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MENGER PATH SYSTEMS

R. J. Faudree*, Memphis State Uniyersity
R. J. Gould*, Emory University

R. H. Schelp, Memphis State University

Abstracl For positive integen d and m, let P4^(G) denote the properry rhat between
each pair ofvertices ofthe graph G, there are m openly disjoint paths of length at most
d A collecriur of such paths is called aMenger path.rysrerTl Minimal cmditions
involving variots combinations of the cumectivity, minimal degree, sum of degrees,
and unicns of neighboftoods of pairs of nonadjacent vefiices that insure the existence
of Menger path syst€ms are investigated. Fu example, if for fixed positive integers
d,) 2 aadm,agaph G has order11 connectivity k 2 m, andminimaldegrce6 >
(r - ( ft - m + l) (d, - 2)) 12 + m - 2, then G has properg, Pa,^(G) for zr Also,
if a graph G of order r satisfies IVC(G) 7 5n/(d, + 2) + 2m, then Pa,-(G) is
satisfied (A graph G satisfies NC(G) ) t if the uniqr of rhe neighbortroods of each
pair of nonadjacent vertices is at least t .) Other extremal results related to Menger path
systems are cursidered.

l.INTRODUCTION
Consider a graph G that models a computer network with each yertex representing
a processor and each edge representing a two-way communication link. Tb insure
ilxat the network is fault-tolerant with respect to processor failliles, it is necessary
that the number of openly disjoint paths between each pair of yertices of G exceed
the number of possible failures. Connectivity is clearly the crucial graph concept.
However, the length of time for the information to arrive is also importanL so it is
desirable that the openly disjoint paths be short. This requires that between each
pair of the yertices of the graph G there is a specified number of patls, each with
a bound on the number of vertices.

For positive integers d and m,let Pa,*(Q denote the property that befween
each pair of vertices of the graph G there are at least m openly disjoint paths
each of length at most d.'I\e graph G representing a computer network prone to
processor failures should satisfy Pa,-(G) for appropriate values of d and m. This
is one motiviation for studying graphs with property Pa,^(G).

Menger's classical result Ml connectiyity solves the problem of the existence
of a system of such paths, if there is no concern for the length of the paths in
the system. Although Menger's theorem gives no information about the length
of the paths, the "length problem" has been studied. For example, in [BP] Bond
and Peyrat studied the effect of adding or deleting edges of the diameter of a net-
work, and Chung and Garey considered diameter bounds for altered graphs in
lCGl. Menger type results for paths of bounded length were proved by I-ovdsz,
Neumann-Lara" and Plummer in [LNP] and by Pyber and Tuza in [Pf], and Men-
gerian theorems for long paths were given by Montejanao and Neumann-Lara in
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[MN], and by Hager in [H]. In [O] property P6,- and its application to computer
networks and distributed processing was introduced. Extremal results for P4,^
were invesrigated in [FJOST].

We will extend the results in [FJOST] by investigating various combinations
of connectivity, minimum degree, degree properties and neighborhood conditions
of a graph G that imply Pa,-( G). In particular, the following six results will be
proved.

A graph G of order n with various minimum degree and connectivity conditions
will be considered in the following theorems. These conditions will obviously
place restrictions on the order nof G, but these restrictions will not be explicitly
listed in the statement of the theorems. Also, all of the theorems are either sharp

or have t}re correct order of magnitude for n suffrciently large. Examples to verify
this will be described in section 2.

THEOREM l. Let d > 2 and m be positive integers, and let G be a k-
connected graph of order n Then, G satisfies Pa,^(Q if the minimal degree

6(G) satisfies:

6(c)

ifk<m

ifmlk<T+m-r

ifk>ff+m-1.
Some times a condition on 6(G) in a theorem can be replaced by a condition

on the sum of the degrees of nonadjacent vertices to obtain a stronger resulL This

is true in the case of Theorem 1. In the remaining theorems, DC(G) ) t means

that the sum of the degrees of each pair of nonadjacent vertices of G is at least

i. Different results can also be obtained by using a condition on the union of the

neighborhoods of nonadjacent vertices instead of a minimal degree condition or a

sum of degrees condition. In the following theorems, NC(G) ) t means that the

union of the neighborhoods of each pair of nonadjacent vertices of G is at least ,.

THEOREM 2. Let d > 3 and m b positive integers, and let G fu an m-
connected graph of order n Then, G satisfies Pa,*(G) if

NC(G) > (5n- m - d,- 4) lG'+ 2) + 2m - 2.

For a graph G of order rr the neighborhood condition N C ( G) ) t for t I n- |
is not strong enough to imply any connectivity in G. That is the reason that it was

necessary to assume ttrat G was m-connected in TheoremZ. If the connectivity

of G is k > m, and /c is sufficiently larger then a weaker neighborhood suffices to

insure that Pa,^(G) is satisfied. This follows from the next theorem, which also

deals with the degree condition DC(G).

( >1ry)

l,;*{
W+ m-2
v(k-m+l)(d.-2)+m-2

2
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THEOR.EM 3. lnt d > 3, m, and k > (d, - 1)(m - t) be positive integen
and let G be a k-connected graph of order n. TheL G satisfies propeXy pa,^ if
either

NC(G) ) n-2 - (d- 3)(k - (d- r)(m - 1)), or
DC(G) ) n-2 - (d- 3)(e - G- \(m - 1)) + m.

The results of rheorem 2 and rheorem 3, along with some of the theorems from
[FJosr], form the basis for summary results involving degree and neighborhood
conditions that are similar 0o Theorem l. They are stated nexl

THEOREM 4. Let d > 3 and m b positive integers, and tet G be a k-
connected gruph of order n Then, G satisfies Pa,^(G) if the degree condition
DC(G) satisfies:

ifk<m

if m1k<*-:" +m-
@

ifk>ff+m_r.
THEOREM 5. Let d > 3 and m b positive integers, and tet G be a k-

cannected gnph of order n" Then, G satisfies Pa,-(G) if the neighborhad con-
dition NC(G) satisfies:

()n-l ifk<mLs^
NC(G).I ,*" { w+2m-', O<k<*-:'+m-r

I L ,,- 2 -(d,-3)(k - (m - l)(d- 1)) 4

t>/c ifk>ff+m-1.
The d = i "^" 

is special for degree and neighborhood conditions for nonadja-
cent pairs of vertices, and does not flt the same pattern as the d > 2 cases. Thus,
it was not pafl of either Theorem 4 or Theorem 5. The next theorem deals with
this special case.

THEOREM 6. For any psitive integer m, a gnph C of order n and connec-
tivity k satisfies Pz,*(G) if at least one of the following inequalities are satisfied:

- n+mr, , _,

6(G) > n*r* _,

DC(G) ,'";* -'
NC(G) ) n-2.

Also, each of the inequalities is sharp.

t1



2. EXAMPLES AND PRELIMINARY RESULTS

Notation and sandard definitions in the paper will genetally follow that found
in [CL]. Any special notation will be described as needed. We strrt with some
results that will be used in the proofs of the main theorems, and we describe some
examples that indicate the sharpness of these results.

The fust result gives the minimal degfee required to imply P4,*, dtrd can be
found in IFJOSTI.

THEOREM L. lEt d, ) 2 and m be positive integers. If G is a gnph of order
n with 6(G) > l(n+ m) /2 ), then G satisfies Pa,^(G). Further, the condition
is sharp.

The following result does not appear in [FJOST], but it can easily be derived
with the same type of elementary counting proof.

THEOREM B. Let d ) 3 and m b positive integen. If G is a gnph of order
n with DC(G) ) n* m - 2 then G satisfies Pa,*(G\. Further, the condition
is sharp.

PROOF: Suppose that the result is not true, and that r and y are a pair of vertices

of G that do not have mpaths of length at most d bet'reen them. If r urd y are
nonadjacent, then then have at most m- 1 common adjacencies, so d( r) + d( y) (
n-2+ m- l < n+ m-2 a contradiction. This verifies thatnonadjacentpairs of
vertices have m disjoint paths between then of length 2. lf s and g are adjacent,
then with no loss of generality we can select a vertfrx z thaf is adjacent to r but
not to y. By the previous case, there exists m paths of length 2 from y to z, aad
one of these paths contains r. This gives immediately m paths of length at most
3 from rtoy.

The graph H = Km; + (lK*tr,1 U ff*8"1.]) has connectivity m - 1,

DC(H) = n+ m - 3, and does not satisff Pa,^(H). This verifies the sharpness

of Theorem B, and completes the proof of Theorem B. !
Before stating the next preliminary results, we will describe a family of exam-

ples related to these results. This family of graphs also plays an imporant role
in general for graphs with Menger path systems. Graphs with the same connec-

tivity, and even the same minimal degree, can have vastly different Menger path

systems. Consider the generalized wheel graph W^-2,*^+z = K*-2 * Cvm+z ,

which has order n, and connectivity and minimal degree m. It is easy to see that
this graph does not satisfy P* ,^, since any m internally openly disjoint paths

between a pair of adjacent yertices of the rim of the wheel will have one path that
contains all of the vertices of the rim of the wheel. On the other hand, the m-cube

Q- has order n = 2 -, connectivity and minimal degree m, and it satisfies P-* 1 ,-.
This last assertion is easy to verify by an induction argument on the index m of
the m+ube.

12



"wheel type" graphs give important information on the extremal properties re-
latelto P4,^. We start with the wheel graphw, = Kt * C, ttrat has r spokes and r
vertices on the rim. Replace each vertex of w, witha complete graph, and make
each vertex of the corresponding complete graph adjacent to the vertices in the
neighborhood of the replaced vertex. The graphs obtained by this expansion of
vertices of a wheel form a family of "generalized wheels". More preciiely, order
the vertices of I,7, sarting with the center and followed by the vertices of the rim
in a natural order around the cycle. For positive integers p(0 (0 ( i ( r), the
generalized wheel obtained from w,by replacing the irr vertex witr a complete
graph K4; will be denoted by W(p(o), p( t), . . . 

, p(r)).
In many of the cases of interest to us, mostof thep(i)'s in the generalized wheel

will be the same, so we will adopt the more compact notation of representing the
sequence(p( i),... ,p(k)) by (k- j+ l;p) whenp = p(j) = ... = p(,t). Thus,
W (1, r; l\ = W, andW (m - 2, n- m + 2i l) = K 

^_z 
* Cvm+2, which is the

generalized wheel considered earlier in this section. For the following families
of generalized wheels, it will be assumed ttrat d ) 2 and m are flxed positive
integers.

Select any integer n such that n- m is divisible by d, andconsider the gener-
alized wheel

W(m - 2, d; (n - m) / d, t, t).
Let r and y denote the two vertices of the rim of the generalized wheel that are
associated with the complete graphs that are a single vertex. This graph has order
r' connectivity m- 1+ (n- m) /d> m, and m - I internally disjointpaths of
length at most 2 between r md g. However, any path from s !o g not using any
of the m - 2 vertices in the center of the generalized wheel or the edge oy has
length at least d + I . Therefore, W (m - Z, d; (n - m) I d,l, l) does not satisfy
Pa,^. The following theorem (Iheorem C from tryOSTl) gives that any graph
with connectivity exceeding (n- m) ld+ m - 1 does satisfy pa,_.

THEOREM C. Let d) 2 and m be psitive integers, and tet G tu a gnph of
order n" It G has connectivity excoeding (n- m) ld+ nr - !, then pa,^(e is
satisfied. This result is the best possibte in that there is a graph that has connectivity
(n- m) /d+ m - 1 that does not satisfy pa,^(e .

Select any positive integer pt,let n = (d + 4)p + m - 4, and consider t}re
generalized wheel graph

W(m - 2,3p - 2,d, - 2; p,3p - 2, t,t).

Again, let r and y be the vertices of the rim of the generalized wheel associated
with the complete graphs with a single vertex. This graph has order r, minimum
degr*3p+m-3 = 3(n-m+g /@+$+m-3,andconnectivityp+m -l ) m.
Just as before, any path between r and y that does not contain the edge ry or
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any of the m - 2 vertices in the center of the wheel has length at least d + 1.
Thus, this graph does not satisfy P4,*, but has minimum degree of the same order
of magnitude as the degree condition in the hypothesis of the following theorem
(Theorem D of [FJOSTI).

THEOREM D. I-et m and d b psitive integers, and let G be an m-connected
graph of order n. If G has minimum degrce exceeding l(" - * + 2) /l(d +
4) 13l) + m - 2, then G satisfies Pa,^(G).

It should be noted that the proof of Theorem D in [FJOST] can be modified in
a completely straightforward way to verify that if the sum of the degrees of each
pair of nonadjacent vertices is ay least 2(L@ - m + 2) / l( d + 4) I 3 ) ) + m - 2,
then G has property P4,^ for d > 3. Also, the generalized wheel described prior
to Theorem D shows that the sum of degrees condition cannot be significantly
lowered. We state this result for use later.

THEOREM E. Let m and d > 3 b positive integers, and let G be an m-
connected gnph of order n" If G satisfies the degree condition DC(G) >
2(L@ - m + 2) I l@ + $ I 3 I lm - 2), then G satisfres Pa,^(Q .

The next counting result, which can be found in [FJOST], will be used in the
proof of the main results.

LEMMA F. Let P and Q be openly disjoint paths from s, to y in a graph G,
such that the sum of their lengths is a minimum. If A and B are subsets of vertices

of P and Q respctively, such that A does not contain any pair of consecutive
vertices on P , then the number of edges between A and B is at most pl+ lB l- t .

3. PROOFS

We begin with the proof of Theorem 1, which depends heavily on the results in

IFJOST].

THEOREM l. Let d > 2 and m be positive integers, and let G be a k-
connected graph of order n. Then, G satisfies Pa,^(Q if the minimal degree

6(G) satisfies:

,,, 

{

> L+t
I +#+m-Z

>min{ L3J- | n-(h-m+1)(d-2)*^ar-
>k

ifk<m

if rn1-k<*-:" +m-lo

ifk>*t+m-t.
PROOF: For k < m, Theorem A implies theresult. Also, if k > (n- m) ld+
nt - l, then G satisfies Pa,^by Theorem C. Note that in general 6 ),t, and

Theorem 1is true for & > (n- m)ld+ m - 1. We are leftto consideronly

t4



thefollowingrangefor k: m < & < (n-m)ld+ m- 1. ByTheoremD,
6(G) > ((n- m+ 2) /l(d+ \ 13) + m - 2 implies rhat p4,- is sarisfled, so ro
complete the proof of Theorem 1 it is sufficient to verify rhat 6( O > @ - (k -
m + l) (d - 2) + m - 2) 12 imphes Pa,^(G) .

Suppose that G is a gfaph of order n that does not satisfy P4,-. Select vertices
r and y for which there does not exists m openly disjoint paths between the two
vertices, each of length at most d. Since G is ,t ) m connected, there are & openly
disjoint paths between r and y. Select & such paths with the sum of the lengths a
minimum. DenotethepathsbyPr, P2,...,Pp,?ndletrr ( rz 1...( r1 by
the number of interior vertices (one less than the length of the path) of each of the
paths. Thenbyassumption,rT ) | for j ) 2,and ri ) dforT ) m.If rs isthe
number of vertices not on any of these paths, then

Therefore,

h

n= 2+ Dr,
i=0

k

rs*n-Z -Dr;1.n-2 -(m-2) -(k-m+ r)d,.
i=1

By assumption, r and y have no common adjacencies off the paths, and each
of r and y have precisely one adjacency on each of the k paths. Therefore, if
d(r) 1d( y), then

d,(d1?*ut n-m-(k-m+l)d+2k

This contradicts the assumption on 6( 6) and completes the proof of Theorem I . !
Note that each of Theorem A and Theorem C is sharp, so no improvement is

possibleinTheorem l forlc < mor k > (n-m) ld+m-I. Althoughtheresult
in Theorem D is not sharp, it has the correct order of magnitude as exhibited by the
example that preceded Theorem D. We now describe an example to illustrate that
the inequality 6( G) > (" - ( k - m + l) ( d - 2) + m - 2) / 2 also has rhe correct
order of magnitude. For ( n+ ( d+ 3) (m - l)) I @,+ 4) < k 1 (n- m) / d+ nL - L,
and the appropriate divisibility conditions for rL consider the graph

n- (d- 2)1. - m - I

)
wheret = k - m + 1. The graph L obtained from this graph by deleting the edge
between the two complete graphs on the rim witfr a single vertex has connectivity

15



k,6(L) = (n-(d-2)(k-m+ 1) + m -3)12,anddoesnotsatisfy Pa,^(L).
Thus, the results of Theorem 1 cannot be 5ufstanfially improved.

Both Theorem 4 and Theorem 5 will follow from some of the preliminary re-
sults already stated in section 2 and the following theorems. These next results
give some relationships between degree and neighborhood conditions on all non-
adjacent pairs of vertices and FroWW Pa,*.

THEOREM 2. Let d > 3 and m tu positive integers, and let G b an m-
connected graph of order n- Then, G satisfies Pa,^(G) if

NC(G) > (5n- m - d- 4) /(d.+ 2) + 2m -2.
PROOF: I*tt = (5n- m- d- 4)l@+2) +2m-2. SupposethatGis
an m-connected graph wittr NC(G) > t that does not satisfy Pa,*(G).We will
show that this leads to a contradiction.

Let r and y be a pair of vertices for which there does not exist m openly disjoint
paths between them, each of length at most d. Select m openly disjoint paths

between r and y such that the sum of their lengths is a minimum. Denote these
paths be Pr, P2, . . ., P-, and assume that the lengths of these paths zta 11 * l, 12 *

system of paths, and let S be the remaining vertices. Thus, the number of vertices
inEis

r = z+i 
",,

i=1

and,Shas n-rverticns. Notethatbyassumptionr; ) l forl < i < m,and
r^) d, Hence, r ) m+ d.

Consider the subgraph L of G induced by the vertices in the paths P; and P*,
and note that the sum of the lengths of these paths cannot be shortened in ,L.

Lemma F applied twice (!o the graph I) implies that the number of edges be-
tween the r- interior vertices of P- and the 4 interior vertices of Pi is at most
r^* 2ri - 2 foreach i( I < d < m). Since P- has r* edges and r and y each

have degree rn relative to .8, the sum of the degrees of the vertices of P* relative
to E is at most

m-l

!{r- + 2r; - 2) + 2m * 2r- = (m - 1)r- + 2r - 2.
d=1

I-etP^= (r= fiotrtt,., ,fir^,rr.+l = y). For0 < i < j {r^+ 1,let

N;l = N(c;) uN(c7),
Ri=RON;;, and

'S;7 = ^9fliV;i'
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Hence, "rV,7

then
is the disjoint union of I?;,. and ,S;;, and if r; and si are nonadjacent,

llayl+ lsiil= lffirl > r.
Therefore,

r-- I

(r^+ 2)t. D ( lfi,,+z | + l&,*z D + l-8o,,- | + l,So,,_ | + lEr,,*, | 
+ 1.91,,*, l. (1)

i=0

Nole that no z € ,S can be adjacent to both r; and si for any lj _ q ) 3, so
each vertex of .9 will be in at most five of the s;r.'s in 1i1. eto, trre neighborhood
of a vertex in P- will contribute to precisely two of the fti's in (tl. thus, a
consequence of (1) is the following:

(r^+ 2)t < 5(z- r) + 2((m - l)r_ + Zr _Z).
(52-r-4+2(m-l)r^.

Hence,
t < (5n- r - 4 + 2(m - t)r^) /(r^ + 2)

< (5n- m - d- 4) lG,+ 2) + 2(m _ t)
This contradicts the restriction on t, and completes the proof of rheorem 2. I

Let t be even and n= (d + 4)t + m - l. consider the graph 11 obained from
the generalized wheel

W(m - 1,2;2t,Qt)
by deleting all of the edges between the t'ro complete gr4phs on the rim with
2i vertices. This graph has order 4 connectivity t + m - l, sarisfies NC(H) >
5 t + m - 3, but does not have property pa,^( H ) . Thus the condition in Theorem 3
is the correct order of magnitude for d and m fixed and n srrffEciently large.

The next theorem involves both degree and neighborhood conditions for pain
ofnonadjacent vertices. The graph.L derived from the generalized wheel

n-(d-2)2-m-l
)

(where z = k - m - I ) which was described after the proof of rheorem 1 indicates
that the conditions of this next result cannot be lowered significantly.

THEOREM3. Let d> 3,m,and k > (d.- l)(m -t) bpositiveintegen
and let G be a k-connected graph of order n. Then, G satisfies propXy pa,_ if
either

NC(G) ) n-2 -(d- 3)(e - G.- t)(m - 1)), or
DC(G) ) n-2 - (d- 3)(e - @,- t)(m - l)) + m.

t7



PROOF: We will deal with neighborhood condition and the degree condition at
the same time. Let t = n-2 - (d - 3)(e - @- 1)(m - 1)), and suppose
that G is an &-connected $aph (k > (d - l)(m - 1)) wirh NC(G) > t (or
respectively DC(G) ) t + m) that does not satisfy Pa,^(G).We will show rhat
this leads to a contradiction. We can assume that G is edge maximal with respect
to not satisfyng Pa,^(G) , so the addition of any edge will generate a graph that
satisfies Pa,^(G).

I*t r and y be a pair of vertices for which there does not exist m openly disjoint
patts betrneen them, each of length at most d. By the edge maximality of G we
can assume that m - 1 paths of length at most d do exist, and we will denote the
vertices in the interiu of these paths by C. There are at most (m - 1)(d - 1)

vertices in C.
Select t - ( d- 1) ( m - I ) openly disjoint patts between r and y that are disjoint

from C, and such that the sum of their lengths is a minimum. Denote these paths
byPr, Pz,-.. Pr-(--r)(a-ry. Eachof thesepaths has atleastd+ 2 vertices. Let
at be a vertex on one of these paths that is adjacent to r. Then, clearly rt and y
are nonadjacent vertices. The minimality of the sum of the lengths of these paths
and the fact that Pa,^(G) is not satisfied implies that neither t' nor y is adjacent
to the d - 3 vertices on each of these paths that precede the predecessor of y for
eachof thesepaths. Thus,thereareatleastd = (d-3)(/c -(d- 1)(m- 1))
vertices that are not adjacent to either r' or y. For the neighborhood condition this
gives the following inequality:

t < liV(z') u N(v)l 1n- d - 2= t.

For the degree condition this gives the inequality:

t+ m < d(r') + d(il < n-2 - (d-3)(k- (d- 1)(m - 1)) + m = t+ m.

In either case this gives a contradiction that completes the proof of Theorem 3. f
Theorem 4 is a survey result that is not a direct consequence of Theorem B,

Theorem E, Theorem 3 and Theorem C. For a graph G of order a the neigh-
borhood condition NC(G) ) n- I implies that G is a complete graph, while
N C ( G) ) n - 2 implies no connectivity in G (i.e. there are disconnected graphs

that satisfy NC(G) ) n- 2). This observation along with Theorem 2, Theo-
rem 3, and Theorem C verifies Theorem 5. The fact that the condiLions in Theo-
rems 2, 4 and 5 cannot be lowered significantly follows from the fact that this is
true for each of the results used to verify these theorems.

We now deal with the special czse d = 2.

THEOREM 6. For any positive integer m, a graph G of order n and connec-

l8



tivity k satisfies Pz ,^(G) if at least one of the following inequalities are satisfred:

_ n+mr, , _,

6(G) > n*i,* _,

DC(G) ,'";* -'
NC(G) ) n-2.

AIso, each of the inequalities is sharp.

PROOF: The sharpness of the inequalities can be observed by considering the
graph H obtained from z K*z by adding nro adjacent vertices that have precisely
m - 2 common adjacencies in the K*-2 and whose neighborhmds equally share
(as much as is possible, the remaining vertices of the Kn2. Thus If has order zr,

connectivity l(n+ m)12) - 1,6(^g) = l(n+ *) 12) - t,DC(H) = l(3n +
rn)12) - 3,and NC(H) = n-2,butlldoesnotsatisfy Pz,^(H).

Assume the result is not true, and that z and g is a pair of vertices in a graph

G satisfying the hypothesis of Theorem 6 ttat does not haye m paths of length
at most 2 between them. By Theorem C we know that the connectivity of G
does not exceed (n+ m) /2 - 1. We can assume with no loss of generality that
d(r) < d(y).

First, consider the case when r and g are nonadjacent. Thus, by assumption,

lN(r) ntv(y) I < -- 1. Thus, lN(o)uN(y)l+ ltr,s)l > 2|il(s)l-lN(r)n
 f(g)l+2 > uif d(r) ) (n+ m-3),andsoclearly

d(t) 1(n+m-3)12
d(s)+d(y)<n+m-3,and

lN(r) uru(v)l 1n-2.

All of ttrese inequalities contradict the assumptions, so we can assume that z and
y are adjacent. Then, also by assumption, lN( r) n iV( C) I I m - 2. Any vertex

z of G that is not adjacent to r has degree at most n- 2, so we have

d(s) 1(n+ m) /2 - |
d(r) + d(z) < (3n+ m) /2 - 3, and

fN(r) uN(r)l< n-2.

This also contradicts the inequalities, and completes the proof of Theorem 6. !
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4. PROBLEMS

There are several interesting questions and nanral extensions related to the results
presented. In Theorems 2 and 3 the relationship between neighborhood conditions
on nonadjacent pairs of vertices and property P4,- wzts investigated- One need not
consider only nonadjacent pairs of vertices, but adjacent pairs or all pairs of ver-
tices could be considered in neighborhmd conditions implying P4,^.Inaddition,
one need not restrict consideration to just the union of the neighborhoods of pairs
of vertices. For any flxed integer t > 2, the number of vertices in the union of
the neighborhoods ofany set oft (nonadjacent) vertices can be considered in the
neighborhood condition. Examples of results of this nature can be found in [AFF],
lFl and tFGJL2l. Also, the relationship between property Pa,* Nrd degree clo-
sure conditions of the type considered in [BC] or neighborhood closure conditions
considered in tFGJLll should be investigated. For all of rhese possibilities of a
neighborhoodcondition oraclosure condition, tlegeneralized wheel and the cube
have significantly different properties, so many interesting problems of this type
remain.

A natural question which is a basic extremal problem at the opposite end of the
spectrum is to determine the minimum number of edges in a graph that satisfies
property Pd,m.
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