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a b s t r a c t

For s ≥ 3 a graph is K1,s-free if it does not contain an induced
subgraph isomorphic to K1,s. Cycles in K1,3-free graphs, called claw-
free graphs, have beenwell studied. In this paper we extend results
on disjoint cycles in claw-free graphs satisfying certain minimum
degree conditions to K1,s-free graphs, normally called generalized
claw-free graphs. In particular, we prove that if G is K1,s-free
of sufficiently large order n = 3k with δ(G) ≥ n/2 + c for some
constant c = c(s), then G contains k disjoint triangles. Analogous
results with the complete graph K3 replaced by a complete graph
Km for m ≥ 3 will be proved. Also, the existence of 2-factors for
K1,s-free graphs with minimum degree conditions will be shown.

Published by Elsevier Ltd

1. Introduction

In this paperwe consider only graphswithout loops ormultiple edges.We letV (G) and E(G)denote
the sets of vertices and edges of G, respectively. The order of G, usually denoted by n, is |V (G)| and
the size of G is |E(G)|. For any vertex v in G, let N(v) denote the set of vertices adjacent to v and
N[v] = N(v)∪v. The degree d(v) of a vertex v is |N(v)|, andwe let δ(G) and∆(G) denote theminimum
degree and maximum degree of a vertex in G, respectively. If U ⊂ V (G), we will use G[U] to denote
the subgraph of G induced by the vertices in U and let E(U1,U2) denote the set of edges with one end
in U1 and one end in U2.

Let G and H be graphs. We say that G is H-free if H is not an induced subgraph of G. In this paper,
we are interested in determining the number of disjoint cycles possible in a K1,s-free graph which
satisfies certain minimum degree conditions.
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Disjoint cycles in claw-free graphs have been studied in a variety of papers. For example Chen,
Faudree, Gould, and Saito investigated the range of the number of cycles in a 2-factor of a 2-connected
claw-free graph G of order nwith minimum degree (n − 2)/3 in [1].

Theorem 1. If G is a 2-connected claw-free graph with δ(G) ≥
n−2
3 , then G contains a 2-factor with

exactly k cycles for 1 ≤ k ≤
n−24

3 . Furthermore, this result is sharp in the sense that if we lower δ(G) we
cannot obtain the full range of values for k.

Chen, Markus and Schelp studied independent cycles on the basis of edge density [2].

Theorem 2. Let k ≥ 1 and G be a K1,s-free graph of order n and size q.

(1) If s = 3 and q ≥
1
2 (3k − 1)(3k − 4) + 1, then G contains k vertex disjoint cycles.

(2) If s ≥ 4 and q ≥ n16sk2, then G contains k disjoint cycles.

The objective of this paper is to generalize the results for claw-free graphs proved in [3] to K1,s-free
graphs for s ≥ 4, and in particular to give analogues for the following three results.

Theorem 3. Let k be a positive integer. If G is a claw-free graph of order

n ≥ 2k4 − 2k2 + k

with δ(G) ≥ n/k, then G contains a 2-factor with k − 1 components. Further, this value of δ(G) is best
possible.

Theorem 4. If G is a claw-free graph of order n with δ(G) ≥ n/3, then G contains a 2-factor with k
disjoint cycles, for 2 ≤ k ≤ ⌊n/3 − 2⌋.

Theorem 5. If G is a claw-free graph of sufficiently large order n = 3k with δ(G) ≥ n/2, then G contains
k disjoint triangles.

We will need the following results in the proof of the main theorems. The next result, of Komlos,
Sarkozy, and Szemeredi [4], verifies a conjecture of Seymour. A consequence of this result is that if G
is a graph of sufficiently large order n = r(k + 1) with δ(G) ≥ kn/(k + 1), then G contains r vertex
disjoint copies of Kk+1.

Theorem 6. If k ≥ 1 and G is a graph of sufficiently large order nwith δ(G) ≥ kn/(k+1), then G contains
the kth power of a Hamiltonian cycle.

Ramsey numberswill be used in expressing the bounds on the number of vertex disjoint cycles and
vertex disjoint complete graphs in a K1,s-free graphwith variedminimumdegrees.Wewill denote the
Ramsey number r(Kk, Km) by the shorter notation r(k,m).

Theorem 7 (Li, Rousseau and Zang [5]). The Ramsey number

r(Kk, Kn) ≤ (1 + o(1))
nk−1

(log n)k−2
.

2. Disjoint complete graphs

The objective is to determine the number of possible disjoint complete graphs Km for m ≥ 3 in a
K1,s-free graph with minimum degree at least n/k for some k ≥ 2. The graph of Fig. 1 consists of k
copies of the graph Kn/k with an edge between two copies forming them into a ring. This graph has
minimum degree n/k−1. If n/k = (t +1)m−1, then n = ktm+k(m−1), but this graph will contain
at most kt disjoint copies of a Km. However, the order of the graph will accommodate as many as
kt +⌊

k(m−1)
m ⌋ disjoint copies of a Km. This implies that if G is a K1,s-free graph of order n andminimum

degree at least n/k, then the maximum number of vertex disjoint copies of a Km in G that will always
exist will be at most n/m − c for some constant c = c(s, k). It will be shown that this does, in fact,
always occur.



R.J. Faudree et al. / European Journal of Combinatorics 34 (2013) 875–883 877

Fig. 1. K1,s-free graph G1 of order n = ktm + k(m − 1), δ ≥ n/k, but only kt disjoint Km .

We begin with a look at disjoint triangles.

Theorem 8. For s ≥ 4 and r = r(3, s), let G be a K1,s-free graph of order n. If G has minimum degree δ,
then G contains at least F3(n) = ( 3(δ−s+1)

3δ+r−s−2 )
n
3 disjoint triangles.

Proof. Select a disjoint cycle system T composed of the maximum number, say t , of triangles. Let
H = G − V (T ) be the subgraph of G that remains after removing T . No vertex of H can have degree s
relative to H , since H is K1,s-free and contains no triangles. Thus for each h ∈ V (H), dT (h) ≥ δ − s+ 1.

Consider a triangle L ∈ T with vertices {x, y, z} and let {a, b, c} be the degrees of these vertices
with respect to H respectively. We can assume with no loss of generality that a ≥ b ≥ c. We will
show that a + b + c ≤ r + 2s − 5. Assume not. If a ≥ r , then |NH(x)| ≥ r , and since G is K1,s-free,
there is a triangle in H , a contradiction. If a < r , then b ≥ s− 1. Since G is K1,s-free, there is an edge in
the neighborhood NH∪{z}(y), and so there is a triangle L1 with vertices y and two vertices of NH∪{z}(y).
Since ⌈(r + 2s − 4)/3⌉ ≥ s + 1, there is an edge in the neighborhood NH∪{z}(x) that is disjoint from
the vertices in L1. This implies that there is a triangle L2 with vertices x and two vertices of NH∪{z}(z)
that are disjoint from L1. This contradicts the maximality of T . Thus, we can conclude that the vertices
of each triangle in T collectively have at most r + 2s − 5 adjacencies in H .

The previous observation implies that |E(T ,H)| ≤ t(r + 2s − 5), and so

(n − 3t)(δ − s + 1) ≤ |E(T ,H)| ≤ t(r + 2s − 5).

Thus,

(δ − s + 1)n ≤ (r − s − 2 + 3δ)t;

hence,

t ≥


3(δ − s + 1)

3δ + r − s − 2


n
3
. �

Consider the case when δ ≥ n/k for k ≥ 2. Thus,

t ≥


3(n/k − s + 1)

3n/k + r − s − 2


n
3
,

and so

t ≥


3n + k(r − s − 2)
3n + k(r − s − 2)

−
k(r + 2s − 5)

3n + k(r − s − 2)


n
3
.
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Therefore,

t ≥
n
3

−


(r + 2s − 5)k

9


.

Corollary 1. Let s ≥ 4, k ≥ 2, and r = r(3, s). If G is a K1,s-free graph of sufficiently large order n with
minimum degree δ(G) ≥ n/k then G contains at least n

3 − ⌈
(r+2s−5)k

9 ⌉ disjoint triangles.

Thus, for fixed s and k and n sufficiently large, a K1,s-free graph with minimum degree n/k has
n/3 − c vertex disjoint triangles for some constant c = c(s, k). More specifically, if s = 4, then
r = r(3, 4) = 9, and so we have the following bounds.

Corollary 2. If G is a K1,4-free graph of order n with minimum degree δ(G) ≥ n/3 then G contains at
least n/3 − 4 disjoint triangles, and if the minimum degree δ(G) ≥ n/2 then G contains at least n/3 − 3
disjoint triangles.

In K1,s-free graphs, strong minimal degree conditions also imply the existence of many vertex
disjoint copies of complete graphs Km for m ≥ 4. The following result, which is the analogue of
Theorem 8, is an example of this.

Theorem 9. For s ≥ 4 and m ≥ 4 let G be a K1,s-free graph of order n. If G has minimum degree δ, then
G contains at least Fm(n) = ( δ−r(s,m−1)+1

δ−r(s,m−1)+r(s,m)
) n
m disjoint copies of a complete graph Km.

Proof. Select a disjoint system D composed of the maximum number, say d, of complete graphs Km.
LetH = G−V (D) be the subgraph of G that remains after removing D. No vertex ofH can have degree
r(s,m − 1) relative to H , since H is K1,s-free and does contain a copy of Km. Thus for each h ∈ H ,
dD(h) ≥ δ − r(s,m − 1) + 1.

If a vertex in D has as many as r(s,m) adjacencies in H , then there would be a Km in H , a
contradiction. Thus, the number of edges between aKm ∈ D andH will be nomore thanm(r(s,m)−1).

The previous observations imply that

(n − dm)(δ − r(s,m − 1) + 1) ≤ |E(D,H)| ≤ dm(r(s,m) − 1).

Thus,

(δ − r(s,m − 1) + 1)n ≤ dm((r(s,m) − 1) + δ − r(s,m − 1) + 1);

hence,

d ≥


δ − r(s,m − 1) + 1

δ − r(s,m − 1) + r(s,m)


n
m

. �

Consider the case when δ ≥ n/k for k ≥ 2. Then, in general from Theorem 9,

d ≥


δ − r(s,m − 1) + 1

δ − r(s,m − 1) + r(s,m)


n
m

,

and thus,

d ≥


δ − r(s,m − 1) + r(s,m)

δ − r(s,m − 1) + r(s, n)
−

r(s,m) − 1
δ − r(s,m − 1) + r(s,m)


n
m

,

or equivalently

d ≥
n
m

−


r(s,m)

δ − r(s,m − 1) + r(s,m)


n
m

.

Therefore, when δ = n/k,

d ≥
n
m

−


nr(s,m)k

mn − kmr(s,m − 1) + kmr(s,m)


,
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Fig. 2. G2 composed of k − 1 blocks with no 2-factor with k − 2 cycles.

which implies

d ≥
n
m

−


r(s,m)k

m


,

since r(s,m) − r(s,m − 1) is a positive integer. �
This results in the following corollary.

Corollary 3. For s ≥ 4 and k ≥ 2 let G be a K1,s-free graph of order n. If G has minimum degree n/k, then
G contains at least n

m − c vertex disjoint copies of Km for some c = c(m, k, s). More specifically, G has at
least n

m − ⌈( r(s,m)k
m )⌉ vertex disjoint copies of Km.

For example, a graph G of sufficiently large order n with minimum degree n/4 will have at least
n/4 − 18 disjoint copies of a K4, since r(4, 4) = 18.

3. Disjoint cycles

The objective of this section is to determine the number of possible cycles in a 2-factor in a K1,s-
free graph with minimum degree at least n/k for some k ≥ 2. Consider the graph G2 formed by taking
one copy of Kn/(k−1) and identifying a vertex with a vertex in a copy of H2 = Kn/(k−1)+1. Now identify
a new copy of H2 with a different vertex of the last copy, and repeat this process until we have a
‘‘path’’ of subgraphs with k − 1 blocks (see Fig. 2). The graph G2 is K1,s-free and has order n, and
δ(G2) = n/(k−1)−1. Also, n/(k−1)−1 ≥ n/kwhenever n ≥ (k−1)k, and G2 clearly has a 2-factor
with k − 1 components, but no 2-factor with k − 2 cycles.

To verify that a K1,s-free graph G of order nwith δ(G) ≥ n/k has a 2-factor with k− 1 components,
we will need the following lemma on the independence number of such a graph.

Lemma 1. If G is a K1,s-free graph with δ(G) ≥ n/k for k ≥ 2, then the independence number α(G) ≤

(s − 1)k − 1.

Proof. Choose an independent set S withα = α(G) vertices. LetH = G−S be the remaining subgraph
of order n − α. Any vertex of H has degree at most s − 1 in S as G is K1,s-free. Further, each vertex of
S has all its neighbors in H . If E = E(S,H) is the set of edges between S and H , then

α
n
k


≤ |E| ≤ (s − 1)(n − α)

and so

α ≤
(s − 1)kn

n + (s − 1)k
= k(s − 1)


n

n + (s − 1)k


< (s − 1)k;

hence,

α(G) ≤ (s − 1)k − 1. �
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Theorem 10. Let k be a positive integer, and s ≥ 4. If G is a K1,s-free graph of sufficiently large order n
with δ(G) ≥ n/k, then G contains a 2-factor with k − 1 components. Further, this value of δ(G) is best
possible, in that δ(G) ≥ n/(k + 1) is not sufficient.

Proof. Suppose we select a vertex disjoint set system C with k − 1 cycles C1, C2, . . . , Ck−1, where
| ∪

k−1
i=1 V (Ci)| is as large as possible. We know that such a set exists from Corollary 1. Let H =

G − ∪
k−1
i=1 V (Ci).

Observe that with any one cycle Ci, a vertex h ∈ V (H) has at most (s − 1)k − 1 adjacencies, for
otherwise there would exist an independent set (predecessors of adjacencies along with h) of order
at least (s − 1)k, a contradiction to Lemma 1. Thus, δ(H) ≥ n/k − (k − 1)((s − 1)k − 1).

But the bound on δ(H) implies that H contains a cycle of length at least δ(H) + 1. Thus, as C is as
large as possible, each cycle Ci (1 ≤ i ≤ k − 1) contains at least δ(H) + 1 ≥ n/k − c ′ vertices for
some constant c ′

= c ′(k, s). This, in turn, implies that V (H) ≤ n/k + c for some constant c = c(s, k).
Hence, for n sufficiently large, H is dense and, in fact, H is hamiltonian connected, since 2(n/k− c ′) is
significantly larger than n/k + c.

Claim 1. No cycle in C has two independent edges to H.

Suppose this were not the case; say, Cb has edges wihi and wjhj with wi, wj ∈ V (Cℓ) and hi, hj ∈

V (H). Without loss of generality we can assume that wi, wi+1, . . . , wj contains more than half of the
vertices of Cb. Therefore, the cycle

(wi, wi+1, . . . , wj, hj, P, hi, wi),

where P is a hamiltonian path connecting hi and hj in H , is a cycle longer than Cb, contradicting our
choice of C.

Claim 2. No two cycles of C have three independent edges between them.

Suppose instead that Ca and Cb had three independent edges between them. Without loss of
generality say that a1b1, a2b2 and a3b3 are these edges with ai ∈ Ca and bi ∈ Cb, i = 1, 2, 3. Also,
without loss of generality, suppose that the segment (a1, a2) contains less than |Ca|/3 vertices and
(b1, b2) contains less than |Cb/2| vertices. Then, a new cycle

C ′

a = (a2, a+

2 , . . . , a1, b1, b−

1 , . . . , b2, a2)

replaces Ca and H replaces Cb to form a new system with more vertices than C, a contradiction.
By Claims 1 and 2 we see that some cycles may have a vertex of large degree to H , but then no

other vertices of that cycle have any adjacencies in H .
Observe that each vertex of H has edges to C. If this were not true, and dC(h) = 0 for some

h ∈ V (H), then since d(h) ≥ n/k, this implies that |H| ≥ n/k + 1. Since every cycle in C is at least as
large as H , this gives the contradiction that n ≥ k(n/k+ 1) = n+ k. By the same reasoning, no vertex
ofH has only one edge toC, because if this were the case thenwewould have |H| ≥ n/k−1+1 = n/k
and, hence, |H| = n/k = |Ci| for i = 1, 2, . . . , k− 1. But then every vertex of every cycle has edges to
other cycles, which is in contradiction to one of the claims 1 or 2.

The previous observations imply that each of the cycles Ci and H induce dense subgraphs of order
approximately n/k. That is, with the exception of a function of c∗

= c∗(k, s) vertices in each cycle, the
vertices have degree at least n/k − c1 for some c1 = c1(k, s). Since each cycle is only of order at most
n/k + c2 for some c2 = c2(k, s), these dense subgraphs will have strong hamiltonian properties. For
example, even after a small number of vertices are removed, a cycle will span the rest of the dense
subgraph.

Now suppose that H = {C0, C1, . . . , Cq} are the cycles with edges to other cycles. If we consider
these cycles as the vertices of a graph, then among these q+1 cycles there are at least q+1 independent
edges, and a cycle of cycles can be formed.

Say that {Ci1 , Ci2 , . . . , Cit , Ci1} are the ‘‘vertices’’ of this cycle. Then, starting in Ci1 wemay traverse
all but a function of k and s vertices before we cross to Ci2 . In Ci2 we traverse all but a function of k and
s vertices before we cross to Ci3 , where we traverse a minimum number of vertices (some function k
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Fig. 3. Claw-free graph G3 , with no 2-factor consisting of two cycles.

and s) before we cross to Ci4 . Continuing in this manner we return to Ci1 , completing a cycle. Now on
the other subgraphs corresponding to this cycle we form new cycles using a maximum number of the
remaining dense subgraphs. Thus, at most a function of k and s vertices has been lost from any of the
original cycles.

We now form C ′ to include all these new cycles, as well as H if it is not a part of these cycles, and
all the unchanged cycles from C. This is a system of k − 1 cycles that includes all but a function of k
and s vertices of G, contradicting our choice of C and completing the proof. �

The graph G2 in the case k = 3 shows that δ(G) ≥ n/2 is needed to obtain a Hamiltonian cycle in
a K1,s-free graph of order n. The graph G3 of Fig. 4 has order n and δ(G3) =

n−1
3 , but clearly cannot be

covered by two cycles. Thus δ(G) ≥ n/3 is required to have a 2-factor with just two cycles (see Fig. 3).

Theorem 11. If G is a K1,s-free graph of order n with δ(G) ≥ n/3, then G contains a 2-factor with k
disjoint cycles for 2 ≤ k ≤ ⌊n/3 −

r(3,s)+2s−5
3 ⌋.

Proof. When k = 2, the result holds by Theorem 10. Suppose we select a disjoint cycle system
C = {C1, C2, . . . , Ct} for each t ≥ 3 in the range. We know that such a system exists by Corollary 1.
Assume that C is chosen to contain the maximum number of vertices, and let H = G − C.

Observe that if dH(h) > n/(t + 1) for all h ∈ V (H), then H contains a cycle of length greater than
n/(t + 1) and, hence, each cycle in C has length greater than n/(t + 1), or we could find a system
larger than C. This implies |V (G)| = n > (t + 1)(n/(t + 1)) = n, a contradiction. Therefore, for each
t ≥ 3 there exists a vertex h ∈ V (H) such that dC(h) ≥ n/3 − n/(t + 1). We also have by Lemma 1
that α(G) ≤ 3s − 4.

Previous arguments imply that there is a vertex x ∈ V (H) such that dC(x) ≥ cn for some constant
c . Observe that x has at most 3s − 5 adjacencies to any cycle of C, since more adjacencies would
imply an independent set with at least 3s − 3 vertices using predecessors of the adjacencies of x and
x. Therefore, x is adjacent to a function of n different cycles of C, say q. Hence q ≥ cn/(3s − 5).

Let X = {x1, x2, . . . , xq} be the adjacencies of x in these q cycles. Since α(X) ≤ 3s − 4, there is
a subset X1 ⊂ X that induces a complete graph and |X1| ≥ q1/3s. Let X+

1 be the predecessor of the
vertices of X1 on the respective cycles. There is a subset X2 ⊂ X+

1 that induces a complete graph. This
can be repeated with the successors of the adjacencies of x to form a subset X3 ⊂ X2 with at least
two vertices. This implies that there are vertices y1, y2 ∈ X in cycles C ′ and C ′′ respectively such that
y1y2 ∈ E(G), y+

1 y
+

2 ∈ E(G), and y−

1 y
−

2 ∈ E(G). The two cycles C ′ and C ′′ can be replaced by the cycle
(x, y1, y2, x) and the cycle formed from C ′

− {y1} and C ′′
− {y2} using the edges y+

1 y
+

2 and y−

1 y
−

2 . This
contradicts the maximality of the cycle system C, and completes the proof of Theorem 4. �

4. Complete graph factors

In [3] it was shown that in a claw-free graph of order n = 3k, δ(G) ≥ n/2 is sufficient to imply that
there are k vertex disjoint triangles (Theorem 5). The minimum degree condition δ(G) ≥ n/2 is not
sufficient if the triangle K3 is replaced by the a complete graph Km for m ≥ 4 with n divisible bym.
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Fig. 4. G4 .

For a fixed integer p with n − p divisible by 2, consider the graph Kp + (K(n−p)/2 ∪ K(n−p)/2). Let
X = {x1, x2, . . . , x(n−p)/2} and Y = {y1, y2, . . . , y(n−p)/2} be the vertices of the two complete graphs.
Form ≥ 4 and for each iwith 1 ≤ i ≤ (n−p)/2 add the edges xiyi, xiyi+1, . . . , xiym−3 with the indices
takenmodulo (n−p)/2. Denote this graph by G4 (see Fig. 4). There is no Km in G4 with vertices in both
X and Y , and so all copies of a Km will have all of its vertices in either X or Y orm− 1 vertices in either
X or Y and one vertex in Kp. Therefore, if n is divisible bym, and there are n/m vertex disjoint copies of
a Km, then p = p1 + p2 such that (n− p)/2− pi(m− 1) is divisible bym for i = 1, 2. This implies that
p(m−2) is divisible bym. Hence, if p is chosen such that p(m−2) is not divisible bym and p < s, then
G4 does not contain n/m vertex disjoint copies of a Km. However, δ(G4) ≥ (n+ p− 8+ 2m)/2 > n/2
for m ≥ 4 and p ≥ 1. Thus, a minimum degree condition of δ(G) ≥ n/2 + c where c = c(m, s) will
be needed to imply the existence of n/m vertex disjoint copies of a Km.

Our goal in this section is to prove the following result.

Theorem 12. Let m ≥ 4 and s ≥ 3. If G is a K1,s-free graph of sufficiently large order n = km, then there
is a c = c(s,m) such that if δ(G) ≥ n/2 + c, G contains k disjoint copies of Km.

Proof of Theorem. By Lemma 1, α(G) ≤ 2s − 3. Since G does not contain 2s − 3 independent
vertices, Ramsey theory implies that G contains a large clique; in fact, G contains a K

n
1

2s−2
. Select such

a clique and denote it by A. Let B ⊆ G − A be those vertices of G − A whose degree to A is at most
r∗

= m(r(m, 2s − 2) − 1). Let C = G − (A ∪ B).
Observe that

|E(A, C)| ≥ |A|(n/2 + c − |A|) − r∗
|B|.

Thus,

|C | ≥
|A|(n/2 + c − |A|) − r∗

|B|
|A|

,

since each vertex in C has at most A adjacencies in A. However, since |A| ≥ n
1

2s−2 , and c and r∗ are
constants and not a function of n,

|C | ≥ n/2 − o(n).

Let

B2 = {b ∈ B | dC (b) ≥ mr(m, 2s − 2)},

and let B1 = B− B2. Note that each vertex in B1 has at most 2(m− 1)r(m, 2s− 2) adjacencies in A∪ C
and so if B1 is nonempty,

|B1| ≥ n/2 − 2mr(m, 2s − 2) ≈ n/2.
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Now we consider the partition V (G) = B1 ∪ D, where D = A ∪ B2 ∪ C . Note that we have both
|B1| ≈ n/2 and |D| ≈ n/2. If |B1| ≡ 0 mod m, then let B′

1 = B1. If |B1| ≥ n/2, then every vertex of D
must have at least c adjacencies to B1. Hence, as G is K1,s-free and c = c(s,m) is large, we may find a
Km containingm − 1 vertices of B1 and one vertex of D. Remove this copy of a Km. Continue to do this
until we get a subgraph B′

1 of B1 such that

|B′

1| ≡ 0 mod m.

If |B1| < n/2, then each vertex of B1 has at least c adjacencies to D. As before, we can find a copy
of Km containing one vertex of B1 andm − 1 vertices of D. Remove this Km and continue this until we
get a subgraph B′

1 of B1 such that

|B′

1| ≡ 0 mod m.

Now, since B′

1 is very dense and has order a multiple ofm, and n is sufficiently large, we may apply
Theorem 6 to B′

1 to obtain an independent set of disjoint copies of Km that covers all of B′

1.
We can find a copy of Km in the vertices of B2 as long as there are at least r(m, 2s − 2) vertices

remaining in B2. Each of the remaining vertices after the deletion of the Km have at leastmr(m, 2s−2)
adjacencies in C , so each of these remaining vertices can be placed in a Km usingm − 1 vertices in C .

We can find a copy of Km in the vertices of C as long as there are at least r(m, 2s − 2) vertices
remaining inC . Each of the remaining vertices after the deletion of theKm have at least (m−1)r(m, 2s−
2) adjacencies in A, so each of these remaining vertices can be placed in a Km using m − 1 vertices in
A. Since A is a complete graph, the remaining vertices of A can be partitioned into disjoint copies of
complete graphs Km. �
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