time t 

(t ≥ s1 > t ). Then, as proved in Tan (2002, Chapter 8), 

PI(s1, t) = PI(t − s1) = ×  ,  (2.6) 

where γ1 = b1 − d1, θI =  and where NI is the number of I1 cells in the papillomas 

for the papillomas to be detectable. 

Let YP (t; i) be the total number of papillomas by time t derived from the X1(i) I1 cells 

which are generated by the initiator with dose level ui during (t0, ]. Then  

YP (t; i)| X1(i) ~ Binomial{X1(i), PI (t − s1)}. Since X1(i) ~ Poisson{λ1(i)}, so, 

P(YP (t; i) = j) =∑∞ (u; λ1(i))f(j; u, PI (t − s1)) 

=∑
!

∞   [1 − PI (t − )  

=
!

[λ1(i)PI (t − s1) ∑
!

∞  {λ1(i)[1 − PI (t − s1)]  

                  =
!

[λ1(i)PI (t − s1)  

!
  .  (2.7) 

It follows that, 

YP (t; i) ~ Poisson{λ1(i)PI(t − )}.  (2.8) 
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 The Probability Distribution of Carcinomas 

To derive probability distribution of the number of carcinomas, observe that 

carcinomas are produced by clonal expansion (i.e., stochastic birth and death process) of 

I2 cells generated by the initiator. Let PC(s1, t) denote the probability that an I2 cell at s1 

develops into a detectable carcinomas by time t (t ≥ s1 > ). Then, as shown in Tan 

(2002, Chapter 8), 

PC(s1, t) = PC(t − s1) =
  

 ×
  

,  (2.9) 

where γ2 = b2 − d2, θC = and where NC is the number of I2 cells in the carcinoma for the 

carcinoma to be detectable. 

Let YC(t; i) be the total number of carcinomas by time t produced by the X2(i), I2 cells 

which are generated by the initiator with dose level ui during (t0, ]. Then 

YC(t; i)| X2(i) ~ Binomial{X2(i), PC(t − s1)}. Since X2(i) ~ Poisson{λ2(i)}, so, 

YC(t; i) ~ Poisson{λ2(i)PC(t − s1)}, i = 1, . . . ,k.  (2.10) 

Experiments in Which the Agent Is Used as a Promoter 

When the agent is an initiator, the next step is to test if the agent is also a promoter. 

In the initiation-promotion experiment, one then uses a well-known initiator such as 

B(a)P (benzo[a]pyrene) as the initiator with fixed dose level but use the testing agent as 

the promoter with k dose levels ui (i = 1, . . . ,k). Because the I1 cells can proliferate only 

under promotion, if the agent is not a promoter, the number of I1 cells are very small and 

hence papillomas and carcinomas would not be generated. On the other hand, if the agent 

is a promoter, then, papillomas and possibly carcinomas will be generated at latter times. 
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In this experiment, when both the initiator and the testing agent (i.e., the promoter) 

are strong carcinogens, the Ir (r = 1, 2) cells are generated not only by the initiator during 

the initiation period (t0, ], but also by the testing agent during promotion periods (sj, 

] (j = 1, . . . ,m). 

 The Stochastic Equations and Probability Distribution of State Variables 

Let (r = 1, 2) denote the number of Ir cells generated by the initiator during the 

initiation period and Xr(i, j) (r = 1, 2, i = 1, . . . ,k, j = 1, . . . ,m) the number of Ir cells 

generated by the testing agent with dose level ui during the promotion period (sj, sj+1]. Let 

νr (r = 1, 2) be the mutation rate of N → Ir by the initiator. (νr ≠ αr because the initiator 

used is not the testing agent.) Then, as in Section (2.3.1), we have for (r = 1, 2): 

~ Poisson{ωr}, with ωr = , 

Xr(i, j) ~ Poisson{λr(i)}, independently for i = 1, . . . ,k, j = 1, . . . ,m.  (2.11) 

To derive stochastic equations for the state variables, let {Br(i, j), Dr(i, j)} (r = 1, 2, j 

= 1, . . . ,m, i = 1, . . . ,k) denote the number of birth and the number of death of the Ir cells 

respectively in the animal during (sj−1, sj ] under promotion by the agent with dose level 

ui. Let M1(i, j) (j = 1, . . . ,m) denote the number of mutation from I1 → I2 in the animal 

during (sj, sj+1] under promotion by the agent with dose level ui. By the conservation law 

we have the following stochastic equations for Ir(t) (r = 1, 2): 

I1(sj+1) = I1(sj) + X1(i, j) + B1(i, j) − D1(i, j), j = 1, . . . ,m, 

i = 1, . . . ,k with I1(t) = I1( ) =  for  ≤ t ≤ ;  (2.12) 

I2(sj+1) = I2(sj) +M1(i, j) + X2(i, j) + B2(i, j) − D2(i, j), j = 1, . . . ,m, 

i = 1, . . . ,k, with I2(t) = I2( ) =  for  ≤ t ≤ .  (2.13) 
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To derive probability distribution of the state variables, let br(j; i) = br(i) and dr(j; i) = 

dr(i) denote the probability of birth and the probability of death of the Ir (r = 1, 2) cells 

during the interval (sj, ] under promotion with dose level ui respectively. Let β1(j; i) = 

β1(i) be the probability of mutation from I1 → I2 during the promotion period (sj, ] 

under promotion by the agent with dose level ui. Then as in the previous section, we 

have: 

{Br(i, j), Dr(i, j)}| Ir(sj) ~ Multinomial{Ir(sj), br(i), dr(i)}, independently for r = 1, 2, j 

= 1, . . . ,m, i = 1, . . . ,k; (2.14) 

M1(i, j)| I1(sj) ~Poisson{I1(sj)β1(i)}, independent of Br(i, j), Dr(i, j), Xr(i, j), , r = 1, 

2, j = 1, . . . ,m, i = . . . , k. (2.15)       

Let g(x, y; N, p, q) denote the density at (x, y) of a multinomial distribution (X, Y) ~ 

Multinomial{N; p, q}. Using equations (2.12)-(2.13) and the probability distributions in 

equations (2.14)-(2.15), we obtain: 

P{I1( ) = n1 | I1(sj) = r1} = ∑ ∑ { , ; , (i), (i)} 

× h{  −  −  + ; (i)}   (2.16) 

P{I2(sj+1) = n2 | I1(sj) = r1, I2(sj) = r2} =  ∑ ∑ ∑ {l; (i)} 

× g{ , ; , (i), (i)} ;  

×   (2.17) 

where δ(x) = 1 if x ≥ 0 and = 0 if x < 0. 

To derive probability distributions of papillomas and carcinomas, notice that 

papillomas are generated from and X1(i, j) cells whereas carcinomas are generated 

from  cells, X2(i, j) cells and M1(i, j) cells. 
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The Probability Distribution of Papillomas 

To derive probability distribution of the number of papillomas, observe that each 

papilloma is derived by clonal expansion (i.e., stochastic birth and death process) from a 

single primary I1 cell; are primary I1 cells generated by the initiator during the 

initiation period and X1(i, j) are primary I1 cells generated by the testing agent during 

promotion periods (sj, ] (j = 1, . . . ,m). Let (t; i) denote the number of papillomas 

by time t derived from  cells and YP (t; i, j) the number of papillomas by time t 

derived from X1(i, j) cells. Then these variables (i.e., {  (t; i), YP (t; i, j), i = 1, . . . ,k, j 

= 1, . . . ,m}) are independently distributed of one another. As in the previous section, the 

probability distributions of these variables are: 

 (t; i) ~ Poisson {ω1 PI (t − s1; i)}, 

YP (t; i, j) ~ Poisson {λ1(i) PI(t − ; i)},  

independently for i = 1, . . . ,k, j = 1, . . . ,m,  (2.18) 

where 

PI( ; i) =
  

×
  

, 

where γ1(i) = b1(i) − d1(i), θI(i) = , i = 1, . . . ,k.  (2.19)  

Let YP (t; i) be the total number of papillomas by time t generated by the initiator and 

by the agent with dose level ui. Then YP (t; i) =  (t; i)+∑ (t; i, j). It follows that 

YP(t; i) is distributed as Poisson with mean (t; i) = ω1PI (t − ; i) +∑ 1(i)PI (t –sj+1; 

i). That is, 

YP (t; i) ~ Poisson{ (t; i)}.  (2.20) 
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 The Probability Distribution of Carcinomas 

To derive probability distribution of the number of carcinomas, observe that each 

carcinoma is derived by clonal expansion from a single primary I2 cell. Hence, 

carcinomas are derived by clonal expansion from  cells, X2(i, j) cells and from M1(i, j) 

cells as these cells are primary I2 cells. Let (t; i) denote the number of carcinomas by 

time t derived from cells, YC(t; i, j) the number of carcinomas by time t derived from 

X2(i, j) cells and (t; i, j) the number of carcinomas by time t derived from M1(i, j) 

cells. Then the variables { (t; i), YC(t; i, j), (t; i, j), i = 1, . . . ,k, j = 1, . . . ,n} are 

independently distributed of one another. As in the previous section, the probability 

distributions of these variables are: 

               (t; i) ~ Poisson {ω2PC(t − s1; i)}, 

               YC(t; i, j) ~ Poisson { 2(i)PC(t − ; i)},                                                               

independently for i = 1, . . . ,k, j = 1, . . . ,m, 

where 

PC(t − sj ; i) =
  

×
  

,  (2.21) 

where (i) = b2(i) − d2(i), θC(i) = , i = 1, . . . ,k. 

To derive the probability distribution of (t; i, j), observe that the conditional 

distribution of (t; i, j) given M1(i, j) is binomial with parameters {M1(i, j), PC(t − ; 

i)} and the conditional distribution of M1(i, j) given I1(sj) cells is Poisson with mean 

I1(sj)β1(i). Hence the conditional distribution of (t; i, j) given I1(sj) is Poisson with 
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mean I1(sj)β1(i)PC(t − ; i). It follows that to the order of o(β1(i)), the distribution of 

(t; i, j) is Poisson with mean E[I1(sj)]β1(i)PC(t − ; i). 

Let YC(t; i) be the total number of carcinomas by time t generated by the initiator and 

by the agent with dose level ui. Then YC(t; i) = (t; i)+∑ YC(t; i, j)+YC
J (t; i, j)]. It 

follows that to the order of o(β1(i)), YC(t; i) is distributed as Poisson with mean  

ψC(t; i) = ω2PC(t − s1; i) + ∑ 2(i) + E(I1(sj))β1(i)]PC(t − ; i). That is, 

YC(t; i) ~ Poisson{ψC(t; i)}.                                                                                 (2.22) 

Experiments in Which the Agent Is Used as a Complete Carcinogen 

The testing agent is a complete carcinogen if it is both an initiator and a promoter. 

To test if the environmental agent is a complete carcinogen, the agent is used both as an 

initiator and a promoter with dose levels ui(i = 1, . . . ,k). Thus, the experiment is similar 

to the experiment in Section 2.3.2 except that the initiator is now the testing agent with 

dose level ui (i = 1, . . . ,k). In these experiments, if papillomas are not generated, then 

either the agent is not an initiator, or the agent is not a promoter; the agent is a complete 

carcinogen if papillomas are generated in the experiment. 

 Stochastic Equations and Probability Distribution of the State Variables 

Let Xr(i; 0) (r = 1, 2, i = 1, . . . ,k) be the Ir cells generated by the agent with dose 

level ui during the initiation period. Because the length of initiation period is very short 

and is approximately equal to the promotion period − sj , Xr(i; 0) ~ Poisson{λr(i)} 

independently of Xr(i; j) (j = 1, . . . ,m), where Xr(i; j) is defined in Section 2.3.2. 

Obviously, except with Ir(t) = Xr(i; 0) (r = 1, 2) for ≤ t ≤ s1 under the initiator with 

dose level ui, the stochastic equations for Ir(t) are exactly the same as given by equations 
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(2.12)- (2.13) respectively. Similarly the conditional probability distributions of {Br(i; 

j),Dr(i; j)} given Ir(sj) and the conditional probability distribution of M1(i, j) given I1(sj) 

are given by equations (2.14)-(2.15) respectively. It follows that the conditional 

probability distribution of ( ) given (sj) are given by equations (2.16)-(2.17) 

respectively. 

 The Probability Distributions of Papillomas and Carcinomas 

Let YP (t; i, 0) (YC(t; i, 0)) denote the number of papillomas (carcinomas) by time t 

generated by the initiator with dose level ui during the initiation period respectively. 

Then, with notations from Section 2.3.2, YP(t; i) = ∑ (t; i, j) and YC(t; i) = ∑ YC(t; 

i, j)+  (t; i, j)]. Further, 

    YP(t; i, j) ~ Poisson {λ1(i)PI (t − s1; i)}, j = 0, 1, . . . ,m  (2.23) 

    YC(t; i, j) ~ Poisson{λ2(i)PC(t − ; i)}, j = 0, 1, . . . ,m;  (2.24)  

and to the order of o(β1(i)), 

 (t; i, j) ~ Poisson{E[I1(sj)]β1(i)PC(t − ; i)}, j = 1, . . . ,m. 

Hence, 

       YP (t; i) ~ Poisson{ηP(t; i)}.  (2.25) 

       YC(t; i) ~ Poisson{ηC(t; i)},  (2.26) 

where (t; i) = ∑ (i)PI(t − ; i) and 

(t; i) = λ2(i)PC(t − s1; i) +∑  λ2(i) + E(I1(sj))β1(i)]PC(t − ; i). 

Statistical Models and Probability Distributions 

In initiation-promotion experiments, similar mice are randomized into k groups. In 

the i-th group, ni (i = 1, . . . ,k) animals are treated by the testing agent with dose level ui; 
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among these ni animals, ni(l) animals are sacrificed at time tl when autopsies are 

performed over these sacrificed animals and the numbers of papillomas and carcinomas 

are counted. The observed data available are the number mP(i) of animals with papillomas 

among the ni(l) animals sacrificed at time tl in the i−th treatment group, the average 

number YP(tl, i) of papillomas per animal in the i−th treatment group over the ni(l) 

animals sacrificed at time tl, the number (i) of animals with carcinomas in the i−th 

treatment group among the ni(l) animals sacrificed at time tl and the average number 

YC(tl, i) of carcinomas per animal in the i−th treatment group among the ni(l) animals 

sacrificed at time tl. Given in Tables 2-4 are these observed numbers in percentages with 

tl equal to six months or one year. To develop statistical models for these observed data, 

in what follows we let YP (v; tl, i) be the number of papillomas by time tl in the v-th 

mouse in the i − th treatment group among the ni(l) mice sacrificed at time tl; similarly, 

we let YC(v; tl, i) be the number of carcinomas by time tl in the v-th mouse in the i – th 

treatment group among the ni(l) mice sacrificed at time tl. 

Using results from Section 2.3, in this section we will develop statistical models for 

these observed variables and derive probability distributions generating these observed 

data under different initiation-promotion bioassay experiments. 

Experiments in Which the Testing Agent Is Used as an Initiator 

From results in Section (2.3.1.2) and equation (2.8), the probability that the animal in 

the i−th treatment group would develop at least one detectable papillomas by time tl is 

(tl; i) = 1 − exp{−λ1(i)PI (tl − s1)}. 

It follows that 

(i) | ni(l) ~ Binomial{ni(l), (tl; i)}, independently for i = 1, . . . ,k.          (2.27)         
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The deviance (m; i) of the density in (2.27) is 

(m; i) = 2{ (i) −  (i) log [ (tl; i)] − [ni(l) − mP(i)] log[1 − QP (tl; i)]},                           

            (2.28) 

where AP(i) = (i) log[ (i)] + [ni(l) − (i)] log[ni(l) − (i)] − ni(l) log[ni(l)]. 

By equation (2.8) in Section (3.1.2), we have also that 

YP(v; tl, i) ~ Poisson{λ1(i)PI(tl − s1)}, independently for v = 1, . . . ,ni(l), i = 1, . . . ,k.     

            (2.29) 

It follows that 

YP(tl, i) = ∑ (v; tl, i) = λ1(i)PI(tl − s1) + (i), independently for i = 1, . . . 

,k.  (2.30) 

In the above equation, (i) has expected value 0 and variance  λ1(i)PI(tl − s1). 

When ni(l) is not small, by the central limit theorem one may practically assume that 

the (i) are independently distributed as normal random variables. 

Using this distribution result, the deviance (Y ; i) of the density of YP(ti, i) is 

 (Y ; i) = log{λ1(i)PI (tl − s1)} − log ni(l) + 
   

,  

     (2.31)  

Let (tl; i) be the probability that the animal in the i−th treatment group would 

develop at least one detectable carcinomas by time tl. From results in Section (2.3.1.3) 

and equation (2.10), we obtain (tl; i) = 1 − exp{−λ2(i)PC(tl − s1)} and 

              mC(i) | ni(l) ~ Binomial{ni(l), (tl; i)}.  (2.32) 

The deviance (m; i) of the density in (2.32) is 
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(m; i) = 2{AC(i) − mP(i) log [ (tl; i)] − [ni(l) − mC(i)] log[1 − (tl; i)]},          

                          (2.33) 

where (i) = (i) log[ (i)] + [ (l) − (i)] log[ (l) − (i)] − ni(l) log[ni(l)]. 

Similarly, by equation (2.10) in Section (3.1.3), we have that 

YC(v; tl, i) ~ Poisson{λ2(i)PC(tl − s1)},  independently for v = 1, . . . ,ni(l), i = 1, . . . ,k. 

                                                                                                                              (2.34)  

It follows that 

YC(tl, i) = ∑  (v; tl, i) = λ1(i)PI(tl − s1) + (i), independently for i = 1, . . . 

,k                                                                                                                                   (2.35) 

By the central limit theorem, the eC (i) are distributed independently as normal 

variables with expected value 0 and variances   approximately. 

Using this distribution result, the deviance Dev (Y; i) of the density of YC(ti, i) is 

 (Y ; i) = log{λ2(i)PC(tl − s1)} − log ni(l) + 
 

× (YC(tl, i) − λ2(i)PC(tl − 

s1) .  (2.36) 

Experiments in Which the Testing Agent Is Used as a Promoter 

As in Section (2.3.2), assume that a well-known chemical (e.g., B(a)P) with certain 

fixed dose level is used as an initiator but the testing agent is used as a promoter over k 

dose levels (ui, i = 1, . . . ,k). 

Let QP (tl; i) be the probability that the animal in the i−th treatment group would 

develop at least one detectable papillomas by time tl; and Q (tl; i) the probability that 
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the animal in the i−th treatment group would develop at least one detectable carcinomas 

by time tl. Then, we have: 

(tl; i) = 1− exp{− (tl; i)}, with  (t; i)= PI t s ; i  +∑ (i)PI (tl − sj+1; 

i); 

(tl; i) = 1− exp{− (tl; i)}, with (t; i)= P t s ; i +∑ λ2(i) + 

E(I1(sj))β1(i)]PC(tl − ; i), 

where PI(tl − sj ; i) and PC(tl − sj ; i) are given in equations (2.18) and (2.22) respectively. 

It follows that 

       (i)|ni(l) ~ Binomial{ni(l),  (tl; i)},                                                      (2.37) 

       (i)|ni(l) ~ Binomial{ni(l),  (tl; i)},                                                      (2.38) 

independently for i = 1, . . . ,k. 

The deviance (m; i) of the density in (2.37) and the deviance (m; i) of 

the density in (2.38) are given respectively by: 

 (m; i) = 2{AP(i) − (i) log[ (tl; i)] − [ni(l) − (i)] log[1 − (tl; i)]},  

                                                                                                                              (2.39)  

 (m; i) = 2{AC(i) − (i) log[ (tl; i)] − [ni(l) − (i)] log[1 − (tl; i)]}.  

                                                                                                                              (2.40) 

Similarly, from equations (2.18) and (2.22) in Section (2.3.2), 

YP (v; tl, i) ~ Poisson{ (tl; i))}; YC(v; tl, i) ~ Poisson{ (tl; i))}, independently for v 

= 1, . . . ,ni(l), i = 1, . . . ,k. 

It follows that 

YP (tl, i) = ∑ (v; tl, i) = (tl; i) + (i),                                            (2.41) 
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YC(tl, i) = ∑ (v; tl, i) = (tl; i) + (i),                                              (2.42) 

independently for i = 1, . . . ,k. 

By the central limit theorem, the (i) and the (i) are approximately normally 

distributed with means 0 and variances (tl; i) and (tl; i) respectively. 

The deviance (Y; i) of the density in (2.41) and the deviance (Y; i) of 

the density in (2.42) are given respectively by: 

 (Y; i) = log{ (tl; i)}− log ni(l) +
 

; 
× (YP (tl, i) − (tl; i) .  (2.43) 

 (Y; i) = log{ (tl; i)}− log ni(l) +
 

; 
× (YC(tl, i) − (tl; i) .  (2.44) 

Experiments in Which the Testing Agent Is Used as a Complete Carcinogen 

Let (tl; i) be the probability that the animal in the i−th treatment group would 

develop at least one detectable papillomas by time tl; and (tl; i) the probability that 

the animal in the i−th treatment group would develop at least one detectable carcinomas 

by time tl. Then, we have: 

(tl; i) = 1− exp{− (tl; i)}, with (t; i) =∑ (tl − ; i); 

(tl; i) = 1− exp{− (tl; i)}, with 

 (t; i) = (i)PC(tl − ; i) + ∑ λ2(i) + E(I1(sj ))β1(i)]PC(tl − ; i), 

where PI (tl − sj; i) and PC(tl − sj+1; i) are given in equations (2.18) and (2.21) 

respectively. 

It follows that 

        (i) | ni(l) ~ Binomial{ni(l), (tl; i)};                                                    (2.45) 
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        (i) | ni(l) ~ Binomial{ni(l), (tl; i)},                                                     (2.46) 

independently for i = 1, . . . ,k. 

The deviance (m; i) of the density in (2.45) and the deviance (m; i) of 

the density in (2.46) are given respectively by: 

(m; i) = 2{AP(i) − (i) log [ (tl; i)] − [ni(l) − (i)] log [1 − (tl; i)]},     

                                                                                                                             (2.47) 

(m; i) = 2{AC(i) − (i) log [ (tl; i)] − [ni(l) − (i)] log [1 − (tl; i)]}.         

                                                                                                                            (2.48)      

Similarly, from equations (2.25) and (2.26) in Section (2.3.2), 

YP (v; tl, i) ~ Poisson{ (tl; i))}; YC(v; tl, i) ~ Poisson{ (tl; i))}, 

independently for v = 1, . . . ,ni(l), i = 1, . . . ,k. 

It follows that 

YP(tl, i) = ∑ (v; tl, i) = (tl; i) + (i),  (2.49) 

YC(tl, i) = ∑ (v; tl, i) = (tl; i) + (i),  (2.50) 

independently for i = 1, . . . ,k. 

By the central limit theorem, the (i) and the (i) are approximately normally 

distributed with means 0 and variance (tl; i) and (tl; i), respectively.  

The deviance (Y; i) of the density in (2.49) and the deviance (Y; i) of 

the density in (2.50) are given respectively by: 

(Y; i) = log{ (tl; i)}− log ni(l) + ; 
 × (YP (tl, i) − (tl; i) .  (2.51) 

(Y; i) = log{ (tl; i)}− log ni(l) + ; 
 × (YC(tl, i) − (tl; i) .  (2.52) 
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Statistical Inference Procedures to Estimate Parameters 

To estimate the unknown parameters in initiation-promotion experiments, the data 

available are the number of animals with papillomas, the number of animals with 

carcinomas, the average number of papillomas per mouse and the average number of 

carcinomas per mouse. While the probability distribution of each of these variables is 

readily available (see Section above), the joint probability distribution of these variables 

are very complicated and remain to be derived. To make use of all data to estimate the 

unknown parameters in the Bayesian approach, in this chapter we will employ two 

different approaches: One approach is through the weighted average of the log of the 

posterior distribution from different data sets, the other approach is sequential using 

estimates from one data set as prior information for the posterior distribution using the 

other data sets and vice versa; see Remark 2.2.  

Remark 2.2. As shown in the next section, the fitting of some actual data from some 

initiation-promotion experiments indicated that these two approaches yielded very similar 

results.  

The Bayesian Approach 

In the Bayesian approach, because prior information about the genetic parameters 

are vague and imprecise but previous biological information and studies provide some 

lower bounds and upper bounds for the parameters, we will assume a partially non-

informative prior for these parameters. That is, we assume the prior distribution as 

proportional to positive constants within the bounded region but are zeros for otherwise. 

We will derive the posterior modes as estimates. For easy of computation, we will use the 

deviance of the posterior distribution which is the negative of the sum of the log of the 
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prior and the log of the standardized likelihood function. Under non-informative prior or 

partially non- informative prior (i.e., non-informative prior but with lower and upper 

bounds for the parameters), the deviance of the posterior distribution is equivalent 

numerically to the deviance function of the likelihood as defined in generalized linear 

models (Nelder, 1989). It follows that deriving the posterior model is equivalent to 

minimize the deviance function of the posterior distribution. Notice that under non-

informative prior or partially non- informative prior, the estimates through deriving the 

posterior mode are equivalent numerically to the maximum likelihood estimates under 

constraints in the classical sampling theory approach. 

Obviously, the traditional Newton-Raphson optimization would not work and is very 

inefficient to minimize the deviance under constraints, because the deviances are 

nonlinear and contain many unknown parameters. We would employ the genetic 

algorithm (GA) to derive the optimal values of parameters simultaneously. The genetic 

algorithm is an optimization process based on evolution principles involving gene 

mutation or chromosomal aberrations, mating types (referred to as crossing over in GA), 

as well as fitness-based selection.  

In this thesis, we have used the genetic algorithm package “rgenoud”  in “R”, which 

was developed by Walter R. Mebane, Jr., and Jasjeet S. Sekhon. The advantages of using 

“R” are: 

(1) The control arguments are clearly defined and easy to implement.  

(2) If the gradients of parameters in an objective function are easy to derive and 

the estimating function is generally concave, the algorithm takes advantage of steepest 

descent method to locate the neighborhood region of optima.  
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(3)  It takes advantage of pure genetic algorithm that global optima is searched 

based on fitness of selection procedure; this procedure avoids being trapped in a local 

optimum in the event that multiple local optima exist. 

We will use this genetic algorithm in combination with the stochastic model of 

carcinogenesis and the Bayesian procedures to derive estimates of the unknown 

parameters (mutation rates, birth rates and death rates, etc.). In the Bayesian procedure, 

we will use a partially non-informative prior as the parameters satisfy prior constraints 

imposed by the cancer biological process.  

Procedures to Estimate Parameters 

We have used the above approach to estimate parameters in each experiment 

described in Section 2.3. The procedures of estimating the parameters are given as 

following: 

(1) Data Augmentation: 

Given parameter values, we use the stochastic equations shown in section 3 (for each 

experiment) and the associated probability distributions to generate a large sample of Z(j) 

= {X(j), U(j), j = 1, 2, …, TM}, where TM is the maximum time point under consideration,  

and where X(j)’s are state variables and U(j)’s are augmented variables. Next we 

combine these sample with the probably distribution of data given state variables and 

parameters and use the weighted Bootstrap method due to Smith and Gelfant (1992) to 

select a sample from this large sample, say Z j . This Z j  is then a sample of size one 

from the conditional probability distribution of Z(j) given data and given parameter 

values. Numerically this is equivalent to the E-step of the E-M algorithm in the sampling 

theory framework. 
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(2) Estimation of parameters given Z j :  

Taken Z j  as mean values of the state variables and augmented variables from the 

stochastic system model, we apply genetic algorithm (GA) to minimize the deviance 

function given in section 2.4. These posterior modes are taken as estimates of the 

parameters Θ. 

(3) Back to step (1) with Θ . and continue until convergence. 

Table 2  

Data from Initiation Experiment 

Agent 
Dose 

(µg/mouse) 
No. Mice 
Surviving

Mice with 
Papillom-

asa 

(%) 

Papillomas 
per mousea 

Mice 
with 

Carcino-
masb 

(%) 

Carcino
mas per 
mouseb 

B(a)P 

0 37 8 0.08 5 .05 

2.52 40 45 0.5 5 0.07 

12.6 40 73 1.8 20 0.2 

50.5 39 100 5.8 25 0.25 

101 38 95 10.2 30 0.33 

Coke 
Oven 
Main 

100 38 50 0.63 10 0.1 

500 39 90 3.7 54 0.59 

1000 39 87 3.3 53 0.53 

2000 40 78 3.1 48 0.48 

a Scored at 6 month; b Cumulative score at 12 month 
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An Illustrative Example 

In this section we use the actually data from Nesnow et al. (1982) to illustrate how to 

estimate parameters in initiation-promotion experiments. Before stepping into parameter 

estimation, we describe the experiments from which the data were generated.  

Observations from Initiation-Promotion Experiments 

 Initiation Experiment. In this experiment, B(a)P and coke oven main are taken 

as initiator. For each agent, 200 similar sencar mice were randomly assigned to 5 dose 

groups, 40 mice of each group. A single application of B(a)P (or coke oven main) to each 

mice is followed one week later by multiple application of the tumor promoter TPA. The 

data is shown in Table 2. 

In this experiments, clearly both the B(a)P and the coke over main are strong 

carcinogens because both papillomas and carcinomas were observed. Thus these agents 

can not only induce mutation of Ras gene to generate I1 cells but also generate 

simultaneous mutation of both the Ras-gene and the p-53 gene to generate I2 cells. Notice 

that  both of these mutations are dose depend; however, because TPA has only one dose 

level, the birth rates and death rates of the I1 and I2 cells are independent of dose levels. 

 Promotion Experiment. In this experiment, the Coke oven main was used as the 

promoter and was applied weekly to sencar mice. The mice were initiated with a single 

dose of 50.5 µg/mouse of B(a)P (benzo(a)pyrene) and  are scored at 34 weeks. The 

observed data are given in Table 3. Notice that in this experiment, data on carcinomas 

were not recorded. 

In this experiment, because the coke oven main is also a strong carcinogen, during 

the promotion periods both the mutation rates from N to I1 and from N to I2 are dose 
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dependent.  Similarly, both the birth rates and the death rates of the I1 cells and the I2 

cells are dose dependent. 

 Complete Experiment. In this experiment, the coke oven is used as both an 

initiator and a promoter. After initiation by coke oven main in the first week, mice were 

treated weekly with coke oven main at different dose levels; at the end of one year data 

on carcinomas were measured and is summarized in Table 4. 

In this experiment, both the mutation rates from N to I1 and from N to I2 are dose 

dependent. Similarly, both the birth rates and the death rates of the I1 cells and the I2 cells 

are dose dependent. 

Table 3  

Data from Promotion Experiment 

Dose 

(µg/mouse) 

Mice with 
Papillomasa 

(%) 

Papillomas per 
mousea 

100 3 0.02 

500 26 0.44 

1000 53 1.2 

2000 84 2.5 

4000 100 8.2 

a Scored at 6 month; b Cumulative score at 12 month 



61 
 

Estimation Scheme 

Using data from the above  three experiments, we will proceed to estimate genetic 

parameters relevant to coke oven main, which include  mutation rates, birth rates and 

death rates. The basic reason we use all of the above experiments instead of just one 

complete experiment is that none of a single experiment contain data on both papillomas 

and carcinomas.  We will proceed sequentially. That is, we use first experiment data to 

estimate part of all parameters and then apply these estimated values to the next 

experiment.  

(a) Initiation Experiment. In above initiation experiment, the unknown parameters 

are: mutation rate from normal cells to I1 cells (initiated by B(a)P or coke oven main), 

mutation rate from normal cells to I2 cells for both agents, birth rate and death rate for I1 

Table 4  

Data from Complete Carcinomas 

Dose 

(µg/mouse) 

Mice with 
Carcinomasa 

(%) 

Carcinomas per 
mousea 

100 5 0.05 

500 36 0.36 

1000 48 0.55 

2000 82 1.0 

4000 98 0.98 

a Scored at 6 month; b Cumulative score at 12 month 
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and I2 cells (due to TPA). We will the estimated mutation rates of B(a)P in this 

experiment as prior information in the promotion experiment and use the estimated 

mutation rates of coke oven main as prior information in the  promotion and complete 

experiments.  In this experiment, because the promoter is TPA, the birth rate and the 

death rates of I1 and I2 cells are independent of dose levels and are not completely 

independent of the birth rate and death rates of these cells in promotion and complete 

experiments in which coke oven main is used as promoter. In this experiment, as in Tan 

et al. (2001), the dose related mutation rate from the normal cell to I1 and from N to I2 are  

represented respectively by: 

log 1                                                   (2.53) 

and 

log 1                                                   (2.54) 

From (2.53)-(2.54), obviously, it is only possible to estimate   and 

 from papillomas data and only  and  from 

carcinomas data;  from these it follows that only  can be used as prior 

information in the promotion experiment and only  can  be used as prior 

information in the complete experiment. 

From these we also have: 

, ~ log 1   

, ~ log 1                  (2.55) 
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(b) Promotion experiment. In promotion experiment, only papillomas response is 

recorded (Table 3). Coke oven main is not only a promoter but also a carcinogen; 

therefore papillomas are produced not only by initiator (B(a)P) at the initiation period, 

but also by the coke oven main during the promotion periods. In this experiment, let ωr be 

the mutation rates from theinitiator, and λr (ui) from the coke oven main. Notice that ωr is 

dose independent and λr(ui) are dose level dependent. These rates are represented 

respectively by: 

50.5 log 1 50.5                                                   (2.56) 

log 1                                                          (2.57) 

where ur is the dose level of coke oven main, and where  and  have been 

estimated from the initiator experiment. 

Equation (2.18) shows that the probability to develop detectable papillomas depends 

on dose level through γ1 and θI. The birth rate and death rate are represented as follow: 

log 1  

log 1  

It follows that  , that is,  

log 1 log 1                           (2.58) 

and  , which is not a function of dose level.  

Five parameters, ω10, , γ10, δ1 and θ1 can be estimated from the promotion 

experiment. 
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(c) Complete Experiment. In the complete carcinomas experiment, carcinomas are 

produced from two pathways: One is from normal cells directly, where has been 

estimated from initiation experiment; the other one is produced through I1 cells, where all 

parameters related to I1 cells are estimated from above two experiments. The rest of the 

parameters will be estimated from the complete carcinomas experiment; here  in 

(2.52) is a parameter related to mutation rate from normal cells to I2 cells, β10 and β11  the  

mutation rates from I1 cells to I2 cells, γ20,and δ2 the parameters which are related to 

proliferation rate, and  θ2. 

Parameters Estimation 

All of the above parameters are estimated by using procedures described in section 

2.5. Prior information is collected to provide the lower bound and upper bound for each 

parameter. Table 5 gives the lower and upper bounds of parameters (prior information). 

Two deviance functions will be used: One is for the number of mice with papillomas or 

carcinomas, and the other is for the average number of papillomas or carcinomas per 

mouse. These deviances are minimized iteratively as described in the estimate procedure. 

Two approaches will be employed: One is the weighted deviance from different data 

using equal weight. The other is sequential starting with one type of data by assuming 

given initial values of the unknown parameters; the estimated parameters which minimize 

one deviance are taken as initial value to minimize the second deviance and repeat and 

continue until convergence. The estimated parameters and standard errors are also shown 

in table 5. We used bootstrap method proposed by Efron (1982) to obtain standard error 

for each parameter. 
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Table 5  

Lower Bound, Upper Bound and Estimates of Parameters 

Parameters Estimate Standard 
Error Lower Bound Upper Bound 

 201.83229819 26.42 100 1000 

 0.3374434 0.12 0.1 0.5 

 0.06664222 0.0083 0.01 0.5 

 3.38206134 0.22 1 10 

 0.05147995 0.01 0.01 0.2 

 8.222657628 0.348 1 100 

 0.25125966 0.095 0.1 0.5 

 0.001593745 0.00034 1.0E-05 0.01 

 0.523923978 0.019 0.1 1 

 0.059995162 0.0027 0.01 0.5 

 4.937317031 0.894 1 10 

 0.004955142 0.000397 0.001 0.1 
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Simulation Study 

To assess the usefulness of our models and methods, in this section we generate 

some Monte Carlo data by assuming some parameters values. Then we use these 

generated data as the observations to estimate parameters. Complete carcinomas 

experiment contains both initiation and promotion procedures. The data  we generated are 

the number of mice with papillomas and the average number of papillomas per mouse at 

t1, the number of mice with carcinomas and the average number of carcinomas per mouse 

at t2 (t2 > t1).  

Generating Simulated Data 

Table 6  

Generated Number of Mice with Papillomas 

Data 
Mice with 

Papillomasa

(%) 

Papillomas 
per mousea 

Mice with 
Cacinomasa

(%) 

Cacinomas 
per mousea 

Dose level 

100 6 0.02 8 0.08 

500 16 0.44 20 0.22 

1000 58 1.09 43 0.45 

2000 80 2.74 87 0.88 

4000 100 3.07 92 1.02 

a Data is collected at 34th week; b Data is collected at 52th week 
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Papillomas are developed as a result of single mutation, and the mutated cells are 

proliferated to a detectable size. Therefore, papillomas are generated only from single 

step of a single pathway.  

The parameter values are given as following: 

Table 7  

Estimates of Parameters and Standard Error 

Parameters Original Parameters Estimate Standard Error 

 201 234.3 63.26 

 0.34 0.37 0.1 

 0.07 0.062 0.0059 

 3.38 3.88 0.199 

 0.05 0.057 0.014 

 8.2 8.39 0.73 

 0.25 0.2 0.08 

 0.0002 0.00017 0.000056 

 0.227 0.336 0.018 

 0.06 0.059 0.0036 

 4.94 4.89 0.95 

 0.005 0.0035 0.0005 
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201, 0.34,  0.07, 3.38,  0.05, 698 (the 

number of cells in a detectable papillomas), and 8.2 , 0.25 ,

0.0002 , 0.227 , 0.06 ,  4.94, 0.005 , 698. The dose 

levels are 100, 500, 1000, 2000, and 4000. We collected papillomas data at the 34th week 

and collect carcinomas data at the 52th week for each dose level. The number of mice 

with papillomas is generated from a binomial distribution and is given in Table 6. The 

average number of papillomas per mouse is generated from a normal distribution with 

Poisson means and Poisson varainces. Similarly, the carcinomas data are generated. 

Table 8 

Sensitivity Test 

Parameters Original Parameters Average Change of 
Responses (%)* 

 201 5.005 

 0.34 12.6 

 0.07 2.02 

 3.38 4.19E-07 

 0.05 0.61 

 8.2 2.0 

 0.25 4.85 

 0.0002 5.0 

 0.227 8.2 

 0.06 269.6 

 4.94 78.9 

 0.005 7.31 
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Parameter Estimation 

We use the same estimation procedures as above to estimate the unknown parameters. 

The estimated values and standard errors are given in Table 7. 

From results in Table 7, clearly, the estimates are very close to true values implying 

that the models and methods we proposed are quite reliable. 

Sensitivity Test 

To test sensitivity of the model to a parameter, in the simulation we increase the value 

of the parameter by 10% at a time and simulate responses (the number of mice with 

carcinomas) of the experiment. By comparing the responses with those from the original 

settings, we can assess the model’s sensitivity to each parameter; in this way we can 

assess the reliability of the estimates. The result is given in Table 8. 

Table 8 shows that the model is very sensitive to γ20 (the difference between birth 

rate and death rate) and θ2. This implies the estimates of γ20 and θ2 from the model are 

very reliable. On the other hand, it appears that the model is quite insensitive to θ1; 

therefore, the response would not change significantly even if the value of θ1 assumes any 

value in a relatively wide range. Thus it is practically impossible to estimate θ1 accurately 

by using the model. 
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3. A NEW STOCHASTIC AND STATE SPACE MODEL OF HUMAN COLON 
CANCER: INCORPORATING MULTIPLE PATHWAYS 

Introduction 

In the past 15 years, molecular biologists and geneticists have revealed the basic 

molecular and genetic mechanisms for human colon cancer. These mechanisms have 

been linked to two avenues: The chromosomal instability (CIN) involving chromosomal 

aberrations and loss of heterozygosity (LOH), and the micro-satellite instability (MSI) 

involving mis-match repair genes and the creation of mutator phenotype (Chapelle, 2004; 

Fodde et al., 2001; Fodde et al., 2001; Green & Kaplan, 2003; Hawkins & Ward, 2001; 

Hisamuddin & Yang, 2004; Sparks, Morin, Vogelstein, & Kinzler, 1998; Peltonmaki, 

2001). The pathway of the CIN avenue (also referred to as LOH pathway) involves 

inactivation through genetic and/or epigenetic mechanisms, or loss, or mutation of the 

suppressor APC gene in chromosome 5q (about 85% of all human colon cancers) 

whereas the pathway of the MSI avenue involves mutation or epigenetic inactivation of 

the mis-match repair suppressor genes (about 15% of all colon cancers). This leads to 

multiple pathways for the generation of human colon cancer tumors with each pathway 

following a stochastic multi-stage model and with intermediate transformed cells 

subjecting to stochastic proliferation (birth) and differentiation (death). The goal of this 

paper is to develop a stochastic model for human colon cancer to incorporate these 

biological information and pathways. This paper is an extension of Tan and Zhang 

(2008), Little and Wright (2003), and Little, Vineis and Li (2008). We note that besides 

the multiple pathways considered above, Little and Wright (2003), Little (2008) and 

Little et al. (2008) have also included mixture type of multiple pathways; however, 
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because the mutation rates are very small, the chance of mixture type of pathways will be 

extremely small in which case the Little model is equivalent to the model in Section 3.3. 

For developing biologically supported stochastic model of carcinogenesis, in Section 

3.2 we present the most recent cancer biology of human colon cancer. Using results from 

Section 3.2, we develop in Section 3.3 a stochastic model for carcinogenesis of human 

colon cancer involving multiple pathways. In Section 3.4 we derive a statistical model for 

cancer incidence data of human colon cancer. By combining models from Sections 3.3 

and 3.4, in Section 3.5 we develop a state space model for human colon cancer. In 

Section 3.6, by using the state space model in Section 3.5, we develop a generalized 

Bayesian inference procedure to estimate unknown parameters and to predict state 

variables. To illustrate the applications of the model and methods, in Section 3.7 we 

apply the model and methods to the colon cancer incidence data from SEER. Finally in 

Section 3.8, we discuss the usefulness of the model and methods and provide some 

conclusions from model and results. 

A Brief Summary of Colon Cancer Biology 

As discussed in the introduction, genetic studies have indicated that there are two 

major avenues by means of which human colon cancer is derived: The Chromosomal 

Instability (CIN) and the Micro-Satellite Instability (MSI). The first avenue is associated 

with the LOH pathway involving the APC gene in chromosome 5q and the latter 

associated with the micro-satellite pathway involving mis-match repair genes. The most 

important oncogene is the β-Catenin gene in chromosome 3p22. 
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The CIN (LOH) Pathway of Human Colon Cancer (The APC- β– catenin −Tcf − 

myc pathway) 

The CIN pathway involves loss or inactivation of the tumor suppressor genes - the 

APC gene in chromosome 5q, the Smad-4 gene in chromosome 18q and the p53 gene in 

chromosome 17p; see Remark 3.1. This pathway accounts for about 85% of all colon 

cancers. It has been referred to as the LOH pathway because it is characterized by 

aneuploidy /or loss of chromosome segments (chromosomal instability); see Remark 3.2. 

This pathway has also been referred to as APC− β -catenin − Tcf − myc pathway because 

it involves the destruction complex GSK-3β − Axin− APC which phosphorylates the β-

Catenin protein leading to its degradation; when both copies of the APC gene are 

inactivated or mutated, the destruction complex is then inactive leading to accumulation 

of free β-Catenin proteins in the cytoplasm which move to the nucleus to complex with 

Tcf/Lef transcription factor to activate and transcript oncogenes myc, cyclin D and CD44. 

(Free β -Catenin protein in the cytoplasm also binds with E-cadherin and β -Catenin to 

disrupt the gap junction between cells, leading to migration and metastasis of cancer 

tumors.) 

Morphological studies have indicated that inactivation, or loss or mutation of APC 

creates dysplastic aberrant crypt foci (ACF) which grow into dysplastic adenomas. These 

adenomas grow to a maximum size of about 10 mm3; further growth and malignancy 

require the abrogation of differentiation, cell cycle inhibition and apoptosis which are 

facilitated by the inactivation, or mutation or loss of Smad-4 gene in 18q and the p53 

gene in 17p. The mutation or activation of the oncogene H-ras in chromosome 11p and 

/or mutation and/or activation of the oncogene src in chromosome 20q would speed up 
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these transitions by promoting the proliferation rates of the respective intermediate 

initiated cells (Jessup, Garllic, & Liu, 2002). This pathway is represented schematically 

by Figure 8. The model in Figure 8 is a 6-stage model. However, because of the haplo-

insufficiency of the Smad4 gene (see Alberici, Jagmohan-Changur, & De Pater, 2006) 

and the haplo-insufficiency of the p53 gene (Lynch & Milner, 2006), one may reduce this 

6-stage model into a 4-stage model by combining the third stage and the fourth stage into 

one stage and by combining the fifth stage and the sixth stage into one stage. This may 

help explain why for single pathway models, the 4-stage model fits the human colon 

cancer better than other single pathway multi-stage models (Leubeck & Moolgaokar, 

2002). Recent biological studies by Green and Kaplan (2003) and others have also shown 

that the inactivation or deletion or mutation of one copy of the APC gene in chromosome 

5 can cause defects in microtubule plus-end attachment during mitosis dominantly, 

leading to aneuploidy and chromosome instability. This would speed up the mutation or 

inactivation of the second copy of the APC gene and increase fitness of the APC-carrying 

cells in the micro-evolution process of cancer progression. This could also help explain 

why the APC LOH pathway is more frequent than other pathways. 

Remark 3.1. As observed by Sparks et al. (1998), instead of the APC gene, this 

pathway can also be initiated mutation of the oncogene β -catenin gene; however, the 

proportion of human colon cancer due to mutation of  β -catenin is very small (less than 

1%) as compared to the APC gene, due presumably to the contribution of the APC on 

chromosome instability (Green & Kaplan, 2003). Similarly, the destruction complex can 

become inactive either by the inhibition of GSK-3 β through the Wnt signaling pathway 

(see Sparks et al. 1998) or the inactivation or mutation of the Axin protein, leading to 



74 
 

accumulation of the β - Catenin proteins in the cytoplasm; but the proportion of colon 

cancer caused by inhibition of GSK-3 β is also very small as compared to the colon 

cancer cases caused by the CIN and the MSI pathways. 

Remark 3.2. The APC gene in chromosome 5q acts both as a tumor suppressor gene 

and an oncogene in initiating and promoting colon carcinogenesis. As an oncogene, the 

APC gene acts dominantly in regulating microtubule plus-end attachment during mitosis 

(Green & Kaplan, 2003). Thus, the inactivation or deletion or mutation of one copy of the 

APC gene in chromosome 5 can cause defects in microtubule plus-end attachment during 

mitosis, leading to aneuploidy and chromosome instability. This would speed up the 

mutation or inactivation of the second copy of the APC gene and increase fitness of the 

APC-carrying cells in the micro-evolution process of cancer progression. This could also 

help explain why the APC LOH pathway is more frequent than other pathways. 

 

 

Figure 8. The CIN Pathway of Human Colon Cancer 
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The MSI (Micro-Satellite Instability) Pathway of Human Colon Cancer 

This pathway accounts for about 15% of all colon cancers and appears mostly in the 

right colon. It has been referred to as the MSI pathway or the mutator phenotype pathway 

because it is initiated by the mutations or epigenetic methylation of the mis-match repair 

genes (mostly hMLH1 in chromosome 3p21 and hMSH2 in chromosome 2p16) creating 

a mutator phenotype to significantly increase the mutation rate of many critical genes 10 

to 1000 times. Normally these critical genes are TGF-β RII, Bax (The X protein of bcl-2 

gene), IGF2R, or CDX-2. The mis-match repair genes are hMLH1, hMSH2, hPMS1, 

hPMS2, hMSH6 and hMSH3; mostly hMLH1 (50%) and hMSH2 (40%). This pathway is 

represented schematically by Figure 9. As in the LOH pathway, assuming haplo-

insufficiency of tumor suppressor genes, one may approximate this pathway by a 5-stage 

model. 

Morphologically, mutation or methylation silencing of the MMR gene hMLH1 or 

hMSH2 generates hyperplastic polyps which lead to the generation of serrated adenomas. 

 

Figure 9. The MSI Pathway of Human Colon Cancer 
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These adenomas develop into carcinomas after the inactivation, or loss or mutations of 

the TGF-β RII gene and the Bax gene, thus abrogating differentiation and apoptosis. (Bax 

is an anti-apoptosis gene.) In what follows, we let N denote the normal stem cells, Ji the 

i−th stage cells in the MSI pathways. Then for sporadic MSI, the model is N →J1 → J2 

→ J3 → J4 → J5 → cancer tumor. 

The Major Signaling Pathways for Human Colon Cancer 

Recent biological studies (Baylin & Ohm, 2006; Koinuma et al., 2006) have shown 

that both the CIN and the MSI pathways involve the Wnt signaling pathway and the 

destruction complex (this complex is a downstream of the Wnt signaling pathway), the 

TGF-β inhibiting signaling pathway and the p53-Bax apoptosis signaling pathway, but 

different genes in the CIN and MSI pathways are affected in these signaling processes. In 

the CIN pathway, the affected gene is the APC gene in the Wnt signaling, the Smad4 in 

the TGF- β signaling and the p53 gene in the p53-Bax signaling; on the other hand, in the 

MSI pathway, the affected gene is the Axin 2 gene in the Wnt signaling, the TGF- β -

Receptor II in the TGF- β signaling and the Bax gene in the p53-Bax signaling. Because 

the probability of point mutation or genetic changes of genes are in general very small 

compared to epigenetic changes, one may speculate that colon cancer may actually be 

initiated by some epigenetic mechanisms (Baylin & Ohm, 2006; Breivik & Gaudernack, 

1999; Jones & Baylin, 2002). In fact, Breivik and Gaudernack (1999) showed that in 

human colon cancer, either methylating carcinogens or hyper-methylation at CpG islands 

would lead to G/T mismatch which in turn leads to Mis-match Repair (MMR) gene 

deficiency or epigenetic silencing of the MMR genes and hence MSI (Micro-satellite 

Instability); alternatively, either hypo-methylation, or bulky-adduct forming (BAF) 
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carcinogens such as alkylating agents, UV radiation and oxygen species promote 

chromosomal rearrangement via activation of mitotic check points (MCP), thus 

promoting CIN (Chromosomal Instability). A recent review by Baylin & Ohm (2006) 

have demonstrated that epigenetic events may lead to LOH and mutations of many genes 

which may further underline the importance of epigenetic mechanisms in cancer 

initiation and progression. 

Based on the above biological studies, in this chapter we thus postulate that the 

incidence data of human colon cancer are described and generated by a multi-stage model 

involving 2 pathways as defined above. In this chapter, because of haploid-insufficiency 

of the tumor suppressor genes {Smad4, p53, Axin, Bax, TGF − β – Receptor II}, the 

number of stages for the CIN pathway and MSI are assumed as 4 and 5 respectively. 

 

Figure 10. The Multiple Pathways of Human Colon Cancer 
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Table 9  

Transition Rates and Transition Probabilities for Human Colon Carcinogenesis 

Transition Transition Probability 

1N → 1N, 1I1 α0(t)Δt 

1N → 1N, 1J1 β0(t)Δt 

1 Il → 2Il  

1 Il → Death  

1 Il → 1 Il, 1 Il+1 αl(t)Δt 

l = 1,2…, k1-1 

1 Jr → 2Jr  

1 Jr → Death  

1 Jr → 1 Jr, 1 Jr+1 Βr(t)Δt 

r = 1,2…, k2-1 
 

Methods 

Stochastic Multi-Stage Model of Carcinogenesis for Human Colon Cancer Involving 

Multiple Pathways 

From results of Section 3.2, it follows that the stochastic multi-stage model for 

human colon cancer can be represented schematically by Figure 10. 

In Figure 10, the model assumes that cancer tumors are generated by two pathways 

with pathway 1 as a k1-stage multi-stage model involving Il (l = 1, . . . ,k1) cells and with 

pathway 2 as a k2-stage multi-stage model involving Jr (r = 1, . . . ,k2) cells. (For human 
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colon cancer, k1 = 4, k2 = 5.) The state variables are then X t  = {Il(t), l = 1, . . .,k1 − 1, 

Jr(t), r = 1, . . . ,k2 − 1} and T (t), where T (t) denotes the number of cancer tumors at time 

t and where Il(t) (Jr(t)) denote the number of the Il (Jr ) initiated cells for {l = 1, . . . ,k1 − 1 

(r = 1, . . . ,k2 − 1)} respectively. Notice that because cell proliferation, cell differentiation 

and apoptosis, mutation or genetic changes all occur during cell division and cell division 

cycle, and because X t  (t + Δt) develop from X t  through cell divisions during (t, t + 

Δt], one may practically assume that (X(t), t ≥ t0) is a Markov process with continuous 

time, where t0 represents time at birth; one the other hand, T (t + Δt) may derive from Ik1 

(Jk2) cells before time t, T(t) is in general not Markov (Fakir & Tan, 2009; Yakovlev & 

Tsodikov, 1996). If one assumes that the Ik1 and Jk2 cells grow instantaneously into 

cancer tumors as soon as they are generated, then one may also assume the T (t) as 

Markov. In this case, as illustrated in Tan (1991), one may use standard Markov theory to 

derive the probability generating function (pgf) of the probabilities of these variables and 

hence the probability distribution of these variables. Let ψ x , l 1, … , k 1, y , r

1, … , k 1, z; t , t ψ x, y, z;  t , t  denote the pgf of { X t , T(t)}. Let 

α t , βr t , b I , d I , b J , d J  denote the mutation rates, the birth rates and the death 

rates of {Il, Jr} cells as given in Table 9 respectively. If T(t) is Markov, then by using the 

method of Kolmogorov forward equation of these variables (Tan, 1991), it can readily be 

shown that ψ x, y, z; t , t  satisfies the following partial differential equation (pde): 

ψ x, y, z;  t , t

λI t x 1 λJ t y 1 ψ x, y, z; t , t

∑ g x , x ; t ψ x, y, z; t , t ∑ g y , y ; t ψ x, y, z; t , t                                         
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                                                                                                                                (3.1) 

where λI (t) = N(t)α0(t), λJ (t) = N(t)β0(t), 

g x , x ; t x x 1 b I t x 1 d I t x x 1 α t , 

g y , y ; t y y 1 b J t y 1 d J t y y 1 β t         (3.2)    

and the initial condition is ψ x, y, z; t , t 1 given normal individuals at risk at time t0. 

The above pde is in general very difficult to solve; further, even if the solution of this 

equation can be derived, the results are very difficult to apply to estimate the unknown 

parameters and to predict future cancer cases. Most importantly, T(t) may not be Markov 

so that this theory is not applicable (Fakir, 2009;  Yakovlev & Tsodikov, 1996). In this 

chapter, we will thus propose an alternative approach through stochastic equations. It can 

easily be shown through the method of pgf that if T(t) is Markov, then the stochastic 

equation method is equivalent to the method of Markov theory; as we shall see, however, 

the stochastic equation method is more powerful and does not need to assume Markov for 

T(t). 

The Stochastic Equation for State Variables 

To derive stochastic equations for the state variables, let B I t B J t  be the 

number of births of the Il (Jr) initiated cells during (t, t + Δt] {l = 1, . . . ,k1 − 1 (r = 1, . . . 

,k2 − 1)}, D I t D J t   the number of deaths of the Il (Jr ) initiated cells during (t, t + 

Δt] {l = 1, . . . ,k1 − 1 (r = 1, . . .,k2 − 1)} and M I t M J t  the number of mutation (Il 

→ Il+1) (Jr →Jr+1) of Il (Jr) cells during (t, t +Δt] {l = 1, . . . ,k1 − 1 (r = 1, . . .,k2 − 1)}. 

Also let M I t M J t  be the number of mutation of N → I1 (N → J1) during (t, t + Δt]. 
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Taking into account of all possible input and output of relevant cells, we have the 

following stochastic equations for the state variables: 

I t Δt I t M I t B I t D I t , l 1, … , k 1                       (3.3)  

J t Δt J t M J t B J t D J t , r 1, … , k 1                     (3.4) 

Because the transition variables { M I t , M J t , B I t , D I t , B J t , D J t } are 

random variables, the above equations are stochastic equations. With the transition rates 

as given in Table 9, it can readily be shown that to the order of o(Δt), the conditional 

probability distributions of  M I t  and M J t  given N(t) are Poisson with means λI(t)Δt 

and λJ(t)Δt respectively whereas the conditional probability distributions of the numbers 

of births and deaths given the staging variables (i.e., the Il(t) and Jr(t)) follow multinomial 

distributions independently. That is, 

M I t | N t ~ Poisson λI t Δt , independent of M J t                                    (3.5) 

M J t | N t ~ Poisson λJ t Δt , independent of M I t                                    (3.6) 

for l = 1, 2, …, k1-1,  

B I t , D I t | N t ~ Multinomial I t ; b I t Δt, d I t Δt                          (3.7) 

for r = 1, 2, …, k2-1,  

B J t , D J t | N t ~ Multinomial J t ; b J t Δt, d J t Δt                         (3.8) 

where λI(t) = N(t)α0(t), λJ(t) = N(t)β0(t). 

Because the number of mutations of the Il cells would not affect the size of the Il 

population but only increase the number of Il+1 cells and because the mutation rate of Il 

cells is very small (10-8 ~10-5), it can readily be shown that to the order of o(Δt), the 
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conditional probability distribution of M I t  given Il(t) Il cells at time t is Poisson with 

mean Il(t)αl(t)Δt independently of {B I t , D I t } and other transition variables. That is, 

M I t | N t ~ Poisson I t αI t Δt , l 1, 2, … , k 1                                  (3.9) 

independently of {B I t , D I t } and other transition variables. 

Similarly, we have that to the order of o(Δt), 

M J t | N t ~ Poisson J t β t Δt , r 1, 2, … , k 1                                 (3.10) 

independently of {B J t , D J t } and other transition variables. 

Using the probability distributions given by equations (3.5)-(3.10) and by subtracting 

from the transition variables the conditional expected values respectively, we have the 

following stochastic differential equations for the staging state variables: 

dI t I t Δt I t M I t B I t D I t

I t α t I t γ I t Δt e I t Δt 

 l 1, … , k 1                                                                                                    (3.11) 

 

dJ t J t Δt J t M J t B J t D J t

J t β t J t γ J t Δt e J t Δt 

 r 1, … , k 1                                                                                              (3.12) 

where γ I t b I t d I t , γ J t b J t d J t  

In the above equations, the random noises {e I t Δt, e J t Δt} are derived by 

subtracting the conditional expected numbers from the random transition variables 

respectively. Obviously, these random noises are linear combinations of Poisson and 
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multinomial random variables. These random noises have expected value zero and are 

un-correlated with the state variables {Il(t), l = 1, . . .,k1 − 1, Jr(t), r = 1, . . . ,k2 −1}. It can 

also be shown that to the order of o(Δt), these random noises are uncorrelated with one 

another and have variances given by: 

Var e I t Δt  EI t α t Δt EI t b I t d I t Δt o Δt  

for  l 1, … , k 1, (3.13) 

Var e J t Δt  EJ t β t Δt EJ t b J t d J t Δt o Δt  

for  r 1, … , k 1, (3.14) 

The Expected Numbers 

Let uI (l, t) = E[Il(t)] and uJ (r, t) = E[Jr(t)] denote the expected numbers of Il(t) and 

Jr(t) respectively and write uI(0,t) = uJ(0,t) = N(t). Using equations (3.11)-(3.12), we have 

the following differential equations for these expected numbers: 

duI l, t uI l, t γ I t uI l 1, t α t                                                   (3.15) 

l = 1, . . . ,k1 − 1,  

duJ r, t uJ r, t γ J t uJ r 1, t β t                                                  (3.16) 

r = 1, . . . ,k2 − 1.  

The solutions of the above equations are: 

uI 1, t λI x e λ I
dx 

uJ 1, t λJ x e λ J
dx 

uI l, t uI l 1, x e λ I
dx, for l = 2, . . .,k1 − 1, 
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uJ r, t uJ r 1, x e λ J
dx,  for r = 2, . . .,k2 − 1. 

If the model is time homogeneous, then λI (t) = λI, λJ (t) = λJ, αl(t) = αl and γ I t

γ I  for l = 1, . . .,k1 – 1 and βr(t) = βr and γ J t γ J   for r = 1, . . .,k2 − 1. If the 

proliferation rates are not zero and if γ I γ I γ J γ J  for all l ≠ u and r ≠ v, then 

the above solutions reduce to: 

uI 1, t
λI

γ I eγ
I

1 , uJ 1, t
λJ

γ J eγ
J

1  

uI l, t ∑ A u eγ
I

  for l = 1, . . . ,k1 − 1; 

uJ r, t ∑ B u eγ
J

 for r = 1, . . .,k2 − 1 

where A u λI ∏ ∏ γ I γ I , B u λJ ∏ ∏ γ J γ J  

The Probability Distribution of State Variables and Transition Variables 

Although T (t) is not Markov, the random vector {X t , t ≥ t0} is Markov with 

continuous time. To derive the transition probability of this process, denote by f(x, y : N, 

p1, p2) the density at (x, y) of the multinomial distribution ML(N; p1, p2) with parameters 

(N; p1, p2) and h(x; λ) the density at x of the Poisson distribution with mean λ. Then, using 

the probability distributions given by equations (3.5)-(3.10), the transition probability of 

this Markov process is, to order of o(Δt): 

P X t Δt X t ∏ ∑ ∑ h a l , i ; t ; I t α t ΔtII

f l , i ; I t , b I t Δt, d I t Δt

∏ ∑ ∑ h b m , J ; t ; J t β t ΔtJJ

f m , j ; J t , b J t Δt, d J t Δt   
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where I0(t) = J0(t) = N(t), a(lu, iu; t) = Iu(t + Δt) − Iu(t) − lu + iu, u = 1, . . .,k1 − 1 and b(mv, 

jv; t) = Jv(t + Δt) − Jv(t) −mv + jv, v = 1, . . . ,k2 − 1. 

The above transition probability and hence the probability distribution of X t  is too 

complicated to be f much use. For implementing the Gibbs sampling procedure to 

estimate parameters and to predict state variables, we use data augmentation method to 

expand the model. Thus, we define the augmented variables U t B I t , D I t , l 

 1, . . . , k   1, B J t , D J t , r  1, . . . , k   1 . (In what follows we will refer these 

variables as the transition variables, unless otherwise stated.) Put Z t X t ′, U t

Δt ′ ′. Then {Z t , t t } is Markov with continuous time. Using the probability 

distributions of the transition random variables given by equations (3.5)-(3.10), the 

transition probability is P{Z t ∆t |Z t } is: 

P Z t ∆t Z t P X t ∆t X t , U t P U t |X t                             (3.17) 

where 

P U t X t

∏ f B I t , D I t ; I t , b I t Δt, d I t Δt

∏ f B J t , D J t ; J t , b J t Δt, d J t Δt                                                     (3.18) 

and 

P X t ∆t X t , U t

∏ h uI l, t ; I t α t Δt ∏ h uJ r, t ; J t β t Δt                                (3.19) 

where uI l, t I t Δt I t B I t D I t  for l = 1, . . .,k1 − 1 and 

uJ r, t J t Δt J t B J t D J t   for r = 1, . . . ,k2 − 1. 
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The probability distribution given by equation (3.17) will be used to derive estimates 

and predicted numbers of state variables. This is discussed in Section 3.6. 

A Statistical Model and the Probability Distribution of the Number of Detectable 

Tumors 

The data available for modeling carcinogenesis are usually cancer incidence over 

different time periods. For example, the SEER data of NCI/NIH for human cancers are 

given by {(yj, nj), j = 1, . . . ,n}, where yj is the observed number of cancer cases during 

the j−th age group and nj is the number of normal people who are at risk for cancer and 

from whom yj of them have developed cancer during the age group. Given in Table 10 

are the SEER data for human colon cancer adjusted for genetic cancer cases. 

The Probability Distribution of the Number of Detectable Tumors for Colon Cancer 

To derive the probability distribution of time to tumors, one needs the probability 

distribution of T(t). For deriving this probability distribution, we observe that malignant 

cancer tumors arise by clonal expansion from primary Ik1 cells and primary Jk2 cells, 

where primary Ik1 cells are Ik1 cells derived from Ik1−1 cells by mutation of Ik1−1 cells 

and primary Jk2 cells are Jk2 cells derived from Jk2−1 cells by mutation of Jk2−1 cells. 

Let PT
I  s, t  (PT

J  s, t ) be the probability that a primary Ik1 (Jk2) cancer cell at time s 

develops into a detectable cancer tumor at time t. Let Ti(t) be the number of cancer 

tumors derived from the i−th pathway. Then, to order of o(Δt), the conditional probability 

distribution of T1(t) given {Ik1−1(s), s ≤ t} is Poisson with mean ω1(t) independently of T2 

(t), where 
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, . Similarly, to order of o(Δt), the 

conditional probability distribution of T2(t) given {Jk2−1(s), s ≤ t} is Poisson with mean 

ω2(t) independently of T1(t), where 

, . 

Let Qi(j) (i = 1, 2) be defined by: 

Q j  E e ω e ω E e ω 1 eR ,  

where Ri(tj-1,tj)=ωi(tj-1)-ωi(tj). 

Then Qi (j) is the probability that cancer tumors would develop during the j−th age 

group by the i−th pathway. Since cancer tumors develop if and only if at least one of the 

two pathways yield cancer tumors, the probability that each normal person at time t0 will 

develop cancer tumors during (tj−1, tj] is given by QT (j), where 

QT (j) = 1−[1 – Q1 (j)][1 – Q2 (j)]= Q1 (j) + Q2 (j) – Q1 (j)Q2(j). 

For practical applications, we observe that to order of  o α t  and o β t  

respectively, the ωi(t) in Qi(j) are approximated by  

ω t ~ E I s α s PT
I s, t ds,  ω t ~ E J s β s PT

J s, t ds. 

Similarly, it can readily be shown that to the order of 

Min o α t , o β t , QT(t) ~ Q1(t)+Q2(t). To further simplify the calculation 

of QT(j), we observe that in studying human cancers, one time unit (i.e., Δt = 1) is usually 

assumed to be 3 months or 6 months or longer. In these cases, one may practically 

assume PT
I s, t 1 and PT

J s, t 1 if t − s ≥ 1. 
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A Statistical Model for Cancer Incidence Data 

Let yj be the observed number of the number of cancer cases Yj developed during (tj−1, 

tj] given nj people at risk for cancer, who are normal at birth (t0). We assume that each 

individual develops colon cancer tumor by the same mechanism independently of one 

another. Then for each person who is normal at birth (t0), the probability that this 

individual would develop colon cancer tumor during the j-th age group (tj−1, tj] is given 

by QT (j). It follows that the probability distribution of Yj  given that nj is:  

      Yj  ~ Binomial{nj,QT (j)}.                                                                                (3.20)  

Because nj is very large and QT (j) is very small, approximately Yj is Possion with 

mean τj = njQT (j). Notice that to the order of Max o α t , o β t , τj (and 

hence the probability distribution of Yj) depends on the stochastic model of colon 

carcinogenesis through the expected number {E[Ik1−1(t)], E[Jk2−1(t)]} of {Ik1−1(t), Jk2−1(t)} 

and the parameters {α t , β t } over the time period (tj-1, tj]. 

The State Space Model of Human Colon Cancer 

State space model is a stochastic model which consists of two sub-models: The 

stochastic system model which is the stochastic model of the system and the observation 

model which is a statistical model based on available observed data from the system. 

Thus, the state space model of a system takes into account the basic mechanisms of the 

system and the random variation of the system through its stochastic system model and 

incorporates all these into the observed data from the system; furthermore, it validates 

and upgrades the stochastic model through its observation model and the observed data of 

the system. As illustrated in Tan (2002), the state space model has many advantages over 
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both the stochastic model and the statistical model when used alone since it combines 

information and advantages from both of these models. 

For human colon cancer, the stochastic system model of the state space model is the 

stochastic model consisting of 2 pathways with each pathway following a multi-stage 

model as described in Section 3.3; the observation model of this state space model is a 

statistical model based on the observed number of colon cancer cases as described in 

Section 3.4. 

The Stochastic System Model and the State Variables 

Putting Δt = 1 for some fixed small interval, then the staging variables are 

X = {X t , t  t , t 1, … , tM} and the transition variables are U = {U t , t

 t , t 1, … , tM 1}. 

From results in Section 3.3, the joint probability distribution of {X, U} given the 

parameters Θ is: 

P X, U|Θ ∏ P X t |X t 1 , U t 1M P U t 1 |X t 1        (3.21) 

where P U t 1 |X t 1  and P X t |X t 1 , U t 1  are given by equations 

(3.16) and (3.17) respectively and where 

Θ={λI, λJ, α t , β t , b I t , d I t , b J t  , d J t , l = 1, . . .,k1 − 1, r = 1, . . . ,k2 − 

1}. 

Notice that this probability distribution is basically a product of Poisson distributions 

and multinomial distributions. 
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The Observation Model Using SEER Data 

Put Y = (Yj, j = 1, . . . ,m) and y = (yj, j = 1, . . .,m). By the probability distribution 

given by equation (3.18), the conditional probability density of Y given {X, U, Θ} is 

approximately given by: 

P X, U|Θ ∏ h Y ; τ                                                                                 (3.22) 

where h(Yj ; τj) is the density at Yj of the Poisson distribution with mean τj. Then the 

likelihood function of Θ given (X,U) is L Θ|y, X, U ∏ h Y ; τ . It follows that the 

deviance from this density is: 

Dev 2 logL Θ|y, X, U logL Θ y, X, U ∑ τ y y log τ
       (3.23) 

where Θ τ̂ , j 1, … , m and τ̂ y  is the maximum likelihood estimate of τj. From 

equations (3.19)-(3.20), we have for the joint density of (X, U, Y) given Θ: 

, ,  |   , |  | , ,                                                          (3.24) 

To apply the above distribution to estimate unknown parameters and to fit real data, 

we also make the following assumptions: (a) From biological observations (Chapelle, 

2004; Fodde et al., 2001; Fodde et al., 2001; Green & Kaplan, 2003, Hawkins & Ward, 

2001, Hisamuddin & Yang, 2004; Peltonmaki, 2001; Sparks et al., 1998; Ward et al. 

2001), one may practically assume that {α t α , l 0, 1, 2, 3; β t β , r

0, 1, 2, 3, 4;  b I t b I , d I t d I , b J t b J  , d J t d J }. (b) Because the 

colon polyps are generated by proliferation of I2 cells and J3 cells and because the polyps 

can only grow to a maximum size of about 10 mm3, we assume that {b I t

b I e δ , d I t d I e δ } and {b J t b J e δ , d J t d J e δ } for some small 

(δi> 0, i = 1, 2).  (c) Because colon cell divisions are mainly due to action of the β-
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Catenin gene, one may also assume {γ I t γ J t 0, j 1, 2}. In this case, one has 

approximately I t Δt I t M I t  and J t Δt J t M J t , r 1, 2. 

Under these assumptions, the unknown parameters of interest are Θ = {Θ1, Θ2}, where 

Θ λI, λJ, α , β , β , b I , d I , b J  , d J , i 1, 2, j 1, 2, δ , l 1, 2  and Θ2= (α3, 

β4). 

The Generalized Bayesian Method and the Gibbs Sampling Procedure 

The generalized Bayesian inference is based on the posterior distribution 

P | , ,  of Θ given {X, U, Y = y}. This posterior distribution is derived by 

combining the prior distribution P{Θ} of Θ with the probability distribution P{X,U,Y |Θ} 

given by equation (3.20) with Y being replaced by y. It follows that this inference 

procedure would combine information from three sources:  

(1) Previous information and experiences about the parameters in terms of the prior 

distribution P{Θ}; (2) Biological information represented by the stochastic system 

equations of the stochastic system (P{X,U|Θ}); (3) Information from observed data, 

represented by the statistical model through the conditional likelihood L(Θ| , X, U). 

Because of additional information from the stochastic system model, this inference 

procedure is advantageous over the standard Bayesian procedure in that it can avoid the 

identifiability problems associated with standard Bayesian method. For example, we have 

shown that to the order of Max o α t , o β t  the probability distribution of the 

Yj’s depends on the stochastic model through the expected numbers of I3(t) and J4(t), 

which depend on the birth rates and death rates only through the difference of these rates. 

It follows that it is not possible to estimate the birth rates and death rates separately by 
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the traditional Bayesian method. Most importantly, the number of parameters is very 

large and the number of data points is limited. Thus, without information from the 

stochastic system model, it is virtually impossible to estimate all unknown parameters; 

for more examples, see Tan (2000, 2002). 

The Prior Distribution of the Parameters 

For the prior distributions of Θ, because biological information have suggested some 

lower bounds and upper bounds for the mutation rates and for the proliferation rates, we 

assume 

P(Θ)  c (c > 0)                                                                                                  (3.25) 

where c is a positive constant if these parameters satisfy some biologically specified 

constraints; and equal to zero otherwise. These biological constraints are: 

(i) For the mutation rates of the Ii cells in the LOH pathway, 1 < λI < 1000 (N → I1 ), 

10-6 < αi< 10-4, i = 1, 2, 3. For the proliferation rates of Ii cells in the LOH pathway, 

γ1(t) = 0, 0 b I 0.5, i = 2, 3, γ I t γ I e δ , 10-2 < γ2 < 2 * 10-2, 10-5 < δ1 < 5 

*10-3, 10−2 < γ2 < 0.5. 

(ii) For the mutation rates in the MSI pathway, 1 < λJ < 1000 (N → J1), 10-8 < β1 < 

10-5, 10-6 < βj < 10-2, j = 2, 3, 4. For the proliferation rates in the MSI pathway, γ J t

0, i 1, 2,  γ J t γ J e δ  , 10-3 < γ3
J <0.5, j = 3, 4, 10-6 < δ2 < 5 *10-4, 0 < bj

J <0.5, j 

= 3, 4. 

We will refer the above prior as a partially informative prior which may be 

considered as an extension of the traditional non-informative prior given in Box and Tiao 

(1973). 
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The Posterior Distribution of the Parameters Given {Y = , X, U} 

Combining the prior distribution given in (3.6.1) with the density of P{X,U,Y |Θ} 

given in equation (3.20), one can readily derive the conditional posterior distribution of Θ 

given {X,U,Y =  }. For (l = 2, 3), denote by: N I ∑ I tM , B I ∑ B I tM , D I

∑ D I tM ; similarly, for r = 3, 4, we define {BrJ , DrJ , NrJ} by replacing 

(I t , B I t , D I t ) by (J t , B J t , D J t )  respectively. Then, we have the 

following results for the conditional posterior distributions: 

(i) The conditional posterior distributions of Θ1(1) = {λI, λJ, αl, l = 1, 2, βr, r = 1, 2, 3} 

given 

{X,U,Y = y } is: 

P Θ 1 |X, U, y

P Θ 1 e λI λJ M  λI
∑ M IM

 λJ
∑ M JM

 e N Iα α ∑ e N Jβ β ∑  

 

 (ii) The conditional posterior distributions of  2  , , ,  given 

{X, U, Y = } is: 

2 | , , 2 , , , ,  , , , ,  

 (iii) The conditional posterior distribution of {α3, β4} given {X, U, Y =  } is: 

, | , ,  ,  

 (vi) The conditional posterior distribution of {  ,  , δ1} given {X, U, Y =  } 

and the conditional posterior distribution of {  ,  , δ2} given {X, U, Y =  } are 

represented respectively by: 

 , , , ,  , ,  f( , , , , ∏ 1

 

 
 , 
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 , , , ,  , ,  f( , , , , ∏ 1

 

 
 

The Multi-level Gibbs Sampling Procedure For Estimating Parameters 

Given the above probability distributions, the multi-level Gibbs sampling procedure 

for deriving estimates of the unknown parameters are given by: 

(a) Step 1: Generating (X,U) Given (Y = y, Θ) (The Data-Augmentation Step): 

Given Y = y and given Θ, use the stochastic equations (3.3)-(3.4) and the probability 

distributions given by equations (3.5)-(3.10) in Section 3.3 to generate a large sample of 

(X,U). Then, by combining this sample with P{Y = y | X,U,Θ} to select (X,U) through 

the weighted bootstrap method due to Smith and Gelfant (1992). This selected (X,U) is 

then a sample from P{X,U|Y = y, Θ} even though the latter is unknown. 

(For proof, see Tan (2002), Chapter 3.) Call the generated sample  X, U  . 

(b) Step 2: Estimation of Θ= {Θ1, Θ2} Given {Y = y, X, U}: 

 

Figure 11. Estimated and Observed Colon Cancer Cases and Density of Time to Tumor 
(2006 SEER data) 
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Given Y = y and given (X, U) = ( X,  U ) from Step 1, derive the posterior mode of 

the parameters by maximizing the conditional posterior distribution P{Θ|X, U, y}. Denote 

the generated mode as Θ. 

(c) Step 3: Recycling Step. 

With {(X,U) = (X, U , Θ  Θ } given above, go back to Step (a) and continue until 
convergence. 

The convergence of the above steps can be proved using procedure given in Tan 

(2002, Chapter 3). At convergence, the Θ are the generated values from the posterior 

distribution of Θ given Y = y independently of (X,U) (for proof, see Tan (2002), Chapter 

3). Repeat the above procedures one then generates a random sample of Θ from the 

posterior distribution of Θ given Y = y; then one uses the sample mean as the estimates of 

Θ and use the sample variances and covariances as estimates of the variances and 

covariances of these estimates. 

Application to Fit the SEER Data 

In this section, we will apply the above model to the NCI/NIH colon cancer 1996, 

 

Figure 12. Estimated and Observed Colon Cancer Cases and Density of Time to Tumor 
(2001 SEER data) 



96 
 

2001, and 2006 data from the SEER project. Given in Table 10-12 are the numbers of 

people at risk and colon cancer cases in the age groups together with the predicted cases 

from the model for above three years, respectively. There are 18 age groups with each 

group spanning over 5 years. To fit the data, we have assumed that γ1
I γ1

J 0 for j = 

1, 2 because of the observation that uncontrolled cell division of colon stem cells is 

mainly initiated by the oncogene β-Catenin in 3p22. Given in Table 13-15 are the 

estimates of the mutation rates, the birth rates and the death rates of the Ii cells and Jj 

cells. Given in Figure 11-13 are plots of number of cancer cases probability density of 

time to tumors. 

From these results, we have made the following observations: 

(a) As shown by results in Table 10-12 and Figure 11-13, the predicted number of 

cancer cases is very close to the observed cases in all age groups for all three datasets. 

This indicates that the model fits the data well and the mode is quite stable. Thus one can 

safely assume that the human colon cancer can be described by a model of 2 pathways. 

The AIC (Akaike Information Criterion) and the BIC (Bayesian Information Criterion) 

from the model are 55.96 and 81.30 obtained from SEER 2006 data which are smaller 

than the AIC of 816.0667 and the BIC value of 827.1513 from a single pathway 4-stage 

model respectively (Luebeck & Moolgavkar, 2002). The AIC and BIC computed from 

SEER 1996 and 2001 are also much smaller than those from single 4-stage pathway 

model. This shows that the multiple pathway model fits better than the single pathway 4-

stage model as proposed by Luebeck and Moolgavkar (2002). 
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(b)   From Table 10-12 and Figure 14-16, it is observed that the largest number of 

cancer cases is in the age group between 70 and 75 years old. Comparing the values of 

Qi(j) between the CIN pathway (i = 1) and the MSI pathway (i = 2), it appears that the 

largest cancer cases is between the age group 80 and 85 years old for the CIN pathway 

 

Figure 13. Estimated and Observed Colon Cancer Cases and Density of Time to Tumor 
(1996 SEER data) 

 

Figure 14. Time to Tumor for Each Pathway (2006 SEER) 
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and is greater than 85 years old for the MSI pathways. Presumably this might be due to 

the fact that the MSI pathway has one more stage than the CIN pathway. 

(c) Reflecting the contribution of the APC gene on chromosomal instability, results in 

Table 13-15 showed that the mutation rates of the Ir cells from I1 → I2 and from I2 → I3 

 

Figure 16. Time to Tumor for Each Pathway (1996 SEER) 

 

Figure 15. Time to Tumor for Each Pathway (2001 SEER) 
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had increased about 100 times and 1000 times respectively than the mutation rate from N 

→ I1 cells. Similarly, due to the contribution to genomic instability by the mis-match 

repair genes, the mutation rates from J1 → J2, from J2 → J3 and J3 → J4 had increased 

about 5 102, 0.5 104 and 104 times respectively than the mutation rate from N → J1. 

Notice also from Table 13-15 that the mutation rates from J1 → J2 → J3 → J4 are about 2 

to 3 times of those from I1 → I2 → I3. As shown in probability plots (not shown here), 

these increases have speeded up the time to cancer in the MSI pathway by about 5-10 

years. 

(d) Results in Table 13-15 showed that the mutation rates from I3 → I4 and from J4 

→ J5 are of the order 10-6 which were about 102 → 103times smaller than the mutation 

rates from I1 → I2 → I3 and from J1 → J2 → J3 → J4. These results might be the 

consequence that we had ignored the stages of vascular carcinogenesis (i.e., angiogenesis 

and metastasis; see Hanahan & Weinberg (2000) and Weinberg, 2007) by merging these 

stages into the last stage. From Weinberg (2007, Chapters 13-14), notice that the 

angiogenesis and metastasis are also multi-stage processes. 

(e) Results in Table 13-15 showed that the proliferation rates (birth rate - death rate) 

of the I3 cells and the J4 cells are of order 10-2which are much larger than the proliferation 

rates of the I2 cells and the J3 cells, due presumably to the effects of the silencing or 

inactivation of the cell cycle inhibition genes (Smad4 and TGF-β-RII) and the apoptosis 

inhibition genes (p53 and Bax). Notice from Table 13-15 that the estimates of the 

proliferation rates of the I2 and I3 cells are approximately equal to those of the J3 and J4 

cells respectively. These results seemed to suggest that the genomic instabilities had little 

effects on cell proliferations. 
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Table 10  

Colon Cancer Data from SEER 2006 (Overall Population) 

Age Group Number of 
People at Risk 

Observed 
Colon Cancer 

Cases 

Predicted Colon 
Cancer Cases* 

0 9934747 1 0 

0−4 38690768 2 0 

5−9 48506058 2 6 

10−14 49881935 35 44 

15−19 50447512 104 164 

20−24 51612785 337 370 

25−29 54071811 847 965 

30−34 54194486 1829 2080 

35−39 50363957 3420 3534 

40−44 46029771 6174 6698 

45−49 40674188 10950 11072 

50−54 36070434 18716 18256 

55−59 31084543 27438 25875 

60−64 26507762 37155 34867 

65−69 22772688 47202 45156 

70−74 18785224 53190 52810 

75−79 14592602 52887 53479 

80−84 9751212 42589 41517 

* The predicted numbers were generated by the model with unknown parameters 
being substituted by the estimates respectively. 
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Table 11  

Colon Cancer Data from SEER 2001 (Overall Population) 

Age Group Number of 
People at Risk 

Observed 
Colon Cancer 

Cases 

Predicted Colon 
Cancer Cases* 

0 10133168 0 0 

0−4 39407080 2 2 

5−9 49548675 1 5 

10−14 50738796 31 42 

15−19 51758589 90 92 

20−24 53154897 268 293 

25−29 56279465 704 764 

30−34 55641828 1532 1662 

35−39 50895387 2859 3161 

40−44 45268107 5065 5778 

45−49 39358389 8954 9345 

50−54 34911012 15309 15511 

55−59 30414133 23349 22020 

60−64 26715010 32760 31318 

65−69 23364715 42119 41720 

70−74 19125836 47209 46012 

75−79 14548483 46122 45963 

80−84 9492871 36432 35672 
*The predicted numbers were generated by the model with unknown parameters 
being substituted by the estimates respectively. 
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Table 12 

 Colon Cancer Data from SEER 1996 (Overall Population) 

Age Group Number of 
People at Risk 

Observed Colon 
Cancer Cases 

Predicted 
Colon Cancer 

Cases* 

0−4 40207272 1 0 

5−9 39633757 1 3 

10−14 41046534 24 25 

15−19 42500387 71 94 

20−24 44400349 211 262 

25−29 46227557 562 701 

30−34 44888803 1205 1311 

35−39 39700589 2181 2239 

40−44 34570896 3839 3981 

45−49 29704698 6753 7193 

50−54 26561424 11973 11443 

55−59 24278604 19111 17366 

60−64 22008619 27362 26103 

65−69 19243853 35062 34461 

70−74 15271418 38503 38322 

75−79 11245708 36605 37660 

80−84 7237028 28710 29170 
*The predicted numbers were generated by the model with unknown 
parameters being substituted by the estimates respectively.
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Table 13  

Estimates of Parameters for Each Pathway (SEER 2006) 

LOH Pathway 

 I0 I1 I2 I3 

Mutation 
Rate 

1.4E-06 

±1.69E-08 

2.2E-04 

±1.32E-05 

3.2E-03 

±3.33E-04 

1.2E-06 

±2.06E-07 

Proliferation 
Rate 

0 

N/A 

0 

N/A 

3.6E-03 

±1.12E-03 

1.6E-02 

±4.78E-04 

Birth Rate 
Para. 

0 

N/A 

0 

N/A 

7.4E-03 

±1.03E-03 

1.9E-02 

±4.08E-04 

Growth 
Limiting 

Para. 
N/A N/A 

8.3E-05 

±1.4E-05 
N/A 

MSI Pathway 

 J0 J1 J2 J3 J4 

Mutation 
Rate 

8.3E-07 

±1.38E-08 

3.5E-04 

±1.89E-05 

1.4E-03 

±8.57E-05 

9.3E-03 

±1.22E-03 

7.7E-06 

±1.79E-06 

Proliferation 
Rate 

0 

N/A 

0 

N/A 

0 

N/A 

2.8E-03 

±7.01E-04 

2.0E-02 

±3.31E-04 

Birth Rate 
0 

N/A 

0 

N/A 

0 

N/A 

9.6E-03 

±6.08E-04 

2.6E-02 

±2.88E-04 

Growth 
Limiting 

Para. 
N/A N/A N/A 

1.6E-03 

±3.7E-04 
N/A 
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Table 14  

Estimates of Parameters for Each Pathway (SEER 2001) 

LOH Pathway 

 I0 I1 I2 I3 

Mutation Rate 
1.38E-06 

±6.53E-09 

1.6E-04 

±3.59E-06 

1.6E-03 

±2.6E-05 

1.4E-06 

±1.39E-07 

Proliferation Rate 
0 

N/A 

0 

N/A 

4.6E-03 

±3.2E-04 

1.9E-02 

±9.83E-05 

Birth Rate Para. 
0 

N/A 

0 

N/A 

6.2E-03 

±3.2E-04 

2.2E-02 

±9.49E-05 

Growth Limiting 
Para. N/A N/A 

8.31E-05 

±5.0E-05 
N/A 

MSI Pathway 

 J0 J1 J2 J3 J4 

Mutation 
Rate 

8.42E-07 

±5.48E-09 

2.8E-04 

±6.01E-06 

1.1E-03 

±1.38E-05 

5.4E-03 

±7.29E-05 

9.67E-06 

±3.93E-06 

Proliferation 
Rate 

0 

N/A 

0 

N/A 

0 

N/A 

1.3E-02 

±1.95E-03 

1.8E-02 

±6.33E-05 

Birth Rate 
0 

N/A 

0 

N/A 

0 

N/A 

2.4E-02 

±1.77E-03 

1.9E-02 

±5.64E-04 

Growth 
Limiting 

Para. 
N/A N/A N/A 

6.5E-05 

±1.5E-04 
N/A 
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Table 15  

Estimates of Parameters for Each Pathway (SEER 1996) 

LOH Pathway 

 I0 I1 I2 I3 

Mutation Rate 
1.4E-06 

±6.4E-09 

1.5E-04 

±5.05E-06 

8.0E-04 

±3.84E-05 

1.9E-06 

±2.48E-07 

Proliferation 
Rate 

0 

N/A 

0 

N/A 

4.9E-03 

±3.54E-04 

2.0E-02 

±1.63E-04 

Birth Rate Para. 
0 

N/A 

0 

N/A 

5.7E-03 

±3.5E-04 

2.1E-02 

±1.46E-04 

Growth 
Limiting Para. N/A N/A 

8.3E-05 

±1.4E-05 
N/A 

MSI Pathway 

 J0 J1 J2 J3 
J4 

Mutation 
Rate 

8.5E-07 

±4.97E-08 

2.6E-04 

±5.72E-06

1.1E-03 

±2.52E-05

5.2E-03 

±1.34E-04 

1.7E-05 

±6.46E-06 

Proliferation 
Rate 

0 

N/A 

0 

N/A 

0 

N/A 

1.8E-02 

±3.1E-03 

1.9E-02 

±3.1E-04 

Birth Rate 
0 

N/A 

0 

N/A 

0 

N/A 

1.9E-02 

±2.9E-03 

2.0E-02 

±2.6E-04 

Growth 
Limiting 

Para. 
N/A N/A N/A 

3.6E-04 

±2.7E-04 
N/A 
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Conclusions and Discussion 

Recent studies of cancer molecular biology have indicated very clearly that human 

colon cancer is developed through multiple pathways (Chapelle, 2004; Fodde et al, 2001; 

Fodde et al., 2001; Green & Kaplan, 2003, Hawkins & Ward, 2001, Hisamuddin & Yang, 

2004; Peltonmaki, 2001; Sparks et al., 1998; Ward et al., 2001). This indicates that single 

pathway models are not realistic and hence may lead to incorrect prediction and 

confusing results. For developing efficient prevention and controlling procedures for 

human colon cancer and for prediction of future human colon cancer, in this chapter we 

have developed a stochastic model and a state space model for carcinogenesis of human 

colon cancer involving multiple pathways with each pathway being a multi-stage model. 

Using this model, we have derived for the first time the probability distribution of the 

numbers of initiated cells and the probability distribution of time to cancer tumors. Such 

derivation by the traditional approach is extremely difficult and had not been attempted 

previously for multiple pathway models. Based on the state space model of colon cancer, 

we have developed a generalized Bayesian procedure to estimate the unknown 

parameters and to predict future cancer cases. This approach combines information from 

three sources: The stochastic system model via P{X, U | Θ}, the prior information via 

P{Θ} and information from data via L{Θ|y, X, U}. Because of additional information 

from the stochastic system model, our procedure is advantageous over the standard 

Bayesian procedure and the sampling theory procedure. Notice that there are a large 

number of unknown parameters in the model and only a limited amount of data are 

available. Without this additional information, it is then not possible to estimate all 

unknown parameters. Notice also that through the stochastic system model, one can 
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incorporate biological mechanism into the model. Because the number of stages and the 

mutation rates of intermediate cells in different pathways are different and different drugs 

may affect different pathways, we believe that this is important and necessary. 

We have applied these models and procedure to three different NCI SEER data (up to 

November, 2007). Our results showed that the proposed multiple pathways model was 

quite reliable and fitted better than the single pathway 4-stage model as proposed by 

Luebeck and Moolgavkar (2002). (The respective AIC and BIC for the multiple pathways 

model are 55.96 and 81.30 which are 10 times smaller than those of the AIC (816.0667) 

and BIC (827.1513) respectively of the single pathway 4-stage model.) 

In this preliminary study, we have not yet compared the multiple pathways model 

with the single pathway model regarding prediction of future cancer cases and evaluation 

of treatment protocols for human colon cancer. This will be our future research, and we 

will not go any further here.
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4. A STOCHASTIC AND STATE SPACE MODEL OF HUMAN LIVER 
CANCER-MULTIPLE-PATHWAY MODEL INVOLVING BOTH HEREDITARY 

AND NON-HEREDITARY CANCER 

Introduction 

It is well documented that each cancer tumor is derived from a single stem cell which 

has sustained a finite number of genetic and epigenetic changes and with intermediate 

cells subjecting to stochastic cell proliferation and differentiation. That is, carcinogenesis 

is a stochastic multi-stage process involving genetic and epigenetic changes and 

stochastic cell proliferation and cell differentiation. Recent studies by molecular 

biologists have also shown clearly that for many human cancers (colon cancer, liver 

cancer, lung cancer and melanoma, etc.; see Little (2008), Tan (1991), Tan et al. 2008a, 

2008b), the same cancer can be derived by multiple pathways with each pathway being a 

multi-stage model. In Tan et al. (2008a) and Tan and Yan (2009), we have developed 

multiple pathway models for human colon cancer. The major stages for human liver 

cancer development, on the other hand, have been identified by histopathological 

evidence though genetic signaling pathways have not been well established.  In this 

chapter we develop a multiple-pathway model for human liver cancer, including non-

hereditary hepatocelluler carcinoma and hereditary hepatoblastoma. 

For developing biologically supported stochastic model of carcinogenesis, in Section 

4.2 we present the most recent cancer biology of human liver cancer. Using results from 

Section 4.2, in section 4.3 we develop a multi-stage model for carcinogenesis of non-

hereditary human liver cancer, involving multiple pathways. In Section 4.4 we derive a 

statistical model for cancer incidence data of non-hereditary human liver cancer. And 



109 
 

then we extend the multiple-pathway multiple-stage model to incorporate inherited liver 

cancer, which is shown in Section 4.5. In Section 4.6 we derive a statistical model for 

cancer incidence data of hereditary human liver cancer. By combining models from 

Sections 4.3 - 4.6, in Section 4.7 we develop a state space model for human liver cancer. 

In Section 4.8, by using the state space model in Section 4.7, we develop a generalized 

Bayesian inference procedure to estimate unknown parameters and to predict state 

variables. To illustrate the applications of the model and methods, in Section 4.9 we 

apply the model and methods to the liver cancer incidence data from SEER. Finally in 

Section 4.10, we discuss the usefulness of the model and methods and provide some 

conclusions. 

A Brief Summary of Liver Cancer Biology 

 Hereditary Liver Cancer 

The molecular biologists and clinicians have shown that mechanisms of developing 

embyronal liver cancer (hepatoblastoma, or HBL) are quite different from these for 

sporadic liver cancer (Dufour & Clavien, 2010; Grisham, 2002; Hirschman & Tomlinson, 

2005). HBL occurs almost exclusively in infants and children 4 years of age or younger, 

especially in children with a family history of Familial adenomatous polyposis (FAP). 

Clinical studies indicated no association between HBL and hepatitis infection, maternal 

estrogen exposure and cigarette smoking (Grisham, 2002). The major genetic mutation in 

FAP is mutation of adenomatous polyposis coli (APC) gene (Hirschman & Tomlinson, 

2005). According to this mechanism for HBL, the individual is in the first stage (A1 

stage) if one copy of the APC gene has been lost or mutated or inactivated, in the second 

stage (A2 stage) if both copies have been lost or mutated or inactivated.  
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Non-hereditary Liver Cancer 

For sporadic liver cancer, the primary hepatocellular neoplasms, on the other hand, 

occur at all ages and consist of hepatocellular adenoma (HCA), hepatocellular carcinoma 

(HCC). HCA is benign but HCC is malignant. HCA is extremely rare occurring mainly in 

hepatocyte which lack both chronic hepatitis and cirrhosis. From these observations, to 

model sporadic human liver cancer (i.e., after age 15 years old), one may practically 

ignore HCA but only concern HCC. We give a brief summary of the mechanisms of 

HCC.  

Risk Factors. HCC is a fatal malignant cancer with the majority of cases (90-95%) 

occurring in hepatitis B virus (HBV, over 65%) and hepatitis C virus (HCV, over 20%) 

carriers (Wands, 2004). Other important risk factors are food contamination with 

aflatoxin (AFB1), alcohol consumption, smoking, exposure to arsenic or vinyl chloride, 

high intake of iron and low intake of antioxidant vitamins and selenium. HCC is rare in 

the United States and Western Europe because of the low infection rate of HBV in these 

areas, but it is one of the most common malignancies in Taiwan, Southern China 

(Qidong, China) and Africa, due presumably to the high incidence of HBV, HCV and 

AFB1 contamination in these areas. HCC is rising in US due to rampant spread of HCV 

among US population between 1970 and 1990 via contaminated blood product, needle 

sharing, etc.; see DeFrances (2005). 

The Multi-stage Model and Multiple Pathways for HCC. Non-diseased liver 

hepatocyte (denoted by NL) are long-lived cells with little turnover. When infected by 

HBV or HCV, the liver develops into a liver with chronic hepatitis hepatocyte (denoted 

by CH), which can further develop into cirrhosis (denoted by CC), a diffuse form of 
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hepatic fibrosis. (Cirrhosis may also be induced by alcohol intake or other factors than 

HBV and HCV, but the incidence of HCC in cirrhosis without hepatitis infection is low 

(< 15%) when compared to the incidence of HCC in cirrhosis with HBV /or HCV, see 

Craig (2003). HCC can either develop from cirrhosis (60-80%) by following the multi-

stage model: NL → CH → CC →PAH (denoted by PAH1) → DH (denoted by DH1) → 

HCC, or from chronic hepatitis hepatocyte (20-40%) by following the multistage model: 

NL → CH → PAH (denoted by PAH2) → DH (denoted by DH2) → HCC; see Figure 17 

as proposed by Thorgeirsson and Grisham (2002). In these multi-stage models, the 

intermediate lesions of pre-neoplastic hepatocyte are PAH (Foci of Phenotypically 

Altered Hepatocyte), and DH (Dysplastic Hepatocyte). Notice that the PAH and DH from 

the first pathway are different from those of the second pathway because the former cells 

carry more genetic and epigenetic changes than those from the latter pathway 

respectively (Grisham, 2002; Thorgeirsson & Grisham, 2002, Yeh et al., 2001). Also, 

because the first pathway accounts for about 60-80% of all HCC, the proliferation rates 

and mutations rates of the PAH1 cells and DH1 cells are considerably greater than those 

of the PAH2 cells and DH2 cells respectively. 

Some Relevant Biological Information for Modeling HCC. To develop stochastic 

models of HCC along the above pathways, the following observations are useful 

information which needs to be taken into account. In this chapter, we will integrate this 

information into the models through partial informative prior as proposed by Tan et al. 

(2008a).  

All lesions (CC, FAH, DH) and HCC are clonal deriving from a single hepatocyte 

which has sustained irreversible genetic or epigenetic changes with the latter stage lesions 
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accumulate more changes (Breuhahn, Longerich, & Schirmacher, 2006; Buendia, 2000; 

Chen & Chen, 2002; Grisham, 2002; Moradpour & Wands, 2003; Pogribny, Rusyn, & 

Beland, 2008; Shih et al., 2006; Thorgeirsson & Grisham, 2002; Villanueva, Newell, 

Chiang, Scott, & Llovet, 2007; Yeh et al., 2001;). Genomic alterations appear to be 

developed randomly beginning in pre-neoplastic stages CH and CC, and escalating in 

PAH, DH, and HCC. Thus, all important genetic changes may appear in any of CH, CC, 

PAH, DH, and HCC but the frequencies of different genetic changes may be very 

different between these stages, due to different cell micro-environment in the liver at 

different stages and interactions with hepatitis infection. For example, for the percentage 

of hepatocyte with activated telomerase, there are 4% in CH, 8% in CC, 55% in DH and 

84% in HCC respectively; for aberrant methylation, 10% in CH, 16% in CC, 15% in DH, 

and 40% in HCC respectively. 

In normal liver cells and normal hepatocyte (NL cells), both the proliferation rate and 

the death rate are very small and the birth rate is equal to the death rate. On the other 

hand, both of these rates are increased in CH, CC, the intermediate lesions and in HCC 

and the birth rate in these cells is always greater than the death rate respectively. Further 

these rates of cells in more advanced stages are always greater than those of cells in less 

advanced stages. This is probably the consequence of biological results that advanced 

stages have accumulated more genetic and epigenetic changes; see Grisham (2002) 

Pogribny et al. (2008), and Villanueva et al. (2007). 

 

A Multi-Stage Model of Carcinogenesis for HCC 
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From results of Section 4.2, it follows that the stochastic multi-stage model for HCC 

can be represented schematically by Figure 17. 

In Figure 17, the model assumes that cancer tumors are generated by two pathways 

with pathway 1 as a k1-stage multi-stage model (N →  → . . . →  → Tumor) 

involving normal stem cell N and  (i = 1, . . . , ) cells and with pathway 2 as a (  + 

1)-stage multi-stage model (  →  . . . →  → Tumor) involving   and  (j = 1, . . 

. ,  − 1) cells. (For HCC,   =   = 3.) The state variables are then = {  (t), i = 1, 

. . . ,   − 1, (t), j = 1, . . . ,   − 1}, {  (t),  (t)} and T(t), where T(t) denote the 

number of cancer tumors at time t and where (t) ( (t)) denote the number of the  ( ) 

initiated cells for {i = 1, . . . , −1 (j = 1, . . . ,  −1)} respectively. Notice that while the 

{ , t ≥ } is a Markov process with continuous time, T(t) in general may not be 

Markov; see Remark 4.1. If one assumes that the  and  cells grow instantaneously 

into cancer tumors as soon as they are generated, then one may also assume the T(t) as 

Markov and identify {  (t),  (t) as T(t). In this case, as illustrated in Tan (1991), one 

may use standard Markov theory to derive the probability generating function (pgf) of the 

 

I1= Chronic Infected Hepatocyte Stage 
J1= Cirrhosis Stage 
I2(J2) = PAH (Phenotype of Adhered Hepatocyte) 
I3(J3) = DH (Dysplastic Hepatocyte) 
 

Figure 17. A Two-Pathway Model for HCC 
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probabilities of the these variables and hence the probability distribution of these 

variables (i.e., , T(t)). Because T(t) may not be Markov (Yakovlev & Tsodikov, 

1996) and because cancer progression from { ,  } cells to cancer tumors may have 

some important impacts on tumor development (Fakir, Tan, Hlatky, Hahnfeldt, & Sachs, 

2009), in this paper, we will thus propose an alternative approach through stochastic 

equations. It can easily be shown through the method of pgf that if T(t) is Markov, then 

the stochastic equation method is equivalent to the method of Markov theory; as we shall 

see, however, the stochastic equation method is more powerful and does not need to 

assume Markov for T(t). 

Remark 4.1. Because cell proliferation, cell differentiation and apoptosis, mutation 

orgenetic changes all occur during cell division and cell division cycle, and because 

Δ  develop from through cell divisions during (t, t + Δt], one may practically 

assume that ( , t ≥ ) is a Markov process with continous time, where  represents 

time at birth; on the other hand, T(t + Δt) may derive from ( ) cells before time t, T(t) 

is in general not Markov (Fakir et al., 2009; Yakovlev & Tsodikov, 1996). 

The Stochastic Equation for State Variables 

To derive stochastic equations for the state variables, let (t) ( (t)) be the 

number of birth of the  ( ) initiated cells during (t, t + Δt] {i = 1, . . . ,  − 1 (j =1, . . . 

,  − 1)}, (t) ( (t)) the number of death of the  (  ) initiated cells during (t, t + 

Δt] {i = 1, . . . ,  − 1 (j = 1, . . . ,  − 1)} and (t) ( (t)) the number of mutation 

(   →  +1) (  → +1) of  ( ) cells during (t, t+Δt] {i = 1, . . . ,  − 1 (j =1, . . . 

, −1)}. Also let  (t) ( (t)) be the number of mutation of N →  (  → ) during 
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(t, t+Δt]. By the conservation law, we have then the following stochastic equations for the 

state variables: 

 (t+Δt) = (t) +  (t) + (t) − (t), i = 1, . . . ,  − 1,                         (4.1) 

(t+Δt) = (t) + (t) + (t) − (t), j = 1, . . . ,  − 1,                          (4.2) 

Because the transition variables { (t), (t), (t), (t), (t), (t)} are 

random variables, the above equations are stochastic equations. To derive the probability 

distributions of these transition variables and hence the probability distribution of state 

variables, let the transition rates (mutation rates, birth rates and death rates) of the state 

variables as given in Table 16. Then, as shown in Tan et al. (Tan, Zhang, & Chen, 2004), 

we have that to the order of o(Δt), the conditional probability distributions of (t) 

given N(t) and of  (t) given (t) are Poisson with means (t)Δt and (t)Δt 

respectively, where (t) = N(t)  (t) and (t) = (t) ( (t). 

Similarly, it is shown in Tan et al. (2004) that the conditional probability distributions 

of the numbers of births and deaths given the staging variables (i.e., the (t) and (t)) 

follow multinomial distributions independently. That is, 

(t)|N(t) ~ Poisson{ (t)Δt}, independently of (t);                                 (4.3) 

(t)|I1(t) ~ Poisson{ Δ }, independently of (t);                       (4.4) 

for i = 1, 2, . . . ,  − 1, 

{ (t), (t)}| (t) ~ Multinomial{ (t); (t)Δt, (t)Δt};                        (4.5) 

for j = 1, . . . ,  − 1, 
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{ (t), (t)}| (t) ~ Multinomial{ (t); (t)Δt, (t)Δt}.                       (4.6) 

Because the number of mutations of the  cells would not affect the size of the  

population but only increase the number of  cells and because the mutation rate of  

cells is very small (10  ~ 10 ), it can readily be shown that to the order of o(Δt), the 

conditional probability distribution of (t) given  cells at time t is Poison with mean 

Δ  independently of { (t), (t)} and other transition variables. That is, 

(t)| (t) ~ Poisson{ Δ  }, i = 1, . . . ,  − 1,                                  (4.7) 

independently of { (t), (t)} and other transition variables. 

Similarly, we have that to the order of o(Δt), 

Table 16  

Transition Rates and Transition Probabilities for Human Liver Carcinogenesis 

1 N 1 N, 1 I1 α0(t)Δt + o(Δt) 

1 I1 1 I1, 1 J1 β0(t) Δt + o(Δt) 

1 Ii 2 Ii  

1 Ii death  

1 Ii 1 Ii, 1 Ii+1 αi(t)Δt + o(Δt) 

i = 1, …, k1– 1 

1 Jj 2 Jj  

1 Jj death  

1 Jj 1 Jj, 1 Jj+1 βj(t)Δt + o(Δt) 

j = 1, …, k2– 1 
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(t)| (t) ~ Poisson{ (t) (t)Δt}, j = 1, . . . ,  − 1,                                  (4.8) 

Independently of { (t), (t)} and other transition variables. 

Using the probability distributions given by equations (4.3)-(4.8) and by subtracting 

from the transition variables the conditional expected values respectively, we have the 

following stochastic differential equations for the staging state variables: 

Δ

Δ Δ ,    1, … , 1                                                      (4.9) 

 

Δ

Δ Δ                                                                                     (4.10) 

 

Δ

Δ Δ ,     1, … , 1                                                    (4.11) 

where  (t) = (t) − (t), (t) = (t) − (t). 

In the above equations, the random noises { (t)Δt, (t)Δt} are derived by 

subtracting the conditional expected numbers from the random transition variables 

respectively. Obviously, these random noises are linear combinations of Poisson and 

multinomial random variables. These random noises have expected value zero and are 

uncorrelated with the state variables { (t), i = 1, . . . , − 1, (t), j = 1, . . . , − 1}. It 

can also be shown that to the order of o(Δt), these random noises are un-correlated with 

one another and have variances given by: 
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Δ Δ Δ Δ  

for i = 1, . . . ,  − 1, 

Δ Δ Δ Δ    

Δ Δ Δ Δ       

for j = 2, . . . ,  − 1, 

where (t) = N(t). 

The Expected Numbers 

Let (i, t) =  and (j, t) =   denote the expected numbers of (t) and 

(t) respectively and write (0, t) = (0, t) = N(t). Using equations (4.9)-(4.11), we 

have the following differential equations for these expected numbers: 

,  , 1, ,   1, … , 1                           

1,  1, 1,                                                                  

,  , 1, ,   1, … , 1                           

The solutions of the above equations are: 

1, t , 1, t             (4.12) 

i, t 1, ,      2, … , 1                            (4.13) 

i, t 1, ,      2, … , 1                           (4.14) 

The Probability Distribution of State Variables and Augmented State Variables 

Although T(t) is not Markov, the random vector {, t ≥ t0} is Markov with 

continuous time. To derive the transition probability of this process, denote by f(x, y : N, 
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p1, p2) is the density at (x, y) of the multinomial distribution ML(N; p1, p2) with 

parameters (N; p1, p2) and h(x : λ) the density at x of the Poisson distribution with mean λ. 

Then, using the probability distributions given by equations (4.3)-(4.8), to order of o(Δt) 

the transition probability of this Markov process is: 

Δ ∏ ∑ ∑ , ; ; Δ

, ; , Δ , Δ ∑ ∑ , ; ; Δ

, ; , Δ , Δ

∏ ∑ ∑ , ; ; Δ

, ; , Δ , Δ                                                                        (4.15) 

where I0(t) = N(t), a(mu, iu; t) = Iu(t +Δt)−Iu(t)−mu+iu, u = 1, . . . ,k1−1 and where 

b(rv, jv; t) = Jv(t +Δt) − Jv(t) − rv + jv, v = 1, . . . ,k2 − 1. 

The above transition probability and hence the probability distribution of  is too 

complicated to be of much use. For implementing the Gibbs sampling procedure to 

estimate parameters and to predict state variables, we use data augmentation method to 

expand the model. Thus, we define the augmented state variables 

, , 1, … , 1;  , , 1, … , 1  (In what 

follows we will refer these variables as the transition variables, unless otherwise stated.) 

Put ,   , then ,  is Markov with continuous time. 

Using the probability distributions of the transition random variables given by equations 

(4.3)-(4.8), the transition probability  

Δ  Δ ,                        (4.16) 
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where ∏ , ; , Δ , Δ  

∏ , ; , Δ , Δ                                               (4.17) 

and 

Δ ,

∏ , ; Δ   1, ; Δ  

∏ , ; Δ                                                                         (4.18) 

where  uI i, t I t Δt I t B I t D I t  for i = 1, . . . ,k1 − 1 and uJ i, t

J t Δt J t B J t D J t  for j = 1, . . . ,k2 − 1. 

The probability distribution given by equation (4.15) will be used to derive estimates 

and predicted numbers of state variables. This is discussed in Section 4.6. 

A Statistical Model and the Probability Distribution of the Number of Detectable 

Tumors for HCC 

The data available for modeling carcinogenesis are usually cancer incidence over 

different time periods. In this section, we will derive the cancer incidence function for 

two pathways discussed in Section 4.3. 

The Probability Distribution of the Number of Detectable Tumors for HCC 

To derive the probability distribution of time to tumors, one needs to find the 

probability distribution of T(t). For deriving this probability distribution, we observe that 

malignant cancer tumors arise by clonal expansion from primary  cells and primary  

cells, where primary  cells are  cells derived from cells by mutation of  

cells and primary  cells are  cells derived from cells by mutation of  cells. 
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Let ,  ( , ) be the probability that a primary ( ) cancer cell at time 

s develops into a detectable cancer tumor at time t. Let Ti(t) be the number of cancer 

tumors derived from the i−th pathway. Then, to order of o(Δt), the conditional probability 

distribution of T1(t) given (s), {s ≤ t} is Poisson with mean  independently of 

T2(t), where 

,                                                            (4.19) 

Similarly, to order of o(Δt), the conditional probability distribution of T2(t) given 

(s), {s ≤ t} is Poisson with mean  independently of T1(t), where 

,                                                           (4.20) 

Let  (i = 1, 2) be defined by: 

1 ,                   (4.21) 

where  , . 

Then  is the probability that cancer tumors would develop during the j−th age 

group by the i−th pathway. Since cancer tumors develop if and only if at least one of the 

two pathways yield cancer tumors, the probability that a normal person at time t0 will 

develop cancer tumors during (tj−1, tj] is given by , where 

  1  1  1          (4.22) 

For practical applications, we observe that to order of o( ) and o( ) 

respectively, the  in  are approximated by 

~ ,                                                       (4.23) 

~ ,                                                        (4.24) 
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Similarly, it can readily be shown that to the order of Min{o( ), o( )}, 

. 

To further simplify the calculation of , we observe that in studying human 

cancers, one time unit (i.e., Δt = 1) is usually assumed to be 3 months or 6 months or 

longer. In these cases, one may practically assume ,  ~ 1 and ,  ~ 1 if t – s 

≥ 1. 

A Statistical Model for Cancer Incidence Data 

Let yj be the observed number of cancer cases during (tj−1, tj] given nj normal people 

at risk at t0 for cancer. We assume that each individual develops colon cancer tumor by 

the same mechanism independently of one another. Then for each normal person at time 

t0, the probability that this individual would develop liver cancer tumor during the j-th 

age group (tj−1, tj ] is given by . It follows that the probability distribution of yj 

given that nj people are at risk for liver cancer at time t0 is: 

              ~                                                                                    (4.25) 

where . 

Notice that to the order of Max{o( ), o( )}, τj (and hence yj) depends 

on the stochastic model of liver carcinogenesis through the expected number { 

, } of { , } and the parameters { , 

} over the time period (tj−1, tj]. 

A Stochastic Model for Hereditary Liver Cancer (HBL) 

Hirschman, Pollock, and Tomlinson (2005) has discovered the mutated APC gene is a 

HBL-associated germ line mutation, it follows that the germ line cells (eggs and sperms) 
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may carry the mutant APC allele so that liver cancer may occur at birth or at a young age. 

Table 17 

 Liver Cancer Data from SEER (2008) 

Age Group Number of 
People at Risk 

Observed Liver 
Cancer Cases 

Predicted Liver 
Cancer Cases 

0 12,069,564 126 126 

0-4 46,971,230 182 169 

5-9 58,891,282 49 58 

10−14 60,616,195 54 48 

15−19 61321678 62 52 

20−24 62,699,020 98 91 

25−29 65,530,352 148 151 

30−34 65,677,509 220 238 

35−39 61,351,859 406 440 

40−44 56,337,973 814 871 

45−49 50,065,865 1720 1688 

50−54 44,430,452 2665 2601 

55−59 38,337,957 3083 2894 

60−64 32,444,455 3415 3383 

65−69 27,712,647 3725 3762 

70−74 22,840,369 3948 3770 

75−79 17,813,869 3541 3397 

80−84 11,981,840 2275 2256 
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Table 17  

Liver Cancer Data From SEER (2008) (continued) 

aa  

Genotype 
Aa 

Genotype 
AA 

Genotype 
I 

pathway 

J 

pathway 

126 0 0 0 0 

0 169 0 0 0 

0 57 0 0 1 

0 32 1 2 13 

0 11 1 5 35 

0 4 2 11 74 

0 1 3 23 124 

0 0 4 39 195 

0 0 5 58 377 

0 0 6 81 784 

0 0 7 104 1577 

0 0 7 130 2464 

0 0 7 153 2734 

0 0 8 172 3203 

0 0 8 192 3562 

0 0 8 203 3559 

0 0 7 200 3190 

0 0 5 168 2083 
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As shown in Table 17, it is clear shown the liver cancer incidence data from NCI/NIH 

SEER data gives very high cancer rates at birth and before 5 years old. 

To account for inherited cancer cases in the stochastic model for liver cancer, we take 

hereditary segregation into consideration for the population. Let p be the frequency of the 

mutated APC gene (denoted by a) in the population, so that q = 1-p is the frequency of 

the normal APC allele in the population (denoted by A). Assume that population is very 

large and that mating (marriage) between people is random respect to the HBL-related 

APC locus. Then by the Hardy-Weinberg law (Crow & Kimura, 1970; Tan, 2002) the 

frequency of individuals with genotype aa, Aa and AA at the embryo stage in the 

population are given by p2, 2pq and q2, respectively. The individuals carrying aa (both 

APC alleles are mutated) genotype will developed liver cancer (HBL) at birth. Similarly, 

the individuals carrying one mutated APC allele (Aa genetype) require mutation A → a 

 

Figure 18. A Multiple-Pathway Model for HBL and HCC 
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during pregnancy to become individuals with genotype aa at birth. We use α to represent 

the probability of A→a transition. It follows that the probability of individuals with 

genotype Aa at birth is 1-α.  α is usually small (10-3~10-2). On the other hand, for the 

individuals with both normal APC alleles (AA genotype), the probability of two A → a 

transitions to aa genotype is very small, we ignore those transitions in our model, and 

assume that individuals with AA alleles are still normal at birth. However, HBL can be 

developed through mutation of APC gene after born, therefore, there are two pathways 

associated with HBL: for individuals born with Aa genotype, the HBL is developed 

through one stage (Aa → aa); for individuals born with AA genotype, the HBL is 

developed through two stages (AA → Aa → aa). The overall pathways of developing 

liver cancer, including inherited HBL and non-hereditary liver cancer, are schematically 

shown in Figure 18.  

Because the number of stages and hence the probability distribution of time to cancer 

tumors for each individual depend on the genotype of the individual at the embryo stage, 

we let A t  (j = 1, 2) denote the number of Aj cells at time t in people who have 

genotype i at the embryo state, with i =1for genotype aa, i = 2 for genotype Aa, and i =3 

for genotype AA, respectively.  Since the number of stages, through which HBL is 

developed, depends on genotype at the embryo state, it follows that j = 1 for A t , and j 

= 1, 2 for A t . Similarly, we write { , , , 1, 2, } for 

number of new proliferated A  cells, number of deaths, number of mutants of A  cells 

at time t for genotype i, and number of tumors developed from genotype i. 
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 The One-Stage Model and Mathematical Analysis 

As shown in Figure 18, if an individual has genotype Aa at embryo stage, then one 

stage is required to developed HBL (aa genotype). This is a one stage model given by 

 (Aa genotype) →  (aa genotype) → Tumor. For this person, the probability is α 

that he/she would develop tumor at birth, the probability that he/she will remain Aa type 

at birth is 1- α.  

Because all stem cells at embryo stage are  (with Aa genotype) cells in this 

person, the number of  cells can only be generated by stochastic birth and death of 

these cells. It follows that the stochastic equation and the stochastic difference equation 

for the stage variable t  are given respectively by: 

Δ                                                    (4.26) 

Δ Δ

Δ                                                                                                                   (4.27) 

where Δ Δ Δ .  

In the above equations, the conditional distributions of { , } given 

 is multinomial. It follows that 0,  and 

Δ Δ , and  is uncorrelated with { , 

}. 

Let f(x; N, p) denote the density of binomial distribution with parameters (N,p). From 

equation (4.26), we obtain the transition probability of the Markov process  as, to 

the order of o(Δt): 
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Δ ∑ ; , Δ ,

,                                                                                                            (4.28) 

With  generated by the above stochastic equation, the number of tumor at time 

t given number of primary A1 cells has Poisson distribution as follow: 

| , ~                                              (4.29) 

where , . 

Let QAa(j) denote the probability that an individual with genotype Aa at the embryo 

stage develops cancer tumor during period (tj-1, tj] (j > 1). For individuals with genotype 

Aa at the embryo stage, let  be the probability that this individual develops cancer 

tumor during the period (tj-1, tj] (j > 1) via genotype Aa at birth. Then from equation 

(4.29) and Figure 18, and 

1                                                                                      (4.30) 

where  is given by: 

, where  is given above. 

Let |    be the expected number of  for people 

with genotype Aa at the embryo stage. Assuming ω1(t) = ω1 is very small, then 

, where , . 

From equation (4.27), the differential equation for  (t > t0) is 

. So that . 

If , then exp , and hence 
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exp ,  

and 

                                             (4.31) 

where exp , . If , 1for t > x, then 

1  if 0.                                                                 

The Two-Stage Model and Mathematical Analysis 

Assume that an individual has genotype AA at the embryo stage (a normal person). 

Then for this individual all stem cells are normal cells at the embryo stage in which case 

cancer tumors are derived by a two-stage model:  (AA genotype) → (Aa 

genotype) →  ( aa genotype) → Tumor (as shown in Figure 18). The mutation rate 

between AA and Aa is ω0(t), and the mutation rate between Aa and aa is ω1(t). 

For this model, we use { , , , , } to represent 

random variables of number of birth, death, mutants, Aj cells and number of cancer 

tumors developed from this two-stage pathway. The stochastic equations and the 

stochastic difference equation for  cells are given as follow: 

Δ                                 (4.32) 

Δ

Δ Δ                                                                                  (4.33) 

where Δ Δ       Δ . 
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The normal cells (with genotype AA) increase or decrease only by stochastic birth-

death process. The stochastic equation and difference equation are the same as (4.26) and 

(4.27). Similarly, the conditional distributions of the transition variables 

, ,  given  are as follow: 

  ~ Δ                                                                    (4.34) 

, | ~  ;  Δ , Δ   

                                                                                                                             (4.35) 

Then it follows that Δ 0, and Δ , Δ Δ  

and Δ Δ Δ

Δ .                                                                                                                        (4.36) 

Similarly, let f(x; N, p) denote the density at x of a binomial distribution with 

parameter (N,p). Using the stochastic equation given by (4.26) and (4.32) and the 

probability distributions given by equations (4.27) and (4.33), we obtain, to the order of 

o(Δt): 

Δ

∑ ∑ , ; , Δ , Δ ; Δ    

                                                                                                                             (4.37) 

As in last section, we have: 

| , ~                                              (4.38) 

where , . 
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Let QAA(j) denote the probability that an individual with genotype AA at the embryo 

stage develops cancer tumor during period (tj-1, tj] (j > 1). For individuals with genotype 

AA at the embryo stage, let  be the probability that this individual develops cancer 

tumor during the period (tj-1, tj] (j > 1) via genotype Aa or AA at birth, and  be the 

probability of individual born with Aa genotype but with AA genotype at embryo stage. 

Similarly as in Section 4.4.1, 1 , where we usually 

assume 0,  and  is given in (4.30) and  is given by: 

                                                                      (4.39)   

Let | , 1,2 be the expected number of  for people with genotype 

Aa (u=1) an AA (u=2) at birth in people who have genotype AA at the embryo stage, 

respectively. If ω1(t)= ω1 is very small, then, as in the section 4.4.1, we have, to the order 

of o(ω1): 

, where , . 

Let’s derive  as shown in the last section, we have following equations: 

|1 |1 e                                                               (4.40) 

|2 |2 e ω x dx                                         (4.41) 

where | 1    , 2    , 1,2. 

(Notice that |2    |1   , 

and |1 0) if αAA = 0). 

If { , ,   }, then (4.40) and (4.41) reduce to: 

|1 |1 e                                                                    (4.42) 
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|2 |2 ω e dx |2 e ω / .                                

                                                                                                                             (4.43) 

Now  becomes , where  ,  and  is given 

|1 1 |2                                                   (4.44) 

Then to the order of o(ω1): 

                                                                   (4.45) 

Notice that if ,  1 for t > x, then  reduces to : 

|1 e 1 |2 e 1 .  

                                                                                                                              (4.46)                           

Statistical Model and the Probability Distribution of the Number of Detectable 

Tumors for Hereditary Liver Cancer 

The data available for modeling carcinogenesis are usually cancer incidence over 

different time periods. For example, the SEER data of NCI/NIH for human cancers are 

given by {(yj, nj), j = 1, . . . ,n}, where yj is the number of cancer cases during the j−th age 

group and nj is the number of normal people who are at risk for cancer and from whom yj 

of them have developed cancer during the age group. Given in Table 17 are the SEER 

data for human liver cancer. From this data set, notice that there are a large number of 

cancer cases before 10 year-old, which implies a large number of inherited cancer cases. 

In this section, we will develop a statistical model for the data set. 
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The Probability Distribution of the Number of Detectable Tumors for Different 

Genotypes  

To incorporate inherited cancer cases, among the nj people at risk for liver cancer, let 

n1j be the number of individuals who have genotype aa at the embryo stage, n2j be the 

number of individuals with genotype Aa at the embryo stage and n3j be the number of 

individuals with genotype aa at the embryo stage. Then, from results in Section 4.5, the 

conditional probability distribution of (n2j, n3j) given nj is multinomial with parameters 

{nj; 2pq, q2}. It follows that n2j | nj ~ Binomial {nj, 2pq}. 

Because y0 is the number of cancer cases at birth, which derive from individuals who 

have genotype aa at the embryo stage, and we consider all individuals who have 

genotype aa at the embryo stage will develop HBL at birth, so that expect number of 

liver cancer cases at birth with genotype aa at the embryo stage is n0 p2.    

To derive the probability distribution of yj (j ≥ 1) in the j-th age group, let y2j be 

number of cancer cases generated with genotype Aa at embryo stage. The population who 

have Aa genotype at embryo stage  is n2j, and n2j given nj is binomial with parameter {nj, 

2pq}, and as we have shown in section 4.5.1, each individual with Aa genotype at embryo 

stage develops liver cancer though one-stage pathway with probability  (see 

(4.30)). Then we can have: 

| ~                                                                                           (4.47) 

where 2 .  

Then    is the number of cancer case generated by the  

  people with genotype AA at the embryo stage. As we discussed in the 

section 4.5.1, individuals who have genotype AA at the embryo stage usually born with 
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normal, liver cancer developed either through two-stage AA →  Aa → aa → Tumor, or 

three-stage N → I1 → I2  → I3 → Tumor, or four-stage N → I1 → J1  → J2 → J3 →Tumor 

as shown in Figure 18. The probability of an individual with genotype AA at the embryo 

stage develops cancer tumor at j-th age group is  through two-stage pathway, 

 through three stage pathway, and  through 4-stage pathway, as shown in 

(4.40) and (4.21), respectively. Then the probability of an individual developing liver 

cancer through at least one of above three pathways is: 

1 1 1 1                                         (4.48) 

Similar as in section 4.4.1, it can readily be shown that to the order of Min{o( ), 

o( ), o( )}, . 

Combine all genotypes together, the conditional distribution of yj given {nij, i = 2, 3; 

nj} is Poisson with mean 2 . It follows that the 

probability distribution of yj given nj is: 

∑ ∑ , ; , 2 , ,                         (4.49) 

where , ; , 2 ,  is the multinomial density of 

, | ~  ;  2 ,  and ,  the Poisson density of 

 | , , ~  . 

The probability given by (4.49) is a mixture of Poisson distribution with mixing 

probability distribution given by the multinomial distribution of { , } given . This 

mixture distribution represents individuals with different genotypes at the embryo stage 

in the population. 
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The Probability Distribution of the Mixture Model 

Let Θ be the set of all unknown parameters in the mixture model (4.49). Based on 

data (yj, j = 0,1, …, k), the likelihood function of Θ is   , 0,1, … ,

∏ | . 

In order to make inference about unknown parameters, we expand the model to 

include the unobservable variables { , , , }. To derive the joint probability 

distribution of these variables, observe that for j ≥ 1, the conditional probability of 

{ , } given { ,  2, 3, , } is multinomial with parameters 

{ , , }. That is, 

,  | , 2, 3, ,  ~  , ,      (4.50) 

for j ≥ 1.       

Hence for j ≥ 1, the joint distribution of { , ,  2, 3, } given  is 

, ,  2, 3, , 0,1, … , , Θ

, ; , 2 , , , 2 , .          (4.51) 

Put Y = (yij, i = 2,3, j = 1,…,k), N = (nij, i = 2,3, j = 1,…,k), , 0, 1, … ,   

and , 0, 1, … , . For the SEER data, the joint density  ,  ,  | , Θ  given 

{ , Θ} is: 

,  ,  | , Θ

,  ∏ , ; , 2 , , 2 ,   

                                                                                                                             (4.52) 
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Notice that the above distribution is a product of multinomial distributions and 

Poisson distributions. For this join distribution, the deviances 

2 ,  ,  | , Θ ,  ,  | , Θ  is: 

∑                                                                           (4.53) 

where 

2 log log 2 1 log 1  

2 2 log  2

log                                                                                                (4.54) 

The joint density ,  ,  | , Θ  given by (4.52) will be used as the kernel for the 

Bayesian method to estimate the unknown parameters and to predict the state variables. 

State Space Model and Estimation of Unknown Parameters 

Unknown Parameters and Fitting of the Model by Cancer Incidence Data 

In the above model, the unknown parameters are { , , , , ,

0, 1, 2, , 0, 1, 2, , ,  , , , }. Because 

the mutation rates are very small, it is reasonable to assume all mutation rate are 

homogeneous. Since the proliferation rate (i.e., birth rate – death rate) of normal stem 

cells in individuals after birth is expected to be very small (Weinberg, 2007), so that we 

assume that the number of stem cells of individual is a constant (~108).  

To fit the SEER liver cancer data, we let one time unit (i.e., Δt=1) be 6 months after 

birth. Then because the growth of last stage cells is very rapid, during a six months period 
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one may practically assume , 1 for 1. Then using this approximation, 

we summarize probability of developing liver cancer from each pathway. 

For individuals with aa genotype at embryo stage, the probability of developing HBL 

at birth is 1. 

For individuals with Aa genotype at embryo stage, as shown in section 4.5.1, the 

probability of developing HBL during period (tj-1, tj] is: 

                                          (4.55) 

where  and 

1 . 

For individuals with AA genotype at embryo stage, as shown (4.45) and (4.46) in 

section 4.5.2, the probability of developing HBL during period (tj-1, tj] is: 

                                                                  (4.56)  

where  is given by (4.46). 

For individuals with AA genotype (normal person) at birth, as shown in section 4.4.1, 

the probability of developing HCC during period (tj-1, tj] through I-pathway (3 stages) and 

J-pathway (4 stages) are: 

                                                                        (4.57) 

where 

~                                                                     (4.58) 

~                                                                      (4.59)                            
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where  and  can be readily obtained, but  is very 

complicate, we will use numerical way to get the approximation, which will be discussed 

in the next section. Here we only show how to derive , where k1 = 3 for I-

pathway. Let  represent 1  and  represent 1 , 

1 1 1

1 1 1 1 1 1

∑ 1 1 ∑ 1

1 1                                                                                           (4.60) 

From all above results, it follows that the probability of developing liver cancer 

depends on parameters through some functions of parameters, such as , 

. And also only proliferation rates , , , ,  could be estimated. 

However, since we assume the number of stem cells at birth for normal person (genotype 

AA) and for person with Aa genotype are constant (~108), that is, 

~10 , ~10 , ~10 , we can use Generalized Gibbs Sampling 

method to obtain estimates for the mutation rates separately. The method used to estimate 

parameters will be discussed in the next section. To simplify the notation, from now on, 

we use AA to represent the  in the superscribe of notations, and Aa to represent the 

, for example,   is represented by . 

State Space Model of Human Liver Cancer 

State space model is a stochastic model which consists of two sub-models: The 

stochastic system model which is the stochastic model of the system and the observation 
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model which is a statistical model based on available observed data from the system. 

Thus, the state space model of a system takes into account the basic mechanisms of the 

system and the random variation of the system through its stochastic system model and 

incorporates all these into the observed data from the system; furthermore, it validates 

and upgrades the stochastic model through its observation model and the observed data of 

the system. As illustrated in Tan (2002, Chapters 8-9), the state space model has many 

advantages over both the stochastic model and the statistical model when used alone 

since it combines information and advantages from both of these models. 

For human liver cancer (HBL and HCC), the stochastic system model of the state 

space model is the stochastic multiple pathways model consisting of 5 pathways with 

each pathway following a single-stage or a multi-stage model as described in Section 4.4-

4.5; the observation model of this state space model is a statistic model based on the 

observed number of liver cancer cases as described in Section 4.6. 

 The Stochastic System Model and the State Variables 

Putting Δt = 1 for some fixed small interval, then the staging variables are X 

={ , , 1, … ,  }, the transition variables are U = { , ,

1, … , } and population segregation variables are N = (nij, i = 2,3, j = 1,…,k). From 

results in section 4.6, the joint probability distribution of {X, U } given the parameters Θ 

and N is: 

, | , Θ ∏ | 1 , 1 , , Θ 1 |

1 , , Θ                                                                                                                     (4.61) 

where 1 | 1 , , Θ  and | 1 , 1 , , Θ  are given by 

equations (4.18), (4.28) and (4.38) respectively, where Θ , , , ,
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0,1,2, , 0, 1, 2, , , 1,2, , , 1,2, . We assume the 

model is time homogeneous, then all parameters are independent of time so that Θ = 

{ , Θ  , Θ , Θ }, where Θ  = { , , 0,1, , 0, 1}, Θ  = { , , 1,2,

, , 1,2, , }, Θ , , . 

Notice that this probability distribution is basically a product of Poisson distributions 

and multinomial distributions. 

 The Observation Model Using SEER Data 

Put Y = (yj, j = 1, . . . ,m) and  N = (nij, i = 2,3, j = 1,…,k), by the probability 

distribution given by equation (4.52), the conditional joint probability density of Y, N 

given {X, U, Θ} is: 

, | , , Θ  ,  ,  | , Θ                                                                    (4.62) 

And above distribution is a product of multinomial distributions and Poisson 

distributions. The deviance from above density has been given in (4.53).  

From equations (4.61) and (4.62), we have following join density of (X, U, Y, N) 

given Θ: 

, , , |Θ , , |Θ , | , , Θ |Θ                         (4.63) 

where |Θ  is a multinomial distribution. 

The Generalized Bayesian Method and the Gibbs Sampling Procedure 

To fit the model to the data and to valid the model, one would need to estimate the 

unknown parameters and to predict the state variable. We propose generalized Bayesian 

inference procedures to achieve those purposes. 
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The generalized Bayesian inference is based on the posterior distribution P{Θ|X, U, 

Y, N } of Θ given {X, U, Y, N }. This posterior distribution is derived by combining the 

prior distribution P{Θ} of Θ with the probability distribution P{X, U, Y, N | Θ } given 

by equation (4.63). It follows that this inference procedure would combine information 

from three sources: 

(1) Previous information and experiences about the parameters in terms of the prior 

distribution P{Θ} of the parameters. 

(2) Biological information via the stochastic system equations of the stochastic 

system (P{X, U | N, Θ }) . 

(3) Information from observed data via the statistical model from the system (P{Y, N 

|X, U, Θ}).  

Because of additional information from the stochastic system model, this inference 

procedure is advantageous over the standard Bayesian procedure in that it can avoid the 

identifiability problems associated with standard Bayesian method. For example, we have 

shown that to the order of Max{o( ), o( ), o( )} the probability distribution 

of the yj’s depends on the stochastic model through the expected numbers of I2(t), J2(t),  

and , which depend on function of mutation rates (as shown in section 4.7.1) as 

well as the birth rates and death rates through the difference of these rates. It follows that 

it is not possible to estimate the birth rates, death rates and mutation rates separately by 

the traditional Bayesian method. Most importantly, the number of parameters is very 

large and the number of data points is limited. Thus, without information from the 

stochastic system model, it is virtually impossible to estimate all unknown parameters; 

for more examples, see Tan (2000, 2002). Notice that if one uses the standard Bayesian 
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inference procedure by combining the prior with the density P{Y, N |X,U,Θ}, then 

because the density P{Y, N |X, U,Θ} depends on the birth rates and the death rates only 

through the differences of these rates, it is not possible to estimate the birth rates 

( , , 1,2) and death rates ( , , 1,2) separately but only the proliferation 

rates (the difference between birth rate and death rate). 

The Prior Distribution of the Parameters 

For the prior distributions of Θ, because biological information have suggested some 

lower bounds and upper bounds for the mutation rates and for the proliferation rates, we 

assume  

Θ  0                                                                                              (4.64) 

where c is a positive constant if these parameters satisfy some biologically specified 

constraints; and equal to zero for otherwise. These biological constraints are: 

(i) To ease the problem, we assume individuals with genotype aa at embryo stage 

develop HBL with probability 1, and almost all of HBL cases at birth are from 

individuals with genotype aa at embryo stage. Then the frequency of individuals with 

genotype aa at the embryo stage in the population p2 can be approximately determined by 

rate of HBL cases among all population at birth. 

(ii) For the mutation rates of the Ii cells in the first pathway (i.e., the N → I1 → . . . → 

→ tumor pathway), 1 < N0 * α0 < 1000 (N → I1), 10−8 < αi < 10−3, i = 1, 2, where N0 

= 108. For the proliferation rates of Ii cells in the I-pathway, 0 <  < 0.5, i = 1, 2, 10−4 

< < 0.2,  < . 
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(iii) For the mutation rates in the J-pathway (i.e., the N → I1 → J1 → . . . → → 

tumor pathway), 10−8 < βj < 10−3, j = 0, 1, 2. For the proliferation rates in the second 

pathway, 0 <  < 0.5, 10−4 < ( < 0.2,j = 1, 2,  < . 

(iv) For the mutation rates in the AA-pathway (i.e., the AA → Aa → aa → tumor 

pathway), 10−10 < ωk < 10−4, k = 0, 1. For the proliferation rates of Aa cells, 0 < 

 < 10-3, and 10−6 < < 10-3. 

(v) From information from Section 4.2, αi < βi ,   < , i = 1, 2.We will refer the 

above prior as a partially informative prior which may be considered as an extension of 

the traditional non- informative prior given in Box and Tiao (1973). 

The Posterior Distribution of the Parameters Given {Y,X, U, N} 

Combining the prior distribution given in section 4.8.1 with the density of P{X,U,Y, 

N |Θ} given in equation (4.63), one can readily derive the conditional posterior 

distribution of Θ given {X,U,Y, N }. For (i = 1, 2), denote by: ∑ , 

∑  and ∑ ; similarly, for j = 1, 2, we define { , , } by 

replacing ( , , ) by ( , , ), respectively. We also define 

∑ , ∑  and ∑ .  For i = 1, 2, put 

,   and 

. Then, we have the following results for the conditional 

posterior distributions: 

(i) The conditional posterior distributions of Θ  = { , , 0,1, , 0, 1} 

given {X, U, Y, N} is: 
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Θ | , , ,

Θ

                                                                         (4.65) 

(ii) The conditional posterior distributions of Θ ={ , , 1,2, , ,

1,2, , } given {X, U, Y, N } is: 

Θ | , , ,

Θ , ; , , ∏ , ; , , , ; , ,                  

                                                                                                                            (4.66) 

where f(x, y; N, p, q) is a multinomial density with parameters (N, p, q). 

(iii)  The conditional posterior distribution of Θ , ,  given {X, U, Y, N } 

is: 

, , | , , , Θ ∏                                            (4.67) 

where m is the number of time units between t0 to tM. 

The Multi-level Gibbs Sampling Procedure for Estimating Parameters 

Given the above probability distributions, the multi-level Gibbs sampling procedure 

for deriving estimates of the unknown parameters are given by: 

(a) Step 1: Generating (X,U, N) Given (Y , Θ) (The Data-Augmentation Step): 

Use computed ̂ (p be the frequency of the mutated APC gene (denoted by a) in the 

population) to segregate the population into three groups: AA group consists people who 

are normal at birth, Aa group consists of all individuals with Aa genotype at birth, and aa 

group consists of individuals with aa genotype at birth. Given Y and Θ, use the stochastic 

equations (4.1), (4.2), (4.32) and the probability distributions given by equations (4.3) - 
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(4.8) and (4.34) - (4.36) in Section 4.3 and 4.4 to generate a large sample of (X,U). Then 

by combining the sample with P{Y |X, U, Θ, N}, (X, U) are selected through the 

weighted bootstrap method proposed by Smith and Gelfand (1992). This selected (X, U) 

is then a sample from P{X,U|Y , Θ } even though the latter is unknown. (For proof, see 

Tan (2002), Chapter 3.) Call the generated sample ( , ). 

(b) Step 2: Estimation of Θ = {Θ  , Θ , Θ } Given {Y ,X, U}: 

Given Y and given (X,U) = ( ,  ) from Step 1, derive the posterior mode of the 

parameters by maximizing the conditional posterior distribution P{ Θ | , , , ̂}. 

Denote the generated mode as . 

(c) Step 3: Iterative Step. 

With {(X, U) = ( , ), Θ = } given above, go back to Step (a) and continue until 

convergence. 

The proof of convergence of the above steps can be proved using procedure given in 

Tan (2002) (Chapter 3). At convergence, the  are the generated values from the 

posterior distribution of Θ given Y independently of (X,U) (for proof, see Tan (2002, 

Chapter 3). Repeat the above procedures one then generates a random sample of Θ from 

the posterior distribution of Θ given Y ; then one uses the sample mean as the estimates 

of Θ and use the sample variances and covarainces as estimates of the variances and 

covariances of these estimates. 

Application to Fit the SEER Data 

In this section, we will apply the above model to the NCI/NIH liver cancer data from 

the SEER project. Given in Table 17 are the numbers of people at risk and liver cancer 

cases in all age groups, as well as predicted cancer cases by using our model. The cancer 
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Table 18 

 Estimates of Parameters for Each Pathway 

p = 3.48E-03  8.51E-04, α = 1.12 E-05  1.03E-05 

AA → Aa → aa → tumor pathway 

 AA → Aa (ω0) Aa → aa (ω1)  

Mutation rate 3.98E-08  1.11E-09 1.27E-05  6.96E-08  

 Aa aa  

Birth Rate 4.33E-04  1.89E-05 N/A  

Death Rate 3.92E-04  3.07E-05 N/A  

I-Pathway (N→ I1 → I2 → I3 → tumor) 

 N→ I1 (N0α0) I1 → I2 I2 → I3 

Mutation rate 3.88  0.14 4.36 E-03  9.99E-04 1.16E-06  
1.33E-07 

 I1 I2 I3 

Birth Rate 7.48E-03  2.24 E-03 1.2 E-02    1.26E-03 N/A 

Death Rate 4.43E-03  2.55 E-03 9.07E-03  6.12 E-03 N/A 

J-Pathway (N→ I1 → J1→ J2 → J3 → tumor) 

 I1 → J1 J1→ J2 J1→ J2 

Mutation rate 4.37E-03  1.35E-03 3.67E-03  1.82E-03 2.80 E-05  
7.41E-07 

 J1 J2 J3 

Birth Rate 2.14E-02  2.83E-03 2.86E-02  1.48E-02 N/A 

Death Rate 1.38E-02  3.39E-03 4.37E-03  5.43E-03 N/A 
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cases developed from each pathway are also predicted and show in Table 17. There are 

18 (m = 18) age groups with each group spanning over 5 years except at birth.   

Given in Table 18 are the estimates of the mutation rates, the birth and death rates of 

the Ii cells, Jj cells AA cells and Aa cells. Given in Figure 19 is the plot of the observed 

and predicted cancer incidence and Figure 20 the probability distributions of time to 

tumors from each pathway. 

From these results, we have made the following observations: 

(a) As shown by results in Table 17, the predicted number of cancer cases are very 

close to the observed cases. The AIC (Akaike Information Criteria) and the BIC 

(Schwarz Bayesian Information Criteria) are given by 66.23 and 87.94 respectively. This 

indicates that the model fits the data well and that one can safely assume that the adult 

human liver cancer can be described by a model of multiple pathways as given in Figure 

18. It fits also considerably better than single pathway models. The AIC and the BIC of 

the best fitted single pathway model (i.e., the 4-stage single pathway model) are given by 

 

Figure 19. Observed and Predicted Liver Cancer Cases 
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316.0184 and 326.2786 respectively.  

(b) Most of individuals with Aa genotype at embryo stage develop liver cancer 

before 20 year-old, which is consistent with clinical results (Hirschman, Pollock, & 

Tomlinson, 2005). If individuals are born with normal, most of liver cancer is developed 

through I-pathway and J-pathway, that is, environmental effect play the most important 

role for adult liver cancer.  

(c) From Table 17, it is observed that the largest number of cancer cases is in the 

age group between 65 and 75 years old. Most of liver cancer cases develop liver cancer 

through J-pathway though one more pathway is needed for J-pathway than the I-pathway. 

As shown parameters estimate in Table 18, the higher mutation rates for I1 → J1 and J1 

→ J2, as well as higher proliferation rates for J1  and J2 account  for the difference.  

(d) Results in Table 18 showed that the mutation rates from I1 → J1, from J1 → J2 

 

Figure 20. Density of Time to Tumor for Each Pathway 
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and from J1→ J2 are e about 10 times greater than the mutation rates from I1 → I2 → I3. 

These results might be the consequence that the J-pathway has accumulated more genetic 

and epigenetic changes (see Pogribny, Rusyn, & Beland, 2008; Villanueva et al., 2007). 

(e) Results in Table 18 showed that the estimates of the birth rates of J2 cells were 

about 10 times greater than those of I2 cells. The estimate of proliferation rate (birth rate - 

death rate) of the J2 cells is around 4 times of that of J1 cells. These estimates are about 

10 times greater the estimates of the proliferation rates of I2 cells (2.42E-02 and 0.3E-02, 

respectively). Notice that the estimate of the birth rate of I2 cells is 0.012 which is greater 

than the estimate 0.00748 of I1 cells but the estimate of death rate of I2 cells is 0.00907 

which is much greater than the estimate 0.00443 of I1 cells, due presumably to effects of 

apoptosis (Notice that apoptosis is usually a late event in carcinogenesis.). This may help 

explain why the proliferation rate of I2 cells is about equal to (or a little smaller than) that 

of I1 cells. Notice also that the estimates of the proliferation rates of Ji (i = 1, 2) cells are 

of order 10−2 (proliferation rate for J1 is 0.0076, which is slightly smaller than 10-2) 

whereas those of Ii (i = 1, 2) cells are of order 10−3. These results clearly reflect the 

biological observation that more genetic and epigenetic changes have accumulated in the 

J-pathway than in the I-pathway (Pogribny et al., 2008; Villanueva et al., 2007). 

Conclusion and Discussion 

Recent studies of cancer molecular biology have indicated very clearly that human 

liver cancer is developed through multiple pathways (Grisham, 2002), and the cancer 

mechanisms for pediatric liver cancer (HBL) are different from adult liver cancer (HCC) 

(Hirschman et al. 2005). This indicates that single pathway models are not realistic and 

hence may lead to incorrect prediction and confusing results. For developing efficient 
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prevention and controlling procedures for human liver cancer and for prediction of future 

human liver cancer, in this chapter we have developed a stochastic model and a state 

space model for carcinogenesis of human liver cancer involving multiple pathways 

incorporating hereditary liver cancer, with each pathway being a multi-stage model. 

Using this model, we have derived for the first time the probability distribution of the 

numbers of initiated cells and the probability distribution of time to cancer tumors for 

each pathway. Such derivation by the traditional approach is extremely difficult and had 

not been attempted previously for liver cancer involving single pathway models and 

multiple pathway models. 

Based on the state space model of liver cancer, we have developed a generalized 

Bayesian procedure to estimate the unknown parameters and to predict future cancer 

cases. This approach combines information from three sources: The stochastic system 

model via P{X, U, N | Θ}, the prior information via P{Θ} and information from data via 

P{Y | N ,X, U, Θ}. Because of additional information from the stochastic system model, 

our procedure is advantageous over the standard Bayesian procedure and the sampling 

theory procedure. For example, for the first time we can estimate the birth rates and death 

rates separately for all pathways which are not possible by the classical Bayesian 

methods or sampling theory methods. Notice that there are a large number of unknown 

parameters in the model and only a limited amount of data are available. Without this 

additional information, it is then not possible to estimate all unknown parameters. Notice 

also that through the stochastic system model, one can incorporate biological mechanism 

into the model. Because the number of stages and the mutation rates of intermediate cells 
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in different pathways are different and different drugs may affect different pathways, we 

believe that this is important and necessary. 

We have applied this model and methods to the NCI SEER data (up-to November, 

2008). Our results showed that the proposed multiple-pathway model fit the data 

remarkably well. The estimates from the model are strongly consistent with biological 

findings. 
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5. SUMMARY AND FUTURE RESEARCH 

We have developed stochastic models and statistical models and hence state 

space model for carcinogenesis under complex situations (i.e., multiple-pathway 

multiple-stage model). 

In chapter 1, we have used a simple two-pathway  model with one pathway 

involving a single stage model and the pathway involving a three stages model to 

assess the classical two-stage Markov model (MVK model) for carcinogenesis; we 

have derived the incidence function and have revealed many difficulties and 

drawbacks of the traditional MVK model. To overcome these difficulties we have 

introduced stochastic difference equation method and have used the generalized 

Bayesian procedure to estimate unknown parameters. In this chapter we have 

briefly revealed the complex nature of carcinogenesis. 

In chapter 2, we have developed stochastic models for the three commonly 

used experiments in bioassay in the area of cancer risk assessment of 

environmental agents: The initiation, the promotion and the complete experiments. 

We notice that the stochastic process for each experiment is unique and each can 

be represented by an unique multiple-pathway model. Most of these stochastic 

models are simple processes. For initiation experiment, the model is a two-

pathway model with one stage for each pathway whereas for promotion and for 

complete experiments, the models are two-pathway model with one stage for one 

pathway and with two stages for the other pathway. A generalized Bayesian 

procedure was developed to estimate unknown parameters. Simulation study 
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shows that the models are quite reliable and estimates are very close to true (given) 

parameter values. 

In chapter 3, based on biological information, we have developed a two-

pathway model for sporadic human colon cancer; one pathway has 4 stages, and 

the other has 5 stages. Using this as the stochastic system model, we have 

developed a state space model with the observation model being a statistic model 

based on cancer incidence data relating the model to the system. In this model, 

biological information are effectively captured by a stochastic system model and 

cancer incidence are effectively linked to the system through the observation 

model. We have fitted the model to the NIH/NCI SEER data. The fitting results 

have revealed that the multiple-pathways model not only fit the observed incidence 

data better than the single 4-stage model, but also are consistent with biological 

findings.  

In chapter 4, we have further extended the state space model to handle more 

complicated multiple-pathway carcinogenesis of human liver cancer incorporating 

hereditary and non-hereditary cancer incidence. Cancer heredity has been well 

known to account for pediatric liver cancer, also known as hepatoblastoma (HBL). 

The mechanism of developing HBL is different from cancer for adult, usually 

known as hepatocellular carcinoma (HCC). For HBL, the major mutated gene is 

APC, and for HCC, liver cancer is developed through two pathways with multiple 

stages for each pathway. We segregated the population by using the frequency of a 

major mutated gene (APC gene) into three subgroups, and for each subgroup, we 

constructed stochastic model accordingly. In combination of generalized Bayesian 
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approach using multi-level Gibbs sampling procedures, we have estimated the 

segregation frequency as well as mutation rates, birth rates and death rates for all 

stages. The model predicted cancer incidences of all age groups very well, and 

through the parameters estimated from the model we have also predicted the 

number of cancer cases for each cancer subgroups for each age group, as well as 

density of time to tumor for each pathway.  

Overall, we have developed innovative stochastic and state space models for 

multiple-pathway carcinogenesis. We have developed models to assess bioassay’s 

effect in tumor development, models to evaluate tumor development for colon 

cancer, and models for inherited and non-inherited liver cancer. The stochastic and 

state space models we have developed have many advantages over the traditional 

Markov multistage models, and are more consistent with biological information; 

these models are based on biological information and hence are more realistic and 

applicable in practice. 

So far our study in risk assessment has only concentrated on time to tumor 

(papillomas and/or carcinomas); we have not extended the models to cover 

progression of papillomas and carcinomas. For future research, we will proceed to 

develop models to cover tumor progression; for these purposes we need to 

consider correlation between cases at two time points during tumor progression. 

Thus, for the initiation-promotion bioassay, our future work will cover developing 

state space model for longitudinal observations involving tumor progression. 

 The stochastic and state space models for carcinogenesis are still exploratory, 

and the models we developed have been applied for overall population, not for 
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small cohort. With more biological information discovered in molecular biology, 

cancer genetics, and cancer clinic, we will develop stochastic and state space 

models for more specific population group. In the future, we will also incorporate 

treatment protocols into models for colon cancer, liver cancer or other types of 

cancers to provide quantitative evaluation of treatment effects. 

We have not predicted the cancer cases for the future time points. Thus, 

another future research subject is to develop predictive inference for cancer 

incidence and progression. We will access the predictive inference through two 

ways: Bayesian prediction and Kalman filter prediction.  The Bayesian prediction 

is basically updating the posterior distribution of parameters by introducing the 

new sets of observations and newly updated prior distribution whereas the Kalman 

fitter prediction is based on construction of smoothing prediction function. We will 

compare these two predictive inferences to give more insight of prediction 

precision as well as to validate the models.
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