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Abstract

Faudree, R.J., M.S. Jacobson, L. Kinch and J. Lehel, Irregularity strength of dense graphs,
Discrete Mathematics 91 (1991) 45-59.

It is proved that if ¢ is a fixed positive integer and r is sufficiently large, then each graph of
order n with minimum degree n — ¢ has an assignment of weights 1, 2 or 3 to the edges in such a
way that weighted degrees of the vertices become distinct.

1. Introduction

Let G be a simple graph and assign positive integer weights to the edges in such
a way that the (weighted) degrees become distinct. Let s(G) denote the minimum
of the largest weight over all such irregular assignments of G. The problem of
studying s(G), called the irregularity strength of G, was proposed by Chartrand
et al. in [2].
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Determining the strength proved to be rather hard, even for very simple
graphs. Several open questions and quite a few answered cases could be cited
from [2, 6-9]. We know, among others, that s(K,)=s(Kyu.)=3 and
5(Kok+1,2¢+1) =4 for every n=3 and k=1, where K, and K, , denotes the
complete and the complete bipartite graph of order n and 2n, respectively, (see
(6, 8]).

In [11], a general upper bound is proved: s(G)<n —1 for every connected
graph G of order n =4. We do not know whether this bound is valid or not for
disconnected graphs. For the irregularity strength of regular graphs n —1 is an
upper bound, however, not the sharpest one (cf. [7]). In this paper we consider
the problem of improving this general upper bound for graphs ‘close’ to cliques
and regular graphs, such as the disjoint union of cliques and graphs of order n
with minimum degree constant times 7.

If weights are assigned to the edges by some assignment w : E(G)— Z™*, then
the weighted degree of a vertex x € V(G) called also its degree is denoted by
d,(x) or d(x). A graph G with edge weights is called a network and denoted by
G(w), or simply G. The strength of a network is s(G(w)) = max{w(e): e € E(G)}.
Note that in [1] a network of strength s is also called an s-graph.

A network G(w) defined on G is irregular iff d,,(x) = d,,(y) implies x =y. The
irregularity strength of a graph G is s(G) = min{s(G(w)): G(w) is irregular}.

Let G be a graph of order n and « be a real with 0 < & <1. The main question
we are considering here is the following.

Question. Does there exist a constant c, such that s(G) <c, for every graph G
with minimum degree 6(G) = (1 — a)n?

We strongly believe that the answer is affirmative, however, at this time there
does not exist much evidence to support this conjecture. This question motivated
the results we present here.

In [7], s(G)<n/2+9 is proved for r-regular graphs of order n. Here we
improve this result for r =(1 — a)n and 0< @ <1. The bound we are able to
prove here is much smaller than n — 1, however, it still depends on n (Theorem
10):

s(G)<(1/(|1/«] —1))n +5 holds for sufficiently large n.

(lx] is the floor function, the largest integer not larger than x; [x] denotes the
ceiling function, the smallest integer not smaller than x).

Note that the lower bound (n +r —1)/r given in [2] is conjectured to be the
right value of the strength of r-regular graphs of order n, up to an additive
constant.

In Section 4, we investigate graphs of irregularity strength at most 3. It is
proved that s(G) <3 if 6(G)=n -2, i.e., if G =K, — F where F is a matching
and n =3 (Theorem 7).
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A result pertaining to less special graphs is: If ¢ is fixed and n is sufficiently
large, then the irregularity strength of every graph of order » and minimum
degree n —t is at most 3 (Corollary 9).

In some sense Corollary 9 gives a sharp result on the minimum degree of a
graph of irregularity strength 3 or less. In fact, if G is an r-regular graph of order
n, and r =n —t (¢t =2 is fixed), then obviously

s(G)=(n+r—1)/r=Q2n—t—1)/(n—1t)>2.

Thus the strength of infinitely many graphs of minimum degree n — ¢ is equal to 3.

If we let ¢ depend on n, e.g., if t =t(n) <Vn/18, the irregularity strength of a
graph with minimum degree n — ¢ is still at most 3 or less (see Theorem 3). In this
respect Theorem 8, is not sharp at all, and one can try to expand further the
restriction imposed on #(n).

In Section 2, we develop a weighting technique for complete graphs. In Section
3, we show a method using the results of Section 2 which gives an upper bound on
the irregularity strength of disjoint unions of complete graphs. In particular, if
G=tK, (1<t,3<p) and n=1tp, r=p —1, then s(G) =< [n/r]| +2 follows from
Proposition 5. Note that this bound is sharp up to an additive constant.

Results in Section 2 also show a remarkable relationship between irregularity
and graphical degree sequences. One of them, a special case of Proposition 3,
may have some interest in its own right.

If D=(d,d—1,...,d—n+1) is a sequence of n consecutive integers with
even sum, then there exists a complete network of strength [d/(n — 1)] with degree
sequence D, for each n=5 and d >2(n —1). (Note that [d/(n —1)] is obviously
the smallest possible strength a network can have with degree sequence D.)

In Section 5, we conclude the paper with some questions inspiring further
research on the irregularity strength of dense graphs.

2. Irregular complete networks

There are several irregular assignments of the complete graph K,, and each
obviously is of strength at least 3. One is the alternating scheme defined in [2] as
follows. For convenience we denote by w(i, j) the weight assigned to edge ij.

Let V(K,)=(,2,...,n), and assign weights w(1,2)=1, w(2,3)=2,
w(3, 1) = 3; furthermore, let

G, 1) {1 if j even,

Wi, 1) = g .

¢ 3 ifj odd,

for every j=4,5, ..., nand 1<i<j. The result is an irreguiar complete network

of strength 3 for every n = 3. Moreover, the degree sequence of the network, has
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the following form for large n:
D=(@,a+2,...,b-2,b,b+1,b+2,b+3,b+6,b+8,...,c—2,¢).

(It has four consecutive integers in the middle and all the other neighboring
degrees in the sequence differ by at least 2, for n =4.) This property of the
alternating scheme is formulated in the following proposition.

Proposition 1. The alternating scheme gives an irregular complete network of
strength 3 with degree sequence d,=a, dy=a+2,...,d,=b, di.1=b+1,
dey=b+2, de\35=b+3,...,d, 1=c—2, d,=c, where k= |n/2] —1, and
a=n+1,b=2n—4,c=3n—-3ifnisodd,a=n—1,b=2n—-5,c=3n—-5Sifn
is even.

In this section we study irregular complete networks with degree sequence
consisting of consecutive or almost consecutive integers.

Let a=0, a+1<b=<a+2and b+n—-2<c<b+n—-1. If D=(a, b, b+
1,...,b+n—3, c) is the degree sequence of some (not necessarily complete)
irregular network G of order n, then obviously, s(G) = [c/(n —1)]. Our aim is to
show that there exist complete irregular networks having this minimum strength,
for every D, of course with a=n — 1, except the case D=(0,1,2,...,n—1).
The results here will be used in subsequent sections and their proofs are based on
the following technical lemma.

Lemma 2. For n=5 let D=(a,b,b+1,...,b+n—3,c) be a sequence of
integers with 0<a<n-—2, a+1<b<a+2, b+n—-2<c<b+n—1 and with
even sum. Then there exists a network with degree sequence D and with strength

_{[c/(n—l)] ifc#n—1,
=G hetn—1.

Note that s =2 unless ¢ =2n — 1, in which case s = 3.

Proof. We will show that if D =(n—2,n,...,2n —3, 2n — 1), then there exists
a network of strength 3 with degree sequence D; otherwise, there exists one of
strength 2.

For n =5 the lemma is true, see Fig. 1.

Let n>5 and assume that the lemma is true for every n'<n. If a=0 or
¢ =2n — 2, we give constructions by induction.

Case a: a=0.

To obtain an irregular network with degree sequence D = (0, b, . . ., ¢) (with
1<b<2), add a new isolated vertex to the irregular network of strength two
with degree sequence D' = (b, . . ., c).

Case b: ¢ =2n—2.
In this case a=c — (n —1) —2=n —3=2, thus every member of D is at least
two. Start with a network of order n — 1 with degrees two less than the elements
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o
1 2
1 1 1 1 2
2 2
2 1
o
1
1;;1 2 1
2 2

Fig. 1. Irregular networks of order five.

of D' = D\{c}. (Note that D' satisfies the conditions of the lemma.) Then, add a
new vertex joined to each vertex with an edge of weight 2.

Caseic:i ¢=2n— 1.

From the condition in the lemma, a <n —2. On the other hand a=c — (n —
1) —2=n—2 with equality if and only if D=(n—-2,n,...,2n—3,2n—1).
Therefore, a=n —2 and b =n. Let G; be a network of strength two on n —2
vertices with degree sequence D' =(n—5,n—4,...,2n—9,2n —7). (Note that
D’ has even sum and also satisfies further conditions of the lemma.) Add a new
vertex x; to G; with n —2 edges of weights 1,2,2,...,2,1 (1 is assigned to the
edges going to vertices of G; with the smallest and largest degree). Then, x; has
degree 2n — 6 and the degree sequence of G, that we obtain is (n —4,n —
2,...,2n—17, 2n — 6, 2n — 6). Now add a vertex x, with n — 1 edges to G, and
assign weights 2,2, . . ., 2,3 (3 is assigned to the edge going to one of the vertices
of largest degree). Then x, has degree 2n — 1, the network we obtain has strength
3 and degree sequence (n —2,n,...,2n—4, 2n—3, 2n —1).

Assume now that a =1 and ¢ <2n — 3. To prove the lemma we use a variant of
the ErdGs—Gallai inequality [4], adapted for multigraphs in [3] as follows (see
also in [1]).

The sequence d,=d,=---=d, with even sum is the degree sequence of a
network of strength s if and only if

k n
d;<sk(k—1)+ >, min{sk, d;} forall k, 1<k=<n.
=1 i 1

=k+

1]

Our sequence in non-increasing order is ¢, b +n—3, b+n—4,...,b,a, so
di=c, d,=a. Setting c'=b+n—-2 and a'=b—-1, if 1<i<n, then d;=
¢'—(@{—1). Set 6 =(c—c')+ (a' —a) and note 0 <4 <2. Finally, for 0<k <n,
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and with s =2, set

n k
D, =2k(k—1)+ >, min{2k,d;} -, d..
i=k+1 =1
We show D, =0 for0<k<n, ifn<c<2n-3.
Case 1: d,, =2k.
Then

k
Dy =2k(n—1)— > d;=2k(n—1)—k(2n —3) =k =0.
i=1

Case 2: d, <2k.
Then

k
D.=2k(k—1)+ D d;— d,

i=k+1 i=1

n

=2k(k—1)+'2 (c'—(i—l))—fj(c'—(i—l))—a

i=k+1

" 6(’2‘) x (;) +(n —2k)c’ — 6.

Sete’'=3(n—1)—c' and k' =n — 1, we obtain

Dk=6(n;k>—<;>+(2k—n)e’—6

o 6(’;’) b (;) +(n—2k")e’ — &.

Since n<c'<2n—3, we also have n<e'<2n—3. Also, if k>n/2, then
k' <n/2. Therefore, we may assume that k <n/2. Since ¢’ =n,

Dk>6(§>—(;>+(n—2k)n—6=<n_22k+1)+k(k—2)—6.

If kK > 2, then D, >0 follows. If k <2, then
n—3
D, 2( )—1—6.
g 2

Having already proved the lemma for n =5, we may assume that n =6, so again
D, =0 follows.

Case 3: for some x, k <x=<n, d, =2k (or a’' =2k and a =2k —1).

Note that d, =2k =c¢’' — (x — 1) and

n k
Dy=2k(x—1)+ > d;,+, d.
i=1

i=x+1
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Case 3.1: k+x<n. Then
x+k k

D =2k(x—1)+ >, d;—, d;
1

i=x+1 i=
=2k(x—1)—kx—6=k(x—2)—6.
Now x=c'—2k+1=n—-2k+1. If k=1, then x=n—-1=5, so D, >0. If
k=2, then x =3, so D, =0.
Case 3.2: k+x>n (note, k>0). For each i, 1<i<n, di=c'—(i—1)=
2k + x — i (d; and d,, differs from this by at most 1). Thus

D= 2 T £ (2k+x—i)—§kj(2k+x-i)—a

i=x+1

k+1 —x+1
=k(2n—2k—x—2)+( )—(” * )—5.
2 2
Now ¢'=2k+x—1<2n—-3, so 2n—2k—x—2=0, and n —x + 1<k, hence
D,=k(2n—2k—x—-2)+k—6. If 2n—2k—x—2=1, then D, =0. If 2n—
2k—x—2=0,thenc'=2n—3=c¢,sod<1and D,=k—6=0. O

Note that Lemma 2 is sharp in the sense that the strength given by the formula
for s is the smallest possible for each degree sequence D. The following corollary
of Lemma 2, which concerns irregular complete networks with consecutive or
almost consecutive degree sequences, is formulated for determining the ir-
regularity strength of tK,,.

Proposition 3. Let D =(dy, d,, . . ., d,) be a sequence of p =5 positive integers
with even sum. If d,=p —1, 1<d,—d <2, 1<d,—d,_,<2, and d;,, —d; =1
for j=2,...,p—2, then there exists a complete network of strength at most
[d,/(p —1)] + 1 with degree sequence D. Moreover, if p —1 does not divide d,,
then s = [d,/(p —1)].

Proof. Put ¢ = |d,/(p —1)|, and apply Lemma 2 with n=p, a=d, —q(p — 1),
b=d,—q(p—1) and c=d,—q(p —1). Consider non-edges of the network
obtained as edges of zero weight and increase the weight of all edges by g. Note
that g =1 and each degree increases by gq(p —1). Thus we obviously get a
complete network with degree sequence D and with strength [¢/(p —1)] +1+g¢
=[d,/(p —1)] +1 or less. Furthermore, if p —1 does not divide d,, then the
sequence differs from (0, 1, ..., p — 1), therefore c#n —1 and s = [d,/(p — 1)]
follows from Lemma 2. O

3. The irregularity strength of the union of cliques

The consecutive scheme developed in Section 2 allows us to give an irregular
assignment for graphs that are the disjoint unions of cliques of order at least 3.
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Suppose that G=K, UK, U---UK,, where t=2, S5sp,sp,<---<p,
and denote G, =K, U---UK,, for 1sk=<t (G=G,). (Note that for the case
when there are 3- and 4-cliques among the components one can use similar
ideas.) Assume that G, has an irregular weighting with consecutive or almost
consecutive degree sequence (d, d + 1, ..., e,_;, €, e;) with e, + 1<e;<e, +2.
Consider the clique component K, which is to be added to G; in order to
obtain G, ;. If the minimum degree of G — G;, that is p; ., — 1 is larger than the
largest weighted degree of Gy, then start with a consecutive weighting for K, , .
Otherwise assign weights to the edges of K, , in such a way that the degrees
extend the degree sequence of G, with consecutive integers. Since p;,, =5, one
can apply Proposition 3 with initial values d, =e, +3 and d, =d, — (e — ey); if
the last two degrees are e,,, and e;.;, then the largest weight is at most
[eics1/(Picr1— D] +1

Now we consider some special cases. Denote by tK, the disjoint union of ¢
cliques of order p. The counting argument given in [2] gives that s(tK,)=
[(pt+p—2)/(p— DI

The irregularity strength for p =3 was determined in [6]:

[(3t+1)/2] +2 for t=3(mod4),
s(tK3) = { .
[(3t+1)/2] +1 otherwise.

Proposition 4. s(tK,) = [(4t +2)/3] for t=2.

Proof. We give a consecutive scheme for every ¢ based on the irregular weighting
of the tK, with t<4. Denote by v, X, Y, z the vertices of the kth 4-clique,
k=0, 1, 2 and 3, and assign weights to the edges as is shown in Fig. 2.

If i=3j+k with 1<k<3, j=0, then define the edge weights of the ith
component as follows: w(v;, x;) =4 + w(Vk, X), - - ., Wi, z:) =4 + w( i, 2Z)-
Defining the weights in this way for every i, 0<i<t—1, the network has the
desired strength. Since d(v,)=4j+3, d(x;))=4j+4, d(y;)=4j+5 and d(z;) =
4j + 6, the obtained network on tK, is irregular. [

Proposition 5. If p =5 then s(tK,)) < [(pt +p — 1)/(p — 1)].

Proof. We use the consecutive scheme to define the edge weights of the
subsequent cliques. The smallest degree is p —1, so the largest one (in the last

Fig. 2. Consecutive scheme for tK,, t<4.
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component) satisfies d, <n +p — 1. By Proposition 3, s(G)<[d,/(p —1)] +1
and the theorem follows. [

Remark. The scheme similar to that of Proposition 4 gives s(tKs) = [(5¢ + 3)/4]
for t =2. We conjecture that for all t=2 and p >3, s(tK,) = [(pt +p —2)/(p —

1

A technical result used in the next section is when each clique is either a K, or
a K,., with p=3. You will observe that we slightly modify the consecutive
scheme allowing one jump in the middle of the degree sequence.

Proposition 6. Let G be the disjoint union of cliques of order p and p + 1, p =3;
and consider the partition V(G)=PUQ, where P={x:d(x)=p} and Q=
{y:d(y)=p —1}. If G is of order n, then there is an irregular assignment w with
weights at most [n/(p — 1)] + 4 such that d,,(x) <d,(y) holds for every x € P and
yeQ.

Proof. Let |P|=n,, |Q|=n,, (n, + n,=n); furthermore, let G = G(P) U G(Q).
Define weights on G(P) by using the consecutive scheme to obtain a network

~with degree sequence (p,p+1,...,p+n,—1,p+ng), where ny=n; orn; + 1.
Then define an irregular network on G(Q) with consecutive or almost consecu-
tive degree sequence (p +n{+1,..., p +ni+n;), where n; =n, or n, + 1. This

assignment w satisfies the proposition. Moreover, according to Propositions 3 and
4, the largest weight (coming from the last clique of G(P) or that of G(Q) is at
most

max{[p+n,+2)/pl +1, [(p+n+3)/(p -] +1}<[n/(p—-1)] +4 |

4. The strength of dense graphs

Now we go back to our main question: does there exist a constant ¢, such that
s(G) <c, for every graph G with minimum degree 6(G)=(1—a) —n?

Although we believe that the answer is affirmative, we have been able to prove
only weaker variants of the original question.

In [5], necessary conditions are established for graphs to have irregularity
strength 2. Now we give sufficient conditions on a graph G that imply s(G) <3.
The first result concerns the case 8(G)=n —2. A somewhat simpler proof is in

(91
Theorem 7. If G is a graph of order n (n =3) with 6(G)=n —2, then s(G) <3.

Proof. Let G=K,—F, where F={yz:i=1,...,r}, and let X ={x;:i=
1,...,n—2r} be the vertex set of the (n —2r)-clique K disjoint from F.
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1 2

Fig. 3. Theorem 7 is true for n =3 and 4.

Note that if r =0, then G = K,, and s(G) = 3 follows from Section 2. Moreover,
the theorem is true for n =3 or 4, see Fig. 3. Assume now that n =5.

In the case of r =1, by Proposition 3, there is an assignment of the complete
subgraph K + {y;} induced by X U {y,;} with weights at most 3 resulting in
distinct degrees n —2, n, . . . , ¢, with ¢ <2n — 2. Let y, be the vertex of weighted
degree n, and assign unit-weight to each edge of G incident with z;. Then we
obtain an almost consecutive degree sequence for G: (n—2,n—1,n,n+
Do oo @ar il

To prove the theorem for » =2, we first introduce a relation u > v between u,
v € V(G) as follows: for every j=1,...,r,

y;>x, and z;>x, for each 1sk<n —2r;
Yi>Yo Yi>z, zi>zand z; >y, iff 1si<j.

Case 1: n=2r + 1.

Observe that X is not empty. Let G, be the network induced by X U {y;, z;}
with the almost consecutive assignment described above. If K has just one vertex
(n =2r + 1), then we start with the path on vertices x;, y, and z; weighted as in
Fig. 3. Otherwise, observe that the degrees of G; belong to the interval
D, =[n—2r,2n —4r + 3] for each r and n>2r +1, and to the interval D, =
[n —2r, 2n —4r +1] for n=2r +1. We extend this initial assignment by the
alternating scheme.

Let G; be the network induced by G;,_;U{y,, z;} forj=2,...,r. When u=y;,

orz, j=2,...,r, define the weight w(u, v) of edge uv for each u > v as follows:
1 ifu=y,
FER= {3 ifu=z,
Let d;(v) be the degree of a vertex vin G; (1<j=<r). Thenforj=2,...,r,

furthermore, d;(v) =d;_,(v) + 4 for every vertex of G; different from y; and z;.
Therefore,

d(y) <n-—2r+2j<dv),
and we need to show that d;(v) <d;(z;) for j=2, ..., r. In the case of n >2r +1
d,(vV)<2n —4r+7<3n—6r+6=d,(z,),
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and forn=2r+1,
dy(v) <2n —4r+5<3n—6r +6=dy(2,).
Hence, for every j =3, .. SNV,
d(v) =d;_(v) +4=<3(n —2r +2j — 2) —2<d;(2).

Thus, the network G = G, is irregular.

Case 2: n=2r.
We use the alternating scheme starting with the 4-cycle on vertices y;, y,, 2
and z, weighted as in Fig. 3. For each j=3,...,r and u>v, let w(u, v) be

defined as in Case 1. This assignment is clearly irregular. [

Note that by a result in [5], s(K,—F)=3 if F, is an r-matching with
r<[(n—1)/4], so Theorem 7 is sharp. Our next result is an extension of
Theorem 7 where we will apply the following theorem.

Theorem (Hajnal, Szemerédi [10]). The vertices of a graph of order n with
minimum degree n—t can be partitioned into sets inducing t cliques of order
p=|n/t] or p’' = [n/t].

Theorem 8. Let G be a graph of order n and minimum degree 8(G)=n —t. If
1<t<Vn/18, then s(G)=<3.

Proof. The case ¢t <2 is proved in Theorem 7, so suppose that t=3.

Consider the ¢ cliques given by the Hajnal-Szemerédi theorem and let v;
denote the ith vertex of the jth clique of order k;=p or p’, 1<i<k; and
1<sj=t

Identify the jth clique of G with the jth vertex of a complete graph K. Use the
alternating scheme (Proposition 1) to assign weights of at most 3 to the edges of
this K, resulting in degrees

di=a,d>;=a+2 ..,
d=b, diy=b+1, diy=b+2, dis=b+3,...,
df ;=c—2,d’=cm
where g = [t/2] —1. Forj=1,...,t—1,
ra—df=1 ifj=g+h, withh=0, 1or2;

and
1 —df =2, otherwise.

Now, we expand the vertices of K, back to cliques of G, and assign to an edge
between a pair of cliques in G the same weight that we assigned to the edge
between the corresponding pair of vertices in K,. Denote by d*(v) the sum of
these weights at vertex v.
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First we show that
dip =30t —1)<d*(vy;)<dp+3(t-1)
forl<j<tand 1s<is<k,.

Observe, if v; is joined to all points of every clique and each clique is of order p,
then d*(v;) =d;p. Since 6(G)=n —t, there are at most t — 1 missing edges of
weight 3 or less at v;, and the lower bound follows. Furthermore, if the size of
each clique is p’' =p + 1, then we have to consider at most # — 1 more edges of
weight 3 or less (one for each clique different from that containing v;) which
yields the upper bound.

Now we apply Proposition 3 to obtain an irregular network on the jth clique of
G with consecutive or almost consecutive degree sequence as follows:

d(vy)=x;+i—1 fori=1,...,k—1,
di(v;)=x;+k;—1orx;+k;fori=k;
where
Pt iflsj<g,
x;i=yp+1+h(lp/3]-2) ifj=g+h h=1,20r3,
p+1+3(|p/3] —2) ifg+4s<jst

Observe that k;=n/t —1=5 follows from ¢t <Vn/18. Furthermore, the weights
we have to use in Proposition 3 are not greater than 3, since

for every 1<j=<t, so k; — 1 does not divide x; and (x; + k;)/(k; — 1) <3.
Now we show that the degrees d(v;)=d*(v;)+d;(v;) become distinct.
Obviously,

d(vy)=x;+dip —3(t— 1) = A(j)
and
d(vy)<x;+p+1+d;p+3(t—1)= B(j).

Thus the network becomes irregular if B(j)<A(j+ 1) holds for every j=
Eesese il
Consider the difference

A(j+1) = B() = %1 — %+ p(dfs — df 1) — 6( — 1).
Ifj=g+h, with h =0, 1 or 2, then
fa—df=1, and x;.,—x;=|p/3] -2
Therefore,
A(j+1)—B(j)=|p/3]| +4—6t>n/(3t)—6t>0
holds when ¢ <Vn/18.
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Iflsjsg—lorg+3<j=<t—1, then

* * s
j+1“d]- 22, al'ld .xl'.'.]_x]'—o.

Therefore,

A(j+1)—B(j)>p+4—6t>n/t—6t>0. a
Theorem 8 has the following immediate consequence.

Corollary 9. If t is a fixed positive integer and n is sufficiently large, then s(G) <3
for each graph G of order n with minimum degree n — t.

As it was mentioned earlier, we conjecture that Corollary 9 has an extension in
the following direction: if 0<a <1 is fixed and n is sufficiently large, then
s(G) =c, for each graph G or order » with minimum degree 8(G)= (1 — o)n,
where ¢, is a constant.

A weaker result follows by using similar techniques as in the proof of Theorem
8.

Theorem 10. Let 0< o<1 and G be a (1 — a)n-regular graph of order n. Then
s(G)=<(1/(|1/«] — 1))n + 5 for sufficiently large n.

Proof. Set t= an, so that 6(G) =n —t. According to the theorem of Hajnal-
Szemerédi, there is a spanning subgraph G* of G which is the union of ¢ cliques
of order p = |n/t] or p’' = [n/t].

Denote by k; the order of the jth clique and assume that for j=1,...,¢
ki=p+1if 1sj<g, and k; = p otherwise.

By Proposition 6, G* has an irregular assignment with weights at most

[n/(p—1)] +4<@1/(|1/a] —1))n+5

such that if x and y are vertices of the ith and jth clique, respectively, then
d*(x) <d*(y) holds iff i <j.

Now assign unit-weights to all edges of G not belonging to G*. The weighted
degree of a vertex v belonging to the jth clique, j=1, ..., t becomes

d*(v)+(n—t)—p iflsjs<g,
d*(v)+(n—t)—p+1 otherwise.

d(v) ={

The network described can be seen to be irregular. [
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5. Concluding remarks

If F, is a k-matching and G = K,, — F, then s(G) <3 for n =3, by Theorem 7.
Furthermore, it is stated in [5], that if k = [(n — 1)/4], then s(G)=2forn =0, 1,
3 (mod 4). Gyirfas proved in [9] that except for the cases above, s(K, — F,) = 3.
We summarize that in the following.

Proposition 11. If s(K,, — F;) =2, then n=4m + 1 or 4m, and k = m.
The following question arises from Theorem 8.

Question 12. What is the largest integer ¢ =#(n) such that s(G)=<3 holds for
every graph G of order n with minimum degree n — ¢ and if » is sufficiently large?

If t =t(n)>2n/3, it follows that s(G)=4 for every (n — t)-regular graph G of
order n. We propose the following question.

Question 13. What is the smallest integer ¢ = #(n) such that there exist infinitely
many graphs of order n with minimum degree n —¢ and having irregularity
strength at least 4?

In [7], s(G) <n/2 + constant is proved for every r-regular graph G. We expect,
however, that n/r + constant is an upper bound. In Theorem 5, s(G) <n/r + 4 is
proved for a very special case when all the connected components of G are
cliques of order r + 1. Thus we restate the following open problem.

Question 14. Does s(G) <n/r + ¢ hold for some constant ¢ for every r-regular
graph G of order n?

Finally we repeat the main question motivating this paper.

Question 15. Let o be a real with 0 < & <1. Does there exist a constant c, such
that s(G) <c, for every graph G with minimum degree §(G)= (1 — a)n?
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