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ABSTRACT

A graph G with at least 2& vertices is lc-path pairable if for any /c pairs of distinct
vertices of G there are k edge disjoint paths between the pairs. For [ : 2 and 3,

and for any A ) 9, we will determine the minimal number of edges in a graph G of
maximum degree A that is &-path pairable.
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r. INTRODUCTION

We shall consider graphs without loops or multiple edges. Any such graph can
quite naturally represent a computer or communication network. There are various
rcasonable ways to measure the capability of the network represented by this graph
to transfer information and handle communications. We will consider the capability
o[ the network to allow messages to be passed simultaneously between any fixed
number of pairs of nodes of the network. with this in mind, we give the following
formal definition.

Definition . Given a fixed positive integer /c, a graph G is &-pctt pairablc if for any
pairofdisjointorderedsetsofverticesX-{r1rr2,...,2g}andY={yr,yz,...,Ur}
of G there are Ic edge.disjoint paths P;, where P; is a path from z; to y;, for 1 < j < &.

we note that the concept of lc-path pairable is related to several other concepts.
It is closely related to but is not the same a.s weakly /s-linkable (see [H]). (In both
weakly linked and path pairable graphs, /c edge disjoint paths are required, but
duplication of the pairs is allowed in the weakly linked case and prohibited in the
path pairable case.)

Let p1(n, A) be the minimum number of edges in a graph G of order n and maximum
dcgrce at most A that is /c-path pairable. our objective is to evaluate the function
fr(n,A). Useful in the determination of this function is the function pr(n,A,6),
which is the minimum number of edges in a graph G of order n with maximum
degree at most A and minimum degree at least 6 that is &-path pairable.

Any connected graph is l-path pairable, so p1(n,A) = n - 1 for any 2 < A <
n. We will prove the following theorems concerning 2-path pairable and B-path
pairable graphs (see Theorems I and 12) which determine p2(n,A) and ps(z,A)
assymptotically.

Theorem A. ForA ) 3 a fixed integer and n) 12A - 15,

pz(n,A) = (1+ e)n * c,

whereO < a < 13/6, and e dependsupon A, and approaches0 as A increa.ses.

Theorem B. ForA > I a fixed integer and n) 10A - 21,

pe(n, A) : (1 + e)n * c,

where 0 < a < 3f2, anil e depends upon A, and approaches 0 as A increasrs.

In case of A :3 and for n> 20, sharp results are proved, namely that p2(n,3) :
[Sl (Theorem 7), and pa(n,3) = [+l ] o, where o:0 or I (Theorem il).
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In [FGLI, fr(z,S) is investigated for [ ) 3. For these cases exact results are not
obtained. However, it is proved that for n sufficiently large there exist e1 and e2

(that depend upon Ic and approach 0 as rt increases) such that

Of course the major problem is to determine the function p1(z,A) precisely, but
this is probably very difficult for & > 3. What can be said about the structure of
/c-path pairable graphs, and is there a characterization of these graphs for small
values of /c are both interesting questions as well.

We begin the determination of the function ft(n,A), forlc = 2 and 3, by describ-
ing some classes of ,t-path pairable graphs that will give upper bounds for this
function. To prove that our innocent looking graphs are 2- or 3-path pairable a
tedious case analysis is required. We feel appropriate to omit two proofs of this type
(Propositions 3 and 5) - they are available in the preprint version of this paplr.

We will generally follow the notation of [Ct]. For a graph G, the vertex and edge set
will be denoted by Ir(C) and E(G) respectively. The cardinality of l/ (G) and E(G)
will be called the order and srzc respectively of the graph G. If X is a collection
of vertices and edges of G, then G - X will denote the graph obtained from G by
deleting the edges in X and by deleting the vertices in X and the edges incident to
a vcrtex in X. If u and o are vertices in G, then the edge determined by this pair
of vertices will be denoted by uu.

2. UPPDB BOUNDS AND EXAMPLDS

For p even, let ,t', denote the graph with p vertices and,3pl2 edges obtained from a
C, by adding the long chords (each vertex is adjacent to the unique vertex that is
a maximum distance away on the cycle). This graph has two kinds of edges, cgcle
cdges and, chord, cdges, and we will refer to them in that way.

The graph {o is easily seen to be 2-path pairable. Let a,a,and 6,D, be twopairs
of vertices of Fo, and consider the cycle in f, oriented. If the order of these four
vertices on the cycle is orat rbrbt, then clearly there are the appropriate paths (in
fact vertex disjoint paths) between pairs using only cycle edgcs. If the order on the
cycle is o,b,a',b', then one can assume with no loss of generality that arb and at
are in the first (p/2) * I vertices of the cycle. Therefore 6 is adjacent by a chord to
a vertex 6' with the order on the cycle now being o,,a,,b', and D, (or with the ordcr
of thc last two verticcs reversed). Now, using the chord from D and cycle edges thc
appropriate edge disjoint paths can be constructed. This verifies the claim.

Let C1 = (ur,xzr...ru^rr'r) and C2: (yr,yzr...rU-rUr) denote twovertex dis-
joint cycles of length m. Let p = 2m with m odd, and let G, denote the graph
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obtained from these cycles by adding the edges {(rt,gzi) : I ( r'S m}, where the
indices are taken modulo m. We will call the edges that were added between the
cycles chords, Thus G, is a graph with p :2m vertices and, Spf 2 = 3m edges (p

cycle edges and pl2 chord edges). In a very similar way as before one can verify
easily that G, is 2-path pairable.

We will always assume that the cycles in each of these graphs is oriented. If o and
y are vertices on the cycle, then [c, y] (or (c, y) ) will denote the closed (or open)
interval of vertices on the path from r to y.

In this section additional 2- and 3-path pairable graphs will be derived from -F,

and Gr.

Denote by Fj the graph obtained from f! by double subdividing (placing two
vertices on the edge) each of the chord edges and subdividing each of the cycle
edges. Thus S h* 3p vertices and 7p/2 edges.

Proposition l. For pZG ond cvcn, F) is Z-path pairablc. Moreouer, thc graphs

obtaind lrom F| adding ucrtcx disjoint stars to its ocrticcs arc still 2-path'pairable.

Proof. We verify first that ,Ej is Z-path pairable for p ) 6 and even. Let o, o' and

6, b' be two pairs of vertices in Ij. First consider the case when a and a' are vertices
of degree three in 4. W" will construct three paths from o to a', which we will
denote by P1, P2, and Pa. If o and a' are endvertices of the same chord path, then P1

will be the chord path, and P2 and Pe will be the two vertex disjoint paths (except
for endvertices) from a to ot using only cycle edges. If a and o' are not associated
with the same chord, then Pr will be the shortest cycle path between o and a', P2

will be the path using the chord path from a followed by the shortest cycle path
from the endvertex of this chord path to a', and P3 will be the corresponding path
using the chord path from a'.

Observe that the removal of the edges of any of these paths from Fj leaves some

isolated vertices (those of degree two) and one more connected component. Since

the pairwise intersection of these three paths contains no inner vertices of dcgree

two, one of P1, P2, and P3 is such that after removing its edges from $ both &

and D' are contained in the same component of the remaining graph. Therefore, F/
contains the required edge disjoint paths.

If a is a vertex of degree two, then associate with it a vertex a* of degree three
that is adjacent to a. Otherwise, just let a' : a. In the same way, there is an

a" associated with a', We can also construct three paths betwcen o and a'. These
paths will be derived from the three paths between o' and a" by either adding or
dcleting the edges oo' and a'4". These paths will have the same properties as the
three paths between the vertices of degree three'- This completes the proof of the

fact that f'j is 2-path pairable.

Let G be a graph obtained from Fj adding vertex disjoint stars to its vertices. With
no loss of generality we can a.ssume that a and D are vertices of degree one with the

same neighbor u. It is easy to check that if the shortest path from z to {o',0'} is

P, then the removal of the edges of P does not disconnect G. Thus the required
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paths for a's and D's exist.. I

Dcnote bv /ri(n) 
_the 

class of graphs with n vertices that is obtained from Fj by
adding vertex disjoint stars to its vertices until a total of n vertices are obtained.
of course there is not a unique graph in rj(n), but each of these graphs has a-3p
vertices of degree one and n * plL edges. If the stars are placed to minimize the
maximum degrae of a graph in {i(n), then the maximum degree will be [((2n +p) - (n - tp))lspl = [(n * qdlsp].The following proposirion summarizes these
observations.

Proposition 2. Let p > 6 be a fr.xed even integer, Then for each n 2 lp any graph
in /rj (n) is 2-path pairable, and .has n + pl2 edges. Moreover, there is a graph in
/p (n) of -rximum degree f(n + ap)ltp).

Proposition 3. For p ) 10, tlre grapfis obtained from Fo by adding vertex disjoint
stars to its yertices areS-path pairable,

Notice that for p ) 9 and odd, the graph ]I;, obtained from 4+r by adding vertex
disjoint stars to its vertices, then collapsing two consecutive vertices on the cyclc
still remains 3-path pairable.

Theorem 4. For A ) 3 a fixed positive integer and n) IOA - 21,

pe(n,A) <n+lrl2)*t,
whcre r : l"l@- 2)1, and ? : 0 or r according to the even or odd parity of r.

Proof.- Let /.(n) be the class of graphs obtained from f', and.F;*, by adding
vertex disjoint stars to the vertices until a total of z vertices are obtained.

observe that r ) 9, hence by Proposition 3 and the note in the previous paragraph,
each graph in /,(n) is 3-path pairable. AIso these graphs have n - r vertices of
degrce one and n * rf2 or n + lrlZ] * 1 edges, depending on the parity of r.

since by the definition of r, r(A - 3) > r, - r, 7.(n) contains a graph with maximum
degree A, which proves the theorem. I

Let Gi be the graph obtained from Go by subdividing each of the chord edges.
Therefore, Gi has 3p/2 vertices and 2p edges.

Proposition 5. For p : 4m * 2 and m ) 3, C) ic \-path pairable.

one cannot arbitrarily add stars to the vertices of G| and keep the 3-path pairable
property. Ilowever, a vertex of degree one can be added to the vertices of dcgree
two in Gi, as one can verify easily, The following proposition summarizes that
observation.

Proposition 6. Let p = 4m+2 a fixed integer and m )_ 3. Tfien for each integer n
with 3pl2 4 n 12p, there is 3-path pairable graph G|(n) with n vertices, n * plz
edges and maximal degree three,
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3. LOWER, BOUNDS

We begin with a general observation about graphs that are lc-path pairable. Let G
be a /r-path pairable graph, and let X be a set of cut edges of G that separates the
vertices into two sets .A and B, If t vertices in one part are paired with I vertices in
the other part, then there must be at least t edges in X. Thus,

lXl> min {l.4l,lBl,fr}.

This condition is called the Cut Condition for a /c-pairable graph, and is clearly a
necessary condition for a graph to be ,t-path pairable. The Cut Condition implies
that certain induced subgraphs are forbiilden in a lc-path pairable graph. There are,
however, other forbidden subgraphs that are not implied by the Cut Condition.

A. suspended path in a graph is a path in which all of the interior vertices have
degree two in the graph. A suspended path with five vertices is forbiddcn by the
Cut Condition for rt ) 3, but it does not violate the Cut Condition fot k : 2.

Assume that c1,12 and 13 are the vertices of degree two (in the order indicated) of
a suspended path with frve vertices, and that r1 and ,B are paired and 12 is paired
with some other vertex. Then any path from z1 to ca will destroy the possibility
of an edge disjoint path from 12 to any other vertex. Thus, this suspended path is

forbidden for Ic = 2 as well.

3.1 2-path pairable graphs

Let G be a 2-path pairable graph. We will first describe three forbidden induced
subgraphs for such a graph G. The Cut Condition implies that a vertex of degree
one cannot be adjacent to a vertex of degree two, so this is the first forbidden
structure. We have already observed that G cannot contain a suspended path with
five vertices, which is a second forbidden structure. This means that G cannot be
derived from any graph by triple subdividing any edge (placing three vertices on an
edge).

The third forbidden structure is obtained from double subdividing two of the edges

incident to a vertex of degree three in any graph. Observe that if z is the vertex
of degree 3, x1,x2 are the vertices on the first subdivided edge, and gr,y2 are the
vertices on the second edge, then it is impossible to find edge disjoint paths between
r1 and y2, and between 12 and yr, Note also that since a vertex of degree one is

never the interior vertex of a path, that the addition of any vertex of degree one to
any of thc forbidden subgraphs yields another forbidden subgraph.

With this information on forbidden subgraphs for2-path pairable graphs, and with
the examples of section 2, we are prepared to prove the following theorem.

Theorom 7. Forn)20, n(n,l): [#.|.

Proof . Letn: l0r-s for r ) 3 and0 < s S g.Since [I]I!ff::)l = llr-s, it is

sufficient to show pz(n,3) = 11r - c.
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By Proposition 2, there is a graph in Ir*.(l0r - s) that is 2-path pairable, has
maximum degree [(10r - .g + 8r)/6rl = 3, and has 11r - s edges. Thus it is sufficient
to show that any 2-path pairable graph of maximum degree at most three has at
leastllr-sedges.

Let G be a Z-path pairable graph with 10r - s vertices and of maximum degree at
most three. Let G' be the graph obtained from G by delcting the vertices of degrco
one, and let G* be the graph obtained from G' by replacing each suspended path
in G' by an edge. Each of the graphs G' and G' are 2-path pairable graphs, and
G* is a 3-regular graph, say of order t.

The graph G' can be obtained from G" by subdividing, double subdividing, etc.
the edges of G'. since the forbidden structures do not allow an edge to be triple
subdivided, we can assume that a edges are double subdivided and D edges are
subdivided. Thus the graph G' has t * 2a*b vertices and 3t/2 12a* 6 edges.
The forbidden subgraphs imply that o 1tf2, since at most one edge incident to
any vertex can be double subdivided. Of course, b < Atl2 - a. The graph G can
be obtained from G' by adding vertices of degree one to the vertices of degree two.
IIence, if c is the number of vertices of degree one added, then c ( 2a *.0. The
graph G has t f 2a + b +c vertices and 3tf2 -I-2o *6 + c edges.

To complete the proof it is sulEcient to show with the restrictions previously listed
on a,h, and c, that il t+2n1 b I c - l0r -r, thcn 3tf2 l.Zal-b1-c ) llr*s.
Assurrrctlral,thisisnottrue.'l'hcnwcmusthavetfZ<r,orequivalcntlyI<2r-2
since t is even. Thus, using the inequalities satisfied by o,D,c, and t, we have

10r- s : t *2o*6*c < St < 10r - 10.

This is a contradiction that completes the proof of Theorem 7. I

In Theorem 7 there was the restriction n > 20. The same techniques can be used
to show that p2(a,3) : f+oul for 4 ( n ( 16, and that pz(n,e) : [+#l * l for
17 <n<2O.

The minimal graphs of rheorem 7 have vertices of degree one. Therefore, if only
graphs of minimal degree at least two are considered, then one would expect that
the minimal number of edges in a 2-path pairable graph of maximum degree three
will be greater. The following Proposition 8 verifies this. The proof of Theorem 8
is idcntical to that of Theorem 7, except that the step of adding vertices of dcgrce
one is not used, and only the step of subdividing the edges is needed. Thus the
proof is left to the reader.

Proposition 8. For n) 12, pz(n,3,2): [?.].

In Proposition 8 the restriction n ) 12 is necessary. flowever, the same techniques
can be used to show that pz(n,3,2) : [?l for 4 ( n ( 10, and p2(n,3,2) =
l'*l + 1 for 11 1n 112.I tu !

With Proposition 8 we can determine a more general result about minimal 2-path
pairable graphs.
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Theorem 9. ForA 2 3 a fixed positiveinteger andn) 12A - 15,

Pr (n, A) = n + [r/6.1 ,

where r is tlre minimum integer sucl t.hat

(1) rA,-2p2(r,3,2))n-r.

Proof. Let G be a 2-pairable graph of order n and ma:cimum degree at most A
that has nz(n, A) edges. Delete every vertex of degree one from G, and assume
that the obtained graph G' has r'vertices and g edges. Note that because of the
forbidden structures in 2-path pairable graphs, G' has no vertices of degree one,
Since each vertex in G has degree at most A and there are n - r' vertices of degree

one in G, a graph G' can be obtained from G by removing all of the vertices of
degree one iff r' satisfies the following inequality

(2) r'L-2q) n-r',
If all of the vertices of G' have degree two or three, then clearly q = p2(rt,3,2),

Since r satisfies (2) and n > L2A - 15 implies that r > 12, we can apply Proposition
8 to obtain the required upper bound on p2(n,A). Thus an optimal grap'h on r
vertices hus g - [7r/61 edges, so for the number of edges in G we have

Pz(rz'A) = rL - r * q ( n+ [r/01.

To obtain the same lower bound we will study G' further. lt q > [7r' f 6'1, then r'
also satisfies (r), and we have r' ) r. Thus p2(n, A) = n-r' +q > n+lr16] follows.

Hence we will assume that g < l7r'16]. Let G' be the graph obtained from G' by
replacing each of the suspended paths by an edge. Thus, G' is a graph of minimal
degree three. Let s and t be the number ofvertices and edges in G* respectively. If
o is the number of subdivisions of edges (some edges are subdivided twice) needed

to obtain G' from G', then r' : s*o and g : t * o.Since l+ o < [llf9)l is

assumed, t * a' l f 
IG}d)] also holds for any o' ) a.

Let D be the number of vertices of G* of degree three. Because of the forbidden
subgraphs, no more than one edge incident to a vertex of degree three can be double
subdivided. Thus a < 2t- 6, and so t+2t- D < ?(s +2t- 6)/6. It follows that
I < (7s - b) 14. On the other hand, since G* has minimal degree at least 3, we have

, > (3b*a(s- b))12=2s-b12. This impliesthat (7s -b\14>2s-b12. Therefore
6 = sr G* is a 3-regular graph, and t = 3s12. Again, because of the forbidden
subgraphs (no more than one edge incident to.a vertex of degree three can be

..ruaiviaeal, o 12s,which implies t*o) [t("u*")l.This gives a contradiction, and
concludes the proof of Theorem 9. I

Let r be defined as in the previous theorem, and assume that r : 6m - p, with
0 < p S 5. Then Uy (r),

frt _ |-(3n+7p)l
l6l - l6lTA -;l | 

'
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Ilence Theorem I has the corollary that

w(n,a)= (H1;"* ",
where 0 < a < rSfG is the remainder term, which proves Theorem A in the intro-
duction.

9,2 3-path pairable graphs

There are many forbidden induced subgraphs for any graph G that is 3-path
pairable. we start by describing 11 such forbidden induced subgraphs. The cut
condition implied that a vertex of degree one cannot be adjacent to a vertex of
degree two. Also by the cut condition a vertex of degree three or four cannot
be adjacent to two vertices of degree one, we have already observed that G can-
not contain a suspended path with 6ve vertices. Thus, the first three forbidden
structures follow from the Cut Condition.

The remaining forbidden subgraphs do not follow from the cut condition.. The
next four forbidden subgraphs deal with how many edges incident to a vertex in
a 3-path pairable graph can be subdivided. The three edges incident to a vertex
of degree three cannot be subdivided. This follows from the fact that if the vertex
of degrce three is paired with a vertex that it is not adjacent to, then any path
between this pair of vertices destroys the possibility of the vertex on the subdivided
edge used in this path to be paired with another vertex.

similar reasoning implies that all of the edges incident to a vertex of degree four
cannot be subdivided. These are the next two forbidden subgraphs. The subgraph
obtained by subdividing one edge and double subdividing a second edge of the edges
incident to a vertex of degree three is forbidden. A pairing for which the required
paths cannot be found is when the vertex of degree three is paired with the vertex at
a distance two on the double subdivided edge, and the other vertices on subdivided
edges are paired with other vertices in the graph. For similar reasons the graph
obtained by double subdividing two edges and subdividing a third edge of the edges
incident to a vertex of degree four is a forbidden subgraph.

The forbidden induced graphs imply the following properties. In a graph G that
is 3-path pairable there are no triple subdivided edges. on the edges incident to
a vertex of degree three at most two vertices can be on subdivided edgm or the
3-path pairable property is lost. Also, at most four vertices can be on subdivided
edges incident to a vertex of degree [our. There are no restrictions for vertices of
degree five or more.

The next four forbidden subgraphs deal with the distance betwe€n vertices of degree
three which are incident to subdivided edges. Before describing these forbidden
subgraphs we need some additional notation.

The ucight of a vertex u of degree three will refer to the number of subdivisions of
edges incident to the vertex u. since a vertex of degree three in a 3-path pairable
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graph can have at most two incident edges subdivided or one edge subdivided, the
posssible weights are o, 1 or 2. Those vertices of weight 2 with two edges subdivided
with be called lypc I and those with a single edge double subdivided will be called
typc 2. The first forbidden subgraphs is a result of the fact that a vertex u of degree

three that is of weight 2 and type I cannot be adjacent any vertex of degree three
of weight at least l. Also, such a vertex u cannot be at distance two from a vertex
u of degree three and weight 2. This situation gives three more forbidden graphs.

The first case is when u is a type 2 vertex, and the last two cases are when u is a
type 1 vertex and the path from u to u contains either a vertex of degree three or
a vertex of degree two. Vertification that these subgraphs are forbidden are similar
to the previous cases mentioned.

With this information on forbidden subgraphs for 3-path pairable graphs, and with
the examples of section 2, we are prepared to prove the following theorem.

Theorem 10. Fora ) 16,

[?l = 
P,(n,3,2) 

= l*l *.,.

Proof . Assume n = }m-pfot m27 and odd (o S p < 5). Then from Proposition
5 (replacing p suspended paths of length two in the graph Gi- with just edges) we

have a 3-path pairable graph with 3m - p vertices, 4m - p edges. This graph has

at most tfl + I edges for every n ) 16.

To complete the proof it is sufficient to show that any graph G of order n that
is 3-path pairabte and has no vertices of degree one has at least [Sl edges. We
will first partition the vertices of G into five parts JV6,JV1 ,JV2,N3, and Na, where
Ns and lV1 are the vertices of degree three and weight 0 and 1 respectivly, JVz are

the weight 2 and type I vertices, N3 are the weight 2 and type 2 vertices, and Na

are the remaining vertices which have degree two. For 0 ( r I 4, let rq = lN.l.
The number of vertices za of degree two in G is determined by the weights of the
vertices of degree three of weight at least 1, and so

U +zrlz +zns
n1 =

Our first objective is to give an upper bound on na. We claim za < 3nl7.The
forbidden subgraphs imply that earh vertex of degree three, weight 2, and type 1 is

adjacent to a vertex of weight 0, and no other vertex of degree three and weight 2

is adjacent to this weight 0 vertex. Hence n6 ) n2.

Again partition the vertices of Ns into iV{ and /Vf where jYl are those vertices
adjacent to a vertex of weight 0 and /Vj the remaining verticcs. Let nl and ni be

the number of vertices in these sets respecively. Each vertex u in N{ is naturalty
associated with a vertex in N6, (possibly 3 vertices in N{ could be associated with
the same vertex in Ne), so we now have ns 2 nz * n[/3. The forbidden structures
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imply that each vertex in lvj is adjacent to 2 vertices in ff1. since no vertex in.IV1
can be adjacent to more than 2 vertices in Nj, we have n1 ) z!. Therefore we have

"^ 
: + * nz +n! + ni = \ +tta+AS * tuJ-fi-!-ni-.

Since ri < f and *+oi < 3lx, this gives

o. s i(rro * nr + nz-t nL* ni) : 
f {" - ,.).

This implies that ni < 3nf7, which is the bound on n1 claimed earlier.

The number of edges in G is at least

This completes the proof of Theorem 10. I

Note that if in the proof of rheorem 10 there are no double subdivided edges
(rr : 0), then a sharper lower bound can be obtained. In this case, using the
notation of Theorem 10, we have

na: (n1+2n2)lz S (ro + u * nz)12: (n - na)f 2.

This implies that na < nls, and that G ha.s at least 4n/3 edges. The foilowing
theorem will make use of the note.

Theorem 11. For n) 21, pa(n,3) : [?l I a, where c:0 or l.

Proof . The existence of a 3-path pairable graph G of order z and maximum degree
s with []l * a. edges fottows from Proposition 6 using the the class of graphs cf(n)
for an appropriate p.

Let G be a 3-path pairable graph of order n, size m, and maximum degree B.
consider the case when G has a suspended path with two vertices of degree two.
Suppose (rr,rr,r3,ra) is the path; thus, c2 and 13 have degree two and the other
vertices have degree three. It is straightforward to verify that if zz and ,3 are
replaced by a' and c', where z* is adjacent to r-1rrq, and or, then you get a graph
of the same order and size that is S-path pairable. Therefore, we can a.ssume that G
has no suspended paths with two interior vertices of degree two. It also follows from
the cut condition that there is no suspended paths in the graph G' that remains
after deleting all the vertices oi degree one from G.

If s is the number of vertices of degree one in G, then G' is a 3-path pairable graph
of order z - s and size m - s with only vertices of degree two and three. Atso, by
the observation of the previous paragraph, we can assume that G. has no double
subdivided edges. By the note after Theorem 10, m -, > l'1S4.|. Hence, G. has

z* +z* _gn
27
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at most (n -- s)/3 vertices of degree three. Since a vertex of degree one can only
be attached to vertices of degree two, we must have s < (n - s)/3. This implies
s S nl4. Therefore

m ) s*a(z - s)/3 : 4nl3- s/3 > an/3 - n/tz> snla.

This completes the proof of Theorem 11. I :-

The note after Theorem l0 will also be the basis for determining a more general j
result about minimal 3-path pairable graphs.

Theorem 12. For A ) 4 a frxed positive integer and nl lOA - 21,

Ps(n, A) > n 1' lr /21,

wherer:[nl@-2)1.

Proof . Let G be a 3-pairable graph of order n and morimum degree at most A
with a minimal number of edges. Let G' be the graph obtained from G by deleting
all of the vertices of degree one. We can suppo.se that G' does not contain any
double subdivided edges. Assume Gt has .e vertices and c * l"lZl - C edges.

Let n; be the number of vertices of G' of degree d fot 2 1 r < s. Because of the
forbidden structures in 3-path pairable graphs, G' has no vertices of degree one.

Note also that each vertex of degree two in G' can be adjacent l,o at most one
vertex of degree one in G. Since A 2 4,

n - s Snz * (A -t) in; < (A - 3)s.
d=3

Hence c 2 ["/(a -2)l = r. In the cass of C S 0 we obtain from this that the
number of edges of G is n * | s /z] - C > n + lr | 21. Thus we can assume that C > 0.

Let n! be the number of vertices of degree three in G' that are not adjacent to
any vertex of degree one in G. We now have the following inequality regarding the
number of edges in G.

Since f,.-rl ild : $r the previous inequality reduces to the fotlowing inequality.

(3) (A - 2)s - (A - 3)(r, + n's) > n -2C.

Using the fact that P:-j int = 3c - 2C, and the fact that 3s = D;;; 3ni! we have

that n2 = 2C * Di=-.I(f - 3)ri.
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If a vertex of degree two in G' is adjacent to two vertices ofdegree three in G', then
both the vertices of degree three cannot be adjacaent to a vertex of degree one in
G, by the Cut condition. Therefore, each vertex of degree two is adjacent to either
a vertex of degree at least four in G', or it is adjacent to a vertex of degree three
in G' that is not adjacent to any vertex of degree one. Associate with each vertex
of degree two one of these special vertices of degree three or a vertex of degree at
least four. From the forbidden structures we know that no vertex of degree three
can be adjacent to three vertices of degree two and no vertex of degree four can be
adjacent to four vertices of degree two.

This implies that D;=i(i - 3)ri + n'" Z n213. The extreme case of the previous
incquality is the one in which all of the vertices of degree two are associated with
vertices of degree four. A stronger inequality would result in any other case. Hence
nz*ni> 2C + n2/3. Since G'has o vertices and at most 3sl2- C edges, we must
have n2 ) 2C. Thus, we have nz * nL > 8C 13.It follows from inequality (3) that

n +2cL-2
holdsforA>9.

Ilence s ) r * 2C,and [s/zl - C > [r/21 implies that G has at least n + lrl2]
edges. This concludes the proof of Theorem 12. I

Combining Theorems 4 and, L2 we obtain

(ffi-) n ( P3(n'^) s (3;) "+ r's'

which proves Theorem B in the introduction. Notice that p3(n, A) equals the lower
bound for infinitely many n.

Acknowledgment,. The first author would like to thank the Computer and Au-
tomation Institute of the Hungarian Academy of Sciences for their hospitality during
the preparation of this manuscript.

4. IIEFERENCES

[CLl G. Chartrand, and L. Lcsniat: Graphs and Digraphs,2nd edition, Wadsworth
and Brooks/Cole, Belmont, 1986.

[f CLl n.J. Faudrcc, A. Gvdrlda and .]. Lchcl: Three - regular path pairable graphs,
manuscript.

[IIl A. Huck: A sufficient condition for grapha to be weakly ,t-linked, manuscript.

123

L-2 -A-2 3A-6 -
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The proof of Propositiono g and 5

Proposition 3. For p 2 10, the graphs obtained from Fo by adding vertex disjoint
stars to its yertices are 3-path pairable,

Proof. To verify the 3-path pairable property of a graph asaume that we have
three pairs of vertices labeled o,at, b,b' , c, c', and denote this set o[ vertices by X.

A. We will verify first that f! is 3-path pairable for p ) 10 and even. We
will start with some observations that will allow us to reduce the order of the F,
considered,

I. If uu is achordof .C, and both u,u ( X, then the deletion of u and u and the
appropriate addition of two edges between the vertices of degree 2 gives an -Fr-2. If
fp-3 is 3-path pairable, then these paths can be used to obtain the required paths
in Fr, Ilence, lve can a-ssume that each chord in F, hu. an endvertex in X.

ll.lt ao' is a chord in F'o, then remove oot from r'o. The graph obtained in this
way is 2-path pairable since it is equivalent with a Ip-2. The paths in this 2-path
pairable graph can be used together with aa' to get the 3 required paths. Thus, we
can assume that aa', 66', and cc' are not chords in F'o,

We will call a chord of Fo lull if both of its endpoints belong to X. We will
now consider five cases that depend on the number of full chords in tr'o.

Case A.l: There are 3 full chords in Fr.

According to I and II, the only possibility to be considered is n = 6, and the
order of the vertices is o,b,c,b' ,ct,a'. Then lbrb'|, lo,a,l and [c', o,] along with the
chord co' are the required 3 paths.

Case A.2: The only full chord of Fo is a6.

Let o' and D' be the endvertices of the chords containing ot and b' respectively,
such that [a,a-] n [D-,r] = 0. After removing the chords at a* and 6* and the edges
of [a,a-l and [&*,6] the remaining graph is still connected. Thus any path from c

to c' in this remaining graph, the path [a,o-l (with a'at it o' f a'), arnd the path
[b,b'] (with ['6' if 6* I b') arc the required edge disjoint paths.

Case A.3: There are no full chords in tr'r.

According to I, p: 12, and we can find two chords, say aa* and D6', such that
aD' and o*D are edges of the cycle lrz. Now, by identifying a with 0' and D with a*
we obtain an F16 with just one full chord aD, which was settled in Case A.2, The 3
paths in Fro define the required path system in Frz.

Casc A.4: ,F, has two full chords ab and a'b'.

With no loss of generality we can assume that 0 € [o', b'1. After removing [6, D'],

[o',0] and 6a from Fr, the remaining graph is connected and contains the third path
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from c to c'.

Case A.5: F, h* two full chords.

According to I, n = 8. We can suppose that Case A.4 does not apply, so

the chords are aD and a'c. Assign the same label 6 or c to both endvertices of the
chord containing b' or c', respectively. Then we have some cyclic ordering of the
labels o, a',6, brbrcrcrc along the cycle of ,F6. Suppose that there exist two pairwise
disjoint paths on the cycle between two D's and between two c's, such that both are
disjoint from the path [a,a']. Then, these paths (possibly with the chords at ['and
c') clearly deflne the required edge disjoint paths in .E's. One can easily check that
there is only one ordering, namely

arcrbro'rbrcrbrc

for which the above argument does not apply. In this case (o,6,c'), (6,b,c,0) and
(c,c,o,c) are paths that contain the required paths. This concludes the proof of
this case and the fact that .Flo is 3-path pairable.

B. Let G be a graph obtained from lI, by adding vertex disjoint stars to the
vcrtices of degree three. We will verify that G is 3-path pairable for p ) 10.

.For a vertex c € X of degree one assigne the same label r to its neighbor and
rcmove every vertex of degree one from G. When we have the required threc edgc
disjoint paths in F, we only have to add the necessary pendant edges to get thc
rcquired paths in G. In particular, if a vertex is labelled with both members of a
pair, then the path between them will consist of pendant edge(es) at that vertex.
One can a.ssume that this situation doe"ntl o".rr", 

"orr""qr.r"rrily 
a vertex ha.s at

most thrce labels. If the proof in A does not work, then with no loss of generality
we can suppose that o and b are labels ofthe same vertex u. Denote by u' the other
vertex of the chord at u.

Case 8.1: lat,btlc [r,r"l.
Let c* be the other vertex of the chord at vertex c if c ( [u', ul, and let c' : c

otherwise. Define c'* for c' in a similar way. Then the path between c' and c"
contained by [u', ul together with the chords at c' and ,'* (if,r"."ru.ry) defines the
path for c's. The other two edge disjoint paths are [u,o'] and [6',u'] U u'u.

Case B.2: 6'€ (uro*) and e'€ (r',r).
If the other endvertex of the chord at o'has neither c nor c' as a label, then

denote it by c", and apply Case 2 with a" in the role of o'. By symmetry, the same
argument can be used for S'. Thus the only case we have to check is when a'c and
b'c' are chords. Ifthe paths (u,&'), (o',u) and (c,c') are pairwise disjoint, then
we are done, Otherwise the three required paths are (u,D'), uu'U (u',o') and
ca'u(a',ct). r

Proposition 5. For p = 4m * 2 and m > 3' G; is }-path pairablc.

i
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Proof. We will verify that G| is 3-path pairable for p - 4m * 2 and m ) 3.
The chords that have been subdivided or double subdivided will be referred to in
G) as chord paths.

Leto,o',6,6'andc,c'bethreepairsofverticesinGi, SetX= {a,o'rb,b',c,ctl'.1
lfevery vertex ofachord path P belongs to X then P is called tull,andif PnX :0
then P is called emply.

Case a: every chord path contains at most one vertex from X.

If a chord path contains r € X then its endvertex in Cr is denoted by c,.
(r = 1,2). We suppose that the cyclic ordering of the a'g and D's on C2 is a2,b2,a'2 '
and 0'r. Otherwise, the pairwise edge disjoint paths [a2,a'r] ,lbz,b'rl and [c1,c'r]
together with the distinct chord paths at their endvertices define the required three
paths.

With no loss of generality we can assume that the length of [61,D'rl is larger
thannf 4. If a1,a'1 #lb'r,brl, in particular if 616', is an edge of C1, then the pairwise
edge disjoint paths [a'1,arl,[6'r,Dr] and [c'r,cz] together with the attached chord
paths define the required three paths.

Thus we can suppose that ar € [Dr,6il and a', € [6i,brl; in particular, [0t,62]
contains two consecutive inner vertices of C2, say a', and 22. Let 11 be the other
endvertex of the chord path P at ,2. Clearly zr € [Dr,D'tl; hence, the paths [b'r,61]
and [o1,z1l are disjoint. This la"st path together with P and, a'rr,2 define the path
for o's, and the third path will be obtained on C2.

Case b: no chord path is full.

If Case a doesn't apply then some chord path P1 contains two vertices of X.
tr'or the case o,o'€ Pr the required three paths can be found easily. Suppose from
now on that a's are on distinct chords and the same is true for 6's and c's. With no
loss of generality we can assume that a € C2 fi P1 and b € Ps.

Let [2, y] be the maximal cycle path of C2 containing a such that every chord
path at an inner vertex of [2, y] different from c is empty.

We label the endvertices of every nonempty chord path P as follows. If u is
the only vertex of P n X then the endvertex in C; is denoted by u, (r' : 1,2). If
u,u € X are on P : (u,t,z) with u € Ci then the endvertices of P are u; : 11 21fl
o; = z ({i, jl = {1,2}). By symmetry, we have to distinguish between the following
essentially dilferent cases.

Case b.l:, = o'2 and y = bL.

Then Pr u la'2,bt2l together with the chord paths containing a' and 6' define
edge disjoint paths for the a's and 6's. The third path from c to c' can be found
in the connected graph we get after removing the edges of the previous two paths
from G|.

Case b.2: r = o!2 and y : c2.

Let P2 and P3 be the chord paths al o!, and c2.
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Case b.2.1: X is not in Pr U P2U Ps.

If b' is contained by a new chord path Pa with endvertex 6!, then C2U P1 \)
PzU Pt define edge disjoint paths for c's and b's. lf c', is the endvertex of a chord
path Pa, then there are edge disjoint paths for a's and c's on C2 U PzU PsU Pa. In
both cases the third required path can be obtained on C1.

Case b.2.2: X C P1 U PzU Pg.

Clearly, c' € P2 and b' € Ps. lf a' € C2, then P1UC1U Pg and PsUlc2,otlu P2
contain edge disjoint paths for 6's and c's that are edge disjoint from [a,,ol.

lf b' e Cr, then let Pl be a new chord path with endvertex u € Cr. With
no loss of generality we can assume that [c',0'] and [D',u] are edge disjoint. Thus
C2 U lb' ,ul U Pa U Pr U Pz contains the paths for a's and 6's. The third one can be
found on [c',6'] u P3.

The remaining ca.se when P2 = (o!r,a',c') and P3 = (c,6',0'1) can be verified
easily by using the fact that p > 10.

Case b.3: x: c\ and y : c2.

Let P2 and Pg be the chord paths containing c' and c, respectively. If X C

hU Pz U P3 thcn the argument in Case b.2.2 can be used after permuting the labels
in X and/or exchanging the role of C1 and C2. Assume now that P3 n X = {c}.

Case b.3.1: P2 contains only c'from X.

Then P3 U [c'r, cllu P2 contains a path for c's. The other two required paths are
obtained on the union of P1,C2 and the chord paths containing a, and 0,, except the
case when et and bt belong to the same chdrd path P4. With no loss of generality
we can assume that Pl n C1 : {a'}.

If c1 and c', are consecutive on C1, then there is a path [a,,ul of C1 disjoint
from [c'r,c1] such that the chordpath P5 at u is empty. Then C2U[or,ulufsufnuf,
contains the paths for a's and D's. The third path is contained in P2 U [crr, c] U Pa.

If c1 and c', are not consecutive on C1, then either o* I or a- 1 is an interior
vcrtex of lr't,czl, say u = a * 1 is the endvertex of an empty chord path Ps. Then
fuUlc2,c'rlUP2 contains apath for c's and C1 U [a,o+11 U P5UP4UP1 contains
the required paths for the o's and 6's.

Casc tr.3.2: P2 contains two vertices of X.

lf c' 4 C2, then essentially the same argument works as in Case b.3.1. If
o' e Cz we can get easily the required three paths. The argument similar to that in
Case b,3.1 handles the case when [a'r,c2] contains an interior vertex different from
c'and a. The remaining case when o'2rc'ra and c2 are consecutive vertices on C2
can be verified by using the fact that p > 14.

Case b.4: a: b'z ar.d y : cz.

Let P2 and P3 be the chord paths containing 6' and c, respectively.

r27



Case b.4.1: X C PrUP2 UP3.

If one of the cycles Cz and Cr contains three vertices of X, say bt,a,c e C2,
then the three required paths are contained by [o, cl U P3, [Dr, al U P1 and lc,b,lu p2.
By symmetry, we can assume that D', o e Cz and 

" 4 Cz. Since p ) 14, one of the
vertices b' - L,b' *L,a- 1 and o* 1 is such that the chord path pa at that vertex
is empty. with no loss of generality we can ixsume that o * L € pq, Than the path
for a's is contained in [c,a* 1] UPa UC1, and the paths for 6,s and c's are the same
as before.

Case b.4.2: X is not in P1 U P2U Pg.

We can a.ssume that P2 n X = {6'}. Let Pa be the chord path containing cr. If
c' doesn't belong to P3 U Pa, then for the c's and &'s there are edge disjoint paths
in C2U P1U P2 U P6, where Ps is the chord path containing or. The path for the c's
is contained by P3 U la'r,ctlU Pa.

Suppose now that o' e P3 and let P6 be an empty chord path with endvertex
u € Cr, With no loss of generality we can assume that [z,orrl and [o,r,c,rl are edge
disjoint. Then C2 U Pr U Pz U Ps U [u, a'11 contains paths for a,s and D's, and the
third required path can be found in Ps U lq,c,rlu pa.

Case c: G| has just one full chord path.

We omit the details of the argument which is very similar to that of Case b.

Case d: Gi has two full chord paths.

If a pair of X, say o ar.d ot , are consecutive vertices on a chord path, then the
paths for the 6's and c's that avoid aa'can be found easily.

Assume that one of the full chord paths is (a,6,c), with o € C2, If the second
chord path is different from (c',6',a'), with c' e Cz, then it is straightforward to
get the required three paths. To handle the missing case, with no loss of generality
we can assume that [orc'l contains at least two interior vertices. Then the empty
chord paths P1 and P2 at a * l and at ct - l are distinct. Let a. and c* be the
other endvertices of P1 and Pz. Clearly [a*,a,| and [c,c.] are edge disjoint on C1.
The three required paths are [o,o * 1] u Pr u lo",o,l, [c, - 1,crl u p7u [c,c*l and
la' , cl u {bc,b' a'), .

The remaining case when the two full chord paths are (a,b,o,) and (c,Dr,c,)
can be verified easily.

This proves the fact that G| is 3-path pairable. r
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