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ABSTRAqT

For positive integers d and m, Iet Pd,r{c) denote the

property that between each pair of vertices of the graph c,

there are D vertex disjoint (except for the endvertices) paths

each of length at uost d. t{ininal conditions involving various
conbinations of the connectivity, nininal degree, edge density,
and size of a graph G to insure that Pd,r{c) is satisfied are

investigated. For exarnple, if a graph c of order n has

connectivity exceedi.ng (n - n)/d + m - 1, then Pd,r{c) is
satisfied. This result is the best possible in that there is a

graph which has connectivity (n - n)rzd + m - 1 that does not

satisfy Pd,.{c). Also, if an m-connected graph G of order n

hasminimal degree at least (n-m +21/ltd+ 4)/3JJ+n- 2,

then G satisfies Pd,m(c). Examples are given that show that
thi.s miniroum degree requirernent has the correct order of
nagnitude, and cannot be substantially weakened without losing
property Pd,r.
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1. INTRODU TION

Consider a graph G which vrill represent a computer netvrork

with each vertex representing a processor in the network and each

edge representing a two-rray cornmunication link. To lnsure that
the network is fault-tolerant with respect to processor failures,
it is necessary that the nunber of vertex disjoint paths between

each pair of vertices exceed the nurnber of possible failures. In
particular, if there is a possibility of f processor fal-Iures,
then it is crucial that there be at least f + 1 i.ndependent

paths betseen each pair of vertices to insure that at least one

message arrives. AIso, processors could have trbyzantinert

failures: instead of failing to forward the nessage they change

the message. To be able to insure that the najority message

received was the original message transmitted in a network with
f such failures, the number of vertex disjoint paths between

pairs of vertices must be greater than tvice the nunber of
possible failures (i.e. 2f + 1). Connectivity is clearly the

crucial graph concept in both cases. However, the length of tirne

for the Eessages to arrive is also inportant, so it is desirable
that the vertex disjoint paths be short. This transalates into
the fact that between each pair of the vertices of the graph c

there is a specified nurnber of paths, each uith a bounded number

of vertices.

For positive integers d and D, let Pd,r{c) denote the

property that between each pair of vertices of the graph c,

there are at least n vertex disjoint paths each of length at
roost d. The graph G representing a computer network prone to
processor failures should satisfy Pd,r(C) for appropriate

values of d and m. This is one motiviation for studying

property Pd,r.
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ltengerra classlcal result [8] on connectivl.ty solves the

problem of the existence of a system of such paths, if there is
no concern for the length of the paths in the systen. Although

ltengerrs theoren gives no information about the length of the

paths, the rrlength problen[ has been studied. For example, Bond

and Peyrat studied the effect of adding or deletlng edges on the

dlaneter of a network 1n [2], and Chung and Garey considered

dianeter bounds for altered graphs in [3]. ilenger tlpe results
for paths of bounded length were proved by lovesz, Neumann-Lara,

and Plunmer in [7] and by $rber and Tuza in [11], and Mengerian

theorems for long paths were given by llontejanao and Neumann-Lara

in t9l and by Hager in [5]. In [].ol property Pd,, and its
application to computer networks and distributed processing was

introduced.

We siII investigate conditions on various graphical
parameters of a graph G that are sufficient to insure that
Pd,r{c) is satisfied. various conbinations of size,

connectivj.ty, nlnimun degree, and density properties that inply
Pd,r{c) wiII be considered. In particular, the following four
results wiII be proved.

The first result does not have any connectivity assumptions,

and thus, has the extremely strong si.ze and degree conditions

needed to insure that a graph ls m-connected. The proof ls
straightforward.
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THE0REr ,, L€t d > 2 and n be positive integers. Let G

be a graph of order n, for which at least one the following
conditions hold:

has at least {tJl) + ro edges.

has nininun degree Un + n)/21.

Then G satisfies Pdrr. Further, each condition is sharp.

Sufficiently large connectivity rill guarantee that Pd,r{c)

is satisfied, and the following result gives the ninlmum such

connectivity that will suffice.

THE?REII 2t L€t d and n be positive integers, and 1et c

be a graph of order n. If G has connectivj.ty exceeding

(n - n)rzd + to - 1., then Pd,n(G) is satisfied. This result is
the best possible in that there is a graph which has connectivity
(n - n)/d + E - 1 that does not satisfy Pd,D(c).

If the graph is known to be D-connected, then the degree

condition needed to insure P_d,r(e) is greatly reduced, as the

following result indicates.

TltEoRE,l 3t L€t m and d be positive integers, and let G

be an D-connected graph of order n. If G has minimurn degree

exceeding L(n - rn + 2)/ Ud + 4)/3JJ + rn - 2, then G satisfies

Pd,n(G) '

If a graph G has connectivlty at least n, then a density

condition on the edges of G can lnsure that Pdr, is
satlsfied. With thls ln nlnd, for a graph G and any posltive

integer 6, let den(Grs) be the uininum nunber of edges Ln any

Induced subgraph of G on s vertices. The followlng result
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glvee a sufficient restriction on den(c,s) to insure pd,r.

THE0REil 4s Let D and d > 2 be positive integers, and let
c be a k-connected graph (k > n) of order n. If there
exists soue s (e ( (k-n+l) ld/z)), such that G satisfies the
inequality

den(G,6) > (3/4rs ls/ 1A/2)1,

then c has property Pd,D(G).

The density condl.tion in Theoren 4 is not the best
possible, but an example nill be given in the next section to
indicate that it has the correct order of uagnitude.

Notation and standard definitions in the paper will
generally follow that found in [1]. Any special notation siII
be descrLbed as needed.

2. EXA!.TPI,ES

craphs vith the aame connectivity, and even the Eame niniual
degree, can have vastly different trtenger type path systens.

Conslder the generalized vheel graph Wn-zrn-m+2 = &-Z f Crr-.*2,

shich has order n, and connectivlty and minlmal degree m. It
ie easy to see that thls graph does not satisfy Pn-n,D, sl.nce

any m lnternally vertex disJoint paths betrreen a palr of
adJacent vertices on the rin of the wheel rrill have one path that
contains aI1 of the vertlces of the riu of the wheel. On the

other hand, the D-cube Qn has order n = 2D, connectlvity and

uininal degree D, and it satisfies Pn+l,u. Ttris last
assertion is easy to verify by an inductlon argument on the index

n of the m-cube.

239



,il.ttteel typert graphs give inportant lnforoation on the

extremal properties related to Pd,r' Consider the wheel graph

Wr = K1 + C. that has r spokes and r vertices on the rim'

By replacing each vertex of Wr with a complete graph' and

rnaking each vertex of the corresponding conplete graph adjacent

to the vertices in the neighborhood of the replaced vertex' a new

graph is obtained. A finite nunber of applications of this

process gives a farnily of seneralized nhccls' Order the

vertiees of wr starting with the center and followed by the

vertices on the rim in a natural order around the cycle. For

positive integers p(i) (O ( i ( r), there is a generalized

whee1, which we will denote by w(p(o),P(1),...,P(r) ), obtained

fron wr by replacing the lth vertex h'ith a complete graph

htit. This graph has p(o) + "' + p(r) vertices' Note that

if each p(i) - 1, the graph is isornorphic to wr'

In many of the cases of lnterest to us, nost of the p(i)'s

tn the generallzed wheel wlII be the same, so ne will adopt the

nore compact notation of representing the sequence

(p(j),...,p(k) ) uith p = p(j) = ... = p(k) bv (k-j+lrp).

Thus, w(L.ri1) = wr and w(m-2,n-n+2r]-l = Ih-z + cn-m*2, which

is the Eenerallzed wheel considered earlier in this section. For

the following faroilies of generalj.zed wheels, it vill be assurned

that d > 2 and D are fixed positive integers.

select any integer n such that n - m ls divlsible by d,

and consider the generalized wheel-

w(D-2,d, (n-n)/d, 1, 1) .

Let x and y denote the two vertices on the rirn of the

generalized wheel that are associated with the complete graphs

that contain a single vertex. This graph has order n,
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connectLvity n - 1 + (n - tn)/d > n, and m : 1 internally
disjoint paths of length at Dost 2 between x and y.

However, any path fron x to y not using any of the tn - 2

vertices in the center of the generalized wheel or the edge ry
has. length at.Ieast d + 1. . Therefore, w(n-2,d; (n-rn),/dr 1r 1)

does not satisfy Pdrr. We will verify in Theorern 2 that any

graph with connectivity exceedlng (n - rn),rd + n - 1 does

satisfy Pd,r.

Se1ect any posltlve lnteger P, Iet n - (d + {)P * tr - {,
' and consider the graph

tf (n-2, 3p-2, d-2 ip, 3p-2, 1, 1) .

Again, let x and y be the vertlce" o. the rirn of the

generalized wheel associated vlth the conplete graphs with a

slngle vertex. This graph has order n, uininun degree

3p + D - 3 - 3(n - u + 4)/(d + {) + D - 3, and connectivity
p+E-118. Justasbefore,anypathbetrreen x and y that
does not contain the edge xy or any of the E - 2 vertices ln
the center of the graph has tength at least d + 1. lfhus, this
graph does not satisfy Pdrr, but has nl.nluun degree of the 6atle

order of nagnitude as the degree condition in the hlpothesis of
Theoren 3.

Let k ) n be a fixed positive integer, and consider the

following generalized vheel of order n which we will denote by

fl1:

flt = w(n-z,d-1tk-m+l,n-n-(d-1) (k-n+l),1,1) .

For n sufficiently large, this graph has connectivity k but

does not satisfy Pdr, for the saue reasons described ln the

previous exanples. Also, thls graph ls edge DaxlDal ln that the

addition of any edge will insure that Pd,, is satLsf.led.
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Denote by b the graph obtained frou the graph

W(n-1,d-l;k-m+1,n-5- (d-1) (k-n+l) -1, 1, 1)

by deletlng the edge between x and y, where x and y are

the verticea on the rin associated vith the co:nplete graphs on a

single one vertex. The graph Hz also has order n' and

does not satlsfy Pd,rr, but the addition of any edge will inpty
Pdrt'

Each of the graphs t and k are very dense

graphe. one way to ueasure this density is to deternine the

nunber of edges contained ln induced subgraphs. Recall, for each

poeltlve lnteger s and graph c, den(G,s) is the ulnimum

nunber of edges ln any induced subgraph of c on s vertices.
Thus, den( l{rs) is defined for i = 1, 2. It is easy to
verifythat den(tl,s) lden([,s) for s (n-n+1,

and the reverse inequality is true for the renaining values of
s. L€t

den(n,k,s) = uin(den( ll1 ,s), den( $,s) ).

Theoren 4 gives sone indication that there is a positive answer

to the question: For a fixed s, Eust any k-connected graph G

of order n sith den(G,s) > den(n,k,s) satisfy Pd,r.
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3. RESULTS

There are obvLous condltlons on the size and nlnLnurn degree

of a graph G that lnsure that Pd,r{C} holds. For posltlve
integers r ( s, coneider the graph h_f + (K, v Ks), erhich

has connectivity m - 1 and rnl-nlnun degree u + r - 2. This
graph, which we will denote by G(r,s), clearly does not satisfy
Pd,r, because of the connectlvity condition. The graph

c(I,n-n) has {t]1) + D - 1 edges. we will verify Ln Theorera 1

that this is the maxinuu nuDber of edges in a graph of order n

that, does not satisfy Pd,r. The graph

G( Un-E+l.) /2J, l(n-m+tl/2'D has uiniual degree L(n-tD+l)/zl. It
will be shown in Theorern 1 that this is the largest possible
rnini-num degree in a graph not satisfying pd,r.

TllE?REtt 1, L€t d > 2 and E be positive integers. Let G

be a graph of order n, for which at least one of the following
conditions hol-d:

has at least {n]1) + u edges.

has minimun degree (n + ra)rz2J.

Then G satisfies Pdrr. Further, each conditlon ls sharp.

PR00F3 Consider vertices x and y of G, and let N be

those vertices of G vhlch are adJacent to both x and y. If
N has at least, m vertices or just E - 1 vertices uhen x
and y are adjacent, then Pd,, is satlsfied. fn fact, all of
the paths have length at nost 2. Suppose this is not true.
This inplles c has at least n - n edges, and either x or
y has degree less than ltn + ml/2J, a contradictlon. Tha

exiroples described prior to the stateuenL of fheore! 1 lnply the

aharpness of the condltlons, and conplets the proof. I

(1) c

(2t c
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Both of the conditLons of Theorem 1 are so strong that

there are m paths of length either 1 or 2 between each pair

of vertices. Thus, the paraneter d does not effect the size or

roj.nimurn degree needed to iutply Pdrr.

The generalized wheel w(n-2,di(n-rn)/dr1,1) discussed in

the previous section shows that in a graph G of order n, the

connectivity of G must exceed (n - n)rzd + m - 1 for Pd,, to

hold. Theoren 2 verifies that this is also sufficient.

T,IEORE,I 2, Let m and d be positive i.ntegers, and Iet G

be a graph of order n. If G has connectj.vity exceeding

(n - n)rzd + m - 1, then Pdrrtc) is satisfied. This result is

the best possible in that there is a graph which has connectivity
(n - n)rzd + m - 1 that does not sati.sfy Pd,E(G).

PRooFt The necessity of the condition has already been

exhibited. The suffici.ency can be verified by a counti-ng

argunent. L€t x and y be vertices of G. Since G is

k-connected for some k > (n - E)/d * D - 1, there are k

internally vertex disjoint paths, say P1, ..., Pk, between x

and y. I{e can assune the paths are ordered by their length. If
Pd,. ls not satlsfied, then at most m - 1 of these paths have

length at rDost d, so each P1 has length exceedinq d for
I ) ru. AIeo, the total nunber of lnternal vertices in the m - 1

shortest pathe ls at least u - 2, and there will be equality
only uhen there ls one path of length 1 and D - 2 paths of

Iength 2. Therefore, by counting the internal vertices in the

k paths along with x and Y, ve have the nuraber of vertices

in G ls at least

d(k - tD + 1) + (D - 2t + 2 > d(n - n)/d + m = n.

Sl,nce thle le luposslble, the proof of Theoren 2 Ls complete. I
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The rnininua degree in a graph G required to lnsure
property Pd,u(G) was considered in Theorem L. Theorem 3 shows

that the Einimum degree needed is less if G is m-connected.

However, one of the generalized wheel examples shows that the
nininun degree rnust exceed

(3(n - n, + 4'l/ (d + 4)) + !tr - 3.

Theoreu 3 indicates that thls is asyrnptotically the correct value.

THE0REii 3t L€t D and d be positJ-ve integers, and let G

be an D-connected graph of order n. If c has minLrnum degree

exceeding [(n - n + 2l/ Ud + 4l/3JJ + n - 2, then G satisfies
Pd,r{c1 '

PR00Ft [.Ie can assume that d I 2, slnce the result ls
trivial for d = 1. L€t G be a graph of order n that does

not satisfy P6,r(G). select vertlces x and y for whl,ch

there do not exists m vertex disJolnt paths, each of length at
rnost d, between the tuo vertl.ces. Since G is D-connected,

there are D vertex disjoint paths between x and y. Se1ect

n such paths with the suE of the lengths a mininum. Denote the
paths by Pa, P2, ..., Par and 1et 11 d ,z I ... ( rn be the
respective lengths of the paths. By assurnption, r, > d. Let H

be the subgraph induced by the vertices on these D paths. Then

r = 11 + ... + rm - rn + 2 is the nunber of vertices in the
subgraph H.

Assume Pm = (x = v6r v1r ..., vr, = y). SLnce ru ) d, we

can select the set X = (vgr v3r ..., v3(t_f1) with
t = Ud+4)/3J. We sill deternine an upper bound on the sun of
the degrees of the vertices in X.
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Any vertex not in H can be adjacent to at most a single
vertex of X, for othervise the path pD could be shortened.
So, the suro of the degrees of the vertices of x relative to
G-H isatmost n-r.

The ninirnality of the length of the path pn inplies that
there are no chords along the path. Therefore each vertex of X

is adjacent to at most 2 vertices of pr, and the sum of the
degrees of the vertices in X relative to pm is at nost
2t ( r, + 3 - t. In fact, unless x is adjacent to y, the
right hand side of the ineguality can be replaced by rn + 1 - t.

FinaIIy, lf v:t is adjacent to an internal vertex u of a

path Pk for k ( rtrr then ,fJ for J > I cannot be adJacent

to any vertex of Pk that precedes u on the path (considered

as starting at x and endlng at y). otherslse the paths Pm

and Pk coul.d be replaced by two paths o'f shorter length.

Therefore, each interior vertex of Pk is adjacent to at nost

one vertex of x except for posslbly t - 1 vertices (counting

uultipllcities). Thus, the sun of the degrees of X relative to
the interior vertices of Pk is at most

. rk-1+(t-1)=rk*t-2.

Note that if Pk contalns Just the edge XY, then there

are no edges betrf,een X and the interior vertices of P1, which

yields a bound strictly less than rk + t - 2. By taking this
fact j.nto account along with the effect the edge xy has on the

nunber of edges between X and Pr, ve have that the sun of the

degrees of the vertices in X is bounded above by

(n-r) + (r,n+l-t) * ET=l (ri+t-2) + 1 {n - m + 2 + (!0 - 2)t.
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Therefore, at least one of the t vertices in X has degree at
rnost (n - ,o + 2l/t) + n - 2. This gives a contradiction nhich
completes the proof of Theoren 3. I

Before proving Theoretn 4, we need to nake sorne additional
observations. It is not difficult to calculate den( fl1,s)

fora specific s ( (k-n+ 1) l{d + tl/ZJ. Onecritlcal
observation needs to be made. Assume that S is a set of s
vertices of ,t1 which induces a minimun number of edges of

' ,ll. We can certalnly assume that S is a subset of the
vertices In the rln of the generalized wheel.

" L€t A, B, C and D be the vertices of S in four
consecutive sets of vertlces along the rlu of \, and 1et
a, b, c and d be the orders of the eets respectlvely. The

nunber of edges in the graph induced by these vertices is

N1 = (3) + rll + ttt + r$l +ab+bc+cd.

Considering the case when a > d and b ) 1, and noving one

vertex fron B to C, a set Sr is obtaj.ned with s vertices
that induces a subgraph with the foll.owing nunber of edges:

N2 = (3) + (b;1) + (crl) + t9l + a(b-1) + (b-1)(c+1) + (c+l)d.

Since Nl - Nz = a - d, ttre rnininun is also attained with Sr.
In fact, there is no Ioss of generality in assuning that b = o.
Repeated application of this observation and eleuentary
properties of binornial coefficients gives that the niniruun wirr
occur for a set S in which the nurnber of vertices in
alternating sets on the rin j.s O, and the number in the
remaining sets differ by at Dost 1 (with the exception of the
trro sets of rin vertices contained in the conprete graphs with a

single vertex).
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The previous observations reduce the calculation of

den('l{1,s)''to the deteruinatlon of the nuuber of edges in

ald + Ll/2J copies of complete graPhs each with either

lsl l{d + L|/}JJ or l'sl (d + Ll/2)1 vertices- rt should be

noted that some rninor adjustrnents must be uade in this
calculation to account for the fact that a rolninurn set' s

can contain vertices in the two slngteton vertex sets on

the riur. Ho\dever, the order of nagnltude of den( lt1 rs) is

sls/ Vd+ll/2JJ't/2. Therefore, the denslty of 
"l 

irnplies that

the denElty condltion ln Theoreu 4 hae tite correc! order of

nagnitude, and the constant factor cannot be reduced by more than

a factor of 2/3.

We need the folloiring technical leuna to prove Theorem 4'

The essential observation of the proof of Lenma 5 uas used in

the previous proof. However, since the fact will be applied

repeatedly in the proof of Theorem 4, it is stated separately

for easy reference.

LEtt,tA s, I€t P and Q be internally vertex disjoint paths

from x to y in a graph G, such that their sum of their

lengths is a uinimum. If A and B are subsets of vertices of

P and Q respectively, such that A does not contain any pair

of consecutive vertices on P, then the number of edges betweeen

A and B isatmost hl+ lBl-1.

PRooFs Let A = {a1r d2t ..., op} and B = (b1, b2, ..., bg}

with the vertices listed in the order they appear on the path'

If dr is adjacent to b", then ai is not adjacent to bj

for any i > r and j < s; otherwise' there would be a pair of

paths fron x to y wlth the sun of their Lengths less than

that of P and A. Therefore, each vertex of B will be

adJacent to at uost 1 vertex of A, except for possibly

1A8



ht-
Lemma

1

5.

(counting nultiplicities) vertices. ThiE provea

I

TtlE0RE,l It Let m and d > 2 be positive integers, and let
c be a k-connected graph (k ) ro) of oider n. If there
existe sone a (E ( (k-D+1) ld/zJt such that c satLsfles the

lnequallty

den(G,s) > (3/4ls ls/ ld/2J'lt

then G has property Pd,D(c).

PRoof: As6utre c does not satisfy Pd,r{c), and let x and y

be a pair of verti.ces for which the appropriate paths do not

exist. Select k internally vertex disjoint paths, say

P1r P2, ...1 Pp, from x to y so that the sum of the lengths

of the paths is a uiniraum. Assume that the lengths of the paths

are p1 t p2 J ... 3 pk respectively. By assumption we have

Pi, d for all i ):n.

For each i ) m, Iet Ai be the first 2 ld/zJ internal
vertices on Pi, and Ai and Ai the lA/2J odd and even

indexed vertices of A1 respectively. Ict r = fs/ la/2J-1. I{e

will select a set S of s vertices j.n c, by selecting either
A? or Ai for each i (n ( i ( n+r-l). Actually, on)-y a

proper subset of {-r+f or Afi-r+t nill be selected unless s

is divislble by ld/2J. An upper bound on the nunber of edges

in the subgraph spanned by S viII be determined.

The selection of S will be done by induction on i



(n ( 1 ( n+r-l), and in euch a rray as to miniroize the number of

edges in the induced subgraph. Fron Lenna 5 there are less than

3 ld/zJ edges between Aff and Au+t, so the nurnber of edges

betrreen Afi and elther af,*r or ofi*r, 6ay Afi*r, is less

than 3ld/2)/2. Assume the appropriate s'ubset of Ai, whLch ne

can aay wlth no loss of generallty ls Ai, has been selected for

all I < j. Repeated appllcatlon of Lemma 5 lnplies that the

nunber of edges between AJ and the union of the A? for i < j

is less than 3(j - nl ld/zJ. Ilence, for an appropri.ate sel"ection

of a subset of Aj, say A3, the nunber of edges between thi.s

subset and the previously chosen subsets is at most

(3/21 6 - al ld/2). lfherefore, by Lnduction, s can be chosen

such that the nunber of edges in the induced subgraph is less

than

(3/21 1d/2J(1 + 2 + ... + (r-1)) < (3/4ls ts/ ld/2J1.

This contradiction coupletes the proof of Theoreu 4.

Note that for s 3 ld/2J, the inequality in the staternent

of TheoreB 4 is den(G,s) > 0. fheorem 4 for this special case

cones from the trivial observation that any set of vertices that

are not consecutive on a uinlual length path cannot be adjacent.

If the path has length greater than d, there exist ld/2J

such vertices.
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4. PROBLEMS

There are several natural and interesting guestJ.ons related
to the results presented that have not been answered. The

density function in Theorem 4 has the sarne order of uagnitude as

the density function den(nrkrs) defLned fron the generalized

sheel graphs \ and h. can one shov, for a fixed s that
any k-connected graph c of order n such that each induced

subgraph on s vertices has more than den(nrkrs) edges

satisfies Pd,n(c)?

Miniraal connectivity and degree conditions that separately
imply Pd,, have been investigated. Also consLdered nas the
minimal degree condition sufficient for Pd,, assuming the
graph was m-connected. However, it is naturaL to expect that
with higher connectivity, the degree condition needed to irnply
Pd,, would be less. This relationship betyeen these trro
parameters and what is needed to give pd,, should be studied.

Recently, classical results on paths and cycles in graphs

that were based on degree conditions, such as rninimal degree and

the sum of the degrees of nonadjacent vertices, have had

neighborhood condition analogs (see [4] and [5]). One such

neighborhood condition involves the uinimum nuurber of vertices in
the union of the neighborhoods of each pair of nonadjacent

vertices of the graph. Recall, that in the generalized wheel

graph W(n-2,n-n+2;1) the order of the union of a nonadjacent



pair of vertices can be as small as m + 1, while in the m-cube

it is at least 2m - 2. However, the minimurn degree and the

niniroun eun of the degrees of nonadjacent vertices is the same

for the two graphs. This indicates that the relationship between

nelghborhood conditions and property 
. 
Pd,, should be

lnvestlgated, because neughborhood conditions nlght yield sharper

results than degree conditions.

Also, one need not consider only nonadjacent pairs of

vertices, but adjacent pairs or all pairs of vertices can be

considered ln neighborhood conditions inplying Pdrr- In

addition, one need not restrict consideration to just the union

of the neighborhoods of pairs of vertices. For any fixed integer

t, the nurnber of vertices in the union of the neighborhoods of

any set of t (nonadjacent) vertices can be considered in the

neighborhood condition. For all of these possS'bilities of a

neighborhood condition, the generalized hrheel and the cube have

significantly different properties, so rnany interesting problems

remain.

252



5. BEEEBENEES

tfl tI. Bezhad, G. Chartrand and L. Lesniak-Foster, Graphs and
Diqraohs,'Prindle tfeber & Schnidt, 1979.

121 J. Bond and C. Peyrat,,Dlaneter Vulnerabillty in Netsorks,

, (eds. Y. Alavl, G. Chartrand, L. Lesniak,
C. E. Wal1), 1985, John Wiley & Sons, 123-149.

t3l F. R. K. Chung and M. R. Garey, Dlaroeter Bounds for Altered
Graphs, ;f. Graph Ttleorv, 8(1984), 511-534.

t4l R. Faudree, R. Gould, lll. Jacobson and R. Schelp,
Neighborhood Unions and Hauiltonian Properties of Graphs, J.
Comb. Theorv B (to aPPear).

tsl R. Faudree, R. Gould, M. Jacobson and R. schelp, ExtreDal
Problems involving Neighborhood Unions, J. Graph lflreorv (to
appear).

t6l tit. Hager, A Mengerian theoreu for Paths of Length at Least
Three, J. Graph Theorv 10 (1986), 533-540.

t7] L. LovAsz, V. Neumann-Iara and M. Plummer, llengerian
Theorerns for Paths of Bounded Length, Periodica l,lath. Huno.
9 (1978) , 269-275.

t8l K. Menger, Zur Allgetneinen Nurventheorie, Fund. Uath. 10
(L927),95-115.

t9l L. Montejano and v. Neumann-Lara, A Variation of l'tengerts
Theorem for Long Paths, J. Cornbin. lheorv B 36 (1984),
2L3-2L7.

[10] E. T. Ordman, Fault-to]erant Netlrorks and Graph
Connectivity, preprint.

t11] L. Pyber and Zs. Tuza, Mengrer-tlTle theorerus with restrictions
on path lengths. subnitted.

?s3


	Menger's Theorem and Short Paths
	Recommended Citation

	tmp.1624314243.pdf._IxLA

