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Multipartite Graph Tree Ramsey Numbers
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INTRO U TION

Let T = T„ be a tree of order n and F = K(mo m Mk) be the complete
multipartite graph with parts of order mp < m < < Mk For n sufficiently large
and m m2 it has been shown that the Ramsey number r(F T) k(n )
This result is generalized by showing that with just mo and n sufficiently large

k(n ) r(F T) < k(r(K( m ) T) )

Since it is known that r(K( m ) T) n for the large class of trees that have no
vertices of large degree the upper and lower bounds are frequently identical In all
cases these bounds are shown to differ by at most k

For simple graphs F and G the Ramsey number r(F G) is the smallest integer p
such that if the edges of the complete graph KP are colored red and blue either the red
subgraph contains a copy of For the blue subgraph contains a copy of G If F is a graph
with chromatic number X(F) then the chromatic surplus s(F) is the smallest number
of vertices in a color class under any X(F) coloring of the vertices of F

For any connected graph G of order n > s(F) the Ramsey number r(F G) satisfies
the inequality

r(F, G) ~ (X(F) - 1) (n - 1) + s(F) . (1)

This inequality follows from coloring red or blue the edges of a complete graph on
(X(F) ) (n ) s(F) vertices such that the red subgraph is isomorphic to
(X(F) )K„_ U KS(F)_ and the red subgraph is isomorphic to the complement
When equality occurs in ( ) we say that G is F good The concept of F goodness
generalizes the classical simple result of hvátal that r(Kk T„) _ (k ) (n )
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[ ] where Kk denotes the complete graph on k vertices and T„ denotes a tree on n
vertices The result of hvátal has been generalized in many special cases by replacing
the complete graph Kk by a graph F of chromatic number k the tree T„ by a "sparse"
graph G of order n and the number by s(F) (i e G is F good) ven in the case when
G is "sparse" but not F good the lower bound given in inequality ( ) is in most cases a
good approximation to the Ramsey number r(F G)

Our purpose is to investigate the Ramsey number r(F T„) when T„ is a large order
tree and in particular to determine which large trees T„ are F good Since X(F) is
important in determining the value of r(F T„) it is natural to carefully consider the
case when F K(mo m l Mk) is a complete multipartite graph

Not all trees are K(mo m Mk ) good when each m; > 2 or when mo and
m i >_ 2 for < i < k [2 ] For example in [ ] it was shown that

r(K(2 2) K(l n )) > n n'/Z 5n 3/ 0

for n large However the principal result of [5] is that each large order tree TN is
K(l mz m3 M k ) good We will generalize this last result by proving the
following theorem

TH OR M : If n is sufficiently large then

r(K(l m Mk) T„)_ max{k(n ) k(r(K( m ) T„) 2)}

and r(K( m Mk) T„) < k{r(K( m ) TN) }

The upper and lower bounds for r(K( m Mk) Tn) differ by at most k For
"most" trees r(K( ml ) TN) n so in this case the upper and lower bounds agree and
the tree is good lso if m then clearly r(K( m ) T„) n and the principal
result of [5] follows as a corollary There are other cases when we can prove a stronger
lower bound that agrees with the upper bound of the theorem These will be discussed
in more detail later One example that is already in the literature is the special case
when T„ is the star K( n ) which was studied in [2] There it was proved that

r(K(l m	m k) K(l n )) k(r(K(l m l ) K ( n )) )

In this special case the value of the Ramsey number agrees with the upper bound of the
theorem

KNOWN R SULTS

Several known results dealing with the Ramsey number r(K(mo m mk) T„)
when n is large will be needed in the proof of the main theorem so we list these results
with references In all cases we assume that mo < m < • < Mk

The following gives a general upper bound on such Ramsey numbers

TH OR M [ ] : For n sufficiently large there is a constant y y(k mk ) with 0 <
y < such that

r(K(mo m Ink) T ) < k(n ) n"

If m o then a stronger result about the Ramsey number can be stated
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TH OR M [5 : For n sufficiently large there is a constant (k Mk) such
that

r(K( m Mk) T„) < k(n )

If m o m then the precise value of the Ramsey number has been determined
and all trees are K( mz Mk ) good

TH OR M [5] : For n sufficiently large

r(K(l l m z mk ) T„) k(n )

The complete multipartite graphs in each of the previous three theorems can be
replaced by an appropriate graph Fwith chromatic number k In Theorem any
Fwill suffice ; in Theorem the chromatic surplus of Fmust be l ; and in Theorem a
(k ) coloring of Fin which two color classes have only one vertex will suffice

The following is the special case when the tree is a star and it proves that a graph F
with chromatic surplus is not sufficient for all large order trees to be F good

TH OR M [2] :For n sufficiently large

r(K( m ) nk) K( n)) k(r(K( m ) K( n)) )

Since r(K( m ) K(l n)) m n S where S if m and n are both even
and S 0 otherwise Theorem completely determines the value of the Ramsey
number This value is not in general k(n ) so the star K( n) is not
K( m Mk ) good

efore we can state the next result some additional notation must be given The
independence number of a graph G will be denoted by a(G) If T is a tree then set

a '(T) min{a(T V(S)) :S is a star contained in T}

Thus a'(T) is a measure of how small the independence number of the nonneighbor
hood of a vertex of the tree can be The parameter á is related to the Ramsey number
r(K(l m) T) of a star and a tree as the following result indicates

TH OR M [ ] : Let m be a positive integer and T„ a tree of order n with n 2m 3
Then

max{n n m l á a}<r(K(l m) T„)<max{n n m á}

where á á(T„) and Q 0 if n m 2 á is divisible by m and
otherwise

Therefore in general the upper and lower bounds for r(K(l m) T„) differ by at
most There are several cases in which there is equality In particular if the tree T„
has no vertex of degree at least n 2m 3 then á m and r(K( m) T„) _
n

The examples that give the lower bound in Theorem will be needed later so we
briefly describe these graphs and their properties now careful verification of their
properties can be found in [ ]

learly the graph K„_ does not contain a T„ and its complement does not contain
any star If n m á 0 > n then the tree T„ must have a vertex of large
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degree Let G be the graph on n m 2 á d > n vertices that is the disjoint
union of complete graphs K„ if0 0 and of complete graphs K and K _ if a If n
is large then this can always be achieved learly G contains no K( m) Finally
using the fact that the tree contains a vertex of large degree we show that the
complement of G does not contain T„ This follows from the fact that if G contains T
then the large degree vertex of T„ will be in an independent set with m 0 vertices and
only an additional a 'vertex of T„ can be in this independent set Thus m á 0
vertices of G will not be in T which leaves at most n I vertices of G in T„ The
graphs K_ and G imply colorings that give the lower bounds in Theorem

R SULTS N PROOFS

The principal result is contained in the following two theorems

TH OR M : For < m < m 2 < • • • Mk and n sufficiently large

r(K( m m2 Mk) TR) < k(r(K( m ) T„) )

TH OR M 2 : Let < ml < M2 :< < Mk and let n be sufficiently large Then in
general

lso

r(K(l m m2 M T„) > k(r(K ( m ) T„) )

for each of the following cases :

(i) m divides n m á 2
(ü) n>_n m á or
(iii) r(K( m ) T„) n m á 2

Theorems I and 2 give upper and lower bounds for the Ramsey number
r(K(l m m2 Mk) T„) that differ by at most k In fact unless the three T„ has a
vertex of degree at least n 2m 3 the upper bound and lower bound agree and
imply that the Ramsey number is precisely k(n ) Thus if (T) represents the
maximal degree of a vertex in T we have the following corollary

OROLL RY : If n is sufficiently large and (T„) n 2m 2 then

r(K( m m2i Mk) T„) > max{k(n ) k(r(K( m ) T„) 2)}

r(K(I m m2 Mk) T„) k(n )

In particular if m this is true

The multipartite graph in the corollary need not be a complete multipartite graph
because inequality ( ) gives a lower bound that depends only on the chromatic number
of the graph Therefore if F is any subgraph of K( m m	mk) with
x(F) k and (T„) < n 2m 2 then for n sufficiently large

r(F T„) k(n )
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The upper bound given in Theorem clearly does not require that the first graph be
a complete multipartite graph However the lower bounds given in Theorem 2 do
depend on the first graph being a complete multipartite graph This will be clear from
the proof of Theorem 2 which follows

Proof of Theorem 2: We will assume the notation used in Theorem and the
examples associated with that result Thus

r(K(l m l ) TJ n

	

n m a' 2

	

or

	

n m á I

onsider the graph H defined as follows

(i) If r(K( m ) Tn ) n then H K„_
(ü) If r(K( m ) Tn ) > n then H has order n m a 2 (3 and is the

complement of a vertex disjoint union of complete graphs each of order

(a) m if 0 0 (i e m divides n m a 2)
(b) m or m if 0 (this can always be done for large values of n)

The graph H does not contain T„ and the complement H does not contain a
K( m ) Therefore the graph k • H (k disjoint copies of the graph H) clearly does
not contain T„ and the complement of this graph does not contain K( m
m2 mk ) The last observation is a direct consequence of the fact that H does not
contain K(i m ) and m < M2 s < Mk Thus considering k • H as the blue graph
and its complement as the red graph we have a coloring that completes the proof of
Theorem 2 l

efore giving the proof of Theorem some additional special notation will be
introduced and a lemma will be stated Notation not specifically mentioned will follow
that in [I] For simplicity the multipartite graph K(m m2 Mk) will be denoted
by K(m:k) when m _ • • • mk m suspended path in a graph is a path in which
each vertex has degree 2 in the graph nd edges are edges incident to vertices of
degree (i e incident to end vertices) If a graph contains a vertex v adjacent to m
end vertices we say that v is the center of a talon of degree m

L MM [3] : If T„ is a tree with n vertices that does not contain a suspended path
with more than s vertices then T„ has at least n/(2s) end vertices If in addition there
are no more than t independent end edges then T„ has a talon of degree at least
n/(2st)

Proof of Theorem : Let M k(r(K( m ) Tn ) ) I and assume that the
edges of the complete graph KM are colored red and blue so that there is no red
K( m m2 mk ) or blue Tn We will show that this leads to a contradiction

To shorten the notation we denote the graph K( m m2 Mk) by just F the
order of F by f and the red and blue subgraphs of KM by R and respectively It is
assumed that n is sufficiently large so that the results of Theorems apply The
notation of those theorems is used without additional comment

The proof is by induction on k The result is trivial for k so we can assume that
k > 2 Three cases that depend on the structure of the tree Tn are considered : ( ) Tn has
a long suspended path (2) Tn has many independent end edges and (3) T„ has a vertex
of large degree Lemma implies that these cases exhaust the possibilities

( ) Tn has a suspended path with at least f 2 vertices
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Let T' be the tree obtained from T„ by shortening the suspended path by vertices
y Theorem there is a copy of T' in Let Tbe a tree in that is obtained from T' by

lengthening this suspended path as much as possible up to vertices (in fact
since T„ (~ ) Let P which has at least f2 vertices denote this suspended path of T
y the maximality of T this suspended path cannot be lengthened in by using a

vertex not in T
y the induction assumption there is in R a copy Hof K(l m m2 mk _ ) that

is vertex disjoint from T The maximality of P implies that each vertex of H cannot be
adjacent in to two consecutive vertices of P and if a vertex is adjacent in to two
vertices of P then the successors along P of these vertices are adjacent in R Thus no
vertex h of H can have as many as f adjacencies on the path in for otherwise the
successors along P (except possibly for an end vertex of the path) of these vertices and
h would form a red complete Kf F Therefore there are at least f 2 f (f Mk) >
Mk vertices of P adjacent in R to every vertex of H This implies there is a red F a
contradiction that completes the proof in this case

(2) T„ has at least f 2 independent end edges

y Theorem there are f vertex disjoint copies of K( m l m 2 Mk) in R
which we will denote by H t Hf ach vertex not in an H; must have a blue
adjacency in H; to avoid a red copy of F Let T be the tree obtained from T„ by deleting
the end vertices of the f2 independent end edges of T and let x be the f2
vertices of T adjacent to these end vertices y Theorem there is in a copy of T
that is vertex disjoint from H l Hf

There is no matching between X and V(K T) in that saturates X for this
would imply that contains T„ lso each vertex of X is adjacent in to at least f
vertices not in T because each vertex of X has a blue adjacency in each H; Hall's
matching theorem [ 0] implies that there is a subset X' Xwith IX' > f >_ Mk whose
blue neighborhood in V(k T) has order at most ~X'J Hence there is a
subgraph Ydisjoint from T and with at least M n vertices that is adjacent in R
to each vertex of X The subgraph Y contains a red K( m l m 2 mk _ ) by the
induction assumption This implies the existence of a red F a contradiction that
completes the proof in this case

Lemma implies that the following case exhausts the possibilities for the tree T

(3) T„ has a talon of degree at least n/(2( f2)2)

Since r(K(m m2 mk ) Tn ) _< (k ) (n ) ny no vertex of K has red
degree (k ) (n ) n" Therefore each vertex has blue degree at least
n n" Thus any tree with no more than n n" vertices can be embedded in
with an arbitrary vertex of the tree embedded at any vertex of

We first show that there is no vertex of KM of blue degree at least n ssume y
is such a vertex and let x be the vertex of T„ that is the center of a maximal degree
talon The degree of the talon is at least n/(2( f2)2) which is a positive fraction of
n since and f are constants independent of n Let T be the tree obtained from T„ by
deleting the end vertices of the talon with center x Thus T can be embedded in with
x embedded at y This embedding can be extended to Tn since y has degree at least
n In the remainder of the proof we assume that there is no vertex of blue degree at
least n



52

	

NN LS N W YORK MY OF S I N S

Our objective at this point is to show that the restriction on the (red and blue)
edge coloring of K forces the blue graph to be a disjoint union of k graphs that are
nearly complete and the red graph R to be approximately a complete k partite graph
This will be used to obtain a contradiction

y Theorem there is a red K(kk) where I is large in comparison off but small
in comparison to n Since R I F no one of the k parts of the K(I:k) can contain a red
K( m ) Therefore by hvátal's theorem [ ] each part of the K(U) contains a
complete blue subgraph of order at least ( /m ) Hence by replacing the original I by
Im we can assume that the two colored K contains a red K(U) with each part
inducing a blue K enote the vertices of the k parts by P Pk let P be their
union and p the number of vertices in P Hence IP ; I P I _ K each edge in a Pi is
blue and each edge between different Pi is red

onsider the vertices not in P For each i ( < i < k) let Qi be those vertices not in
P that are adjacent in to at most ( mk)(m ) vertices of P; for each j # i
Since F (I R the Qi are pairwise disjoint Note that any set of m vertices of Qi (in
fact Pi U Qi ) has a common red neighborhood of order at least Mk in each P; for j 0 i
onsequently there is no red K( m ) in the graph induced by the vertices Pi U Qi

for this would imply F R Hence if for each i qi I Q i then q i I
r(K(l m ) T„)

Let Q be the union of the Qi ( < i <_ k) Qk be the remaining vertices not in P U
Q and qk l I Qk l • We will now show that each qi ( s i s k) is approximately n
and qk l is bounded as a function of n and

Let Qí ( < i > k) be the vertices of Q i that have at least one red adjacency in Pi
Q' the union of these sets and q' the number of vertices in Q' Since there is no red
K( m ) in Pi U Qi there are no more than lm vertices in Qí Hence q'< klm ll of
the vertices of Q Q' have at least blue adjacencies in P and the vertices of Q' have
at least m blue adjacencies in P ny vertex in Qk l has I Mk blue adjacencies in
some Pi and at least (I mk)/(m ) in some P; forj i Thus a vertex in Qk l has
at least (m 2)/(m ) c blue adjacencies in P where c c (f k) (a
constant independent of n and ) No vertex has blue degree n so each vertex of P
has at most n blue adjacencies outside of P ounting the number of blue edges
between P and Q U Qk we get the following inequality :

P(n l) qk l((I(ml 2)/(ml ) c )

q'( m ) (M p q' qk l)

Substituting appropriate values for p q q k and M and performing straightforward
calculations will yield the following inequality :

qk l < 2 2(f k)

Since q i

	

r(K( m ) T ) / for ( i :s k) and

	

k
k(r(K( m ) T„) I ) q k each

q i > n 3

	

where 3 3(f k)

Since both Z and c3 are independent of n and this verifies our claim about the q i
(I <i<k )

Since P U Q has at most k(r(K( m ) T„) ) vertices there is a vertex in Q k
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which we will denote by x Let Q ;' be the vertices of Q; adjacent in R to x and Q" the
union of the Q; ( _< i _< k) There is an appropriate 0 c (f k) such that

I Q > '/(m )

If this were not true then x would have blue degree at least

(n l 3) (l/(m ) ) l(m 2)/(m )

53

e <n e 3 sn

which gives a contradiction for an appropriate choice of
There is no red K( ml ) in P; U Q; so each vertex of Q;' has at least n 3 m

blue adjacencies in P ; U Q; Thus a vertex in Q;' has at most 3 m blue adjacencies
in each Q' for i j Hence there is clearly a red F in Q" U {x} This contradiction
completes the proof of Theorem l O

QU STIONS

There arc two questions directly related to the results of this paper that would be
nice to clear up First can the precise value of r(K( m) T„) be determined for all
large order trees? The examples used to verify the present lower bound do not in
general give the correct value for r(K( m) T„) However when they do give the
correct value the proof of Theorem implies that the present upper bound of Theorem

is the precise value for the multipartite graph tree Ramsey number Second when
the canonical examples used to give the lower bound for r(K( m) T„) do not give the
precise result can the precise value of r(K( m m2 Mk) T„) still be deter
mined?

The chromatic number the chromatic surplus of the multipartite graph and the
Ramsey number r(K( m) T„) are important parameters in expressing the upper
bound for the Ramsey number r(K( m m2 mk) T„) given in Theorem It is
natural to ask if there is a corresponding result for an arbitrary complete multipartite
graph tree Ramsey number In particular is it true that for n sufficiently large

r(K(m m2 Mk) TJ (k )(r(K(ml m2) T») ) m l ?

	

(2)

Ramsey numbers r( T„) have been investigated for a bipartite graph and good
upper bounds have been obtained in [ ] Thus a proof of inequality (2) would improve
the known bounds of the multipartite graph tree Ramsey numbers
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