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This paper is dedicated to the memory of our friend and colleague, Richard Schelp

A graph is claw-free if it does not contain an induced subgraph isomorphic to K1,3. Cycles in claw-
free graphs have been well studied. In this paper we extend results on disjoint cycles in claw-free
graphs satisfying certain minimum degree conditions. In particular, we prove that if G is claw-free
of sufficiently large order n = 3k with δ(G) � n/2, then G contains k disjoint triangles.

1. Introduction

In this paper we consider only graphs without loops or multiple edges. We let V (G) and E(G)

denote the sets of vertices and edges of G, respectively. The order of G, usually denoted by n,
is |V (G)| and the size of G is |E(G)|. For any vertex v in G, let N(v) denote the set of vertices
adjacent to v and N[v] = N(v) ∪ v. The degree of a vertex v is |N(v)|, and we let δ(G) and Δ(G)

denote the minimum and maximum degree of a vertex in G, respectively. If U ⊂ V (G), we will
use G[U] to denote the subgraph of G induced by the vertices in U, and let E(U1, U2) denote the
set of edges with one end in U1 and one end in U2.

Let G and H be graphs. We say that G is H-free if H is not an induced subgraph of G. In
this paper, we are interested in determining the number of disjoint cycles possible in a claw-free
graph which satisfies certain minimum degree conditions.

Disjoint cycles in claw-free graphs have been studied in a variety of papers. For example, H.
Wang [5] showed the following.

Theorem 1.1. For any integer k � 2, if G is a claw-free graph of order n � 6(k − 1) with
δ(G) � 3, then G contains at least k disjoint triangles or belongs to a special family that has
only k − 1 disjoint triangles.
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130 R. J. Faudree, R. J. Gould and M. S Jacobson

Chen, Markus and Schelp studied independent cycles based on edge density [2].

Theorem 1.2. Let k � 1 and G be a K1,r-free graph of order n and size q.

(1) If r = 3 and q � n + 1
2
(3k − 1)(3k − 4) + 1, then G contains k disjoint cycles.

(2) If r � 4 and q � n + 16rk2, then G contains k disjoint cycles.

The range of values for the number of cycles in a 2-factor of a 2-connected claw-free graph
was studied in [1].

Theorem 1.3. If G is a 2-connected claw-free graph with δ(G) � n−2
3

, then G contains a 2-
factor with exactly k cycles for 1 � k � n−24

3
. Furthermore, this result is sharp in the sense that

if we lower δ(G) we cannot obtain the full range of values for k.

We will also need the following results.

Theorem 1.4 (Corradi and Hajnal [3]). If G is a graph of order n = 3k with δ(G) � 2n/3,
then G contains k disjoint triangles.

Theorem 1.5 (Li, Rousseau and Zang [4]). For k fixed and n → ∞, the Ramsey number
satisfies

r(Kk,Kn) � (1 + o(1))
nk−1

(log n)k−2
.

2. Key examples

We now examine several key examples that will show the sharpness of our later results.

Example 1. Suppose we are interested in covering our claw-free graph with disjoint triangles;
hence n must be divisible by 3. We will show that the minimum degree is n/2, where n � 9 is
required. First note that at least nine vertices are required. Consider the wheel on six vertices;
that is, a C5 with another vertex adjacent to each vertex of the cycle. This graph has order six, is
claw-free, and has minimum degree 3, but clearly does not contain two vertex-disjoint triangles.

Next, to see that minimum degree n/2 is required, consider the graph G1 formed by taking
a copy of H1 = K3t+2 and a copy of H2 = K3t+1 and adding edges that match each vertex of
H2 with a distinct vertex of H1. It is clear that any attempt to cover the vertex set of G1 with
disjoint triangles requires either two vertices of H1 to be in a triangle with one vertex of H2 or
two triangles with single vertices in H1 and two vertices in H2. Neither case is possible as no two
vertices of Hi have a common neighbour in Hj , for i �= j. Finally, note that δ(G1) = (n − 1)/2;
hence, n/2 is required. This is the sharpness example for Theorem 4.1.

Example 2. Next we ask the question of what minimum degree is required for a claw-free
graph G to have a 2-factor with exactly two cycles? The graph G2 of Figure 1 has order n and
δ(G2) = n−1

3
, but clearly cannot be covered by two cycles. Thus δ(G) � n/3 is required. This
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Figure 1. Claw-free graph G2, with no 2-factor consisting of two cycles.
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Figure 2. The graph G3 with only kt cycles possible in a 2-factor.

is a sharpness example for Theorem 3.5 at the low end of the range for k cycles, namely two
cycles.

Example 3. Now we ask the question of how many cycles are possible in a 2-factor of a claw-
free graph with minimum degree at least n/k for some k � 2? The graph G3 of Figure 2 consists
of k copies of the graph Kn/k with an edge between two copies forming them into a ring. This
graph has minimum degree n/k − 1. If n/k = 3t + 2, then n = 3kt + 2k and the graph could
possibly contain as many as kt + � 2k

3
	 cycles in a 2-factor. But clearly only kt disjoint cycles are

possible here. This example applies to Theorem 3.5 and shows the upper limit on the number of
disjoint cycles, namely n/3 − 2, when k = 3.

Example 4. For n − 1 divisible by k, consider the graph G4 formed from copies of H1 = Kn−1
k

and copies of H2 = Kn−1
k −1 as follows. Take a new vertex and join it to all the vertices of a copy

of H1 and to all vertices in a copy of H2. Now take another new vertex and join it to our last
copy of H2 and to a new copy of H2. Repeat this process until k − 2 copies of H2 have been
included. We complete the construction by taking another new vertex and join it to all vertices
of the last copy of H2 and to all the vertices of a new copy of H1, obtaining (see Figure 3) a
graph composed of a ‘path’ of k complete subgraphs with k − 1 connecting vertices. The graph
G4 has order n and δ(G4) = n−1

k
, and clearly has no 2-factor composed of k − 1 cycles. This is

the sharpness example for Theorem 3.4.
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Figure 3. G4 composed of k blocks with no 2-factor with k − 1 cycles.

...
...

...

A B C

Figure 4. G5 with δ = n/3 and n/3 − 2 triangles.

Example 5. Consider the graph G5 formed by taking three copies of the graph Kn/3, say
A,B, C. Suppose that V (A) = {a1, a2, . . . , an/3}, V (B) = {b1, b2, . . . , bn/3}, and V (C) = {c1, c2,

. . . , cn/3}. Now place a matching between the odd labelled vertices of A and B, that is, match
a2i−1b2i−1. Next we match the even labelled vertices of A with the odd labelled vertices of C,
namely, match a2ic2i−1. Finally, match the even labelled vertices of B to the even labelled vertices
of C (see Figure 5). The graph G5 has minimum degree n/3. If n = 9k + 6, then each of A, B
and C contains 3k + 2 vertices. Further, it is clear that the only triangles in this graph lie entirely
within one of A, B or C. Thus, there are exactly k disjoint triangles in any of A,B or C and hence
3k disjoint triangles in any largest collection in G5. Further, 3k = n/3 − 2. This is the sharpness
example for Corollary 3.2 and for the upper limit on the range of disjoint cycles in Theorem 3.5.

3. Disjoint cycles

We begin with a look at disjoint triangles.

Theorem 3.1. If G is a claw-free graph of order n and minimum degree δ, then G contains at
least F(n) = ( δ−2

δ+1
) n
3

disjoint triangles.

Proof. Select a disjoint cycle system T composed of the maximum number, say t, of triangles.
Let H = G − T be the subgraph of G that remains after removing T . The subgraph H must
have Δ(H) � 2, and hence H is the disjoint union of paths and/or induced cycles of length at
least four. Let E = E(H,T ) and note that |E| � (δ − 2)(n − 3t).
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Minimum Degree and Disjoint Cycles in Claw-Free Graphs 133

Claim. Each vertex in T has at most three adjacencies in H .

Assume this is not true and there is a v ∈ T such that degH (v) � 4. Suppose v ∈ T is on a
triangle with v1 and v2 ∈ T and v has four adjacencies to H , say x1, x2, x3, x4. Then, among
x1, x2, x3, x4, v1, v2 there must be a triangle (as r(K3, K3) = 6). Then there are three remaining
vertices, all adjacent to v, and a claw would exist unless at least two of these remaining vertices
are adjacent. But then we have another triangle formed, contradicting our choice of T , and
completing the proof of the claim.

From this we see that |E| � 9t, and so

(n − 3t)(δ − 2) � |E| � 9t.

Thus,

(δ − 2)n − 3tδ + 6t � 9t,

and hence

(δ − 2)n − 3t(δ + 1) � 0,

so that

t �
(
δ − 2

δ + 1

)
n

3
.

Note that when δ � n/3, it follows from Theorem 3.1 that t > n/3 − 3 for all positive integers
n � 3. Consequently, we state the following corollary, which is sharp in view of Example 5.

Corollary 3.2. If G is a claw-free graph of order n with minimum degree δ(G) � n/3, then G

contains at least n/3 − 2 disjoint triangles and this result is best possible.

We note, however, that for δ < n/3, Theorem 3.1 fails to provide a sharp result. This can be
observed for δ = 3, n = 6(k − 1); Theorem 1.1 implies at least k − 1 disjoint triangles, while
Theorem 3.1 only ensures (k − 1)/2 disjoint triangles.

Lemma 3.3. If k � 2 and G is a claw-free graph with δ(G) � n/k, then the independence
number α(G) � 2k − 1.

Proof. Choose an independent set S with α = α(G). Let H = G − S be the remaining subgraph
of order n − α. Any vertex of H has degree at most two into S as G is claw-free. Further, each
vertex of S has all its neighbours in H . If E = E(S,H), then

α

(
n

k

)
� |E| � 2(n − α),

so that

α � 2kn

n + 2k
= 2k

(
n

n + 2k

)
< 2k,
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134 R. J. Faudree, R. J. Gould and M. S Jacobson

and hence

α(G) � 2k − 1.

Theorem 3.4. Let k � 2 be a positive integer. If G is a claw-free graph of order

n � 10k4

with δ(G) � n/k, then G contains a 2-factor with k − 1 components. Further, this value of δ(G)

is best possible.

Proof. Select an independent set, say F , of k − 1 cycles, C1, C2, . . . , Ck−1, where | ∪k−1
i=1 V (Ci)|

is as large as possible. We know such a set exists from Theorem 1.1. Let H = G − ∪k−1
i=1 V (Ci).

Note that to any one cycle Ci, a vertex x ∈ V (H) has at most 2k − 2 adjacencies or else there
would exist an independent set (predecessors of adjacencies along with x) of order at least 2k, a
contradiction to Lemma 3.3. Thus, δ(H) � n/k − 2(k − 1)2.

But the bound on δ(H) implies that H contains a cycle of length at least δ(H). Thus, as F is
as large as possible, each cycle Ci, (1 � i � k − 1), contains at least δ(H) vertices.

This implies that for each i,

n/k − 2(k − 1)2 � |Ci| � n − (k − 1)(n/k − 2(k − 1)2) = n/k + 2(k − 1)3.

Also, |H | � n/k + 2(k − 1)3. If δ(H) � n/k+2(k−1)3+1
2

, then H is Hamiltonian-connected. This is
true since 2(n/k − 2(k − 1)2) � n/k + 2(k − 1)3 + 1, or equivalently n � 2k(k − 1)3 + 4k(k −
1)2 + k.

Claim 1. No cycle in F has two independent edges to H .

Suppose this were not the case: say Cb has edges wihi and wjhj with wi, wj ∈ V (Cb) and
hi, hj ∈ V (H). Without loss of generality suppose that wi, wi+1, . . . , wj contains more than half
the vertices of Cb. Then, consider the cycle

C∗ : wi, wi+1, . . . , wj , hj , P , hi, wi,

where P is a Hamiltonian path connecting hi and hj in H . The claim is that |C∗| > |Cb|. If
this is not true, then |Cb|+1

2
+ |H | � |Cb|, which implies 2|H | + 1 � |Cb|. However, this implies

2(n/k − 2(k − 1)2) � n/k + 2(k − 1)3, or equivalently, n � 2k(k − 1)3 + 4k(k − 1)2, a contra-
diction.

Claim 2. No two cycles of F have three independent edges between them.

Suppose instead that Ca and Cb had three independent edges between them. Without loss of
generality, say that a1b1, a2b2 and a3b3 are these edges with ai ∈ Ca and bi ∈ Cb, i = 1, 2, 3. Also,
without loss of generality, suppose that the segment (a1, a2) contains at most |Ca|/3 vertices and
(b1, b2) contains less than |Cb/2| vertices. Then, a new cycle

C ′
a : a2, a

+
2 , . . . , a1, b1, b

−
1 , . . . , b2, a2

replaces Ca and H replaces Cb to form a new system.
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If (2/3)|Ca| + (1/2)|Cb| + |H | > |Ca| + |Cb|, then the new system would have more vertices
than F . Assume not, and so |H | � |Ca|

3
+ |Cb|

2
. This implies n/k − 2(k − 1)2 � 5

6
(n/6 + 2(k −

1)3), since |Ca|, |Cb| � n/k + 2(k − 1)3. Hence, n � 12k(k − 1)2 + 10k(k − 1)3, a contradiction.
By Claim 1 we see that some cycles may have a vertex of large degree to H , but then no other

vertices of that cycle have any adjacencies in H .

Claim 3. Every vertex of H has at least two edges to F .

First suppose that degF (x) = 0 for some x ∈ V (H). Then, as deg(x) � n/k, we see that |H | �
n/k + 1. But since every cycle in F is at least as large as H , this implies that n � k(n/k + 1) =

n + k, a contradiction.
Next suppose that some vertex has only one edge to F . If this were the case then |H | � n/k −

1 + 1 = n/k, and hence |H | = n/k = |Ci| for i = 1, 2, . . . , k − 1. Also, no vertex of a cycle Ci

can have as many as 2k adjacencies into Cj for j �= i. Indeed, as α(G) � 2k − 1 and if successors
of neighbours of a vertex x ∈ Ci on Cj together with x do not form an independent set, then the
cycle Cj can be extended to n/k + 1 vertices. At most 4k vertices of Cj can have edges from each
Ci or from H , and so many vertices of Cj are left with no adjacencies outside Cj , contradicting
the minimum degree.

Claim 4. |H | � n
k

− k + 2.

It follows from Claim 1 that at most one vertex of H has more than one adjacency in Ci.
Hence, at most k − 1 vertices of H have degree greater than k − 1 to F . But this implies that
there are vertices in H adjacent to at most k − 1 vertices of F . Let v be such a vertex. Then
degH (v) � n/k − (k − 1). But this implies that |H | � n/k − (k − 1) + 1 = n/k − k + 2.

To complete the proof of the theorem, as noted above, for a given cycle Ci in F there are at
most two independent edges between Ci and Cj for j �= i, and at most one independent edge
from Ci to H . Thus, there are at most 2k − 3 such independent edges. This implies there are at
least |Ci| − 2k − 3 vertices of Ci, which we denote by C∗

i , that have at most 2k − 3 adjacencies
outside Ci. Thus, the graph induced by C∗

i is a dense graph for 1 � i � k − 1. This implies that
between any pair of vertices of Ci there is a path of length at least n/k − 2k + 3. From Claim 4
we see that

n

k
− k + 2 � |Ci| � n

k
+ (k − 1)(k − 2).

For convenience let H = C0. Consider a maximal set of independent edges M between the
Ci for 0 � i � k − 1, and assume that C0, C1, . . . , Cs are cycles that contain at least one vertex
of these independent edges. Form a new graph in which vertices v0, v1, . . . , vs correspond to the
cycles C0, C1, . . . , Cs and vivj is an edge if M contains an edge from Ci to Cj . Among these s + 1

cycles there are at least s + 1 independent edges, hence the graph contains a cycle.
Let vi1 , vi2 , . . . , vir , vi1 be the vertices of this cycle. Then, starting in Ci1 we may traverse all but

possibly 2k vertices before we cross to Ci2 . In Ci2 we traverse all but at most 2k vertices before
we cross to Ci3 , where we only traverse at most 2k vertices before we cross to Ci4 . Continuing in
this manner we return to Ci1 , completing a cycle in G. Now on the subgraphs of the cycles Cij ,
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136 R. J. Faudree, R. J. Gould and M. S Jacobson

for j � 3, we form new cycles using all the remaining vertices in the dense subgraph C∗
i . Thus,

at most 2k vertices have been lost from any of the original cycles.
We now form F ′ to include all these new cycles, as well as H if it is not part of these cycles, and

all the unchanged cycles from F . This is a system of k − 1 cycles that includes all but 6(k − 1)k

vertices of G, contradicting our choice of F and completing the proof.

The value of δ is best possible, as seen from Example 4.

Theorem 3.5. If G is a claw-free graph of sufficiently large order n with δ(G) � n/3, then G

contains a 2-factor with k disjoint cycles, for 2 � k � �n/3 − 2	.

Proof. When k = 2, the result holds by Theorem 3.4. Suppose we select a disjoint cycle system
F : C1, C2, . . . , Ct for each t � 3 in the range. We know such a system exists by Corollary 3.2.
Also suppose that F is chosen to contain the maximum number of vertices. Let H = G − F .

Note that if degH (v) > n/(t + 1) for all v ∈ V (H), then H contains a cycle of length greater
than n/(t + 1), and hence each cycle in F has length greater than n/(t + 1), or else we could find
a system larger than F . But then, |V (G)| = n > (t + 1)(n/(t + 1)) = n, a contradiction. Thus,
there exists a vertex x ∈ V (H) such that degF (x) � n/3 − n/(t + 1). Also, by Lemma 3.3 we
know that α(G) � 5.

Now consider a vertex x ∈ V (H) such that degF (x) � cn, for some constant c. We note that
x has at most one adjacency to any triangle in F and x has at most α(G) − 1 adjacencies to any
longer cycle, or else we could extend the cycle to include x and contradict our choice of F . Thus,
either x is adjacent to a large number of triangles in F or x is adjacent to a large number of longer
cycles.

Case 1. Suppose x is adjacent to at least nine longer cycles.

Choose a collection of nine disjoint longer cycles in F such that x has at least one adjacency
to each of the cycles. Note that as G is claw-free, the predecessor and successor of neighbours of
x on the long cycles must themselves be adjacent, or again we could extend F . Now by Ramsey
theory, if we consider a set of at least six cycles where x has an adjacency, then there will be a
triangle formed on three of these neighbours (or else a claw would exist). Also, considering the
set of longer cycles not involved in the triangle with adjacencies from x, we will find an edge
between two successors of neighbours of x, or else we would have an independent set of size
larger than α(G).

We now form a new disjoint cycle system, F ′, by combining x and the two long cycles where
there is an edge between successors of neighbours to form one cycle, using the triangle formed
on neighbours of x to form a second cycle, keeping the rest of each of the three cycles where a
vertex was deleted to form the triangle, and all the remaining cycles. This system clearly has more
vertices than F (by exactly one), again a contradiction to our choice of system. This contradiction
completes this case.

Consider the Ramsey numbers r1 = r(K3, K6), r2 = r(K6, Kr1 ) and r = r(K3, Kr2 ).

Case 2. Suppose x is adjacent to r triangles.
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Let {ai, bi, ci}, for 1 � i � r, be a set of r triangles such that xci ∈ E(G). Since G is claw-
free, there is no independent set of three vertices in {ci : 1 � i � r}, and so there is a clique,
say {c1, c2, . . . , cr2} of r2 vertices. As α(G) � 5, there is no independent set of six vertices in
{b1, b2, . . . , br2}, and so there is a clique with r1 vertices, say {b1, b2, . . . , br1}. Similarly, α(G) � 5

implies there is a triangle, say {a1, a2, a3} in {a1, a2, . . . , ar1}.
Then G[a1, a2, a3], G[b1, b2, b3] and G[x, c1, c2, c3], along with the remaining cycles of F , form

a system of t cycles larger than F , a contradiction.
Thus, in either case we reach a contradiction, and hence F must cover V (G), completing the

proof.

4. More on disjoint triangles

Our goal in this section is to prove the following result, which is best possible by Example 1.

Theorem 4.1. If G is a claw-free graph of sufficiently large order n = 3k with δ(G) � n/2,
then G contains k disjoint triangles.

Proof of Theorem 4.1. By Lemma 3.3, α(G) � 3. Theorem 1.5 implies that

r(Kt,K3) � c
t2

(log t)
.

Since G does not contain a claw, and δ(G) � n/2, the application of Theorem 1.5 implies for
sufficiently large n that G contains a large clique: in fact, G contains K

n
1
2

−ε , for any ε > 0. Select
such a clique and call it A. Now let B ⊆ G − A be those vertices of G − A whose degree to A is
at most 32. Also let C = G − (A ∪ B).

Note that

|E(A,C)| � |A|(n/2 − |A|) − 32|B|.

Thus,

|C| � |A|(n/2 − |A|) − 32|B|
|A| ,

as this measures the average degree into C for a vertex in A.
But then, as |A| � n1/2−ε,

|C| � n/2 − |A| − 32|B|
|A| � n/2 − o(n).

Let

B2 = {b ∈ B | degC(b) � 33}

and let B1 = B − B2. Note that each vertex in B1 has at most 64 adjacencies in A ∪ C (32 and 32).
Now we consider the partition V (G) = B1 ∪ R, where R = V (G) − B1.

Claim. B1 can be covered with triangles using at most 16 vertices not in B1.
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Note that if |B1| � n/2 − c
√
n, c a constant, then δ(G[B1]) � n/2 − O(n1/2+ε).

Case 1. Suppose |B1| > n/2 + 1.

This implies that |R| < n/2 − 1, and thus every vertex of R is adjacent to at least three vertices
of B1. If |B1| ≡ 0 mod 3, Theorem 1.4 implies a disjoint triangle cover. If |B1| ≡ 1 mod 3, then
any vertex of B1 with three or more adjacencies in R can be covered by a triangle (using two
of these R neighbours) and again Theorem 1.4 allows us to cover the rest of B1 with disjoint
triangles. Similarly, if |B1| ≡ 2 mod 3, then two vertices of B1 can be covered by a triangle with
one vertex each from R and Theorem 1.4 allows us to complete the disjoint triangle cover of the
rest of B1.

Case 2. Suppose n is even and |B1| = n/2 + 1, or n is odd and |B1| = (n + 1)/2 or |B1| =

(n − 1)/2.

If n is even and |B1| = n/2 + 1, then |B1| ≡ 1 mod 3, as n is divisible by 3. This implies that
|R| = n/2 − 1. Hence, every vertex of R is adjacent to at least two vertices of B1. Consequently,
either a triangle can be formed covering one vertex of B1 and two vertices of R, or it must be
the case that each vertex of B1 has at most two adjacencies in R and none of these adjacencies
form a triangle with the vertex of B1. But then we can easily find two disjoint triangles covering
two vertices of B1 and one vertex of R. A similar argument applies when n is odd and |B1| =

(n − 1)/2.
If n is odd and |B1| = (n + 1)/2, then |B1| ≡ 2 mod 3. This implies that |R| = (n − 1)/2.

Hence, every vertex of R is adjacent to at least two vertices of B1. Consequently, there are two
vertices of B1 adjacent to two disjoint 2-element subsets of vertices of R. Then two disjoint
triangles can be formed, each covering one vertex of B1 and two vertices of R.

In any case, the number of remaining vertices of B1 is congruent to zero mod 3. Then The-
orem 1.4 allows us to cover these remaining vertices with disjoint triangles.

Case 3. Suppose |B1| = n/2.

It follows that n/2 ≡ 0 mod 3, and hence B1 is dense and can be covered by disjoint triangles
using Theorem 1.4.

Case 4. Suppose n/2 − c
√
n � |B1| � n/2 − 1, c a constant.

Then vertices of B1 have at least two adjacencies in R, and one or two disjoint triangles can be
found to cover vertices of B1, leaving the number of remaining vertices in B1 congruent to zero
mod 3. Then Theorem 1.4 allows us to complete the disjoint covering of B1.

Case 5. Suppose 0 � |B1| � n/2 − c
√
n, c a constant.
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Cover B1 with as many disjoint triangles as possible. There remains at most 8 = r(K3, K4) − 1

vertices uncovered. But each of these vertices has at least c
√
n adjacencies to R and so they can

be covered with at most eight disjoint triangles. This completes the proof of the claim.
To complete the proof of the theorem we show that the vertices of R that have not been covered

by disjoint triangles can be covered.
Since we have shown that there exists a system of disjoint triangles that covers B1 and uses

at most 16 vertices of R, we extend this collection by adding disjoint triangles from B2. Since
α(G) � 3, this leaves at most 8 vertices of B2, say B∗, uncovered, as r(K3, K4) = 9. Since every
vertex of B2 has at least 33 adjacencies in C, and considering the neighbours of vertices of B∗ in
C, the vertices of B∗ can be covered by disjoint triangles.

Similarly, the remaining vertices of C can be covered by disjoint triangles, with the exception
of at most eight such vertices. But each of these vertices has at least 16 neighbours in what
remains of A, and so each of these vertices can be placed on disjoint triangles with two vertices
of A.

The remaining vertices all belong to A and can clearly be covered by disjoint triangles, com-
pleting the proof of the theorem.
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