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Multipartite Graph-Tree Ramsey Numbers
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INTRODUCTION

Let T = T, be a tree of order n, and F = K(ng, my, ..., 1) be the complete
multipartite graph with parts of order my = my = -+« = my. For nsufficiently large
and wy = my = 1, it has beenm shown that the Ramsey number /{F, T) = k{n = 1) + 1.
This result is generalized by showing that with just my = 1 and nsefficiently large.

n = 1)+ 1 =rF T)=s kir(KO,m),T) = 1)+ 1.

Since it is known that A(K(1, my), T} = n for the large class of trees that have no
vertices of large degree, the upper and lower bounds are frequently identical. In all
cases, these bounds areshown to differ by at most k.

For simple graphs F and @, the Ramsey number r(F, i) is the smallest integer p
such that if the edges of the complete graph K, are colored red and blue, cither the red
subgraph contains a copy of # or the blue subgraph contains a copy of (. If Fis a graph
with chromatic number x(F), then the chromatic surplus $( F) is the smallest number
of vertices in a eolor class under any x( F)-coloring of the vertices of F,

For any connected graph & of order n = s{ F ), the Ramsey number #(F, &) satisfies
the inequality

HF, G) = (x{F) — 1) (n - 1) + s(F). (1)

This inequality follows from coloring red or blue the edges of a complete graph on
{x({FY—1)(n = 1) + &(F) — 1 vertices such that the red subgraph is isomorphic to
(x(F)— 1)K,y | Kyp.; and the red subgraph is isomerphic to the eomplement.
When equality ocours in (1) we say that & is F-good. The concept of F-goodness
peneralizes the classical simple result of Chvatal that (K, T, ) =k — 1 (n =11+ 1
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[6], where K, denotés the complete graph on k vertices and 7, denotes a treg on n
vertices: The result of Chvital has been generalized in many special cases by replacing
the complete graph K, by a graph F of chromatic number &, the tree T, by a “sparse”
graph G of order n, and the number 1 by s(F) (i.e., & is F-good). Even in the case when
(7 is “sparse” but not F-good, the lower bound given in inequality (1) is in most cases a
good approximation to the Ramsey number £( F, 7).

Our purpose is 1o investigate the Ramsey number r{ F, T, ), when T, s a large-order
tree, and in particular to determine which large trees T, are F-good. Since x{ F) is
important in determining the value of F(F, T,}, it is natural to carefully consider the
case when F = K(mg, my, .. ., m; ) is & complete multipartite graph.

Notall trees are K{mg, my, . .., mg )-good when each my = 2 or when mig = 1 and
my=2for | =i=k, [2,4]. For example in [4] it was shown that

ALK 2D KL — 1) =n+ ' — 520

for m large. However, the principal result of [5] is that each large-order tree Ty is
K{l1, 1, my, p1y, . .. .y )-good, We will generalize this last result by proving the
following theorem,

THEOREM: If i is sufficiently large, then

PK(L, my, ooy m), T,) = maxlk(n — 1), K{A(K(, o), T,) — 2)) + 1,
and KL my, ... ;) T) = k0K ), T — 1+ 1.
The upper and lower bounds for n(K(1, my, ..., 592), T,) differ by at most &, For

“miast” trees r{K (1, m; ), Ty) = n, soin this case the upper and lower bounds agree and
the tree is good. Also, if my = 1, then clearly AK(1, p ), T,) = nand the principal
result of [5] follows as a corollary. There are other cases when we can prove a stronger
lower bound that agrees with the upper bound of the theorem. These will be discussed
in more detail later. One example that is already in the literature is the special casc
when T, is the star K(1, n — 1), which was studied in [2]. There it was proved that

AK(L g om gy K(Ln — 1)) = k(A& ), K {1,n — 1)) — 1) 1,

Im this special case the value of the Ramsey number agrees with the upper bound of the
theorem.

ENOWN RESULTS

Several known results dealing with the Ramsey number r{K{mg, p1y, . oo ), Td
when n is large will be needed in the proof of the main theorem, so we list these results
with references. In all cases we assume that my = my = « - - = By

The following gives a general upper bound on such Ramsey numbers.

THEOREM A [B): For nsuiliciently large, there is a constant v — 3(k, m,) with 0 <
== 1, such that

riE{mg ... i), T =kln — 1) 4 n'.

I iy = 1, then a stronger result aboutl the Ramsey number ¢an be stated,
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THEOREM B [5]: For n sufficiently large, there is a constant © = C(&. my ), such
that

H:K{L mh.--..ﬂ'.l'[}. T‘]'_':.k‘_ﬂ— 1y + €

If iy = miy = 1, then the precise valueof the Ramsey nuimber has been determined.
and all trees are K(1, 1, 1y . .., o )-good,

TrHeoreM C [5]: For n sufficiently large,
HECL Lomso e emidy Ty =Rin =13 + 1.

The complete multipartite graphs in each of the previous three theorems can be
replaced by an appropriate graph F with chromatic number & + 1. In Theorem A, any
Fwill seffice; in Theorem B, the chromatic surplus of F must be 1; and in Theorem €, a
(& + 1)-coloring of Fin which two color classes have only one vertex will suffice.

The following is the special case when the tree is a star, and it proves that a graph F
with chromatic surplus 1 is not sufficient for all large-order trees Lo be F-good,

THeEOREM D [2]:For » sufficiently large,
PR gy oo i), KQL m) ) = ROACKQL, g ), KO, 0)) — 1) + 1.

Since r(K{1, m), K(1,n}) = m; + n — & where & = 1 if m; and n are both even,
and § = 0 otherwise, Theorem D completely determines the value of the Ramsey
number. This value is not, in general, kin — 1) + 1, so the star K{l, n) is not
K{l, my ..., my)-good.

Before we can state the next result, some additional notation must be given. The
independence number of a graph & will be denoted by a{G ). If Tisa tree, then set

(T} = minfe{ T — V{&)):5 is & star contained in T},

Thus, (T} is & measure of how small the independence number of the nonneighbor-
hood of a vertex of the tree can be. The parameter o is related to the Ramsey number
ML, m), T) ol a star and a tree, as the following result indicates.

TueoreM E [7]: Let m be o positive integer and T, a tree of order # with m = 12",
Then

maximm +m — 1 —o' — gt =2(K(1, ), T,) =manlnn+m — 1 —&'l,

where o' = o (T,),and 8 = 0if n + m — 2 — & is divisible by »; and § = 1
otherwise,

Therefore, in general, the upper and lower bounds for #(K(1, m), T,) differ by at
mest |, There are several cases in which there is equality, In particulur, il the tree T,
has no vertex of degree at least n — 2m — 3, then o' = m — 1 and P{K(l, m), T,) =
n,

The examples that give the lower bound in Theorem E will be needed later, so we
bricfly describe these graphs and their properties now. A careful verification of their
properties can be found in [7].

Clearly, the graph K, _, does not contain a T, and its complement does not contain
any star. T+ m — 1 = o — @ = n, then the tree T, must have a vertex of large
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degree. Let G be the graphonn + m — 2 — o — 8 = n vertices that is the disjoint
union of complete graphs K, if g = 0:and of complete graphs K, and K, if@=1.Ifn
is large, then this can always be achieved. Clearly, & contains no K{1,m). Finally,
using the fact that the tree contains & vertex of large degree, we show that the
complement of & does not contain T, This follows from the fact that if & contains 7,
then the large degree vertex of T, will be in an independent set with m — & vertices, and
only an additional o' vertex of T, can be in this independent set. Thus, m —a' — | — 8
vertices of & will not be in T,. which leaves at most 0 — 1 vertices of @ in T,. The
graphs K, and @ imply colorings that give the lower bounds in Theorem E.

RESULTS AND PROOFS

The principal result is contained in the following two theorems.

THEOREM 1: For 1 = my; = my = + « « p,and » sufficiently large,

UKL, gy i) Tod = RO o), T) = 1) 4+ L

THEOREM 2: Let | = my <my <« + « = my and let p be sufficiently large. Then, in
general

AR, gy g oy ), T) = maxlk(n — 1), k(r(K(L, m), T,) — 231
Also,
PORCL, s sy oo o)y Tk > KCAUK (L, my ) T2 — 13
for each of the following cases:

(i) my divides m + my — o — 2,
(i) a=nHdm —a — |,or
Gl AR, ), T =04 my —a' — 2.

Theorems | and 2 pive upper and lower bounds for the Ramsey number
el K1, imry, g ooy i)y Ty) that differ by at most &. In fact, unleéss the three T, has a
vertex of degree at least m — 2my + 3, the upper bound and lower bound agree and
imply that the Ramsey number is precisely &(an — 1) + |, Thus if A(T) represents the
maximal degree of a vertex in T, we have the following corollary.

CoroLLary 1: 1 wis sulliciently large and A(T,) = n — 2w, + 2, then
AR, g mtgy oo o) T) = Kin — 1) 4 1.
In particular, if m, = 1, this is true.

The multipartite graph in the corollary need not be a complete multipartite graph,
because inequality {1} gives a lower bound that depends only on the chromatic number
af the graph. Therefore, i F is any subgraph of K(l. ., #0000 m) with
¥(F) = k + 1, and A(T, ) = — 2oy + 2, then for nsufficiently large,

rF, T )=kin—-1)+ 1
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The upper bound given in Theorem | clearly does not require that the first graph be
a complete multipartite graph, However, the lower bounds given in Theorem 2 do
depend on the first graph being a complete multipartite graph. This will be clear from
the proafl of Theorem 2, which follows,

Proof of Theorem 2: We will assume the notation used in Theorem E and the
cxamples associated with that result. Thus,

A K1, m;). T,) =n, n4my - =2, or n4+m—a - L.
Consider the graph f defined as follows.,

(1) ITAKCL, my), Ty) = n,then H = K, .
(i) If A(K(L, ), T,) = n, then M has order n+ my — a — 2 — 4, and i3 the
complement of a vertex disioint union of complete graphs each of order

(8) my il 8 =0 (ie., my divides n 4 b1y, — a0 — 2)
(b} myorm; — 1il§ = 1 (this can always be done for large values of n}.

The graph # does not contain T, and the complement H does not contain a
Kil, m,). Therefore, the graph &k « /(& disjoint copies of the graph &) clearly does
not contain T, and the complement of this graph does not contain K(l, m;.
Mz, ... .m,), The last observation is a direct consequence of the fact that & does not
contain K(1, s )and m, = my = - - - = my. Thus, considering & - H as the blue graph
and its complement as the red graph, we have a coloring that completes the proof of
Theorem 2, O

Before giving the proof of Theorem 1, some additional special notation will be
introduced and & lemma will be stated. Notation not specifically mentioned will follow
that in [1]. For simplicity, the multipartite graph K{rry, ma, oo me) will be denoted
by K{m:k) when my = - « « = my = m. A suspended path in a graph is a path in which
each vertex has degree 2 in the graph. End-edges are edges incident to vertices of
degree | {i.e., incident to end-vertices). If a graph contains a vertex » adjacent ta m
end-vertices, we say that o is the center of a ralon of degree m.

Lemma | [3]: If T, is a tree with m vertices that does not contain a suspended path
with more than s vertices, then T, has at least n/(25) end-vertices. If, in addition, there
are no more than ¢ independent end-edges, then T, has a talon of degree at least
nf(2sr).

Proaf af Thearem [: Let M = k{r(K(1, m), T.) = 1) + 1, and assume that the
edges of the complete graph Ky are colored red and blue so that there is no red
E(1, my, vy, .. .oy or blue T We will show that this leads to a contradiction.

To shorten the notation, we denote the graph K(1, my, ma. . .., o) by just F, the
order of F by [, and the red and blue subgraphs of K, by R and B, respectively: It is
assumed that » is sufficiently large so that the results of Theorems A—E apply. The
notation of those theorems is used without additional comment,

The proof is by induction on k. The result is trivial for k = 1, 50 we can assume that
k= 2. Three cases that depend on the structure of the tree T, are considered: (1) T, has
a long suspended path, (2) T, has many independent end-edges, and (3) T, has a vertex
of large degree. Lemma | implies that these cases exhaust the possibilities.

(1) T, has a suspended path with at least € + £ vertices.



i o =

ERD{S e al: GRAPH-TREE RAMSEY NUMBERS 151

Let T be the tree obtained from T, by shortening the suspended path by C vertices,
By Theorem B thereis a copy of T¥in 8. Let Tbe a tree in B that is obtained from T by
lengthening this suspended path as much as possible up to € vertices (in fact, C - 1,
since T, (7 B). Let P, which has at least {7 vertices, denote this suspended path of 7.
By the maximality of T this suspended path cannot be lengthened in B by using o
vertex not in T.

By the induction assumption there is in R a copy M of K{1, my, #1s, .. ., 1) that
is vertex disjoint from T. The maximality of P implies that cach vertex of H cannot be
adjacent in B to two consecutive vertices of P, and if a vertex is adjacent in B to two
vertices of P, then the successors along P of these vertices are adjacent in R, Thus, no
vertex i of H can have as many as /' adjacencies on the path in B, for otherwise. the
successors along P (except possibly for an end-vertex of the path) of these vertices and
i would form a red complete K, _) F, Therefore, there are at least /7 — f{ f — ) =
rit, vertices of P adjacent in R to every vertex of & . This implies there is a red F, a
contradiction that completes the proof in this cazse.

{2) T, has at least C + f* independent end-edges.

By Theorem A, there are f vertex disjoint copies of K(1, »y, ma.. .., p1) in R,
which we will denote by H,, ..., H,. Each vertex not in an H; must have a blue
adjacency in H;to avoid a red copy of F. Let T be the tree oblained from T, by deleting
the end-vertices of the €' + /% independent end-edges of T, and let x be the C + 7
vertices of T adjacent to these end-vertices. By Theorem B, there is in 8 a copy of T
that is vertex disjoint from H,y, ... Hj

There is no matching between X and F{Ky — T) in B that saturates X, for this
would imply that 8 contains T, Also, each vertex of X is adjacent in 8 to at least [
vertices not in T, because each vertex of A has.a blue adjacency in each H,. Halls
matching theorem [10] implies that thereis a subset X' C X with | X'| = /= m, whose
blue neighborhood in Wk — T) has order at most |X'| — 1. Hence, there is a
subgraph ¥ disjoint from T and with at least M — n + | vertices that is adjacent in R
1o each vertex of X”. The subgraph ¥ contains a red K{1, my, my, .., 0., ) by the
induction assumption. This implies the existence of a red F, a contradiction that
completes the proof in this case.

Lemma | implies that the following case exhausts the possibilities for the tree T,

(3) 7, has atalon of degree at least n/(2(C + £,

Since AlK(m, oo o)y T = (k= 1) (n = 1) + n", no vertex of K, has red
degree {k = 1) (n = 1) + n". Therefore, each wvertex has blue degree at l|east
n — 1 — A", Thus, any tree with no more than 1 — #” vertices can be embedded in 2
with an arbitrary vertex of the tree embedded al any vertex of B.

We first show that there is no veriex of K, of blue depree at least n — 1, Assume »
i% such a vertex, and let x be the vertex of T, that is the center of 2 maximal-degree
talon. The degree of the talon iz at least n/(2(C + [*)*), which iz a positive fraction of
n, since C and fare constants independent of n. Let T be the tree obtained from T, by
deleting the end-vertices of the talon with ¢enter x. Thus, T can be embedded in B with
x embedded at y. This embedding can be extended to T, since p has degree at least
A — 1. In the remainder of the proof we assume that there is no vertex of bluee degree at
leastn — 1.
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Our objective at this point is to show that the restriction on the (red and blue)
edge-coloring of Ky, forces the blue graph 8 1o be a disjoint union of & geaphs that are
nearly complete, and the red graph R o be approximately a complete k-partite graph.
This will be used to obtain a contradiction.

By Theorem A, there is a red K(:k), where [ is large in comparison of f, but small
in comparison to m Since R 1} F, no one of the k parts of the K(/:k) can containa red
K{l,m). Therefore by Chvital’s theorem [6], each part of the K(:k) contains a
complete blue subgraph of order at least (//m;). Hence, by replacing the original { by
{nt;, we can assume that the two-colored K, contains a red K{f:k) with each part
inducing a blue K. Denote the vertices of the & parts by Py, ..., P let P be their
union, and p the number of vertices in P. Hence |P,| = [, | P| = &/, each edge in a P, is
blue, and each edge between different £, is red.

Consider the vertices notin P, Forcach i {1 =7 = k), Iet (), be those vertices not in
P that are adjacent in & to at most (f — w1g)(my 4 1) vertices of P, for-each f # [,
Since F ([ R, the ), are pairwise disjoint. Note that any set of m; + 1 vertices of @, (in
fact, P, L) () has a common red neighborhood of order at least my, in each P for j # 7.
Consequently, there is no red K{1, my) in the graph induced by the vertices P, I @,
for this would imply F O R. Hence. if for cach f, ¢ = |@), then ¢ + | =
AR, m), T =1

Let €2 be the union of the &, {1 =7 = k), @, be the remaining vertices not in P |
@, and i,y = | Qaes | We will now show that each ¢, (1 == &) is approximately m,
and g, is bounded as a function of mand /.

Let () (1 =i = k) be the vertices of (0, that have ut least one red adjacency in £,
' the union of these sels, and g the number of vertices in ', Since there is no red
Ki(l, ) in P, ) @, thereare no more than Im, vertices in ). Hence, " = kim,. Allof
the vertices of Q¢ — @ have at least { blue adjacencies in P, and the vertices of @' have
at beast | — miy blue adjacencies in P. Any vertex in @y, has | — »r, blue adjacencies in
some Pyand at least (1 — my)/(m, + 1) insome P, for j # & Thus.a vertex in 0y, has
at least fim, + 2)/{m + 1) — g blue adjacencies in P, where ¢ = /(. &) {a
constant independent of 7 and [), Mo vertex has blue degree n — |, 50 each vertex of P
has at most # — { blue adjacencies outside of P. Counting the number of blue edges
between Pand @ L) O, ,, we get the following inequality:

pln — 1) &= g ({H(my + 2)/(my + 1) — &)
+ @' —m) (M - =4 — gl

Substituting appropriate values for p, g, 4, . and M, and performing straightforward
calculations will yield the following inequality:

i == e fi k).

Since g, = +{K{1, m), T} =1 -1 for (1 =i=%k), and Z¥, 4 -
k(AR my) T — 1 — 1) + 1 — gy, cach
gi=a—1— e, where o3 = 5[ f) k).

Since both ¢; and ¢, are independent of n-and [, this verifies our claim about the g;
(l=i=k+1).
Since P | has at most k{r(K{L, m,), T,) — 1) vertices, there isa vertex in (.,
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which we will denote by x. Let @ be the vertices of , adjacent in R to x; and (" the
union of the @' (1 =i = k), There is an appropriate ¢, = ¢,{ f, k) such that

10| = £{(my + 1) — e
I this were niot true, then x would have blue degree at least
(n—1=¢&) = ({f{my + 1) —2,) + I{m; + 23/ (my + 1}
=R —f -+ o=

which gives a contradiction for an appropriate choice of ¢,.

There is no red K(1, m, ) In P, L) @, s0 each vertex of Q7 has at leastn — o, — my
blue adjacencies in P, \_) @, Thus, a vertex in {0 has al most ¢y + my blue adjacencics
in each @} for i # j. Hence, there is clearly a red Fin @" L) [x]. This contradiction
completes the proof of Theorem 1. O

QUESTIONS

There are two guestions directly related to the results of this paper that would be
nice to clear up. First, can the precise value of r(K{1, m), T,) be determined for all
large-order trees? The examples used to verify the present lower bound do not in
general give the correct value for #(K(1, m),T,). However, when they do give the
carrect value, the proof of Theorem 1 implies that the present upper bound of Theorem
i is the precise value for the multipartite graph-tree Ramsey number. Second, when
the canonical examples used to give the lower bound for /(K (1, m), T,) do not give the
precise result, can the precise value of F(K(L, mry M. .. mg). T,) still be deter-
mined?

The chromatic number, the chromatic surplus of the multipartite graph, and the
Ramsey number r(K{1.m), T,) are important paramelers in expressing the upper
bound for the Ramsey number A& (1, my , o3, .. ., ), T} given in Theorem L. It is
natural to ask if there is a corresponding result for an arbitrary complete multipartite
graph-tree Ramsey number. In particular, is it true that for » sufficiently large,

AK(my mg, oo mg) T = 0k — DK (my, ), T — 1)+ 7 {2)

Ramsey numbers A8, T,) have been investigated for 8 a bipartite graph, and good
upper bounds have been obtained in [9]. Thus, a proof of ineguality {2) would improve
the known bounds of the multipartite graph-tree Ramsey numbers.
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