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ABSTRACT 

 

Ramachandra, Sudha. MS. The University of Memphis. May/2010. Loading and Coating 

Water-Soluble Poly(Ethylene Oxide) Substrates under Ethanol Using the Layer-by-Layer 

Technique. Major Professor: Dr. Tarek Farhat. 

 

A poly(ethylene oxide) (PEO) and poly(acrylic acid) (PAA) layer-by-layer (LBL) 

coating was self-assembled on a PEO substrate under non-aqueous conditions using 

ethanol. After lysine, ferricyanide, and Prussian blue (PB) had been loaded into the PEO 

granules, the resulting PEO polymer gel was dried to obtain strips that could be dip-

coated onto silica wafers to obtain planar base coats with a bilayer thickness of 115 A
o
 at 

pH = 6 and 350 A
o
 at pH = 2. Further analysis revealed that upon coating, retention in the 

PEO core was > 95% for PB, ~80% for ferricyanide, and ~73% for lysine. A dissolution 

test of PB loaded on coated and uncoated PEO strips showed that the former remained 

intact under an aqueous solution of pH ≤ 6.5 for at least 20 minutes whereas the latter 

dissolved within 3 minutes. These hydrogen-bonded ethPEO/PAA LBL films degrade at 

pH ≥ 4.5 under aqueous conditions.  
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I,TRODUCTIO, 

Layer-by-layer (LBL) assemblies of polyelectrolytes (PEs) have captured much 

research attention because of the ease with which their properties (e.g., size, composition, 

and surface property) can be altered for potential use in drug-delivery systems [1]. This 

study examined a method of coating the substrate core of poly(ethylene)oxide (PEO), 

a non-ionic high molecular weight water-soluble polymer, with an ultra-thin polymer 

film under non-aqueous conditions. Obtained in the form of powder or granules of a 

whitish or off-white color that produce an ammonia-like odor, PEO is capable of 

forming association complexes with monomers and polymers through hydrogen 

bonding. Dilute solutions of PEO at pH ~6.5 are available in a wide range of 

molecular weights of up to 7x10
6
, with those of molecular weights 2500 and below 

classified as poly(ethylene glycols). 

The viscosity of an aqueous PEO solution increases directly with its increasing 

molecular weight. This study examined a PEO solution of a molecular weight of 

4x10
6
, of which an aqueous 1% solution has been reported to have a viscosity of 1650 

to 3500 cP [2]. The dilute PEO aqueous and ethanolic solutions prepared in this 

project were ≤ 0.05%. One advantage of using PEO in a controlled molecular release 

application, such as that examined here, is its low toxicity and biocompatibility [3]. It 

is due to these characteristics that PEO has been investigated for pharmaceutical 

applications [4], with its use in oral delivery systems having already been established 

[5-8].  

This study attempted to use PEO as a substrate core in LBL deposition, testing 

the LBL coating on both PEO granules and on gels transformed from granules, with 



2 

the latter dried into PEO pellets, sheets, or films. Such procedures allowed for 

characterization using spectroscopic techniques, such as Fourier transform infrared 

spectroscopy (FTIR) and attenuated total reflection-Fourier transform infrared 

spectroscopy (ATR-FTIR) on free-standing PEO strips or smeared PEO base coats on 

silicon (Si-100) wafers. The ethanolic solutions of PEO and poly(acrylic) acid (PAA) 

(see Fig. 1.) were carefully prepared using volumetric titration analysis. The ethanolic 

solutions were used to coat the PEO core substrate either as a planar strip or a base 

coat on an Si-100 wafer using the LBL technique to produce a substrate material 

coated with the same polymer. By performing and analyzing these processes, this study 

investigated the concept of the polymer couple (i.e., PEO/PAA) and its corresponding 

PEO substrate, represented as PEOsubs/(PAA/PEO)LBL. The advantage of using an 

ethanolic solution is the possibility of using a water- soluble polymer as a substrate 

for LBL deposition. Consequently, molecular probes that are loaded into the water-

soluble polymer would be released the moment that the coating ruptures. The LBL 

film, whose thickness can vary from 50 nm to several microns, is formed through 

hydrogen bonding likely induced by the low tendency of polymers to dissolve in a   

 non-aqueous environment.   

 

 

 

 

 

                          (i)         (ii) 

Fig. 1. Chemical structures of the polymers (i) poly(ethylene oxide) and (ii) poly(acrylic 

acid). 

 

CH2 CH2 OCH2 CH2 O
n

CH CH2

C
OHO

n

CH CH2

C
OHO



3 

HISTORICAL BACKGROU,D 

Layer-By-Layer Technique 

The oldest technique used for building multilayer films is the Langmuir and 

Blodgett (LB) technique, developed by Langmuir and Blodgett in the 1920s [9]. Since 

this initial development, newer characterization techniques have led to significant 

progress. In the LB technique, amphiphiles are spread on water and compressed to obtain 

a 2D solid-like film, which is then transferred from the water/air interface onto a solid 

substrate. In 1991 Decher and Hong developed the electrostatic self-assembly (ESA) 

technique to form multilayer films from the numerous polyanions and polycations 

produced by the alternate dipping of a substrate into anionic and cationic amphiphiles 

[10]. The adsorption of these molecules promoted the surface- charge reversal needed to 

form the film. For example, if a charged substrate, such as an Si-100 wafer, is dipped into 

an aqueous solution of an oppositely charged PE, the charge neutralization that initially 

occurs upon adsorption later results in the reversal of the surface charge. After the 

substrate is then washed in water to remove excess PE, it is dipped into another PE 

solution with a charge opposite to that of the first solution, which reverses the surface 

charge once again. These steps are repeated several times to obtain multiple layers (see 

Fig. 2.). The ESA method was quickly recognized as a highly versatile technique for the 

self-assembly of organic and inorganic substances. Interactions other than those among 

electrostatic charges have subsequently been applied to produce multilayered assemblies.  
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Fig. 2. Schematic representation of a silicon wafer adsorbed with polycation resulting in 

charge reversal and a second layer of polyanion adsorbed over the polycation to form the 

bilayer. 

 

The production of hydrogen-bonded films from various non-ionic water-soluble 

polymers, such as poly(vinyl pyrrolidine) (PVP), poly(acrylamide) (PAAm), and PEO 

have also been attempted [11-13]. Films produced using the LBL process are formed one 

molecular layer at a time, providing a great degree of control over their composition and 

surface functionality [14]. The most widely used commercial PEs are poly(allyl amine), 

poly(ethylene imine), poly(styrene sulfonate), poly(diallyl dimethyl ammonium chloride), 

poly(vinyl sulfate), and poly(acrylic acid), with aqueous solutions having been mainly 

used for LBL depositions [10]. The assembly of weak PEs has attracted considerable 

interest in recent years because of their pH-dependent characteristics [15] These PEs 

allow greater control over the thickness, conformation, and degree of ionic bonding by 

changing the linear charge density based on pH values [14]. The stability of these films 

depend on factors such as the thickness and nature of the film, such as whether it is 

acidic, basic, hydrophilic, hydrophobic, thermo-sensitive, or pH-sensitive. These self-

assembled molecules have many applications in many fields as components of biosensors 
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and optical devices. The LBL technique can be applied to nano-sized particles, permitting 

their use in encapsulation techniques [16], and permits a wide range of functional 

molecules, such as electro-active polymers, organic dyes, and biologically active 

molecules, to be incorporated [17] into the films, thus providing an economical means of   

forming films of tailored compositions [18].   

Types of Forces  

Different kinds of forces are used in forming multilayer films, including 

electrostatic interaction, hydrogen bonding, adsorption, covalent bonds, stereo-complex 

formation, and specific recognition [19]. Hydrogen- bonded self-assembled polymers are 

formed when two soluble polymers of nearly equal molar concentrations interact to form 

a complex, with multiple hydrogen bonds formed along the polymer backbone [17]. The 

formation of hydrogen-bonded polymer complexes in aqueous solutions [20, 21] and the 

use of organic solvents or combinations of organic solvents and water for the 

construction of hydrogen-bonded films have been studied for many years [22]. 

Researchers have found that hydrogen-bonded films formed from weak PEs are sensitive 

to pH changes [15, 16], as well as that electro-statically formed films can be used to coat 

particulate substrates to produce pH-sensitive erasable capsule walls [23]. However, 

unlike electro-statically formed multilayered films, hydrogen-bonded multilayered films 

can be formed in organic solvents, permitting the use of non-ionic and water insoluble 

polymers [24]. Polymer blends in which the composition and physical properties are 

controlled at the molecular level, such as the polyacrylamide blends produced using the 

hydrogen-bonding approach [25], can be used for the controlled release of molecules 

[26], and may have applications in controlled drug-delivery systems [15]. 
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History of PE Capsules 

Since the LBL technique was first introduced in 1998 [27, 28], capsules made 

using this technique [29] have been researched for their use in various fields due to the 

ease in tailoring properties such as size, shape, and composition. These capsules can be 

made from a variety of starting materials, including natural and synthetic PEs, 

biomacromolecules, and nanoparticles [30]. PE LBL films can also act as carriers for 

therapeutic molecules. The vast majority of PE-based capsules have been made by 

alternating deposition of complementary PEs, facilitated by electrostatic force, hydrogen 

bonding [31, 32], hydrophobic bonding [33], and hybridization [34, 35]. The advantage 

of  using LBL fabricated PE capsules is in its simplicity and possibility to obtain 

multifunctionality in their shells. The advantage of capsules in drug delivery is that they 

prevent drug degradation and its side effects in the body [36].  

Atom-transfer radical polymerisation (ATRP) and nitroxide-mediated 

polymerisation (NMP) have been used in the design of block copolymer micelles and 

polymersomes [3, 5]. Considered analogous to liposomes, polymersomes have been 

studied for their use as capsules in drug-release systems [37].These structures, which are 

versatile due to their flexibility in design, release entrapped molecules in response to 

various factors, including changes in pH or changes in thermal or redox potentials. The 

incorporation of molecules (see Fig. 3.) into capsules for drug delivery has been studied 

[1]. The loading of molecules or encapsulation is typically achieved through (a) 

permeation of molecules into preformed PE capsules, (b) LBL coating over a crystal form 

of the molecule, or (c) adsorption of molecules to colloidal particles over which an LBL 

coating is deposited (see Fig.  3.). Permeation through preformed capsules is possible   
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Fig. 3. Different methods for encapsulating therapeutics: (A) loading preformed capsules, 

(B) encapsulation of crystalline particles, and (C) incorporation into porous   

materials. Reproduced from [1]. 

 

when the capsule material responds to changes in salt concentration or to pH by opening 

the pores in the capsules. For example, (dextran sulfate/PAH), poly(allylamine 

hydrochloride) microcapsule responds to change in salt, and poly(styrene sulfonate) 

(PSS)/PAH capsule responds to changes in pH. [39,40] However, the amount of loading 

depends on the concentration in the solution into which the preformed capsules are 

dispersed, and the level of reproducibility is very low [41]. Sequestering agents of low 

molecular weight that have a high affinity for the therapeutic molecules introduced into 

the capsules permit increased adsorption of these molecules [42]. An example for this is 

the use of low molecular weight dextran sulfate as sequestering agent in capsules made 

from PSS/amidoamine dendrimer. [43]    

Proteins and drugs that can form crystals are encapsulated by directly depositing 

LBL coating onto them [44, 45]. The most recent development is the use of colloidal 

particles such as calcium carbonate [46] and silicon [47-49] to adsorp the therapeutic 
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molecule, followed by LBL coating, which permits high loading of the molecule and low 

interaction between the sequestering agent and the loaded molecule. Release of molecules 

in a sustained manner could be achieved through diffusion across the highly permeable 

capsule wall [50] or by slow degradation of the capsule wall [51]. As demonstrated by 

Antipov et al. in their study of the impact of ionic strength and pH on the permeation of 

fluorescein in PSS/PAH multilayers, changing external factors such as ionic strength and     

pH can induce degradation of the capsule wall [52].   

Core Substrates 

Early research led to the production of capsules from organic templates such as 

polystyrene (PS), cross-linked melamine formaldehyde (MF) microparticles, and cross-

linked alginates that hydrolyze under Ca
2+

 deprivation by which Ca
2+

-crossed alginates 

degrade slowly in EDTA solutions [53-56]. However, MF complexes with the shell    

[57-60] and could be toxic, while PS is easily destroyed by organic solvents and 

disintegrates the capsule [61]. Later, they were replaced by inorganic carbonates such 

calcium carbonate and magnesium carbonate [2, 62-65], which have lower molecular 

weights and are more stable. Recently, cadmium carbonate [2, 66] has been used to 

fabricate PE capsules. Although silica particles(SiO2) have been used for encapsulation 

[67, 68], the hydroflouric acid used to dissolve the silicon core needs extreme caution 

while handling. Some of the recent work on PS and MF is summarized in Table 1. 
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Table 1. Release Study on PS and MF as Substrates 

 

 Because PEs release molecules in response to changes in factors such as pH, 

light, magnetic field, glucose level, and redox potential, they have been used to 

produce stimuli-responsive capsules for drug-delivery systems. Changes in pH causes 

the PE to change into its uncharged form, thereby disassembling the capsule. Rubner 

et al. described the change in charge and morphology of PAH-based planar 

multilayers [76] and proved that the integrity of these films was reversible by 

changing their pH. Similar studies were conducted on PE capsules by Masuer et al. 

[77] for poly(methacrylic) acid/poly(allyl amine) hydrochloride (PMA/PAH) and 

Dejugnat et al. [61] for PSS/PAH systems. This feature of the reversibility of capsule 

permeability with changes in pH was used by Dejugnat et al. for introducing and 

releasing large molecular weight substances such as rhodamine-labeled PSS and 

FTIC-dextran.  

,umber Polyelectrolyte 

 for Coating 

Loaded  

Material 

Core  

Substrate 

Solvent Citation 

1 Chitosan and PSS   PS-Colloidal 

particle 

THF [69] 

2 Benzophenone modified 

PAH and  PSS 

Rhodamine B  PS THF [70] 

3  Diazoresins  

(DZR)  and  PSS 

 Hollow PS THF [71] 

4 Per fluorinated ionomer 

(Nafion) and 

 ferric ions 

Fluorescein PS latex 

particle 

THF or  

DMF 

[72] 

5 (sodium+salt)  

PAA and PAH  

 Hollow MF and PS HCl [73] 

6 Tb
3+

/(PSS)  

and 4-Pyrene sulfate/ PAA  

 Hollow PSS and MF  

latex particles 

 [74] 

7 PSS,PAH,PDAC,DNA salt  Hollow MF and PS 

spheres 

pH<1.6 [75] 
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PEO, the core substrate used in this study, has also been used in several recent 

studies. Krogel and Bodmeier [78] used a chemical oscillator that released drugs in a 

pulsating manner from the formulation.The pulsatile drug delivery system had two 

layers, one impermeable capsule filled with drug and an erodible plug at the capsule 

opening. When they produced the plugs by directly compressing the PEO and placing 

the tablet into the capsule, they found that erosion time increased in tandem with an 

increase in the molecular weight of the PEO [79]. In another study, Ali Javed et al. 

achieved the release of celecoxib from the polymer microsphere using 

dichloromethane and ethanol. Many other studies have used organic solvents to 

release drugs from microspheres [75, 82, 83]. This study proposes that the use of PEO 

gels, if coated, could be part of an alternative encapsulation technique by which the 

loaded molecule could be released without the use of any harmful solvents or the  

necessity to fabricate hollow capsules. 

 Applications of PEO in the Pharmaceutical Industry 

PEO complexes find varied applications in drug-delivery systems, enteric-coated 

drugs, and contact lenses [84]. Due to their ionic and hydrophilic nature and permeability 

to body fluids, they have many biomedical applications [84]. Dhawan and Sinha have 

reviewed the use of PEO in hydrophilic and hydrogel matrices and various other drug-

delivery systems [85]. Kofinas et al. observed that PEO hydrogels can be used in the 

transportation of growth factors [87] and Abraham et al. reported that PEO hydrogels 

provide the right conditions for the diffusion of small polar molecules [88]. PEO 

complexes can deliver drugs across the skin, while PEO tablets and hydrophillic 

matrixes can be used in prolonged oral drug delivery. When Zhang and McGinity 
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studied the release of chlorpheniramine maleate from matrix tablets prepared by hot 

extrusion [89], they found that the release was controlled by the erosion of the PEO 

matrix and the diffusion of the drug across the gel at the surface of the tablet. Pillay 

and Fassihi described a new monolithic delivery system that follows a zero-order 

kinetics for metoprolol tartarate [90], is independent of pH changes, and has the 

potential for extended release of bioactive agents at a constant rate.  

In this study PEO was used as a swellable matrix, as had Luber and Bunick, 

who described an immediate-release tablet that could be chewed or disintegrated in 

the oral cavity [91] with a matrix made from PEO. Berner and Louie [92] described 

the targeted and controlled delivery of ciprofloxacin to the upper gastrointestinal tract 

over a period of time from an erodible PEO matrix, a useful method when patients are 

in fed mode. Plotnikov et al. observed that intravenous injection of PEO reduced 

blood pressure in the stenosed vessel in narcotized cats [93]. According to Gutowska 

et al., injectable PEO formulations, which can gel in-vivo in response to changes in 

temperature or pH or during ionic cross linking or solvent exchange, have the 

potential for minimally invasive implantation because they can assume a desired 

shape and permit the easy incorporation of drugs [94]. Anderson et al. have used PEO 

in targeted drug delivery, and anticipate that systemic drug delivery of poorly 

absorbed proteins and peptides will be improved by the use of targeted oral liposomes 

[95]. When Verma et al. compared the muco adhesion behavior of PEO versus 

carbopol matrices using a water-soluble drug, they found a marked increase in the 

swelling index of matrices with a high PEO content compared to the carbopol 

matrices [96]. While working on a sandwiched osmotic tablet system for delivering 
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Nifedepine, Liu et al.  found that the PEO in the drug layer of a osmotic tablet core 

surrounded by cellulose acetate membrane  with two orifices for Nifedepine release 

assisted in the Nifedepine release [97]. 

 Previous research has demonstrated the significance of PEO as a core 

substrate in controlled molecular release and the capability of the LBL technique to 

form thin coating. Although Hammond and Sukhishvili [98-100] conducted research 

into PEO/PAA using aqueous solutions, the current study was the first to investigate the 

preparation of ethanolic solutions using polymer/water/ethanol combinations in which 

PEO and PAA segments do not precipitate out of the solution, as the prepared 

polymer/water/ethanol mixture must not dissolve the PEO polymer substrate or LBL 

deposition will fail. Under non-aqueous conditions, hydrogen bonding is the force most 

likely to cause LBL film assembly.  

This study conducted several experiments to demonstrate that PAA is a highly 

protonated species prepared to H-bond with the oxy-ether of PEO. Under ethanol, the 

PAA segments can hydrogen bond with PEO segments at the surface of the PEO 

substrate or with loose PEO segments in solution. This study used FTIR to characterize 

the free PAA and PEO segments as well as monitor LBL deposition on Si-100 wafers and 

PEO substrates. Molecular and colloidal loading was also examined using FTIR and 

colorimetric analysis. Environmental scanning electron microscopy (ESEM) and atomic 

force microscopy (AFM) were used to examine the topography, cross-sectional features, 

and thickness of the deposited films. For ease of handling and characterization, PEO 

granules were made into polymer gels, then molded into strips and base coat substrates. 

Based on the results of this study, it is anticipated that PEOsubs/(PEO/PAA)LBL systems    
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will have many applications in the field of controlled molecular release within the   

chemical and pharmaceutical industries. 

EXPERIME,TAL SECTIO, 

Materials and Methods 

 Chemicals Used  

All polymers were used as purchased without further purification. Lysine, 

potassium ferricyanide, PEO (MW = 4000,000; FW 44g/mol), and poly(diallydimethyl 

ammonium chloride) (PDAC, MW~200,000, 20% wt., FW 161.1g/mol) were purchased 

from Sigma Aldrich. PAA (MW = 90,000, 25 wt. %, FW 72.06g/mol) was purchased 

from Polysciences Inc. Ethyl alcohol anhydrous USP grade (ethanol 200 proof) used as 

solvent was purchased from Pharmco-Aaper. A millipore (system) dispenser for 18 MΩ    

ultra-pure water was used in all experiments. 

Instruments Used  

A plasma cleaner/sterilizer PDC-32G purchased from Harrik was used to clean 

Si-100 wafers by plasma etching before treatment with 10-mM PE (PDAC or PAA) 

solution as a base layer. The treated Si-100 substrate was then subjected to multilayer 

deposition from the respective polymers using a robotic dipper purchased from 

Nanostrata, Inc. A Nicolet 550 Series-II/Avatar 380 FTIR was used to monitor LBL 

assembly. Spectral and quantitative analysis on low-polymer solution concentrations was 

performed using a ATR/FTIR optical box and trough purchased from Specac, Inc. The 

interferogram was collected with a 4-cm
-1

 resolution gain of 1 and an average number of 
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scans of 30. The signals were obtained on absorbance mode against corresponding 

backgrounds. A spectrum of Si-100 was obtained first and the sample spectrum of coated 

Si-100 was obtained against the former as background to obtain the IR spectrum of the 

LBL assembly. 

  Absorbance values for the carboxylate and carboxylic acid of PAA were 

estimated by examining the absorbance bands at ~1550 and ~1700 cm
-1

, respectively. 

Each peak height was assumed to be the maximum of a Gaussian absorbance curve for its 

respective chemical species.  Signature peaks of PEO was observed at 2900,1100 cm
-1

, 

lysine was observed at ~1420 and ferricyanide at ~2120 cm
-1

. Spectra were also obtained 

for various number of bilayers applied on a PEO base coat that had been cast on Si-100 

wafers. In one method, spectra were sampled for a combined PEO base coat and LBL 

film, while in another method the spectra of PEO base coat on Si-100 wafers was used as 

the background and to obtain the full spectrum of only the LBL film. 

The film thickness of various LBL films was measured using a Stokes 

ellipsometer purchased from Gaertner Scientific, where Ks= -0.319, NLBL= 1.5, and NSi = 

4.5. An environmental scanning electron microscope (ESEM) Philips XL 30 and atomic 

force microscope (AFM) purchased from Digital Instruments, Veeco metrology, 

Dimension 3100 were used to examine topological and cross-sectional views of the PEO 

substrate coated with the PEO/PAA LBL film and to estimate the film thickness. The 

SEM-EDAX instrument has a field emission gun operating at 1 or 4kV. All samples were 

dried before analysis. A small piece of the sample was placed in the field using a stainless 

steel specimen stub. The signals from secondary electrons were obtained using 

accelerating voltage of 500kV. The images were obtained at an inclination of 45º and at a 
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magnification between x580 and x2500. AFM topographical images of samples were 

obtained under an imaging mode at a scan rate of 0.28Hz with the instrument set for 512 

scan points and a scan size of 100µm. The thickness and  roughness of the films on the 

Si-100 were also obtained. The PEO/PAA LBL films on PEO substrates were detected   

using transmission FTIR and ESEM. 

Preparation of PEO Gel for Base Coat on Si-100 Wafers  

A 0.01% water based PEO gel was obtained by dispersing 0.2 g of PEO granules 

in 20 mL of pure water to obtain a polymer gel under stirring. The resulting gel was cast 

on glass Petri dishes and left to dry overnight. The dry PEO film was cut into strips for 

LBL deposition. For the base coat, clean rectangular silicon plates were dip coated into 

the PEO gel, which was left to dry on Si-100 wafers before LBL deposition. The PEO   

base coat on the Si-100 wafers was sufficiently thin to allow transmission of IR radiation. 

Substrate Preparation 

To obtain free-standing strips, 0.7g of PEO was weighed and dispersed in 12.5mL 

of ethanol, then 12.5mL of water was added under high stirring to obtain a uniform 

pourable gel. The gels were then poured onto glass Petri dishes and left to dry to obtain 

dry PEO strips. In another experiment, Si-100 wafers were used as the substrate after first 

being cleaned in boiling water and then in boiling ethanol. To avoid alteration on Si  

surface, chromic acid was not preferred for cleaning. Washing wafers in chromic acid 

increased the number of oxygen groups available on the Si-100 surface. The wafers were 

plasma etched (Plasma Cleaner PDC-32G, neon lamp) under medium intensity for 5 min  
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each to render the silicon surface slightly hydrophilic before being coated with polymers  

in an LBL fashion using a robotic mechanical deposition system. 

Loading of Chemicals  

Water-soluble chemicals can be dissolved in water before loading them into PEO. 

To produce an ethanol -water based PEO gel, the ethanol-insoluble chemicals potassium 

ferricyanide and the amino acids lysine and arginine were loaded into PEO by dissolving 

them in water and adding to the dispersion of PEO in ethanol. 0.05 g of lysine and 

arginine were dissolved in 1mL of water and added to 15mL of the prepared PEO gel. A 

30mM solution of ferricyanide in water was used for maximum loading. 0.03g of PEO 

granules were dissolved into 3mL of this ferricyanide solution. About 17 to 18 drops of 

the resulting PEO gel was dried on Si-100 substrates, and IR signals were obtained before 

any LBL coating was deposited on the surface. Ferrous sulfate was added to a 10mL 

solution of ferricyanide to obtain a Prussian blue (PB) solution. This solution was added 

to a dispersion of 0.7g of PEO granules in 10mL of ethanol under stirring to obtain a   

thicker gel. 

Robotic Mechanical Deposition 

The LBL deposition was performed with an automated dipping system controlled 

by a robotic Stratosmart software program. Eight beakers, two filled with polymer 

solutions placed diagonally opposite to each other and separated by six beakers of 

ethanol, were placed in a circle inside the robotic chamber. The desired substrate (i.e., 

PEO strips, PEO base coats on Si-100 wafers, and Si-100 wafers) was dipped into 

beakers filled with polymer solutions to obtain a specified number of bilayers. The two 
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solutions used were PAA and PEO in their aqueous or ethanol forms and the adsorption 

time was set to either 5.0 or 10.0 minutes. After deposition, the substrate underwent three 

rinsing of one minute each with either water or ethanol to remove surplus polymer 

solution. (Note: During manual deposition, the PEO granules were gently stirred in their 

respective solutions and left to settle before decanting the solution. Although slight 

centrifugation had to be applied to the first two bilayers, the coated granules settled 

quickly during subsequent bilayer deposition). For both aqueous and ethanolic polymer 

depositions, the pH was adjusted within two pH ranges (pH = 6 to 7 and pH = 2 to 2.5)   

using either concentrated HCl or concentrated NaOH. 

Preparation of PEO and PAA Ethanol Solutions and Automated LBL Deposition 

A mass of 1.0 g of the as-prepared PEO polymer gel was dispersed in 20 mL of 

ethanol, yielding approximately 10.0 to 12.0 mM of clear PEO-PE solution. A PAA 

(10mM) PE ethanol solution was prepared by carefully dissolving 0.7 to 0.72 g of stock 

25% PAA in 250 mL ethanol. The ethanolic PEO and PAA solutions were adjusted to pH 

≤ 2.5 by adding 1 to 3 drops of concentrated HCl solution, followed by filtering with a 

0.45 to 1.2 µm syringe filters. The effective solution preparation was set aside for several 

hours to ensure that no precipitates formed. An ethanolic polymer solution was 

considered stable if no precipitate formed when stored.  

As the core for the loading of probe molecules, PEO obtained in granular form 

was first transformed into a gel then dried to obtain PEO strips or base coats. 

Transforming PEO granules into gel allows for easy loading of probe molecules and easy 

characterization of PEO flat substrates using instruments such as the FTIR, ATR-FTIR, 

or ellipsometer. Although the PEO substrates are nonconductive, ESEM analysis can be 
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performed on these substrates, as the microscope can operate the sample chamber at 

ambient conditions. After loading the probe molecules into the PEO substrates, the PEO 

substrate was coated by a protective layer so that it would neither decompose at pH < 2.5 

nor degrade quickly at pH > 4. The coating assembled was possible due to  formation of 

hydrogen bonds between the polymer couple PEO/PAA. Preparing the coating required 

preparing the ethanolic polymer solutions. Ethanol was used as a solvent in the 

experiments because it allows preparation of the polymer solutions of PEO and PAA with 

a minimum amount of water, which is especially important when using PEO as a 

substrate for LBL assembly, and is a safe and economical solvent. A combination of 

water and ethanol is needed because pure ethanol cannot be used to prepare a PEO 

solution, as PEO does not dissolve in pure ethanol. After several volumetric experiments, 

the volumes of ethanol and water that would dissolve a specific mass of PEO to produce 

a stable PEO solution were determined. The prepared PEO and PAA polymer solutions 

were used as coating solutions for LBL assembly. However, obtaining a stable PEO 

coat solution proved challenging. Above a critical volume of ethanol, PEO precipitates 

out of the solution, and excess moisture in the coat solution leaches the PEO from the 

base coat during the deposition cycle. The stability of the PEO solutions depended on the 

proportion of alcohol to water content.  

The first evidence of the forming of a multilayer under alcoholic conditions was 

obtained during the blending of equimolar volumes of ethanolic PEO and PAA to form a 

precipitate (see Fig. 4[i]). At a high pH (~ 5-6), a white colloidal agglomerate was 

formed, whereas at a low pH (= 2.5), a precipitate that was similar to the precipitate 

under aqueous condition (i.e., pH 2.5) was obtained [101]. The agglomeration at high pH 
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may be due to the screening effect of COO
-
 groups in PAA from the ethanol. At a low 

pH, COOH groups predominate, which allows uniform interaction and dispersal of the 

PEO-PAA complex in ethanol. Water with a dielectric constant of 80, can easily 

accommodate charged groups like COO
-
 because the hydrogen which is a leaving group 

can be easily form hydronium ions, which cannot occur in Ethanol with a dielectric 

  

                                                                   

          (i) 

                        

                                            (ii) 

Fig. 4. (i) In water or ethanol at pH = 2.5, equimolar polymer solutions of poly(ethylene 

oxide) and poly(acrylic acid) produced white colloidal precipitates, while neutral 

ethanolic poly(ethylene oxide)  and poly(acrylic acid) solutions formed agglomerates. (ii) 

Depicts the interaction between  poly(ethylene oxide) and poly(acrylic acid in ethanol at 

a low pH. 

 

constant of 30. After succeeding in isolating thePEO/PAA insoluble complex, the 

preliminary experiments were conducted on Si-100 wafers to provide evidence of PEO 

Aqueous 

PEO/PAA 

precipitate at 

pH = 2.5 

PEO/PAA 

agglomerate in 

ethanol at pH = 6 
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and PAA multilayer deposition while obtaining thickness measurements of the LBL films 

deposited, the latter of which was necessary before making any PEO/PAA LBL 

deposition on a PEO base coat or free PEO strips. The coating or deposition was achieved 

by a long-range hydrogen-bond interaction between PEO and PAA (see Fig. 4[ii]). The 

evidence for the base coat, LBL coating, and loaded molecules was obtained in the form 

of infrared (IR) spectra and scanning electron microscope (SEM) images, with  

further AFM investigation revealing the thickness and roughness of these films. 

RESULTS A,D DISCUSSIO,S 

 PEO and PAA LBL Films on Si-100 Wafers 

The FTIR spectrum of a PEO base coat on Si-100 wafers (see Fig. 5) can be 

obtained if the thickness of the PEO substrate does not exceed 500 microns. The samples 

of base coats on Si-100 wafers in this study were either 100 to 200 microns or 20 to 30 

microns in thickness, as measured using a micrometer at a resolution of 0.0001. It was 

necessary to obtain measures of the PEO FTIR spectrum to identify any PEO losses or 

gains during LBL deposition as well as identify any background spectral interference. 

The spectra showed a strong absorbance at 1120 cm
-1

 associated with the symmetric and 

asymmetric C-O-C vibrations [102]. The spectrum had contributions from smaller peaks 

at 1060 cm
-1

 and 1150 cm
-1

 due to –C-C stretch and CH2 rocking vibrations [103] . A 

second band was observed at 2900 cm
-1

 from the alkyl –C-H vibrations.  
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Fig. 5. Fourier Transform Infrared spectrum of poly(ethylene oxide) base coat on Si-100 

wafers with an estimated thickness of 150 to 200 µm. 

 

The pH of the polymer solutions and the rinsing solvents had a pronounced effect 

on the extent of LBL deposition. Prior research into PEO/PAA in aqueous media (i.e., 

aquPEO/PAA) had verified that changing the pH affected LBL deposition. This study 

further verified the pH effect by succeeding in the LBL assembly of 20 bilayers on Si-

100 wafers by adjusting the pH of the ethanol/water solutions at pH = 6.5 and pH = 2.5, 

using ethanolic PAA and PEO (i.e., ethPEO/PAA) at pH = 6.5 starting with PAA (on Si-

100) as the first layer. When measured using AFM, the 20-bilayer ethPEO/PAA LBL 

film assembled at pH = 6.5 measured ~2300 A
o 

in thickness and 60 A
o
 in roughness, 

whereas the LBL film at pH = 2.5 measured 7500 to 7800 A
o 

in thickness
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roughness (see Fig. 6 [i and ii]). A 20-bilayer aquPEO/PAA film using aqueous solutions 

(PAA and PEO) at pH = 2.5 that measured ~7300 A
o
 in thickness was also assembled, a 

value 1/3 that reported by Hammond et al. [98, 99]. It should be noted that 

  

 

Fig. 6. Atomic force microscope pictures of 20 bilayers of ethanolic poly(ethylene oxide) 

/poly(acrylic acid)  Layer-by-layer film showing (i) a scratch on the surface for thickness 

and roughness measurements (thickness of 7500 A
o
, surface roughness of ~450 A

o
) and 

(ii) a topographical view. 

 

 

in general  poly(ethylene imine) used  instead of PAA as the base layer. However, 

Sukhishvili reported a measurement of ~2000 A
o 

for a 10-bilayer assembly of 

PMAA/PEO [104]. The difference in the thickness of the alcoholic and aqueous films is 

related to the pH conditions. The thickness of an aqueous PEO/PAA film assembled at 

pH = 3.5 is 1/3 the thickness of a film obtained at pH = 2 (9). Similarly, a 20-bilayer 

ethanolic PEO/PAA film assembled at pH ≤ 2.5 with a thickness of 7650 to 7700 A
o 

has 

an IR absorbance 3 times stronger than that of a film obtained at pH ≤ 6 (see Fig. 7 [i, ii]) 

(i) (ii) 
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with a thickness of ~2300 A
o 

. The mass and thickness increment with each bilayer 

applied at pH ≤ 2.5 is 4.2µg, corresponding to a ~350A
o
/bilayer, assuming that the LBL 

film density is 1.2g cm
-3 

[102]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Fig. 7. Fourier Transform Infrared spectra of 20-bilayer ethanolic poly(ethylene 

oxide)/poly(acrylic acid)  Layer-by-layer film deposited on Si-100 prepared at (i) pH=  

6-7, (ii) pH ~ 2.5. 

 

PEO and PAA LBL Films on PEO Core Substrate  

After performing the successful deposition of ethanolic PEO/PAA LBL on Si-100 

wafers, its deposition on PEO substrates was attempted. It had been observed that a 10- to 
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observed. The drop in PEO signal or the absorbance of the base coat measured at 2900, 

1470, and 1120 cm
-1 

was less than 1% with a PAA ethanolic solution and less than 3% 

with a PEO ethanolic solution after 3 hours of exposure. After FTIR subtraction and 

weight change in analytical balance, it was found that the loss in the PEO base coat on Si-

100 did not exceed 1% after an estimated 20 PEO/PAA bilayers deposition or 3 1/2 hours 

of dipping. Change in the substrate mass is an important factor, as  continuous loss of the 

surface could prevent LBL assembly.  

Using a robotic dipper, 10, 15, and 20 bilayers were applied on a PEO base coat 

on Si-100. The assembly of ethPEO/PAA LBL film on PEO base coats was confirmed by 

FTIR as changes in peak absorbance of the C=O stretch of the COOH band at 1720 cm
-1

 

for 10, 15, and 20 bilayers on PEO strips (see Fig. 8). The presence of the COOH group 

in its protonated form, which is involved in the hydrogen bonding in the ethanolic 

ethPEO/PAA LBL film, is seen in the spectra of Fig. 9 (ii) (black line). The COOH 

bands in the ethPEO/PAA LBL film and the ethanolic free PAA film are similar to the 

COOH band in aqueous free PAA at pH < 2 with less than 10% ionization (Fig. 9 [ii],[i]) 

[105]. At pH = 9, more than 80% of the COOH groups of aqueous free PAA ionizes to 

form COO
-
 groups, which appear as asymmetric and symmetric stretches at 1570 and 

1410 cm
-1

 (Fig. 9 [i], [black line]).  Compare to the aqueous  
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Fig. 8. Change in Fourier Transform Infrared peak absorbance (i.e., carbonyl stretch of 

the carboxylic acid band at 1720  cm
-1

) for 10-, 15-, and 20-bilayer sequential assembly 

of ethanolic poly(ethylene oxide)/poly(acrylic acid)  Layer-by-layer film on 

poly(ethylene oxide) strips. 

 

PDAC/PAA LBL film at pH ~5, where PAA shows ~40% protonation of the COOH band 

at 1710 cm
-1

 and of the COO
-
 bands at 1570 and 1410 cm

-1
 (Fig. 9 [iii]). Therefore, FTIR 

strongly indicates the strong protonation of the COOH group (i.e., < 5% ionization), 

which allows hydrogen interaction  (-CO-O-H····:O-C) between the COOH group of 

PAA and the oxy-ether group of PEO. The small amount of ionization of COOH in 

ethPEO/PAA was attributed to the presence of water in the PEO coat solution. Note that 

the small peak of the OH stretch at 3510 cm
-1 

in the ethanolic PEO/PAA LBL film 

replaces the broad OH bands due to water surrounding the COO
-
 groups in free aqueous 

PAA segments at pH = 9 and in the aqueous PDAC/PAA LBL film 
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Fig. 9. Evidence of protonated carboxylic acid group in the ethanolic poly (ethylene 

oxide)/poly(acrylic acid) layer-by-layer film. Infrared spectra of the (i)  carboxylic acid 

band of free aqeous poly(acrylic acid) segments at pH < 2 (gray line), carboxylic acid 

band of free aqueous poly(acrylic acid) segments at pH = 9 (black line)  where carboxylic 

acid transforms to the carboxylate  form (i.e. > 80% ionization) with characteristic 

asymmetric and symmetric stretch at 1570 and 1410 cm
-1

, (ii)  ethanolic poly(ethylene 

oxide)/poly(acrylic acid) layer-by-layer film and the free poly(acrylic acid) segments in 

ethanol, (iii) aqueous poly(diallyl dimethyl ammonium chloride)/poly(acrylic acid) layer-

by-layer film at pH ~ 4.5-5 when poly(acrylic acid)  is ~ 40% protonated showing both 

the carboxlic acid band  at 1710 cm
-1 

and the carboxylate bands at 1570 and 1410 cm
-1

. 

(A) hydroxyl band at 3510 cm
-1

, (B) carboxlic acid band  at 1720 cm
-1

, (C) carboxylate
 
 

bands at 1570 and 1410 cm
-1

.  

 

 

A sample FTIR spectrum of a 10-bilayer PEO/PAA LBL film of ethanolic ethPEO/PAA 

on a PEO strip after subtracting the IR spectrum of the PEO strip is shown in Fig. 10. The 

above spectra can be compared to the spectra of ethanolic and aqueous PEO/PAA LBL 

film deposited directly on Si-100. The FTIR spectra of ethPEO/PAA and aquPEO/PAA 
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LBL film were similar because PAA under ethanol is largely in its COOH form, which 

analogous to its status at pH < 2.5 under aqueous conditions. However, some peak shifts 

were detected. The C=O stretch of ethanolic and aqueous free PAA and the quPEO/PAA 

LBL film at pH =2 observed at 1710 cm
-1 

is blue shifted by ~15 cm
-1

 to 1720-1730 cm
-1

 

in ethPEO/PAA LBL (see Fig. 11), a direct indication of hydrogen bonding.  

 

 

Fig. 10. An ethanolic poly(ethylene oxide)/poly(acrylic acid) 10 bilayer-film on a 

poly(ethylene oxide) strip. The Fourier Transform Infrared spectrum of the poly(ethylene 

oxide) base coat can be subtracted out, leaving the spectrum of poly(ethylene oxide)/ 

poly(acrylic acid)  Layer-by-layer film. 
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Fig. 11.  Fourier Transform Infrared spectrum showing carboxylic acid stretch at 1720-

1730 cm
-1

 in the ethanolic poly(ethylene oxide)/poly(acrylic acid) layer-by-layer film that 

is blue shifted by ~15 cm
-1

 when compared to the carboxylic acid stretch at 1710 cm
-1

 of 

pure aqueous poly(acrylic acid), free ethanolic poly(acrylic acid), and aqueous 

poly(ethylene oxide)/poly(acrylic acid) layer-by-layer film treated at pH = 2. 

 

 

The blue shift is a strong evidence of hydrogen bonding (C-O:···H-O-OC) between PEO 

and PAA segments in ethanol. The COOH group acts as a proton donor while the C-O-C 

group in PEO acts as a proton acceptor. Moreover, the C-O-C band of PEO is red shifted 

by ~20 cm
-1

, from 1120-1110 cm
-1

 in pure PEO to 1090 cm
-1 

in the ethPEO/PAA LBL  

film [99, 104]  
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Disintegration Study of ethPEO/PAA LBL Films 

Similar to an aquPEO/PAA LBL film, an ethPEO/PAA LBL film remains intact 

in a pH = 2 solution but completely degrades in a neutral (pH = 7) solution. This was 

verified when a 20-bilayer ethPEO/PAA LBL film on silica exposed to pH = 8 decreased 

in thickness from 6300 A
o
 to 40 A

o
, and the C=O str at 1720 cm

-1
 of the PAA nearly 

disappeared when examined under ellipsometry and FTIR. This pattern of disintegration 

of the ethPEO/PAA LBL film was similar to the disintegration of aquPEO/PAA LBL 

film reported by Hammond [9]. Starting with pH = 2 and increasing the pH in increments 

of 0.5, a 7500 A
o
 thick Lbl film was exposed to different buffer solutions for 5 minutes 

and the change in IR absorbance of a 7500 Ao was monitored. It was found that the 

ethPEO/PAA LBL film remained intact up to pH = 4, after which it started to 

disintegrate, with only < 30 % of its original thickness retained at pH = 5 (see Fig. 12), 

compared to aqPEO/PAA LBL film, which remains intact up to pH = 2.7 [9]. The 

stability of the ethPEO/PAA LBL film when exposed to pH changes is important in 

PEOsubs/(PAA/PEO)LBL systems because pH stimuli could be used as control mechanisms 

in molecular release systems. 
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Fig. 12. Starting with pH = 2 and increasing the pH in increments of 0.5, the ethanolic 

poly(ethylene oxide)/poly(acrylic acid) layer-by-layer film remains intact up to pH = 4, 

after which it starts to degrade until it retains only < 30% of its original thickness at pH = 

5.  

 

ESEM Analysis on ethPEO/PAA Coating Assembled on a PEO Base Coat  

Using ESEM, topological and cross-sectional views of the LBL coating on a PEO 

base coat were examined. The topological view of the PEO base coat showed a rough 

surface with holes and cavities due to the bursting of the air bubbles entrapped while 

applying the base coat on Si-100 wafers, leaving empty spaces (see Fig. 13 [i]). After 20 

bilayers of ethPEO/PAA LBL film deposition on the base coat, the surface appears 

smooth and uniform (see Fig. 13 [ii]). 
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                     (i)               (ii) 

Fig. 13.  Environmental scanning electron microscope showing, (i) a topological view of 

an uncoated base coat on a Si-100 plate. The topography of the poly(ethylene oxide) base 

coat is rough with cracks and cavities from entrapped air bubbles, (ii) topological view of 

a poly(ethylene oxide) base coat on a Si-100 plate coated with 20 bilayers of ethanolic 

poly(ethylene oxide)/poly(acrylic acid) layer-by-layer film at (I) pH = 2, (II) pH = 6.  

 

A cross-sectional view of 20 bilayers of the ethPEO/PAA LBL film on a PEO base coat 

was obtained under ESEM by applying sharp cuts across the Si-100 wafers to sharply 

snap the LBL film. ESEM images show a 20- to 30-micron PEO base coat with a 0.7- to 

0.8-micron thick ethPEO/PAA LBL film carpeting the PEO surface (see Fig. 14). 
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Fig. 14. Cross-sectional view of a poly(ethylene oxide) base coat on a Si-100 plate coated 

with an ethanolic 20-bilayer layer-by layer film of ethanolic poly(ethylene oxide)/ 

poly(acrylic acid)  (a) 20-bilayer (0.7 to 0.8 microns) ethanolic poly(ethylene 

oxide)/poly(acrylic acid)  layer-by-layer film spread like a carpet over the rough surface 

of the poly(ethylene oxide) base coat, (b) 20-30 micron poly(ethylene oxide) base coat, 

(c) cut in the Si-100 wafer.  
 

Thus, the ESEM results regarding the LBL film thickness correlate with results obtained 

by ellipsometry and AFM. ESEM photographs reveal an ethPEO/PAA LBL film spread 

like a carpet over the rough surface of the base coat due to the long-range hydrogen 

bonding between the PEO surface and the PAA base layer of the ethPEO/PAA LBL film, 

imparting a smooth and uniform surface (see Fig. 14). It was as difficult to examine the 

surface roughness of the LBL film on PEO strips or base coats using AFM as with   

ESEM because the PEO substrate surface was not uniform. 

 

(c) 

(a) 

(b) 
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Retention Analysis after ethPEO/PAA LBL Film Deposition 

The IR active molecules lysine and ferricyanide Fe(CN)6
3-

 anion were loaded onto 

PEO substrates, and the C≡N stretch at 2120 cm
-1 

in Fe (CN)6
3-

 and COO
-
 sym stretch at 

1420 cm-1 in lysine were used to measure their respective retention in the PEO substrate 

after LBL deposition. Although the presence of loaded molecules inside LBL film coated 

with PEO substrates was verified, a kinetic molecular release study was not conducted. 

The basecoat with the probe and LBL coating on it was abbreviated as [base 

coat]B/[probe]P/[LBL]L system for easy representation. In the first system, in which lysine 

was loaded onto the PEO base coat (see Fig. 15[i]), the IR spectrum was compared to the 

IR spectrum after 10 bilayers of PEO/PAA had been deposited on the base coat 

[PEO]B/[Lysine]P/[PAA/PEO]L system.  The IR spectrum shows the characteristic peaks 

of the PEO base coat, the C=O stretch of carboxylate in PAA, and the IR signature of the 

probe. In the above spectrum, the CH stretch at 2900 cm
-1 

and the C-O-C asymmetric 

stretch at 1110 cm
-1 

of the base coat, the OH stretch at 3520 cm
-1

 and the C=O stretch at 

1725 cm
-1 

of the PEO/PAA LBL film (10 bilayers), and the COO
- 
asymmetric stretch at 

1420 cm
-1

 of the loaded lysine can be seen. The three peaks in lysine,  due to 

NH3
+
 asymmetric deformation at 1620 cm

-1
, NH2 bend  and COO

-
 asymmetric stretch at 

1590 cm
-1

, and NH3
+
 asymmetric deformation at 1515 cm

-1
 merged into two broad peaks 

at 1650 and 1560 cm
-1

,  likely due to weak amide formation leading to dimerisation of 

lysine molecules under the ethanolic medium [106]. As the COO
-
 symmetric stretch at 

1420 cm
-1

 remained unaffected, it was used for retention analysis. Using the C-O-

C asymmetric stretch at 1110 cm
-1

 of the PEO base coat as an internal reference, the 

amount of lysine retained after the LBL deposition was estimated as ~74%. Problem of  
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Fig. 15. Fourier Transform Infrared spectra of (i) poly(ethylene oxide) base coat loaded 

with lysine probes, (ii) poly(ethylene oxide)  loaded with lysine and coated with 10 

bilayers of ethanolic poly(ethylene oxide)/poly(acrylic acid)  Layer-by-layer film. Note: 

the peak of the carboxylate symmetric stretch of lysine (peak-d) at 1420 cm
-1

 remained 

intact and was used for quantitative analysis of lysine retention. See poly(acrylic acid) 

carbonyl stretch at 1720 cm
-1

, peaks (a,b,c,d)  due to lysine. 
 

leaching might be encountered during LBL assembly because the loaded probes would 

leach depending on its solubility in the ethPEO solution when the water content is > 5%. 

To avoid or minimize leaching we saturated the ethPEO solution with the loaded probes 

(e.g. Lysine) by adding a small quantity (< 0.01g) of the probes that settled at the bottom 

of the beaker. 

     In the second system, in which ferricyanide ions were loaded with ferricyanide 

Fe(CN)6
3-

 ion
 
at a 30mM concentration, a major issue was the localization of the ions, as 

the ions segregated as yellow spots during the drying of the base coat. A certain amount 

of stress was expected  due to stretching of the dry gel. An IR comparison between the 
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spectrum of the ferricyanide-loaded PEO base coat and the spectrum obtained after the 

deposition of 10 bilayers of PAA/PEO, [PEO]B/[Fe(CN)6
3-

]P/[PAA/PEO]L shows a 

shoulder at CN peak (2120 cm
-1

) instead of a sharp peak before the LBL deposition, most 

likely due to the formation of a salt complex similar to Fe(II)/Fe(III)[107], which shows 

broad peaks in this region (see Fig. 16).   

                

 

Fig. 16.  Fourier Transform Infrared spectra of (i) poly(ethylene oxide) base coat loaded 

with ferricyanide probes, (ii) poly(ethylene oxide)  loaded with ferricyanide and coated 

with 10 bilayers of ethanolic poly(ethylene oxide)/poly(acrylic acid)  layer-by-layer film. 

 

The change in the peak area excluding the shoulder indicated a ~20% loss in the probe on 

LBL deposition. Compared to an 11% increase in the amount of PEO deposited by LBL 

in the [PEO]B/[Lysine]P/[PAA/PEO]L  system, the deposition in this system averaged a 
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36% increase. The amount of PEO deposition(11%: 36%) is roughly comparable to the 

ratios(1/4)  of the C=O stretch of PAA at 1725 cm
-1 

 in the two systems . This difference 

in the amount of film deposited and the hence the IR spectra in these two systems might 

be attributed to the presence and the kind of molecule loaded. Note that the average 

absorbance due to the C=O stretch of PAA at 1725 cm
-1 

in the absence of lysine in the 

base coat was ~3 to 4 times higher compared to the absorbance of LBL film when lysine 

was present.  

In yet another system, PB colloid was loaded into PEO obtained as PEO strips 

rather than as loaded PEO base coats. Because PB gives an intense dark-blue color to the 

strips, IR analysis was not conducted on these strips; rather, disintegration of LBL film 

after coating on these strips was verified by dipping the LBL coated and uncoated strips 

in an aqueous solution at pH ≤ 6.5. It was observed that a PEO strip loaded with PB and 

coated with 20 bilayers of PAA/PEO required more than 20 minutes to disintegrate, while 

the uncoated strip required only 3 minutes. 

 These systems demonstrated the possibility of using PEO, a water-soluble 

polymer, as a substrate in LBL deposition. Due to the ease with which PEO gels can be 

loaded with various materials, the versatile method of deposition described in this study 

would be very useful for applications in the field of controlled molecular release 

technology. Controlled release is achieved by the type of coating applied, with the 

PEO/PAA LBL coating having the capacity to be modified with other PEs sensitive to 

various physical effects (e.g., changes in pH and in thermal, shock, and ionic strength), 

thus providing an adaptable delivery technique. The assembly and loading method 

presented in this paper can be used by scientists who work with controlled-release 
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techniques to perform kinetic studies on LBL films of different capabilities. The loaded 

molecule can be inorganic, organic, and biological molecules, as well as nano- and   

micro-colloids, viruses, bacteria, and cellular organisms.  

CO,CLUSIO,S 

 An LBL PEO/PAA film was successfully assembled on a water-soluble PEO 

substrate using ethanol as a medium of deposition. The ethanol-based LBL PEO/PAA 

film is pH dependent at a bilayer thickness of 115 A
o
 at pH = 6 and at a bilayer thickness 

of 350 A
o
 and pH = 2. ESEM revealed a film structure that appears as a 0.7-µm sheet 

over a 30-µm PEO base coat. Under ethanol, the ethPEO/PAA LBL film is highly 

protonated because its COOH band at 1720 cm
-1

 matches the profile of the 

COOH band of PAA at a pH < 2. Because of the presence of moisture in the PEO 

solution, it was necessary to saturate the PEO solution with the probe molecules to 

minimize the leaching of the probes by dissolution. Disintegration of the ethPEO/PAA 

LBL film occurred at pH = 4.5. Of the three different types of probes loaded into the PEO 

substrate, colloidal PB was strongly retained, while ~80% of ferricyanide and ~73% of   

lysine were retained. 
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